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Abstract

This study examines the spatiotemporal changes in snow regimes across High Mountain Asia (HMA), with a
focus on snowfall, snowmelt and snow water equivalent (SWE) trends and their relationship with elevation,
temperature, and precipitation. Utilizing ERA5-Land data, the analysis reveals a general decrease in snowfall
and SWE, as well as snowmelt in low to mid-elevations. Notably, high-elevation zones, despite also experienc-
ing declining snowfall, exhibit increased snowmelt due to the persistence of deep snowpacks. However, the
overall reduction in snowmelt across all basins, and significant decline of total snowmelt in the Brahmaputra,
Indus, and other major river basins, underscores the critical impact of climate change on water resources.
Correlation analyses further highlight complex interactions between temperature, precipitation, and snow
regimes, varying by season and elevation. The study acknowledges limitations in ERA5-Land’s accuracy, par-
ticularly in high-elevation regions, and calls for future research to incorporate multiple data sources and
uncertainty analysis to improve the reliability of findings. The implications of declining snowmelt for water
availability in major river basins are significant, warranting continued investigation.
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1
Introduction

1.1. Importance of cryosphere
Snowpack is an essential part of the nature systems. Both mountainous and low-elevation seasonal snow
cover are playing a vital role in the Earth’s hydroclimatic system due to its low thermal conductivity, large
spatial extent, seasonal variations, as well as latitudinal distribution (Stewart 2009). Climatologically, the
presence of snowpack could regulate the surface energy balance: in winter a large fraction of incoming solar
radiation is reflected back as a result of high albedo of snow cover (Thackeray and Fletcher 2016), whereas in
summer the snow-free surface absorbs more incoming energy (Callaghan et al. 2011). Specially, reductions
in snow cover are expected to result in polar amplification of global warming (Serreze et al. 2000). Hydrolog-
ically, snowpack also accentuate its importance in the high latitudes and the mountainous regions (Li et al.
2022b). Many catchments receive the majority of their yearly water budget in the form of snow, particularly at
high altitudes (Barnett et al. 2005). Moreover, in winter, a significant amount of fresh water is stored in snow-
pack, and when in spring and summer, snow melts gradually and water is released and redistributed (Kouki
et al. 2023). In other words, streamflow in winter is reduced as water is retained in snowpack, and increased
during and after the spring snowmelt. Soil moisture is also replenished (Qi et al. 2020).

Snowmelt is an crucial fresh water resource that sustains about one-sixth of the world’s population di-
rectly and indirectly(Barnett et al. 2005, Kraaijenbrink et al. 2021). It is also critical for ecosystem produc-
tivity, groundwater recharge, food security, etc. (Musselman et al. 2021). Both the magnitude and timing of
snowmelt could affect the efficacy of water provision for downstream applications profoundly, for instance,
agriculture (Qin et al. 2020) and hydropower generation (Hale et al. 2023) requires consistent water availabil-
ity . In addition, snowmelt could also act as water buffer late in the year when direct precipitation is unlikely.
In this sense, changes in the onset, duration, or intensity of snowmelt season would influence the water se-
curity in high mountains and downstream (Smith et al. 2017).

Specifically, the High Mountain Asia (HMA) region comprises the major mountain ranges and headwaters
of large rivers in Asia. It is characterized by exceedingly high elevation, complex terrain and pronounced
glacier and snow cover (Liu et al. 2021). Over one billion people living downstream in its major river basins
depend on fresh water from glacier and snowmelt (Barnhart et al. 2016). In this regard, this study is focused
on the HMA and its 12 major river basins: Amu Darya, Brahmaputra, Eastern Asian, Ganges, Indus, Irrawaddy,
Mekong, Tibetan, Salween, Tarim, Yangtze and Yellow river. Amu Darya and Indus receive about 50% of their
yearly water budget as snow, whereas in Tarim and Tibetan, nearly two thirds of their yearly water budget is
derived from snowmelt (Smith and Bookhagen 2018a).

1.2. Overview of changes in snow regimes
Climate is changing, with significant warming and many areas are suffering from extreme weathers (Kraai-
jenbrink et al. 2021). Air temperature at HMA was witnessed to increase remarkably with an above-average
warming rate of the Northern Hemisphere specifically at Tien Shan, Qilian Mountain, Hengduan Shan and
Tibetan Plataeu (Wang et al. 2024). In addition, strong warming trends have been identified in the central,
norther, northeastern, and northwestern areas, with more noticeable warming in the north than south, and
in cold seasons than summer (Li et al. 2022a). Significant wetting trend is also recognized in many regions
in HMA, yet not uniformly distributed in neither spatial nor temporal scales: wetting trend dominates in
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the central, northwestern, and northeastern HMA, whereas in the southern-east, eastern and western HMA,
decreasing trend prevails (Yao et al. 2022).

These hydro-climatic factors act differently on the snow regimes. An increase in precipitation would lead
to more snowfall and hence more snow water storage. However, combined with increasing temperature, its
impact on snowpack is less straightforward. Increasing in temperature has been associated with precipitation
phase shifting from snowfall to rainfall (Hale et al. 2023, Räisänen 2016) as it favours the occurrence of above-
zero temperatures when close to the freezing point (Räisänen 2023). In addition, the snowpack is reduced by
more frequent and intense melt events during the winter (Hale et al. 2023, Musselman et al. 2021). The net
effect of temperature and precipitation change results in shorter snow season (Zhu et al. 2021 and decrease in
SWE in most regions (Mudryk et al. 2020). Yet in the eastern Siberia and northern Canada, that are located in
the coldest regions, the increase in total precipitation dominates and lead to increase in snow water storage
in the snow season (Brown and Mote 2009).

Moreover, large-scale climate systems active in the HMA including the Indian summer monsoon (ISM),
East Asian summer monsoon (EASM), and the winter westerly disturbances (WWD) also play vital role in reg-
ulating the snow patterns. For instance, the total annual precipitation in the ISM regions has not undergone
significant changes, yet spatial variation in intensity of rainfall has led to disparity in snow distribution (Smith
and Bookhagen 2018b). Similarly, the timing and magnitude of precipitation related to the WWD has shifted
over the past 30 years (Cannon et al. 2014), and this has been substantiated to impact the snowfall in HMA
(Lutz et al. 2014).

Snow water equivalent (SWE) is usually used to quantify snowpack as it represents the the amount of
water that contained if the snowpack melted instantaneously, and it can be expressed in millimeters or in
kilo grams per square meter, equivalently (Kouki et al. 2023). Overall, there is an decreasing trend in SWE
in the HMA, but spatial variations also exist: increasing trend is also recognized in some high mountain re-
gions(Smith and Bookhagen 2018a, Räisänen 2023). Moreover, the annual maximum SWE remained quite
stable, yet in the mid-elevation regions SWE decreased significantly in spring and autumn (Yang et al. 2022).
Specially, in mid-elevation mountain ranges, the decrease in snow storage is highly correlated with a warmer
temperature as it favours rain over snow (Jenicek et al. 2016).

In terms of snowmelt, Warming in HMA has intensified the melting rate, and advanced the onset of melt-
ing season in recent years (Duan et al. 2022). The duration of melting season is also shortened (Tang et al.
2022). This changes in snowmelt regimes would compromise the natural water storage and supply process,
posing hydrological risks to humanity and ecosystems downstreams where meltwater is used for irrigation,
hydroelectric power and consumption (Gottlieb and Mankin 2024).

1.3. Measurements, observations, and reanalysis
SWE and snowmelt can be measured directly in situ through snow pillow and snow permitivity analysis (Seib-
ert et al. 2021, but mapping SWE and snowmelt over large areas remains challenging for mountainous areas
as a result of its terrain complexity(Dozier et al. 2016). Intallation and maintenance of in-situ measurements
are usually expensive and difficult (Liu et al. 2021). Moreover, measurements are mostly located in the low
valleys, hence resulting in a sparse and non-representative network (Kirkham et al. 2019).

In recent decades, since the launch of the Scanning Multichannel Microwave Radiometer, satellite ob-
servations also played a vital role in large-scale snow property estimates Smith et al. 2017. Specially, Passive
Microwave sensors are frequently used to estimate SWE and snow depth directly. Moreover, as PM data are
higher sensitive to liquid water present in the snowpack, snowmelt across large, complex, and unstationed re-
gions could also be estimated as well (Takala et al. 2011). Passive Microwave data also excel in functioning in
spite of cloud cover that is ubiquitous in high mountains in winter and during monsoon seasons (Smith et al.
2017). However, it accuracy was also challenged by the coarse spatial resolution (e.g. 25 km) and generally
negatively biased in deep snowpack (Dozier et al. 2016). Other satellite techniques, for instance, C-band syn-
thetic aperture radar show promise in snow depth retrieval yet are available over only recent years (Lievens
et al. 2019).

Another approach that provide large-scale snow property estimates is global atmospheric reanalysis prod-
uct. Reanalysis combines model data with observations from worldwide into a global dataset using the laws of
physics, and the data goes back to several decades in time, therefore providing an accurate description of the
climate of the past. Examples include, for instance, European Centre for Medium-Range Weather Forecasts
reanalysis products (ERA5 Hersbach et al. 2020; ERA5-Land Muñoz Sabater et al. 2021a), Global Land Data
Assimilation System (Rodell et al. 2004, Modern-Era Restrospective analysis for Research and Applications

2



1.4. Research questions 1. Introduction

(Merra-2, Gelaro et al. 2017), and others. Snow measurements in these dataset were found to be consistent
with respect to its seasonal and inter-annual variabilities. However, uncertainties rise as different land surface
models are used and its meteorological inputs, and this leads to significant difference in magnitude across
regions (Wrzesien et al. 2019).

1.4. Research questions
In summary, this study focuses on analyzing the spatial distribution and temporal variations in snow regimes
(i.e., snowfall, snowmelt, and SWE) in the major HMA river basins from 1980 to 2020. The heterogeneous
topography and diverse climatic zones across those river basins are expected to largely influence spatial vari-
ability in snow accumulation and melt dynamics. Also, temporal changes of snow regimes are also encom-
passed. In addition, a preliminary analysis of the influence of hydroclimatic factors, i.e., temperature and
total precipitation, on such variability are identified.

The overarching research question this thesis aims to address is: How have snow regimes changed across
the HMA river basins from 1980 to 2020? This has been further divided into the following sub-questions:

1. How are snowfall, snowmelt, and SWE distributed spatially across the HMA basins?

2. How are snow distributed across elevation?

3. What is the temporal variability in snow regimes from 1980 to 2020?

4. How do temperature and total precipitation contribute to changes in snow regimes?

3



2
Methodology

2.1. Study area
This study area is bounded from 5 to 50 ◦N and from 50 to 130 ◦E, covering large-scale snowy and non-
snowy area in 12 Himalayan river basins, namely: Amu Darya, Brahmaputra, Eastern Asian, Ganges, Indus,
Irrawaddy, Mekong, Qinghai-Tibetan, Salween, Tarim, Yangtze and Yellow River (Figure 2.1). This area shows
a diversity of climates and topography; elevations rise from near sea-level to over 8,000 m above sea level
at the highest peak in the world, i.e., Mountain Everest in the Himalayas. Moreover, high mountain ranges
including Tien Shan, Pamir Mountains, Hindu Kush, Karakoram, Kunlun Shan, Qilian Shan, the Himalayas,
Tanggula Shan, Hengduan Shan, and eatern Tibetan Mountains, as well as the Tibetan Plateau, are also iden-
tified in Figure ??. For convenience, hereafter the annotated mountainous areas are collectively termed as
High Mountain Asia (HMA). HMA contains the headwaters for rivers that sustains over a billion population
living downstream. In comparison, Indus, Ganges, and Yangtze basins are more densely populated than other
high elevation areas, i.e., Tibetan, Eastern Asian, etc.

Figure 2.1: Map of the study area with 12 identified river basin

2.2. Data
This study aims to analyze the spatio-temporal patterns of snow regimes including seasonal snow as SWE
and snowmelt, as well as the influence of temperature and monsoon rainfall on SWE and snowmelt. In this
sense, SWE, snowmelt, temperature, and total precipitation, as well as elevation data across the study area
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2.3. Statistical methods 2. Methodology

were required. Though networks of in-situ station data exists, e.g., for SWE measurements, their coverage
is relatively limited to allow large-scale analysis of spatial patterns (Mortimer et al. 2020). Therefore, the
current study employs reanalysis datasets that provides a comprehensive "observed" evolution spatially and
temporally (Räisänen 2023.

ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-lan
d-monthly-means?tab=overview) is a replay of the land component of the ERA5 climate reanalysis, with a
down-scaled spatial resolution from 31km to 9km. Specifically, ERA5-Land dataset was used for several rea-
sons. Firstly, it provides more coherent, and long-term record of past weather with a temporal coverage from
January 1950 to 2-3 months before the present, which allows to conduct statistically meaningful analysis that
requires at least four decades data (Räisänen 2023). Secondly, ERA5-Land datasets does not directly assimi-
late snow-related land surface variables as this would involve a disparity between SWE and the atmospheric
forcing (temperature, precipitation, radiation, etc.) that regulates snowfall and snowmelt (Muñoz Sabater
et al. 2021b). Thirdly, the climate variables that will be assessed in this study, i.e., snowfall, snowmelt, SWE,
temperature, total precipitation are directly available in ERA5-Land in temporal resolution of both hourly and
monthly. The information of the variables is detailed in Table 2.1.

Table 2.1: Information of variables from ERA5-Land

Variable name Unit Description
SWE mm The depth the water would have if the snow

melted out and was spread evenly over the
whole grid box.

Snowmelt mm/month Accumulated snowmelt averaged over the grid
box from the beginning of the forecast time to
the end of the forecast step.

Snowfall mm/month Accumulated snowfall averaged over the grid
box from the beginning of the forecast time to
the end of the forecast step.

Temperature K Temperature of air at 2m above the surface of
land, sea, or in-land waters.

Total precipitation mm/month Accumulated liquid and frozen water, including
rain and snow, that falls to the Earth’s surface av-
eraged over the grid box.

In addition, the elevation data is also entailed in this study. In this sense, the Global Multi-resolution
Terrain Elevation Data 2010 (GMTED2010) (https://www.usgs.goov/coastal-changes-and-impac
ts/gmted2010#web-tools) is used as it provides several spatial resolutions and incorporates the current
available global elevation data including Global Digital Terrain Elevation Data (DTED) from the Shuttle Radar
Topography Mission (SRTM), Canadian elevation data, Spot 5 Reference3D data, and data from the Ice, Cloud,
and land Elevation Satellite (ICESat).

The shape files of catchment boundaries is adopted from https://rds.icimod.org/home/datade
tail?metadataid=2732, with which each basin could be clipped from the large dataset. In addition, the
satellite-derived land cover data and shaded relief for making reference maps is retrived from https://www.
naturalearthdata.com/downloads/10m-raster-data/10m-natural-earth-1/.

2.3. Statistical methods
The statistical methods involved in this study includes Mann-Kendall Trend Analysis, Correlation Analysis,
and Linear Regression Analysis.

The Mann-Kendall Trend Analysis, which is a non-parametric test frequently used to test if linear, mono-
tonically increasing or decreasing trend exists in time series, and to exhibit its statistical significance (P <
0.05)(Mann 1945), is applied to test the point-wise trend for each grid cell across the entire study area and
also the trend for time-series data from 1980 to 2020. Furthermore, if missing values present in the raw data,
the trend is calculated only when at least 15 values available during the study period (Kouki et al. 2023).
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2.4. Elevation analysis 2. Methodology

The mathematical expression of Mann-Kendall test is elaborated below (Yue et al. 2002):

S =
n−1∑
k=1

n∑
j=k+1

si g n(x j −xk ) (2.1)

si g n(x j −xk ) =


1 (xi −xk ) > 0

0 (xi −xk ) = 0

−1 (xi −xk ) < 0

(2.2)

V ar (S) =
{

[n(n −1)(2n +5)]−
m∑

i=1
ti (ti −1)(2ti +5)

}
/18 (2.3)

Z =


S −1/

p
V ar S S > 0

0 S > 0

S +1/
p

V ar S S < 0

(2.4)

where S represents the Mann-Kendall test statistics, n denotes data set length, xi and xk are the sequential
data values, ti is the number of ties of extent i, m is number of the tied groups and Z is the standardized
statistics.

Meanwhile, the non-parametric Theil-Sen’s slope is employed (Sen 1968) to calculate the exact trend of
time series data. It is the median of all slopes between paired values, and is more robust to outliers than the
least squares linear regression (Kouki et al. 2023).The mathematical representations are provided below:

Q j = xk −xl

k − l
for j = 1,..., R and K > 1 (2.5)

R = n(n −1)/2 (2.6)

Q =
{

Q(R+1)/2, if R is odd

(1/2)[QR/2 +Q(R+2)/2], if R is even
(2.7)

where Q j denotes the Sen’s slope estimator which is the median of the R values, and xk and xl are the se-
quential values. In case of existing n values of x +k at each period, R and Q can be calculated alternatively.

Then, correlation analysis and composite analysis are performed with the detrended data between snow
variables (snowfall, snowmelt, and SWE) and climatic variables (temperature and total precipitation), respec-
tively. Significance level was chosen to be 95%.

For correlation analysis, the Pearson correlation coefficient and its p values are calculated as:

r =
∑

(x −mx )(y −my )√
(x −mx )2(y −my )2

(2.8)

f (r ) = (1− r 2)
n/2−2

β(1/2,n/2−1)
(2.9)

p = 2∗F (−|r |) (2.10)

where mx and my are the mean of vector x and y , respectively. n is the number of samples, and β is the beta
function, f (r ) is the probability density function of r and F (r ) is the cumulative density function of r.

In terms of composite analysis, the above-normal (below-normal) snow composite, is assembled from the
detrended snow anomalies that correspond to the years that align with the above 90% quantile (below 10%
quantile) climate variable anomalies. In this sense, the above 90% quantile refers to higher-most positive
anomalies, whereas the below 10% quantile represents the lower-most negative anomalies. Moreover, the
detrended anomalies are calculated by firstly subtracting the mean values and then removing the linear least
square fit trend from the data (Prabhu et al. 2021).

2.4. Elevation analysis
For snow variables, its elevational distribution is analyzed. To examine the elevation dependence, snow vari-
ables at every 500 m elevation is aggregated and averaged. For SWE, the mean SWE at each elevation band is
visualized directly. On the other hand, for snowfall and snowmelt, the averaged values are then normalized
by the basin annual total by summing from all elevation bands. Thus the elevational contribution to basin
total is quantified by examining the percentage of each elevation band to the basin total. Trend analysis is
also performed to study the temporal changes in snowfall, snowmelt, and SWE at various elevations.
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3
Results

In this chapter, results are showing in figures and tables. Figures are also available at https://drive.go
ogle.com/drive/folders/1aa17xNDIr3zYL5xCu666Ib-Uurw5zsuW?usp=drive_link to be freely
reviewed.

3.1. Climatology of study area
The altitude, averaged at each grid point (0.1◦ resolution) in the study area, is plotted in Figure 2.1. Moreover,
the elevation distribution is assessed for each catchment. As shown in Figure A.1, Qinghai-Tibetan is located
at the plateau region where altitude is generally above 4km. In contrast, the Eastern Asian basin is consti-
tuted by mid-to-high elevation regions, from 2.5 km to 6 km. In addition, Irrawaddy lies at the low-to-mid
altitude area where its elevation is mostly below 3 km. The rest catchments show a wide coverage of terrain
characteristics, and their elevation ranges from 0 to 6 km. Their geographic difference would give rise to dis-
tinct climatic conditions, e.g., temperature and precipitation, in each catchment and hence its hydrological
behaviors, e.g., snow regimes, which will be elaborated in the following sections.

Major moisture sources that affect the HMA catchments include Indian Summer Monsoon (ISM), Eastern
Asian Summer Monsoon (EASM) and Winter Westerly Disturbance (WWD). The ISM is a tropic monsoon that
extends from June to September, and responsible for the majority of precipitation in India and Nepal, which
gradually migrates to the North-west along the Himalayan front (?,Menon et al. 2013). The EASM is a sub-
tropic monsoon that triggers multiple precipitation peaks in April-May and September-October, and it brings
moisture from the South China Sea onto the mainland and depositing precipitation on the far eastern edge
of the Tibetan Plateau (Yihui and Chan 2005). On the other hand, the WWD is driven by a jet stream that
originated at the Mediterranean sea, and generally lasts from December to March (Palazzi et al. 2013). As a
result of topographic blocking and capture, heavy snowfall at high elevations and major valleys are always
found (Cannon et al. 2014).

In terms of temperature (Figure 3.1), the monthly average from 1980 to 2020 is calculated and visualized.
Spatial and seasonal variations are demonstrated. Generally, the HMA region (i.e., Tien Shan, Pamir, Karako-
ram, Hindu Kush, the Himalayas, Tibetan, eastern Tibetan, Kunlun Shan, Qilian Mountains, Tanggula Shan
and Hengduan Shan, show lower temperature than other areas across year as a result of high altitudes. In the
southern catchments, for instance, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, as well as in
the east, for example, Yangtze and Yellow river, temperature is higher there.

In terms of total precipitation (Figure 3.2), the southern and eastern HMA basins are controlled by the
interaction between the ISM and EASM, and receive substantial amount of summer precipitation. In con-
trast, the major moisture sources in the northern and western HMA is the WWD, which brings abundant
precipitation as snowfall to the Pamir, Karakoram, and Eastern Himalayas in winter (Liu et al. 2021).

In addition, the snowfall over total precipitation ratio is computed (Figure 3.3). In the HMA and high
latitude areas, precipitation falls completely as snow in winter seasons. However, in spring and summer
seasons, only in Pamir, Karakoram, and Kunlun Shan, snowfall presents albeit to a lesser extent of about 0.5.
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3.1. Climatology of study area 3. Results

Figure 3.1: Average monthly temperature from 1980 to 2020

Figure 3.2: Average monthly total precipitation from 1980 to 2020
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3.2. Snowfall analysis 3. Results

Figure 3.3: Average monthly snowfall to total precipitation from 1980 to 2020

3.2. Snowfall analysis
In this section, snowfall is analyzed spatially and temporally. Firstly, the distribution of snowfall is assessed,
and how it has changed over the past 40 years. Inter-annual and inter-decadal variations in snowfall are also
analyzed. Lastly, the elevational distribution and temporal changes at each 500 elevation bands are evaluated.

3.2.1. Spatiotemporal distribution of Snowfall
In general, the amount of snowfall is affected by seasons, latitude, and altitude: higher latitude and altitude
tend to result in lower temperature and hence more snowfall is expected. As shown in Figure 3.4, significant
snowfall deposits in the HMA where elevations are high, i.e., Tien Shan, Pamir, Hindu Kush, Karakoram, the
Himalayas, Tibetan plateau, and the eastern Tibetan mountains in Hengduan and Tanggula Shan, but differs
in timing as a result of monsoon influence. Tien Shan, Pamir, Karakoram and the Himalayas receives mas-
sive snowfall from the WWD from November to March, yet snowfall reduces gradually from April to August
as season changes and temperature increase. In contrast, the eastern Tibetan mountains, Tanggula Shan
and Hengduan Shan, which are under influence of the EASM, obtain substantial snowfall in April-May and
September-October. This founding is in line with other study (Yihui and Chan 2005). Specially, from June
to August, the eastern Himalayas, central Kunlun Shan, as well as part of the Tibetan plateau, also receive
snowfall, due to its high elevation.

9



3.2. Snowfall analysis 3. Results

Figure 3.4: Average monthly snowfall (mm) from 1980 to 2020

Changes in snowfall are quantified from 1980 to 2020 through trend analysis. Results are shown in Figure
3.5 and Figure 3.6, which give information of absolute and relative, monthly snowfall trends. Collectively,
temporal changes in annual average snowfall are also demonstrated in Figure 3.7.

Briefly, changes in snowfall are inhomogenous and varies spatially and seasonally. For example, Pamir,
Hindu Kush, Karakoram, and the western-central Himalayas shows increasing trend with a magnitude of
1.2 mm/month/year in February, but a strong decreasing trend dominates in March, May and December.
Similarly, the eastern Tibetan mountains undergo increasing snowfall of about 0.6 mm/month/year in May
but decreasing trend from June to September. This jointly gives rise a slightly negative trend in these region in
annual average snowfall. However, the central Kunlun Shan is witnessed with increasing snowfall from May-
June, and August-September, but not counteracted by decreasing trend in other months. In this sense, slightly
increasing snowfall is observed in the annual mean trend with a magnitude of about 0.3 mm/month/year.

In terms of relative changes, snowfall also presents considerable spatial differences. Tien Shan, Kun-
lun Shan, the Himalayas, and Tibetan plateau show intermittent strong increasing trend as high as 2%/year.
However, other regions also exhibit intense negative trend, for example, Pamir, Karakoram, and the west-
ern Himalayas show decreasing snowfall (-2%/year) in December, March and May. This inhomogeneity also
present in the annual mean snowfall trend in Figure 3.7, that positive snowfall trend exists in central Tarim,
and central Kunlun Shan, and part of the Tibetan plateau. Other areas are dominated by decreasing trend in
snowfall.
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3.2. Snowfall analysis 3. Results

Figure 3.5: Temporal trend of monthly snowfall (mm/month/year) from 1980 to 2020, with hatched area implying the significant
changes
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3.2. Snowfall analysis 3. Results

Figure 3.6: Temporal trend of monthly snowfall (%/year) from 1980 to 2020, relative to 40-year average Snowfall, with hatched area
implying the significant changes

Figure 3.7: Absolute temporal trend (left) and relative temporal trend (right) of annual-average snowfall from 1980 to 2020, with
hatched area implying the significant changes

Furthermore, Table 3.1 summarizes the basin-average, minimum and maximum trends, as well as the
trends in mean snowfall volume (km3/month/year) in Figure 3.7. Firstly, Brahmaputra demonstrates a largest
annual-average monthly snowfall decreasing trend, with a magnitude of -0.1 mm/month/year, which ac-
counts for -0.34%/year. However, in terms of average relative snowfall trend, Amu Darya shows an extremely
most negative trend of -1.03%/year. However, when snow volume is taken into account, i.e., basin area is
involved, Yangtze has the largest decreasing trend.

3.2.2. Interannual snowfall variability
In this part, the annual and inter-decadal variations, as well as the temporal trend are examined for each
catchment. From Figure 3.8, Amu Darya, Brahmaputra, and Indus receive the most abundant snowfall in
terms of basin average. Annual snowfall patterns also differ markedly due the the influence of monsoon.
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3.2. Snowfall analysis 3. Results

Table 3.1: Statistics of annual-average monthly snowfall trend in each basin

Trend (mm/month/year) Trend (%/year) Trend (km3/month/year)
Mean Min Max Mean Min Max Mean

Amu Darya -0.07 -0.39 -0.004 -1.03 -2.44 -0.009 -0.108
Brahmaputra -0.100 -1.61 0.211 -0.339 -3.34 0.729 -0.125
Eastern Asian -0.001 -0.105 0.135 -0.069 -0.815 0.519 -0.001

Ganges -0.010 -1.49 0.197 -0.270 -2.06 1.01 -0.019
Indus -0.054 -0.659 0.112 -0.423 -3.78 0.611 -0.119

Irrawaddy -0.024 -1.20 0 -0.931 -2.76 0 -0.019
Mekong -0.015 -0.97 0 -0.331 -2.35 0.048 -0.065
Tibetan 0.017 -0.123 0.174 0.081 -0.939 0.787 0.018
Salween -0.061 -1.14 0.021 -0.471 -2.37 0.097 -0.110

Tarim -0.010 -0.204 0.178 -0.120 -1.65 1.58 -0.015
Yangtze -0.045 -0.805 0.056 -0.932 -2.63 0.709 -0.201

Yellow River -0.036 -0.169 0.030 -0.642 -1.81 0.335 -0.079

For instance, Amu Darya, Ganges, Indus, Irrawaddy and Brahmaputra present one-peak dominated seasonal
snowfall pattern that snowfall maximizes in February-March and minimizes in July-August. In these area, the
dominant moisture source is the WWD and hence snowfall is primarily precipitated in winter. In contrast,
other basins, i.e., Eastern Asian, Mekong, Salween, Tarim, Tibetan, Yangtze and Yellow River demonstrate a
two-peak pattern as a result of the EASM that brings considerable precipitation in April-May and September-
October.

On the other hand, the inter-decadal changes primarily indicate the temporal trends. For all basins, the
decadal average snowfall varied largely. The peak value has shifted in many catchments, for example, from
March to February in Amu Darya and Indus, from September to October in Mekong and Salween. Peak and
off-peak values in Brahmaputra, Irrawaddy and Yellow River also reduce. In order to better evaluate the tem-
poral changes, trend analyses are performed hereby with significance test.
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3.2. Snowfall analysis 3. Results

Figure 3.8: Seasonality and inter-annual variability of basin-averaged snowfall (mm/month), for every 10-year interval from 1980 to
2020

Results of absolute and relative trends are shown in Figure 3.9. Firstly, the monthly trends are largely
diverse in all basins, no consistent trends are identified. Amu Darya and Indus has experienced the most
pronounced reduction in snowfall in March, with a magnitude of about 0.0125 mm/day/year. Generally,
in Amu Darya, Brahmaputra, Irrawaddy, Mekong, Salween, Yangtze, Yellow River, negative trends dominate
there; intermittent increasing trends show in spring and winter. Specially, from June to September, strong
negative trends prevails in Mekong, Salween, Yangtze, and Yellow river, with a value of about -1.5%/year.

To find out the temporal changes in annual-total snowfall amount, monthly basin-averaged snowfall is
accumulated in each catchment. The 40-year time series of snowfall are plotted, trend and significance are
also computed in Figure 3.9 and Table 3.10. Except for Eastern Asian and Tibetan, all other basins are rec-
ognized to receive less snowfall. Particularly, Amu Darya, Brahmaputra, Indus, Irrawaddy, Mekong, Salween,
Yangtze and Yellow River undergo significant reduction.

Figure 3.9: Absolute temporal trend (left) and relative temporal trend (right) of basin-average snowfall from 1980 to 2020, with the * sign
indicating the significant values
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3.2. Snowfall analysis 3. Results

Figure 3.10: Temporal trend of accumulated annual, basin-mean snowfall from 1980 to 2020

Table 3.2: Statistics of trend analysis of annual-total basin snowfall from 1980 to 2020

Basin Trend Slope (mm/year) p-value
Amu Darya decreasing -0.349 0.003

Brahmaputra decreasing -0.519 0.001
Eastern Asian decreasing 0.005 0.935

Ganges decreasing -0.042 0.345
Indus decreasing -0.341 0.026

Irrawaddy decreasing -0.155 0.000
Mekong decreasing -0.040 0.001

Qinghai-Tibetan decreasing 0.096 0.536
Salween decreasing -0.157 0.000

Tarim decreasing -0.090 0.221
Yangtze decreasing -0.259 0.000

Yellow River decreasing -0.233 0.001

3.2.3. Elevational distribution of snowfall
As snowfall is highly dependent on elevation, this part is then focus on its elevational distribution and tem-
poral trends (Figure 3.11, 3.12, 3.13). Indus, Brahmaputra, Ganges, Indus, Irrawaddy, Mekong and Salween,
as they cover a wide variation of terrains including high mountains ranges to low lands, and locate across
the tropic and subtropic zone, snowfall only happens in mid-low elevations (above 2 km) in winter, spring,
and autumn. Particularly in summer, snowfall is deposited mostly at altitudes higher than 4 km. Snowfall at
elevation around 3.5-4 km in February-March contributes most to the annual total snowfall. In contrast, as
Amu Darya lies in the temperate zone, lower temperature allows precipitation fall as snow even at low lands.
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3.2. Snowfall analysis 3. Results

Still, snowfall at mid-high elevations in spring still accounts for the most important source in terms of annual
total snow accumulation.

Eastern Asian, Tibetan, and Tarim, show slightly different snowfall patterns. Tibetan, as located in the
high elevation region, snowfall happens all year. It is also characterized by delayed snowfall peaks in summer
at elevation above 5 km. Eastern Asian and Tarim present similar pattern: snowfall is maximized in summer at
high elevation. For Yangtze and Yellow River, snowfall occurs across all elevations due to the wide coverage of
both basins. Moreover, the EASM influence on precipitation is prominent that snowfall peaks in both spring
and autumn at high elevations.

Figure 3.11: Elevational distribution of snowfall and its seasonal variations, the color representing the snowfall values in m at each 500
m elevation band

With an insight of how snowfall is distributed across elevation, its temporal trend is hereinafter ana-
lyzed. Figure 3.12 and Figure 3.13 give information about the absolute and relative trend, respectively. In
general, snowfall at low-mid elevation has reduced over the 40 years in all catchments. For Amu Darya,
Brahmaputra, Ganges, Indus, Irrawaddy, Mekong, Salween, a sharp decreasing trend of approximately 0.01
mm/month/year is identified. However, increasing trend is also found occasionally in mid-high elevations.
Amu Darya, Ganges, and Indus showed strong increasing trend in February at elevations above 2 km. For
Amu Darya and Indus, increasing trend also prevails in November. Specially, Eastern Asian, Tibetan, and
Tarim, show pervasive increasing trend, albeit with a smaller magnitude of about 0.005 mm/month/year
from September to November, January to February across all elevations, and in summer months at high ele-
vations. With respect to relative changes, many basins experience decreasing snowfall of about 2%/year, for
instance, Amu Darya, Brahmaputra, Eastern Asian, Irrawaddy, Mekong, Salween, Yangtze and Yellow River.
In contrast, the increasing trends are comparatively less pronounced.
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3.2. Snowfall analysis 3. Results

Figure 3.12: Absolute temporal trend of snowfall at each 500 m elevation band from 1980 to 2020, with the color representing the
temporal trend in mm/month/year
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3.3. Snowmelt analysis 3. Results

Figure 3.13: Temporal trend of snowfall at each 500 m elevation band from 1980 to 2020 relative to the mean over the period 1980-2020,
with the color representing the changes in snowfall in %/year

3.3. Snowmelt analysis
In this section, spatiotemporal changes in snowmelt are also evaluated with respect to spatial distribution,
basin-scale variability, and elevational distribution.

3.3.1. Spatio-temporal distribution of snowmelt
Figure 3.14 gives information about the spatial distribution and seasonal variations of snowmelt (>0.1 mm/day).
In general, high mountain regions are identified as the hotspot area for snowmelt, especially in spring and
summer seasons. In November and December, noticeable snowmelt only occurs in the eastern Himalayas
(in Bramaputra). Gradually, in January, snowmelt along the Hiamalays is found. From February to June,
snowmelt is highly dependent on elevation, and evolution of snowmelt from low-mid altitude toward high
elevational area is recognized: massive snowmelt started from the outline of the northern-west Tien Shan,
Pamir plateau, Karakoram, Hindu-Kush, along the southern front of Himalayas and around the mountain
ranges in Sichuan basin in the western-central Yangtze catchment. In March and April, snowmelt at these
regions intensifies and intrudes to higher elevations. Significant snowmelt is also identified in the Kunlun
Shan, Qinling, Tanggula, Nyenchen-Tanglha, and Hengduan Mountains in May, and is maximized in June. In
July and August, snowmelt in the high mountain regions is reduced, yet in September and October, increasing
snowmelt in eastern Tibetan mountains, Nyainqentanglha, and Hengduan Shan is found.
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3.3. Snowmelt analysis 3. Results

Figure 3.14: Monthly-averaged daily snowmelt (mm/month) from 1980 to 2020

To assess then temporal changes in snowmelt, the trend analysis is performed. Results show the abso-
lute (Figure 3.15) and relative trend (Figure 3.16) distributions and seasonality of monthly-averaged daily
snowmelt, as well as annual-averaged daily snowmelt (Figure 3.17).

Firstly, the absolute trend is analyzed. An decreasing trend presents in central Yangtze catchment from
December to March. In the northern-west Yangtze, significant decreasing trend dominated from June to
September. However, no increasing trend is found to compensate it and therefore it is expected to show an
overall decreasing trend in the annual average. According to Figure 3.17 (left), significant decreasing trend
prevails in the western and central Yangtze, albeit to a lesser extent. Similarly, in the low-land Amu Darya,
significant decreasing trend is also found from January to March, which also presents in Figure 3.17). By con-
trast, Kunlun Shan shows an increasing trend in June, August and September, and results an overall increasing
in annual average trend.

In addition, Figure 3.15 demonstrates a similar propagation of snowmelt trend as in Figure 3.14. Signifi-
cant increasing trend is firstly identified in March along the outline (low elevation area) of the northern-west
Tien Shan, Pamir, Karakoram, Hindu-Kush, the Himalayas, and Hengduan Shan. This increasing trend grad-
ually migrates toward higher elevation in April, May, and June; the low-elevation area is left with decreasing
trend. In July, increasing snowmelt trend only presents in the central Himalayas, and the high mountain
regions are characterized by a strong decreasing snowmelt trend. However, this effect is averaged in Figure
3.17, and an overall significant decreasing trend dominate in the relatively low-elevation regions in Tien Shan,
Karakoram, Hindu-Kush, and the Himalayas.
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3.3. Snowmelt analysis 3. Results

Figure 3.15: Temporal trend of monthly-averaged daily snowmelt (mm/month/year) from 1980 to 2020, with hatched area implying the
significant changes

As the daily snowmelt amount is small in most areas, the relative trend would give better description of
the spatial and seasonal variations. In Figure 3.16, the relative temporal trend is largely heterogeneous across
the study area. In the central Yangtze, intensive, significant decreasing trend is found from December to
March. Similarly in the Northern-west Yangtze, significant decreasing trend presents from June to September.
This gives an overall decreasing trend about 2% per year in the central Yangtze, as shown in Figure 3.17. In
Yellow river, robust and significant decreasing trend presents in January and March, yet increasing trend is
also identified in part of the basin from October to February. Despite of this, an annual decreasing trend
is recognized. Similarly, Amu Darya shows significant decreasing trend in Jan and March, which results the
overall decreasing trend in annual pattern.

By contrast, the majority of Tarim and Eastern Asian is found with increasing trend from October to Febru-
ary, and this give rise to the overall increasing trend especially in the central of both basins. Specially, notice-
able trend presents along the Kunlun Shan. For the central Kunlun Shan, significant increasing trend prevails
from February to June, also November and October. However, pronounced decreasing trend also persists
from July to September in the eastern Kunlun shan. These are further evidenced by the annual trend in
Figure 3.17, that the central Kunlun Shan is characterized by significant increasing trend of about 1%/year
and decreasing trend in the eastern Kunlun Shan. Likewise, the evolution of trend in Northern-west Kunlun,
Pamir, Karakoram, Hindu-Kush, the Himalayas is again observed. This evolution of snowmelt along altitudes
would be further evaluated in later section.
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Figure 3.16: Temporal trend of monthly-averaged daily snowmelt (mm/month/year) from 1980 to 2020, relative to the mean of
1980-2020, with hatched area implying the significant changes

Figure 3.17: Absolute temporal trend (left) and relative temporal trend (right) of monthly-averaged daily snowmelt (mm/month/year)
from 1980 to 2020

3.3.2. Inter-annual snowmelt variability
Building upon the spatial distribution of snowmelt, the analysis of inter-annual variability of basin-averaged
snowmelt is conducted to facilitate comparing snowmelt patterns and showcasing temporal changes.

Figure 3.18 gives information about the seasonal and temporal changes in basin-average daily snowmelt,
which differ greatly for catchments. Amu Darya, Brahmaputra, Ganges, Indus, and Irrawaddy show a single-
peak melting pattern, with maximum snowmelt occurring in June, May, May, June, and May, respectively.
Specially, for Irrawaddy, a sharp reduction in snowmelt from May to June is recognized. By contrast, Mekong
and Salween present a two-peak melting pattern, with high peak snowmelt in May, and second snowmelt
peak in September. The second peaks in snowmelt are as a result of EASM that brings abundant precipitation
in September-October. Eastern Asian, Qinghai-Tibetan, and Tarim demonstrate a prolonged melting season,
with maximum snowmelt arising in June. Similarly, in Yangtze and Yellow river, snowmelt also persists for
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most of the year, excluding July and August. This could be caused by the wide-spread snow event in the central
and eastern Yangtze and Yellow river in winter seasons. Temporal evolution of snowmelt could also be spotted
from Figure 3.18. The maximum daily snowmelt is reduced in Amu Darya, Ganges, Indus, Irrawaddy, Salween,
Yangtze and Yellow river. Moreover, many basins undergo snowmelt reduction in also off-peak months, for
instance, Brahmaputra, Indus, Irrawaddy, Yellow river, suggesting decreasing in snowmelt water locally.

The temporal changes are further quantified by trend analysis and results are shown in Figure 3.19. Signif-
icant decreasing trend is found for many basins. From June to September, Brahmaputra, Irrawaddy, Mekong,
Salween, Yangtze, and Yellow River, experience less snowmelt. The decreasing trend accounts for about
3%/year in Irrawaddy in June. Decreasing trend is also identified in Irrawaddy from December to May. In
terms of increasing snowmelt, only Eastern Asian in November and Tibetan in March are recognized with
significance.

Figure 3.18: Seasonality and inter-annual variability of basin-average daily snowmelt (mm/month), for every 5 year interval from 1980
to 2020

Figure 3.19: Absolute temporal trend (left) and relative temporal trend (right) of basin-average daily snowmelt (mm/month/year) from
1980 to 2020
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Table 3.3: Statistics of annual average snowmelt trend in each basin

Trend (mm/month/year) Trend (%/year) Trend (km3/month/year)
Mean Min Max Mean Min Max Mean

Amu Darya -0.058 -0.319 0.626 -0.957 -2.26 2.56 -0.089
Brahmaputra -0.111 -1.80 0.596 -0.328 -3.26 1.06 -0.139
Eastern Asian -0.001 -0.133 0.340 0.0969 -0.987 2.79 -0.001

Ganges -0.011 -1.05 0.220 -0.302 -2.02 1.31 -0.021
Indus -0.056 -0.758 0.454 -0.462 -3.78 1.94 -0.124

Irrawaddy -0.027 -1.34 0 -1.01 -2.69 0 -0.021
Mekong -0.015 -1.08 0 -0.375 -2.46 0 -0.065
Tibetan -0.024 -0.148 0.336 -0.195 -0.958 2.52 -0.025
Salween -0.066 -1.217 0.056 -0.545 -2.49 0.150 -0.119

Tarim -0.008 -0.209 0.439 -0.066 -1.73 3.08 -0.012
Yangtze -0.042 -0.814 0.052 -0.915 -2.57 0.779 -0.188

Yellow River -0.032 -0.212 0.027 -0.749 -1.81 0.342 -0.071

The annual total snowmelt for each basin is accumulated from daily snowmelt for each basin over the
period 1980 to 2020, and trend analysis is also conducted to evaluate the temporal changes. Results are vi-
sualized in Figure 3.20 and test statistics are listed in Table 3.4. The significance level is chosen to be 0.05,
which means that significant trends are only identified with p value smaller than 0.05. In this sense, Brahma-
putra, Indus, Irrawaddy, Mekong, Salween, Yangtze and Yellow River are found to experience reduced annual
snomwelt.

Figure 3.20: Time series and temporal trend for accumulated annual basin-average snowmelt (mm/year) from 1980 to 2020
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Table 3.4: Statistics of trend analysis of accumulated annual basin-average snowmelt (mm/year) from 1980 to 2020

Basin Trend Slope (mm/year) p-value
Amu Darya decreasing -0.315 0.064

Brahmaputra decreasing -0.599 0.000
Eastern Asian decreasing -0.002 0.972

Ganges decreasing -0.051 0.421
Indus decreasing -0.354 0.023

Irrawaddy decreasing -0.167 0.000
Mekong decreasing -0.036 0.000

Qinghai-Tibetan increasing 0.178 0.300
Salween decreasing -0.160 0.000

Tarim decreasing -0.070 0.213
Yangtze decreasing -0.242 0.000

Yellow River decreasing -0.210 0.001

3.3.3. Elevational distribution of snowmelt
As found in Figure 3.14, there is an progression of snowmelt from low-elevation to high elevation in the HMA,
i.e., Tien Shan, Pamir plateau, Karakoram, Hindu-Kush, and the Hiamalayas. This altitudinal evolution of
snowmelt is further observed in Figure 3.21: pronounced snowmelt firstly occurs at low elevation in early
spring, and it is gradually taken over by mid-high elevational snowmelt in later months.

Figure 3.21 shows distinct elevational distribution and evolution of snowmelt for each basin. In general,
Amu Darya, Brahmaputra, Ganges, and Indus demonstrate similar patterns. The western basins, i.e., Amu
Darya and Indus, show a relatively shorter snowmelt season from March to July, whereas for Ganges and
Bramaputra, pronounced snowmelt persists from February to August. Moreover, Amu Darya and Indus are
characterized with prominent snowmelt contribution from 2.5-5 km. By contrast, Brahmaputra and Ganges
show considerable snomwelt from 3-6.5 km. However, from the perspective of maximum annual snowmelt
contribution, all four basins depend primarily on the mid-elevation snowmelt either in May or June at about
4 km altitude.

Catchments in the south, i.e., Mekong, and Salween, also behave similarly in terms of snowmelt. From
February to May, mid-elevational snowmelt prevails. However, from July to September, high-elevational
snomwelt predominates. According to Figure 3.18, a minor peak presents as a result of snowmelt at high-
elevation. Also it is noteworthy to address Irrawaddy here, as it experiences short season from March to June
with snowmelt from 3.5-5 km contributing mostly.

For Eastern Asian and Tarim, both undergo melting period from March to October. Yet Tarim is character-
ized by pronounced snowmelt at mid-elevation in May and June, whereas Eastern Asian in July and August.
However, for Qinghai-Tibetan, as it altitudinal distribution is more uniform and comprises of mostly high el-
evations, it shows a delayed, and more concentrated snowmelt period from April to October, with snowmelt
from the high elevation in July and August contributing most to the annual total.

Lastly, in Yangtze and Yellow river basin, yearlong snowmelt is observed. In Yangtze, snowmelt at high
mountains in June and July contributes most the annual total, yet for Yellow river snowmelt in May and June
at high elevation regions is the most prominent contribution.
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Figure 3.21: Elevational distribution of snowmelt and seasonal variations, the color representing the percentage of snowmelt at each
500 m elevation band to the annual total basin snowmelt

The elevational distribution differs for each basin. In general, mid-high altitude snowmelt is the most
important contributor of the annual total snowmelt. How snowmelt at each elevation changes with time is
then analyzed. Figure 3.22 and Figure 3.23 give information about the temporal trend from 1980 to 2020 for
every 500 m elevation band. In general, most basins demonstrate decreasing trend of snowmelt in the lower
elevation, yet increasingly more snowmelt in higher altitude at those elevational bands where considerable
snowmelt occurs. However, Qinghai-Tibetan is distinguished from other basins as it shows mostly increasing
trend across all elevation. This could result from its uniform, and high altitudinal distribution.

Hotspots identified that contributes most to the annual total snomwlet in Figure 3.21, experiences re-
duced snowmelt in most basins, except for Eastern Asian and Tibetan where increasing trend was recognized.
Specially, in both basins, the hotspots are found in the highest elevation band. Similarly, high elevation bands
in Brahmaputra, Ganges, Tarim, Yangtze, and Yellow River are also characterized by increasing snowmelt
trend. This may suggest that more snowmelt widely arose across high elevations. This pattern is more notable
in Figure 3.23: high mountain regions in winter and early spring that does not contribute markedly to annual
total snowmelt are identified to experience increasing snowmelt, whereas spring and summer snowmelt that
is pronounced undergo decreasing trend from 1980 to 2020. In this sense, it could be inferred that snowmelt
from higher elevation is increasingly more important for spring and summer melt water.
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Figure 3.22: Temporal trend of snowmelt at each 500 m elevation band from 1980 to 2020, the color representing the changes in
snowmelt in mm/year

In conclusion, this analysis provides insights into the elevational and seasonal distribution of snowmelt,
with catchments displaying distinct patterns as a result of climatic and topographic differences. Specially,
across all basins it is found that higher elevation snowmelt is intensified, whereas low-mid elevation snowmelt
is reduced.
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Figure 3.23: Temporal trend of snowmelt at each 500 m elevation band from 1980 to 2020 relative to the mean over the period
1980-2020, with the color representing the changes in snowmelt in %/year

3.4. SWE analysis
In this part, spatiotemporal changes in SWE are analyzed, and elaborated on spatial distribution of SWE,
basin-scale inter-annual variability, and elevational distribution of SWE.

3.4.1. Spatial and seasonal distribution of snowpack
The spatial and temporal distribution of non-negligible SWE (> 5mm) varies greatly over the 12 HMA river
basins, as shown in Figure 3.24. The 5mm threshold is derived from previous study, which has substan-
tiated that the detection of shallow snow is unreliable (Smith and Bookhagen 2018a). Intense snowpack
presents primarily in the Northern-west, i.e., in Tien Shan, Pamir, Kunlun Shan, Karakoram, the Hindu Kush
Himalayas, where altitudes are high and directly exposed to the WWD. Specially, persistent snowpack identi-
fied in Pamir, Karakoram, and along the Himalayas, with SWE around 10 m. Snowpack in the southern-east
of HMA, i.e, Tanggula Shan, Hengduan Shan, and Nyainqentanglha, are less abundant as they receive most
precipitation in summer from ISM and EASM. The Northern-east of HMA, where the eastern Kunlun Shan,
Qilian Shan, and the eastern Tibetan show the least abundant snowmpack as a result of being distant from
major moisture sources.

Accumulation of snow is observed from September, in Tien Shan, Pamir, Kunlun Shan, Karakoram, the
Hindu Kush Himalayas, Tanggula Shan, Hengduan Shan, and Nyainqentanglha, and peaks in April. From
May onwards, snowpack depletes gradually, and in August, minimal SWE magnitude exhibits across the entire
HMA and most regions are snow-free. In the accumulation phase, SWE in Tanggula Shan, Nyaingentanglha,
and Hengduan Shan grow considerably in September due the summer monsoon precipitation. By contrast,
snowpack in the northern-west HMA arises significantly in December, January, and February as a result of
the WWD.
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Figure 3.24: Average monthly SWE (mm) from 1980 to 2020

This seasonal cycle of snow accumulation and reduction would provide a considerable amount of water
for over a billion people living across Asia (Kouki et al. 2023). Therefore, the temporal changes in SWE is
assessed from the study period 1980 to 2020. In Figure 3.25, the absolute monthly SWE changes are quan-
tified. Strong increasing trends, albeit insignificant are observed in the Tien Shan, Pamir, Eastern Tibetan
Mountains, and Tanggula areas from November to March, but are compensated by intense decreasing trend
from April to June. Similarly, the central Himalayas ranges in Ganges, show increasing trend in February
and March, yet is counteracted by strong decreasing trend in other months. By contrast, the Kunlun Shan
ranges presents an increasing trend for most of the seasons and is expected to have an overall increasing SWE.
However, in the Hindu-Kush, western and eastern Himalayas, as well as Nyainqentanglha regions, yearlong
decreasing trends are recognized.

Relative trends in annual-average SWE are also computed and visualized, as shown in Figure 3.27 (left).
Overall increasing trends are identified in Pamir, Kunlun Shan, Qilian, and Tanggula-Qinling regions, though
not considered as significant. In contrast, significant decreasing trends are detected in the mid-elevation
regions in Pamir, Hindu-Kush Himalayas, Nyainqentanglha, Hengduan Shan, and the central Yangtze basins.
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Figure 3.25: Temporal trend of monthly SWE (mm) from 1980 to 2020, with hatched area implying the significant changes

However, as SWE varies spatially and seasonally, the relative temporal SWE trend is calculated to have
a better estimation of local SWE changes in terms of percentage. Figure 3.26 gives information about the
temporal trend of monthly SWE relative to the average SWE from 1980-2020, which shows heterogeneous
changes in SWE across the study area. Significant decreasing trends are found in the western Amu Darya
in January, but not compensated by increasing trend in other months. Significant decreasing trends in the
central Yangzte were also identified in winter from January to March. By contrast, considerable long-term
increasing trends are found in Tien Shan, Kunlun Shan, and Qilian Shan mostly in winter and spring.

Temporal changes in annual-mean SWE are shown in the Figure 3.27 (right). The low-land of Amu Darya,
Hindu-Kush, the western Himalayas, Hengduan Shan and the central Yangtze basin, as well as the Shandong
peninsula, show significant decreasing trend of SWE, which approximately account for 2% of 40-year annual
mean SWE. However, in the eastern Tarim, western Qaidam, and the Kunlun-Qinling mountain ranges, posi-
tive trends of increasing SWE are presented.
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Figure 3.26: Temporal trend of monthly SWE (%) from 1980 to 2020, relative to 40-year average SWE, with hatched area implying the
significant changes

Figure 3.27: Absolute temporal trend (left) and relative temporal trend (right) of annual-average SWE from 1980 to 2020, with hatched
area implying the significant changes

3.4.2. Inter-annual SWE variability
With understanding of spatial distribution of SWE, it is then focused on basin-average climatology to evaluate
intra-annual and inter-annual changes, as well as comparing magnitude of SWE for all basins. The basin-
average SWE is firstly computed and every 10-year mean values are then calculated to evaluate the seasonal
patterns and temporal changes in seasonality, and the results are shown in Figure 3.28.

In general, Indus, Amu Darya, and Bramaputra possess the most snow water, and show seasonal accumu-
lation (reduction) of about 100 mm. Salween, Ganges, and Tarim demonstrate mediocre snow water storage,
and approximately 40 mm, 20 mm, and 10 mm changes in seasonal SWE are found. Other basins, for instance,
Eastern Asian, Irrawaddy, Mekong, Tibetan, Yangtze and Yellow River, are characterized by less basin-average
SWE, and exhibit changes in SWE of less than 10 mm in seasonal cycles.
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Table 3.5: Statistics of annual average SWE trend in each basin

Trend (mm/month/year) Trend (%/year) Trend (km3/month/year)
Mean Min Max Mean Min Max Mean

Amu Darya -0.119 -17.6 8.66 -1.10 -3.22 0.308 -0.183
Brahmaputra -0.417 -13.5 9.37 -0.706 -3.81 1.02 -0.521
Eastern Asian -0.005 -14.3 0.142 0.234 -1.53 1.12 -0.004

Ganges -0.006 -14.0 0.468 -0.586 -3.29 0.628 -0.011
Indus -0.257 -28.2 9.85 -0.652 -3.42 1.39 -0.568

Irrawaddy -0.057 -5.08 0 -1.38 -3.94 0 -0.045
Mekong -0.016 -3.16 0.499 -0.443 -3.61 1.29 -0.071
Tibetan -0.013 -13.1 0.272 -0.220 -2.31 1.44 -0.014
Salween -0.141 -4.82 0.518 -0.799 -3.46 0.670 -0.254

Tarim -0.038 -23.2 10.4 0.027 -2.38 1.65 -0.057
Yangtze -0.023 -2.28 0.507 -0.962 -3.53 1.60 -0.103

Yellow River -0.022 -0.954 0.490 -0.569 -2.72 1.16 -0.049

SWE varies considerably in basins in different seasons. Firstly, Irrawaddy experiences a prolonged snow-
free period, i.e., from June to November. Yet Mekong, Yangtze and Yellow river endure a shorter snow-free
period only in July and August. In contrast, other basins show yearlong snow cover. Secondly, in terms of
seasonality, all basins exhibit a peak basin-average SWE in between March and April, and minimal SWE in
August. Eastern Asian, Qinghai-Tibetan, and Tarim present snow accumulation phase from August to April,
and snow reduction phase from April to July. However, other catchments show shorter snow accumulation
phase. In September, Mekong, Salween, Yangzte and Yellow river start to gain snow water storage. Then,
in October, Amu Darya, Brahmaputra, Ganges, and Indus, SWE increases gradually. However, only for Ir-
rawaddy, it exhibits a delayed timing in snow accumulation in November.

Figure 3.28 also gives information about the temporal evolution of monthly basin-average SWE. In terms
of the peak values, Amu Darya, Brahmaputra, Irrawaddy, and Salween, experience a pronounced reduction
over 1980-2020. For Amu Darya, the peak SWE reduces approximately from 225 to 200 mm, for Brahmaputra
from 210 to 175 mm, Irrawaddy from 12.5 to 5 mm, and Salween from 55 to 40 mm. Other basins, i.e., Ganges,
Indus, and Tarim, show less consistent inter-annual reduction in peak SWE, yet overall decreasing trend could
be recognized. However, Eastern Asian, Mekong, Tibetan, Yangtze and Yellow River present considerable
intra-annual and inter-annual variability, but no conclusion could be generally drawn here. In this sense,
trend analysis for basin-average SWE is entailed to provide quantitative insights into the temporal changes.
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Figure 3.28: Seasonality and inter-annual variability of basin-averaged SWE (mm), for every 10-year interval from 1980 to 2020

Figure 3.29 gives information about the interannual variation of monthly total snowfall and snowmelt, as
well as monthly average SWE, collectively. Snowfall and snowmelt differ in their peaking time, hence result
in distinct SWE patterns. Generally, SWE increases when snowfall amount exceeds snowmelt, and decreases
when snowfall is less than snowmelt. HMA basins show spatiotemporal differences in seasonal SWE patterns
as a result of the interplay between geographical and climatic conditions that affect timing and magnitude of
snowfall and snowmelt.
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Figure 3.29: Interannual variability of 40-year-averaged monthly SWE (mm), snowmelt, and snowfall (mm/month)

Figure 3.30 showd the absolute temporal trend of monthly basin-average SWE from 1980 to 2020, as well
as the temporal trend relative the the mean basin-average SWE over the period 1980-2020. Here only the
significant trend values are plotted. Many basins are identified to have prominent negative trend in monthly
basin-average SWE. Brahmaputra shows significant decreasing trend in basin average SWE from January to
August, with a sharp reduction in peak SWE values of about 1 mm/year. Similarly, in Irrawaddy and Sal-
ween, albeit to a less extent (0-0.5 mm/year), significant decreasing trends are also recognized from January
to June and September, respectively. Apart from Amu Darya, Mekong and Qinghai-Tibetan, all other basins
experience reduction in peak SWE values in the spring season (March, April and May): Brahmaputra, Indus,
Salween and Tarim show large negative trend, indicating significant decrease in peak SWE over 1980-2020.

As SWE distribution varies spatially for each basin, the relative trend is calculated as well to provide an
in-depth understanding of local SWE changes. From Figure 3.30 (right), though Bramaputra is considered to
have sharp SWE reduction, relative to its abundant snow water storage, the reduction is less prominent. In
contrast, Irrawaddy shows significant decreasing trend from December to June, which accounted for about
2%/year of the basin-mean SWE in that month. In addition, Yangtze and Yellow river are also identified to ex-
perience from May to September. Salween also shows a prolonged reduction in SWE from January to Septem-
ber, albeit in a less prominent trend of about 1%/year.
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Figure 3.30: Absolute temporal trend (left) and relative temporal trend (right) of basin-average SWE from 1980 to 2020

In addition, time series and temporal trend of the annual-averaged, basin-mean SWE are also quantified
to assess yearly SWE changes. As shown in Figure 3.31 and Table 3.6, all basins exhibit decreasing trend. Yet
only Brahmaputra, Indus, Irrawaddy, Salween and Yellow River are considered to have significant reduction
in SWE with a p-value less than 0.05.

Figure 3.31: Temporal trend of Annual-average, basin-mean SWE from 1980 to 2020

3.4.3. Elevational distribution of snowpacks
As seen in Figure 3.24, the magnitude of SWE at the study area ranges from millimeters to meters. In Tien
Shan, Kunlun Shan, Pamir, Karakoram, and along the Himalayas, giant snowpack persists. Yet at relatively
lower altitude it is in diminutive quantity, accumulating and melting seasonally. Though spatial and temporal
analyses provide insights into changes in snow water storage, where these changes occur in low- or high-SWE
accumulated areas and the elevational distribution of these changes are not taken into account. In this sense,
the elevational distribution of snowpack for each catchment is calculated and shown in Figure 3.32.
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Table 3.6: Statistics of trend analysis of annual-average basin SWE from 1980 to 2020

Basin Trend Slope (mm/year) p-value
Amu Darya decreasing -0.132 0.334

Brahmaputra decreasing -0.448 0.002
Eastern Asian decreasing -0.030 0.086

Ganges decreasing -0.054 0.086
Indus decreasing -0.247 0.041

Irrawaddy decreasing -0.056 0.000
Mekong decreasing -0.014 0.289

Qinghai-Tibetan decreasing -0.028 0.051
Salween decreasing -0.142 0.007

Tarim decreasing -0.147 0.127
Yangtze decreasing -0.038 0.061

Yellow River decreasing -0.029 0.044

Firstly, in Amu Darya, Brahmaputra, Ganges, Indus, Tarim and Eastern Asian, high elevation snowpack,
i.e., above 5 km, shows no noticeable changes in SWE as yearlong snowpack persists at this elevation. For
mid-high altitudinal areas (2-5 km), seasonal cycles of snow could be observed. Generally, snow accumulates
in these catchments from September to April, and SWE reaches the maximum. From April to August, snow-
pack reduces gradually. At lower elevation (0-2 km), seasonal effect also plays a role. However, later snow
accumulation and earlier SWE depletion is identified compared with mid-high areas. Moreover, at this eleva-
tion, snow-free days also occurs. As for Irrawaddy, Mekong, Qinghai-Tibetan, Salween, Yangtze, and Yellow
river, SWE across all elevations shows seasonal accumulation and reduction. Lower elevations are character-
ized by delayed timing in accumulation and earlier onset of SWE reduction, contrary to higher elevations. In
addition, Irrawaddy, Mekong and Salween show long snow-free periods across large regions. By contrast, as
located in high plateau, Qinghai-Tibetan demonstrates yearlong persistent snowpack albeit in small values.
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Figure 3.32: Elevational distribution of SWE and its seasonal variations, the color representing the SWE values in m at each 500 m
elevation band

Aware of how SWE distributes across altitudes and changes with seasons, the temporal trend of SWE at
each elevation band is therefore evaluated. Results are visualized in Figure 3.33. Relative trends were also
available in Figure 3.34.Eastern Asian, Tibetan and Tarim is identified to experience consistent temporal SWE
reduction over 1980-2020 at elevation greater than 6 km. Moreover, for all basins, decreasing trend is recog-
nized in spring seasons, yet in different magnitude. Irrawaddy experiences the overall most negative SWE
reduction of 10 mm/year at elevation around 4km in April and May. On the other hand, Amu Darya under-
goes increasing SWE in winter seasons at mid-high elevation, and accounts for at most 0.5mm/year change.
Other catchment, for instance, Indus, Tibetan and Yangtze, are also found with increasing trend, though in
very small values.
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Figure 3.33: Absolute temporal trend of SWE at each 500 m elevation band from 1980 to 2020, with the color representing the temporal
trend in mm/year

The relative trend gives more information about the temporal changes in SWE at local scale. The yearlong
decreasing trend at high elevations in Eastern Asian, Tibetan and Tarim again is identified, yet in small per-
centages of about 1%/year. Tibetan also shows intermittent increasing trend. Similarly, Irrawaddy, Salween,
Yangtze, and Yellow River show SWE reduction for most seasons at high elevations. By contrast, at high eleva-
tions Mekong is only recognized with decreasing SWE trend in summer. Then for low-mid elevations, many
catchments, i.e., Amu Darya, Brahmaputra, Ganges, Indus, Irrawaddy, Mekong, Salween, Yangtze and Yellow
river, are dominated by negative trend across year with magnitude ranging from 0 to -4%/year. However, for
Eastern Asian and Tarim, in winter from October to February, increasing trend about 0-1%/year prevails in
low-mid elevations, but in spring and summer decreasing SWE appears again. In summary, SWE distribution
and temporal changes also display elevational and seasonal variations. Overall, snowpack at low-mid eleva-
tions is mostly decreasing, whereas at high elevations it is either unchanged or experiencing minor reduction.
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Figure 3.34: Temporal trend of SWE at each 500 m elevation band from 1980 to 2020 relative to the mean over the period 1980-2020,
with the color representing the changes in SWE in %/year

3.5. Sensitivity to hydroclimatic factors
The variations in snow are influenced by multiple factors, including temperature, total precipitation, rainfall
ration, and snow-related variables (Yang et al. 2022). In addition, topography, vegetation types and regional
climate systems (i.e., monsoon), etc., are also important (Jenicek et al. 2016). Therefore, in this part, correla-
tion analysis and composite was conducted to explore the climate sensitivity of snowfall, snowmelt, and SWE
to temperature and precipitation. The influence of (extreme) temperature and total precipitation on SWE
and snowmelt was again spatially and seasonally heterogeneous.

3.5.1. Correlation analysis
Snowfall is generally negatively correlated with temperature: the lower the temperature, the more snowfall is
deposited (Figure 3.35). However, from November to March, snowfall in part of Tien Shan, Pamir, Karakoram
and the eastern Himalayas are positively correlated with temperature. Moreover, from June to September,
snowfall is more strongly connected with temperature than other months. In addition, spatial difference also
present: snowfall in Tibetan and the central Yangtze is overall more negatively correlated with temperature
than for instance, Tarim and Eastern Asian.

The relationship between precipitation and snowfall is more straightforward (3.36). For all basins, pre-
cipitation is directly correlated with precipitation if the temperature is below the freezing point in winter:
moisture is deposited completely as snow. However, as temperature varies considerably with seasonal and
elevations, some basins also demonstrate temporal difference in precipitation-snowfall correlation. For ex-
ample, snowfall is Tibetan, Tien Shan, Pamir, and Kunlun Shan is directly associated with precipitation from
October to May, but its intensity decreases in summer.

In conclusion, snowfall is largely influenced by the total precipitation, but its relationship shows signifi-
cantly spatial and temporal differences. In general, temperature and snowfall are negatively correlated, while
total precipitation exerted an difference effect on the snowfall behavior in the HMA catchments.

38



3.5. Sensitivity to hydroclimatic factors 3. Results

Figure 3.35: Correlation between temperature and snowfall, with hatched area implying the 0.95 significance

Figure 3.36: Correlation between total precipitation and snowfall, with hatched area implying the 0.95 significance
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With respect to snowmelt, temperature and total precipitation play different roles. Figure 3.37 demon-
strates the the spatial distribution of correlation coefficient and its seasonal evolution. In part of Tien Shan,
Kunlun Shan, Pamir, Hindun-Kush, Himalayas, Tanggula Shan, Hengduan Shan, Qilian mountains, and nothern-
east Yellow River, significant positive correlation dominates from October to June, suggesting that higher tem-
perature would lead to more snowmelt in this regions considering its abundant snow water storage. Yet from
July to September, this positive correlation is replaced by strong negativity. On the other hand, pronounced
negative correlation prevails in other low-mid elevations areas, which could be argued as reduced SWE pres-
ence would lead to less snowmelt.

On the contrary, correlation between total precipitation and snowmelt show a distinct pattern. Opposite
to temperature, snowmelt at high altitudinal regions, for instance, Tien Shan, Kunlun Shan, Pamir, Hindun-
Kush, Himalayas, Tanggula Shan, and Hengduan Shan, is negatively correlated with precipitation from Octo-
ber to June when temperatures are relatively low. Yet this correlation is also replaced from July to September
by positivity, when temperautre exceeds the freezing point and starts to play a role in shifing snowfall to rain-
fall that directly contribute the snowmelt (3.1, 3.3). Other regions, for instance, central Tibetan, central Tarim,
Eastern Asian (Chaidam), Yangtze and Yellow river, positive correlation dictates all year long.

Figure 3.37: Correlation between temperature and snowmelt, with hatched area implying the 0.95 significance
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Figure 3.38: Correlation between total precipitation and snowmelt, with hatched area implying the 0.95 significance

In general, SWE is negatively correlated with temperature across the study area in all seasons as shown in
Figure 3.39. This suggests that the influence of temperature on swe is quite homogeneous: higher tempera-
ture would result in less SWE. However, slightly positive correlation is also found in part of Pamir, Karakoram,
and the eastern Himalayas in winter and spring seasons, from November to March. During these seasons, at
the high alitutudes, higher temperature does not necessarily lead to less SWE, possibly as a result of compen-
sation from increased precipitation.

As for precipitation, more spatiotemporal variations in correlation are found in Figure 3.40. From Septem-
ber to April, positive correlation dominates in the study area. Yet negative correlation appears intermittently
in the Tien Shan, Eastern Tibetan Mountains and Tanggula Shan. From May to July, negative correlation
presents in Tien Shan, Pamir, Karakoram, Tanggula, Hengduan Shan, and Eastern Himalayas. This indicates
that in most regions, higher SWE coincides with more precipitation, but regional difference in temperature,
geography, vegetation and etc. could also exert an influence.
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Figure 3.39: Correlation between monthly temperature and SWE from 1980 to 2020, with hatched area implying the 0.95 significance

Figure 3.40: Correlation between total precipitation and SWE from 1980 to 2020, with hatched area implying the 0.95 significance
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3.5.2. Composite analysis
Correlation analysis investigates the linear relationship between hydro-climatic factors with SWE and snowmelt:
strongly correlated regions are identified and this could provide insights into the response mechanisms of
snow to climate. Further, composite analysis is also conducted to elucidate the influence of extreme high
(low) temperature and total precipitation on snowfall, snowmelt, and SWE.

Figure 3.41 and 3.42 show the impact of extreme low and high temperatures on snowfall. In general, their
influence is heterogeneous, spatially and seasonally. Low temperature concurs with as high as 30 mm/month
more snowfall in Tien Shan, Pamir, Karakoram, eastern Himalayas, Hengduan Shan, the central Yangtze
basin, and Yellow River in winter. Yet less snowfall is also found, for instance, the Himalayas in March and
April, and Tibetan in spring and autumn. In other regions, the influence of low temperature is less noticeable.
On the other hand, with respect to high temperatures, most regions in the HMA are experiencing less snow-
fall. However, this is not applicable at Tibetan, where more snowfall coincides with high temperatures. In
brief, extreme temperature could result in considerable difference snowfall amount in the HMA basins: with
low temperature there is more snowfall, and with high temperature, snowfall is less.

Figure 3.41: Snowfall anomalies in mm/month, constructed from composites of low temperatures (below-10% quantiles)

43



3.5. Sensitivity to hydroclimatic factors 3. Results

Figure 3.42: Snowfall anomalies in mm/month, constructed from composites of high temperatures (above-90% quantiles)

The impact of extreme precipitation on snowfall is different, and results are showing in Figure ?? and ??.
Low precipitations lead to less snowfall in winter from November to February, with the Pamir, Karakoram,
Hindu Kush, and the Himalayas receiving the substantial less snowfall of about -30 mm/month. However,
in May and June, low precipitation in Tien Shan, Kunlun Shan, and the central Himalayas corresponds with
more snowfall. Comparatively, high precipitations are often associated with more snowfall in winter in the
HMA basins, but the opposite in spring and summer in Tibetan and Kunlun Shan: less snowfall concurs with
high precipitation. In summary, the influence of extreme precipitation varies largely, but extreme precipita-
tion is highly negatively related with snowfall, particularly in winter.

44



3.5. Sensitivity to hydroclimatic factors 3. Results

Figure 3.43: Snowfall anomalies in mm/month, constructed from composites of low total-precipitation (below-10% quantiles)

Figure 3.44: Snowfall anomalies in mm/month, constructed from composites of high total-precipitation (above-90% quantiles)

45



3.5. Sensitivity to hydroclimatic factors 3. Results

The influence of extreme temperature on snowmelt is more explicit, as depicted in Figure 3.45 and Fig-
ure 3.46. Similar to Figure 3.14, snowmelt is prominent in the spring and summer seasons and evolution of
snowmelt from low elevation to high elevation is also observed. From February to May, extreme low and high
temperatures play different roles in affecting snowmelt. From February to May, more snowmelt concurs with
low temperature in relatively lower elevation regions, but less snowmelt in higher elevations. By contrast,
when temperature is high, the opposite patterns are found: high temperature would lead to more snowmelt,
but less SWE accumulation at low elevation so snomwlet is reduced. However, the impact of extreme tem-
perature on snowmelt in June, July and August is more implicit, that in Pamir, Karakoram and Kunlun Shan,
above-average snowmelt is found regardless of extremely low or high temperatures.

Figure 3.45: Snowmelt anomalies in mm/month, constructed from composites of low temperatures (below-10% quantiles)
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Figure 3.46: Snowmelt anomalies in mm/month, constructed from composites of high temperatures (above-90% quantiles)

Compared with extreme temperature, the influence of extreme precipitation on snowmelt is more spa-
tially and seasonally heterogeneous. Under the condition of low precipitation, elevation is decisive for snowmelt:
less snowmelt is identified in low altitudinal regions, whereas more snowmelt in higher alatitudes in Tien
Shan, Pamir, Hindu Kush, and the Himalayas. From May to July, negative anomalies dominate in most high
mountain regions, but an exception is found in Tien Shan in June that shows positive snowmelt anomalies.
However, with respect to high precipitation, from February to March, more snowmelt is recognized in lower
elevations, which is contrary to the low temperature case. In June and July, more snowmelt in Pamir, karako-
ram, and western Himalayas coincides with high temperature, but in Tibetan, central and eastern Himalayas,
less snowmelt is resulted from high temperature.
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Figure 3.47: Snowmelt anomalies in mm/month, constructed from composites of low total-precipitation (below-10% quantiles)

Figure 3.48: Snowmelt anomalies in mm/month, constructed from composites of high total-precipitation (above-90% quantiles)
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Figure 3.49 gives information about the spatial and seasonal distribution of SWE anomalies under the
low temperature conditions. Positive SWE anomalies signifies more SWE than 40-year average occurs with
low temperatures concurrently, whereas negative SWE anomalies indicates less SWE than average presented
with low temperatures. From July to September, no large-scale, noticeable SWE anomalies presented. Slightly
positive SWE anomalies show in Pamir and Karakoram in July and August. However, from November to De-
cember, positive SWE anomalies coincides with low temperature in Tien Shan, Pamir, and Karakoram. Yet in
December, negative SWE anomalies take place in Karakoram and the Himalayas. Subsequently, negative SWE
anomalies in January predominates in Tien Shan, Pamir, Hindu Kush, and the Himalayas. Then, from Febru-
ary to June, positive anomalies gradually replace previous negativity from low-elevation to high-altitudes. In
June, positive anomalies dominate given the extreme low temperature.

On the other hand, Figure 3.50 shows the SWE anomalies under the high temperature conditions. In
general, high temperature leads to the opposite patterns of SWE anomalies distribution: high temperature
mostly coincides with less SWE presence in Tien Shan, Pamir, Karakoram, Hindu Kush and the Himalayas.
However, one pronounced singularity is that in June SWE also showes above-normal values under high tem-
perature. This may suggest that temperature is not the decisive factor for SWE in June. In summary, extreme
temperature is mostly negatively correlated with SWE, which aligns with findings in the correlation analysis.
However, spatial and seasonal variations also exist.

Figure 3.49: SWE anomalies in mm, constructed from composites of low temperatures (below-10% quantiles)
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Figure 3.50: SWE anomalies in mm, constructed from composites of high temperatures (above-90% quantiles)

With respect to the relationship between extreme precipitation and SWE, results are shown in Figure 3.51
and Figure 3.52. With extreme low precipitation, the high mountain regions are mostly dominated by neg-
ative SWE anomalies from November to March. Yet positive anomalies emerge intermittently, for example,
in Pamir and Tien Shan in December and March, and in the Himalayas in January. In contrast, from April
to June, positivity prevails, indicating that low precipitation concurs with more SWE. When total precipita-
tion is high, positive SWE anomalies present in most of the high elevation areas in the snow accumulation
phase from November to March. However, in the snow depletion phase from April onwards, no consistent
patterns are identified: in April and June negativity dominates, whereas in May and July positive SWE anoma-
lies exhibit. In brief, SWE positively correlates with extreme precipitation during snow accumulation phase,
yet negatively correlates with extreme precipitation during snow depletion phase in the high mountainous
regions.
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Figure 3.51: SWE anomalies in mm, constructed from composites of low total-precipitation (below-10% quantiles)

Figure 3.52: SWE anomalies in mm, constructed from composites of high total-precipitation (above-90% quantiles)

51



4
Dicussion

4.1. Spatiotemporal changes in snow regimes
In general, large-scale distribution and variations of snowpack are controlled by temperature, which are in
turn related to elevation and latitude, as well as exposure to precipitation, radiation, and regional climate
system. (Roth and Nolin 2017). Significant amount of snow water (> 1m) is stored in the high mountainous
regions: Pamir, Karakoram, Hindu-Kush, the Himalayas, Tanggula Shan and Nyainqentanglha, etc., which
aligned with Liu et al. 2021, Smith and Bookhagen 2018a. In general, decreasing trend (> 10 mm/year) of SWE
dominated in the HMA, especially in Hindu Kush, Karakoram, Tibetan, and Hengduan Shan. This reduction
in SWE coincides with rising temperatures in HMA that results in earlier snowmelt and shifting of precipita-
tion from snowfall to rainfall in the HMA (Xu et al. 2016). However, strong increasing trends (5̃ mm/year) in
SWE are identified in the northern-west regions in winter, i.e., Tien Shan and Pamir, which could be possibly
attributed to the intensifying strength of the WWD and increasing precipitation that are capable to counteract
the influence of increasing temperature (Cannon et al. 2014). Increasing SWE in Tarim, Eastern Asian, Kunlun
Shan, and eastern Tibetan mountains in winter also concurs with analysis from Smith and Bookhagen 2018a.

SWE is non-linearly distributed across elevation as a result of topography and climatic setting in each
catchment. Overall, SWE reduction is found across elevations in all basins, but at low-mid elevation where
snowpack is shoallow, the decreasing trend is more pronounced and accentuated; snowpack in colder, high-
elevation zones could be partially shielded from regional climate changes (Smith and Bookhagen 2018a). The
reduction in SWE at low-mid elevation could be attributed to the decreasing of snowfall, which in turn leads
to less snowmelt (Figure 3.22, Figure 3.12). This is substantiated by Figure 3.14 and Figure 3.22 that snowmelt
at mid-altitudes in Pamir, the Himalayas, Tien Shan, Tanggula Shan and Nyainqentanglha is reduced. As
seasonal snow at mid-elevation would be completely melted out and contributed most to regional snowmelt,
its decrease in magnitude would lead to less snowmelt water.

On the other hand, as copious, permanent snowpack resided in the high elevation regions, though snow-
fall is also declining, snowmelt would not be limited by its magnitude. Hence more snowmelt is yielded as a
result of changing climate (Figure 3.12, Figure 3.22, Figure 3.23). This is in line with hydrological simulations
indicating that decline in snowpack due to warming would induce decrease in snowmelt, whereas snowpack
and snowmelt could be boosted in high elevation regions with increased precipitation (Adam et al. 2009).
Furthermore, with continued warming, snowpack and snowmelt in high elevation is also projected to decline
as increase in precipitation could not further offset the effect from increasing temperature (Stewart 2009).

Average snow water storage is identified to have reduced in all catchments: though inter-annual increas-
ing trend presented in some regions in certain months, these changes are outweighed by the net-loss of SWE.
Specially, average SWE in Brahmaputra, Indus, Irrawaddy, Salween and Yellow River, are recognized to have
shrunk significantly, with a rate of about -0.4 mm/year from 1980 to 2020 (Figure 3.31). As a result, total
snowmelt is diminished in all basins except Tibetan (Figure 3.19): though rising snowmelt from high eleva-
tion is found, it could not compensate the drastic decline in snowmelt in low-mid elevations (Figure 3.23).
This is supported by Khanal et al. 2021, stating that warming was broadly associated with earlier and faster
snowmelt, yet due to precipitation shifting from snowfall to rainfall, eventually snowmelt would be reduced.
As melt water is essential in household availability, hydropower generation and agricultural infrastructure
(Smith and Bookhagen 2018a), the importance of understanding the interplay between snowmelt and re-
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gional water budgets is accentuated and here highly recommended in future research, with special focus
on Brahmaputra, Indus, Irrawaddy, Mekong, Salween, Yangtze and Yellow river where significant decline in
annual total snowmelt distinguishes.

4.2. Impacts of hydroclimatic factors
Both temperature and precipitation had influence on snow regimes, but their effects showed considerable
spatiotemporal difference and varies with geographic location, latitude, and elevation.

In general, temperature is negatively correlated with SWE across the study area, but in winter this corre-
lation is reversed to be slight positive in Tien Shan, Pamir, and Karakoram (Figure 3.39). This coincides with
results obtained by Stewart 2009 and Adam et al. 2009 that warmer temperature results in decline in snow-
packs but at high elevation snowpack is sheltered from reduction as temperature is well below the freezing
point in winter. Moreover, snowpack could have expanded from intensified precipitation (Moore et al. 2007).
This is supported by positive correlation between precipitation and SWE in high mountains in winter season
(Figure 3.40). However, in later spring and summer season, this positivity is replaced by negativity, indicat-
ing that even increase in precipitation could not overcome the effects of seasonal change in temperature.
Also noteworthy is that in low-mid elevation regions, precipitation is positively correlated with SWE, which is
counter-intuitive and further exploration and verification of this result should be conducted.

Temperature is mostly negatively correlated with snowfall in low-mid altitudes, but not in the high moun-
tains. In warmer environment snowfall is less as precipitation is shifted from snow to rainfall (Räisänen 2016).
With respect to the correlation between snowfall and precipitation, it is consistently positively correlated
(3.36). In terms of temperature and snowmelt, negative correlation dominates in low-mid elevation regions,
whereas positivity presentes in high mountains. This aligned with study from Adam et al. 2009. On the other
hand, more precipitation concurs with less snowmelt in high elevations in cold seasons, and this negativity
is replaced in warmer season. In contrast, increasing in precipitation results in more snowmelt in low-mid
elevations regardless of seasonality (Figure 3.38).

The influence of extreme temperature and precipitation on snow is most prominent in high mountain
regions. In general, relationship between extreme climates corresponded with results from correlation anal-
ysis, but spatial and seasonal variations exists. This analysis only provided primary insights into the effect of
extreme climate on snow, and to elucidate the interplay in between, further research should be conducted.

4.3. Limitation and prospect
It is claimed that ERA5-Land is capable of accurately capturing the annual variability in regional analyses (Or-
solini et al. 2019). However, ERA5-Land is substantiated to overestimate SWE, and the excessively high values
are mostly concentrated in the mountainous regions where deep snowpacks resided, whereas estimates in
the non-mountainous regions aligns better the reference data (Kouki et al. 2023). This discrepancy in SWE in
high elevation areas arises from the scarcity of calibration data, terrain complexity, and poor measurements
of snowfall and SWE in current stations, and undermines the parameterization and calibration of the climate
model used in reanalysis (Smith and Bookhagen 2018a). For instance, according to Sorg et al. 2012, only three
stations exist in Tien Shan at elevation above 3 km, and their measurements fails to correlate well with re-
analysis data. This could have led to undistinguished changes in SWE and snowmelt, as shown in Figure 3.32
and Figure 3.21 and hence jeopardize the integrity of further trend analysis.

In this study, as only ERA5-Land is used, concerns of its accuracy and reliability arises. How well those
spatio-temporal variations can be distinguished and how reliable those conclusions are, remained unknown.
The complexity in terrain and uncertainty raised by coarse resolution in ERA5-Land could be reduced by
incorporating and averaging multiple products to improve the efficiency (Mortimer et al. 2020). It is therefore
suggested to include uncertainty analysis and employ more data as well as observations to enhance accuracy
and trustability in future research.
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5
Conclusion

This thesis concluded in this chapter by answering the research questions addressed in Chapter 1.

1. How are SWE, snowfall and snowmelt distributed spatially across the Himalayan basins?

Intense snow water stores in the high mountainous regions: Tien Shan, Pamir, Karakoram, Hindu-Kush,
the Himalayas, Kunlun Shan, Tanggula Shan and Nyainqentanglha. Persistent snowpack is identified
in Pamir, Karakoram, and along the Himalayas, with SWE greater than 1 m. Shallow snowpack also
presented in other regions, albeit to a lesser extent. Snowfall and snowmelt also accentuate in the hign
mountains in winter and spring, respectively.

2. How are SWE, snowfall and snowmelt distributed across elevation?

Abundant SWE (> 1 m) accumulates at high elevation, where persistent snow water resided. Seasonal
snowpack presents in low-mid elevation and experiencing accumulation and melting cycles. Snowfall
at mid-elevation is found to be the greatest share (max. 6% at 3.5 km) of basin total snowfall. Snowmelt
from mid-elevation contributes most (max. 12% at 3.5 km) to the annual total snowmelt, whereas at
high elevation its magnitude was reduced.

3. What are the temporal variability in snow regimes from 1980 to 2020?

Snowfall is generally declining across all elevations (max. 1.5 mm/month/year), yet intermittent in-
creasing trend also presents in winter (max. 0.5 mm/month/year). On the other hand, snowmelt from
high elevation is identified to have increased over the study period for all basins (max. 1.5 mm/month/year),
yet more intense decline (> 3 mm/month/year) prevails in low-mid elevation as less snowfall resides.
These collectively result in changes in SWE: SWE at high elevation is largely unchanged relative to its
copious amount. More pronounced decrease (> 5 mm/year) in SWE is found in low-mid elevations.

4. How do temperature and total precipitation contribute to changes in snow regimes?

Both temperature and precipitation are vital to snow regimes. Overall, higher temperature lead to re-
duction in SWE, yet at high elevation snowpack shrinking is less noticeable (< 1%). Precipitation in high
mountains could offset the warmer effect on SWE in winter. On the other hand, warmer temperature
would induce more snowmelt in high mountains, but indirectly lead to less snowmelt in low-mid ele-
vations as snowfall in these elevations are diminished. On the contrary, heavy precipitation concurred
with more overall snowfall and more snowmelt in lowlands, yet less snowmelt in high elevation.
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Figure A.1: Probability and cumulative distribution of elevation for each catchment in the study area
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