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We introduce a new approach for the generation and the generalisation of visually
smooth depth-contours for hydrographic charts. Unlike most current approaches, it
strictly respects the safety constraint that dictates that the resulting chart may not in-
dicate a depth shallower than originally measured. e main idea is to construct a
smooth surface using a Voronoi-based interpolation method. is surface is repre-
sented using a triangulation, modified using a series of generalisation operators, and
ultimately depth-contours are extracted directly from this surface. We report on ex-
periments made with real-world datasets, and we compare our results with existing
approaches.
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1 Introduction

An hydrographic chart is a map of the underwater world specifically intended for the safe navi-
gation of ships. One important element of such a chart are the depth-contours, which have been
traditionally drawn by hand by skilled hydrographers. ey used a limited set of scattered surveyed
depth measurements to deduct and depict the morphology of the seafloor with smooth-looking
curves. Nowadays, with technologies such as multibeam echosounders (MBES) offering an al-
most full coverage of the seafloor, one would expect the contouring process to be fully automatic.
It is however in practice still a (semi-)manual process since the new technologies have ironically
brought new problems: computers have problems processing the massive amount of data, espe-
cially in choosing which data is relevant and which is not. Contours constructed directly from
MBES datasets are oen not satisfactory for navigational purposes since, as Figure 1a shows, they

(a) Depth-contours obtained from the raw data (b) Hydrographic map product of the same area

(c) Pits are removed, while peaks are preserved or inte-
grated with another contour

(d) Groups of nearby contour lines are aggregated

Figure 1: Comparison of raw data and a hydrographic chart from the Royal Australian Navy of the
Torres Strait north of Australia. Raw depth contours are blue, generalized depth contours are
black.

are zigzagging (the representation of the seafloor contains “waves”, i.e.the slope changes abruptly)
and they contain many “island” contours (seafloor has several local minima and maxima). ese
artefacts are the result of measurement noise that is present in MBES datasets, i.e.the variation in
depth between two close samples can be larger than in reality, even aer the dataset has been sta-
tistically cleaned (Calder and Mayer, 2003; Calder and Wells, 2007). Figure 1b illustrates what is
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Figure 2: During generalisation, depth-contours can only be moved towards greater depth (indi-
cated by a “–” in the figure).

expected by hydrographers.

Creating good depth-contours requires generalisation, i.e.the process of meaningfully reducing in-
formation. As Zhang and Guilbert (2011) state, the generalisation of the content of a nautical chart
is hindered by the fact that the following four constraints must be respected:

1. e legibility constraint. An overdose of information slows down the map reading process
for the mariner, thus only the essential information should be depicted on the map in a form
that is clearly and efficiently apprehensible.

2. e safety constraint. At every location, the indicated depth must not be deeper than the
depth that was originally measured at that location; this is to guarantee that a ship never
runs aground because of a faulty map. is constraint is a so-called hard constraint, i.e.it
can never be broken.

3. e topology constraint. e topology of the depictedmap elementsmust be correct, i.e.depth
contours may not touch or intersect (also a hard constraint).

4. e morphology constraint. e map should be as realistic and accurate as possible, i.e.the
overall shape of the morphology of the underwater surface should be clearly perceivable and
defined features should be preserved.

It should be noted that these four constraints are sometimes incompatible with each other. For in-
stance, the morphology constraint tells us to stay close to the measured shape of the seafloor, while
the legibility constraint forces us to deviate from that exact shape by disregarding details. Also, be-
cause of the safety constraint, contours can only be modified such that the safety is respected at all
times, i.e.contours can only be pushed towards the deeper side during generalisation, as illustrated
in Fig 2. It is therefore evident that the end result must be a reasonable compromise between the
four constraints, although the hard constraints must not be broken.

e generation of contours, and their generalisation, can be done by several methods. Practitioners
usually first interpolate the original MBES samples to create a grid and then directly extract the
contours from the grid. If the number of samples is too high to be processed by a computer, they
oen use a subset, which has the added benefits of creating smoother and simpler depth-contours.
We demonstrate in the next section that suchworkflows can not guarantee that the safety constraint
is respected, and should therefore not be used. is is one result of this paper. An alternative
approach is to construct depth-contours anddirectly displace the lines. Guilbert andLin (2007) and
Guilbert and Saux (2008) provide the only knownmethodology to generalise thesewhile respecting
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the four constraints. However, thesemethods require input datasets that are already relatively clean
and structured according to a specific format (b-splines), and they do not consider how to safely
obtain these in the first place.

We propose in this paper, which is an extension of the work of Peters et al. (2013), a unified ap-
proach to the generation of safe and smooth depth-contours. It deals with the entire processing
chain—from the (statistically cleaned) depth-measurements to generalised contours—and intrin-
sically respects the four constraints listed above. emain idea is to construct a surface with all the
original samples, to modify and manipulate this surface to obtain a smoother one, and to extract
depth-contours from the smoothed surface only (which ensures that the topology constraint is al-
ways respected). is is conceptually similar to the Navigational Surface paradigm (Smith et al.,
2002; Smith, 2003) in the sense that a surface is built andmaintained from the original samples, and
contours are extracted from it when needed. However, instead of using raster coarsening to obtain
contours at a given scale (which does not guarantee the safety constraint), we construct a surface us-
ing a TIN (triangulated irregular network) and we use a Voronoi interpolant (Sibson, 1981; Gold,
1989; Watson, 1992). is permits us to obtain a smooth surface (i.e.having good slope), which
translates to smooth-looking contours; this is key to our approach. Wehave translated the basic car-
tographic generalisation operators needed to construct depth-contours (e.g.movement of contours
towards greater depth, smoothing of lines, aggregation of local maxima (Figure 1c), enlargement
(Figure 1d), etc.) into Voronoi-based operations on the surface. It should also be noticed that, as
demonstrated by Gold and Condal (1995), a Voronoi surface deals elegantly with anisotropic sam-
ple distributions, which are common in datasets collected with singlebeam echosounders (SBES).
Wehave implemented our approach1, andwe report on experimentsmadewith real-world datasets,
including one where MBES and SBES data are mixed. We also compare our results with alterna-
tives.

2 Related work

Figure 3 illustrates the basic processing pipeline commonly used to obtain depth-contours from a
set of sample points (MBES and/or SBES). Most methods construct a surface, either a raster or a
TIN, by selecting sample points and interpolating, and construct contours from that surface. Some
methods do not consider the complete pipeline, and focus only on contours; these could be used
in combination with others. We describe below the most common processing operations, taking
into account the four hydrographic constraints, and focusing on the most important: the safety
constraint. A summary of these methods is shown in Table 1.

2.1 Raster-basedmethods

e following are methods that use a raster data structure either to select a subset of the input
samples or to construct a raster surface.

1e implementation is open-source and available at https://github.com/Ylannl/Surfonoi
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sample points
surface

(raster/TIN)
contours

Raster-based

TIN-based Line-based

virtual gridding

max raster

interpolation 
raster

raster coarsening

TIN simplification double-buffering

spline-snake

Figure 3: General workflow to construct depth-contours from sample points.

Table 1: Overview of methods to construct depth-contours for nautical charts. All the methods
respect the topology constraint.

Type Safe Generalisation Smooth Other:

Virtual Gridding point − a −
Max rasterization raster − a −
Raster coarsening raster − a −

Interpolated Raster raster − s
√

TIN simplification TIN − s −
Double buffering line

√
* s,u −

Spline-snake line
√

* s
√

Computationally
expensive

a = arbitrary reduction of detail
s = significant features are preserved

u = unnatural appearance of contour lines
*Only if the input contours are safe
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(a) Virtual gridding (b) Max rasterization

2r

(c) IDW rasterization

(d) Virtual gridding and TIN-based
contour values

(e) Max rasterization and contours (f) IDW rasterization and contours

Figure 4: On the top: profile views of different filtering and rasterization methods. On the bottom:
the corresponding contours. e arrows indicate where the safety constraint is violated with
respect to the original points.

Selection with virtual gridding. is is a point filtering method that aims at reducing the volume
of data, in order to create generalised contours and to speed up the computation time, or simply to
make the computation possible, in the case the input dataset is several orders of magnitude bigger
than the main memory of a computer (Isenburg et al., 2006b). e idea is to overlay a virtual
grid on the input points and to keep one point for every grid cell. e selected points can either
be used to construct a raster or TIN surface, see below. While different functions can be used to
select the point (e.g.deepest, shallowest, average, or median), because of the safety constraint the
shallowest point is oen chosen by practitioners, see Figure 4a for a one-dimensional equivalent.
It should however be stressed that choosing the shallowest point does not guarantee safe contours.
e problem is that contour extraction algorithms perform a linear interpolation on the cells of the
surface (raster cells or triangles). As can be observed from Figure 4d, this easily results in safety
violations at ‘secondary’ local maxima in a grid cell. e number and severity of these violation
is related to the cellsize of the virtual grid: a bigger cellsize will result in more and more severely
violated points. Notice that it is not possible to reduce the cellsize such that the safety issue can be
guaranteed.

Max rasterization. As Figure 4b shows, it is similar to virtual gridding, the main difference is that
a raster (a surface) is created where every cell in the virtual grid becomes a raster cell whose depth
is the shallowest of all the samples. is disregards the exact location of the original sample points,
and moves the shallowest point in the grid cell to the centre of the pixel. at means that the
morphology constraint is not respected. Moreover, as Figure 4e shows, the safety constraint is not
guaranteed, for the same reasons as with virtual gridding. Again, the severity of these problems
depends on the chosen cellsize.
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Figure 5: Due to the re-triangulation aer a removal, violations of the safety constraint may occur
aer a series of points are removed. e first vertex is removed (locally the resulting surface will
be shallower). However, the second removal changes the configuration of triangles and at that
location the surface is now deeper. A lower number means a shallower point.

Interpolation to a raster. For hydrographic contouring, the raster surface is oen constructedwith
spatial interpolation, particularly with themethod of inverse distance weighting (IDW), as first pro-
posed by Shepard (1968). Figures 4c and 4f illustrate the process of IDW interpolation, notice that
as a result of the averaging that takes place extrema are disregarded and subsequently the safety
constraint is also violated.

Raster coarsening. Raster coarsening is somewhat similar to max rasterization, the difference is
that it takes a raster as input rather than sample points. Based on that input raster, a new raster is
created that has larger cellsize. In this way small details in the surface are omitted. Subsequently
the contour lines that correspond to this coarsened raster surface also contain fewer small details.
In terms of safety this method has the same drawbacks as max rasterization.

2.2 TIN simplification

Given a set of points (x, y,depth), a TIN is a tessellation of the (x, y) plane into triangles where
the vertices of the triangles are the points in (x, y). e triangulated surface can be embedded in
three-dimensional space, but since every point has only one depth value, it has the property of
being projectable onto the plane (x, y). e objective of TIN simplification is to reduce the num-
ber of vertices in a TIN until the surface represented with the triangles deviates by more than a
given tolerance to the original TIN. While we are not aware of any method tailored to contours
in hydrographic charts, it could be an attractive method since, unlike the raster-based methods,
TIN-based methods take into account the geometric configuration of neighbouring points and do
not move sample points (Garland and Heckbert (1995) give an overview of the different methods
used). However, as Figure 5 shows, the safety constraint is also not guaranteed to be respected
when vertices are removed from a TIN. is is due to the fact that the triangulation must be up-
dated (Mostafavi et al., 2003) and the shape of the triangles are usually not controlled by the depth
of the vertices, but rather by the Delaunay criterion.
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Figure 6: Double buffering. e original blue contour line (bottom) is first buffered to the upper
green line, which is subsequently buffered back to the middle red line.

2.3 Line-basedmethods

Two issues arise with line-based methods. First, moving lines can create intersections and thus
break the topology constraint. Methods to ensure that no intersections are created aer displace-
ment, or to resolve them, are complex and in most cases do not respect the safety constraint, see
for instance Visvalingam and Whyatt (1993), van der Poorten and Jones (2002) and Dyken et al.
(2009). Hennau and De Wulf (2006), based on the work of Christensen (2001), propose a method
tailored to depth-contours that combines a line-based smoothing technique with a TIN-based
patch smoothing technique. Unfortunately, they do not consider the safety constraint. Second,
line-based methods require safe and clean contours as input; as described above, obtaining those
safe contours is not a trivial task in the first place. e following methods do respect the safety
constraint with respect to the input contours.

Double-buffering. It is a popular method employed in major commercial hydrographic packages
such as Caris2. As illustrated in Figure 6, it works by buffering a set of input contour lines back
and forth (by the same distance), effectively taking into account the safety constraint as well as
performing a form of aggregation. When a sphere is taken instead of a disk, the method can also
be used on a 3D surface (Smith, 2003). e resulting depth-contours are however not smooth
(the first derivative is not continuous) because contours are formed by the intersections of circles.
e morphology constraint is thus not respected. Another major weakness of this approach is its
non-adaptiveness: the buffer distance is strongly dependent on local details in the contours. Also,
notice that the safety constraint can only be guaranteed in case of safe input contours. If the input
contours are not safe, for example if they are extracted from an IDW interpolated grid, the double
buffering operation does not make them safe (nor would it cause extra violations of the safety).

Spline-snake model. A spline is a piecewise polynomial function that is by definition smooth.
Guilbert and Lin (2007) and Guilbert and Saux (2008) use splines in combination with a snake

2http://www.caris.com
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model to perform smoothing of bathymetric contour lines, this is implemented as an iterative op-
timisation process. eir method respects the safety constraint and achieves smooth contours at
the same time. At each iteration during the process, intersections in the contours are checked.
If the distance between two line segments is below a given threshold, the conflicting segment is
removed. Also the contours are generalised in order of ascending depth, so that deformations re-
sulting from conflicts are propagated towards the deepest contours. e method is designed to be
fully automatic, however, in practice, it seems that manual intervention is still required. Indeed,
in one of the case studies described a contour line needed to be split because it got stuck between
two other contours. Also, it is unclear how well the method performs on raw contours because
the input contours in the presented case studies are b-splines already and it is unclear how these
can be safely generated in the first place. e authors also note that the computational cost of the
algorithm is high for complex lines, where convergence is slow because of the safety constraint.

2.4 Other methods

e Navigational Surface, as introduced by Smith et al. (2002) and Smith (2003), aims at facilitat-
ing and supporting the hydrographer in his work, it is not a way to obtain automatically depth-
contours. e framework focusses on uncertainty grids and on combining different overlapping
surveys, and proposes to keep one high-resolution grid for a given area. Depth-contours are de-
rived with raster coarsening and double-buffer, and thus the results are not guaranteed to be safe.

3 A Voronoi-based surface approach

Part of the problems with existing approaches to generate depth-contours is the fact that the dif-
ferent processes, such as spatial interpolation, generalisation and contouring, are treated as inde-
pendent processes. We argue in this paper that they are in fact interrelated, and we present in this
section an approach where the different processes are integrated into one consistent framework: a
Voronoi-based surface.

e key idea behind a surface-based approach is to have one single consistent representation of the
seafloor from which contours can be generated on-the-fly (potentially for different map scales, or
with varying degrees of generalisation). Instead of performing generalisation by moving lines or
using a subset of the original samples, we manipulate the surface directly with operators. Imhof
(1965) gives a compelling argument to do so:

One must never overlook the fact that (geographic) surfaces are being depicted with
contours. A single line says very little. One line does not define a surface. Everything
comes back, eventually, to the formation of the system of lines, that is, the surface.

Figure 7 gives a schematic overview of the different components of our Voronoi-based surface
concept. Firstly, all the statistically cleaned input sample points of a given area are used to construct
a TIN that respects the Delaunay criterion. Secondly, a number of generalisation operators are
used that alter the TIN using Laplace interpolation, which is based on the Voronoi diagram. ese
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Figure 7: Overview Voronoi- and surface-based approach

operators aim at improving the slope of the surface, and permit us to generalise the surface. Finally,
contour lines are derived from the altered TIN using linear interpolation (Watson, 1992).

3.1 Good slope translates to smooth contours

e representation of a continuous phenomenon in space such as the depth of a given area can be
done with a field (Goodchild, 1992). A field is a model of the spatial variation of a given attribute
a, and can be described by function; in our case the function would be f(x, y) = depth. A contour
line is the set of points in space where f(x, y) = depth0, where depth0 is a constant.

e mathematical concept ‘Implicit Function eorem’ states that a contour line extracted from a
field fwill be no less smooth than f itself (Sibson, 1997). In other words, obtaining smooth contour
lines can be achieved by smoothing the field itself. Sibson (1997) goes further in stating that: “e
eye is very good at detecting gaps and corners, but very bad at detecting discontinuities in deriva-
tives higher than the first. For contour lines to be accepted by the eye as a description of a function
however smooth, they need to have continuously turning tangents, but higher order continuity of
the supposed contours is not needed for them to be visually convincing.” In brief, in practice we
should use functions whose first derivative is continuous (called a C1 interpolant); C0 interpolants
(function is continuous but its derivatives are not continuous) are not enough, and C2 ones (first
and second derivatives are continuous) are not necessary.

Representing a field in a computer is problematic since computers are discretemachines. We there-
fore need to discretise the field, i.e.partition it into several pieces that cover the whole area (usually
either grid cells or triangles). Contours in Figure 1a are not smooth basically because the seabed is
represented simply with a TIN of the original samples, which is a C0 interpolant.
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(a)eVD, drawn in dashed lines, uniquelymaps to the
DT, drawn in dotted lines. A DT triangle maps to a
VD vertex that is located at the centre of the circum-
scribed circle of the triangle. ADT edge corresponds
to a VD edge, and is perpendicular to it.

p1d1

dV1

p2

p3

p4

p0

(b) Laplace interpolation. Black points indicate
natural neighbours of the point p0. e dashed
region marks the Voronoi cell that would be
added with the insertion of p0 to the Voronoi
Diagram

Figure 8

However, as we demonstrate in the next section, we can obtain a smooth looking approximation
of the field by densifying the TIN using the Laplace interpolant (which is C1).

3.2 Delaunay triangulation and Voronoi Diagram

e TIN surface is a Delaunay triangulation (DT) because it permits us to extract on-the-fly the
Voronoi diagram (VD) needed for the smooth interpolant. As Figure 8a shows, the DT maximises
the minimal angle of its triangles, through the application of the Delaunay criterion that states that
the circumscribed circle of any triangle must not contain any other vertex. As a result, triangles are
as ‘fat’, or equilateral, as possible. As with any other TIN the edges in a DT implicitly define neigh-
bour relations between vertices. However, only for the Delaunay triangulation it is guaranteed for
every vertex that its neighbouring vertices are closer than any other vertex in the triangulation.

e Voronoi diagram (VD) is a dual graph of the DT, see Figure 8a. It is a subdivision of the plane
into ‘proximity’ regions: every point p of the set S is mapped to a Voronoi cell Vp defined as the set
of points x ∈ R2 that are closer to p than to any other point q ∈ S.

It is important to note that the DT and the VD are completely adaptive to the spatial distribution of
the points. e neighbouring relations between points are also meaningful because they indicate
which points are closest in any given direction. As Gold and Condal (1995) show, this property
allows us to handle SBES datasets better than raster-based approach; our experiments corroborate
this (see below).
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3.3 Laplace interpolant

eLaplace interpolant, or non-Sibsonian interpolation (Belikov et al., 1997;Hiyoshi and Sugihara,
1999b), is a spatial interpolation method that exploits the spatial relationships between vertices
in a VD. It is a computationally faster variant of the Sibson, or natural neighbour, interpolation
method (Sibson, 1981; Gold, 1989).

Laplace interpolation is completely determined by the configuration of the natural neighbours,
i.e.the generators of the adjacent Voronoi cells, of a vertex inserted into the VD at the interpolation
location x. e interpolated depth at x, denoted as ĥ0, is the average of its natural neighbours’
weights:

ĥ0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hi if p0 = pi,
1

∑n
i=1 wi

⋅
n
∑
i=1

wihi if p0 ≠ pi

e weights are defined by:

wi =
dVi
di

(1)

where hi is the depth of vertex vi, di is the Euclidean distance inR2 to the natural neighbour pi (the
distance from p0 to pi), and dVi is the length of the Voronoi edge incident to V0 and Vi. Figure 8b
illustrates this. Note that the fraction becomes indeterminate when p0 equals one of the sample
points pi. In this case the Laplace interpolant therefore simply defines that ĥ0 = hi.

Watson (1992) lists the properties of the ideal spatial interpolation method in the context of real-
world geographical datasets. A brief review of these properties in the light of Laplace interpolation
demonstrates some of the fundamental features of our approach. Firstly the Laplace interpolant
is exact: the interpolation method returns the exact value, rather than some estimate, of a sample
point when it is queried at that precise location. Note that an inexact interpolation method might
violate the hydrographic safety constraint at the locations of sample points, if the interpolated depth
is deeper than the original depth. Secondly, it is continuous and continuously differentiable (C1)
everywhere except at sites where finitely many Voronoi circles (as defined in Figure 8a) intersect
(Hiyoshi and Sugihara, 1999a). We found that this is not a problem in practice. irdly, it is local,
i.e.it uses only a local subset of data for the interpolation of a point. is limits the computational
cost and supports efficient addition or removal of new data points. Finally, like the VD itself, it is
adaptive to the spatial configuration of sample points. Unlike other methods such as IDW inter-
polation, the Laplace interpolant requires no user-defined parameters.

3.4 Operators on the surface

We introduce in this section three generalisation operators that permit us to obtain a smoother
surface from which depth-contours can be extracted: (i) smoothing, (ii) densification and (iii)
reshaping. ese three operators are based on the Laplace interpolation algorithm (described in
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Algorithm 1, and referred to as ID in the following) to interact with the surface.
As shown in Algorithm 2 ICD, is used to ensure that the safety constraint
is never violated (the newly interpolated depth is only returned if it is shallower than the current
depth at the vertex). If the interpolated depth is deeper than the current depth, the current depth
is returned.

Algorithm 1 ID
Input: a vertex v in a TIN T
Output: the Laplace interpolated depth h for v
1: for each vi adjacent to v do
2: e1 ← edge(v, vi)
3: e2 ← dual(e1)

4: wi ←
length(e2)
length(e1)

5: end for
6: h← 0
7: for all wi,hi from the natural neighbours vi around v do
8: h← h + wi

∑wi
∗ hi

9: end for

Algorithm 2 ICD
Input: a vertex v in a TIN T
Output: depth of v is safely updated
1: h← ID (v)
2: if h shallower than current depth at v then
3: depth of v← h
4: else
5: depth of v stays the same
6: end if

3.4.1 The smoothing operator

eoperator S (Algorithm3) is themost trivial application of the ICD
algorithm: it simply calls it for all input vertices, aer which their depths are updated (see Figure 9).
us, smoothing does not change the planimetric coordinates of vertices, but only lis the vertices’
depths. It can be performed either on a portion of a dataset, or on the whole dataset. Furthermore
this operator can be applied any number of times, delivering more generalisation with each pass.

e primary objective of smoothing is to generalise the surface by removing high frequency detail
while preserving the overall feature shape. Applying S both reduces the angle between the
planes spanned by adjacent triangles and simplifies overall shape. S performs two linear
loops over the n vertices of the TIN (the depths are only updated aer all the depths have been
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Algorithm 3 S
Input: a TIN T
Output: a smoothed T
1: for all vertices vi ∈ T do
2: hi ← ICD (vi)
3: end for
4:
5: for all tuples vi,hi do
6: update depth of vi with hi
7: end for

Algorithm 4 D
Input: a TIN T
Output: a densified T
1: for all triangles t ∈ T do
2: if area(t) > maxArea then
3: insert vertex v in T at circumcenter(t), and update T for the Delaunay criterion
4: set depth v← ID
5: end if
6: end for

Algorithm 5 R
Input: a TIN T ; a set V of vertices to be reshaped
Output: depth of vertices in V updated
1: vertexCache← [ ]
2: for all vertices v ∈ V do
3: append v to vertexCache
4: remove v from T
5: end for
6:
7: for all vertices v in vertexCache do
8: insert v in T
9: update depth of v with ICD (vi)

10: remove v from T
11: end for
12:
13: for all vertices v in vertexCache do
14: insert v in T
15: end for
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(a) Initial TIN (b) Estimation using only neighbours

Keep shallowest one

(c) Comparison of depths (d) Resulting TIN

Figure 9: Cross-section view of the smoothing of a single vertex in a TIN.

estimated), and since the smoothing of one vertex is performed in expected constant time, the
expected time complexity of the algorithm is O(n).

3.4.2 The densification operator

Its objective is primarily tominimise the discretisation error between the Laplace interpolated field
and the contours that are extracted from the DT, this is illustrated in Figure 10. By inserting ex-
tra vertices in large triangles (to break them into three triangles), the resolution of the DT is im-
proved. As a result also the extracted contour lines have smoother appearance because they now
have shorter line-segments. We insert a new vertex at the centre of the circumscribed circle of
any triangle that has an area greater than a preset threshold (Algorithm 4); its depth is assigned
with ID (Algorithm 1). e circumcenter is chosen here because that location is
equidistant to its three closest points, and subsequently results in a very natural point distribution.

If the maximum area threshold is ignored, a single call to D costs O(n) time, as it only
requires a single pass over the n triangles of the TIN. However, when a number of t densification
passes is sequentially performed, it only scales to O(3tn) time, since every point insertion creates
two new triangles. However, because of the maximum area threshold, that worst case scenario will
never be reached in practice with large t.

3.4.3 The reshaping operator

R (Algorithm 5) should be considered as a mechanism to perform generalisation that re-
quires specific alteration of the surface that can not be achieved through SorD alone.
An example is the aggregation of two distinct peak features, as illustrated in Figure 11. e reshape
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(a) Initial TIN (b) Interpolated field (dashed)

(c) Addition of intermediate points (orange) in accordance
with the interpolated field

(d) Resulting TIN

Figure 10: Cross-section view of the densification operator in a TIN.

operator is also based on ICD, but unlike S, prior to updating the
depth of a vertex the set of input vertices V are temporarily removed from the TIN. Prior to calling
R, the relevant feature(s) need to be identified (which is currently done manually) and a set
of so-called steering points needs to be assigned. Figure 11a depicts these steering points, they are
local maxima of the features to be aggregated. e set of input vertices V represents the vertices
that are to be reshaped; in Figure 11a these are enclosed by the steering points. ese vertices are
then temporarily removed from the TIN (see Figure 11b) and then each input vertex v ∈ V is in-
dividually re-added to the triangulation, assigned a depth of ICD (v) and
removed again (see Figure 11c). Aer doing this for every input vertex v ∈ V, they are permanently
inserted back into the TIN, but now with new depths that can be significantly different, as depicted
in Figure 11d.

Note that a call to R only performs changes to a very specific region of m vertices that is a
subset of all the n vertices in the DT. Over those m points the time complexity of the algorithm is
O(m).
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(a) Initial situation: a group of nearby features

Steering points

(b) Selection of steering points.

Steering points

(c) Depth-estimation of points enclosed by the steering
points.

(d) Reshaped feature.

Figure 11: Cross-section view of the aggregation of 2 local peaks on the surface using the reshaping
operator.

Table 2: Details of datasets
Antilles Australia London Zeeland

Point count 1081 1613 151,704 102,954
Area 2960.74 km2 0.27 km2 1.12 km2 0.32 km2

Type SBES MBES MBES+SBES MBES

4 Experiments

Wehave implemented the algorithms described in the previous sectionwith theC++ programming
language using the CGAL library3 for its implementation of the DT. A number of experiments were
performed to investigate the effectiveness of the proposed operators and to compare results with
existing methods. Note that we rasterized some depth fields exclusively for evaluation purposes.

Table 2 gives an overview of the used datasets and their characteristics. Both SBES and MBES
datasets were used, as well as a dataset with a mixture of those.

3http://www.cgal.org
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(a) Raw contours extracted at a 50cm depth interval. (b) Smoothed contours (100 smoothing passes). e el-
lipses mark areas where aggregation (le), omission
(middle) and enlargement (right) take place.

(c) Differencemap between the initial and 100x smoothed
interpolated and rasterized fields (pixelsize 50 cm).

(m
)

(d) RMS of differences with respect to the initial interpo-
lated field as a function of the number of smoothing
passes

Figure 12: e effect of the smoothing operator in the Zeeland dataset.
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4.1 The smoothing operator

As can be observed from Figure 12a, the raw and ungeneralised contours in the Zeeland dataset
have a very irregular and cluttered appearance. However, the smoothed contours (100 smoothing
passes) from Figure 12b have a much cleaner and less cluttered appearance. Clearly, the number
of contour lines has diminished. is is both because pits (local minima) have been lied upwards
by the smoothing operator, and nearby peaks (local maxima) have been aggregated (because the
region in-between has been lied upwards). us omission and aggregation take place in the con-
tour lines. Notice also that a third effect of the smoothing operator is the enlargement of certain
features as a result of the upliing of the points surrounding a local maximum.

As to be expected, the overall effect of the smoothing operator on the morphology of the surface
is significant. As shown by the plot of the root mean square (RMS) error between the initial and
the generalised field in Figure 12d, the smoothing of the surface is most significant in the earlier
smoothing passes and results in a per pixel difference of tens of centimetres. at supports the idea
that the smoothing of the surface works against the preservation of all morphological features.
However, from the difference map in Figure 12c, it can be seen that the high frequency features are
especially altered, thus preserving the general surface shape (low frequency pattern).

4.2 The densification operator

e effects of the densification operator are illustrated in Figure 13a. e sharp edges of the un-
densified lines are caused by the large triangles in the initial TIN, however aer densification these
large triangles are subdivided into much smaller ones. e result is a much smoother contour line
that still respects the sample points. Figure 13b shows how the approximation error of the TIN
with respect to a Laplace interpolation of the input sample points improves with more densifica-
tion passes.

4.3 The reshaping operator

Figure 14 illustrates the use of the reshaping operator in the aggregation of two peaks in the surface.
Evidently, the region in between the peaks is significantly raised such that it has the same depth as
the original peaks. For this experiment the steering points and input points for Algorithm 5 were
manually selected; we are currently working on an approach to automate this step.

4.4 Heterogeneous data

e London dataset, shown in Figure 15, is composed of a mixture of SBES and MBES sample
points. e abrupt transition in point density and homogeneity is problematic for interpolation
methods in general (Gold and Condal, 1995). It demonstrates the adaptivity of the Voronoi-based
interpolation method. Since Laplace interpolation (see Figure 15b) is fully adaptive to the density
of input samples there is no distance parameter that needs to be set, and it can easily be applied
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(a) TIN before densification (le), TIN aer 3x densification
(centre) and comparison of corresponding contour lines
(right). Original sample points shown in the background.
(detail)

(m
)

(b) Approximation error of TIN interpolation with
respect to the initial Laplace interpolated field as
a function of the number of densification passes.
Computed for a rasterization of the fields with 10
m pixelsize.

Figure 13: Densification illustrated on the Antilles dataset.

(a) e initial Laplace interpolated field with correspond-
ing contours

(b) e field aer reshaping. Both the initial (thin line) as
the reshaped contours (fat line) are shown.

Figure 14: e reshaping operator performs aggregation in the Australia dataset.
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to datasets with a highly anisotropic distribution of samples. However, we can observe contours
that are unrealistically bent toward the inner part of the dataset due to the anisotropic sampling
pattern. If IDW is used with a 150m search radius (so that the whole region can be interpolated), it
results in cluttered contours in the bottom of the area and rather disturbing artefacts in the center
area (see Figure 15c). erefore we conclude that, while still not perfect, the Laplace interpolation
performs significantly better in this case.

4.5 Comparison with existing methods

Figure 16a shows the distribution of the error between the sample points and the interpolated sur-
faces constructed with different approaches. e parameters were chosen in such a way that the
resulting contours look as similar as possible, thus providing the same overall degree of generali-
sation. As expected, since it is an average, the raster-based IDW interpolation violates the safety
constraint for roughly half the number of points. In contrast, our approach violates no points at
all. Aer applying the smoothing operator the safety constraint is still respected. With the max
rasterization method, the safety constraint is also respected in its field representation (note that
it does not mean the resulting contours are safe, see Figure 4e). However when compared to the
smoothed Laplace interpolated surface it is clear that the variance of the distribution is larger, thus
raster coarsening is less accurate than the smoothed conceptual surface at a comparable level of
generalisation.

From a visual comparison of the different contours (Figure 16b), it can be seen that the contours of
both double-buffering and raster coarsening have sharp corners. In case of double-buffering this is
due to the convex features (pointing south and towards the deeper region). ose features are not
smoothed by the process of double-buffering unless a very large buffer distance is chosen. In case
of concave features in the input line, the doubly buffered line clearly has circular arcs. It is evident
that the contours from the coarsened raster are indeed quite coarse and therefore not smooth at
all. As expected, since with our approach the conceptual surface is by definition smooth and safe,
the resulting depth-contours are smooth and are all moved/generalised in the direction of deeper
areas.

5 Conclusion and discussion

We have shown in this paper that the raster-based approaches, which are commonly used in prac-
tice for generating depth-contours, do not necessarily respect the safety constraint, i.e.the depth
displayed in a nautical chart could be deeper than in reality. In contrast, we have developed an
approach—based on the Voronoi diagram and the Laplace interpolant—that can generate both
smooth-looking and safe depth-contours. It respects the two hard constraints (safety and topol-
ogy) and performs well for the two so constraints (legibility and morphology). Conceptually,
this is achieved by modifying with operators the surface that is fitted through the original sample
points only in one direction: up. e Voronoi-based liing improves the smoothness of the sur-
face (its slope) and hence the resulting contour lines also appear smoother, less “island” contours
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(a) Sample point distribution

(b) Laplace interpolant, contours densified 5 times

(c) Inverse Distance Weighting (radius=150m, power=2)

Figure 15: Contours for the London dataset. Contours are shown at every 50 cm.
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(a) Boxplots of the sample point differences with respect to the interpolated fields

IDW (radius=5m, power=2)

Double buffering (radius=6m, with respect to IDW contour)

Max Raster (cellsize=5m)

Surface-based (10x smoothing, 3x densification)

(b) Comparison between hydrographic contouring approaches

Figure 16: Comparison of four methods to generate depth-contours applied to the MBES part of
the London dataset.
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are present, and pits are removed. Also, more specialised generalisation operations can be realised
with our approach: we have shown how a reshaping operation, which aggregates peaks, can help
improve the legibility of nautical charts.

Although we have primarily focussed on generalisation operators that modify the surface (which
has a direct effect on the resulting contours), we see this work as an initial step in “linking” both rep-
resentations. Indeed, we envision a stronger and bidirectional link between the two, and that could
lead to a powerful interactive systemwhere an operator would have a linked view of both represen-
tations and could therefore choose themost appropriate representation for applying amodification
(either change the surface or the lines), which is then directly translated into both representations.
Such an approach would simplify the implementation of several generalisation operations, while
respecting the four constraints for nautical charts.

While our approach deals with the entire processing chain (from the samples to generalised con-
tours), it does not replace nor invalidate previous results. Indeed, we believe that the safe and
smooth depth-contours we generate could be used as the input for the work of Guilbert and Lin
(2007) and Guilbert and Zhang (2012), as the input needs to be already cleaned. Furthermore,
extension of this work could be used to analyse the surface and detect where our operators could
be used: Guilbert (2012) introduces a method to extract (bathymetric) terrain features and to store
them, and their spatial relationships, in a hierarchical structure.

Finally, our future work includes:

1. e automation of the reshaping operator so that it detects peaks in the surface and applies
the operator to these detected locations.

2. e RMS error graph allows us to quantify the generalisation error we make with smoothing
and densifying. is can possibly be used to locally control the error that is introduced
during generalisation (currently there is no guarantee on the horizontal displacement that is
introduced in the contours while generalising). An open question is: how we can assess the
quality of the resulting contours for the soer constraints (legibility and morphology)?

3. Data management and scalability: How can we scale themethod to deal with a huge number
of input points? At this moment, we are limited by the memory of the computer used, which
is oen not sufficient for real-world MBES datasets. We plan to investigate the streaming
paradigm of Isenburg et al. (2006a) and see if it can be adapted to our operators, since it
would allow us to process much larger datasets.
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