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Abstract. We consider a Newton-Krylov approach for discretized compressible Euler

equations. A good preconditioner in the Krylov subspace method is essential for obtaining

an efficient solver in such an approach. In this paper we compare point-block-Gauss-Seidel,

point-block-ILU and point-block-SPAI preconditioners. It turns out that the SPAI method

is not satisfactory for our problem class. The point-block-Gauss-Seidel and point-block-

ILU preconditioners result in iterative solvers with comparable efficiencies.

1 INTRODUCTION

We are interested in iterative methods for solving the large sparse nonlinear systems of
equations that result from the discretization of stationary compressible Euler equations.
Related to the discretization it is important to distinguish two approaches. Firstly, a
direct spatial discretization (using finite differences or finite volume techniques) applied
to the stationary problem results in a corresponding nonlinear discrete problem. In the
second approach the stationary solution is characterized as the asymptotic (i.e., time
tending to infinity) solution of an evolution problem. In such a setting one applies a
time integration method to the instationary Euler equations. In cases where one has very
small spatial grid sizes, for example if one uses grids with strong local refinements, an
implicit time integration method should be used. This then yields a nonlinear system of
equations in each timestep. Note that for a given spatial grid in the first approach we
have one discrete nonlinear problem whereas in the second approach we obtain a sequence

of discrete nonlinear problems.
For solving such nonlinear systems of equations there are many different approaches. Here
we mention two popular techniques, namely nonlinear multigrid solvers and Newton-
Krylov methods. Well-known nonlinear multigrid techniques are the FAS method by
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Brandt [11], the nonlinear multigrid method by Hackbusch [16] and the algorithm intro-
duced by Jameson [20]. It has been shown that a nonlinear multigrid approach can result
in very efficient solvers, which can even have optimal complexity ([21, 25, 26, 28]). For
these methods, however, a coarse-to-fine grid hierarchy must be available. The Newton-
Krylov algorithms do not require this. In these methods one applies a linearization tech-
nique combined with a preconditioned Krylov subspace algorithm for solving the resulting
linear problems. One then only needs the system matrix and hence these methods are in
general much easier to implement than multigrid solvers. Moreover, one can use efficient
implementations of templates that are available in sparse matrix libraries. Due to these
attractive properties the Newton-Krylov technique is also often used in practice (cf., for
example, [27, 29, 30, 31, 32, 42]).
In this paper we consider the Newton-Krylov approach. A method of this class has been
implemented in the QUADFLOW package, which is an adaptive multiscale finite vol-
ume solver for stationary and instationary compressible flow computations. A description
of this solver is given in [4, 8, 9, 10, 37]. For the linearization we use a standard (ap-
proximate) Newton method. The resulting linear systems are solved by a preconditioned
BiCGSTAB method. The main topic of this paper is a systematic comparative study
of different basic preconditioning techniques. The preconditioners that we consider are
based on the so-called point-block approach in which all physical unknowns corresponding
to a grid point or a cell are treated as a block unknown. As preconditioners we use the
point-block-Gauss-Seidel (PBGS), point-block-ILU (PBILU(0)) and point-block sparse
approximate inverse (PBSPAI(0)) methods. The main motivation for considering the
PBSPAI(0) preconditioner is that opposite to the other two preconditioners this method
allows a trivial parallelization. We do not know of any literature in which for compress-
ible flows the SPAI technique is compared with the more classical ILU and Gauss-Seidel
preconditioners. In our comparative study we consider three test problems. The first
one is a stationary Euler problem on the unit square with boundary conditions such that
the problem has a trivial constant solution. For the second test problem we change the
boundary conditions such that the problem has a solution consisting of three different
states separated by shocks, that reflect at the upper boundary. In these first two test
problems we use the Van Leer flux vector-splitting scheme [24] for discretization. We do
not use an (artificial) time integration method. The third test problem is the stationary
Euler flow around an NACA0012 airfoil. This standard case is also used for testing the
QUADFLOW solver in [10]. Discretization is based on the flux-vector splitting method of
Hänel and Schwane [18] combined with a linear reconstruction technique. For determining
the stationary solution a variant of the backward Euler scheme (the b2-scheme by Batten
et. al. [6]) is used. For these three test problems we perform numerical experiments for
different flow conditions and varying mesh sizes.

While the PBSPAI(0) preconditioner turns out to unsuitable, the efficiencies of the
PBGS preconditioner and the PBILU(0) method are comparable. Both depend on the
ordering of the unknowns [2, 7, 17, 32]. Further improvement of these preconditioners
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can be achieved by using numbering techniques. These are well-known for PBILU(0) (e.g.
[13, 14]). For PBGS we discussed several numbering techniques in [33]. To illustrate the
improvement due to numbering we present a result for PBGS with a particular numbering
technique from [33].

2 DISCRETE EULER EQUATIONS

In this section we introduce three test problems that are used for a comparative study
of different preconditioners. In the first two of these test problems we consider a rela-
tively simple model situation with a standard first order flux vector-splitting scheme on
a uniform grid in 2D. In the third test problem we consider more advanced finite volume
techniques on locally refined grids as implemented in the QUADFLOW package.

2.1 Test problem 1: Stationary 2D Euler with constant solution

In this section we consider a very simple problem which, however, is still of interest for
the investigation of properties of iterative solvers. We take Ω = [0, 1]2 and consider the
stationary Euler equations in differential form:

∂f(u)

∂x
+

∂g(u)

∂y
= 0 , f(u) :=









ρv1

ρv2
1 + p

ρv1v2

ρv1htot









, g(u) :=









ρv2

ρv1v2

ρv2
2 + p

ρv2htot









. (1)

Here u = (ρ, ρv, ρetot)
T ∈ R

4 is the vector of unknown conserved quantities: ρ denotes
the density, p the pressure, v = (v1, v2)

T the velocity vector, etot the total energy and
htot the total enthalpy. The system is closed by the equation of state for a perfect gas
p = ρ(γ−1)(etot−1/2|v|2), where γ is the ratio of specific heats, which for air has the value
γ = 1.4. The boundary conditions (for the primitive variables) are taken such that these
Euler equations have a constant solution. For the velocity we take v = (vin

1 , vin
2 ) with given

constants vin
i > 0, i = 1, 2, on the inflow boundary Γin = { (x, y) ∈ ∂Ω | x = 0 or y = 0 }.

For the density we select a constant value ρ = ρin > 0 on Γin. For the pressure we also take
a constant value p = p̄ > 0 which is prescribed either at the inflow boundary (supersonic
case) or at outflow boundary ∂Ω\Γin (subsonic case). The Euler equations (1) then have
a solution that is constant in the whole domain: v = (vin

1 , vin
2 ), ρ = ρin, p = p̄.

For the discretization of this problem we use a uniform mesh Ωh = { (ih, jh) | 0 ≤ i, j ≤
n }, with nh = 1, and apply a basic upwinding method, namely the Van Leer flux vector-
splitting scheme [24]. The discretization of (physical and numerical) boundary conditions
is based on compatibility relations (section 19.1.2 in [19]). In each grid point we then
have four discrete unknowns, corresponding to the four conserved quantities. We use a
lexicographic ordering of the grid points with numbering 1, 2, . . . , (n+1)2 =: N . The four
unknowns at grid point i are denoted by Ui = (ui,1, ui,2, ui,3, ui,4)

T and all unknowns are
collected in the vector U = (Ui)1≤i≤N . The discretization yields a nonlinear system of
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Figure 1: Three different states separated by shocks

equations
F : R

4N → R
4N , F (U) = 0 . (2)

The continuous constant solution (restricted to the grid) solves the discrete problem and
thus the solution of the nonlinear discrete problem in 2 is known a-priori. This solution
is denoted by U∗. For the Jacobian DF (U) of F (U) explicit formulas can be derived. In
section 4 we investigate the behavior of different preconditioners when applied to a linear
system of the form

DF (U∗)x = b . (3)

Note that the matrix DF (U∗) has a regular block structure

DF (U∗) = blockmatrix(Ai,j)0≤i,j≤N

with Ai,j ∈ R
4×4 for all i, j. We call this a point-block structure. Furthermore, Ai,j 6= 0

can occur only if i = j or i and j correspond to neighboring grid points.

2.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider a two-dimensional stationary Euler problem presented in example 5.3.3
in [23]. The domain is Ω = [0, 4] × [0, 1] and for the boundary conditions we take ρ =
1.4, v1 = 2.9, v2 = 0, p = 1.0 at the left boundary (x = 0), outflow boundary conditions
at the right boundary (x = 4), ρ = 2.47, v1 = 2.59, v2 = 0.54, p = 2.27 at the lower
boundary (y = 0) and reflecting boundary conditions at the upper boundary (y = 1).

With these boundary conditions the problem has a stationary solution consisting of three
different states separated by shocks, that reflect at the upper boundary, cf. figure 1. For
the discretization of this problem we apply the same method as in test problem 1. This
results in a nonlinear system of equations as in 2, but now the discrete solution, denoted by
U∗, is not known a-priori. In a Newton type of method applied to this nonlinear problem
one has to solve linear systems with matrix DF (Ũ), Ũ ≈ U∗. Therefore we investigate
iterative solvers applied to DF (U∗)x = b. The discrete solution U∗ is computed up to
machine accuracy using some time integration method. Note that the Jacobian matrix
DF (U∗) has a similar point-block structure as the Jacobian matrix in test problem 1.
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2.3 Test problem 3: Stationary flow around NACA0012 airfoil

The third problem is a standard test case for inviscid compressible flow solvers. We
consider the inviscid, transonic stationary flow around the NACA0012 airfoil (cf. [22]).
The discretization is based on the conservative formulation of the Euler equations. For
an arbitrary control volume V ⊂ Ω ⊂ R

2 one has equations of the form

∫

V

∂u

∂t
dV +

∮

∂V

Fc(u)n dS = 0 . (4)

Here n is the outward unit normal on ∂V , u the vector of unknown conserved quantities
and the convective flux is given by

Fc(u) =





ρv
ρv ◦ v + pI

ρhtotv



 . (5)

The symbol ◦ denotes the dyadic product. As above the system is closed by the equation
of state for a perfect gas. The discretization of these equations is based on cell centered
finite volume schemes on an unstructured mesh as implemented in QUADFLOW and
explained in [10]. For the present test problem the flux-vector splitting due to Hänel and
Schwane [18] is applied. Note that this is a variant of the Van Leer flux-vector splitting
method that is used in the previous two test problems. In our experiments the Van
Leer method and the Hänel-Schwane method give similar results both with respect to
discretization quality and with respect to the performance of iterative solvers. A linear
reconstruction technique is used to obtain second order accuracy in regions where the
solution is smooth. This is combined with the Venkatakrishnan limiter [41]. Although we
are interested in the stationary solution of this problem the time derivative is not skipped.
This time derivative is discretized by a time integration method which then results in a
numerical method for approximating the stationary solution. To allow a fast convergence
towards the stationary solution one wants to use large timesteps and thus an implicit
time discretization method is preferred. This approach then results in a nonlinear system
of equations in each timestep. Here we use the b2-scheme by Batten et. al. [6] for time
integration. Per timestep one inexact Newton iteration is applied. In this inexact Newton
method an approximate Jacobian is used, in which the linear reconstruction technique is
neglected and the Jacobian of the first order Hänel-Schwane discretization is approximated
by one-sided difference operators (as in [40]). These Jacobian matrices have the structure

DF (U) = diag
( |Vi|

∆t

)

+
∂RHS(U)

∂U
, (6)

where |Vi| is the volume of a control volume Vi, ∆t the (local) timestep and RHS(U)
the residual vector corresponding to the Hänel-Schwane fluxes. Details are given in [10].
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Note that in general a smaller timestep will improve the conditioning of the approximate
Jacobian in (6).

We start with an initial coarse grid and an initial CFL number CMIN, which determines
the size of the timestep. After each timestep in the time integration the CFL number (and
thus the timestep) is increased by a constant factor until an a-priori fixed upper bound
CMAX is reached. Time integration is continued until a tolerance criterion for the residual
is satisfied. Then a (local) grid refinement is performed and the procedure starts again
with an initial CFL number equal to CMIN. The indicator for the local grid refinement
is based on a multiscale analysis using wavelets [10]. In every timestep one approximate
Newton iteration is performed. The resulting linear equation is solved with a user defined
accuracy for the relative residual. The approximate Jacobian has a point-block structure
as in the first two test problems: DF (U) = blockmatrix(Ai,j)0≤i,j≤N with Ai,j ∈ R

4×4 for
all i, j and Ai,j 6= 0 only if i = j or i and j correspond to neighboring cells.

3 POINT-BLOCK-PRECONDITIONERS

In the three test problems described above we have to solve a large sparse linear system.
The matrices in these systems are sparse and have a point-block structure in which the
blocks correspond to the 4 unknowns in each of the N grid points (finite differences) or
N cells (finite volume). Thus we have linear systems of the form

Ax = b , A = blockmatrix(Ai,j)1≤i,j≤N , Ai,j ∈ R
4×4 . (7)

For the type of applications that we consider these problems are often solved by using
a preconditioned Krylov-subspace method. In our numerical experiments we use the
BiCGSTAB method. In the following subsections we describe basic point-block iterative
methods that are used as preconditioners in the iterative solver. For the right handside
we use a block representation b = (b1, . . . , bN )T , bi ∈ R

4, that corresponds to the block
structure of A. The same is done for the iterands xk that approximate the solution of
the linear system in (7).

For the description of the preconditioners the nonzero pattern P (A) corresponding to
the point-blocks in the matrix A is important:

P (A) = { (i, j) | Ai,j 6= 0 } . (8)

3.1 Point-block-Gauss-Seidel method

The point-block-Gauss-Seidel method (PBGS) is the standard block Gauss-Seidel
method applied to (7). Let x0 be a given starting vector. Then for k ≥ 0 the iterand
xk+1 = (xk+1

1 , . . . , xk+1
N )T should satisfy

Ai,ix
k+1
i = bi −

i−1
∑

j=1

Ai,jx
k+1
j −

N
∑

j=i+1

Ai,jx
k
j , i = 1, . . . , N . (9)

6



Bernhard Pollul

This method is well-defined if the 4 × 4 linear systems in 9 are uniquely solvable, i.e.,
if the diagonal blocks Ai,i are nonsingular. In our applications this was always satisfied.
This elementary method is very easy to implement and needs no additional storage. The
algorithm is available in the PETSc library [3]. A Convergence analysis of this method
for the 1D stationary Euler problem is presented in [34].

3.2 Point-block-ILU(0) method

We consider the following point-block version of the standard point ILU(0) algorithm:

for k = 1, 2, . . . , N − 1

D := A−1
k,k ;

for i = k + 1, k + 2, . . . , N

if (i, k) ∈ P (A)

E := Ai,kD ; Ai,k := E ;

for j = k + 1, k + 2, . . . , N

if (i, j) ∈ P (A) and (k, j) ∈ P (A)

Ai,j := Ai,j − EAk,j;

end if

end j

end if

end i

end k

Figure 2: Point-block-ILU(0) algorithm

This algorithm is denoted by PBILU(0). Note that as for the PBGS method the diag-
onal blocks Ak,k are assumed to be nonsingular. For this preconditioner a preprocessing
phase is needed in which the incomplete factorization is computed. Furthermore addi-
tional storage similar to the storage requirements for the matrix A is needed.
As for point ILU methods one can consider variants of this algorithm in which a larger
pattern as P (A) is used and thus more fill-in is allowed (cf. for example, ILU(p), [35]).
Both the PBILU(0) algorithm and such variants are available in the PETSc library.
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3.3 Block sparse approximate inverse

In the SPAI method [15, 38] an approximate inverse M of the matrix A is constructed
by minimizing the Frobenius norm ‖AM− I‖F with a prescribed sparsity pattern of the
matrix M. In the point-block version of this approach (cf. [5]), denoted by PBSPAI(0),
we take a block representation M = blockmatrix(Mi,j)1≤i,j≤N , Mi,j ∈ R

4×4, and the set
of admissible approximate inverses is given by

M := {M ∈ R
4N×4N | P (M) ⊆ P (A) } . (10)

A sparse approximate inverse M is determined by minimization over this admissible set

‖AM− I‖F = min
M̃∈M

‖AM̃− I‖F .

The choice for the Frobenius norm allows a splitting of this minimization problem. Let
M̃j = blockmatrix(M̃i,j)1≤i≤N ∈ R

4N×4 be the j-th block column of the matrix M̃ and Ij

the corresponding block column of I. Let m̃j,k and ej,k, k = 1, . . . , 4, be the k-th columns
of the matrix M̃j and Ij, respectively. As a result of

‖AM̃− I‖2
F =

N
∑

j=1

‖AM̃j − Ij‖
2
F =

N
∑

j=1

4
∑

k=1

‖Am̃j,k − ej,k‖
2
2 (11)

the minimization problem can be split into 4N decoupled least squares problems:

min
m̃j,k

‖Am̃j,k − ej,k‖2 , j = 1, . . . , N, k = 1, . . . , 4. (12)

The vector m̃j,k has the block representation m̃j,k = (m1, . . . , mN)T with mℓ ∈ R
4 and

mℓ = 0 if (ℓ, j) /∈ P (A). Hence for fixed (j, k) and with ej,k =: (e1, . . . , eN)T , eℓ ∈ R
4, we

have

‖Am̃j,k − ej,k‖
2
2 =

N
∑∗

i,ℓ=1

‖Ai,ℓmℓ − eℓ‖
2
2

where in the double sum
∑∗

only pairs (i, ℓ) occur with (i, ℓ) ∈ P (A) and (ℓ, j) ∈ P (A).

Thus the minimization problem for the column m̃j,k in (12) is a low dimensional least
squares problem that can be solved by standard methods. Due to (11) these least squares
problems for the different columns of the matrix M can be solved in parallel. Moreover
the application of the PBSPAI(0) preconditioner requires a sparse matrix-vector product
computation which is also has a high parallelization potential. As for the PBILU(0)
preconditioner a preprocessing phase is needed in which the PBSPAI(0) preconditioner
M is computed. Additional storage similar to the storage requirements for the matrix A
is needed.
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In the literature a row-variant of SPAI is also used. This method is based on the
minimization problem

‖MA − I‖F = min
M̃∈M

‖M̃A − I‖F .

A row-wise decoupling leads to a very similar method as the one described above. Here
we denote this algorithm by PBSPAIrow(0).
As for the ILU preconditioner these SPAI preconditioners have variants in which additional
fill-in is allowed, cf. [5, 15]. Besides as a preconditioner the SPAI method can also be
used as a smoother in multigrid solvers (cf. [12, 39]).

4 NUMERICAL EXPERIMENTS

In this section we present results of numerical experiments. Our goal is to illustrate
and to compare the behavior of the different preconditioners presented above for a few
test problems. The first two test problems (described in section 2.1 and 2.2) are Jacobian
systems that result from the Van Leer flux vector-splitting discretization on a uniform
mesh with mesh size h, cf. (3). These Jacobians are evaluated at the discrete solution
U∗. In the first test problem this solution is a trivial one (namely, constant), whereas in
the second test problem we have a reflecting shock. In the third test case we have linear
systems with matrices as in (6) that arise in the solver used in the QUADFLOW package.

In all experiments below we use a left preconditioned BiCGSTAB method. For the
first two test problems, the discretization routines, methods for the construction of the
Jacobian matrices and the preconditioners (PBGS, PBILU(0) and PBSPAI(0)) are im-
plemented in MATLAB. We use the BiCGSTAB method available in MATLAB. For the
third test problem the approximate Jacobian matrices as in (6) are computed in QUAD-
FLOW. For the preconditioned BiCGSTAB method and the PBGS, PBILU(p), p = 0, 1, 2,
preconditioners we use routines from the PETSc library [3].

To measure the quality of the preconditioners we present the number of iterations that
is needed to satisfy a certain tolerance criterion. To allow a fair comparison of the different
preconditioners we briefly comment on the arithmetic work needed for the construction
of the preconditioners and the arithmetic costs of one application of the preconditioners.
As unit of arithmetic work we take the costs of one matrix-vector multiplication with the
matrix A (=: 1 matvec). For the PBGS method we have no construction costs. The arith-
metic work per application of PBGS is about 0.7 matvec. Note that both in PBILU(0)
and PBSPAI(0) the nonzero block -pattern is not larger that of the matrix A (e.g., for
PBSPAI(0), P (M) ⊆ P (A) in (10)). However, in a nonzero block of the matrix A cer-
tain entries can be zero, whereas in the preconditioner the corresponding entries may be
nonzero. For example, in the shock reflection test problem, about one fourth of the entries
in the nonzero blocks are zero, whereas in the PBILU(0) and PBSPAI(0) preconditioners
for this problem almost all entries in the nonzero blocks are nonzero. In our experiments
the costs for constructing the PBILU(0) preconditioner are between 2 and 4 matvecs. We
typically need 1.2-1.6 matvecs per application of PBILU(0). The costs for constructing
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the PBSPAI(0) preconditioner are much higher (note, however, the high parallelization
potential). Typical values (depending on P (A)) in our experiments are 20-50 matvecs.
In the application of this preconditioner no 4× 4 subproblems have to be solved and due
to this the arithmetic work is somewhat less as for the PBILU(0) preconditioner. We
typically need 1.2-1.5 matvecs per application of the PBSPAI(0) preconditioner. Sum-
marizing, if we only consider the costs per application of the preconditioners than the
PBILU(0) method is about twice as expensive as the PBGS method and the PBSPAI(0)
preconditioner is slightly less expensive than the PBILU(0) method.

4.1 Test problem 1: Stationary 2D Euler with constant solution

We consider the discretized stationary Euler equations described in test problem 1
with mesh size h = 0.02. We vary the Mach number in x-direction, which is denoted
by Mx: 0.05 ≤ Mx ≤ 1.25. For the Mach number in y-direction, denoted by My, we
take My = 3

2
Mx. The linear system in (3) is solved with the preconditioned BiCGSTAB

method, with starting vector zero. The iteration is stopped if the relative residual (2-
norm) is below 1E-6. Results are presented in Figure 3. As a result of the downwind
numbering the upper block-diagonal part of the Jacobian is zero in the supersonic case
(Mx > 1) and thus both the PBILU(0) method and PBGS are exact solvers. The PB-
SPAI(0) preconditioner does not have this property, due to the fact that M is a sparse

Figure 3: Test problem 1, iteration count
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approximation of A−1, which is a dense point-block lower triangular matrix. For Mx < 1
with PBGS preconditioning we need about 1 to 4 times as much iterations as with
PBILU(0) preconditioning. Both preconditioners show a clear tendency, namely that
the convergence becomes faster if Mx is increased. For Mx < 1 the PBSPAI(0) precon-
ditioners shows an undesirable very irregular behavior. There are peaks in the iteration
counts close to Mx = 2

3
(hence, My = 1) and Mx = 1. Applying BiCGSTAB without

preconditioning we observe divergence for most Mx values and if the method converges
then its rate of convergence is extremely low.

4.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider the discretized stationary Euler equations with a shock reflection as de-
scribed in section 2.2 on grids with different mesh sizes hx = hy = 2−k, k = 3, . . . , 7. The
discrete solution U∗ is determined with high accuracy using a damped Newton method.
As in section 4.1 we use the preconditioned BiCGSTAB method to solve a linear system
with matrix DF (U∗) until the relative residual is below 1E-6. The number of iterations
that is needed is shown in table 1. The symbol † denotes that the method did not converge
within 2000 iterations. Both for the PBGS and the PBILU(0) preconditioner we observe
the expected h−1

y behavior in the iteration counts. With PBGS preconditioning one needs
about 1.5 to 2 times as much iterations as with PBILU(0) preconditioning. Again the
performance of the PBSPAI(0) preconditioner is very poor.

mesh size hy
1
8

1
16

1
32

1
64

1
128

PBGS 15 26 51 108 232
PBILU(0) 10 17 30 59 109
PBSPAI(0) 183 † † † †

PBSPAI row(0) 193 † † † †

Table 1: Test problem 2, iteration count

4.3 Test Problem 3: Stationary flow around NACA0012 airfoil

We consider two standard NACA0012 airfoil test cases ([22] test cases 3 and 1; the
other three reference test cases for this airfoil yield similar results) as described in test
problem 3. Test case A corresponds to the flow parameters M∞ = 0.95, α = 0◦ (also used
in [10]) and test case B corresponds to the parameters M∞ = 0.8, α = 1.25◦. Related
to the discretization we recall some facts from [10]. The far-field boundary is located
about 20 chord lengths from the airfoil. Standard characteristic boundary conditions are
applied at the far-field. Computations are initialized on a structured grid consisting of
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4 blocks with 10 × 10 cells each. Adaptation of the grid was performed each time the
density residual has decreased two orders of magnitude. On the finest level the iteration
is stopped when the density residual is reduced by a factor of 104. Grid refinement and
coarsening are controlled by a multiscale wavelet technique. For test case A this results
in a sequence of 14 (locally refined) grids. In table 2 we show the number of cells in
each of these grids. We note that on the finer grids a change (refinement/coarsening) to

Grid 1 2 3 4 5 6 7
# cells 400 1,600 4,264 7,006 11,827 15,634 21,841

Grid 8 9 10 11 12 13 14
# cells 25,870 28,627 30,547 31,828 33,067 33,955 34,552

Table 2: Test case A, sequence of grids

the next grid does not necessarily imply a smaller finest mesh size. It may happen that
only certain coarse cells are refined to obtain a better shock resolution. For a discussion
of this adaptivity issue we refer to [10]. In figure 4 the final grid (34,552 cells) and the
corresponding Mach number distribution is shown.

The flow pattern downstream of the trailing edge has a complex shock configuration.
Two oblique shocks are formed at the trailing edge. The supersonic region behind these
oblique shocks is closed by a further normal shock.

On each grid an implicit time integration is applied (cf. section 2.3). Currently the
choice of the timestep is based on an ad hoc strategy. Starting with a CFL number
equal to 1 the timestep is increased based on the rule CFLnew = 1.1 CFLold. A maximum
value of 1000 is allowed. Per timestep one inexact Newton iteration is applied. The
linear systems with the approximate Jacobians (cf. section 2.3) are solved by a precondi-
tioned BiCGSTAB method until the relative residual is smaller than 1E-2. Because the
PBSPAI(0) preconditioners have shown a very poor behavior already for the relatively
simple problems in section 4.1 and section 4.2 we decided not to use the PBSPAI(0)
preconditioner in this test problem. An interface between QUADFLOW and the PETSc
library [3] has been implemented. This makes the BiCGSTAB method and PBILU(0) pre-
conditioner available. Recently also a PBGS routine has become available. The PETSc
library offers many other iterative solvers and preconditioners. Here, besides the PBGS
and PBILU(0) preconditioners we also consider block variants of ILU that allow more
fill-in, namely the PBILU(1) and PBILU(2) methods.

The arithmetic work in the QUADFLOW solver is dominated by the linear solves on
the finest grids. We present results only for the two finest grids. The corresponding
number of preconditioned BiCGSTAB iterations for each timestep on these two grids
is given in figure 5. Note that different preconditioners may lead to (slightly) different
numbers of timesteps. On grid 13 we have about 110 timesteps and then a change to
grid 14 takes place. In these 110 timesteps on grid 13 the iteration count shows a clear
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Figure 4: Test case A. Left figure: computational grid. Right figure: Mach distribution, Mmin = 0.0,
Mmax = 1.45, ∆M = 0.05

increasing trend. This is due to the increase of the CFL number. After the change to grid
14 one starts with CFL = 1 and a similar behaviour occurs again.

test case A B
Grid 13 14 10 11

PBGS 15.3 20.2 2.85 32.0
PBILU(0) 6.92 8.82 1.33 11.2
PBILU(1) 4.49 4.65 1.04 6.87
PBILU(2) 3.52 3.81 1.04 5.78

Table 3: Test cases A and B, average iteration count
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Figure 5: Test case A, iteration count

In test case B the adaptivity strategy results in 11 grids. In table 3 for both test cases
we show the averaged number of preconditioned BiCGSTAB iterations for the two finest
grids, where the average is taken over the time steps per grid.

Note that with PBGS we need 2.1-2.8 times more iterations as with PBILU(0) and with
PBILU(2) we need about 2 times less iterations as with PBILU(0). Taking the arithmetic
work per iteration into account we conclude that PBGS and PBILU(0) have comparable
efficiency, whereas the PBILU(p), p = 1, 2, preconditioners are (much) less efficient.

To illustrate the dependence of the rate of convergence on the mesh size we consider, for
test case A, a sequence of uniformly refined grids, cf. table 4. On every grid we continue
the time integration until the density residual has decreased two orders of magnitude.
Iteration counts are shown in table 5.

From these results we see that due to the mass matrix coming from the (artificial) time
integration the average iteration count increases much slower as h−1. The total number of

Grid 1 2 3 4 5
# cells 400 1,600 6,400 25,600 102,400

Table 4: sequence of uniformely refined grids
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Grid 1 2 3 4 5

PBGS 5.8 9.2 13.3 18.2 21.7
PBILU(0) 1.9 2.4 2.9 4.3 4.5
PBILU(1) 1.6 1.7 1.9 2.7 2.9
PBILU(2) 1.0 1.4 1.8 1.9 2.0

Grid 1 2 3 4 5

PBGS 947 1806 3739 9030 19212
PBILU(0) 301 462 806 2121 4025
PBILU(1) 250 335 547 1324 2562
PBILU(2) 161 274 510 940 1783

Table 5: Test case A. Average iteration count (above) and sum over all time steps per grid (below).

iterations, however, shows a clear h−1 behaviour as in the model problem in section 4.2.
The large total number of iterations needed on fine grids (table 5, right) is caused by the
many timesteps that are needed. A significant improvement of efficiency may come from
a better strategy for the timestep control.

Remark Incomplete LU-factorization and Gauss-Seidel techniques are popular precondi-
tioners that are used in solvers in the numerical simulation of compressible flows [1, 2, 32,
36]. Both preconditioners depend on the ordering of the cells (grid-points) [2, 7, 17, 32].
In combination with PBILU the reverse Cuthill-McKee ordering algorithm [13, 14] is often
used. This ordering yields a matrix with a “small” bandwidth.

In [33] we investigated ordering algorithms for the PBGS preconditioner and introduced
a ‘weighted reduced graph numbering’ (WRG) which turned out to give good results
compared to other renumbering algorithms. This WRG numbering is particularly effective
for supersonic flows. Therefore a result for M∞ = 1.2, α = 0◦ (cf. [22]), denoted by C,
is presented in table 6, too. The columns QN show the average iteration count when
applying PBGS with the numbering induced by the solver QUADFLOW. The iteration
count can be reduced by 8.9% - 51.5% when coupling PBGS with WRG numbering.

The cost for computing the renumbering is negligible because the permutation is only
computed once on every level of adaptation. When using a (point-block) random num-

test case A B C
numbering QN WRG QN WRG QN WRG

PBGS 20.2 18.4 32.0 23.0 20.6 10.0

Table 6: Test cases A,B and C, average iteration count on finest adaptation level
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bering, the PBGS-preconditioned BiCGSTAB method does not converge in most cases.
With WRG numbering, though, even with large CFL-numbers (e.g. 1000, 5000) the lin-
ear solver converges in most cases if we use PBGS. The WRG algorithm is black-box
and significantly improves the robustness and efficiency of the point-block Gauss-Seidel
preconditioner. For further explanation and properties of this and other renumbering
algorithms we refer to [33].

5 CONCLUSIONS

We summarize the main conclusions. Already for our relatively simple model problems
the PBSPAI(0) method turns out to be a poor preconditioner. This method should not
be used in a Newton-Krylov method for solving compressible Euler equations. Both for
model problems and a realistic application (QUADFLOW solver for NACA0012 airfoil)
the efficiencies of the PBGS preconditioner and the PBILU(0) method are comparable.
For our applications the PBILU(1) and PBILU(2) preconditioners are less efficient than
the PBILU(0) preconditioner. To achieve a robust preconditioner PBILU(0) and PBGS
can be coupled with a suitable ordering algorithm.
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