
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Deep Reinforcement
Learning for Aircraft
Landing
A study on the use of Deep Reinforcement Learning
techniques for automatic control of aircraft landing

MSc Thesis
T. H. A. van de Laar

Deep Reinforcement
Learning for Aircraft

Landing
A study on the use of Deep Reinforcement

Learning techniques for automatic control of
aircraft landing

by

T. H. A. van de Laar
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday July 7, 2023 at 09:30 AM.

Student number: 4558871
Project duration: June, 2022 – June, 2023
Thesis committee: Dr. ir. E. van Kampen, TU Delft, supervisor

Dr. M. D. Pavel, TU Delft, chair
Dr. M. Lourenço Baptista, TU Delft

Cover: ”An airplane flying in the sky” by Jorgen Hendriksen, Un-
splash license, https://unsplash.com/pt-br/fotografias/
dP4tgu5GGYw

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://unsplash.com/pt-br/fotografias/dP4tgu5GGYw
https://unsplash.com/pt-br/fotografias/dP4tgu5GGYw
http://repository.tudelft.nl/

Preface

The field of Reinforcement Learning is undoubtedly a fascinating one, which has seen tremendous
increased interest in the recent years, and hence by default has also seen incredible advancements.
Along the other Machine Learning paradigms, RL is heading towards solving problems with ever in-
creasing complexity in numerous fields, such as engineering, robotics, medicine and economy. This
research uses the latest technologies in the field of artificial intelligence and reinforcement learning to
contribute to autonomous aviation by making aircraft more safe and fault-tolerant. In an effort to aid
the growth of the fields of reinforcement learning and aviation, the code utilised in this thesis is made
publicly available such to facilitate the repeatability of the results herein presented. 1

This thesis marks the end of my studies at the Delft University of Technology, a place that sparkedmy
curiosity and opened fascinating doors I thought would never be possible. It has been an extraordinary
experience, and I would like to express my gratitude to those without whom this journey would not have
been possible. First, I would like to thank Dr. ir. Erik-Jan van Kampen for his support and guidance
throughout this research, and for introducing and giving me the opportunity to work on this fascinating
field that is reinforcement learning. I would like to thank my friends which whom I have shared many
highs and lows and spent long hours working together. Tank you for your support, all the discussions
we have had and the beers we have shared. I would also like to thank my family, both in the Netherlands
and in Brazil for all the support you have given me. Finally, I would like to express my utmost gratitude
to my parents for all the effort you have made, for the time you have spent, the advices you have given
and most of all for the opportunities you have offered me, without you more than anyone this would not
have been possible. Muito obrigado!

T. H. A. van de Laar
Delft, June 2023

1https://github.com/tvandelaar/RLALS-SAC

i

Contents

Preface i

Nomenclature vii

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Objectives & Research Questions . 3
1.3 Outline . 3

2 Article 5

3 Literature Review 29
3.1 Automatic Landing Systems . 29

3.1.1 Aircraft Landing Basics . 29
3.1.2 Challenges of Automatic Landing Systems . 33
3.1.3 Related Work . 34
3.1.4 Conclusions . 38

3.2 Reinforcement Learning . 39
3.2.1 Reinforcement Learning Basics . 39
3.2.2 Reinforcement Learning Approaches . 45
3.2.3 Approximate Dynamic Programming - ADP . 57
3.2.4 Deep Reinforcement Learning - DRL . 60
3.2.5 Proposed Framework . 68
3.2.6 Conclusions . 68

4 Preliminary Analysis 71
4.1 Testing objective & Structure . 71

4.1.1 Problem introduction . 72
4.1.2 Tests set-up . 72

4.2 Results & Discussion . 73
4.2.1 Test 1 - Robustness to the unknown . 74
4.2.2 Test 2 - Robustness to uncertainties . 75
4.2.3 Discussion . 77

4.3 Training Consistency Test & Discussion . 77
4.4 Conclusions . 80

5 Additional Results 82
5.1 Effect of CAPS . 82
5.2 ILS Bias . 83
5.3 Alternative Controllers . 84

5.3.1 Roll Attitude - Trained with Active Pitch control 84
5.3.2 Full Attitude Controller . 85

6 Verification & Validation 88
6.1 Verification . 88

6.1.1 Simulation Model . 88
6.1.2 Reinforcement Learning Algorithm . 90

6.2 Validation . 90
6.2.1 Simulation Model . 90
6.2.2 Reinforcement Learning Algorithm . 90
6.2.3 Limitations . 91

ii

Contents iii

7 Conclusion & Recommendations 93
7.1 Conclusions . 93
7.2 Recommentations . 97

References 98

A DRL algorithms 103

B Testing results 106
B.1 Trained without wind . 106
B.2 Trained with wind . 107

List of Figures

3.1 Aircraft Landing phases, retrieved from [10] . 30
3.2 ILS Working principle, retrieved from [50]. 31
3.3 Graphical representation of ICAO’s landing Categories, retrieved from [52] 32
3.4 Glideslope descent and Flare paths, from [66] . 35
3.5 Glideslope and Flare paths of the BPN controller, retrieved from [34] 36
3.6 Ven-diagram representing the fields of Science where there is RL contribution, retrieved

from [26] . 40
3.7 Reinforcement Learning Diagram, retrieved from [63] . 40
3.8 Feedback-loop, analogous to the control problem, retrieved from [16] 41
3.9 Basic Reinforcement Learning taxonomy . 45
3.10 Reinforcement Learning spectrum, retrieved from [63] 46
3.11 Comparison between DHP and PID, represented by solid and dashed line respectively,

retrieved from [19] . 52
3.12 Altitude tracking response with rudder stuck at δr = −15◦ at s = 10s. Initially, only robust

control is utilised, after t = 60s adaptive control is utilised. Image retrieved from [17] . . 53
3.13 Altitude tracking response with aileron efficiency reduced by 90% at t = 30s.Image re-

trieved from [68] . 54
3.14 Artificial Neuron (perceptron) structure, retrieved from [76] 55
3.15 Fully connected Artificial Neural Network structure with three hidden layers, retrieved

from [54] . 56
3.16 Diagram of the actor-critic architecture, retrieved from [63] 56
3.17 Taxonomy of Approaches considered in this project . 57
3.18 Taxonomy of Adaptive Critic Designs of ADP . 58
3.19 Taxonomy of DRL algorithms based on the actor-critic agent structure 61
3.20 DDPG algorithm structured in a block diagram, retrieved from [24] 62
3.21 How parallel actors are trained together and combined into a single global network, re-

trieved from [56] . 65
3.22 How parallel actors are combined into a single global network in A3C and A2C, retrieved

from [73] . 66

4.1 Snapshots of the spacecraft landing in the lunar lander problem, retrieved from [22] . . 72
4.2 DDPG, TD3, SAC, A2C, PPO learning curves . 74
4.3 TD3, SAC, PPO learning curves . 75
4.4 4 TD3 learning curves . 78
4.5 4 SAC learning curves . 78

5.1 Elevator deflection command of controllers with different CAPS with reference signal
θref = −1.7[deg] . 82

5.2 Pitch attitude control performance of the controllers with different CAPS. Blue = 40, Or-
ange = 400, Green = 40000 . 83

5.3 Modified ALS with full attitude controller . 86
5.4 Full Attitude input commands and aircraft outputs for the landing task 87

6.1 Aircraft responses to no inputs between the MATLAB and the converted Python model . 89
6.2 Elevator and aileron input commands . 89
6.3 Aircraft responses to elevator and aileron commands . 90

A.1 DDPG algorithm, retrieved from [40] . 103
A.2 TD algorithm, retrieved from [21] . 104

iv

List of Figures v

A.3 SAC algorithm, retrieved from [25] . 104
A.4 TRPO algorithm, retrieved from [58] . 105
A.5 PPO algorithm, retrieved from [57] . 105

List of Tables

3.1 Acceptable range of variables at touchdown, adapted from [50] 33
3.2 Overview of Control Methods and their characteristics 37
3.3 Summary of ADP ACD methods and its characteristics 59
3.4 (Deep) Reinforcement Learning Actor-Critic algorithms 67

4.1 Actor-Critic DRL algorithms training performance in the Lunar Lander environment . . . 74
4.2 Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar Lander problem

trained with no wind and evaluated in nominal condition and with wind, wpower = 15 . . 75
4.3 Actor-Critic DRL algorithms training performance in the windy Lunar Lander environment

(wpower = 10) . 76
4.4 Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar Lander problem

trained with wpower = 10 and evaluated with wind, wpower = 10, wpower = 15, and
wpower = 20 . 76

4.5 TD3 and SAC algorithms performance in 1000 episodes of the Lunar Lander problem
trained with wpower = 10 and evaluated with wind, wpower = 10, wpower = 15, and
wpower = 20 . 79

5.1 Landing performance in the Biased GS failure case . 83
5.2 Landing performance in the Biased LOC failure case . 84
5.3 Landing performance in the nominal case . 85
5.4 Landing performance in the nominal case . 85

B.1 Actor-Critic DRL algorithms average performance in 1000 episodes of the standard Lunar
Lander problem and with wind introduced with wpower = 15 106

B.2 Wind trained Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar
Lander problem with wind power wpower = 10 . 107

vi

Nomenclature

Abbreviations

Abbreviation Definition

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
ABS Adaptive Back-stepping
ACKTR Actor-Critic with Kronicker-Factored Trust Region
ADC Adaptive Critic Design
AD Action-Dependent
ADDHP Action-Dependent Dual Heuristic Programming.
ADGDHP Action-Dependent Global Dual Heuristic Program-

ming
ADHDP Action-Dependent Heuristic Dynamic Programming
ADP Approximate Dynamic Programming
AFCS Aircraft Flight COntrol System
AGL Above Ground Level
AI Artificial Intelligence
ANN Artificial Neural Network
ALS Automatic Landing System
BLEU Blind Landing Experimental Unit
BPN Back-propagation network
CPN Counter-Progpagtion Network
D4PG Distributed Distributional Deep Deterministic Policy

Gradient
DDPG Deep Deterministic Policy Gradient
DH Decision Height
DHP Dual Heuristic Programming
DME Distance Measuring Equipment
DNN Deep Neural Network
DP Dynamic Programming
DPG Deterministic Policy Gradient
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EASA European union Aviation Safety Agency
FAA Federal Aviation Administration
GDHP Global Dual Heuristic Programming
GPI Generalised Policy Iteration
GPS Global Positioning System
GNC Guidance, Navigation and Control
GNSS Global Navigation Satellite System
G/S Glide-Slope
HARV High Alpha Research Vehicle
HDP Heuristic Dynamic Programming
iADP Incremental Approximate Dynamic Programming
IBPN Improved Back-Propagation Network
ICAO International Civil Aviation Organisation
IDHP Incremental Dual Heuristic Programming
IGDHP Incremental Global Dual Heuristic Programming

vii

List of Tables viii

Abbreviation Definition

IHDP Incremental Heuristic Dynamic Programming
ILS Instrument Landing System
JAA Joint Aviation Authorities
LOC Localiser
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MC Monte-Carlo
MDP Markov Decision Process
MLFN Multilayer Functional-Link Network
ML Machine Learning
NDI Nonlinear Dynamic Inversion
NN Neural Network
PI Policy Iteration
PID Proportional Integral Derivative
PPO Proximal Policy Optimisation
RA Radio Altimeter
RBFN Radial Basis Functional Network
RL Reiforcement Learning
RVR Runway Visual Range
SAC Soft Actor-Critic
SMC Sliding Mode Control
TD Temporal Difference
TD3 Twin Delayed Deep Deterministic Policy Gradient
TRPO Trust Region Policy Optimisation
UAV Unmanned Aerial Vehicle
VI Value Iteration

1
Introduction

1.1. Background & Motivation
According to [8], the final approach and landing phases of flight approximately represent 4% of the
general flight time of an aircraft, however, it accounted for 54% of aircraft fatal accidents that happened
between 2011 and 2020. Another study points out that in-flight Loss of Control (LOC-I) and Hard
Landing accounted for 80% of the total fatalities in aviation in 2019 [31]. In view of these numbers, it is
no surprise that approach and landing represent areas of concern in current aviation and it is critical that
they are addressed and improvements are searched for. The thesis herein contained investigates a
method to remedy accidents caused by the influence of unpredicted disturbances and actuator failures
during landing by studying the implementation of an Automatic Landing System (ALS). In the search for
making the landing procedure more safe and secure, it is proposed to utilise Reinforcement Learning
(RL) based controllers to explore novel, more robust and more adaptive control methods.

Automatic Landing Systems were initially designed as a tool that allowed landings in poor weather
conditions, where visibility was the major imposing factor preventing the pilots to land the aircraft. Blind
Landings were a hot topic in the 1940s and 1950s, having simultaneously, organisations in England,
France and the USA developing systems to perform such manoeuvres. In England, the developments
took place through the Blind Landing Experimental Unit (BLEU) which started its operations in 1945 and
developed early versions of ALSs for both civil and military operations [14]. The main motivation behind
the undertaking of such a project was the frequent occurrences of low visibility weather conditions in
the North-West region of Europe, especially in the winter months. Nowadays, further development
on ALS is a promising candidate for solving or minimising, the issues encountered with unexpected
disturbances and in-flight loss of control during the most critical phases of flight.

Since the development of the early automatic landing systems in the 1940s and 50s, such systems
have been further enhanced and nowadays are present in numerous aircraft, for example, the Lockheed
L1011s and the Boeing B747s, performing landings routinely [33]. The current use of ALS however,
is restricted to relatively calm weather conditions, the main reason for that is the fact that the vast
majority of the planes rely upon classical control methods, e.i. PID controllers, or modification of it.
As it is characteristic of such systems, they strongly (i) rely on mathematical models, (ii) often require
lengthy tuning and are (iii) suited for linear systems, hence have limited performance on complex and
variable systems, such as those encountered during the landing procedure. However, new control
methods have been developed in the recent year in the hope of making flight control more adaptable
and robust. Such methods include the use of Nonlinear Dynamic Inversion (NDI) [12] used in the F-35
aircraft, (Adaptive) Backstepping (ABS) [24], Sliding Mode Control (SMC) [55], Optimal control such as
Hinf and H2 [60], to mention a few.

The methods previously mentioned require knowledge of the dynamics of the aircraft and its sur-
roundings, which becomes a problem when the dynamics change, for example, due to internal and/or
external disturbances. This thesis proposes to investigate the feasibility of a control system based
on Reinforcement Learning in an attempt to resolve/minimise the performance gaps encountered in
automatic landing. In the realm of control engineering, RL is a framework that allows a controller to
shape itself based on its interaction with the environment. These adaptations occur based on posi-

1

1.1. Background & Motivation 2

tive or negative feedback the controller receives based on its performance. Hence, learning occurs
through a sophisticated process of trial and error, allowing the knowledge of the system dynamics to
be completely unknown to the controller.

Historically, Reinforcement Learning is the conjunction of two areas of study that for long seemed to
have no connection [63]. RL has bio-inspired status thanks to the first area of the two, which concerns
learning by trial-and-error rooted to the study of animal psychology, also linked to the ”law-of-effect”
of Edward Thorndike [69]. Its learning process also sets Reinforcement Learning as an additional
paradigm of Machine Learning (ML), within Artificial Intelligence (AI), alongside Supervised and Un-
supervised Learning. The other area of study is more directly related to the topic in this thesis and
has its roots in finding solutions for the optimal control problem through the use of value functions and
Dynamic Programming (DP). Most of the work on RL is focused on, but not limited to, problems that
can be described by the Markovian Decision Process (MDP) formalism [74]; A decision-making model
where sequential decisions are made based on previous decisions and current state. According to [11],
there are two main advantages of MDPs, and hence RL, that sets them apart: (i) their generality that
allows for handling nonlinear and stochastic systems, and (ii) model-independence, meaning that they
do not necessarily need a model of the environment’s dynamics or even an expression for the reward
function.

Additionally, RL-based controllers may learn how to best perform a task whilst performing it, when
applied in such a manner RL is said to be online and allows for highly adaptive control. On the other
hand, reinforcement learning can use the prevalent and effective technique called Artificial Neural Net-
works (ANNs), a powerful approximation tool that employs a flexible structure for generalisation. Hence,
RL and ANNs can be used together to achieve robustness against nonlinear and highly dynamic sys-
tems, this requires adequate prior, or offline, training of the agent. These theoretical characteristics of
reinforcement learning make it a promising candidate for finding solutions for the challenges currently
faced in aerospace.

Moreover, RL features a wide variety of fields, from engineering to economics, and from AI to neu-
roscience, and it has been given considerable attention in recent years, resulting in rapid progress. In
the field of Computer Science, for example, RL has accomplished incredible feats with DeepMind’s Al-
phaGo [46] defeating a professional GO player, and Deep Q-Networks (DQN) [48] surpassing human
performance in several Atari games. In the field of engineering reinforcement learning is extensively
applied in the research for the development of autonomous vehicles [20] [78]. In the field of aerospace
engineering, even though RL applications to aerospace guidance, navigation and control (GNC) are
a novelty, it has been successfully applied to a multitude of Flight Control applications. For example,
[62] implemented an RL technique called Incremental Global Dual Heuristic Programming (IGDHP),
based on Approximate Dynamic Programming (ADP) to generate a self-learning adaptive flight con-
troller. Dual Heuristic Programming (DHP) has been applied to a 6-DoF business jet flight controller
by [19]. RL algorithms such as Deep Deterministic Policy Gradient (DDPG) and Proximity Policy Opti-
misation (PPO) techniques have been applied to flight control of Unmanned Aerial Vehicles (UAVs) in
[70] and [9], respectively. Lastly, DDPG has also been applied to fixed-wing aircraft automatic landing
in [67], where it shows that DDPG may perform better at landing than other control techniques based
on supervised learning.

To conclude, reinforcement learning is a growing field that has promising applications in aerospace.
Even though it is a novelty within aerospace GNC, it is a fast-growing field and it has been successfully
applied in multiple systems. RL is not a perfect solution and it contains limitations, however, there are
numerous benefits to its application in Automatic Landing Systems (ALS).

1.2. Objectives & Research Questions 3

1.2. Objectives & Research Questions
The research herein proposed aims to remedy the LOC-I problems during the final stages of flight by
means of advancing the field of autonomous systems, this is proposed to be accomplished through a
study on the development and implementation of Reinforcement Learning techniques applied to the
control of Automatic Landing Systems. Hence the goal of the thesis is framed as:

“The main research goal is to contribute to the development of Automatic Landing Systems
that are capable of performing under unforeseen circumstances with enhanced robustness
and control accuracy, to increase repeatability and safety by means of exploring the use of
different Reinforcement Learning frameworks applied to control techniques”

From the research goal, the main research questions and sub-questions are derived as:
The main research question is defined as:

’How can Reinforcement Learning techniques be applied to Automatic Landing Sys-
tems to improve robustness and control accuracy?’

The sub-questions are defined such that they aid in answering the main question and give direction to
the research performed.

• RQ1: What are the state-of-the-art methods that are currently employed/proposed in Automatic
Landing Systems and what are their problems/challenges?

– RQ1.1 What are the control methods utilised?
– RQ1.2 Under what circumstances do these systems become faulty/present issues?
– RQ1.3 What are the requirements for such systems? (airfield, weather conditions, onboard
equipment...)

• RQ2: What characteristics of Reinforcement Learning are suitable to mitigating ALS’s issues
(from RQ1)?

– RQ2.1 What are the current state-of-the-art RL algorithms?
– RQ2.2 Which RL framework is suitable for resolving ALSs issues?
– RQ2.3 How well does the proposed algorithm perform when applied to simple flight control
systems?

• RQ3: How can the proposed RL framework be implemented in an ALS control design to increase
robustness and control accuracy?

– RQ3.1 What are the characteristics of the landing environment and how can it be modelled?
– RQ3.2 What are the architectural characteristics of the RL controller that allow optimal im-
plementation?

• RQ4: How does the proposed Automatic Landing System method perform compared to current
methods?

– RQ4.1 How does the simulated landing performance of the proposed method compare to
those of classic methods? (with respect to relevant touchdown variables)

– RQ4.2 How much training is required for the proposed algorithm to achieve the landing
conditions requirements? And how consistent are the results?

– RQ4.3 How robust is the proposed system to environment changes?

1.3. Outline
This document is divided into 7 parts, which not only have the objective of informing the reader about
the results of the performed research but also guiding them through the methodologies employed and
the rationale behind the choices taken in the development process. Chapter 2 presents the final prod-
uct of this research, a scientific article written to showcase its main outcomes and final results. Chapter
3 contains a literature review in which the topic of (automatic) landing systems by describing landing
phases, instruments and regulations, previously developed automatic landing systems and the chal-
lenges that they currently face. The information presented in the chapter is gathered in the last section

1.3. Outline 4

in order to answer research question Q1. The topic of reinforcement learning is also described in
Chapter 3 where the basic elements of the RL problem, common approaches, design choices, as well
as examples of how RL has been applied in Flight control and the current challenges of the field, are
presented. Additionally, it dives into more specific details of reinforcement learning through an analy-
sis of possible algorithms, partially answering research question Q2. Chapter 4 presents a series of
tests in a well-known bench-marking environment, namely Gym’s Lunar Lander in order to evaluate
the performance of different RL algorithms. Once more, the information presented in the chapter is
gathered in the last section in order to completely answer research question Q2. Additional results that
were not included in the scientific article are presented in chapter 5, which contains a brief study on
the effects of the use of action smoothening parameters, additional failure cases and the performance
of alternative controllers. Chapter 6 contains the processes used for verification and validation of both,
the environment model and algorithm itself. Finally, Chapter 7 gives a brief summary of the information
presented throughout the report answering the research questions and presents recommendations for
future research on the topic.

2
Article

5

Soft-Actor Critic Deep Reinforcement Learning for Automatic
Control of Aircraft Landing

T. H. A. van de Laar∗

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Aircraft accidents mainly occur in the final phases of flight and the majority of fatalities in
recent years can be rooted to in-flight loss of control (LOC-I) and hard landings. Therefore,
the need for better fault-tolerant control systems for these phases of flight is evident. This
research explores the use of reinforcement learning techniques for automatic control of aircraft
landing. The proposed cascaded Automatic Landing System (ALS) structure consists of a
combination of PID controllers on the outer loop and Deep Reinforcement Learning controllers
in the inner loop for more robust guidance of the control surfaces. The state-of-the-art offline
trained model-free Soft Actor-Critic algorithm is used to train pitch and roll attitude controllers.
Simulation tests are made under sensor and actuator failures to evaluate the performance of
the proposed ALS regarding robustness and fault-tolerance compared to classical methods.

I. Introduction
The final approach and landing phases of flight approximately represent 4% of the general flight time of an aircraft,

however, it accounted for 54% of the aircraft fatal accidents that happened between 2011 and 2020 [1]. Another study
points out that in-flight Loss of Control (LOC-I) and Hard Landing accounted for 80% of the total fatalities in aviation
in 2019 [2]. Hence, the need for better fault-tolerant control systems in aviation is evident, especially during the final
phases of flight.

Automatic Landing Systems (ALS) were first developed in the 1940s and 1950s in order to aid pilots to land in the
poor weather conditions of northwestern Europe, which often did not allow complete visibility of the landing path. In
England the Blind Landing Experimental Unit (BLEU) started its operations in 1945 and developed early versions of
ALSs for both civil and military operations [3]. Nowadays all large commercial jets are equipped with ALS, also known
as autoland, allowing landings to happen in conditions where it would be dangerous or completely impossible otherwise.
The use current use of ALS however, is restricted to a relatively limited flight envelope, the main reason for that is the
fact that the vast majority of the planes rely upon classical control methods, e.i. PID controllers, or modification of it.

Current flight control systems, such as those in ALS, rely on classical control theory, which is widely used in the
field of control due to its straightforward implementation and reliability. To operate in non-linear systems such methods
require the use of gain scheduling to switch between different linear controllers that have been optimized for each
point in the flight envelope. The use of classical control theory methods has two drawbacks, the first being that gain
scheduling can be a tedious and gruelling process, and more importantly, the second is that these controllers are linear
and strongly rely on mathematical models. The latter implies that the generated controller is only accurate if the plant
dynamics model is accurate, which poses great challenges for complex coupled dynamics systems.

Since the 1950s new control methods have been developed in the hope of making flight control more adaptive and
robust. Nonlinear Dynamic Inversion (NDI), for instance, has been used in the F-35 aircraft to enhance performance
qualities [4] [5]. An (Adaptive) Backstepping (ABS) controller was designed using a non-linear aircraft model to hold
a constant angle of attack during the aircraft’s final descent [6]. A Neural-aided Sliding Mode Control (SMC) ALS
method was proposed and tested under actuator failure and severe wind conditions [7]. Moreover, a wide range of ALS
methods using optimal control have been proposed, such as [8] with a 𝐻2 based controller that is fault-tolerant and takes
into account wind disturbances, [9] with robust 𝐻∞ based controllers, and notable the works of [10], where 𝐻2 control
is used to determine the optimal trajectory, taking into account the predefined and the actual trajectories of the aircraft,
subsequently, 𝐻∞ is used to minimise the effects of disturbances in the performance output.

However, the methods previously mentioned still require, at one point or another, the knowledge of the dynamics of
the aircraft and its surroundings, which becomes a problem when the dynamics change, for example, due to internal
and/or external disturbances. Therefore, better adaptive and robust control systems must be developed in order to solve

∗M.Sc. Student, Faculty of Aerospace Engineering, Department of Control & Operations, Section Control & Simulation, Delft University
ofTechnology.

1

the current lack of fault tolerance and robustness to constantly changing plant dynamics encountered in aviation and
other fields.

Reinforcement Learning (RL) is a paradigm of Machine Learning (ML) that allows computers to learn from their
own interaction with the environment, this concept applied to control engineering results in a framework that allows
a controller to shape itself based on its interaction with the environment, regardless of its own concept of it. These
adaptations occur based on positive or negative feedback the controller receives from its performance. Hence, learning
occurs through a sophisticated process of trial and error, allowing the knowledge of the system dynamics to be completely
unknown to the controller.

Recent advancements and the increase in popularity of Deep Learning (DL) and Artificial Neural Networks (ANNs)
have made their way to RL fomenting the field and creating a new branch referred to as Deep Reinforcement Learning
(DRL). The use of ANNs allows RL to efficiently transition to continuous state and action problems, which was not
easily done previously due to the tabular nature of early RL methods. In 2015 DeepMind presented a Deep Q-Network
(DQN) algorithm that was capable of achieving human-level performance in a number of classic Atari games [11].
In 2016 the company followed up its previous DRL achievements with AlphaGo, a DRL-trained computer program
that was capable of defeating a professional human Go-player [12]. Many of the earliest RL methods employed an
Actor-Critic agent structure, and to this day they still remain the state-of-the-art in RL control techniques due to their
intuitive task division where learning is solely reserved for the critic and controlling for the actor. The most common
and effective actor-critic methods are the Adaptive Critic Designs (ADC), from the field of Approximate Dynamic
Programming (ADP), and what is commonly referred to as Actor-Critic Deep Reinforcement Learning (AC-DRL), the
latter although a general and unclear term will be used in this paper to differentiate from ADP and because it is the most
commonplace in literature.

ADP methods are model-based, hence are limited to the quality of the model used. However, recent research
on a branch of the field called Incremental ADP (iADP) implemented the use of online incremental model-learning
techniques to eliminate model dependence and provide solid adaptive control [13]. Incremental Heuristic Dynamic
Programming (IHDP) and Incremental Dual Heuristic Programming (IDHP) are two of these methods that have been
applied to Nonlinear Adaptive Flight control in [14] and [15], respectively. The advantage of iADP methods is their
high sample efficiency when compared to other methods, which allow for full-online learning without the need for the
initial offline training phase. Flight control research on a high-fidelity aircraft model showed that body-rate control with
coupled dynamics can be done using IDHP [16], and late also altitude, and attitude control [17]. However, validation
and high-fidelity simulations still have to be performed before real-world flight tests are possible.

Whilst ADP methods tend to provide adaptive control, DRL methods generally provide robust control. After the
appearance of the DQN by DeepMind control application of DRL methods have been extended with multiple algorithms,
such as Deep Deterministic Policy Gradient (DDPG), Twi-Delayed DDPG (TD3), Soft Actor-Critic (SAC), Proximal
Policy Optimisation (PPO), Trust Region PO (TRPO), Advantage Actor-Critic (A2C), Asynchronous A2C (A3C), and
many others. Flight control research on a model of the Cessna Citation 500 aircraft showed that attitude and altitude
can be controlled using SAC [18], and its fault tolerance was evaluated under a series of failure cases for an altitude
tracking task. Additionally, a hybrid controller utilizing SAC and IDHP was also developed and tested on the same
aircraft model [19].

The contribution of this paper is an Automatic Landing System that employs DRL techniques. Achieved through an
investigation into the use of modern model-free DRL flight controllers for general aviation. The research focuses on the
most troublesome phases of flight, namely, the final approach and landing, which suffer the most from LOC-I. More
specifically, this paper presents a study on the use of DRL flight controllers in an Automatic Landing System (ALS),
implemented in a high-fidelity simulation model of a Cessna Citation 500.

The theoretical basis for this paper is described in section II through a description of the (automatic) landing and
reinforcement learning problems, followed by a description of the SAC algorithm, the DRL algorithm explored in
this research. Section III presents an ALS base controller structure and the design of a PID and RL controllers for it.
Sections IV and V present the discussion of the results and the conclusions, respectively.

2

II. Fundamentals
This section briefly introduces the (automatic) landing problem and the general reinforcement learning problem and

provides a more detailed description of the RL algorithm explored in this research, the Soft Actor-Critic.

A. (Automatic) Landing problem
Generally, the landing procedure is considered to be composed of four phases: Glide slope descent (or final

approach), Flare, Touchdown, roll-out [20], all of which are illustrated in figure 1. The glideslope path ensures that the
aircraft lands at a stable descent rate by following a descent path usually with a −3◦ angle with the ground, although the
angle might slightly change depending on the airport and its surroundings. The flare occurs at a height of around 10 to 5
[𝑚] above ground level and it is meant to change the aircraft’s descent attitude to a landing attitude by pitching up and
reducing the sink rate of the aircraft, setting it up for a soft touchdown, improving passenger comfort and minimising
landing gear impact. As mentioned previously, the majority of fatal accidents in the past decades have happened in these
two flight phases, hence these are the most critical ones. The touchdown and roll-out phases are the aircraft’s gentle
touch onto the landing surface and the deceleration to a controlled speed for taxiing.

Fig. 1 Aircraft Landing phases, retrieved from [21]

As with many procedures in aerospace, landing requires the use of multiple instruments and aiding systems. There
are two main ground-based systems that are required to perform landing: 1. the Instrument Landing System (ILS),
which is divided into localiser - LOC, glideslope - G/S and possibly beacon markers, and 2. Radio Altimeters [22]. The
onboard equipment is limited to suitable receivers and computers that are able to process the information provided by
the ground-based equipment.

The ILS is a navigation-aid system that provides short-range lateral and vertical guidance for aircraft during the
landing procedure, and it consists of a localiser antenna (LOC), a glide-slope antenna (G/S), and a beacon marker.
The LOC is placed at the end of the runway and provides lateral guidance by informing the aircraft about its position
relative to the runway’s centre line. The G/S is placed at the start of the runway and provides longitudinal guidance by
informing the aircraft about its position relative to the glideslope path. The LOC and G/S beam lobes that provide the
transmitted signals are represented in figure 2. The remaining component of the ILS is the beacon markers, which
provide the aircraft with information about its distance to the runway, however, these have been slowly substituted by
increasing accuracy of Distance Measuring Systems (DMEs) and Global Navigation Satellite Systems (GNSS). Finally,
the RA is required to provide accurate information about its altitude above ground level. It is mainly used once the
aircraft has reached altitudes lower than 600 [𝑚], and it provides more accurate information than other altitude systems,
such accuracy is mainly required such that the aircraft is able to initiate the flare at the correct height.

The ALS was initially developed in the 1950s to aid pilots to land in difficult weather conditions such as those
encountered in North-western Europe, which generally result in low visibility. The idea of the Automatic Landing
System stems from the concept that the ILS provides a tracking signal that can be followed by an autopilot controller.
Already in 1959, it was stated that the ALS will not only be capable of landing the aircraft in situations where a human
pilot would not be able to, but it will be able to do so with more accuracy and consistency [3].

3

Fig. 2 ILS Working principle, retrieved from [20].

B. Reinforcement Learning problem
The majority of Reinforcement Learning problems can be mathematically described by the Markov Decision Process

(MDP), where at a given state 𝑠, an agent, or controller, interacts with the environment, or plant, through actions 𝑎, and
in turn, receives information about the environment’s new state 𝑠′ and a reward 𝑟 characterizing the quality of the action
taken. This formulation assumes the process to be Markovian, that is to have the Markov Property, meaning that future
states solely depend on the current state, not past ones, as in equation 1. That also means that the current state-action
pair contains all the required information to predict the next state. Ultimately, the agent uses the information acquired
from its actions and their responses on the environment to create a series of laws that allow it to maximise the amount of
reward gathered over time 𝐺𝑡 , equation 2, also known as the policy.

In RL the state-action function illustrates how beneficial it is to be in a given state 𝑠𝑡 , in other words, how much
reward 𝑟 can be expected in the future, when an action 𝑎𝑡 is taken and the policy is followed thereafter. A discount
factor 𝛾 is used to determine how relevant immediate rewards are with respect to future rewards. The state-of-the-art
algorithm structure employs an entity that is solely responsible for learning the policy to be followed, and a separate
entity that critiques the learned policy, which in turn is adapted accordingly, these entities are referred to as Actor and
Critic, respectively.

𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡) (1) 𝐺𝑡 =

𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (2)

The agent’s policy can be deterministic or stochastic, meaning that the agent will always take the exact intended
action or that there is a probability of each action in each state. This distinction is interesting and both of these methods
are used in this research. Off-policy DRL algorithms often times make use of randomly-sampled action noise, to
enhance the learning process of the agent [23], that is because it forces the agent to take actions that it would otherwise
have not taken, expanding the learning scope and it may happen that the forced action might actually be more beneficial.
Hence, stochastic actions are used during training, for better learning, and deterministic actions are used during testing,
such that the policy is evaluated in its raw form.

C. Soft Actor-Critic
The Soft Actor-Critic (SAC) is an off-policy DRL algorithm that introduces stochastic policies and double Q-learning

to the already successful DDPG algorithm, initially presented in [24]. The former is introduced to enhance exploration,
which is especially important for offline-trained algorithms, such as AC-DRL algorithms. The latter is a characteristic
shared with TD3 and Double DQN (DDQN), and it is introduced to remedy the value function over estimation issues
encountered in previous algorithms (DDPG and DQN). Another key feature of the SAC algorithm is the use of entropy
regularisation to balance the maximisation of the returns over time and the randomness of in the policy, in other words,
its entropy.

4

1. Actor - Policy
The role of the actor in the actor-critic agent structure is to learn a policy, in the case of the SAC, this policy is

stochastic and it is represented by 𝜋𝜃 , where the addition of the 𝜃 term refers to the parameters of a Deep Neural
Network (DNN). The actor is modeled by an m-dimensional DNN that outputs two values: the standard deviation 𝜎𝜃

and the mean 𝜇𝜃 . These values are then used to normally sample a value from a Gaussian distribution, this value is then
squashed by a Tanh function and then scaled according to the action boundaries of the environment it is in. This normal
sampling of the unscaled action is what characterizes the policy as stochastic and ensures adequate exploration, provided
the hyperparameters have been appropriately tuned. This stochasticity of the sampling means that the policy objective is
non-differentiable, which is a problem for policy gradient calculations. This issue is solved with the "parametrization
trick" that is proposed by the authors of the SAC paper, where the action is sampled using the mean, the standard
deviation, and a Gaussian noise vector 𝜖 as shown in equation 3.

𝑎𝑡 = 𝑓𝜃 (𝜖𝑡 , 𝑠𝑡) = 𝜋𝜃 (𝑠𝑡) + 𝜎𝜃 ∗ (𝑠𝑡)𝜖𝑡 (3)

The Loss function of the actor is presented in equation 4 and is not only dependent on the states, sampled from batch
𝐵, and actor’s actions, but also on the Value function 𝑄, retrieved from the Critic, and the entropy coefficient 𝜂, both of
which are touched upon on the next sections. The log probabilities term is also derived from the normal distribution and
is used in both, the actor and the critic.

𝐿 𝜋 = 𝐸𝑠𝑡∼𝐵,𝑎𝑡∼𝜋 [𝑚𝑖𝑛𝑖=1,2 (𝑄′
𝑤′
𝑖
(𝑠𝑡 , 𝑎𝑡)) − 𝜂 ∗ 𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] (4)

A downside of the stochasticity of the SAC algorithm is the fact that the selected actions can be oscillatory and noisy,
complicating the identification of a correlation between one action and the next, and consequently a state and the next.
In the past, this was remedied by letting the actor control the increment to the current action, instead of the entire action
itself, making therefore the correlation between them clear and reducing the variation between subsequent actions. This
situation, however, is not ideal and can hinder the learning process. Fortunately, recent developments in smoothing of
action policies lead to the development of the CAPS parameters, or Conditioning for Action Policy Smoothness (CAPS)
[25]. This innovative method employs two regularisation terms: Temporal and Spatial. In short, the former is based on
the distance between the current and previous action and it penalises the actor by taking subsequent actions that are far
from each other. The latter, computes the distance between the action taken and the previous action taken in a similar
state, which is normally sampled from a nearby state 𝑠. The CAPS are implemented as additional terms in the Actor’s
loss function, allowing the smoothness to occur inside the algorithm and be completely independent of the environment
and any changes that may happen to it. The Temporal regularisation loss term is shown in equation 5 and the Spatial
loss in equation 6, in this case, the overall loss function can be seen in equation 7 where the relevance of the CAPS
parameters is balanced through the scaling parameters 𝜆𝑇 and 𝜆𝑆 .

𝐿𝑇 = | |𝜋(𝑠𝑡) − 𝜋(𝑠𝑡+1) | |2 (5)

𝐿𝑆 = | |𝜋(𝑠) − 𝜋(𝑠) | |2 (6)

𝐿𝐶𝐴𝑃𝑆
𝜋 = 𝐿 𝜋 + 𝐿𝑇𝜆𝑇 + 𝐿𝑆𝜆𝑆 (7)

2. Critic - Value
The role of the critic in the actor-critic agent structure is to criticize the policy the actor has learned, in the case of

the SAC, this is done through the estimation of the state-action function 𝑄𝑘 , where the addition of the 𝑘 term refers
to the parameters of a Deep Neural Network (DNN). SAC also features a double Q-network, where two Q-functions
are estimated, but only the one with the lowest value is used to estimate the value and gradient updates, this is done
to avoid the overestimation of the Q-function, a common issue in previous algorithms. The use of twin state-action
value functions speeds up training in complex tasks and increases learning stability. The target network is updated with
the value-network with an exponentially weighted moving average as a soft update mechanism, in such a way that the
former is a delayed version of the latter, this ensures a smoother direction of the updates.

𝐿𝑄 (𝑘𝑖 , 𝐵) = 𝐸 (𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1)∼𝐵,𝑎𝑡∼𝜋𝜃
[(𝑄𝑘𝑖 (𝑠𝑡 , 𝑎𝑡) − 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾(𝑚𝑖𝑛𝑖=1,2 (𝑄 �̄�𝑖

(𝑠𝑡+1, 𝑎𝑡+1) − 𝜂 ∗ 𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡 |𝑠𝑡))))2] (8)

The critic loss function is shown in equation 8 and it includes a modified version of the Bellman equation, that
includes the entropy term 𝜂. Additionally, SAC is an off-policy algorithm, therefore, the state-value function is estimated

5

with no regard to the current policy. This allows the algorithm to store transition samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in a memory
buffer, which in turn can be used to sample mini-batches of transition samples and reused for more optimal sample
efficiency.

3. Entropy & Temperature
Entropy is a term that measures the randomness of a variable in its probability distribution. High entropy means

high disorder/high uncertainty, low entropy means order/certainty. In addition to maximising the expected return, the
SAC algorithm also maximises the entropy, which means that not only the algorithm learns optimal policies but also
gives priority to the most stochastic policies that still achieve high returns. By choosing the most stochastic policy, the
algorithm creates an inherent exploration mechanism that reduces the risks of local optima convergence and ultimately
leads to better performance and a more robust controller. The trade-off between entropy and future rewards is done
through the temperature parameter 𝜂 in equations 4 and 8. The entropy function is shown in equation 9.

𝐻 (𝜋(·|𝑠𝑡)) = 𝐸𝑎𝑡 ,𝑎𝑡+1 𝜋𝜃
(−𝑙𝑜𝑔𝜋(𝑎′ |𝑠𝑡)) (9)

SAC was shown to be unstable with respect to the temperature parameter, this is because the optimal trade-off
between entropy and rewards is not constant throughout the training process, which is what is assumed when the
temperature parameter is kept constant. Exploration should be much lower at the end of training than at the beginning.
Therefore an automatic control of said parameter was later proposed by the authors of the original SAC paper in [26].
The loss function presented in equation 10 is used to optimise the temperature parameter. The �̄� is a constant entropy
target that is set to be the same as the negative of the action space size.

𝐿𝜂 = 𝐸𝑠𝑡∼𝐵,𝑎𝑡∼𝜋𝜃
(−𝜂𝑙𝑜𝑔𝜋(𝑎𝑡 |𝑠𝑡) − �̄�) (10)

4. Overview
Figure 3 presents an overview of the SAC algorithm, containing the Actor, the Critics, the entropy, and the

environment, as explained in the previous sections.

Fig. 3 Schematics of the SAC framework, retrieved from [19]

6

III. Methodology
This section introduces the environment to be used for this research, a high-fidelity simulation model of the Cessna

Citation 500, and the ALS controller structure, including a series of variations that incorporate PID and RL controllers.
Finally, the training configuration and strategy for pitch and roll attitude RL controllers are also described in this section.

A. Environment - Cessna Citation Model
In reinforcement learning the terms agent, action and environment are analogous to the terms controller, control

input, and plant in control engineering. Additionally, for the agent, the environment is considered to be anything that is
not the agent itself, that includes the aircraft actuators, ILS, and other controllers.

The environment used in this research is a high-fidelity non-linear model of the Cessna Citation 500. The simulation
model was built using the Delft University Aircraft Simulation Model and Analysis Tool (DASMAT). Model validation
was done in [27] where system validation was performed on flight test data recorded on a Cessna Citation 550, an
aircraft of a similar size and engine power. The specific aircraft is also known as the PH-LAB and it is owned by the TU
Delft Faculty of Aerospace Engineering in conjunction with the Netherlands Aerospace Centre (NLR) for research
purposes. The use of this aircraft model gives continuity to previous research and allows for information and techniques
to be drawn from previous papers [17] [18] [19] [28] that studied the use of SAC and other RL-based fault-tolerant
controllers the same simulation model.

The Citation model consists of a nonlinear 6-DOF model that combines rotation and translation equations of motion
for a rigid-body aircraft that has been trimmed to a specific flight condition. The environment is simulated with a
refresh rate of 100𝐻𝑧 and outputs a complete set of 12 states shown in equation 11, where 𝑝, 𝑞, 𝑟 are the roll pitch and
yaw rates, 𝑉𝑇𝐴𝑆 , 𝛼, 𝛽, are the true airspeed, angle of attack and the sideslip angle, 𝜃, 𝜙, 𝜓, are the pitch, roll and yaw
angles, and 𝐻, 𝑋 , 𝑌 are the distances in Z, X, and Y directions respectively. Furthermore, the velocity of the aircraft
is controlled by an auto-throttle and the trim tab and flap deflections are kept at zero, only the elevator , ailerons and
rudder deflections, 𝛿𝑒, 𝛿𝑎, 𝛿𝑟 respectively, can be used to control the aircraft, yielding the set of actions in equation 12.

𝑥 = [𝑝, 𝑞, 𝑟, 𝑉𝑇𝐴𝑆 , 𝛼, 𝛽, 𝜃, 𝜙, 𝜓, 𝐻, 𝑋,𝑌]𝑇 (11)

𝑥 = [𝛿𝑒, 𝛿𝑎, 𝛿𝑟]𝑇 (12)

Additionally, the environment also features a model of the ILS, which is used to inform the aircraft about its angular
deviation from the runway centre-line and from the glideslope angle. The angle between the aircraft flight path and the
runway centre-line is given by 𝜆, in the lateral direction, and the angle between the aircraft fligth path and the desired
glideslope angle is given by Γ, in the longitudinal direction. To simulate realistic signals, the ILS is modelled following
its required accuracy and characteristics, retrieved from [29]. The GS beam-width is ±0.7◦ with an error no larger than
±0.07◦, similarly, the LOC beam-width is ±2.5◦ with an error no larger than ±0.06◦, and the DME systems accuracy
must be within 10𝑚. The last component of the ILS is the radio altimeter, this is required to inform the aircraft about its
altitude and that it can start the flare manoeuvre at the correct height. Since this equipment is considered to be accurate,
in this research, radio altimeters were considered to be ideal sensors, and therefore no bias or noise was added to it.

B. Tracking Task & Controller Structure
Here the task designed for this research along with a control structure that is to be used as a base for the different

PID and RL controllers is described. The control structure is directly derived from the task and it features a cascaded
structure with switching outer loop controllers.

1. Task
The designed landing task is shown in figure 4b and consists of four phases on the longitudinal side and two phases

on the lateral side. On the former, the aircraft must descend from its initial altitude (2000𝑚) to the ILS intercept altitude
(≈ 600𝑚), it then briefly holds the altitude such as to intercept the ILS’s GS whilst flying horizontally; once it is within
reach of the guidance of the ILS it starts to descend with a glideslope angle of −3◦ until it reaches the flare altitude (see
section III.C), at which point it performs the flare and touches down on the runway. On the latter, the aircraft initially
follows the guidance of a VOR system, as soon as it intercepts the ILS’s signal, it switches to the LOC guidance, where
it is more accurately steered to the runway center-line. In the simulation environment, the aircraft starts at position
𝑥0 = 0𝑚, 𝑦0 = 0𝑚, and the runway is positioned at 𝑥𝑟 = 50000𝑚, 𝑦𝑟 = 5000𝑚.

7

(a) Sideview (b) Top View

Fig. 4 Landing task

For a successful landing, the aircraft must follow a smooth transition path from the −3◦ descent angle to the ground
level through the flare maneuver. Additionally, the aircraft must reduce its vertical speed for a soft touchdown, however,
not too much, such that floating may occur in case wind is present. The pitch and roll angles must be such that there is
no tail, nose, or wing strike. The acceptable range of such variables at the touchdown moment is organized in table
3, placed in section IV for practical evaluation of results. On the analysis of the performance of the controllers, this
research limits itself to the variables at the touchdown point, and it is assumed the aircraft states at that specific time are
sufficient to determine whether the landing was successful or not.

2. Base Controller Structure
The controller structure to be used in this research is directly derived from the tasks in the landing problem at hand.

Figure 5 presents the longitudinal control structure which features a cascaded system with an inner-loop pitch attitude
controller, and outer-loop altitude, glideslope and automatic flare controllers.

Fig. 5 ALS longitudinal controller structure

For lateral control, the structure features a VOR hold controller and a LOC hold controller, both of which work in a
cascaded fashion with a roll angle hold controller. Both of which can be seen in figure 6.

8

Fig. 6 ALS lateral controller structure

C. PID Controllers
This section describes an automatic landing system designed according to the base controller structure described

above. The system only contains PID controllers and it is used to validate the ALS structure, as well as to establish a
baseline performance for a landing controller that can be used for comparison. The PID controller design was chosen
as a representative of the classical control theory methods that are currently used in ALS, and in aviation in general.
Additionally, the outerloop PID controllers are also used in the ALS proposed in this paper, where the aicraft attitude
is controlled with reinforcement learning. The PID controllers herein contained were designed loosely following the
guidelines and instructions in [30]. Since the implementation and tuning of PID controllers are well-known and this
research focuses on the study of reinforcement learning-based controllers these processes are not described in detail.
Table 1 is provided containing information about the structure of each of the PID controllers in the ALS structure.

Table 1 PID controllers overview

Controller Control Surface Input Output Tuning
Pitch Attitude Elevator 𝜃𝑟𝑒 𝑓 𝛿𝑒 PI
Altitude Hold Elevator ℎ𝑟𝑒 𝑓 𝛿𝑒 PID

Glideslope Hold - Γ𝑟𝑒 𝑓 𝜃𝑟𝑒 𝑓 PI
Autoflare - ℎ𝑟𝑒 𝑓 𝜃𝑟𝑒 𝑓 PID

Roll Attitude Aileron 𝜙𝑟𝑒 𝑓 𝛿𝑎 P
VOR Hold - 𝑌𝑟𝑒 𝑓 𝜙𝑟𝑒 𝑓 PD
LOC Hold - 𝑌𝑟𝑒 𝑓 𝜙𝑟𝑒 𝑓 PD

To summarise, the Pitch Attitude, Altitude, and Roll Attitude controllers acquire their reference inputs directly from
the environment states. The Glideslope acquires its input from the ILS-GS, the VOR-Hold from the VOR, and the LOC
hold from the ILS-LOC. The Autoflare controller, however, is more interesting and undoubtedly the most crucial part of
the landing procedure. To ensure a smooth landing transition its reference altitude ℎ𝑟𝑒 𝑓 follows an exponential path,
given in equation 13. The exponential altitude is a function of the time, containing two design parameters, ℎ 𝑓 𝑙𝑎𝑟𝑒 and 𝜏,
both of which are acquired following the method described in [31]. The control law assumes the intended touchdown
position to be 1100 𝑓 𝑡 (335, 28𝑚) from the GS transmitter, yielding a 𝜏 = 1.25𝑠 and ℎ 𝑓 𝑙𝑎𝑟𝑒 = 5.85𝑚, a value within the
admissible range since most general aviation aircraft start their flare maneuver between 10 𝑓 𝑡 (∼ 3𝑚) and 30 𝑓 𝑡 (∼ 10𝑚).

ℎ𝑟𝑒 𝑓 (𝑡) = ℎ 𝑓 𝑙𝑎𝑟𝑒 ∗ 𝑒
−𝑡
𝜏 (13)

9

D. SAC Controller
In order to set up the training for reinforcement learning, the control task is interpreted as an optimal control problem.

The evaluation structure follows the structure used in other papers [18] [19] and it employs a continuous reward function
that penalises the agent proportionally to the tracking error. The reward is given at each time step as shown in equation
14, where the error 𝑒𝑒 is scaled by a scaling factor 𝑒𝑟 and subsequently clipped between [0, 1]. The rewards at each
time step are added up and are used to evaluate the tracking performance of each episode.

𝑟 (𝑡) = −1
3
| |𝑐𝑙𝑖𝑝[𝑒𝑟 ⊙ 𝑒𝑒 (𝑡); 0, 1] | | (14)

In order to keep the training more realistic boundaries were set for pitch and row angles if the agent steers the aircraft
through one of these boundaries the simulation ends and the agent is penalised proportionately to the amount of time left
in the episode. The penalty for ending the simulation early is taken from [28] and is shown in equation 15, where 𝐶𝑝 is
empirically set to 2 for a 20𝑠 simulation episode sampled at 100𝐻𝑧. The total rewards per episode are then estimated as
the sum of the error-proportional reward plus the early termination penalty, as shown in equation 16.

𝑟𝑡+1 = −
𝐶𝑝

Δ𝑡
∗ (𝑡𝑚𝑎𝑥 − 𝑡𝑒𝑛𝑑) (15)

𝑅𝑒𝑝 =

𝑘∑︁
𝑖=1

𝑟 (𝑡) + 𝑟𝑡+1 with 𝑘 =
𝑡𝑚𝑎𝑥

Δ𝑡
(16)

1. Pitch Attitude Controller
The majority of the dynamic changes are mainly reflected on the control surfaces and being the attitude controllers the

closest to them it is expected that these would be the most affected during the failure cases to be analysed. Additionally,
the majority of the manoeuvres made during landing occurs in the longitudinal dimension. Therefore, the first controller
to be designed using RL is the pitch attitude controller.

The Pitch Attitude Controller tracks a reference signal 𝜃𝑟𝑒 𝑓 and its task is to keep the error as close to zero as
possible. To reduce the amount of unnecessary information, the agent does not observe the full set of environment states,
instead, the agent only observes the pitch error 𝜃𝑒 and the pitch rate 𝑞. The latter is not strictly necessary, however, it
helps the agent to differentiate similar states in different conditions, for instance when 𝜃𝑒 = 0 but the aircraft is tending
upwards versus downwards. The inclusion of the pitch rate as agent input increases learning speed as well as the
smoothness of the agent’s actions. Note that there is no tracking, therefore no rewards, are given for the 𝑞.

The action coming from the pitch controller is an elevator deviation 𝛿𝑒 command. The reward scaling and error
used in equation 14 are defined in equation 17. The action and observation vectors are defined in equation 18.

𝑒𝑟 =
6
𝜋

and 𝑒𝑒 = 𝜃 − 𝜃𝑟𝑒 𝑓 (17)

𝑎 := [𝛿𝑒]𝑇 and 𝑠𝑜𝑏𝑠 := [𝜃𝑒, 𝑞]𝑇 (18)

2. Roll Attitude Controller
Next, an RL-based Roll attitude controller is designed to track the roll angle reference signal 𝜙𝑟𝑒 𝑓 . The agent is very

similar to that of the pitch attitude controller, the agent observes two states, namely the roll angle error 𝜙𝑒 and the roll
rate 𝑝, as shown in equation 20. The sole control surface of the roll attitude controller is the ailerons, therefore the output
of the agent is the aileron deflection 𝛿𝑎. The reward scaling and error used in equation 14 are defined in equation 19

𝑒𝑟 =
6
𝜋

and 𝑒𝑒 = 𝜙 − 𝜙𝑟𝑒 𝑓 (19)

𝑎 := [𝛿𝑎]𝑇 and 𝑠𝑜𝑏𝑠 := [𝜙𝑒, 𝑝]𝑇 (20)

10

3. Network Structure & Hyperparameters
The Deep Neural Network structure used in the SAC algorithm consists of a series of neurons that are linearly

combined with each other in four layers: one for the inputs, two for the hidden layers, and one for the outputs. The
basic structure of the network was retrieved from [18]. Figure 7, illustrates a basic NN topology with the components
mentioned earlier. Both hidden layers have 64 nodes and are fed to Normalisation layers to improve sample efficiency in
the fashion described in [32], the normalised values are activated by a ReLu function. The output layer, however, is not
normalised and is, therefore, a direct result of the linear combination of the weights of the second hidden layer.

The actor-network outputs two parameters, a mean 𝜇 and a standard deviation 𝜎, both of which are used to normally
sample and output the agent’s action. It is important to note that in the evaluation the last step is foregone and the action
is a direct product of the actor’s mean. There are two critic networks, following the SAC algorithm, that have the same
structure, they take a state and action pair as inputs (observations) and output the 𝑄 − 𝑣𝑎𝑙𝑢𝑒 of the given pair. The
network parameters are represented by 𝑘 and 𝜃 for the Q-function (critic) and the policy (actor), respectively.

Fig. 7 Neural Network topology, adapted from [33]

The utilisation of correct hyperparameters is known to dramatically improve sample efficiency and learning speed.
However, there are far too many parameters to be considered, making tuning time-consuming, difficult and not always
resulting in optimal configuration. Fortunately, there have been previous studies using the SAC algorithm applied
to the controllers on the PH-LAB [18] [19]. A brief parameter search was performed to evaluate the role of certain
hyperparameters in the learning process and the performance of the resulting agents. It was concluded that a learning
rate of 4.4 × 10−4 with a linear decrease until the end of the training, proposed in [18], results in fast learning and
consistent convergence. The fast convergence means that the algorithm does not train for long with large errors, since
these rapidly decrease, therefore, the use of lower learning rates could lead to an algorithm that has spent more time in
those areas and therefore is more robust. The consequence of that was unstable training, which is a common issue with
DRL algorithms and has already been reported in previous research on SAC-based controllers. Therefore, the learning
rate was kept at 4.4 × 10−4 for this research, a value that favours training stability.

Additionally, a brief parameter search was performed on the CAPS scaling coefficients using values of 40, 400, and
40000. The results were coherent with what was reported in the original smoothing policy paper [25], the simulation
with lower value showed extremely oscillatory actions, and the simulation with higher values showed much smoother
actions, however, very poor training stability and degraded tracking performance. Therefore, the CAPS coefficient value
of 400 from [19] was maintained in this research, offering a good balance between smoothness, tracking, and training
stability.

11

The Network initialization followed the Xavier weight initialization method [34], a gain of 0.25 and no bias showed
the best results. Higher gain values showed exploding weights and inconsistent training. Additionally, the gradient
descent of the algorithm uses Adam optimizer, a method that has proven its superiority in learning stability [35].

4. Agent Training
The SAC algorithm was trained offline for 2 × 105 timesteps, about half of the length usual DRL algorithms are

trained for, this is because the agent was capable of learning its task relatively rapidly which lead it to try to improve an
already good performance for a long period, resulting in overtraining and loss of generalization. During training, the
agent was set to track a sinusoidal signal for a series of around 250 episodes of 20𝑠, sampled at 100𝐻𝑧. A brief search
was made between different training signals and a sinusoidal reference signal was chosen instead of a fixed or step
reference because it resulted in more stable agents that were better capable of handling the constantly changing reference
coming from the outer loop during the landing procedure, as well as presented less sings of command oscillations.

Additionally, to widen the flight envelope that the controller is capable of controlling the aircraft and to ensure that
during training it does not get stuck in local optima exploration is enforced in the first stages of training. This is done
through enforcing 10% of completely random actions, independent of the policy, and the rate is linearly decreased and
maintained at 1% by step 1 × 105 all the way until the end of training.

Fig. 8 SAC Learning curve - Line and the shaded area represent the mean and the standard deviation,
respectively, across different trainings.

Figure 8 shows the learning curve of four different pitch and roll attitude controllers that were made using random
seed initialisation. For both controllers, it can be seen that the rewards per timestep initially decrease as the agents
explore the environment, but quickly start to increase as the agent begins differentiating beneficial from detrimental
actions. Using the reward system described above the pitch agent and the roll controllers achieve rewards higher than
−5 in 2 × 105 timesteps, and there is no significant improvement for either of the controllers in the remaining training
period, suggesting that training is complete. The results presented in section IV were achieved using the agent with the
highest rewards and less noisy commands from those whose learning curves are shown in figure 8. Table 2, shows an
overview of the most important hyperparameters used in this research.

12

Table 2 SAC algorithm and Network Hyperparameters

Hyperpatameter Agent
Learning rate 𝜆𝑟 0.00044
Hidden Units 𝑙𝑥𝑙 64

Entropy Target 0.0
Discount Factor 𝛾 0.99

Activation function ReLu
Memory buffer size 1𝑥106

Minibatch size 256
Smoothing Factor 0.995

IV. Results & Discussion
This section presents a comparison between the performances of the controllers designed in section III.B on the

landing task, described in the same section, employing only PID controllers and employing RL Pitch and Roll controllers.
Both iterations of the ALS are evaluated under the nominal condition under ideal system conditions, to establish a
baseline for their performance, and subsequently, under various failure cases, to establish robustness and fault tolerance.

There are several types of failures an aircraft might face during flight, however, it is infeasible to test every one
of them. Therefore, a few failures where a change in the plant dynamic is unexpectedly introduced to the system
were chosen in order to evaluate the robustness and fault-tolerance of the controllers, in both, longitudinal and lateral
directions. The simulations are performed considering ideal sensors, the use of real-world sensors is discussed in section
IV.D.1. The evaluation follows the performance criteria in table 3, whose parameters have already been discussed in
section III.B.

Table 3 Acceptable range of variables at touchdown, adapted from [20]

Metric at touchdown Limit values (95%) Unit Reason for limits
Longitudinal Position 𝑋𝑒 -90 +270 [m] Touchdown on the runway with adequate braking

distance
Lateral Position 𝑌𝑒 -8 +8 [m] Touchdown with main gear 1.5[m] from runway edge
Lateral Velocity -2.5 +2.5 [m/s] Limit risk of leaving runway after touchdown
Altitude Rate -1.8 0.0 [m/s] Limit landing gear/tire damage & passenger comfort
Pitch angle 0.0 +5 [deg] Limit risk of noise-wheel landing or tail drag
Roll angle -5 +5 [deg] Limit risk of damage to wing tips or engine nacelle

A. Nominal System
As part of this research, it must be proven that the proposed controller is able to perform the landing task in the

nominal condition and with a system where no failures are present. Here, both PID and RL use the same outer-loop
controller tuning, with the exception of Autoflare, which is re-tuned such that the PID and the RL achieve performance
within the acceptable range of variables. In an attempt to make the comparison between the two a fair one, the tuning
was done such that both controllers achieve similar touchdown performance under non-failed conditions. Noticeably,
the RL pitch flare tracking is worse than that of the PID, however, the variables at touchdown are similar, this is because
in the re-tuning of the Autoflare for the RL pitch controller, a trade-off between tracking and touchdown conditions had
to be made. For this research, the touchdown variables are more important than the tracking itself, in this case, the
reference path only provides guidelines for an acceptable landing, however, it is not strictly necessary that it is followed
to achieve a landing performance within the acceptable boundaries.

13

Fig. 9 PID & RL Tracking performance in the landing task - Nominal Case, No Failures

Table 4 shows that the touchdown data for both controllers are very similar under the nominal case, although it can
be noticed that the RL controller has a slightly worse touchdown position than the PID. Figure 10 shows the agent’s
inputs and the trajectory of the aircraft. Both controllers are able to follow the reference signals in a similar fashion, the
RL controller, however, does so with much more aggressive command behaviour, without becoming unstable. Figure
11 shows the aircraft’s states throughout the landing task. The performance of both controllers is similar, with a few
differences in immediate behaviour when there is a switch between controllers, however, both of the eventually converge
to the same values.

Table 4 PID & RL-SAC performance in the landing task - Nominal Case

Metric at touchdown PID RL Unit
Longitudinal Position 𝑋𝑒 -1.36 -5.24 [m]

Lateral Position 𝑌𝑒 -0.3 -0.61 [m]
Lateral Velocity 0.01 0.01 [m/s]

Altitude Rate -0.42 -0.41 [m/s]
Pitch angle 1.74 1.82 [deg]
Roll angle 0.0 0.0 [deg]

14

Fig. 10 PID & SAC inputs and trajectory in the nominal case, no failures present - Longitudinal and lateral
references represented by the red dashed line

Fig. 11 PID & SAC aircraft states in the nominal case, no failures present

15

B. Sensor Failure - Noise
Aircraft systems are not ideal and operate under certain tolerances, the ILS acceptable errors are discussed in section

III.A. Table 5 shows the data at touchdown when the maximum acceptable positive and negative biases have been added
to the ILS LOC and GS reference signals. It shows that both controllers are able to successfully land the aircraft even
with biased ILS. The following two failures consider the case when the ILS is defective making the transmitted signals
not only biased but also noisy.

Table 5 PID & RL-SAC performance in the landing task - Realistic ILS

Metric at touchdown PID RL PID RL Unit
Positive error Negative error

Longitudinal Position 𝑋𝑒 -7.16 -1.56 7.58 24.38 [m]
Lateral Position 𝑌𝑒 1.94 2.04 -1.93 -1.81 [m]

Lateral Velocity -0.11 -0.11 0.11 0.11 [m/s]
Altitude Rate -0.43 -0.47 -0.43 -0.42 [m/s]

Pitch angle 1.73 1.77 1.74 1.8 [deg]
Roll angle 0.0 0.0 0.0 0.0 [deg]

1. GS Noise
Table 6 shows the controller performance when the transmitted ILS GS signal is noisy. To simulate that, Gaussian

noise with mean 𝜇 = 0◦ and standard deviation 𝜎 = 0.1◦ is added to the GS reference signal. The table shows the
average and standard deviation for each of the parameters calculated from fifty simulation runs. The RL-based controller
presented lower average longitudinal error as well as lower standard deviation than the PID-based controller. The latter
landed the aircraft before or after the limiting landing longitudinal position 11 out of the 50 simulation runs performed,
whilst the RL-based controller was able to land the aircraft 100% of the times. Figure 12, shows the landing position in
𝑋 and 𝑌 directions for all 100 simulation runs; the image clearly reflects the variance data in the table, it shows that the
PID controller has a more varied landing position in the 𝑋 direction than the RL, which has landing positions closer to
each other. The other parameters are not affected by the noise, which is expected because the GS mainly affects the
longitudinal movement of the aircraft. This test shows that the RL-based pitch attitude controller is capable of correctly
performing the flare independently of the aircraft conditions at the starting point, or the end of the glideslope descent.
Therefore, here the algorithm shows its robustness by handling the noisy signal provided by the ILS during the final
approach.

Table 6 PID & RL-SAC performance in the landing task - Failed ILS: GS Noise

Metric at touchdown PID RL Unit
𝜇 𝜎 𝜇 𝜎

Success rate 78.0 - 100.0 - %
Longitudinal Position 𝑋𝑒 25.01 155.845 12.35 61.97 [m]

Lateral Position 𝑌𝑒 -0.48 1.9 1.74 1.81 [m]
Lateral Velocity -0.01 0.06 0.03 0.08 [m/s]

Altitude Rate -0.38 0.07 -0.46 0.1 [m/s]
Pitch angle 1.77 0.05 1.78 0.0 [deg]
Roll angle 0.0 0.0 0.0 0.0 [deg]

16

2. LOC Noise
Table 7 shows the controller performance when the transmitted ILS LOC signal is noisy. The simulation is done in a

similar manner as the previous test, Gaussian noise is added to the transmitted signal, this time however, with mean
𝜇 = 0◦ and standard deviation 𝜎 = 0.03◦. In this situation, the RL-based controller presents higher error and deviation
in the longitudinal direction, this is due to the aileron effect on the longitudinal direction. Additionally, both controllers
present similar deviations in the lateral direction, however, the RL-based controller averages a much higher error,
leading it to overshoot and land on the right of the runway 30% of the time. In this case, the RL controller is capable of
performing consistently, similar to the PID, however, with a larger error in the lateral direction. The results show that
indeed the SAC algorithm can be robust and insensitive to noise, by landing the aircraft in very close proximity between
different simulations. However, it also shows higher deviation from the runway centre-line, as can be seen in figure 13.

Table 7 PID & RL-SAC performance in the landing task - Failed ILS: LOC Noise

Metric at touchdown PID RL Unit
𝜇 𝜎 𝜇 𝜎

Success rate 100 - 100 - %
Longitudinal Position 𝑋𝑒 15.38 5.11 28.64 4.89 [m]

Lateral Position 𝑌𝑒 -1.83 0.59 -5.93 0.81 [m]
Lateral Velocity -0.01 0.09 0.18 0.07 [m/s]

Altitude Rate -0.43 0.0 -0.41 0.01 [m/s]
Pitch angle 1.74 0.0 1.8 0.01 [deg]
Roll angle 0.0 0.0 -0.02 0.01 [deg]

Fig. 12 Landing positions With GS Noise Fig. 13 Landing positions With LOC Noise
The low deviation shows that the RL roll attitude controller can be robust, a fact that is corroborated by the results

with the Pitch attitude controller. However, there is still the issue of high average error, this can be due to the controller
not being trained with the PID outer loop or without the presence of the pitch attitude controller, both of which are
factors that influence the performance of the controller.

C. Actuator Failure - Loss of Efficiency
Table 8 presents the touchdown data in case of an elevator Loss of Efficiency (LOE) during the glideslope descent

(𝑡 = 500𝑠 in the simulation). First controllers are tested with actuator efficiency of 90%. and then gradually reduced until
they cannot comply with one of the pre-determined criteria. The performance of the PID controller rapidly decreases,
with the controller barely able to land the aircraft on the runway with only a 10% reduction in elevator efficiency. This
data clearly shows that the PID requires the use of some extra tool to be able to deal with this failure, for instance, gain

17

scheduling since the performance can be ameliorated by a simple increase in PID gain.
The RL controller is able to handle much larger reductions in elevator efficiency, this is because the training resulted

in a very fast controller that outputs very high deflections, whilst still being stable at the same time. The reduction in
elevator efficiency essentially reduces the output of the controller, in the case of the RL controller this is not a problem,
because its output is initially already high, the PID, on its own, presents a much calmer behavior which does not handle
the LOE of the elevator. For the RL controller a reduction in the effectiveness of 70% is required before it no longer
complies with the criteria, when it eventually lands before the runway.

Table 8 PID & RL-SAC performance in the landing task - Actuator failure: Elevator LOE

PID RL PID RL RL Unit
Effectiveness 90% 80% 30%

Longitudinal Position 𝑋𝑒 -83.2 -10.58 -217.5 -21.5 -91.25 [m]
Lateral Position 𝑌𝑒 -0.31 -0.61 -0.31 -0.61 -0.62 [m]

Lateral Velocity 0.01 0.01 0.01 0.01 0.01 [m/s]
Altitude Rate -0.29 -0.43 -0.56 -0.46 -0.66 [m/s]

Pitch angle 1.81 1.8 1.99 1.79 1.68 [deg]
Roll angle 0.0 0.0 0.0 0.0 0.0 [deg]

D. Additional Results

1. Biased-noisy aircraft Sensors
As mentioned previously and tested in the previous sections, in reality, aircraft systems are not ideal and bias and

noise are present in all of them. During the validation study [27] of the PH-LAB the characteristics of the aircraft’s
sensors were measured and can be reproduced using Gaussian noise according to the parameters in table 9.

Table 9 PH-LAB sensor noise characteristics, from [27]

State(s) Bias Variance Unit
p, q, r 3𝑥10−5 4𝑥10−7 [rad/s]
𝜃, 𝜙 4𝑥10−3 1𝑥10−9 [rad]

𝛽 1.8𝑥10−3 7.5𝑥10−8 [rad]
h 8𝑥10−3 4.5𝑥10−3 [m]

Table 10 PID & RL-SAC performance in the landing task - Realistic aircraft sensors

Metric at touchdown PID RL Unit
𝜇 𝜎 𝜇 𝜎

Success rate 100 - 100 - %
Longitudinal Position 𝑋𝑒 7.62 13.85 13.99 19.99 [m]

Lateral Position 𝑌𝑒 -5.72 0.0 -5.6 0.0 [m]
Lateral Velocity 0.0 0.0 0.0 0.0 [m/s]

Altitude Rate -0.36 0.01 -0.19 0.03 [m/s]
Pitch angle 1.78 0.01 1.96 0.02 [deg]
Roll angle 0.23 0.0 0.23 0.0 [deg]

To evaluate the performance of the controllers in a situation closer to the real world the biased noisy states were
implemented in the environment and another fifty simulation runs were made in the Nominal Case, the results can be

18

seen in table 10. At first, it was noticed that both controllers were landing before the runway, therefore, the Autoflare was
re-tuned for both of them and in both cases the integral and the differential gains were increased until acceptable landing
positions were achieved. Both controllers were able to land the aircraft in all simulation runs. The RL controller showed
a slightly larger variance in the longitudinal direction and both controllers showed significant overshoot in the lateral
direction, in about the same dimension. Figure 14 shows that the noisy sensors affect the lateral landing position in a
similar manner for both the PID and the RL controllers, where both of them land to the right of the runway centre-line,
with very little variation. On the longitudinal direction, however, unlike the test presented in the previous section, the
RL controller presents more variance than the PID controller, indicating that aircraft internal sensor noise and bias may
have more effect on these controllers than external sensors, such as the ILS.

Fig. 14 Landing positions With realistic sensors - Acceptable landing area in dark grey

2. Training Stability & repeatability
The SAC algorithm strongly relies on randomness, from its stochastic policy, to minibatch sampling, to Deep Neural

Network initialization parameters. This randomness of the policy ensures that the algorithm provides some level of
exploration during training, hence generating a more robust controller that has explored different areas of the flight
envelope. However, this randomness also hinders training stability, since every training run is different from the next,
hyperparameter tuning is also more difficult due to these differences. Therefore, the training stability issues of the
algorithm still remain and it is possible to see dips in rewards even in the latter stages of training, which diminishes
the confidence of the algorithm. Nonetheless, as long as the algorithm is trained in an offline manner, multiple agents
are trained, and selection and evaluation are performed to check the performance of the resulting controllers, their
performance should be in line with the results presented in this research.

The controller herein presented also suffer from overtraining, an issue identified when the agents were trained with
fixed reference signals. In these cases, the agent developed aggressive behaviour resulting in extremely oscillatory
commands to the control surfaces. This issue was partially solved by using a sinusoidal reference signal for training,
however, some of the agents still present such behaviour, especially in training periods longer than 5 × 105 timesteps.
From the agents used in this paper, one out of four presented such behaviour, however, a longer study would have to be
done to determine the exact percentage of agents that present such behaviour.

19

V. Conclusion
This research demonstrates that reinforcement learning controllers can be used for aircraft control in landing tasks,

through the training of pitch and roll controllers based on the SAC algorithm. A cascaded ALS controller structure
where the RL controllers were implemented in the inner loop and PID controllers were implemented in the outer loop.
The performance of the ALS controller was compared using RL and PID inner controllers, and it showed that the SAC
controller is capable of achieving acceptable performance that is similar to that of the traditional PID in the nominal case,
both with ideal and biased and noisy aircraft sensors as well as biased ILS signals. Additionally, sensor and actuator
failure were tested in order to determine the robustness and failure tolerance of the controllers. The RL controller
showed good performance in the longitudinal direction, where the pitch controller surpassed the performance of the PID
when noise is added to the GS signal and in the case of the elevator reduced efficiency. On the lateral direction, however,
albeit performing similarly to the PID in the nominal case, the Roll attitude controller was not able to handle noise
added to the LOC signal, rapidly overshooting the runway and landing outside of it.

This research shows that the SAC algorithm can be used to create pitch and roll controllers that are trained separately
and still be robust enough to work in conjunction with each other in a larger controller structure. Additionally, it also
shows that model-free DRL algorithms are indeed capable of creating robust controllers that can be insensitive to noise.
In addition to that, the robustness of the SAC algorithm can still be retained even if the reference signal is dictated by a
PID controller, technically a more error-prone method in the face of noise and non-linearities.

The current challenges with RL controllers are clear in this research, where training is shown to easily turn
inconsistent depending on hyperparameters. Offline training signifies that the controller is only robust to the area that it
has been exposed to and may not function at all when situations steer the aircraft outside of that. Overtraining and
inconsistent performance have been improved through the use of CAPS parameters, however, are still issues with RL
controllers.

This research however, shows that, despite the challenges of the field, RL is capable of generating high-performing
controllers that can also surpass the performance of traditional controllers for aircraft attitude control and work in
combination with PID controllers to improve the longitudinal performance of ALS. Further research is recommended
utilizing full attitude RL controllers to enhance longitudinal and lateral performance when controlled in the same system,
and/or the use of RL-based on the outer loop of the ALS controller. A further study on the over-trained agents and
possible solutions to solve the issues presented in section IV.D.2 is recommended, premature truncation of training or
the addition of penalties for oscillatory behaviour on the reward system are possible solutions. Additionally, the use of
iADP in combination with DRL has been shown to improve the performance of attitude and altitude controllers [19],
therefore, further research on ALS using this hybrid technique is recommended.

References
[1] Boeing, Statistical summary of commercial jet airplane accidents, Aviation Safety, Seattle, Washington, 2021.

[2] IATA, Safety Report 2019, 56th ed., International Air Transport Association IATA, 2020.

[3] Charnley, W. J., “Blind Landing,” The Journal of Navigation, Vol. 12, No. 2, 1959, p. 115–140. https://doi.org/10.1017/
S037346330001794X.

[4] Harris, J. J., and Stanford, J. R., “F-35 flight control law design, development and verification,” 2018. https://doi.org/10.2514/6.
2018-3516.

[5] Canin, D. G., McConnell, J. K., and James, P. W., “F-35 high angle of attack flight control development and flight test results,”
American Institute of Aeronautics and Astronautics Inc, AIAA, 2019, pp. 1–29. https://doi.org/10.2514/6.2019-3227.

[6] Guan, Z., Ma, Y., Zheng, Z., and Guo, N., “Prescribed performance control for automatic carrier landing with disturbance,”
Nonlinear Dynamics, Vol. 94, 2018. https://doi.org/10.1007/s11071-018-4427-3.

[7] Ismail, S., Pashilkar, A. A., Ayyagari, R., and Sundararajan, N., “Improved neural-aided sliding mode controller for
autolanding under actuator failures and severe winds,” Aerospace Science and Technology, Vol. 33, 2014, pp. 55–64.
https://doi.org/10.1016/j.ast.2013.12.016.

[8] Liao, F., Wang, J. L., Poh, E. K., and Li, D., “Fault-tolerant robust automatic landing control design,” Journal of Guidance,
Control, and Dynamics, Vol. 28, 2005, pp. 854–871. https://doi.org/10.2514/1.12611.

[9] Tamkaya, K., Ucun, L., and Ustoglu, I., “H-based model following method in autolanding systems,” Aerospace Science and
Technology, Vol. 94, 2019. https://doi.org/10.1016/j.ast.2019.105379.

20

[10] Shue, S. P., and Agarwal, R. K., “Design of automatic landing systems using mixed H2/H control,” Journal of Guidance,
Control, and Dynamics, Vol. 22, 1999, pp. 103–114. https://doi.org/10.2514/2.4356.

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. A., “Playing Atari with
Deep Reinforcement Learning,” CoRR, Vol. abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

[12] “Mastering the game of Go with deep neural networks and tree search,” Nature, Vol. 529, 2016, pp. 484–489. https:
//doi.org/10.1038/nature16961.

[13] Zhou, Y., “Online reinforcement learning control for aerospace systems,” Ph.D. thesis, Delft University of Technology, 2018.
https://doi.org/10.4233/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4.

[14] Zhou, Y., van Kampen, E., and Chu, Q., “Incremental model based online heuristic dynamic programming for nonlinear
adaptive tracking control with partial observability,” Aerospace Science and Technology, Vol. 105, 2020. https://doi.org/10.
1016/j.ast.2020.106013.

[15] Zhou, Y., van Kampen, E. J., and Chu, Q. P., “Incremental model based online dual heuristic programming for nonlinear
adaptive control,” Control Engineering Practice, Vol. 73, 2018, pp. 13–25. https://doi.org/10.1016/j.conengprac.2017.12.011.

[16] Konatala, R., van Kampen, E., and Looye, G., “Reinforcement Learning based Online Adaptive Flight Control for the Cessna
Citation II(PH-LAB) Aircraft,” AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics Inc. (AIAA),
United States, 2021. https://doi.org/10.2514/6.2021-0883, virtual/online event due to COVID-19; AIAA Scitech 2021 Forum ;
Conference date: 11-01-2021 Through 21-01-2021.

[17] Heyer, S., Kroezen, D., and van Kampen, E.-j., “Online Adaptive Incremental Reinforcement Learning Flight Control for a
CS-25 Class Aircraft,” AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics Inc. (AIAA), United
States, 2020. https://doi.org/10.2514/6.2020-1844, aIAA Scitech 2020 Forum ; Conference date: 06-01-2020 Through
10-01-2020.

[18] Dally, K., and van Kampen, E., “Soft Actor-Critic Deep Reinforcement Learning for Fault-Tolerant Flight Control,” American
Institute of Aeronautics and Astronautics Inc, AIAA, 2022. https://doi.org/10.2514/6.2022-2078.

[19] Teirlinck, C., “Reinforcement Learning for Flight Control Hybrid Offline-Online Learning for Robust and Adaptive Fault-
Tolerance,” Master’s thesis, Delft University of Technology, the Netherlands, 2022. URL https://repository.tudelft.nl/islandora/
object/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85?collection=education.

[20] Myron Kayton, W. R. F., Avionics Navigation Systems, John Wiley Sons, Inc., 1997. https://doi.org/10.1002/9780470172704.

[21] Borst, C., “Avionics - Landing Systems - Lecture Slides,” , February 2022. Delft Univerity of Technology.

[22] Pallett, E. H. J., Coyle, A. S., and Blackwell, M., Automatic Flight Control Fourth Edition, 4th ed., Wiley-Blackwell, 1993.
URL www.blackwellpublishing.com.

[23] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M.,
“Parameter Space Noise for Exploration,” CoRR, Vol. abs/1706.01905, 2017. URL http://arxiv.org/abs/1706.01905.

[24] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor,” CoRR, Vol. abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.

[25] Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K., “Regularizing Action Policies for Smooth Control with Reinforcement
Learning,” 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1810–1816. https://doi.org/10.
1109/ICRA48506.2021.9561138.

[26] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S.,
“Soft Actor-Critic Algorithms and Applications,” CoRR, Vol. abs/1812.05905, 2018. URL http://arxiv.org/abs/1812.05905.

[27] van den Hoek, M. A., de Visser, C. C., and Pool, D. M., “Identification of a Cessna Citation II Model Based on Flight Test
Data,” Advances in Aerospace Guidance, Navigation and Control, edited by B. Dołęga, R. Głębocki, D. Kordos, and M. Żugaj,
Springer International Publishing, Cham, 2018, pp. 259–277.

[28] Gavra, V., “Evolutionary Reinforcement Learning A Hybrid Approach for Safety-informed Intelligent Fault-tolerant Flight
Control,” Master’s thesis, Delft University of Technology, the Netherlands, 2022. URL https://repository.tudelft.nl/islandora/
object/uuid:46989854-bcf0-4d3d-a6bf-f35cbb559d49?collection=education.

21

[29] United States Department of Transportation, “2001 Federal Radionavigation Systems,” Tech. rep., Washington DC, 2001. URL
https://rosap.ntl.bts.gov/view/dot/8476.

[30] Nise, N. S., Control Systems Engineering, 3rd ed., John Wiley Sons, Inc., USA, 2000.

[31] Blakelock, J. H., Automatic Control of Aircraft and Missiles, 2nd ed., John Wiley & Sons, Inc., 1991.

[32] Ba, J., Kiros, J. R., and Hinton, G. E., “Layer Normalization,” ArXiv, Vol. abs/1607.06450, 2016.

[33] Moro, L., Paris, M. G., Restelli, M., and Prati, E., “Quantum compiling by deep reinforcement learning,” Communications
Physics, Vol. 4, 2021. https://doi.org/10.1038/s42005-021-00684-3.

[34] Glorot, X., and Bengio, Y., “Understanding the difficulty of training deep feedforward neural networks,” Journal of Machine
Learning Research - Proceedings Track, Vol. 9, 2010, pp. 249–256.

[35] Kingma, D., and Ba, J., “Adam: A Method for Stochastic Optimization,” International Conference on Learning Representations,
2014.

22

3
Literature Review

This chapter presents a literature study on the basic topics of this research. It includes a literature
review of (Automatic) Landing Systems, its phases, components and requirements, a review of the
basics of Reinforcement Learning, its most common frameworks, the state-of-the-art and its challenges.
Additionally, a brief review of the related work is also presented for each of the topics. 1

3.1. Automatic Landing Systems
Automatic Landing or Autoland are systems that have been developed to land an aircraft completely
autonomously, allowing landings to happen in weather conditions that would have been dangerous or
completely impossible otherwise. This chapter serves as a basis for understanding how such systems
work and their characteristics. Section 3.1.1 outlines the Landing procedure, including the flight phases
involved in such process, the instrumentation and requirements needed to perform it safely, and how
automatic landing is performed. Section 3.1.2 provides an overview of the state-of-the-art methods
that are currently used in aviation as well as modern propositions for ALSs. Section 3.1.3 presents the
main challenges faced in autonomous landing and how these affect the field. Section 3.1.4 concludes
the chapter with a short summary of what has been discussed in the chapter and uses its findings to
answer research questions RQ1.1, RQ1.2, RQ1.3.

3.1.1. Aircraft Landing Basics
The first section of this chapter is dedicated to the description of the basic concepts of landing, its
phases, the aiding instruments, and the regulations imposed upon the landing process. This part of the
research is done in order to introduce the topic of landing, set the basis for understanding automatic
landing and identify parameters relevant to the control problem.

Landing Phases
The landing procedure of an aircraft represents a minor part of the entire flight, however, together
with the approach phase, it represents the most critical for fatal accidents [8]. Generally, the landing
procedure is considered to be composed of four phases: Glide slope descent (or final approach), Flare,
Touchdown, roll-out [50]. The glide slope descent is the landing phase where the aircraft is aligned to
the airfield and begins to descend a predefined straight flight path leading directly to the runway’s centre
line. The flight path to be followed by the aircraft has a standard angle of -3 degrees for most airports,
though this value may vary slightly [55]. Whilst the gliding slope descent path ensures that the aircraft
approaches the landing point at the correct position, the glide angle ensures that the aircraft lands at a
stable descent rate [67]. Figure 3.1 shows the glide slope path along with the other 3 landing phases.

1Chapter 3 - Literature Review of the report has already been assessed as part of the AE4020 Literature Study course.

29

3.1. Automatic Landing Systems 30

Figure 3.1: Aircraft Landing phases, retrieved from [10]

During the final approach, the aircraft has a sink rate of 6 to 16 ft/s, which is too fast for routine
landings in general aviation, therefore, in the final part of the descent the pilot performs a manoeuvre
termed flare to reduce the sink rate below 0.9 m/s, or 3 ft/s, [50]. In this operation, the aircraft
transitions its descending attitude to an effective landing attitude. During the flare the aircraft follows a
curved path by pitching up and reducing the altitude rate, bringing the flight-path angle (γ) to nearly null.
This procedure changes the aircraft’s attitude and sets it up for a soft touchdown, improving passenger
comfort andminimising landing gear impact. The Flare manoeuvre occurs at a height between 30−15ft
depending on the situation, aircraft type and weight. The flare path is an exponential curve described
in equation 3.1, where h(t) is the altitude as a function of time, h0 is the initial height of the flare, e the
exponential function, t the time and τ a time constant.

h(t) = h0e
−t
τ (3.1)

The final two phases of the landing are the touchdown itself and the roll-out. Touchdown is char-
acterised by the landing itself, in other words, the gentle touch of the aircraft’s landing gear onto the
landing surface. To ensure a smooth and safe landing certain parameters, such as altitude rate, hor-
izontal velocity, pitch angle and the touchdown point, must follow certain thresholds. The analysis of
said parameters at touchdown can also be used to evaluate the performance of a specific landing. In
this case, it is assumed that, if the parameters at touchdown are within acceptable bounds, it means
that the preceding phases of landing must have been performed correctly. The landing, however, in
some definitions, is not finished after touchdown, the aircraft is still required to follow the runway and
decelerate to taxiing speed, this phase is known as roll-out.

Instrumentation & Requirements
As with many procedures in aerospace, landing requires the use of multiple instruments and aiding
systems. According to [52], there are two main ground-based systems that are required to perform
landing: 1. the Instrument Landing System (ILS), which is divided in (i) localiser - LOC, glideslope -
G/S and possibly (iii) beacon markers, and 2. Radio Altimeters. The onboard equipment is limited to
suitable receivers and computers that are able to process the information provided by the ground-based
equipment.

Fist, the Instrument Landing System (ILS) is a navigation-aid system that provides short-range
lateral and vertical guidance for aircraft during the landing procedure. The ILS was developed shortly
before World War II and it used a complex system f signals and antenna arrays. Nowadays the ILS
consists of a localiser antenna (LOC), a glide-slope antenna (G/S) and a beacon marker. Whilst the
LOC provides lateral guidance to the aircraft, the G/S provides vertical guidance by means of a descent
flight path; The working principle of them is virtually the same. These two systems consist of antennas
transmitting two signals that have been modulated at 90 and 150Hz, such that the receiver can discern
them, see figure 3.2. The antennas are positioned in the same place such that the emitting point of
the signals is the same. The direction in which the signals are transmitted however is slightly different,
this allows the aircraft to receive both of them with varying strengths depending on its position relative
to the antenna. The beam directions, however, point in such a way that the aircraft is in the correct
position only when the strength of both signals is the same. This is how the pilot is informed whether

3.1. Automatic Landing Systems 31

the desired path is being followed or not. The LOC indicates if the aircraft is aligned to the centre line
of the runway and the G/S indicated if the aircraft is following the correct glide-slope path (of around
−3 degrees). The remaining component of the ILS is the beacon markers, which provide the aircraft
with information about its distance from the runway, this system is not entirely necessary due to the
development of other positioning systems such as the Distance Measuring System (DME) and more
recent enhancements to the Global Positioning System (GPS).

Figure 3.2: ILS Working principle, retrieved from [50].

The ILS feeds safe information to the pilot that can be used in bad weather conditions, then allowing
landing to take place in situations that otherwise would not have been possible. Weather conditions
and the use of ILS is classified through visibility limitations known as weather minima. Low visibility
conditions are given in terms of two aspects: Runway Visual Range (RVR) and Decision Height (DH)
[50]. The former refers to the distance over which the pilot can see the centre line of the runway, this
value is instrumentally-derived. The latter refers to the decision point in the final approach where the
pilot has to decide if there is enough visual reference to continue descending and landing. During
landing, the traffic controller informs the pilot if the RVR is above the minimum requirement, allowing
the aircraft to descend to decision height, where the pilot must decide if a sufficient segment of the
runway can be seen or not. In a positive case, the pilot proceeds to landing, in the negative, the pilot
must execute a missed approach, enter a holding pattern and prepare for another landing attempt, or
diverge to an alternative airport.

RVR and DH quantities are determined as limiting factors by national licensing authorities - Interna-
tional Civil Aviation Organisation (ICAO), Federal Aviation Administration (FAA) and Joint Aviation Au-
thorities (JAA) (European Union Aviation Safety Agency - EASA). A graphical representation of ICAO’s
main categories is presented in figure 3.3. Furthermore, each landing category has additional specific
requirements on airport equipment, avionics and crew (pilot license and training) [1]. These additional
requirements are not further discussed, since it falls outside of the scope of this project, however, they
are summarised as:

• CAT I: ILS, beacon markers and can be performed with a single pilot.

3.1. Automatic Landing Systems 32

• CAT II: Additional to CAT I, it requires a Dual ILS receiver, Radar Altimeter, Autopilot coupler
or dual flight director, and can only be performed in the presence of two pilots and additional
miss-approach attitude guidance (go-around)

• CAT IIIa: Additional Fail-passive (dual) Autopilot or Head-Up Display (HUD)
• CAT IIIb: Additional Fail-operational (triple) Autopilot and Automatic Roll-out
• CAT IIIc: Has no additional requirements, since it has not been approved anywhere in the world,
at the present moment.

Figure 3.3: Graphical representation of ICAO’s landing Categories, retrieved from [52]

Furthermore, certain landing conditions - e.g. CAT II & III - require the use of Radio Altimeters (RA)
to inform the aircraft about its height. Radio Altimeters are mainly used during instrument approach and
landing, low level and night flight under 2500ft. During landing it is the RA that provides the primary
information about decision height and altitude. This system employs radars to estimate the aircraft’s
altitude above the terrain and the working principle of the device is based on time difference. The
antenna transmits a signal from the aircraft to the ground, and the time it takes for it to travel to the
ground, reflect and return to the aircraft is computed. The wave’s travel time is used in combination
with the wave’s speed - the speed of light - to estimate the aircraft’s height Above Ground Level (AGL)

Additionally, ICAO has also determined Aircraft Approach Categories, in which aircraft are differen-
tiated based on their required landing seed as they approach the runway [1]. The main determinant
factor is the aircraft’s size and weight, and the categories serve as a basis for determining if landing
operations are safe to be performed. The ICAO Doc 8168 also provide guidelines for maximum and
minimum descent rate and other parameters. Additionally, there are additional parameters that help
to determine if the landing was performed properly or needs improvement. Table 3.1, retrieved from
[50] presents the constraints that must be followed by aircraft at touchdown to constitute an acceptable
landing of a jet transport aircraft.

3.1. Automatic Landing Systems 33

Table 3.1: Acceptable range of variables at touchdown, adapted from [50]

Metric at touchdown Limit values (95%) Unit Reason for limits
Longitudinal Position Xe -90 +270 [m] Touchdown on the runway with adequate

braking distance
Lateral Position Ye -8 +8 [m] Touchdown with main gear 1.5[m] from

runway edge
Lateral Velocity -2.5 +2.5 [m/s] Limit risk of leaving runway after touch-

down
Altitude Rate -1.8 0.0 [m/s] Limit landing gear/tire damage & passen-

ger comfort
Pitch angle 0.0 +5 [deg] Limit risk of noise-wheel landing or tail

drag
Roll angle -5 +5 [deg] Limit risk of damage to wing tips or en-

gine nacelle

3.1.2. Challenges of Automatic Landing Systems
Approach and landing under all visibility and weather conditions are, in the face of the fatal accidents
in this flight phase and the nature of it, undoubtedly the most difficult manoeuvre a pilot has to perform.
During the landing process, it is required to control the aircraft’s attitude in all three axes simultaneously,
besides controlling vertical and horizontal velocities. As in most automatic systems, the performance
of an autoland system must exceed those of pilots, and provide exceptional guidance and control in
order to be acceptably used. The United Kingdom certification authorities require a minimum reliability
value of 1 in 107 for fatal accidents [52]. These factors make the effective implementation of automatic
landing systems a difficult task at best and reinforce the need for more adaptive and robust control
methods that are capable of providing accurate control and achieving fault tolerance.

An autoland generally makes use of the ILS that indicates the aircraft of its positioning with respect
to the runway. The flight control computer then uses that information to control the aircraft’s control
surfaces and the throttles, such that it follows the desired paths provided by the ILS and maintains the
desired velocity. The flight computer is also responsible for inducing the flare motion of the aircraft at
the correct height - requires accurate height above ground - and activating the auto-brake system once
touchdown occurs. Therefore, autoland requires the use of a radar altimeter to determine the aircraft’s
height above the ground very precisely so as to initiate the landing flare at the correct height. Most
Autoland systems can operate with a single autopilot in an emergency, but they are only certified when
multiple autopilots are available.

Additionally, automatic landing systems make use of various Automatic Flight Control Systems
(AFCS) present in the aircraft, such as longitudinal and lateral autopilot modes (Pitch attitude, Air-
speed, Roll and heading angle, amongst others), and navigational autopilot systems (Glideslope hold,
automatic flare, amongst others). The ALS receives multiple inputs from several systems at the same
time, and the failure of a single system could result in catastrophic situations. Therefore, Automatic
landings require high degrees of redundancy and to be failure tolerant (fail-active). For example, the
failure of one of the automatic systems during flare or roll-out could cause the control surfaces to fully
deflect in one direction, known as ”hard over”, which due to the proximity to the ground during landing
could result in fatal accidents. Autolandings are also fail-passive, which means that they are able to
detect if it cannot perform its task, warn the pilot if this is the case, turn itself off and hand over control
of the aircraft; ideally, this would happen before decision height, such that the pilot is able to determine
whether to continue with the landing or perform a missed approach. The majority of the automatic
landing systems are capable of performing their tasks with a single autopilot, however, they are only
certified to do so when multiple are available [52].

From the control point of view of ALS, currently, the majority of automatic landing systems present in
general aviation strongly rely on traditional control techniques - e.g. PID controllers. The reason behind
this choice is that classical control methods are efficient, relatively simple to implement, and reliable
[66]. However, the downsides of PID controllers are their (i) high dependence on mathematical models,
(ii) they may require lengthy tuning, (iii) are not suitable for non-linear and complex systems, and (iv)
present significant performance decrease when uncertain/unpredicted factors are present. Additionally
and related to the use of traditional control methods is the fact that the majority of ALSs proposed in

3.1. Automatic Landing Systems 34

the literature are modelled based on linearised aircraft models. By doing so the longitudinal and lateral
aircraft dynamics may be separated into two independent models, which allows the use of separate
controllers for each aircraft mode of motion [55]. That means that the aircraft’s equations of motion only
represent the condition in which they have been linearised in. Hence, the performance of the controller
decreases as the aircraft’s dynamics move away from the nominal condition.

The automatic landing system design problem consists of controlling various states of the aircraft,
making it a complex system. The variables related to each state must be carefully controlled in order to
maintain the aircraft stable and comply with aerodynamic, structural and even regulatory requirements.
To summarise, the challenges imposed to both reducing aircraft accidents, discussed in the introduction,
and the development of better ALS control systems arise from two sources:

1. Unpredictable landing conditions: (i) external disturbances - severe turbulence and severe wind
conditions - and (ii) component failure - actuator, engines, systems -, and

2. The aircraft dynamics: inherent aerodynamic characteristics, such as drag and lift changes due
to speed and mass changes, or centre of gravity changes.

The majority of the development in ALS in recent years has been the improvements of tools and
aiding systems, such as Distance Measuring Systems (DMEs), Global Navigation Satellite Systems
(GNSSs), ILSs, etc. [43]. The advance in the ALS aiding tools allow for further development of ALSs
themselves, through the use of modern control techniques, the use of newly developed systems. An
example of this would be the use of a Global Positioning System (GPS), as of now GPS is not accurate
enough to be used in high-precision systems such as ALS, however, recent developments in the field
lead to believe that it will be sufficient in a close future [10]. According to [44], there has been little
progress in the field of landing flight control using Neural Networks, Dynamic inversion, linear dynamic
compensator, Platform Controller Hub (PCH) blocks, etc. This is one of the motivators for this thesis,
which has as one of its goals to contribute to the development of enhanced control methods for ALSs.
Regarding the control portion of automatic landing systems, the challenges to be overcome relate to
the uncertainties related to the inherent characteristics of landing an aircraft. That means that it is
necessary for future ALSs to be adaptive and as well as robust, in order to deal with the ALS issues,
defined as: Unpredicted disturbances and changing dynamics, of both the aircraft and its surroundings.

3.1.3. Related Work
The previous section of this chapter defined the two main issues encountered in the development of
automatic landing systems, in order to identify the aspects of ASL control that have to be improved
in this thesis. Once this has been done it is important to analyse what has already been done and
proposed, in practice and in literature, in an attempt to mitigate the identified issues, such that the
research herein performed is not redundant and/or does not follows paths that have already been
proven to be inefficient.

One of the most common methods found in the literature for ALSs involves the use of optimal
control. The optimisation of a predefined cost function over a period of time through determining the
control and state trajectories in order to find the control of a dynamical system is subject to a field
known as Optimal Control. One of the most relevant works utilising this technique in ALSs has been
proposed by [60], which uses a combination of H2 and H∞ control. In their work, H2 control is used
to determine the optimal trajectory, taking into account the predefined and the actual trajectories of
the aircraft. Subsequently, H∞ is used to minimise the effects of disturbances in the performance
output. Their study, however, is limited to the longitudinal mode of the aircraft and is represented by a
linearized model. These two facts make their system suffer from the same flaws observed in current
ALS methods, that is, they are limited to certain flight envelopes and have decaying performance as
the aircraft moves away from trimmed condition. [15] proposed a method that utilises H∞ and stable
inversion to provide robust control and accurate tracking. The results of their testing were positive,
however, they only included longitudinal dynamics and the tracking was performed offline based on the
desired trajectory. Having those characteristics in mind, [39] developed a landing system flight control
based onH2 that is fault-tolerant and takes into account wind disturbances. Their tests were performed
using a high-fidelity fighter aircraft model and showed margin errors within 10 m lateral deviation and
5m in the longitudinal case. However, the designed controller is still limited to linearised models of the
aircraft. Yet another combination of robust H∞ is proposed by [66], the paper described and achieved
good results in the study of severe wind conditions during landing performance. Figure 3.4 shows

3.1. Automatic Landing Systems 35

the performance of the developed controller under moderate downbursts. Once again, the paper only
considers longitudinal dynamics in its tests and the controllers were only designed for the Flare phase
of landing.

(a) Moderate downbursts (b) Severe downbursts

Figure 3.4: Glideslope descent and Flare paths, from [66]

Sliding Mode Control (SMC) is a nonlinear control technique that involves the use of discontinuous
control signals to alter the controlled systems normal dynamics, control is achieved when the system
is forced to ”slide” along a cross section of its normal behaviour. There have been some papers that
utilise of this technique to be applied in ALSs, such as the works of [55] and [32]. In the first paper,
SMC is used to control the aircraft control surfaces and throttle such that the errors of the actual path
in relation to the desired path are close to zero. Tests were performed using the HARV (High Alpha
Research Vehicle) aircraft model, in which the aircraft is left to perform landing at a position with a large
offset from the correct flight path. The results showed that the designed controller presents higher
performance if compared to classic PID controllers. However, there has been no tests under adverse
conditions. The latter SMCmethod, on the other hand, focused its study on severe wind conditions and
random actuator failure The authors developed a neural-aided SMC control method, which contains
three different controllers. The tests presented in this paper showed improved performance compared
to the performance of an earlier system designed by the authors.

Dynamic inversion has been successfully implemented as a model-based control law methodol-
ogy that uses dynamic inversion in the F-35 fighter [27] [12]. It is the first time such a technique is used
to enhance the performance qualities of an aircraft in such a wide range of speeds, from zero to super-
sonic, and activities, such as short take-off and vertical landing. This is the most notable application of
dynamic inversion and the fact that it has been successfully applied to flight control corroborates the
use of such technique in automatic landing systems.

Artificial Neural Networks or simply Neural Networks (NNs) is a bio-inspired technique which
simulates the neurons and connectors existing in the brain of animals. It has been utilised and proved
to be a powerful tool to approximate functions and identify patterns. Approximating functions is highly
important in the field of control engineering, hence, it is not a surprise that the use of NNs has reached
the field of autonomous landing systems. [34] took on a project to prove that NNs could significantly
improve the performance of conventional landing systems. In the paper five different controller designs
are tested against a conventional controller. The controllers were designed according to the following
architectures: conventional back-propagation network (BPN) , Counter-Propagation Network (CPN),
Improved BPN (IBPN), Radial Basis Function Network (RBFN), and Multilayer Functional-Link Network
(MFLN). The results of the tests show that if properly trained and implemented, NNs can be of high
value in ALSs. Figure 3.5 shows the performance of the controller trained faith the conventional BPN
structure against the desired landing path. The simulations, however, only utilised a simplified model
of a commercial aircraft and only simulated longitudinal and vertical movement. Furthermore, other
NN base controllers have been proposed, [45] compares the performance of 4 different controllers,
utilising Neural Networks, PID, a combination of both, and a combination of NNs and fuzzy logic. The
simulations take wind into account and showed that classic PID has acceptable performance under

3.1. Automatic Landing Systems 36

nominal conditions, but it does not under windy conditions. The neuro-PID and Neuro-Fuzzy controller,
however, presented acceptable to good performance in nominal and windy conditions. The simulations
were, once again, only performed in the longitudinal direction.

Figure 3.5: Glideslope and Flare paths of the BPN controller, retrieved from [34]

There are many more methods that have been proposed in literature, however, mentioning all of
them and describing the results of each one of them would prove not viable to be added to this report,
however, interesting. Hence, a general overview of control techniques, its advantages and disadvan-
tages is presented in table 3.2. It is important to note that Gain scheduling is not a control method in
itself, but an approach to control non-linear systems using linear controllers, however, it brings with it its
own characteristics and it is often used applied to some of the methods presented in the table, hence
it has been added to it.

3.1. Automatic Landing Systems 37

Table 3.2: Overview of Control Methods and their characteristics

Control Method Advantages Disadvantages
Classic control (PID) Widely used, simple implementa-

tion, reliable under nominal situation
[66]

Lack robustness [66], require tun-
ing, limited performance, do not
handle: linearities, complex sys-
tems and uncertainties

Gain Scheduling* Available for broad flight envelopes
[67]

Additional extensive design process
[67]

Optimal Control Optimise a property of choice (cost
function) [49], Rapid response, mul-
tivariable control

Limited to linearised aircraft models
[55], inherently complex, limited per-
formance in problems with multiple
optima [49]

Robust Control Allow for use in multi-variable sys-
tem problems [66], static policy, al-
lows for best achievable closeed-
loop performance (within required
robustness) [41]

Depend on model accuracy, limited
performance in problems with multi-
ple optima [49]

Sliding Mode Con-
trol

Explicit control law, does not require
aircraft model linearisation [55], in-
sensitive to disturbances and uncer-
tainties [13], adapts to changing pa-
rameters [49]

Errors might not converge in finite-
time, may suffer from singularities
[13] High frequency commands [49]

Dynamic Inversion Cancel non-linearities, closed loop
behaves as a stable linear system,
simplicity in control structure [44]

may inherently suffer from lack of ro-
bustness [13]

Backstepping Can be used recursively Require measuring of all state-
variables, sensitive to parameter
variation

Adaptive Control Adapts to unknown environment
[49], decrease non-linearities due
parameter changes

Prone to instability, computationally
involved [49], adaptation loops has
to be slower than control loop, re-
quires model of the system (?)

Neural Network Approximate unknown system [44]
(no exact model is required), possi-
bly applied for feedforward control

Performance dependent on training
set [15], require adjustment of large
amount of parameters, stability is
not guaranteed, essential to choose
size and structure

Fuzzy Logic Control Intuitive design, Exact model is not
demanded

Uses trial and error for optimisation
(might require long time), stability is
not guaranteed, require several tun-
ing parameters

* Gain scheduling is not exactly a method on its own, but a technique that is often used in control of non-linear
systems, which comes with its own characteristics, hence it has been added to this table.

3.1. Automatic Landing Systems 38

3.1.4. Conclusions
The Literature survey presented in this chapter has the aim of introducing the topic of Landing Systems
and the complex task of performing them automatically. This chapter explained that landing can be
divided into four phases, namely: glide-slope descent, flare, touchdown and roll-out, and that an ALS
must be capable f performing all of those automatically and safely. Additionally, comprehension of
landing systems allows for the understanding of which parameters play a role in the process and how
they affect the aircraft, it also provides the basics for the design of a controller framework. Additionally,
the content presented in this chapter is used to answer research sub-questions Q1.1/2/3 as well as Q1
itself.

Q1.1 What are the current methods utilised?

This question is partially covered in the introduction and it is part of the motivation for this thesis.
The vast majority of automatic landing systems utilise classical control theory, i.e. PID controllers, or a
modified version of it. The main reason for that is the fact that classical control methods are efficient,
relatively simple to implement, and reliable. However, these methods in general lack robustness, often
require lengthy tuning, are designed to be used in linear systems and not complex systems, and cannot
handle uncertainties, amongst others. Therefore there have been a wide variety of landing systems
that have been proposed. Section 3.1.3 presented some ALSs that use alternative control methods,
such as Optimal Control, Sliding Mode Control, Dynamic Inversion, and Neural Networks. Additionally
table 3.2 has been made containing control methods and their advantages and disadvantages. It is
also observed that the majority of landing systems are only tested in longitudinal motion, leaving lateral
motion aside. Many of them also utilise linearised models of aircraft for their tests. Both of these
simplifications/assumptions are acceptable if the aircraft’s attitude and movements do not deviate from
the nominal condition, however, in reality, that might not be the case and exceptional circumstances
are not such a rarity.

RQ1.2 Under what circumstances do these systems become faulty?

Section 3.1.2 presents the challenges faced in the current ALSs, and as stated before, themajority of
autoland systems rely on classical control theory, which brings inherent issues, mentioned in the answer
to Q1.1, to the final system. Additionally, the nature of the problem of automatic landing makes ALS
a very complex system, which has to deal with changes in the environment and control of the various
states of the aircraft. These factors can be summarised in two main challenges of ALS, that represent
the situations where the systems become faulty: 1. Unpredictable landing conditions: (i) disturbances,
severe turbulence and severe wind conditions, and (ii) component failure, actuator, engines, systems,
etc., and 2. The aircraft dynamics, inherent aerodynamic characteristics.

RQ1.3 What are the requirements for such systems? (airfield, weather conditions, onboard
equipment...)

Automatic landing systems heavily rely on the use of aiding systems that provide information to
the aircraft. This is logical since the ALS has to have information about the aircraft’s position, course
and attitude in order to properly control it. There are three airfield and equipment conditions that are
necessary. It is required that the airfield possesses an ILS, to provide lateral and vertical guidance, a
Radio Altimeter, to provide accurate height above ground level, and a positioning system, in the past
beacon markers were used to perform this function, nowadays most aircraft are equipped with DMEs,
and in the future, it is expected that GNSSs will be accurate enough for the function. Additionally,
international agencies have divided weather landing conditions into three categories, namely CATI,
CATII and CATIII. Each of them is determined by its Runway Visual Range and has specific Decision
Heights. These categories are used to determine whether the use of ILS is permitted or not and set
several equipment and situation criteria.

3.2. Reinforcement Learning 39

3.2. Reinforcement Learning
Reinforcement learning is an assortment of methods that are based on gathering information to achieve
a certain goal through interaction with the environment. This concept can be applied to multiple areas
and benefits from the contribution of research in a variety of fields, see figure 3.6, most important for
this thesis are two of them. The first is that of learning, more specifically, the branch of study within
Artificial Intelligence (AI) called Machine Learning (ML), that is dedicated to understanding learning
methods, that is, methods that use data and adapt it to maximum advantage and increase performance
in a certain task. This branch of RL is important because it provides the widest set of algorithms [11].
In a simplistic way, ML algorithms develop a function that maps inputs and outputs from a data set.
Reinforcement Learning, however, is a special case of ML, where the algorithm is trained using a
data set, but from their own experience, that is, they learn what works and what does not through
a trial and error processes. The second is more specific to the topic in this research, which is the
field of optimal control, which revolves around the idea of finding solutions and methods to control a
(dynamical) system through optimising a cost function. Reinforcement Learning is a paradigm that is
well-suited for the identification of control methods in highly dynamic systems; As further described in
this chapter, this is due to the inherent relations and similarity that it has with controllers.

This chapter focuses on introducing the fundamentals of Reinforcement Learning, in section 3.2.1,
outlining the approaches and classification of RL algorithms, in section 3.2.2 which also includes RL
methods applied to flight control, in section 3.2.2, and a description of the requirements and the charac-
teristics that are desired in the algorithm to be used further in this thesis project in section ??. Section
3.2.3 and 3.2.4 introduce two families of state-of-the-art algorithms, it briefly describes each of the most
prominent algorithms of each family outlining its characteristics, strengths and weaknesses. Section
3.2.5 delves into the topic of adaptive and robust control with the goal of proposing a framework to
be used further in this project. Finally, in conclusion to this chapter, a brief summary of its findings is
given in section 3.2.6, and the findings of the chapter are used to answer research questions RQ2.1
and RQ2.2.

3.2.1. Reinforcement Learning Basics
RL differs from other ML paradigms, such as Supervised learning and Unsupervised learning, in terms
of its goals and applications. In the former algorithms learn to predict values and classes based on a
labelled data set, whilst in the latter algorithms focus on identifying patterns and clustering an unlabeled
data set, Reinforcement learning deals with finding (optimal) behaviour in a given environment, based
on the environment’s feedback. There are multiple uses and applications for Reinforcement Learning,
this is due to the broad and general concept of the RL problem. This makes an overlap betweenmultiple
fields and the use of RL. In this thesis, however, the main concern is the application of Reinforcement
Learning in the engineering field, more specifically in the sub-field of Control engineering. By reason
of completeness, figure 3.6 presents a ven-diagram containing the fields in which RL is influential and
the term given to its overlapping correlations.

The following subsections describe the elements and sub-elements that play a role in the RL prob-
lem formulation, and the fundamental concepts and how they are used to expand the RL paradigm.

Agent-Environment Interaction
To its bare-bones Reinforcement Learning is the process of learning from interactive experiences, in-
spired by how animals learn through the evaluation of the consequences of their actions to their sur-
roundings. To elucidate and construct a formal definition, the entities in the problem at hand are labelled
the agent and the environment. The former is the decision-maker, or the controller, and is charged
with the task of deciding what actions to take, it is also the agent of the learner in this problem. The
latter is also called a plant and it is simply the environs surrounding the agent. It is characterised as
everything else other than the agent, including the system in which the agent finds itself in.

In the reinforcement learning problem, it is the agent’s task to learn how to behave such that the
environment is altered and reaches a desired state. The agent-environment interaction occurs by
means of actions that the agents take to manipulate the environment. In turn, the environment-agent
interaction occurs through observations, or states, and rewards. The agent’s decision of what actions
to take is a conjunction of two factors, the interpretation of the environment’s situation (state) and the
feedback that the environment gives upon each action of the agent (reward). It is important to note that
rewards can be positive, in case the agent takes a ’good’ action, and negative, in case the agent takes

3.2. Reinforcement Learning 40

Figure 3.6: Ven-diagram representing the fields of Science where there is RL contribution, retrieved from [26]

a ’bad’ action. The concept of ’good’ and ’bad’ has nuances, it is not necessarily a binary problem and
specific reward functions are designed for each problem such to clarify this definition. As discussed in
section 3.2.2, it is a difficult task to translate the goals of the agent to a mathematical function, and it is
the root of many problems. A diagram exhibiting the reinforcement learning problem and the interaction
between its elements can be seen in figure 3.7.

Figure 3.7: Reinforcement Learning Diagram, retrieved from [63]

The Reinforcement Learning problem can be analogous to the problem studied in the field of control
theory. Comparing figures 3.7 and 3.8 it can be seen that the terms agent, environment and rewards
states can be analogous to the terms controller, controlled system (or plant) and control signal (or
sensor signal), respectively, from the field of engineering. As shown in figure 3.6 reinforcement learning
is utilised in a wide variety of fields and the analogy herein made between the RL and the control
problem can be made in the other fields as well. Hence, for the sake of consistency amongst the
different fields, RL adopts a more general terminology for its elements and processes such that it is
meaningful and accessible to a wider audience. Nonetheless, reinforcement learning is a paradigm
that is well-suited for control applications in highly interactive and dynamic environments.

Additionally, it is important to note the difference between observations and states. Although it is not
the case, in literature these terms are most often used interchangeably. Whilst states need to contain

3.2. Reinforcement Learning 41

Figure 3.8: Feedback-loop, analogous to the control problem, retrieved from [16]

all available information, observations only contain the sub-section of the information that is available
to the agent. To be considered true states, observations must comply with the Markov Property, which
is discussed further in the document. However, it suffices to understand that oftentimes observations
contain enough information, i.e. are considered almost Markov, and hence are sufficient to solve the
reinforcement learning problem. This distinction is made here because it in certain cases observations
do not hold enough information to support a classic RL system, and hence need adaptations.

Markov Decision Process
The concepts presented in the previous paragraphs represent the theoretical idea of reinforcement
learning, or one interpretation of the learning process as it happens for animals, including humans,
through experience. In order to mathematically solve this problem it is necessary to introduce a for-
mal definition for it. The most common formalisation utilised in the RL world is the Markov Decision
Process (MDP). Note that this process is not the only formalisation and it does not fit all RL problems,
however, it describes the vast majority of modern reinforcement learning, hence it is the one presented
in this document. In short, the reinforcement learning problems can be described as finding the best
sequence of actions that result in the optimal outcome, that is, that generates the highest cumulative re-
ward. TheMDP has its origins in the field of optimal control and it is defined as a discrete-time stochastic
control process for sequential decision-making. According to [63], the world of reinforcement learning
has much to thank for the concept of Markov decision processes.

The Markov decision process is defined using four elements: a state, an action, a reward and a
probability, whose mathematical representations are S, A, R, and P , respectively. If the state and
action spaces (the set of all possible states, or actions) are finite, the process is referred to as a finite
MDP, which is the most important case for understanding the theory of reinforcement learning. In
an MDP the agent interacts with the environment in sequential discrete time steps (t1, t2, t3, ...). In
each time step, the agent receives information about the environment’s state St, the agent ponders
the situation and takes an action At based on the state. The action taken alters the environment,
hence in the next step, the environment is in a different state. The new state St+1 is sent to the agent,
along with information about the reward Rt+1 as a form of a feedback of action At, which shapes the
next action At+1. The process occurs sequentially, generating a series of states, actions and rewards,
represented by S0, A0, R0, S1, A1, R1, ...; this set of data is denominated the trajectory. A new state-
action pair is the result of previous state-action pairs, and the probability of either of them happening
is given in equation 3.2. The probability of the agent moving from a specific state to another is named
the transition probability.

P (s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s,At = a} (3.2)

Additionally, it is assumed that all MDPs follow the Markov Property, which states that ”future is
independent of the past, given the present”. The Markov property implies that the present state of the
environment holds enough information about its past that the future can be predicted without the need
for information about its past, hence it can be described as memoryless. A state S is said to be Markov
if and only if

P (St+1|St) = P (St+1|S1, ..., St) (3.3)

With the exception of most board games and certain physics problems, real-life situations rarely
comply with the Markov property. Although, problems are often nearly Markov, hence state signals
should be chosen or constructed in such a way that they characterise a Markov property as much as

3.2. Reinforcement Learning 42

possible, which oftentimes is sufficient. The equations above and the explanations herein presented
consider a finite MDP, this is done to simplify representations, but can easily be adapted to continuous
MDPs.

According to [11] MDPs, and by default reinforcement learning, have two big advantages when
applied to control systems:

1. Generality - MDPs are able to deal with nonlinear and stochastic systems, and also can use
non-quadratic reward functions.

2. Model-independence - MDPs can be model-free, meaning that a model of the system’s dynamics
is not always necessary.

Additionally, [11] also mentions that the downside of classic MDPs is the fact that they work in discrete
time, which is non-realistic. However, this problem can be easily mitigated when MDPs are paired to
function approximators, considering that powerful approximators have already been developed, this
problem can be mitigated. The use of approximators is necessary and plays an important role in this
project, hence will be discussed in greater depth further in the report.

Return, Value functions and Policy
In the RL problem, the agent’s goal is to maximise the amount of reward it can get, which means
not only the immediate reward but also the long-term reward. Hence it has to find a rule or strategy
that allows the agent to choose the actions such that the reward is maximised in the long term. In
reinforcement learning terms, the cumulative reward is represented by equation 3.4, where Gt is the
cumulative reward at time step t, r is the immediate reward, and γ is a discount factor. The discount
factor is included in the formulation in order to balance the future and the immediate rewards, and its
value varies from 0 to 1 it determines how relevant future rewards are, and by default, how much they
influence the current decisions of the agent. This factor allows the designer to have more, or less,
control over the agent’s behaviour. For example, when γ is null, the agent will only concern itself with
immediate rewards and will only take greedy actions.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... = rt+1 +Gt+1 (3.4)

The law that rules the agent’s decisions is referred to as the policy. It is mathematically represented
by π and it is the strategy that the agent employs when taking decisions and it is essentially mapping
from state to action. In an MDP different policies in the same situations will have different transition
probabilities. It is important to note that policies can be deterministic or stochastic, deterministic policies
directly map states to actions, whilst stochastic policies define the probability of each possible action for
each state. Hence a deterministic policy can be seen as a stochastic policy that assigns a probability
of 1 to one only possible action in each state.

Furthermore, almost all reinforcement learning algorithms make use of value functions. These
are functions that determine how advantageous it is for an agent to be in a particular state - in case of
state-value functions, or how advantageous it is for an agent to take a certain action in a certain state
- in case of (state-) action-value functions. The notion of benefit, in this case, is determined by the
expected future rewards, or returns, and varies depending on the policy being followed. Hence, value
functions are mathematically defined as functions of the policy, and are formalised in equation 3.5 for
an MDP. In this case, a state-value function defined as vπ, and it is the expected return when starting
in state s following policy π, and the cumulative reward Gt is defined in equation 3.4.

vπ = E{Gt|St = s} (3.5)

Similarly the state-action function qπ(s, a) under policy π is defined in equation 3.6, and it has similar
working as the state-value function, only with the additional influence of the action on the return value.

qπ(s, a) = E{Gt|St = s,At = a} (3.6)

Additionally, some reinforcement algorithms make use of advantage functions which is defined as
the difference between the state-value function and the state-action function. This function is presented
in equation 3.19, it is used in an important array of algorithms.

Aπ(s, a) = qπ(s, a)− vπ (3.7)

3.2. Reinforcement Learning 43

The Bellman Equation & Optimality
The goal of an MDP is to take the best actions to maximise the long-term reward, e.g. the value
function. Assuming that all the rewards for each state and actions are already known, reaching the
maximum value is only a matter of taking the actions that result in the highest rewards, this would
characterise the policy. However, in reality, the rewards for each state are usually unknown; This is
when theBellman equation becomes important because it defines a necessary condition for optimality.
The Bellman equation reformulates value functions into a recursive form, by doing so the reward of a
state is defined as the possible rewards of future states. The recursive nature of the Bellman equation
allows the rewards to be initially unknown, such that through recursive trial and error, it converges to
the real values. The Bellman equation is described as:

Q(s, a) = r(s, a) + γmaxaQ(s′, a) (3.8)

Where Q is the (Quality) Q-Value function, which represents the cumulative reward form being in
state S and taking action A. The equation is formulated as the immediate reward for taking an action,
or r, added to the highest possible reward of being in state S′ after taking action A, or maxaQ. The
latter part of the equation is multiplied by the discount factor γ which is a fixed variable that determines
the relevance of long-term rewards; this value might change from problem to problem.

Summarising, the Bellman equation is a tool that can be used to solve problems formalised by
the Markov Decision Process, such as many of the reinforcement learning problems. This process is
done through finding optimal policies and value functions, using the Bellman equation, in order to
maximise of long-term rewards.

Exploration & Exploitation
There is a paradigm in the context presented above related to how actions are chosen. The goal of
MDPs is to maximise the cumulative rewards, therefore the agent is inclined to only choose actions
that it knows result in good/positive and high rewards. However, if placed in an unknown environment,
the agent does not know all the possible rewards, and sometimes it must take ”bad” actions in order to
make ”batter” states available, and only then being able to maximise the rewards. Therefore, theremust
be a trade-off between exploration and exploitation, such that the agent can accumulate rewards by
taking actions that it knows to be effective, but it also must select actions that it has not taken before in
order to discover which are the most effective actions, and states.

The agent is never able to fully exploit the environment if it does not explore it. However, it should
progressively switch its focus from high exploration in the initial stages of training to high exploitation
towards the end of the training process.

Design Choices
Reinforcement Learning is a wide field which embraces a large variety of methods with their own char-
acteristics. However, there are high-level concepts that can be used to group algorithms together as
well as aid algorithm selection through design choices. These choices relate to model dependency,
the manner in which the algorithm updates its policy, whether learning happens in real-time or not and
what functions it estimates.

Model-based vs Model-free
At the highest level, RL algorithms can be separated inmodel-based andmodel-free, this distinction

is made based on whether an algorithm requires a model of the environment or not to function. Contrary
to intuition a model-based algorithm does not necessarily require that the model of the environment is
known in advance. This leads to another distinction among model-based algorithms, which is between
those that learn the model and those that require a given model.

The main advantage of model-based methods is that, once the model has been given/learned the
agent is able to plan ahead by predicting the future and analysing the possible results of different actions
[63]. Model-based methods are also extremely sample efficient allowing for online implementation.
The downside of model-based algorithms is that often times their agent is only as good as the model it
uses, that is because models of the environment are merely models and they contain flaws to varying
degrees, this means that frequently model-based algorithms might perform well with respect to its
model, but poorly in the real world. Additionally, model learning can be extremely difficult and might
require intense and lengthy efforts without any certainty of pay-off.

3.2. Reinforcement Learning 44

Model-free methods are those that do not require any sort of model or estimation of the environment
it is in. These methods do not even try to predict how the environment will respond to their actions [63].
The main advantage of such methods is the fact that it does not require a model, this can be very
useful in situations where the environment is not known or rapidly changes (highly dynamic). Model-
free methods tend to be easier to implement and tune, however, forego the potential sample efficiency
that its model-based cousin presents, hence are mainly applied in Offline manner.

On-Policy vs Off-policy
Another distinction that can be made is regarding how the agent in a reinforcement learning problem

uses its policies. EssentiallyOn-policy methods utilise the responses from the environment to evaluate
or improve the policy that was followed when generating those responses, in other words, the policy that
is used to make decisions is updated. Hence, the same policy is used for exploration and exploitation.
Off-policy methods are those that utilise the responses from the environment to evaluate or improve
the policy gathered from other (or previous) policies; in other words, the policy updated is different
from the ones used to collect the data. Hence, different policies are used to generate the episodes.
Off-policy methods are more flexible since there is a decoupling between the learning process and the
agent’s behaviour (policy). However, the possible wide number of collected data and its dissimilarities
might result in high variance and slow convergence. Additionally, according to [51] off-policy methods
can use deterministic policies (due to the use of different policies), but are unstable when paired with
function approximators; Whilst on-policy methods are stable when using function approximators, they
require stochastic policies (due the dual use of a single policy). On-policy methods are usually simpler
and present less variance compared to off-policy, which on the other hand present higher levels of
exploration.

Online vs Offline
Online learning happens in real-time, which means that the learning process happens as data be-

comes available, hence learning happens incrementally as more data arrives. This type of learning is
well suited for situations where data is fed to the agents in a continuous flow and the agent must adapt
to rapidly changing conditions, such as those encountered in highly dynamic environments. Algorithms
that can learn in an online fashion are often times said to belong to the class of adaptive control. On-
line learning is usually reserved for algorithms that have high sample efficiency. On the other hand, in
offline learning, the agent is trained with a predetermined data set/simulation, that is in batches of sam-
ples. Once it has been placed in the real environment its behaviour does not change, independently
of its experiences and the data it collects. Therefore, offline learning is, in a sense, the direct opposite
of online learning. Algorithms that can learn in an offline fashion are often times said to belong to the
class of robust control.

Value-based vs Policy-based
Another worthy distinction that can be made is between value-based and policy-based methods.

The former operates by estimating and optimising the quality of states that the agent finds itself and/or
actions the agent (might) take. The policy to be employed then is derived from a given state/action.
In this case, exploration is an additional step that is not embedded in the method itself, since it is
naturally greedy and tends to make actions known to be good. Value-based techniques are said to be
indirect because they derive the optimal policy from choosing the optimal state/action value. Policy-
based methods, on the other hand, learn the stochastic policy function that maps the state to action. In
simple terms, it samples the policy from the inputs and outputs of the environment. In this technique,
exploration is included in the process and therefore does not require an add-on. Policy-based methods
are said to be direct since they directly look for the optimal policy [7].

Taxonomy
Finally, after discussing the aspects of reinforcement learning in this section it is possible to create

a basic taxonomy of reinforcement learning algorithms, organised in the diagram in figure 3.9. Note
that this taxonomy only contains basic information and high-level characteristics. Due to RL being an
extremely large field in itself that encloses a number of other fields, as seen in figure 3.6, too many
distinctions can be made and it falls outside of the scope of this project to analyse all and each one of
them, therefore a basic taxonomy is given in this section and it is expanded in later sections as more
specific branches of RL are explored. This characteristic distinction is done to clarify RL algorithms
and to understand where they fit in relation to each other, this allows us to (i) highlight fundamental
design choices, (ii) expose trade-offs, and (iii) place algorithms into context. The distinction concept
of gradient optimisation that branches off from Policy-based methods has not been discussed in this

3.2. Reinforcement Learning 45

section, but in the section 3.2.2.

Figure 3.9: Basic Reinforcement Learning taxonomy

3.2.2. Reinforcement Learning Approaches
Reinforcement Learning encompasses a large variety of algorithms, this is due to the complex nature of
the problem and the fact that there are no clear boundaries between one method and the next. That is
to say that they somewhat blend into each other and can be thought of as a spectrum (see figure 3.10),
where there are areas delegated to certain methods, however, a specific algorithm in a given category
might flirt with characteristics and techniques present in other methods. Section 3.2.2 delves into some
of the most common solution approaches, these are at the basis of reinforcement learning. Section
3.2.2 discusses aspects and measures that must be taken into account when applying reinforcement
learning to continuous spaces, this is important because common RL approaches, presented in the
previous subsection, are based on discrete time only. Section 3.2.2 describes the challenges in the field
of reinforcement learning and how some of them are dealt with. Section 3.2.2 briefly describes some
of the papers that use state-of-the-art reinforcement learning algorithms in flight control applications.
Section 3.2.2 discourses over the topics that have been touched upon previously in the chapter in order
to narrow down the families of algorithms that may be suitable for this project.

Common Solution methods
A common method of dividing RL algorithms is based on their update rule method. [63] identifies three
general classes of approaches to the solution methods of the reinforcement learning problem, namely:
Dynamic Programming (DP), Monte Carlo (MC) methods and Temporal Difference (TD). It should be
noted that these are not the only approaches available and existent, however, these are considered
fundamental frameworks. Additionally, the classical version of these methods considers discrete state
and action spaces, which is not the case for the majority of real-world problems. However, they are
still mentioned because they contain the theoretical foundation for understanding and developing con-
tinuous space methods as adaptations of them circumvent these issues and are widely employed.

Dynamic Programming
The Bellman equation presented previously is the central result of R. Bellman’s dynamic program-

ming created in the 1940s and further developed in the 1950s. DP methods are particularly useful in
solving discrete control problems, however, in their classical form assume a perfect model as an MDP
and can be computationally expensive. These characteristics limit their usefulness in RL problems,

3.2. Reinforcement Learning 46

Figure 3.10: Reinforcement Learning spectrum, retrieved from [63]

nonetheless, they can be adapted to continuous state-action spaces, and serve as the foundation for
understanding more complex methods.

As mentioned previously, optimal policies can be easily computed once the optimal value functions
have been found, hence the usefulness of DP methods. The goal of Dynamic Programming in rein-
forcement learning is to optimise the value function, either the state or the action value functions, vπ pr
qπ, respectively. Dynamic programming can be used to solve problems that satisfy two criteria:

1. Substructure: a problem has to be divided into sub-problems.
2. Overlapping sub-problems: in DP the solution for a specific sub-problem can be used to solve

another sub-problem.

In MDPs both criteria are satisfied by the use of the Bellman equation, where the value of a state
action takes into account the value of the next state. Hence, the value at a state is a combination of
the previous states and the value of the next state is partially calculated in the current state. Two of
the most common methods of DP in RL are Policy Iteration and Value Iteration. These methods are
model-based, require the knowledge of the dynamics, and work offline, require the knowledge of the
reward function.

The Policy Iteration (PI) method consists of two main steps that occur in every iteration, namely:
policy evaluation and policy improvement. The interaction between the two is called Generalised Policy
Iteration (GPI), and fundamentally refers to the idea of simultaneously maintaining an approximate
policy and an approximate value function. Firstly, in each iteration, the value function, defined with the
Bellman equation 3.9, is successively evaluated such that it represents more accurately the current
policy. This is the evaluation or prediction step.

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] (3.9)

Secondly, following the evaluation, a new greedy policy is found which determines the best action
to be taken is the one that returns the most rewards in the shirt term, according to the value function
of the previous policy. Hence, this is called the improvement step, and it characterises a one-step
ahead approach, and it is expressed through equation 3.10. By assuming that the evaluation step is
perfect, the algorithm works on the presupposition that each new policy is an improvement regarding
the previous, unless it is already optimal, which then indicates convergence.

π(s) = argmaxa

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] (3.10)

The Value Iteration (VI) is, from a certain point of view, an improvement from Policy Iteration. This
is because in PI the evaluation process repeats itself until convergence, however, exact convergence

3.2. Reinforcement Learning 47

in intermediate steps are not always necessary and may result in greater computational effort and time.
Several algorithms have been designed to truncate the evaluation step such that convergence is still
guaranteed, value iteration does this by stopping policy evaluation after a single update (one backup
of each state). Equation 3.11 combines the truncated policy evaluation and policy improvement in a
single update step.

vk+1(s) = maxa

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] (3.11)

Monte Carlo Methods
Monte Carlo methods refer to a broad class of algorithms that strongly rely on randomness and

probability distributions to obtain numerical results. In Reinforcement Learning the term Monte Carlo
is used to distinguish solution methods that rely on finding optimal policies. Essentially, MC methods
revolve around the idea of running a series of several trials starting at a specific state in order to observe
how much reward is possibly collected across all possible actions to be taken thenceforth. The value of
that state is then calculated as the average of the total rewards obtained across all trials performed. This
represents the evaluation or prediction step of the process. Similarly to DP methods, MC methods also
utilise the concept of GPI to simulate the interaction between the evaluation and improvement steps.
The improvement step is then done by updating the policy with the use of a greedy value function. The
difference between policy improvement in DP and in MC is that in the latter the evaluation step occurs
on an episode-to-episode basis.

At the end of every episode, the MC agent evaluates how well it performed through the total rewards
accumulated. The agent’s actions however depend on the expected future rewards, which is estimated
by adding increments to previous estimations of the future rewards; Equation 3.12 shows how these
increments are computed using the total rewards accumulated Gt, expected future rewards V (s), and
a discount factor α to control learning rate.

V (St)← V (St) + α[Gt − V (St)] (3.12)

Additionally, the estimation in Monte Carlo methods might occur on a first-visit basis or on a every-
visit basis. In this case, each occurrence of state S within an episode is called a visit. first-visit
methods are those whose estimation of value function is done as an average of the returned rewards
of every first visit to each state S. On the other hand, in every-visit methods the average is calculated
following all visits to each state. Due to the nature of the solution, every-visit MC naturally extends
towards function approximation and eligibility traces.

The use of Monte Carlo methods introduces the learning element of Reinforcement Learning, as
here the agent learns value functions from returns from experience interacting with the environment.
This is different from DP methods, where the agent computes the value function from the knowledge
it already has of the MDP. This means that Monte Carlo methods do not require knowledge of the
environment, meaning that they are model-free methods. Additionally, unlike DP and TD, MC does not
make use of bootstrapping, i.e. the use of estimates in the update of values, rather than an exact value.
A downside is that exploration is complicated in MC methods, this is because choosing greedy actions
happens too often, as the policy is updated on less frequent bases.

Temporal Difference
Temporal Difference is a class of learning methods that are centred around the idea of comparing

temporally successive predictions, in other words, the comparison of states at different points in time.
And it is considered the single most innovative idea in Reinforcement Learning by [63]. Just as the
previous two methods, TD uses the concept of GPI to solve its control problem, i.e. finding the optimal
policy through the estimation of the optimal value function for a given policy. As it can be inferred from
the initial phase of this paragraph, Temporal Difference is an amalgamation of Dynamic Programming
and Monte Carlo methods with the aim of combining the best of both methods.

FromMCmethods, TD inherits the policy evaluation step, where it learns the value functions through
the interaction with the environment, hence does not require knowledge of the environment’s dynamics.
Albeit, unlike MC methods, TD methods do not require that the episode reaches an end to update its
state values, instead it does so after each time step. From DP, TD inherits the bootstrapping character-
istic. Here updates are computed using existing estimated returns known as targets, instead of relying
solely on complete returns with actual rewards. These targets or estimated returns have the general

3.2. Reinforcement Learning 48

form of Rt+1 + γV (St+1). This is best seen in equation 3.13, which is used in the TD(0) method, the
simplest temporal difference method. To summarise the relation between TD, DP and MC it can be
said that TD is naturally implemented as an online and it is fully incremental. Equation 3.13 shows how
TD methods eliminate the need for the episode to end before the accumulated rewards are computed
by introducing the TD target Rt+1 + γV (st+1) at the end of every step. Where Rt+1 is the immediate
reward at step t1 and γV (st+1) the discounted immediate value.

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (3.13)
Referring back to the on-policy and off-policy concepts from the previous section, a complication

regarding maintaining sufficient exploration arises in TD methods. Hence, TD methods can be sepa-
rated regarding how they treat their policies. The difference between the two has been explained in
section 3.2.2, to avoid redundancy and for the sake of completeness, this section only presents the
value estimation equation of two distinct methods. Equation 3.14 shows the value-estimation method
for the algorithm known as SARSA, it can be seen that the TD target utilises the state and action of
the following step, but still uses the current value function Q(St+1, At+1). Hence, characterising an
on-policy algorithm.

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1))−Q(St, At)] (3.14)
On the other hand, equation 3.15 shows the value-estimation method utilised in the Q-learning

algorithm, an off-policy solution. It can be seen that the TD target utilises the state of the following
step, but picks the best action that will result in the maximum state-action value maxQ(St+1, A

∗). It is
important to note that the chosen action is the best at that moment, in the next step, that same action
might not result in maximal values.

Q(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, At+1))−Q(St, At)] (3.15)

RL in Continuous Spaces
The methods described in 3.2.2 have been proven to be very useful and span a wide range of applica-
tions within Reinforcement Learning. These traditional methods were elaborated based on finite Markov
Decision Processes, hence only suitable to discrete-time problems that contain a limited amount of state
action spaces. In these cases, the values in the state and/or action functions can be stored and up-
dated in tabular form, such that the agent has an overview of all gathered information. These methods
are said to be tabular and represent exact value functions and exact policies, an example of such an
algorithm is the previously mentioned Q-learning.

In real life, however, this is not always the case; aerospace systems have to deal with continuous
variables such as attitude angles, rotational rates, and positions. Therefore the classical reinforcement
learning solutions presented in the previous section are not sufficient to create a suitable control system.
A solution would be to transform such variables from continuous time to the discrete-time, but then
two problems arise: (i) information is lost in the discretisation process, and (ii) sufficiently accurate
representation of this information in exact form would require an enormous amount of data, increasing
computational and memory requirements, as well as efficiency. A better solution is to employ function
approximators to generalise the value functions.

Function Approximation
Function approximators are strong tools utilised inmachine learning to create functions that approx-

imate certain data or a more complex function. In the reinforcement learning problem, such functions
can be used to estimate value functions to eliminate the need for exact values. The search for optimal
value functions can be represented by equation 3.16, where the left-hand side is the approximate state-
value function in terms of the state, and the right-hand side is the real (optimal) state-value function
plus an approximation error. By the nature of this action, function approximators treat the prediction
problem or RL since it estimates the (optimal) value function.

V (st) = V ∗ (st) + r(st) (3.16)
Since function approximators play such a crucial role in reinforcement learning, it is applicable to

briefly explain some of its design choices. There are three levels in which approximators can be dif-
ferentiated: (i) parametrisation, (ii) linearity, and (iii) optimisation. It is important to note that these
distinctions are not mutually exclusive and that different combinations are possible.

3.2. Reinforcement Learning 49

Firstly, there are parametric and non-parametric approximators, the former utilises a finite set of
parameters which are manipulated in such a way that the function approximator matches the observed
data as much as possible. The downside of these methods is their need of specifying certain parame-
ters before they can be applied in function estimation. The most common parametric method in recent
times are Neural Networks (NNs) but also include methods such as linear basis functions [37]. The
latter on the other hand does not require such an additional step. Despite this obvious disadvantage of
parametric approximators, these are still the most common methods utilised in RL, this is because they
are designed for independently and identically distributed data and usually RL generated data do not fit
either of those two requirements. Additionally, non-parametric methods are memory-based, hindering
computational efficiency and requiring large amounts of stored data [71]. The most notable examples
of non-parametric methods are Gaussian and Kernel regression, and regression tree algorithms.

Secondly, there is a distinction between linear and non-linear approximators. The former is well
understood by researchers and has been widely applied to a variety of problems for a long time. The
advantages of such methods are the fact that they are simple implementation, fast computation and
have a strong guarantee of convergence. On the other hand, their disadvantages are their limited ac-
curacy and the fact that they require knowledge of the domain, as useful features must be identified
previous to implementation. Common linear methods use polynomials, Fourier-series and tile coding.
Non-linear approximators are less understood and as a result, have fewer guarantees of convergence.
However, they may approximate an unknown function with more accuracy than linear approximators
given the same initial information, in some cases not even requiring pre-defined features. Addition-
ally, promising empirical results have been obtained in experiments combining reinforcement learning
techniques and Neural Networks (NN) [71].

Finally, there is also a distinction between gradient-based and gradient-free optimisation. The
former uses derivatives to find the optimum values of a function, which are then utilised to approximate
this function through reconstruction. Gradient-based methods generally follow three steps, (i) search
direction, where the derivative, or gradient, is calculated and its direction estimated, then (ii) a step is
taken in the direction of the gradient, lastly (iii) it is evaluated whether a maximum or a minimum has
been reached. These methods are widely used, fast, easy to scale, and have been proven to guarantee
conversion, however, are susceptible to finding local optima and require the approximated function to
be differentiable. Gradient-based methods have been successfully used in a number of applications
in combination with Neural Networks, which are inherently differentiable. Gradient-free, on the other
hand, represents a wider group of methods that do not utilise derivatives, hence these are useful when
the function to be approximated cannot be differentiated. These are very flexible methods and have
a wider range of applications, however, are less utilised because they are much slower and do not
guarantee optimal solutions.

Agent-Structures
The distinction between the different types of approximators made up until this point only concerns

the approximators themselves, leaving aside the functions to be approximated themselves. In general,
the goal of reinforcement learning in control systems is to find an optimal policy (control problem),
which is obtained through the estimation of the optimal value-functions (prediction problem), which in
turn depends on the environment and its model. Hence all these three elements overlap with each other
in the reinforcement learning problem. Additionally, policy, value and model can be approximated as
well, resulting in general methodologies and solving approaches.

Model approximation methods are those that approximate the RL problem as an estimation of
its MDP and compute the optimal policy from it. In general, terms, approximating the model of the
environment is not an easy task, however, often times it is simpler than learning the value of a policy
or directly optimising the policy. These functions are only dependent on current and local data, this
is because it is assumed that the problem is completely Markovian, satisfying the Markov property.
Although approximating themodel of the environment eases the optimisation process, it is no guarantee
that the resulting policy is better than the one that can be found simply from samples, this is because
models are oftentimes not accurate enough.

Value approximation methods are those that aim to solve the reinforcement learning problem
through the estimation of the value functions, which is used to give an approximation of the current or
optimal policy. In this category, the distinction between on-policy and off-policy plays an important role,
as well as the distinction between behaviour policy and update policy, since function approximation can
be used to estimate the former, the latter, or both. Furthermore, these can be applied to both online,

3.2. Reinforcement Learning 50

offline or a combination of both of them. Due to its ease of manipulation, such methods are highly
present in reinforcement learning. However, it has limited use in continuous spaces, this is because
whilst estimating a value function in continuous spaces is not a complicated task, finding the optimal,
greedy, action requires a search through the entire action space, which is impractical in continuous
space problems. Regardless of this drawback, modern RL and AI have been successfully applying
such methods, an important example is the use of Deep Q-Networks in games such as Atari, where
the algorithms have surpassed human ability. Additionally, agent structures that are designed to learn
the value functions are called critic.

Policy ApproximationWhilst in value approximation the policy is inferred from the estimated value
function, policy approximation algorithms directly define a policy and try to improve it through updates
until it reaches a desired policy or the optimal policy. Often times such algorithms are referred to
as direct-policy search. The direct search for the optimal policy handles continuous state and action
spaces due to the direct correlation between the agent’s policies and actions (and states, by default).
Policy approximation is often paired with gradient optimisation methods, where optimal points of a
function are found through a series of incremental time-steps in a direction guided by the slope, or
gradient, of the function; These can be gradient ascent or gradient descent. A disadvantage of such
methods is their tendency of falling to local optima. Finally, in contrast with critic-based agents, agents
that directly learn a parameterised policy function are referred to as actor.

Actor-critic agents, were firstly introduced by [5] and combine value approximation and policy ap-
proximation. This is an attempt to eliminate the problems encountered in value approximation methods
through the use of policy approximation. In this case, the action selection does not fall under the tasks
of the critic (i.e. value-function), instead, this task is delegated to the actor. The critic is in charge of
analysing the performance of the actor and deciding when the policy should be updated. This way the
policy search algorithms maintain their local convergence features, whilst the value update variance is
reduced [23] along with computational expense - due to the large amount of possible action in continu-
ous spaces. There are nuances to these methods and the influence of the actor (or the critic) might be
higher or lower, depending on the problem at hand [37]. This intuitive division of tasks makes actor-critic
structures the preferred choice of developers to implement reinforcement learning algorithms, hence
the most common in the state-of-the-art.

Challenges of Reinforcement Learning
To finalise the theory of reinforcement learning this section of the report briefly mentions some of the
challenges currently faced in the world of reinforcement learning. Many of these issues are encountered
across all the branches of RL and the fields that it incorporates.

Curse of dimensionality
This term was first introduced by Bellman during his explorations of optimal control problems with

high-dimensional discrete spaces, according to himself he faced an ”explosion of states and actions”
[37]. However, the same problem can quickly be identified in reinforcement learning, especially when
dealing with continuous spaces utilising classical methods such as DP, MC and TD. Evaluating entire
state and action spaces rapidly becomes impossible. This problem has been indirectly introduced in
the previous section, where function approximators were discussed. Although this is the main solution
found on RL for the curse of dimensionality these are not the only ways of dealing with it, adaptive
discretisation, macro-actions and options are also utilised solutions [37].

Reality Gap
In the field of aerospace, it is impractical not to use models when using reinforcement learning.

aerospace systems are physical, hence required hardware. Physical parts oftentimes are expensive
and require maintenance, hence are not expendable at will. This raises the topic of safe exploration.
where frameworks are designed to allow exploration whilst retaining the safety of systems and surround-
ings. Additionally, problems in which flying is involved, such as aircraft landing, cannot be paused, sped
up or started from an arbitrary state, most of the time only episodes can be repeated. Here, learning
speed becomes paramount and researchers try to enhance it as much as possible. Hence reinforce-
ment learning applications in the real world are expensive in terms of time, labour and finances.

Due to the factors mentioned in the previous paragraph, even model-free methods often require
models for training and testing. Additionally, model-free algorithms are currently extremely sample
inefficient, hence most RL achievements have been made within the simulation or virtual tasks, such
as games. Simulation is widely used in the development of systems to offset the costs of real-world

3.2. Reinforcement Learning 51

testing. This raises another problem, the differences between the real world and the models used in
simulations. This is called the reality gap and it is a problem because simulation requires accurate
models, otherwise results in poor transfer-ability of learned policies and unpredictable agent behaviour.
Additionally, accurate models require high amounts of data samples. There are two ways of overcoming
that. (i) Improving transfer-ability of learned features through algorithm enhancing, and (ii) improving
simulation fidelity without an increase in costs.

Curse of goal specification
The agent’s behaviour is indirectly dictated by the specified reward function. In theory, it is easy

to conceptualise what the goals of the agent are, however, in practice designing sufficiently adequate
reward functions in mathematical terms is incredibly challenging. Additionally, reinforcement learning
algorithms are notorious for finding solutions that have not been anticipated by the designer, often
exploiting the reward function in an undesired manner, for example through finding local optima [37].
Solutions to the designing of reward functions problem have been found through reward shaping, in-
verse optimal control or inverse reinforcement learning, and though building complex policies on top of
simple optimal control problems.

Stability
Stability is of extreme importance, especially in the field of control theory, where it becomes the

central concern. Adaptive Dynamic Programming (ADP) attempts to define control laws for problems
when models are unknown or partially known, in an online fashion. ADPs are further discussed in
section 4.2, and even though they closely treat the matter of stability, it is still an open question in
reinforcement learning; Additionally, to the guarantees of standard control approaches, RL approaches
require additional stability, feasibility and robustness guarantees[11].

Other RL methods exhibit dips in performance during training, which is a natural process as the
agents explore the environment and the action space that is available to them. However, that might
scale to undesirable levels, which further corroborates the instability presented by RL algorithms. An
example of an algorithm that strongly presents such behaviour is the DDPG, in an effort to solve this
issue algorithms such as TD3, TRPO and PPO have been developed employing different techniques.

Reinforcement Learning for Flight Control
Reinforcement Learning, as previously stated, can be exploited in the field of control engineering as
powerful a tool in the search for optimal controllers, especially in systems with non-linear and stochas-
tic dynamics, that are unknown or highly uncertain. The reason for that becomes clear when RL is
compared to a feedback system, from control engineering. The behaviour of the RL policy can be seen
as the operations of a controller, the error as the reward, the manipulated variables as the actions and
the environment would be everything else other than the inputs and outputs of the agent (i.e. controller
system/plant, feedback and the reference signal).

The use of reinforcement learning techniques in Guidance, Navigation and Control (GNC) is rela-
tively new in the field of aerospace systems. The main challenges to the expansion of RL in aerospace
relate to safety-critical situations where trial-and-error-based techniques are often not practical, as well
as expensive. Nonetheless, they have brought multiple benefits to the field, providing powerful tools
to process raw sensory data and perform complex tasks. Over the years, there have been various
proposed methods mainly utilising Approximate/Adaptive Dynamic Programming (ADP) techniques for
adaptive control, and Deep Reinforcement Learning (DRL) overall, generally for robust control. This
section gives a general overview of scientific papers that present the state-of-the-art RL algorithms
applied to flight controllers and aviation-related systems.

In [3] the authors apply an actor-critic solution to solve approximate dynamic programming equations
to solve aircraft control problems, the technique herein implemented is called Dual Heuristic Program-
ming (DHP) and is further discussed in section 4.2. The study performed on the developed technique
is brief and limited, however, the authors were able to conclude the usefulness of the algorithms and
state that they can find near-optimal control policies for aircraft control problems. Additionally, it is
stated that this approach has built-in fault tolerance, which is achieved through the use of the critic.
Another implementation of DHP is presented in [19]. The authors prove the efficiency of the proposed
design through the implementation of DHP to control a full six degrees of freedom of a business jet
aircraft, in simulation. In this paper, training is split into two parts, one offline using established knowl-
edge of control theory for initialisation, followed by an online phase, where the parameters identified
in the first phase are updated to better represent the dynamics of the controlled system. Figure 3.11

3.2. Reinforcement Learning 52

compares the performance of the DHP and the PID controllers in two different scenarios, in figure 3.11a
a low-bank angle turn with reference signals ϕ = 30◦ and γ = 5◦ is shown, and figure 3.11b shows a
high-bank angle turn with reference signals ϕ = −70◦ and γ = 0◦.

(a) Low-bank angle turn (b) High-bank angle turn

Figure 3.11: Comparison between DHP and PID, represented by solid and dashed line respectively, retrieved from [19]

Yet another modification of the HDP method is proposed in [62], called IGDHP. Here the author
proposes to use an online incremental model identification technique instead of the most common
neural network training. Additionally, the incremental model is applied to GDHP, which stands for Dual
Global Dual Heuristic Programming, hence the acronym IGDHP. Furthermore, the model identification
allows for the elimination of the offline training phase of the agent that is required in previous methods,
because it tracks non-linearities in a rapid and precise manner. The proposed method is tested on a
second-order non-linear model of a generic surface-to-air missile in order to compare its performance
against a generic GDHPmethod, where the controller has to learn the optimal policy in an online fashion
to control the angle of attack of the missile. IGDHP presents more efficient learning of the model leading
to a success ratio of 99.4 at the task, against only 37.2 from GDHP. Furthermore, in the search for more
adaptive flight controls that are suitable for uncertain systems, [28] studied an RL-based control utilising
Incremental Dual Heuristic Programming (IDHP). The controller utilises Neural Networks and is tested
on a high-fidelity model of the Cessna 550 Citation II PH-LAB research aircraft, a CS-25 class fixed-
wing aircraft. The results show that the framework is indeed capable of learning near-optimal policies
in an online fashion without the need for prior offline training, due to the use of an incremental model.
Additionally, it was observed that the adaptive controller is able to operate the aircraft in flight regimes
that had not been encountered before, as well as adjust its behaviour for unforeseen changes to the
aircraft’s dynamics.

In [17] the author argues that it is unrealistic to develop flight controls for every possible unexpected
failure in an aircraft, hence it is necessary to develop more robust controllers that are able to more
strongly generalise control laws. In the paper, the author proposed a controller that is trained offline,
cascaded and based on the Soft Actor-Critic (SAC) DRL algorithm. The proposed flight controller is
tested in a coordinated 40◦ bank angle climbing turn and a variety of failure cases, including a jammed
rudder and a rudder with reduced efficiency, and it proved to be successful at the tested tasks. The
author credits the success of the system to the high generalisation power of neural networks and high
exploration rates of the SAC’s stochastic policy. The latter, however, makes the development of SAC
controllers more difficult due to the low reliability and consistency of training-induced by the stochas-
ticity of SAC’s policies. Figure 3.12, shows the response of the aircraft controlled by the trained SAC
algorithm on an altitude tracking task where the rudder gets stuck at δr = −15◦ at s = 10s. In the
conclusion of the paper it is recommended to analyse the performance of Twin Delayed Deep Deter-
ministic Policy Gradient (TD3), a similar algorithm that utilises deterministic policies, to improve training
stability, and/or Proximal Policy Optimisation (PPO), an on-policy algorithm.

3.2. Reinforcement Learning 53

Figure 3.12: Altitude tracking response with rudder stuck at δr = −15◦ at s = 10s. Initially, only robust control is utilised, after
t = 60s adaptive control is utilised. Image retrieved from [17]

Next, [18] implements SAC and TD3 base controllers to a flying windmodel to analyse the high angle
of attack roll oscillations. Training of the agents is performed offline, due to the low sample efficiency
of the algorithms. It was observed that both algorithms were able to learn near-optimal policies in a
completely model-free fashion in simulation. The learning curves of the algorithms highlight the fact
that TD3 has more stable learning than SAC. In the end, however, it is shown that the learning variance
of SAC does not affect the final results, since the optimal version of the agent is used regardless of the
previous processes. The authors also test the controllers using real-world wind tunnel data, where the
controllers have to suppress roll oscillations to the craft. The controllers, however, were incapable of
learning good enough policies to perform well in real-life situations.

More closely related to the intentions of the research herein performed is the work presented in
[67], where a proof-of-concept automatic landing system is proposed utilising a Deep Deterministic
Policy Gradient (DDPG) based controller. The author proposes three implementations: an outer loop
controller and two direct controllers. The outer-loop controller was trained with winds ranging from
10ft/s to 75ft/s and it exert control over the pitch angle θ. The direct controllers are used to directly
control the aircraft’s elevator to follow the glideslope and the flare paths and were separately trained
in two intensities of a random wind model, at 20ft/s and 75ft/s. The three controllers underwent 15
validation flights where the aircraft’s vertical speed, pitch angle and touchdown position, were evaluated
at touchdown, following previous papers that have done the same. The controllers were tested in 15
different flight conditions, and the touchdown parameters were compared to those of seven previous
works. It was shown that the DDPG agents were able to constantly track the gliding and flare paths
throughout the landing as well as consistently perform soft landings, by holding the vertical speed under
1.9ft/s. It was, however, recognised that certain results could have been improved and that certain
DDPG hyperparameters were still held sub-optimal. The authors conclude by proposing the study of
a system consisting of a DDPG controller outer loop in combination with a Non-Linear Dynamic (NDI)
inner loop or even direct controller.

To conclude, a last paper is mentioned, where incremental ADP (iADP) and Deep RL (DRL) are
combined in an attempt to extract the benefits of both methods. Inspired by recent IDHP and SAC
methods,[68] proposed a hybrid SAC-IDHP framework to combine the adaptive nature of online learning
with the robustness of offline learning to control a fully coupled system. The framework is adapted and
implemented to the inner loop of a cascaded altitude controller of a six-degree-of-freedom high-fidelity

3.2. Reinforcement Learning 54

model of the Cessna 550 Citation II PH-LAB research aircraft. Tracking performance was tested for
a simple altitude task with the aircraft in nominal condition, as well as under reduced efficiency of the
elevator and the aileron. The results of the hybrid controller were compared to those of a SAC-only
controller, and show that the hybrid controller is capable of holding lower tracking errors under nominal
conditions and all failure tests. Figure 3.13 shows the performance of both the SAC-IDHP and SAC-
only controllers to an altitude tracking task, here the former achieves a normalised mean absolute error
nMAE = 2.46% and the latter nMAE = 3.28%. Albeit performing better than the SAC-only controller,
the hybrid controller still presents undesired oscillations in the longitudinal states, as well as inconsistent
training, characteristic of SAC.

Figure 3.13: Altitude tracking response with aileron efficiency reduced by 90% at t = 30s.Image retrieved from [68]

3.2. Reinforcement Learning 55

Partial Conclusions
Section 3.2.2 highlighted the importance of applying certain techniques to the classical reinforcement
learning methods such that they are adapted from discrete state and action spaces to continuous
spaces. Automatic landing, along with most real-world problems, belongs to the second category.
Hence, to identify algorithms of families of algorithms that suit the purposes of this project it is first
necessary to identify the function approximator’s parameters most suitable to the problem at hand, as
well as the agent structure.

First, based on previous studies on RL applications for flight control [17] [28] [68] and analysis of
the possible aspects of function approximators it is observed that non-linear parametric approxima-
tion is the most suitable structure for the flight control problems. This is simply due to the fact that
non-parametric approximators require data that is not compatible with that generated by the reinforce-
ment learning problem [71], hence not suited for this project. Regarding linearity, approximators that
present non-linear structures have been chosen for this project because they provide advantages over
their linear counterparts. Linear approximators present limited accuracy and require knowledge of the
environment. Furthermore non-linear approximators have show promising empirical results, mainly
through experimentation with ANNs [71].

The state-of-the-art reinforcement learning algorithms use artificial neural networks for function ap-
proximation, i.e. estimating policy and value functions. ANNs are computing systems that simulate
the networks of neurons in the nervous system of a biological cell [76]. These networks are trained
by estimating the difference between the output of the network and the output of the system (target
output), which is called the error. In reinforcement learning that would be mapping state to values, or
state-action pairs to Q(s, a) functions. Once the difference has been calculated, the network updates
the weighted parameters to reduce the error. The key difference between ANNs to other approxima-
tors is that the processing of information occurs through interconnected layers of neuron-like structures
referred to as perceptrons. These artificial neurons are constituted of inputs, weights, a Transfer Func-
tion and an activated function [76], as shown in figure 3.14. ANNs are made of an input layer, hidden
layer(s) and an output layer, as shown in figure 3.15. Further discussion of ANN structures is left to be
treated in the main phase of the thesis project. It suffices to state that the only ANN assumption is that
the function to be approximated is smooth, and that given enough parameters, a strong generalised
approximation can be made.

Figure 3.14: Artificial Neuron (perceptron) structure, retrieved from [76]

Furthermore, gradient-based methods have been chosen, because they have shown faster and
more concrete optimisation results than their gradient-free counterparts. The only requirement for
gradient-based optimisation is that the optimised functions must be differentiable, which is an inher-
ent characteristic of ANNs, therefore can be used in combination with gradient-based optimisation.

Second, actor-critic is the current state-of-the-art agent structure and has been used multiple times
in literature for flight control applications [62] [78] [3] [67]. This favouritism for this specific agent struc-
ture is due to its intuitive division of tasks, where learning is solely reserved for the critic and controlling,
that is action selection, is solely reserved for the actor. Here the critic must learn and evaluate, ”critique”,
the policy that is currently being used by the actor for action selection, as shown in figure 3.16 this evalu-
ation takes place through a TD error, which should be reduced by the actor. This task division has been
proposed as a means of reducing the total complexity of the general problem RL attempts to solve [35].
When actors are combined with critics, the disadvantages of singular methods are eliminated whilst
retaining the advantages of both methods, that is to say, that the resulting agent is highly capable of

3.2. Reinforcement Learning 56

Figure 3.15: Fully connected Artificial Neural Network structure with three hidden layers, retrieved from [54]

handling high dimensional action and state spaces whilst reducing variance in value estimation.

Figure 3.16: Diagram of the actor-critic architecture, retrieved from [63]

Additionally, [65] states that actor-critic agents are likely to remain of interest due to low computa-
tional requirements for action selection and their ability to learn explicitly stochastic policies. In general
terms, actor-critic agents are well suited for continuous state and action spaces problems, due to policy
approximation (actor), and present better policy gradient variance, due to value-approximation (critic)
[65].

Third, model dependency is not a desired trait in the ALS algorithm; as explained before, the major
problems with automatic landing occur when there are changes to the dynamics of the internal and
external systems. When a controller is model-based its efficiency is not only dependent on its structure
and how it has been designed, but also on how accurately the model utilised represents the controlled
system. Under uncertain circumstances, a controller model often fails to accurately represent the real
world. Additionally, model-based algorithms that learn a model tend to be much more computation-
ally expensive than their model-free counterparts. For these reasons, it is desired that the automatic
landing controller be designed to present low model-dependency, such as those found in model-free
algorithms.

Defining those aspects of the algorithm to be chosen narrows down the suitable algorithms to
two groups of methods. namely Approximate Dynamic Programming (ADP) and Deep Reinforcement
Learning (DRL). These are not completely separate from each other and there is significant overlap-
ping; however, they are often referred to as two distinct groups in literature. These two methods are
described in the next sections along with a brief introduction of the main algorithms that are categorised
under those groups. Figure 3.17 presents an expanded version of the previous reinforcement learning

3.2. Reinforcement Learning 57

diagram containing the fields of ADP and DRL. In this project, the focus is on RL and ADP algorithms
that make use of ANNs and present an Actor-Critic agent structure.

Furthermore, the automatic landing problem requires fault tolerance, this can be achieved through
adaptive control and robust control. In reinforcement learning these terms are closely related to online
and offline learning, respectively. In hindsight, online learning seems to be more suited to the problem
at hand, due to its capability of dealing with highly dynamic environments. However, offline learning
can provide certain fault tolerance, through robustness, making it less error-prone and the designer
has control over the data that is fed to the agent. Hence, at this stage, it is not possible to eliminate
one of the methods. A third option would be to implement online-offline hybrid learning, such as the
method proposed by [68].

Figure 3.17: Taxonomy of Approaches considered in this project

3.2.3. Approximate Dynamic Programming - ADP
Approximate or Adaptive Dynamic Programming includes control-theoretical approaches and tech-
niques utilised to approximately solve optimal control problems. In literature, it is not rare to find ADP
and RL being utilised interchangeably, and that may be true in some fields, however, generally, it is not
[11]. ADP does not necessarily have a direct connection to RL, but can be used in RL problems, espe-
cially those methods within ADP that involve learning, utilise ANNs and have a low model dependency.
As the name states, ADP utilises approximations to the dynamic programming approach, in order to
deal with the curse of dimensionality and adapt DP methodology to continuous state and action spaces.
The application of ADP in highly dynamic and large systems mainly utilises actor-critic agent structures,
whose advantages are outlined in the previous section and outweigh their actor or critic-only counter-
parts. Hence the methods herein presented are limited to the class of ADP that makes use of such
structures, named Adaptive Critic Design (ACD).

Originally, ACDs were introduced utilising ANNs for function approximation, a combination that is
used in this project, however, they are not limited to these methods and other approximation techniques

3.2. Reinforcement Learning 58

may be used. ACDs can be mainly divided into three design families (i) Heuristic, (ii) Dual Heuristic
and (iii) Global Dual Heuristic. Whilst the actor’s structure stays largely the same, i.e. mapping states
to actions, the structure of the critic varies resulting in the different strategies of ACDs. The main algo-
rithms relating to the three families are named Heuristic Dynamic Programming (HDP), Dual Heuristic
Programming (DHP) and Global Dual Heuristic Programming (GDHP). Moreover, these basic algo-
rithms are solely dependent on states, and actions do not play a role in the critic, hence they compute
state-value functions. The adaptation of such algorithms to be action-dependent include the prefix AD
to the original titles, i.e. ADHP, ADGHP and ADDHP, where the critics estimate the state-action value
functions. A taxonomy of such methods can be seen in figure 3.18

Figure 3.18: Taxonomy of Adaptive Critic Designs of ADP

Furthermore, DP is model-based, which has multiple downsides when applied to highly dynamic
environments. Since ADPs are derived from DPs, these are also mode-based. However, attempts
have been made to reduce model dependency of classic DP methods. An example of that is the
previously mentioned AD variations of the algorithms, which assume a direct connection between the
actor and the critic networks [53]. Most interesting for this research is a specific branch of ADPs that
uses incremental model identification, this branch of ADP is referred to as iADP. Model identification
is done in the RL framework, through model approximation by a linearised, time-varying incremental
model. The incremental fashion of the approximation makes it suitable for online adaptive control,
where increments occur each time step using the previous step’s condition of the model. The decrease
in model-dependency that iADP providers overrule any improvements the AD variations make, hence
”iAD-ADP” methods would frivolous, and thus do not exist.

Heuristic Dynamic Programming - HDP
HDP is the simplest form of adaptive critic design. In this method, the critic simply estimates the
state-value function V (st) in the Bellman equation of dynamic programming based on the state of
the environment st it receives. The task of the actor-network is to map states to actions to derive a
policy. In this case, it uses the output of the critic, i.e. V (st), to derive the state value with respect to
the action. Its output is δV (st)

δat
, which is calculated by δV (st)

δst
δst
δat

, hence it requires back-propagation and
knowledge of the state transitions. Due to the latter, the actor in HDP is model-based.

ADHDP on the other hand eliminates the model dependency of the actor through the critic. In
this modification, the critic estimates the action state value function Q(st, at), and subsequently, the
actor derives its policy from δQ(st,at)

δat
. The last operations only require back-propagation, and the need

for a transition state model is eliminated [53]. An in-depth comparison between HDP and its action-
dependant variant ADHDP has been performed in [35], the study shows that HDP has nearly twice
as high converging accuracy as ADHDP does in the initial offline training phase; However, ADHDP
can be more adaptive, since it showed to perform better than HDP when noise is introduced. The final
conclusion of the study is that HDP can operate in a wider range of flight conditions than its counterpart.

Another attempt at reducing model dependency is the utilisation of incremental techniques to model
identification. This adaptation completely eliminates the necessity of prior knowledge of the dynami-
cal system of the environment, requiring only an online identified incremental model. Additionally, an
interesting advantage of such variation is that it also eliminates the need for an offline training phase,
that is because model identification happens fast and with enough accuracy to allow for only an online
phase.

3.2. Reinforcement Learning 59

Dual Heuristic Programming - DHP
Unlike HDP, the critic network of DHP is the one responsible for estimating the derivative of the state-
value function with respect to the states of the environment. Hence, the critic directly outputs the
derivative δV (st)

δst
; therefore, the critic is the one that requires a model of the environment, instead of the

actor. On the same note, the actor is also model-depended, this is because it still needs knowledge
of the state transitions to estimate the policy; which is done through differentiating the critic’s input
with respect to the actions. However, with this technique, the need for back-propagation is completely
eliminated, which results in smoother and more accurate results [72], if compared to HDP.

The action-dependent variation of the algorithm eliminates the actor’s model dependency. However,
ADDHP assumes that there is a direct connection between the actions and the critic network and unlike
ADHDP, the pathways of back-propagation are still maintained through a model network. Hence, the
critic is still model-dependent.

Once again, the incremental version of DHP reduces model dependency through model identifica-
tion. IDHP has shown to outperform its counterparts with regards to efficiency, accuracy and robust-
ness, in fully online learning [77].

Global Dual Heuristic Programming - GDHP
Finally, the last general group of ACDs combines the characteristics of both previous ones, that is, in
GDHP the critic network is responsible for estimating both the state-value function V (st) - like HDP -
and its derivative with respect to the state δV (st)

δst
- like DHP. This is done through two critic networks,

where the first is model-independent, and the second is mode-dependent because it requires the state
transition model. In this algorithm, the actor is model dependent, as HDP and DHP’s actors are. In the-
ory, GDHP outperforms DHP, such as DHP outperforms HDP. However, GDHP is much more complex
than its prior counterparts, being the computation of a second order derivative, i.e. δ2V (st)

δstδat
, the ma-

jor reason for that. This additional complexity hinders the implementation and algorithm computation,
which oftentimes makes DHP a more efficient framework.

GDHP also has its action-dependent and incremental versions, which work in a similar fashion as
has been explained before. The actor’s model dependency is eliminated in ADGHDP, and the critic
remains mode-dependent. The increase in complexity from IGHDP to IDHP, in general, does not justify
the increase in performance.

Synopsis
The information provided in the previous sub-sections is provided in table 3.3 to be used for quick
reference.

Table 3.3: Summary of ADP ACD methods and its characteristics

Algorithm Critic Actor Model knowledge
Heuristic
HDP V (st)

δV (st)
δat

Actor
ADHDP Q(st, at)

δQ(st,at)
δat

-
IHDP V (st)

δV (st)
δat

-
Dual Heuristic

DHP δV (st)
δst

δst
δat

Actor & Critic
ADDHP δQ(st,at)

δst
, δQ(st,at)

δat
- Critic

IDHP δV (st)
δst

δst
δat

-
Global Dual Heuristic

GDHP V (st), δV (st)
δst

δst
δat

Actor & Critic
ADGDHP Q(st, at), δQ(st,at)

δst
, δQ(st,at)

δat
- Critic

IGDHP V (st), δV (st)
δst

δst
δat

-

ADP methods are considered in this research because they are mainly implemented in an online
adaptive fashion, which is well suited for highly dynamic environments. A characteristic that is strongly
in line with the current needs of ALS for more robust and adaptive controllers, due to the issues that

3.2. Reinforcement Learning 60

appear when uncertainties are introduced in the environment. Furthermore, ADPs are derived from
DP methods, hence are model-based, which is a characteristic that is not desired for the system to
be designed in this project; That is due to the fact that, in general, a model-based controller is only
as good as the model provided/learnt, and it is more computationally expensive than its model-free
counterpart. On the other hand, iADP’s concept of using an incremental model to deal with the non-
linearities of unknown systems and uncertainties present in the environment reduce significantly the
model dependence present in other ADP methods.

In general terms, ADPs are divided into HDP, DHP and GDHP. As mentioned previously, the in-
crease in complexity from GDHP does not justify the increase in performance that it presents from its
DHP counterpart, hence GDHP shall not be further considered. Moreover, a study on the performance
of ACDs on the challenging auto-lander problem showed the DHP has better performance than HDP,
with the expense of longer training [53]. Although the authors report that longer training for HDP did
not present further performance improvements, hence it is inferred that HDP has a lower performance
ceiling than DHP does.

For the reasons above, ADPs are still under consideration to be used in this project, however, it
remains to be seen how the ADP method would play a role in the upcoming phases. However, among
the possible methods, IDHP would be a better fit for the automatic landing problem due to higher
performance promises than its counterparts and reduced model dependency.

3.2.4. Deep Reinforcement Learning - DRL
A promising field that has seen a surge of research in recent years is what is called Deep Reinforce-
ment Learning. DeepMind’s atari playing agent by [48] was the first to combine Deep Learning (DL)
and RL, in 2013, hence giving the name Deep Reinforcement Learning. Since then, due to its flexibility,
DRL has been successfully applied to a number of different contexts and fields. The DNN’s structure
contains multiple hidden layers (figure 3.15), where the approximation is achieved by computing nonlin-
ear transformations of the outputs between the layers. This characteristic has been proven very useful,
particularly for approximating functions of natural data such as images, sounds and languages ([11]).
Furthermore, the combination of RL and DNNs also results in very general algorithms, this strong gen-
eralisation power makes for especially robust algorithms. Additionally, to their strong generalisation
power, DRL features the ability to deal with large continuous state spaces, which makes it suitable for
control algorithms.

Technically speaking, any RL algorithm that makes use of ANNs can be considered to be Deep
RL. The informal definition of the term, however, slightly differs and often times it is less intuitive. In
control engineering, DRL is more often than not referred to when offline robust control is the focus of
discussion, as opposite to ADP, which is referred to when online adaptive control is the focus. Generally,
DRL is a broader term that is theme of discussion of many fields in the academic world, therefore, it
is imperative to clarify the exact meaning of the terminology employed. In this report, the term DRL is
reserved to model-free RL algorithms that make use of DNNs in their agent.

Furthermore, the search for algorithms that follows is focused on DRL algorithms based on actor-
critic architectures (hence, for sake of practicality this group of algorithms may be referred to as simply
DRL). The state-of-the-art DRL actor-critic algorithms may be based on: (i) Policy Gradient, (ii) Advan-
tage function, and (iii) Policy Optimisation, such as can be seen in figure 3.19. Whose main algorithms
are: (i) DDPG, TD3, SAC, (ii) A3C and A2C, and (iii) TRPO and PPO. It is important to note that there
are many more algorithms and modifications to them in the world of RL, however, it falls under the
scope of this project as well as is impractical to examine every single one of them, hence the research
herein presented limits itself to the general algorithms of the most common methods.

Furthermore, because DRL capable of mapping state to actions in high-dimensional problems the
approximation results in high correlation between states and actions. This correlation might result in
divergence or oscillation of the parameter weights of the ANNs, which affects the learning process of
the agent. This problem is tackled with (i) experience replay (or replay buffer), and (ii) delay target
(or target network). In the former past state, actions and rewards (S, A, R, S ‘) are stored in a buffer,
which are recalled in a later moment, and a randomised order. This breaks the temporal correlation
of the training samples, and since off-policy algorithms can find the optimal policy from other policies
samples, it means that the stored experiences can be used for further learning by the agent [11]. In
the latter solution, the target values are calculated using an older version of the value function, instead
of computing with the current version, as it is typically done. This breaks the correlation between the

3.2. Reinforcement Learning 61

Figure 3.19: Taxonomy of DRL algorithms based on the actor-critic agent structure

calculated Target values and the network prediction. Additionally, DRL algorithms are known to be
sample inefficient

Policy Gradient
As stated before, the goal of reinforcement learning is to teach an agent how to learn a suitable be-
haviour for the situations it finds itself in, and that can be done in multiple manners. Policy gradients are
perhaps the most common and useful algorithms to work in continuous spaces [61]. These methods
are amongst those that target learning of optimal policies directly; Note that this can be done with or
without the presence of a value function, i.e. in an actor-critic or a critic-only fashion, being however,
actor-critic methods more numerous [6]. Policies are usually parameterised functions of states and
actions that aim to map the former to the latter, which often take the form: θπθ(a|s).

The underlining principle of policy gradient methods is that the parameters θ of the policy function
are adjusted in the direction of the performance gradient, that is following the optimal slope of the cost
function, in RL terms, the cumulative reward. To summarise, the Policy gradient theorem states that
the derivative of the expected reward is the expectation of the product of the reward and the gradient
of the policy, which is expressed in equation 3.17 [64]. REINFORCE is an off-policy policy gradient
algorithm that is worthy of mentioning, even though it is not further discussed in this report due to not
utilising ANNs and being actor-only.

∇J(θ) = E[∇(θ)logπθ(s, a)Q
πθ (s, a)] (3.17)

DDPG
Deterministic Policy Gradient (DPG) is an off-policy actor-critic variant of the policy gradient cate-

gory introduced by [61]. DPG reduces long computation by utilising a deterministic policy instead of a
stochastic policy, where more samples are required since the data is integrated over the entire (often
large) state and action spaces. According to the authors of the paper that introduces DeepMind’s DPG,
this characteristic renders it significantly better performance than other on and off-policy stochastic gra-
dient methods [61]. On the other hand, the deterministic nature of the policy makes exploration difficult.
Additionally, DPG presents limited accuracy in function approximation and also requires knowledge of
the environment, this is because it makes use of tile coding, which is a type of linear approximation.

Deep Deterministic Policy Gradient (DDPG) is then introduced by [40] as a model-free version of
DPG where both the actor and the critic are represented by DNNs, hence no longer relying on linear
approximators. It also combines DQN techniques, where it learns Q-functions by experiencing replay
and delayed targets. The adaptation of learning Q-functions from discrete to continuous spaces is
done utilising the actor-critic framework whilst learning a deterministic policy (DPG). That means that
the delayed target network has to be implemented not only for the critic, as in DQN, but also for the
actor. Additionally, DDPG makes use of conservative policy iteration, where the parameter updates,
for both the actor and the critic, are restricted to slow changes through an Exponentially (weighted)
Moving Average (EMA) [40]. This is done to increase overall stability, however, might lead to longer
training periods for the agent.

Similar to DPG, DDPG treats the exploration problems by adopting off-policy learning, where the
target policy is reserved for learning the optimal policy, whilst the behaviour policy may be inclined

3.2. Reinforcement Learning 62

more (or less) towards exploration. The exploratory character of the behaviour policy π′ is introduced
through the use of noise η, such as shown in equation 3.18.

π′(s) = πθ(s) + η (3.18)

Figure 3.20 shows a block diagram where the working structure of the DDPG algorithm is outlined.
Starting from the actor (Policy Network), the algorithm chooses an action based on a randomly initialised
actor policy and exploration noise. Note that, unlike the rest of this report, the block diagram represents
the policy by µ instead of π. The environment then feeds the critic the rewards and the transition state
and actions (st, at, rt, st+1) are stored in an experience replay buffer. After a number of such cycles,
a batch of transitions is randomly sampled and fed to the critic (Q Network) who optimises the loss
function using the current and target networks, the algorithm then updates the actor’s policy based on
the critique it received and updates both (actor and critic) target networks. Once again, actions are
taken following the new policy with random noise added for exploration and the cycle repeats itself.
Additional to the diagram herein presented a pseudo-code of the algorithm, is provided in figure A.1 in
appendix A, retrieved from the original DDPG paper [40].

Figure 3.20: DDPG algorithm structured in a block diagram, retrieved from [24]

Over the years there have been multiple variations of the DDPG algorithm, such as Distributed
Distributional DDPG (D4PG) [4] that applies distributional techniques in an attempt to improve the
original algorithm, and Multi-Agent DDPG (MADDPG) [42], which attempts to augment performance in
highly dynamic environments by introducing the idea of utilising multiple agents to complete tasks only
using local information. However, there are two algorithms that have been the main focus of studies

3.2. Reinforcement Learning 63

due to their elevated performance compared to others, these are called Soft Actor-Critic (SAC) and
Twin Delayed DDPG (TD3) and are described further in this report.

The key components of DDPG are:

1. Off-policy formulation for increased exploration (if compared to general On-policy methods)
2. Deterministic policy to reduce long computations and increase sample efficiency

TD3
A notable adaptation of the DDPG algorithm is the Twin Delayed DDPG (TD3) [21] which addresses

the function approximation issues of DDPG. It is not uncommon for the value function to be overesti-
mated in DDPG, this is an issue inherited from the DQN algorithm that has persisted and can be carried
on through the training iterations (negatively) affecting the learned policy. The overestimation issue has
also been a motivator for the development of other algorithms such as Double Q-learning and Double
DQN. This issue is addressed by introducing a twin Q-value approximation network and less frequent
updates.

The twin (or double) Q-value function utilised in the double DQN (value-based) algorithm features
two different, uncoupled, networks responsible for action selection and Q-value estimation, respectively.
In actor-critic algorithms the action selection is already delegated to the actor (policy approximation),
hence TD3 adapts the DDPG algorithm to employ two uncoupled networks for the critic and a single
actor. Additionally, TD3 updates the policy at a slower rate than that of the Q-value, more specifically,
the authors suggest that to be done at half the rate. It was found that by doing so the error of the
Q-function is lowered before the policy is updated, hence the policy update is more accurate and the
variance in the presence of the target networks is further reduced.

The modifications to DDPG that result in the TD3 algorithm render a block diagram similar to that of
in figure 3.20. The major change to that is the fact that there are two critic networks that make estimates
independently, the estimated Q functions are then compared and the smaller of the two is used in the
Bellman error loss function. As mentioned previously, the policy is updated less frequently than the Q
functions, instead of concomitantly as DDPG does. Finally, noise is added to the next state actions in
order to smooth it, this is only possible due to its deterministic policy. Additionally, a pseudo-code of
the algorithm is provided in figure A.2 in appendix A, retrieved from the original TD3 paper [21].

According to the authors, the TD3 algorithm surpasses the DDPG algorithm regarding both learn-
ing speed and performance in a number of continuous control benchmark tests, such as MuJoCo’s
HalfCheetah, Hopper, Walker2d, and Ant, to name a few [21]. Additionally, to be superior to DDPG
in those tasks, the authors claim that the TD3 also matched or outperformed other algorithms such
as the Trust Region Policy Optimisation (TRPO), Actor-Critic using Kronecker-Factored Trust Region
(ACKTR) and SAC, in those same tasks. Note however, that SAC and TD3 were initially published in
the same conference paper, the algorithms have since then been modified, hence initial comparisons,
such as this, between the two are not necessarily up to date with their current versions.

The key components of TD3 are:

1. Off-policy formulation for increased exploration (if compared to general On-policy methods)
2. Deterministic policy to reduce long computations and increase sample efficiency
3. Double Q-value approximation to reduce value overestimation

SAC
The Soft Actor-Critic (SAC) algorithm bridges the stochastic policy optimisation to the DDPG-driven

approach. It does so by combining the Soft Q-learning algorithm’s maximum entropy reinforcement
learning framework to an off-policy actor-critic model. The SAC makes use of the stochastic policy
optimisation’s concept of incorporating the entropy measure of the policy in the reward function to
enhance the exploration rate, it is then expected to learn a policy that acts in a random fashion whilst still
succeeding at the task at hand. It alternates between soft policy evaluation and soft policy improvement
which, probably, leads to convergence to the maximum entropy policy.

The SAC algorithm also makes use of two Q-value functions, just like TD3 does, however, it is not
a direct successor, since both algorithms were published roughly at the same time. Both functions
are trained to optimise the cost function, the minimum of both functions is then used to estimate the
value and policy gradients. The algorithm works by using experience replay to update the function ap-
proximator’s parameters through stochastic batches of data that have been sampled using the current

3.2. Reinforcement Learning 64

policy. It has been found that using two Q-functions speeds up training in harder tasks significantly,
even though using a single Q-function is sufficient to perform challenging tasks, such as learning to
control a 21-dimensional Humanoid [25]. Additionally, the two Q-functions mitigate positive bias in
policy improvement, a well-known issue of value-based methods.

Like TD3, SAC has a block diagram similar to that of DDPG, in figure 3.20, where there are two Q
networks instead of a single one. Unlike TD3 however, the Q-function target update that happens after
a random batch is sampled from the experience replay memory contains a term that comes from SAC’s
use of entropy regularisation. Furthermore, SAC the state actions used in the target network follow the
current policy, unlike TD3 which follows the target policy. SAC also foregoes the necessity of adding
noise to the next state actions for smoothing purposes, this can only be done because it employs a
stochastic policy. Additionally, a pseudo-code of the algorithm is provided in figure A.3 in appendix A,
retrieved from the original TD3 paper [25]

The key components of SAC are:

1. Off-policy formulation for increased exploration (if compared to general On-policy methods)
2. Stochastic policy optimisation through entropy maximisation to increase stabilisation
3. Double Q-value approximation to reduce value overestimation

Advantage Function
A well-known issue with vanilla policy gradient methods is their high gradient estimate variance. A
standard approach to tackle this problem is to subtract the expected reward with a baseline value b.
There can be multiple choices for b, a common and logical choice is the value function V (s), when this
is the case the equation is named the advantage function. Such computation is an estimate of how
beneficial a particular action is compared to the average action in a specific state; Hence, intuitively
increasing the chances of actions that perform better than the average happening. The advantage
function is mathematically defined simply as the difference between the state-action value function
Q(s, a) and the state value function V (s), shown in equation 3.19. The stability of the algorithm is
increased because the advantage function reduces the variance in the gradient estimate between the
new and the old policies.

A(s, a) = Q(s, a)− V (s) (3.19)

The operation of the advantage function is based on the signs of its computation. If an action taken
produces a positive value of the advantage function, this action was good and hence should have a
higher probability of happening. The opposite is true if an action produces a negative value, and its
probability decreases. Logically, if an action results in a null value for the advantage function, it means
that the action taken was nor good, nor bad, and that only happens when the optimal policy has been
found.

A3C
A3C is an on-policy actor-critic algorithm that makes use of advantage functions in its operation.

Introduced by [47] it stands for Asynchronous Advantage Actor-Critic, it can be described s a classical
policy gradient method that emphasises parallel training. What sets this method apart from others is
the fact that it utilises multiple agents that are trained simultaneously. Each agent gets its policy and
value from a Global Network, with parameters θ and θv, and explores the environment on its own, until
a tmax actions or a terminal state is reached. Each agent then uses their own experiences to update
their policies and values, then represented by local networks with parameters θ′ and θ′v. These updated
Local Networks are then combined in a batch and used to update the parameters of theGlobal Network.
Figure 3.21 shows how these parallel actors can be trained simultaneously, act in different versions of
(models of) environments, and combined in a global agent. Furthermore, the use of multiple agents
eliminates the need for experience replay, which makes the algorithm faster and possibly with increased
performance.

Additionally, A3C is also an asynchronous method, which means that the different agents are run-
ning in asynchronous threads and update the global and local networks at different points in time. This
implies that each algorithm explores different parts of the environment with a slightly different policy.
For some this is considered a disadvantage because some agents are operating under an outdated of
the Global Network, hence will always operate under sub-optimal conditions [73]. For others this is con-
sidered an advantage, arguing that this may increase performance because it decreases correlation

3.2. Reinforcement Learning 65

amongst the samples [30]. Regardless, A3C ameliorates the correlation problem of DRL, due DNNs
assume input samples are independent of each other, which in most cases is not true, by combining
data acquired by multiple agents.

Figure 3.21: How parallel actors are trained together and combined into a single global network, retrieved from [56]

The key components of A3C are:

1. On-policy formulation for reduced variance and faster training times (if compared to general Off-
policy methods)

2. Advantage function to reduce variance
3. Introduction of parallel training of multiple agents, for both policy and value function estimation.

Updating scheme based o fixed lengths of time (or amount of gained experience)
4. Asynchronous updates

A2C
A2C deals with the concern of some researchers that the A3C agents will always operate under

sub-optimal conditions. A2C stands for Advantage Actor-Critic which eliminates the asynchronous
characteristic of A3C. The inconsistency of A3C is dealt with by adding a coordinator to the multiple
agents of the system, who awaits until all the agents have finished their respective tasks to update the
Global Network and resets the agents such that all of them operate under the same (updated) policy.
Allegedly, the synchronisation of the agents maintains the gradient updates cohesive by defining a
focus on the training process and potentially shortening convergence time [75]. Some studies have not
identified any evidence of benefit to the performance of the algorithm due to the asynchrony of updates;
On the contrary, it has been observed that the synchronous implementation is more cost-effective when
using a single-GPU computer, and performs better (than A3C) when large batch sizes are used [75].

Figure 3.22 shows how the synchronous architecture of A2C operates compared to A3C. The key
components of A3C are:

1. On-policy formulation for reduced variance and faster training times (if compared to general Off-
policy methods)

2. Advantage function to reduce variance
3. Introduction of parallel training of multiple agents, for both policy and value function estimation.

Updating scheme based o fixed lengths of time (or amount of gained experience)
4. Synchronous updates for increased computational effectiveness and performance

Policy Optimisation
The methods herein described are referred to as policy optimisation (PO) because they tackle policy
estimation directly. They are related to DDPG because they also use policy gradient for optimisation

3.2. Reinforcement Learning 66

Figure 3.22: How parallel actors are combined into a single global network in A3C and A2C, retrieved from [73]

as described in equation 3.17. Although, unlike those derived from DDPG, PO methods fall under
the on-policy category, that is because their behaviour policy is the same as their estimation policy.
This section of this chapter discusses two of these methods, namely, Trust Region Policy Optimisation
(TRPO) and its improved version Proximal Policy Optimisation (PPO).

TRPO
TRPO addresses the issue relating to gradient ascent (or descent) that policy gradient methods

present. Gradient ascent is a line optimisation method and generally uses a first-order optimiser, which
generally works well, except in curved areas of a graph, where accuracy significantly decreases. This
might negatively affect the training process and make it longer and more complex, however, there are
other optimisation methods available. TRPO stands for Trust Region Policy Optimisation [58], and it
utilises a gradient-based optimisation method called Trust Region optimisation. TRPO involves three
concepts: Trust Region Optimisation, KL divergence, and importance sampling.

In simple terms, line search optimisation first finds the best direction of a function to explore and
then moves in that direction with a step size a. In trust region optimisation first a step size a is defined
from points p, this is named the trust region, and then a search for a local minima/maxima is done in
all points within the radius a from p0. Once found, the local optima becomes point p1 and the process
repeats itself. In the traditional TRO step size, a might vary from point to point depending on how
accurate the approximator is. In RL, the size of the trust region might vary depending on how much
the new policy diverges from the old policy, resulting in better-reduced variance and more cohesive
training. Ideally, the largest step size possible would be taken, to reduce the chances of the algorithm
getting stuck in local optima, as PG methods do, but this might result in large changes in the policies
and too many points to compute. Hence, TRPO utilises KL divergence to define constraints to the size
of the step taken. KL divergence estimates the difference between an old and estimated probability
distribution, implementing a constraint that ensures small changes to the policy.

Equation 3.20 shows the objective function TRPO uses using the policy ratio that is bound by the
equation in 3.21, where δ is a constraining value.

JTRPO(θ) = E[
πθ(a, s)

πθold(a, s)
Aπold

(s, a)] (3.20)

E[DKL(πold(.|a)||πold(.|s))] ≤ δ (3.21)

Additionally, TRPO deals with the sample inefficiency of PG methods by implementing a technique
called importance sampling. A clear explanation of how this is done falls outside of the scope of this
project. However, it suffices to state that instead of discarding samples from old policies, as PGmethods
do, importance sampling still uses them. This only works because TRPO only allows small changes to
the policy at a time (KL constraints), through trust regions, meaning that samples from different policies
are still somewhat related and valid for future training; However, eventually the policies change to a
degree that the samples are no longer similar, these should then be discarded.

The key components of TRPO are:

1. On-policy formulation for reduced variance and faster training times (if compared to general Off-
policy methods)

3.2. Reinforcement Learning 67

2. Trust Region to ensure small changes to the policy
3. Importance sampling to increase sample efficiency of PG methods (and DRL in general)

PPO
Despite good performance, TRPO has the downside of using complex ideas and algorithms in its

operation. PPO counters that by using a clipped surrogate objective to simplify the implementation
whilst retaining similar performance to TRPO. Proximal Policy Optimisation (PPO) was introduced by
the same author as the TRPO algorithm and it is a first-order optimisation that stipulates a probability
ratio r(θ) between the old and new policies [57]. The use of simple probability ratios instead of com-
plicated KL constraints renders PPO much simpler implementation, hence, allowing a wider range of
applications and researchers to use the algorithm.

Equation 3.22 shows the probability ratio and equation 3.23 shows how r(θ) is implemented in the
objective function of PPO. It is important to note that r(θ) is constrained in PPO by a clipped surrogate
from −1 to +1, instead of the complex KL divergence in TRPO.

r(θ) =
πθ(a, s)

πθold(a, s)
(3.22)

JTRPO(θ) = E[r(θ)Aπold
(s, a)− c1(Vθ(s)− V (s)) + c2H(s, πθ(.)))] (3.23)

Additionally, PPO subtracts the error value of the value function with the target value function, pa-
rameterised by the hyperparameter c1, from the objective function, and adds an entropy term to it,
parameterised by the hyperparameter c2. Compared to TRPO, PPO has a simpler implementation,
more generality and has proven empirically to have better sample complexity. In [38] a study of differ-
ent RL algorithms for learning to control UAVs is made, in its results it shows that PPO surpasses PID
performance in almost every metric that has been analysed.

The key components of PPO are:

1. On-policy formulation for reduced variance and faster training times (if compared to general Off-
policy methods)

2. Clipped surrogate to ensure only small changes to the policy occur, in a simple fashion

Synopsis
The information given in the previous subsections is provided in an organised and simple manner to
be used for reference in table 3.4.

Table 3.4: (Deep) Reinforcement Learning Actor-Critic algorithms

Algorithm Policy Policy Type Action Space State Space Additional characteristic
DDPG Off-Policy Deterministic C D & C Deterministic policy
TD3 Off-Policy Deterministic C D & C Double Q-value & Delayed updates
SAC Off-Policy Stochastic C D & C Stochastic policy

A3C/A2C On-Policy Stochastic D & C D & C Parallel training
TRPO On-Policy Stochastic D & C D & C Trust Region Optimisation
PPO On-Policy Stochastic D & C D & C Clipped surrogate

In columns four and five C stands forcontinuous and D for deterministic

Actor-critic DRL methods are considered in this literature study because they are mainly model-free,
meaning that they do not require any prior knowledge of the environment. This is a characteristic that
is desired in an automatic landing system, this is because current ALSs fail to perform as expected
when the environment changes, i.e. dynamic, which is inevitable in aviation. It is understood that if
the controller’s operations do not depend on its idea of the environment, i.e. model, it is less likely that
its performance is considerably affected by changes in the environment. A downside of the algorithms
herein presented is the fact that they are in general sample inefficient, if compared to other methods.
Hence not suitable for online implementation, which as mentioned previously, is a desired characteristic.
They have, on the other hand, been very successful through offline implementation due to their high
generalisation power. For these reasons, DRL methods are under consideration to be used in this
project.

3.2. Reinforcement Learning 68

3.2.5. Proposed Framework
In the previous sections of this chapter two groups of algorithms contain many of the characteristics
that are desired for the algorithm to be sued in the auto-land system to be designed. Additionally, both
groups have already been successfully implemented in flight control applications with state-of-the-art
performance. The main difference between the two groups is that iADPmethods are implemented in an
online fashion as adaptive controllers, on the other hand, model-free DRL methods are mainly applied
in an offline fashion as robust controllers. Hence, the question becomes a matter of deciding between
adaptive and robust control, more than between the methods themselves.

In [2] a comparison between robust and adaptive control is made with a variety of examples and
in different structures. The results of this specific paper in combination with previous studies conclude
that, in general terms, robust control tends to present faster responses to variations in parameters,
in the case of this study, that would be dynamic changes to the environment. However, these re-
sponses are satisfactory only if these variations fall within the design specifications, in the case of RL
that would mean within the trained situations. On the other hand, adaptive control, usually provides
slower responses to variations in a system, however, is capable of performing well in a wider variety
of circumstances, as well as adapting to unknown situations. The paper proposes these two differ-
ent approaches to be seen as complementary ways of dealing with system uncertainties, rather than
opposite. Robust control is designed to be insensitive to parameter variations, and adaptive control
is designed to change its control law to better suit the new parameters. Therefore, it is interesting to
combine these two characteristics in a single controller, such to yield a control method that inherits both
characteristics.

The field of iADP presents algorithms that are capable of learning in a fully online manner, without
the need for an offline training phase, due to its high sample efficiency, high convergence rate and the
utilisation of a model of the system. Additionally, the use of a fast and accurate incremental model en-
ables model independence of the agent, which is a highly desired characteristic to deal with uncertain
environments such as that of aircraft landing. Additionally, the adaptive nature of iADP renders it gener-
ally higher fault tolerance if compared to DRL methods, which rely on generalisation power. However,
as pointed out by [68], adaptive methods have two drawbacks related to their online implementation,
first continual learningmay lead to amonotonic increase in themagnitude of network parameters, which
leads to instability of the controller [28], and second, present high sensitivity to real-world effects, like
sensor noise, leading to degraded performance of the controller. On the other hand DRL methods,
albeit having performance limited by their offline training, present insensitivity to changes and noisy
data, for example, sensor noise, and generally faster responses. Additionally, robustness may be in-
creased through training the agents in the presence of failure/disturbance, such that it experiences the
environment changes and learns how to work with them.

Finally, in view of the characteristics of iADP and DRL methods, the current needs of ALS and
the intermediary results of previous research, discussed in the literature study, it is concluded that
robust control is the most interesting choice for an automatic landing system at the moment and
the one that promises the most stable base for future iterations. Therefore, it is proposed to study
the implementation of a framework that makes use of DRLs method as a means of making ALSs
more robust and increasing their control accuracy. The exact structure of the controller to be used is
discussed to be decided after the preliminary analysis, 4, in chapter 5.

3.2.6. Conclusions
The literature study presented in this chapter has the aim of introducing the topic of reinforcement
learning, such as to create a basis for the understanding of how it can be applied to control systems and
how that would benefit automatic landing systems. This chapter presents basic RL concepts such as its
elements, Markov decision processes, the Bellman equation, and design choices, such as exploration
and exploitation, model-based and model-free methods, on-policy and off-policy, online and offline
etc. Furthermore, three basic solution approaches, namely Dynamic Programming, Monte Carlo and
Temporal Difference methods, were discussed such to set the basis for understanding more specific
methods. The discussion then shifts towards the implementation of RL in the real-life world through
adaptations for continuous spaces and the challenges faced in the field of RL.

State-of-the-art algorithms belonging to two families, namely ADP and model-free actor-critic DRL,
have been presented in terms of their workings, their characteristics, strengths and weaknesses. It
has also been decided to study the development and implementation of a controller that combines

3.2. Reinforcement Learning 69

both robust and adaptive control techniques. From the literature study, it is clear that IDHP is the most
prominent algorithm regarding the implementation of flight control techniques and model-independent
controllers to continuous problems in general, on the side of adaptive control. On the side of robust
control, it was not clear from the literature which of the algorithms provides the most benefits. For
example, [17] utilises SAC for its flight controller, but recommends analysing the performance of TD3
and PPO, additionally, [67] was successful in implementing DDPG to an automatic landing system.
Hence, it remains to be decided which of the DRL methods is the most suitable for the application of
this thesis.

With the content presented in this chapter, it is possible to answer research questions Q2.1 and
Q2.2.

RQ2.1 What are the current state-of-the-art RL algorithms?

As stated by [64] current state-of-the-art algorithms utilise actor-critic agent structures and are likely
to remain of interest due to their ability to learn explicitly stochastic policies and requiring minimal com-
putational effort in action selection. Furthermore, this question is answered in sections 3.2.2 and 3.2.3,
where ADP Adaptive-Critic Designs and model-free actor-critic DRL methods are described along with
their main characteristics, strengths and weaknesses. Furthermore, it has been pointed out that some
of these methods have already been successfully applied to Flight Controllers and similar applications.
A more clear answer is given in section 3.2.2 where eight papers have been briefly discussed, namely,
HDP, DHP, IDHP, IGDHP from the field of iADP, and SAC, TD3, DDPG from the field of DRL, and even
a mix of both fields, through a SAC-IDHP hybrid, were implemented for flight control applications.

RQ2.2 Which RL framework is suitable for resolving ALSs issues?

As stated in the answer to RQ2.1 there are two groups of algorithms that are interesting for the
goals of this project. However, the comparison between the two is not a straightforward one, this is
because iADP produces an adaptive controller and DRL produces a robust controller. According to [2],
robust controllers provide fault-tolerance due to their high generalisation power and are expected to
work well in a dynamic and noisy environment, as long as the changes are not too extreme. Adaptive
controllers provide adaptive behaviour, where the parameters that govern its policies are changing with
the environment, therefore, these controllers are expected to stand out in environments where there are
exceptionally large. For this research, the robust approach was chosen due to the fact that it provides a
more solid controller, such as to make a stable and robust base for an ALS that is insensitive to sensor
noise and generates faster responses. It is also not expected that the changes in the environment are
too large such that the DRL controllers cannot handle them, however, this can only be affirmed with
certainty at the end of this research.

It is acknowledged herein, however, that possibly the best controller design is a combination of both
robust and adaptive controllers [2], where relatively small changes to the environment are handled
by the former and larger changes by the latter. However, it might not be necessary to implement an
adaptive control portion to the ALS controller. Therefore, the research herein presented chooses to
focus on robust control, and the study on the addition of an adaptive control portion to the ALS is left
for future research in case it is shown necessary.

Finally, it is not clear from the literature study which model-free deep reinforcement learning algo-
rithm is the most suitable for the purposes of this research. Previous research was successful in using
the SAC algorithm in fault-tolerant flight control [17] [68], however, both of them recommended an
investigation on the use of TD3 and PPO, which also appeared in this research as part of the state-of-
the-art in RL algorithms. Therefore, a preliminary analysis of such methods is performed in section 4
to determine the most suitable DRL algorithm for the ALS developed in this research.

4
Preliminary Analysis

Chapter 3 introduced the topics of (automatic) landing systems and reinforcement learning, from the
conclusions of these chapters research questions RQ1.1-3 and RQ2.1-2 have been answered. To
attend to the needs of current ALSs, at the end of the last chapter a control framework utilising robust
control through offline learning has been proposed to be studied in this research. However, it was
not possible to determine which model-free actor-critic DRL algorithm is the most suitable for the ALS
purposes. Therefore, a preliminary analysis is performed to identify which algorithm performs the best
under a simplified flight control task and answer RQ2.3. Additionally, this preliminary study allows for
familiarisation with the implementation of DRL algorithms and how they work.

This chapter is outlined as follows, section 4.1 defines the reasoning on why the preliminary study
herein presented is performed, along with the objective and the structure of two tests, namely robust-
ness test and adaptability test. Section 4.2 presents the results and the discussion of the findings of
the tests performed. Section 4.3 presents the structure and the goal of an additional test performed to
verify the training consistency of certain algorithms, along with an analysis of the results and findings.
Finally, section 4.4 briefly summarises the findings of the chapter and combines information acquired
previously, in chapter 3, to fully answer research question RQ2.3. 1

4.1. Testing objective & Structure
In the previous subsections, seven different model-free DRL Actor-Critic algorithms have been dis-
cussed, including their main characteristics, the motivation as to why they have been developed, as
well as their working principles. As has been discussed in section 3.2.2 (Design-choices & High-level
concepts), choosing an algorithm is no easy task, as each design comes within a spectrum and each
method has strengths and shortcomings. The preliminary study herein presented is meant to aid the
algorithm selection process and has the goal of determining which of the model-free DRL algorithms
is the most suitable to be used in the development of an automatic landing system, and to provide
concrete arguments to back-up this choice. The preliminary study is performed using five algorithms
discussed in chapter 3.2. DDPG, TD3 and SAC are tested in order to verify the promised improvements
the latter two algorithms have over the former, A2C since according to [75] A2C has clear advantages
to A3C, and finally PPO, since according to the author of both [57] PPO is clearly better than TRPO.
Plus an additional PID controller to verify the argument of classical control theory being unsuited for
highly dynamic environments.

There is a wide variety of methods for bench-marking algorithm performance, perhaps the most
widely known bench-marking toolkit for continuous control and physics-based simulation in reinforce-
ment learning is OpenAI Gym. The library contains environments for developing, testing and training
RL agents, ranging from a long list of Atari games (Asteroids, Defender, Enduro, etc.) to classic control
problems (Acrobot, Cart-pole, Pendulum, etc.). For this preliminary analysis perhaps the most fitting is
the classic rocket trajectory optimization problem ”Lunar Lander” [36] is chosen, a simple flight control
problem where the goal is to land a spacecraft.

1Chapter 4 - Preliminary Analysis of the report has already been assessed as part of the AE4020 Literature Study course.

71

4.1. Testing objective & Structure 72

4.1.1. Problem introduction
The Lunar Lander problem consists of a spacecraft landing on the rugged surface of the moon and the
goal is to land in a landing pad located at (0, 0), as shown in figure 4.1. The Reinforcement Learning
structure is set with an Action space, Observation Space, Rewards, and State Space as follows:

• The action space consists of four discrete actions: (i) do nothing, (ii) fire the main engine, (iii)
fire the left engine, and (iv) fire the right engine, of which (iii) and (iv) cannot be performed at the
same time. In the discrete form of the problem the engines can only be on or off, this analysis
however uses the continuous version of the environment, where the engines may be activated
with intensity varying from 50% to 100% power, at the agent’s will.

• The observation space is an 8 dimension vector containing: The craft’s position (x and y direction),
its linear velocity (x and y direction), its angle, its angular velocity, and two booleans informing
whether the craft’s legs are in contact with the ground or not.

• The positive rewards are given when the craft reaches the pad (100 to 140) when the craft comes
to a rest (100), when each leg touches the ground (2x10), and negative rewards, punishment, is
given when the craft moves away from the pad (not specified), when the craft crashes (−100),
when it fires the engines (−0.3 per frame for the main engine and −0.03 for side engines), the
problem is considered solved if a total of 200 reward points is accumulated at the end of the
episode.

• The state space is continuous and the problem is initialised with the craft in the top centre of the
environment and a force of random magnitude and direction is applied to its centre of gravity.

Figure 4.1: Snapshots of the spacecraft landing in the lunar lander problem, retrieved from [22]

The Gym library also provides a wind function, with which simulated wind gusts and turbulence can
be applied to the craft during the landing. This feature plays an essential role in this study, this is be-
cause it adds a simulated atmosphere to the Lunar Lander problem, allowing for disturbances such as
those found in the landing environment to be simulated and for more accurate testing of the robustness
of the algorithms. Therefore, the landing task herein analysed can be considered a simple flight control
problem. The wind gusts provided by the library are modelled through the trigonometrical function in
equation 4.3 where the wind magnitude Wmag is computed through the summation of two sinusoidal
functions, limited by a hyperbolic tangent multiplied by a wind power Wpower. The two sinusoidal func-
tions are given in equations 4.1 and 4.2, where k is set to 0.01, t is the time, and C is randomly chosen
between −9999 and 9999, rendering, according to [36], a non-periodic trigonometrical function.

θ1 = 2k(t+ C) (4.1)

θ1 = πk(t+ C) (4.2)

Wmag = Wpower ∗ tanh(sin(θ1) + sin(θ2)) (4.3)

4.1.2. Tests set-up
Having in mind the nature of the proposed framework two series of tests have been designed with the
goal of determining which of the DRL algorithms is the most suitable choice for the ALS to be designed.
The tests have the ultimate goal of measuring the robustness of each algorithm, which is to be done
through an offline implementation of algorithms and analysis of their performance in the simple flight
control task described in the previous section.

The first test has the goal of analysing how the agents are capable of dealing with unknown distur-
bances, that is, disturbances that it has never been experienced before. Therefore the test is structured

4.2. Results & Discussion 73

as follows: the agents are trained in the environment until it is considered that they are capable of ”solv-
ing it”, i.e. until they are able to accumulate 200 reward points, according to gym [36]. In order to avoid
prematurely truncated training due to outliers and exceptional performances, a script is written such that
the agent is trained until it can achieve a reward average equal to or higher than 200 in 100 episodes.
The agents are then evaluated in 1000 episodes in order to establish their baseline performance in
the uninfluenced environment, i.e. identical to the one they have been trained in. Subsequently, the
agents are subject to an additional evaluation of 1000 episodes, where external disturbances in the
form of wind gusts, such as explained in 4.1.1, are introduced in the environment to simulate uncertain-
ties. The performance difference between the two sets of evaluations is then used to determine the
robustness, consistency and computational effort of the algorithms. This first test is designed to show
the robustness of the algorithms when an unknown disturbance is introduced in a stable environment,
hence it tests the robustness to the unknown of the algorithms.

In reality, it is known that the vast majority of external disturbances come in the form of constant
winds, wind gusts and turbulence, all of which can be modelled. The environmental uncertainties, in
this case, are related to the shape and intensity that these disturbances have. Additionally, there are
multiple failure cases that are known and can be simulated, the uncertainties appear in the form of
the intensity of the failure and the moment in time they occur. Hence, agents can, and should, also be
trained with certain models of disturbances and their performance analysed under yet another modelled
disturbance.

The second round of tests is then designed with the goal of analysing how capable the agent is
of dealing with known but uncertain circumstances, that is, unknown disturbances that are similar to
those the agent has seen before, although not entirely the same. In this case, the agents are trained
in the environment where wind gusts with wpower = 10 are present, with the same method in the first
test, and evaluations are made for 1000 episodes in environments with wpower = 10 - to determine
baseline performance -, wpower = 15, and wpower = 20. It is expected that the agents have worse
baseline performance than in the previous test, but also that they learn how to deal with uncertainties,
hence perform better in the subsequent rounds of evaluation, even if the disturbances are different
than those they have been trained in. This test also evaluates the robustness of the algorithms, in this
case however, it measures the robustness to uncertainties, in contrast to a more pure robustness
test performed in the first test.

Regarding training, parameters of interest are the training time and the time steps required to reach
the desired training level, such as to gather information about the computational necessities of each
algorithm. Additionally, a learning curve provides information about the stability of training, which is
considered an issue for some DRL algorithms. Regarding the tests themselves, parameters of inter-
est are average rewards and standard deviation of the results. The former parameter measures the
overall performance of the agents, hence the higher the better, it is an important parameter because
it ultimately indicates the algorithm that performs the best. The latter measures the consistency of the
agents between episodes, hence lower deviations are desired, additionally, it also gives information
about the reliability of the algorithms, which is of extreme importance in fault-tolerant systems which
involve high-risk, such as aviation systems. Other parameters have also been computed reflecting
the computational needs of the algorithms, however, these are less important due to the fact that the
agents are trained in an offline manner and that the computation time does not largely differentiate from
one method to another, as can bee seen in the results table. Nonetheless, the following parameters
can be found in tables B.1 and B.2, in appendix B: steps per episode to evaluate the quality of actions,
and computation time per episode and per step to evaluate computational expense have also been
computed.

4.2. Results & Discussion
The main algorithms previously described, namely, DDPG, TD3, SAC, A2C and PPO, have been im-
plemented using an RL library called Stable-Baselines, which provides standard versions of such al-
gorithms. It is important to note that in order to maintain consistency across the algorithms’ implemen-
tation, no hyper-parameters have been modified and with the exception of DDPG and TD3 utilising
noisy actions to increase exploration (as advised in the library documents), the algorithms have been
implemented in their most basic form. Additionally, the PID controller has been designed using a hill
climbing optimisation technique, where the algorithms start with no control, i.e. PID parameters equal to

4.2. Results & Discussion 74

0, and small random increments are used to alter the parameters every step, which are only effectively
updated in case the performance is indeed enhanced from one step to the next.

4.2.1. Test 1 - Robustness to the unknown

Figure 4.2: DDPG, TD3, SAC, A2C, PPO learning curves

Table 4.1: Actor-Critic DRL algorithms training performance in the Lunar Lander environment

Algorithm Training time [min] Time steps
PID - -

DDPG 275.2 738000
TD3 70.7 238000
SAC 184.7 774000
A2C 92.6 2084000
PPO 15.5 209000

The results for the training are shown in table 4.1. It is possible to see that DDPG is the slowest
algorithm to converge, and as expected both modifications of it, i.e. TD3 and SAC, have faster conver-
gence time. Additionally, PPO is by far the fastest of them all to converge, also requiring fewer steps
to do so. A2C requires by far the most amount of steps but sits at the median of the training times,
meaning that it has the fastest computation time for each step. Additionally, TD3 is 2.7 times faster
than SAC and requires 3.2 times fewer steps to converge, inferring that not only TD3 requires fewer
steps, but its steps are also faster to compute. Figure 4.2 shows the learning curve graph of the algo-
rithms, where it is possible to see that SAC learns the fastest in the initial steps, however, becomes
more conservative training progresses and better parameters have been found, ultimately requiring
more steps than TD3 and PPO. Finally, from the graph it is possible to see that A2C has the highest
training variance, seemingly not converging to a stable final agent, but only staying within the desired
reward range just long enough to trigger the training to stop. The tuning time for the PID controller is not
computed, this is because in the hill climbing methodology, the initial parameters are initially randomly
sampled, therefore training may take up to 1 hour as well as a few seconds.

4.2. Results & Discussion 75

Table 4.2: Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar Lander problem trained with no wind and
evaluated in nominal condition and with wind, wpower = 15

Nominal Condition Added Wind
Algorithm Mean reward Standard

deviation
Mean reward Standard

deviation
PID 252.6 62.9 57.8 175.3

DDPG 278.4 31.4 265.1 53.5
TD3 280.0 18.1 265.4 38.1
SAC 279.5 16.0 270.1 31.3
A2C 221.3 39.5 182.3 110.5
PPO 220.2 82.1 151.2 135.3

Table 4.2 shows the averaged results of the algorithm’s performance over 1000 episodes in the
environment, first under nominal conditions, i.e. without wind, and then with the wind. The PID con-
troller achieves rewards well above 200 points in the nominal conditions, whilst A2C and PPO average
around 30 points less than the classic control method. DDPG and its two variants, on the other hand,
surpass the performance of the PID averaging around 30 points more than the PID. Additionally, TD3
and SAC are significantly more consistent than the other algorithms presenting two to four times better
standard deviation among the evaluations. When wind is introduced in the environment, however, the
performance difference between the DDPG, TD3 and SAC, and the other algorithms becomes even
clearer. The PID scores the least points, followed by A2C and PPO, all three of which are not able
to reach an average of 200 reward points. The performance of the policy gradient methods on the
other hand only decreases about 10 to 15 reward points from the nominal conditions, therefore show-
ing the robustness of these algorithms. Additionally, once again TD3 and SAC show significantly less
divergence than DDPG does, being SAC’s divergence still smaller than that of TD3.

4.2.2. Test 2 - Robustness to uncertainties

Figure 4.3: TD3, SAC, PPO learning curves

Training under uncertain circumstances exhibits similar results to that in a stable environment when
the performance of the algorithms is compared. PPO is still the fastest to converge, followed by TD3 just
as before; Surprisingly however, is that SAC has a training time twice as long as DDPG, requiring almost
three times more steps to converge. The same phenomenon as in the previous training is observed,
SAC is the fastest to learn at the start and it slows down after reaching higher rewards. DDPG is still

4.2. Results & Discussion 76

Table 4.3: Actor-Critic DRL algorithms training performance in the windy Lunar Lander environment (wpower = 10)

Algorithm Training time [min] Time steps
PID - -

DDPG 330.5 896000
TD3 295.8 874000
SAC 655.1 2239000
A2C - -
PPO 25.8 302000

slower than TD3, and unlike the other algorithms, it presents a similar training time as it did when there
was no wind in the environment. A2C presented extremely high training instability, not even being
able to reach positive rewards, hence it does not have complete training data in table 4.3; This might
be explained by the multiple parallel environments the algorithms use not being sufficiently correlated
due to high levels of uncertainty, and hence hindering the learning ability of the agents. Overall, the
algorithms required much longer training times to reach 200 reward points consistently, up to three or
four times what has been previously observed and require about three times more steps. The training
data is shown in table 4.3 and the learning curve of the algorithms in figure 4.3.

Table 4.4: Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar Lander problem trained with wpower = 10
and evaluated with wind, wpower = 10, wpower = 15, and wpower = 20

Wind Power 10 Wind Power 15 Wind Power 20
Algorithm Mean

reward
Standard
deviation

Mean
reward

Standard
deviation

Mean
reward

Standard
deviation

PID 159.7 127.8 127.0 129.8 54.83 90.5
DDPG 271.8 43.5 270.7 41.7 265.5 48.6
TD3 276.9 20.3 274.5 24.8 270.3 30.0
SAC 283.6 19.1 279.7 20.1 276.5 26.0
A2C - - - - - -
PPO 195.1 108.4 156.1 131.6 150.2 135.1

Table 4.4 shows the averaged results of the performance of wind-trained agents over 1000 episodes
in the environment with wind, first with wpower = 10, i.e the environment the agents have been trained
in, second with wpower = 15, and third with wpower = 20. In this test the PID was tuned using the same
hill climbing technique as before, but with the presence of the correspondent wind conditions. It is
observed that the PID performance considerably increased when the wind is taken into consideration
during the tuning process. Albeit a clear improvement is noticed, unfortunately, the PID is still not able
to achieve sufficient results under windy conditions, which corroborates the statement that classical
control theory is not suitable for uncertain systems. Additionally, PPO retains performance similar to
those encountered in the first test, however, it also shows that the algorithm is not robust enough to
handle uncertain windy conditions. Note that the algorithm was not capable of reaching an average of
200 reward points, not even when tested in the conditions it was trained in.

Finally, similarly to what had been observed before, the DDPG variants are the best-performing
algorithms under windy conditions, presenting by far the highest amount of reward points. The three
algorithms have similar performance regarding the accumulated rewards, diverging only by 1 − 3%
among them, being SAC performing slightly better in all situations, followed by TD3 and then DDPG.
The latter, however, presents significantly lower consistency in its results, at times presenting standard
deviations twice as high as its other variations. Additionally, it is worth mentioning that the SAC-trained
agent presented the lowest amount of steps per episode in the three measured wind conditions (See
table B.2 in appendix B), which not only renders the algorithm higher scores but also that the SAC
agent can find better solutions, that is faster, than other algorithms.

4.3. Training Consistency Test & Discussion 77

4.2.3. Discussion
The performed tests present insightful results on the performance of the algorithms. It reaffirms the
fact that PIDs are not suitable for unstable, non-linear and complex systems, hence have limited per-
formance when applied to the uncertain automatic landing problem herein considered. Moreover, A2C
showed incredibly unstable training, especially when it is attempted to train under uncertain conditions,
and it showed a lack of robustness toward external disturbances. PPO showed incredibly fast conver-
gence and beat other contestants with respect to training time by a large margin; More importantly,
however, the algorithm was not able to show consistent results as well as lacking robustness. There-
fore, A2C and PPO are ruled out to be used in the upcoming phase of this project. More interestingly,
however, is the performance of DDPG and its two variants, TD3 and SAC, these algorithms showed
high performance in the tests by accumulating high amounts of rewards in all performed evaluations,
whilst still maintaining low deviation between episodes. Although, DDPG has significantly higher devi-
ations if compared to its other two counterparts, and slightly lower averaged rewards, and therefore it
is also disconsidered for further use.

Through these tests it is clear that the SAC and TD3 are the two best-performing algorithms, hence
the most suitable for the automatic landing system to be developed in the main phase of this thesis. It
is, however, not straightforward to determine which of the two is the most suitable one. SAC performs
slightly better than TD3 in all metrics in the second experiment. TD3 on the other hand has more
efficient training, requiring fewer steps with lower computational expense to converge to stable agents
performances. The study in [17], where SAC was implemented in a flight control system, indicates that
the algorithm presents low training reliability due to low stability, and recommends the investigation of
a TD3-based controller to solve such problem. Additionally, the studies performed by the authors of the
respective algorithms are inconclusive as to which one performs best since they have been published
in the same year with a short period of time between each other. Their results also present biases due
to a lack of parameter tuning, stochasticity and the use of different network characteristics.

In summary, SAC has slightly better performance than TD3 and can find better solutions by solving
the lunar lander problem with fewer steps per episode. However, having in mind the issues with SAC
pointed out by in [17], an extra experiment was designed to analyse the training consistency of SAC
and TD3 and evaluate if training consistency is a decisive factor.

4.3. Training Consistency Test & Discussion
Other important metrics that have not been considered in the previous tests are the consistency of
training, that is the consistency of which the agents are capable of learning the behaviours presented
in the data in the tests and the stability of training. Hence, another test has been designed in which
four agents are trained using SAC and TD3 such that the consistency of their results can be analysed.
The training and test set-up is the same as the second round of tests in the previous section, that
is, the agents are trained under windy conditions with wpower = 10, and evaluated for 1000 episodes
with wpower = 10, wpower = 15, and wpower = 20. The second round of tests has been chosen to be
replicated since it most closely resembles real-life training situations.

4.3. Training Consistency Test & Discussion 78

Figure 4.4: 4 TD3 learning curves

Figure 4.5: 4 SAC learning curves

From figures 4.4 and 4.5 it is possible to see that both algorithms have similar tendencies with a
very high learning rate at the start of training and significantly reducing once significant reward levels
have been reached. Additionally, it is observed that all curves are close together and present hardly
any deviations between an agent and another, meaning that both algorithms seem to have stable and
consistent training, and it is expected that different agents would perform similarly. That being said, it
is also possible to see that SAC presents more constant learning behaviour than TD3, especially in the
initial phase of training, where in the first 250000 steps all TD3 agents present learning drops. Further-
more, SAC presents the four learning curves more tightly together, showing less training variation than
TD3.

Table 4.5 contains the average rewards and deviation for each of the agents in 1000 evaluations

4.3. Training Consistency Test & Discussion 79

in three different wind conditions. Once again it is possible to see that SAC scored consistently higher
values than TD3 does. Additionally, SAC is more consistent in its agent’s training, which can be seen by
the deviation among the results. TD3’s higher deviation is due to one of its agents TD33 performance
being much lower than the others. However, the second and third tests TD32 also scores lower and
with higher deviation than the others, an issue that cannot be seen in the first test.

Table 4.5: TD3 and SAC algorithms performance in 1000 episodes of the Lunar Lander problem trained with wpower = 10 and
evaluated with wind, wpower = 10, wpower = 15, and wpower = 20

Wind Power 10 Wind Power 15 Wind Power 20
Algorithm Mean

reward
Standard
deviation

Mean
reward

Standard
deviation

Mean
reward

Standard
deviation

TD31 276.3 23.8 274.6 24.1 272.4 28.3
TD32 276.0 24.3 270.9 37.9 261.8 48.9
TD33 265.4 54.7 267.6 47.6 247.7 80.4
TD34 278.0 20.0 275.1 24.1 270.7 25.0
Mean 273.9 30.7 272.1 33.4 263.1 45.6

Deviation 4.9 13.9 3.0 9.9 9.7 22.0
SAC1 283.3 19.8 280.7 20.1 276.5 31.0
SAC2 278.7 19.2 277.6 22.4 277.4 23.3
SAC3 280.2 21.9 276.9 24.5 270.6 29.8
SAC4 277.7 21.2 276.8 23.0 267.4 29.0
Mean 279.9 20.5 278 22.5 272.9 28.3

Deviation 2.1 1.0 1.5 1.5 4.1 2.9

At length, it is possible to conclude that SAC is the most suitable algorithm to be used in the auto-
matic landing system to be designed. This is due to its robustness, proved by averaging higher average
scores than other algorithms in all tests performed but one, and the consistency of its performance,
proved by averaging lower standard deviation amongst episodes for all tests. Note that the latter point
is the decisive factor that sets SAC apart from TD3 (and DDPG), which also showed high-level perfor-
mance, but a higher deviation of results, both between episodes and agents. The training consistency
test presented in this chapter showed that TD3 has more unstable training than SAC, reassuring that
SAC is the best choice for the next phase of this project. Additionally, the only drawback to SAC ob-
served in this preliminary study is its training time, which can be much higher than other algorithms;
This factor however, does not play such an important role in the implementation of the algorithm, since
they are trained offline, and once training is finished, there are no more time constraints holding SAC
back. It can also be seen in table B.2, in appendix B, SAC presents the lowest amount of steps per
episode, meaning that with roughly the same computational time per step, SAC is capable of having a
lower total computational time overall.

The lower amount of steps per episode also shows that SAC probably has learned a better policy
than other algorithms. Finally, it is worth mentioning that the tests presented in this section may be of
limited value due to the low number of agent samples taken into consideration, more agents could not
have been trained due to the time constraints of the project and more accurate results would require
more agent data and possibly longer training. On the other hand, the learning curves show that both
algorithms have similar trends amongst their agents, and therefore extreme deviations are not expected.
Furthermore, the lower performance of TD32 and TD33 could not have been predicted from the results
of the baseline conditions and analysis of the learning curve.

4.4. Conclusions 80

4.4. Conclusions
The Preliminary study presented in this chapter has the aim of determining which of the model-free
actor-critic algorithms is the most robust of them, in other words, which one of them is capable of
performing the best under different uncertain circumstances, through generalisation. To determine
that, two tests were designed in which agents were evaluated under various wind situations. It was
found that the policy gradient methods, i.e. DDPG, TD3 and SAC, perform significantly better than
other algorithms. Between them, TD3 and SAC perform better than DDPG and present similar results.
To determine which one of the two would be the best choice a third round of tests was designed in
which the performance of multiple agents from these two methods was analysed. It has then been
concluded that SAC has higher consistency of results amongst different agents, in addition to scoring
slightly higher average rewards than TD3 in nearly all performed tests. The findings of this chapter
along with the literature study present in chapter 3 allow for research question Q2.3 to be answered.

RQ2.3 How well does the proposed algorithm perform when applied to simple flight control
systems?

The performance of the offline trained SAC controller is evaluated through the implementation of
OpenAI Gym’s Lunar Lander problem, where an agent must learn how to land a spacecraft within given
boundaries. To simulate an atmosphere and the uncertainties that come with it, the influence of wind
in different magnitudes was introduced. All analysed algorithms go pass through two tests, to analyse
their robustness to the unknown and their robustness to uncertainties, shown in as shown in section
4.2. On the former, the agents are trained in an undisturbed environment, and tested in an environment
where disturbances are present. On the latter, the algorithms are trained with disturbances and tested
with the same disturbances, but with higher intensity. The Soft Actor-Critic controller presented better
overall performance and consistency of results than the five other controllers. Accumulating rewards
much higher than required in all situations the algorithm was exposed to, whilst still maintaining lower
deviation between episodes. Additionally, an additional test was made on training consistency where
the performance across different controllers trained with the same algorithm was analysed. The SAC
algorithm showed higher rewards and lower standard deviation in all tested wind conditions. RQ2.3 is
then hereby answered.

To completely answer RQ2.2, the most suitable RL algorithm for this research is the offline-trained
model-free DRL SAC algorithm. This is because it was shown to be the most robust of the analysed
methods and achieved higher rewards in virtually all tests performed in a simple flight control system.

Through the work presented in chapters 3 and 4 research questions RQ1 and RQ2 and their sub-
questions are answered. Research questions RQ3 and RD4 are answered in chapter 2, with additional
results in chapter 5, where the SAC controller is designed and implemented on a high-fidelity simulation
model of the Cessna Citation 500 aircraft and its robustness tested in different failure cases.

5
Additional Results

This chapter presents additional results regarding the effect of the use of different values for the CAPS
Temporal and Spacial parameters. Furthermore, it also presents additional sensor failure cases, where
the LOC and GS’s transmitted signals are biased. Finally, the use of alternative controllers for the
landing task is also explored by means of evaluating a roll controller that has been trained with pitch
control active and a full attitude controller.

5.1. Effect of CAPS
As mentioned in section 2 the smoothness regularisation alters the policy with regard to two aspects: (i)
sequential actions should not vary greatly from one another, and (ii) similar states should be mapped to
similar resulting actions. The authorsmention that very likely the temporal parameter would be sufficient
to ensure smooth actions, but also that the inclusion of the spatial term could improve policy robustness
to domain shifts and unmodelled dynamics, therefore both terms were included in this research.

(a) CAPS40 (b) CAPS400 (c) CAPS40000

Figure 5.1: Elevator deflection command of controllers with different CAPS with reference signal θref = −1.7[deg]

Previous studies on the use of SAC-based controllers tested on the PH-LAB model [68] [59] have
used the CAPS parameters with values of λT = λS = 400. A brief search to evaluate the effects of
different CAPS values on the output of the controller was performed. For this experiment, three different
agents were trained to follow a fixed pitch reference signal of θref = −1.7[deg], the agents were trained
using the same set-up described in 2, being the only difference between them the value of the CAPS
coefficients, which were set to λ = 40, λ = 400, λ = 40000. Figures 5.1a, 5.1b and 5.1c show the pitch
attitude control command of agents, the output is taken using the training actions, that is, stochastic
actions. Increasing CAPS coefficients indeed reduce the variance between subsequent actions, as can
be seen from the decrease in oscillation amplitude from one agent to the next. Figure 5.2 shows the
differences in the aircraft pitch tracking performance, it can be seen that both the CAPS with λ = 40
and λ = 400 track the reference with no steady-state error, however, the CAPS with λ = 400 presents
a much smoother response. The response from the CAPS set to λ = 40000 is even smoother than that
of the λ = 400, however, it presents a steady state error of around 0.8◦. These results show that indeed

82

5.2. ILS Bias 83

the CAPS parameters set to around λ = 400 provide the best balance between action smoothness and
tracking, therefore, the value of λ = 400 used in [68] was also used throughout this research.

Figure 5.2: Pitch attitude control performance of the controllers with different CAPS. Blue = 40, Orange = 400, Green = 40000

5.2. ILS Bias
Table 5.1 shows the controller’s performance when the transmitted GS signal is biased. When the bias
is positive the performance of both controllers is similar at first, as can be seen at bias 0.4deg. However,
upon increasing the bias to 0.5deg the performance of the PID greatly decreases, this is because the
PID controller is not able to pull the aircraft up fast enough, resulting in the aircraft landing much before
the runway, hence failing to land the aircraft properly. The RL controller is still able to control the aircraft
and land almost in the same place as it had with the bias of 0.4. This is most likely due to the fast and
aggressive response the RL controller learns during training. Additionally, the RL controller is able to
keep a higher landing vertical speed, while the PID drifts towards the lower acceptable values. When
the bias is negative, on the other hand, the PID controller performs better than the RL controller. Likely,
due to the less round flare trajectory of the RL controller and its fast response the aircraft ends up
landing much further on the runway.

Table 5.1: Landing performance in the Biased GS failure case

PID RL PID RL PID RL Unit
Bias 0.4 0.5 -0.4 [deg]

Longitudinal Position Xe -80.24 -75.25 -116.76 -81.32 143.17 237.81 [m]
Lateral Position Ye -0.01 -0.24 -0.01 -0.24 0.01 -0.24 [m]

Lateral Velocity 0.0 0.0 0.0 0.0 0.0 0.0 [m/s]
Altitude Rate -0.36 -0.68 -0.32 -0.7 -0.36 -0.18 [m/s]
Pitch angle 1.78 1.67 1.83 1.66 1.83 1.96 [deg]
Roll angle 0.0 0.0 0.0 0.0 0.0 0.0 [deg]

Table 5.2 shows the controller’s performance when the transmitted LOC signal is biased. Both
controllers have very similar lateral control performance. With a positive bias of 0.2deg both controllers
land the aircraft just inside of the boundary, with very similar performance and positioning. With a
negative bias of −0.2deg both of the controllers land the aircraft just outside of the runway boundary,
with similar touchdown parameters. Interestingly, however, the RL controller lands the aircraft further on

5.3. Alternative Controllers 84

the runway, with a larger error. Indicating that there is a stronger influence of the Roll Attitude controller
on the Pitch attitude control, or vice versa, than what is found on the PID.

Table 5.2: Landing performance in the Biased LOC failure case

PID RL PID RL Unit
Bias 0.2 -0.2 [deg]

Longitudinal Position Xe 2.35 2.47 -2.71 12.68 [m]
Lateral Position Ye 7.72 7.91 -8.34 -8.19 [m]

Lateral Velocity -0.29 -0.29 0.32 0.32 [m/s]
Altitude Rate -0.44 -0.48 -0.42 -0.45 [m/s]
Pitch angle 1.73 1.78 1.73 1.79 [deg]
Roll angle -0.01 -0.01 -0.0 -0.0 [deg]

5.3. Alternative Controllers
This section presents results on the use of alternative controllers, that are not necessarily direct sub-
stitutes for the inner loop controllers in the ALS controller structure proposed in this research. This
includes a Roll Attitude controller that was trained in a cascaded fashion with the Pitch controller and
a full attitude controller where the agent controls all three control surfaces.

5.3.1. Roll Attitude - Trained with Active Pitch control
Deflections of the aileron have effects on the elevator and vice versa. In the article, in section 2, the
proposed Pitch and Roll attitude controllers were trained separately and then both were put to work
together in the ALS. The resulting controllers proved to be robust enough that when combined the
effects they cause on each other are corrected. However, their interaction may be improved even
further by including such interactions during training. This section proposes a roll attitude controller that
is trained while a pre-trained pitch attitude controller is active. The hypothesis is that the roll controller
will learn to identify the patterns of the pitch attitude controller and shape its own actions in such a way
that the elevator effects on the aileron are minimized while still accomplishing the roll control task at
hand. The observation space contain the roll error ϕe and the roll rate p, and the action space contains
only the aileron deflection δa, identical to the previous roll attitude controller.

Such roll attitude controller is trained using the same pitch attitude controller in section 2 and both
are implemented in the ALS control structure. Once again the PID Autoflare controller was retuned to
suit the new RL inner controllers. The landing results at touchdown are presented in table 5.3 for the
Nominal case, in the presence of GS noise and in the presence of LOC noise. First, the performance
of the controllers in the nominal case is ideal, presenting very small errors in both the x and y directions
as well as the other parameters. The GS noise was once again simulated using Gaussian noise with
mean µ = 0 and standard deviation σ = 0.1. In the case of GS noise, the RL controller is able to
land the aircraft with a performance similar to that of the RL controller in section 2 in the longitudinal
direction, in the lateral direction, albeit having a similar deviation, the average error is much smaller.
The LOC noise was simulated using Gaussian noise with mean µ = 0 and standard deviation σ = 0.015,
instead of σ = 0.03 presented in section 2, this is because the controllers lose control of the aircraft
steering it towards ϕ values over 60deg, which ends up in premature termination of the simulation, and
in no landing of the aircraft. The increased performance of the roll attitude controller under GS noise
indicates that the pitch controller’s effects on the roll controller can be reduced through parallel training.
The parallel-trained roll controller, however, has shown to be much more LOC noise sensitive than the
independently trained controller.

5.3. Alternative Controllers 85

Table 5.3: Landing performance in the nominal case

Metric at touchdown Nominal case GS Noise LOC Noise Unit
µ σ µ σ

Success rate - 100.0 - 17.7 - %
Longitudinal Position Xe 0.79 13.27 53.84 8.72 10.93 [m]

Lateral Position Ye 0.03 -0.21 1.71 9.58 1.65 [m]
Lateral Velocity 0.01 0.01 0.0 0.2 0.09 [m/s]
Altitude Rate -0.47 -0.45 0.09 -0.45 0.02 [m/s]
Pitch angle 1.77 1.78 0.05 1.78 0.01 [deg]
Roll angle 0.0 0.0 0.0 0.11 0.02 [deg]

The decreased effects of the elevator on the roll controller is interesting and could generate better
controllers, if not for the increased noise sensitivity in the lateral direction. Therefore, further study on
this type of training for the roll attitude controller could be interesting. It is important to note that both
controllers were trained using the same reference signal and hyperparameters, therefore the sensitivity
issue could be improved by hyperparameter tuning and a brief study on different signal references.

5.3.2. Full Attitude Controller
None of the previous controllers made use of one important control surface, the rudder. As mentioned
previously, all control surfaces have an influence on each other, therefore, another interesting possibility
is a controller that is capable of controlling all three control surfaces of the aircraft, therefore resulting
in a full attitude controller. The hypothesis, in this case, is that the agent not only learns how to perform
both pitch and attitude control but also learns how one control surface affects the other and therefore
learns how to take optimal actions.

This section presents a controller that has been trained to follow a sinusoidal roll reference and a
cosinusoidal pitch reference, such that the signals are off-phase with each other. Another reference
signal is given in the form of a sideslip angle, which is set to zero, to maintain the aircraft flying straight.
The reward function is then set as shown in equation 5.1. Equations 5.2 and 5.3 show the error and
scaling vectors, and the agent’s action and observation spaces, respectively. The resulting controller
is implemented in the ALS substituting both the pitch and the roll attitude controllers, as shown in figure
5.3, and the longitudinal and lateral outer loops are combined. Once again, the auto flare controller
was retuned to ensure adequate landing. Table 5.4 shows the touchdown results of the controller in
the nominal case, where there is little error in either direction and the other variables are also within
the acceptable boundaries.

r̃(t) = −1

3
||clip[er ⊙ ee(t); 0, 1]|| (5.1)

er =
6

π
[1., 1., 4.] and ee = [θ − θref , ϕ− ϕref , β − βref] (5.2)

a := [δe, δa, δr]
T and sobs := [θe, ϕe, β, q, p]

T (5.3)

Table 5.4: Landing performance in the nominal case

Metric at touchdown RL Unit
Longitudinal Position Xe -0.39 [m]

Lateral Position Ye -0.39 [m]
Lateral Velocity 0.33 [m/s]
Altitude Rate -0.46 [m/s]
Pitch angle 1.67 [deg]
Roll angle -0.16 [deg]

5.3. Alternative Controllers 86

Figure 5.3: Modified ALS with full attitude controller

Although the landing position of the controller is satisfactory, the input command to all three control
surfaces is extremely oscillatory, not even allowing to determine what exactly the average signal is, as
can be seen in figure 5.4. The elevator command output by the controller is not realistic, since it is not
possible for the elevator to change direction in such a manner. To avoid such oscillatory behaviour the
aircraft simulation model contains a low-pass filter that eliminates the high frequency of the elevator
control inputs, however, it is not interesting to overload this filter and it also may affect the actor’s
policy. Additionally, this aggressive policy is also not efficient since the actual pitch angle does not
follow such oscillations. The most likely cause for this learned policy is overtraining which results in the
agent attempting to diminish the tracking error beyond what is necessary. Possible solutions to avoid
such behaviour are the use of alternative training reference signals, the addition of parameters for early
termination of training, or the addition of reward penalties for oscillatory policy and/or certain aircraft
states. The latter has been recommended because it was observed that out of the two actor network
input types, reference error and angular rates, the reference error was shown to be smooth, while the
angular rate was also oscillatory, indicating that this might be the root cause of this issue. Additionally,
there is an overshoot in the lateral direction trajectory, this is due to the VOR hold controller not being
retuned.

5.3. Alternative Controllers 87

(a) Input commands (b) Aircraft output

Figure 5.4: Full Attitude input commands and aircraft outputs for the landing task

6
Verification & Validation

Verification and Validation are crucial steps in any research, they are necessary to ensure the validity of
the results and understanding of its limitations. For this research, it is necessary to perform verification
and validation of both the model utilized, to ensure that the aircraft model indeed behaves as it is
supposed to, as well as the reinforcement learning algorithm, to ensure that the controllers generated
with it are consistent. The following two sections detail the verification and validation of these parts.

6.1. Verification
Verification is performed to ensure that the software is designed as per its requirements, in other words,
to ensure that it does what it was intended to do.

6.1.1. Simulation Model
The Citation simulation model was designed by TU delft Control & simulation department of the AE
faculty of the TU Delft University using the Delft University Aircraft Simulation Model and Analysis Tool,
or DASMAT. The model was designed in MATLAB and has been compiled into C code, such that it can
be read and processed by Python, the programming language used in this research. To ensure that the
model has been adequately converted from the already validated MATLAB model to a Python model
the same simulation is performed in both environments and compared to each other. The results are
presented in figure 6.1 and show that there are no visible differences between both responses. Since
the Matlab/Simulink model has already been verified and validated in [29], the similarity between its
results is sufficient to validate the model conversion.

88

6.1. Verification 89

Figure 6.1: Aircraft responses to no inputs between the MATLAB and the converted Python model

Figure 6.2: Elevator and aileron input commands

Nonetheless, a basic verification of the model can be done through a sanity check in which certain
inputs are given to the aircraft, and its reactions are analyzed to determine whether it behaves as
expected or not, based on basic aircraft dynamics. To verify that a negative elevator deflection is fed
to the model, in this case, it is expected the command induces a positive response to pitch rate, pitch
angle and angle of attack. Additionally, a positive aileron deflection is fed to the model, in this case, a
negative roll rate, troll angle, sideslip and yaw rate are expected. The control inputs to the model are
shown in figure 6.2 and the aircraft responses in figure 6.3, therefore it can be seen that the aircraft
responses indeed correspond to the expectations.

6.2. Validation 90

Figure 6.3: Aircraft responses to elevator and aileron commands

6.1.2. Reinforcement Learning Algorithm
The SAC algorithm was implemented following its original paper [25] and previous papers [68] and
[17] as reference. The model can be verified by the upward trend of the learning curves presented in
section 2, which indicates that the model indeed is learning from its experiences with the environment.
The upward trend not only indicates that the algorithm is capable of understanding the results from its
previous actions but also that it is capable of interpreting them and making better decisions as it gains
more knowledge.

Additionally, the results section 2 show that the reinforcement learning controllers can be used to
substitute the attitude PID controllers in the ALS controller structure and the simulations in the verified
model prove that the controllers indeed are capable of performing the tasks that they were intended to
do.

6.2. Validation
Validation is performed to ensure that the software is designed within acceptable performance bound-
aries, in other words, to determine the degree to which the generated data is valid/accurate.

6.2.1. Simulation Model
The Cessna Citation 500 simulation model was validated in [29], where its responses to inputs were
compared against real flight data collected with the Cessna Citation 550 PH-LAB research aircraft. The
differences are measured in terms of the root-mean-square error (RMSE) for a given task, the study
reports an RMSE of 8.38% for the longitudinal force coefficient, 12.65% for the longitudinal moment
coefficient, and on the lateral direction these errors are reported to be 7.34% and 8.58% for the same
coefficients. The relatively low RMSE validates the simulation model as being an accurate representa-
tion of the PH-LAB aircraft, and although not perfect, it is sufficient to be used in research and validates
initial iterations of controllers.

6.2.2. Reinforcement Learning Algorithm
The algorithm can be validated through an analysis of its performance in different scenarios. The high
amount of rewards at the end of the training process that can be seen in the learning curve in section
2 signifies that the algorithm is capable of keeping the errors low as is expected from it. Additionally,

6.2. Validation 91

section 2 presents the performance of the SAC algorithm in a cascaded manner with the outer PID
controller in the landing task in a series of situations, where both sensor and actuator failures were
present. The controllers are validated through the results, which show that the PID-RL based ALS
controller is capable of landing the aircraft in nominal condition and in a series of sensor and actuator
failures.

6.2.3. Limitations
Even though both the aircraft model and the SAC algorithms have been verified and validated, there
are still limitations present. For example, actuator inputs pass through a first-order low-pass filter to
account for realistic dynamics, however, the transport delay is not taken into account. The environment
is considered to be fully observable and there is no sensor delay. Simulation and controller frequency
are set to 100Hz, however, the effects of it and different frequencies have not been tested. Addition-
ally, there are no aircraft configuration changes throughout the simulations, which is not realistic for a
landing task, although the ground contact is not considered in the simulation the landing gear still has
aerodynamic effects on the aircraft’s performance that should be taken into account.

7
Conclusion & Recommendations

7.1. Conclusions
The majority of aircraft accidents between 2011 and 2020 occurred in the final approach and landing
phases of flight, additionally, in 2019 80% of aircraft fatalities occurred due to in-flight loss of control
and hard landings. Therefore, the need for better fault-tolerant controllers specific to these phases
of flight is evident. The research contained in this report contributes to the field of aviation through an
investigation into the use of modern model-free fault-tolerant DRL flight controllers for automatic landing
systems. The goal of this study is to make advancements in the field of aviation, by finding modern and
robust controllers capable of dealing with the issues in the aforementioned, most troublesome phases
of flight. Chapter 1 introduced the topic of the research and set a series of research questions to be
answered and to guide the research. Research questions RQ1 and RQ2 were answered through a
literature study and preliminary analysis, presented in chapters 3 and 4. Research questions RQ3
and RQ4 were answered through the works presented in chapters 2 and 5. This chapter concludes
this thesis research through a discussion of all the research questions and a review of the research
objective.

RQ1: What are the state-of-the-art methods that are currently employed/proposed in Auto-
matic Landing Systems and what are their problems/challenges?

RQ1.1 What are the control methods utilised?
RQ1.2 Under what circumstances do these systems become faulty/present is-
sues?
Q1.3 What are the requirements for such systems? (airfield, weather conditions,
onboard equipment...)

Current Automatic Landing Systems (ALSs), as most flight control systems do, rely on classical
control theory to design their controllers. Although the use of more modern techniques for flight control
can be found, for example, the F35 fighter uses Non-linear Dynamic Inversion (NDI) for increased
stabilisation, the vast majority of ALSs, especially in general aviation, still rely on Proportional-Integral-
Derivative (PID) controllers. An investigation was done on the topic of landing systems in order to
understand how the landing is performed, the instruments and requirements imposed upon it, and the
challenges involved in designing (automatic) landing systems. ALS requires two ground-based pieces
of equipment, namely, the ILS and a Radio Altimeter, which provide longitudinal and lateral guidance
to the aircraft (RQ1.3). The onboard equipment is limited to suitable receivers and computers that are
able to process the information provided by the ground-based equipment. It was also determined that
uncertainty in the environment in the form of disturbances and actuator failure are the main barriers
to enabling wider use of ALSs in aviation (RQ1.2). These problems are closely linked to the use of
classical control theory, since it naturally lacks robustness, does not handle complex and non-linear
systems, and suffers from environment uncertainties. Therefore the field requires the development of
more robust and adaptive controllers.

93

7.1. Conclusions 94

There have been multiple attempts at remedying the problems related to sub-optimal, or poor, per-
formance of classical control theory methods in the face of uncertainties of the landing environment.
Ranging from optimal control, withHinf andH2, to Sliding Mode Control and Dynamic Inversion (RQ1.1),
some of the proposed methods have shown promising test results and interesting implementations,
however, the majority of them have only considered decoupled aircraft dynamics and/or only consider
linearised models. Therefore, the field would certainly benefit from performing more studies and the
development of novel adaptive and robust controllers.

RQ2: What characteristics of Reinforcement Learning are suitable to mitigating ALS’s is-
sues (from Q1)?

RQ2.1 What are the current state-of-the-art RL algorithms?
RQ2.2 Which RL framework is suitable for resolving ALSs issues?
Q2.3 How well does the proposed algorithm perform when applied to simple flight
control systems?

The topic of Reinforcement Learning was introduced in which its basic elements were presented
along with a discussion of the general characteristics of the field. It was determined that there are two
groups of algorithms within RL that provide the most benefits to ALSs and their environment, namely
Incremental Approximate Dynamic Programming (iADP) and model-free actor-critic Deep Reinforce-
ment Learning (DRL) (RQ2.1). Both are capable of handling control tasks in continuous space and
time through the utilisation of Artificial Neural Networks (ANNs) and handle highly dynamic and com-
plex systems through control design that is model-independent, meaning that no prior knowledge of
the environment is required. The iADP field utilises techniques to rapidly generate accurate incremen-
tal models that are used to reduce model dependence on model-based methods, such as Dynamic
Programming (DP), this approach is usually applied in an online fashion which results in highly adap-
tive controllers. On the other hand, DRL methods rely on their high generalisation power to attenuate
uncertainties of the environment, these methods are model-free, hence learning optimal policies whilst
allowing the environment dynamics to be completely unknown by the agent. Most commonly, these
methods are implemented in an offline manner and through their robustness can achieve certain levels
of fault tolerance.

In view of the current needs of the ALS field, the characteristic of RL methods, the results of pre-
vious papers on the field of flight control and RL-based controllers, and the nature of this research, it
has been concluded that a robust controller is the most viable option to be studied. This is because
DRL controllers are trained offline and provide high generalisation power, that is capable of operating
regardless of relatively small changes in the environment, therefore creating a more solid controller.
Current aviation lacks fault-tolerant control that is capable of operating regardless of internal and exter-
nal disturbances. Therefore, an offline-trained model-free deep reinforcement learning controller was
chosen to be investigated in the ALS system (RQ2.2).

Additionally, the performance of the five DRL algorithms in a simple flight control problem was evalu-
ated, along with the classic PID. It was shown that the Soft Actor-Critic algorithm is the best performing
in all tests and virtually every parameter analysed (RQ2.3). Being the most robust, consistent and
showing higher rewards, it was chosen as the most suitable actor-critic DRL algorithm for the ALS
studied in this research.

RQ3: How can the proposed RL framework be implemented in an ALS control design to
increase robustness and adaptability?

RQ3.1 What are the characteristics of the landing environment and how can it be
modelled?
RQ3.2 What are the characteristics of the RL controller that allow optimal imple-
mentation?

A high-fidelity model of the Cessna Citation 500 aircraft was chosen as the training and testing
environment in this research. It was chosen to keep in line with previous research on the use of RL for
fault-tolerant flight control, and also due to being an accurate model that has been validated through
real-flight data comparison in test flights on the PH-LAB aircraft. Additionally, in order to comply with

7.1. Conclusions 95

the instruments and requirements of ALS systems, a model of an ILS was designed to provide the
controllers with the required information. Next, a landing task was designed, in which the aircraft starts
at position x = 0m, y = 0m and h = 2000m, reduces its altitude to h = 60[m and performs final descend
and lands in an airfield positioned in x = 50000m, y = 5000m and h = 0m. Hereby answering RQ3.1.

A general cascaded controller structure was designed to perform the proposed landing task, and it
contains pitch and roll attitude controllers on the inner loop, GS and LOC controllers for the longitudinal
direction, and VOR and LOC hold controllers for the lateral direction, in the outer loop. Each of the
controllers in the general structure was designed as a PID controller, resulting in a full PID ALS, to serve
as a baseline comparison for the DRL controller and as a representation of current control methods.
Since the majority of the dynamic changes are mainly reflected on the control surfaces and being the
attitude controllers the closest to them it is expected that these would be the most affected during the
failure cases to be analysed. Therefore, it was determined that the SAC controllers would be trained
as attitude controllers, more specifically pitch and roll controllers, to provide longitudinal and lateral
guidance to the aircraft. The SAC controllers were trained to follow reference signals where the input
was the error and the respective angular rate, and the output was an actuator deflection angle. Through
this method, it was possible to replace the pitch and roll attitude controllers in the ALS structure without
any changes to it. Hereby RQ3.2 is answered.

RQ4: How does the proposed Automatic Landing System method perform compared to
other methods?

RQ4.1 How does the simulated landing performance of the proposed method
compare to those of classic methods? (with respect to relevant touchdown vari-
ables)
RQ4.2 How much training is required for the proposed algorithm to achieve the
landing conditions requirements? And how consistent are the results?
RQ4.3 How robust is the proposed system to environment changes?

The PID and the RL-ALS controllers were tested on the designed landing task in nominal condition,
that is with ideal sensors and no disturbances, with realistic ILS characteristics, noise and bias added to
the ILS-GS and ILS-LOC signals, and under elevator actuator loss of efficiency. The performance was
analysed by evaluating the X and Y landing positions, lateral velocity, altitude rate, and pitch and roll
angles, all evaluated at touchdown. It was observed that the RL and PID controllers perform similarly
under the nominal condition, as well as with realistic ILS signals. The RL-controller presented better
behaviour under ILS-GS noisy signals, where it was capable of landing the aircraft inside the acceptable
landing area with less variation than the PID, being successful 100% of the simulation runs against 78%
for the PID. Significantly lower variation in landing position was observed under LOC signal noise, where
both the PID and the RL controllers were capable of maintaining consistent performance. In this case,
however, the PID was able to maintain lower mean errors in Y direction whilst maintaining about the
same overall variance as the RL controller. Additionally, the PID showed to rapidly fail under elevator
loss of efficiency, due to the lack of adaptive resources, such as gain scheduling. The RL on the other
hand was capable of controlling the aircraft even with a reduction of 70% in actuator efficiency, this is
most likely due to the resulting RL controller generating fast and high deflection, whilst still being stable
at the same time. No large differences between the performances of the RL and classical controllers
were observed in the additional tests performed, reassuring the capabilities of the RL controller. Hereby
RQ4.1 is answered.

The SAC algorithm showed to be able to learn to control pitch and roll attitude relatively fast, if
compared to common DRL algorithms in other tasks. The agents were trained in around 250 simulation
runs of 20s refreshed at 100Hz, summing up to a total of 5× 105 timesteps, and stabilising with optimal
performance at around 2 × 105 timesteps. The training was consistent overall, however, two main
issues were noticed. First, the algorithm showed to be unstable, presenting dips in learning even in
lower stages of training; this was remedied by keeping exploration low, at the expense of potentially
resulting in less robust controllers. Second, the algorithm showed oscillatory behaviour and signs of
overtraining; these issues were remedied by reducing the amount of training to 5× 105 timesteps, from
the usual 1× 106, and the use of sinusoidal training reference signal. Hereby RQ4.2 is answered.

This research also shows that the SAC algorithm used to create pitch and roll controllers is robust
enough that the controllers can be trained separately from each other and still work in conjunction with

7.1. Conclusions 96

each other in a larger controller structure. It also shows that model-free DRL algorithms, as expected,
are indeed capable of creating robust controllers that can be insensitive to noise, in certain situations.
In addition to that, the robustness of the SAC algorithm can still be retained even if the reference signal
is dictated by a PID controller, technically a more error-prone method in the face of noise and non-
linearities. Even though the robustness capabilities of the algorithm are shown in the tests performed
with GS noise, there are still improvements that can be made in order to make the ALS more robust and
fault-tolerant, for instance, training under the failed system improves performance, as seen reported in
chapter 3, higher interaction between longitudianl and lateral control is also expected to improve the
performance of the ALS. Hereby RQ4.3 is answered.

To conclude this research, the objective of this thesis is reviewed

“The main research goal is to contribute to the development of Automatic Landing Systems
that are capable of performing under unforeseen circumstances with enhanced robustness
and control accuracy, to increase repeatability and safety by means of exploring the use of
different Reinforcement Learning frameworks applied to control techniques”

This research explores the use of different Reinforcement Learning frameworks through the evalu-
ation of five different RL algorithms in a simple flight control task, resulting in the selection of the most
robust of them. The SAC algorithm was then used to create attitude controllers that were implemented
alongside PID controllers in an ALS controller structure. The proposed controller was then tested under
different circumstances and proved to have similar performance to classical methods, as well as lower
variance and higher noise insensitivity in certain cases. The research shows that, albeit needing fur-
ther research, RL-based controllers have the potential to create more robust and more accurate flight
controllers, and by default Automatic Landing Systems as well.

The end product of this research is a study on the use of Reinforcement Learning techniques for
fault-tolerant flight controllers, more specifically applied to Automatic Landing Systems. This research
aims to aid in the development of better ALS with increased safety and reliability and to ameliorate the
performance of aircraft in the final phases of flight to reduce the accidents and fatality numbers that are
the motivators for this research. Finally, the results herein presented bring a step closer, albeit small,
to the achievement of safe fully-autonomous flight.

7.2. Recommentations 97

7.2. Recommentations
Based on the results of the research herein presented and the insights it brought the following recom-
mendations for future research are made:

• The designed ALS controller structure and the SAC-based controllers were designed in such a
manner that the longitudinal and lateral control is performed by different controllers, and require
them to be robust enough to be able to perform in conjunction. A better connection between lon-
gitudinal and lateral control could be made by having one controller in charge of both directions,
therefore further research on full attitude controllers for the ALS inner loop is recommended. Ad-
ditionally, to better overall performance with such controller, it is also expected that the resulting
system is more robust, due to the higher interaction between the control surfaces.

• All tests performed were made using the algorithms trained in nominal condition, none of them
was trained under the faulty situation, this was done by design to evaluate the raw robustness of
the SAC algorithm. However, training in a faulty situation is known to improve the performance
of the controller significantly by increasing its robustness and fault tolerance. Therefore, it is rec-
ommended that future research include a study on the benefits that training the attitude controller
under faulty conditions brings to the final ALS controller.

• The majority of the hyperparameters utilised in this research were borrowed from previous studies
[17] [68] or acquired from trial and error. No structured hyperparameter search was performed.
Therefore an in-depth structured study to determine the optimal hyperparameters for SAC-based
attitude controllers, and other methods, is recommended. The use of parallel coordinates plot is
suggested as a means of analysing a sweep of selected evaluated parameters.

• One of the issues encountered in this research related to highly oscillatory commands coming
from the agent, thismay be due to over-training or other non-identified reasons. Truncated training
and the use of different reference signals were utilised in this research as a workaround to this
issue, however, these are not concrete solutions. Reducing the oscillations is still necessary,
adding penalties to oscillations or detract rewards for angular rates could be better solutions,
therefore, a study on such and alternative solutions is recommended.

• DRL algorithms such as the SAC suffer from low sample efficiency andmay not operate as desired
in cases where the environment changes are extremely large. As mentioned prior, a combination
of robust and adaptive control is a solution to improve the performance of the ALS and allow for
it to operate in a wider range of conditions. For example, a hybrid controller utilising the DRL
SAC and iADP IDHP is proposed in [68], it was reported that the hybrid controller has increased
performance if compared to either of the isolate counterparts. Therefore, it the investigation of
the use of iADP, possibly IDHP, in combination with the SAC algorithms for the ALS controller is
recommended.

• Even though tests including realistic aircraft sensor characteristics and realistic ILS errors were
included, several assumptions were made in this research. Therefore, it is recommended to
include models of the effects of realistic sensor and actuator transport delays to increase the
confidence of the algorithm for use in real systems.

• The research herein contained presented some sensor and actuator failures, however, there are
several more that can, and should, be tested. Therefore, further investigation of the performance
of the ALS in additional failure cases is recommended in order to expand the flight envelope that
the system is capable of operating.

• This research does not consider velocity changes, and the proposed methods make use of the
auto-throttle that is built inside the Cessna Citation model, which kept the velocity constant. How-
ever, this is not realistic, since there should be velocity changes during landing, as well as other
flight manoeuvres. Therefore, to enable fully autonomous control of the aircraft, eventually, it will
be necessary to control the throttle command to track airspeed.

References

[1] Aircraft Operations. volume I flight procedures. ICAO, 2006.
[2] Karl Johan Åström, Linda Neumann, and Per-Olof Gutman. A Comparison Between Robust and

Adaptive Control of Uncertain Systems. English. Technical Reports TFRT-7350. Department of
Automatic Control, Lund Institute of Technology (LTH), 1987.

[3] S. N. Balakrishnan and Victor Biega. “Adaptive-critic-based neural networks for aircraft opti-
mal control”. In: Journal of Guidance, Control, and Dynamics 19 (4 1996), pp. 893–898. ISSN:
15333884. DOI: 10.2514/3.21715.

[4] Gabriel Barth-Maron et al. “Distributed Distributional Deterministic Policy Gradients”. In: CoRR
abs/1804.08617 (2018). arXiv: 1804.08617. URL: http://arxiv.org/abs/1804.08617.

[5] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neuronlike Adaptive Elements
That Can Solve Difficult Learning Control Problems”. In: IEEE Transactions on Systems, Man
and Cybernetics SMC-13 (5 1983). ISSN: 21682909. DOI: 10.1109/TSMC.1983.6313077.

[6] Bennylp.BENNYLP/RL-taxonomy: Loose Taxonomy of Reinforcement Learning Algorithms. URL:
https://github.com/bennylp/RL-Taxonomy#DPG.

[7] Sarthak Bhagat et al. “Deep Reinforcement Learning for Soft Robotic Applications: Brief Overview
with Impending Challenges Surgical Tool localization View project Soft Robotics View project
Deep Reinforcement Learning for Soft Robotic Applications: Brief Overview with Impending Chal-
lenges”. In: (2018). DOI: 10.20944/preprints201811.0510.v2. URL: https://www.researchg
ate.net/publication/329368817.

[8] Boeing. Statistical summary of commercial jet airplane accidents. Seattle, Washington: Aviation
Safety, 2021.

[9] Eivind Bøhn et al. “Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using
Proximal Policy Optimization”. In: CoRR abs/1911.05478 (2019). arXiv: 1911.05478. URL: http:
//arxiv.org/abs/1911.05478.

[10] Clark Borst. “Avionics - Landing Systems - Lecture Slides”. Avionics lecture slides. Delft Univerity
of Technology. Feb. 2022.

[11] L Buşoniu et al. “Reinforcement learning for control: Performance, stability, and deep approxima-
tors”. In: Annual Reviews in Control 46 (Jan. 2018), pp. 8–28. ISSN: 1367-5788. DOI: 10.1016/
J.ARCONTROL.2018.09.005.

[12] Daniel G. Canin, Jeffrey K. McConnell, and PaulW. James. “F-35 high angle of attack flight control
development and flight test results”. In: American Institute of Aeronautics and Astronautics Inc,
AIAA, 2019, pp. 1–29. ISBN: 9781624105890. DOI: 10.2514/6.2019-3227.

[13] Runqi Chai et al. “Review of advanced guidance and control algorithms for space/aerospace
vehicles”. In: Progress in Aerospace Sciences 122 (Apr. 2021). ISSN: 03760421. DOI: 10.1016/
j.paerosci.2021.100696.

[14] W. J. Charnley. “Blind Landing”. In: The Journal of Navigation 12.2 (1959), pp. 115–140. DOI:
10.1017/S037346330001794X.

[15] J. Che and D. Chen. “Automatic landing control using Hinf control and stable inversion”. In: Pro-
ceedings of the 40th IEEE Conference on Decision and Control 1 (2001), pp. 241–246.

[16] Control theory. Nov. 2022. URL: https://en.wikipedia.org/wiki/Control_theory#/media/
File:Feedback_loop_with_descriptions.svg.

[17] K. Dally and E. van Kampen. “Soft Actor-Critic Deep Reinforcement Learning for Fault-Tolerant
Flight Control”. In: American Institute of Aeronautics and Astronautics Inc, AIAA, 2022. ISBN:
9781624106316. DOI: 10.2514/6.2022-2078.

98

https://doi.org/10.2514/3.21715
https://arxiv.org/abs/1804.08617
http://arxiv.org/abs/1804.08617
https://doi.org/10.1109/TSMC.1983.6313077
https://github.com/bennylp/RL-Taxonomy#DPG
https://doi.org/10.20944/preprints201811.0510.v2
https://www.researchgate.net/publication/329368817
https://www.researchgate.net/publication/329368817
https://arxiv.org/abs/1911.05478
http://arxiv.org/abs/1911.05478
http://arxiv.org/abs/1911.05478
https://doi.org/10.1016/J.ARCONTROL.2018.09.005
https://doi.org/10.1016/J.ARCONTROL.2018.09.005
https://doi.org/10.2514/6.2019-3227
https://doi.org/10.1016/j.paerosci.2021.100696
https://doi.org/10.1016/j.paerosci.2021.100696
https://doi.org/10.1017/S037346330001794X
https://en.wikipedia.org/wiki/Control_theory#/media/File:Feedback_loop_with_descriptions.svg
https://en.wikipedia.org/wiki/Control_theory#/media/File:Feedback_loop_with_descriptions.svg
https://doi.org/10.2514/6.2022-2078

References 99

[18] Yizhang Dong et al. “Self-learned suppression of roll oscillations based on model-free reinforce-
ment learning”. In: Aerospace Science and Technology 116 (Sept. 2021). ISSN: 12709638. DOI:
10.1016/j.ast.2021.106850.

[19] Silvia Ferrari and Robert Stengel. “An adaptive critic global controller”. In: vol. 4. Feb. 2002, 2665–
2670 vol.4. ISBN: 0-7803-7298-0. DOI: 10.1109/ACC.2002.1025189.

[20] Lex Fridman, Benedikt Jenik, and Jack Terwilliger. “DeepTraffic: Driving Fast through Dense Traf-
fic with Deep Reinforcement Learning”. In: CoRR abs/1801.02805 (2018). arXiv: 1801.02805.
URL: http://arxiv.org/abs/1801.02805.

[21] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approximation Error
in Actor-Critic Methods”. In: CoRR abs/1802.09477 (2018). arXiv: 1802.09477. URL: http://
arxiv.org/abs/1802.09477.

[22] Adam Gjersvik. Landing on the Moon with Deep Deterministic Policy Gradients. 2019. URL: htt
ps://openai.com/blog/better-exploration-with-.

[23] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. “Variance reduction techniques for
gradient estimates in reinforcement learning”. In: Journal of Machine Learning Research 5 (2004).
ISSN: 15337928.

[24] Zhiyuan Guan et al. “Prescribed performance control for automatic carrier landing with distur-
bance”. In: Nonlinear Dynamics 94 (2 2018). ISSN: 1573269X. DOI: 10.1007/s11071- 018-
4427-3.

[25] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018). arXiv: 1801.01290. URL:
http://arxiv.org/abs/1801.01290.

[26] Ahmad Hammoudeh and Ahmad Hammoudeh Rlr. “A Concise Introduction to Reinforcement
Learning”. In: (2018). DOI: 10.13140/RG.2.2.31027.53285. URL: https://www.researchgate.
net/publication/323178749.

[27] Jeffrey J. Harris and James Richard Stanford. “F-35 flight control law design, development and
verification”. In: 2018. DOI: 10.2514/6.2018-3516.

[28] S. Heyer, D. Kroezen, and E. van Kampen. “Online adaptive incremental reinforcement learning
flight control for a cs-25 class aircraft”. In: vol. 1 PartF. American Institute of Aeronautics and
Astronautics Inc, AIAA, 2020. ISBN: 9781624105951. DOI: 10.2514/6.2020-1844.

[29] M. A. van den Hoek, C. C. de Visser, and D. M. Pool. “Identification of a Cessna Citation II Model
Based on Flight Test Data”. In: Advances in Aerospace Guidance, Navigation and Control. Ed.
by Bogusław Dołęga et al. Cham: Springer International Publishing, 2018, pp. 259–277. ISBN:
978-3-319-65283-2.

[30] Jonathan Hui. RL - actor-critic methods: A3c, Gae, DDPG, Q-Prop. Aug. 2021. URL: https://jo
nathan-hui.medium.com/rl-actor-critic-methods-a3c-gae-ddpg-q-prop-e1c41f268541.

[31] IATA. Safety Report 2019. 56th. International Air Transport Association IATA, Apr. 2020.
[32] Shaik Ismail et al. “Improved neural-aided sliding mode controller for autolanding under actuator

failures and severe winds”. In: Aerospace Science and Technology 33 (1 2014), pp. 55–64. ISSN:
12709638. DOI: 10.1016/j.ast.2013.12.016.

[33] Charles C Jorgensen and C Schley. A Neural Network Baseline Problem for Control of Aircraft
Flare and Touchdown. URL: http://direct.mit.edu/books/book/chapter- pdf/236807/
9780262291293_caq.pdf.

[34] Jih Gau Juang and Kai Chung Cheng. “Application of neural networks to disturbances encoun-
tered landing control”. In: IEEE Transactions on Intelligent Transportation Systems 7 (4 Dec.
2006), pp. 582–588. ISSN: 15249050. DOI: 10.1109/TITS.2006.884885.

[35] E. Van Kampen, Q. P. Chu, and J. A. Mulder. “Continuous adaptive critic flight control aided with
approximated plant dynamics”. In: vol. 5. American Institute of Aeronautics and Astronautics Inc.,
2006, pp. 2989–3016. ISBN: 1563478196. DOI: 10.2514/6.2006-6429.

[36] Oleg Klimov. Lunar Lander. URL: https://www.gymlibrary.dev/environments/box2d/lunar_
lander/. (accessed: 07.11.2022).

https://doi.org/10.1016/j.ast.2021.106850
https://doi.org/10.1109/ACC.2002.1025189
https://arxiv.org/abs/1801.02805
http://arxiv.org/abs/1801.02805
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://openai.com/blog/better-exploration-with-
https://openai.com/blog/better-exploration-with-
https://doi.org/10.1007/s11071-018-4427-3
https://doi.org/10.1007/s11071-018-4427-3
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.13140/RG.2.2.31027.53285
https://www.researchgate.net/publication/323178749
https://www.researchgate.net/publication/323178749
https://doi.org/10.2514/6.2018-3516
https://doi.org/10.2514/6.2020-1844
https://jonathan-hui.medium.com/rl-actor-critic-methods-a3c-gae-ddpg-q-prop-e1c41f268541
https://jonathan-hui.medium.com/rl-actor-critic-methods-a3c-gae-ddpg-q-prop-e1c41f268541
https://doi.org/10.1016/j.ast.2013.12.016
http://direct.mit.edu/books/book/chapter-pdf/236807/9780262291293_caq.pdf
http://direct.mit.edu/books/book/chapter-pdf/236807/9780262291293_caq.pdf
https://doi.org/10.1109/TITS.2006.884885
https://doi.org/10.2514/6.2006-6429
https://www.gymlibrary.dev/environments/box2d/lunar_lander/
https://www.gymlibrary.dev/environments/box2d/lunar_lander/

References 100

[37] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics: A survey”. In:
International Journal of Robotics Research 32 (11 Sept. 2013), pp. 1238–1274. ISSN: 02783649.
DOI: 10.1177/0278364913495721.

[38] William Koch et al. “Reinforcement Learning for UAV Attitude Control”. In: CoRR abs/1804.04154
(2018). arXiv: 1804.04154. URL: http://arxiv.org/abs/1804.04154.

[39] Fang Liao et al. “Fault-tolerant robust automatic landing control design”. In: Journal of Guidance,
Control, and Dynamics 28 (5 2005), pp. 854–871. ISSN: 15333884. DOI: 10.2514/1.12611.

[40] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning.” In: ICLR. Ed. by
Yoshua Bengio and Yann LeCun. 2016. URL: http://dblp.uni-trier.de/db/conf/iclr/
iclr2016.html#LillicrapHPHETS15.

[41] Johnson Lopez et al. “A fully autonomous unmanned aerial vehicle landing controller synthesis:
Quantitative feedback theory and H ∞ technique comparison”. In: Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering 226 (Feb. 2011), pp. 281–293.
DOI: 10.1177/0954410011408661.

[42] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments”. In:
CoRR abs/1706.02275 (2017). arXiv: 1706.02275. URL: http://arxiv.org/abs/1706.02275.

[43] Romulus Lungu and Mihai Lungu. “Automatic landing control using H-inf control and dynamic in-
version”. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering 228 (14 Dec. 2014), pp. 2612–2626. ISSN: 20413025. DOI: 10.1177/09544100145
23576.

[44] Romulus Lungu and Mihai Lungu. “Automatic landing system using neural networks and radio-
technical subsystems”. In: Chinese Journal of Aeronautics 30 (1 Feb. 2017), pp. 399–411. ISSN:
10009361. DOI: 10.1016/j.cja.2016.12.019.

[45] S.M.B. Malaek et al. “Intelligent autolanding controller design using neural networks and fuzzy
logic”. In: 2004 5th Asian Control Conference (IEEE Cat. No.04EX904). Vol. 1. 2004, 365–373
Vol.1.

[46] “Mastering the game of Go with deep neural networks and tree search”. In: Nature 529 (7587
Jan. 2016), pp. 484–489. ISSN: 14764687. DOI: 10.1038/nature16961.

[47] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: CoRR
abs/1602.01783 (2016). arXiv: 1602.01783. URL: http://arxiv.org/abs/1602.01783.

[48] VolodymyrMnih et al. “Playing Atari with DeepReinforcement Learning”. In:CoRR abs/1312.5602
(2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.5602.

[49] Borna Monazzah Moghaddam and Robin Chhabra. On the guidance, navigation and control of
in-orbit space robotic missions: A survey and prospective vision. July 2021. DOI: 10.1016/j.
actaastro.2021.03.029.

[50] Walter R. Fried Myron Kayton. “Avionics Navigation Systems”. In: (1997). DOI: 10.1002/978047
0172704.

[51] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. “Deep Reinforcement Learning
for Multi-Agent Systems: A Review of Challenges, Solutions and Applications”. In: (Dec. 2018).
DOI: 10.1109/TCYB.2020.2977374. URL: http://arxiv.org/abs/1812.11794%20http:
//dx.doi.org/10.1109/TCYB.2020.2977374.

[52] E H J Pallett, Amraes S Coyle, and Msetp Blackwell. Automatic Flight Control Fourth Edition.
ISBN: 9781405135412. URL: www.blackwellpublishing.com.

[53] Danil V. Prokhorov and Donald C. Wunsch. “Adaptive critic designs”. In: IEEE Transactions on
Neural Networks 8 (5 1997), pp. 997–1007. ISSN: 10459227. DOI: 10.1109/72.623201.

[54] Manning Publications. Neural network architectures. July 2019. URL: https://freecontent.
manning.com/neural-network-architectures/.

[55] D. M.K.K. Venkateswara Rao and Tiauw Hiong Go. “Automatic landing system design using
sliding mode control”. In: Aerospace Science and Technology 32 (1 Jan. 2014), pp. 180–187.
ISSN: 12709638. DOI: 10.1016/j.ast.2013.10.001.

https://doi.org/10.1177/0278364913495721
https://arxiv.org/abs/1804.04154
http://arxiv.org/abs/1804.04154
https://doi.org/10.2514/1.12611
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
https://doi.org/10.1177/0954410011408661
https://arxiv.org/abs/1706.02275
http://arxiv.org/abs/1706.02275
https://doi.org/10.1177/0954410014523576
https://doi.org/10.1177/0954410014523576
https://doi.org/10.1016/j.cja.2016.12.019
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1016/j.actaastro.2021.03.029
https://doi.org/10.1016/j.actaastro.2021.03.029
https://doi.org/10.1002/9780470172704
https://doi.org/10.1002/9780470172704
https://doi.org/10.1109/TCYB.2020.2977374
http://arxiv.org/abs/1812.11794%20http://dx.doi.org/10.1109/TCYB.2020.2977374
http://arxiv.org/abs/1812.11794%20http://dx.doi.org/10.1109/TCYB.2020.2977374
www.blackwellpublishing.com
https://doi.org/10.1109/72.623201
https://freecontent.manning.com/neural-network-architectures/
https://freecontent.manning.com/neural-network-architectures/
https://doi.org/10.1016/j.ast.2013.10.001

References 101

[56] SUDHARSAN RAVICHANDIRAN. Hands-on reinforcement learning with python: Master rein-
forcement learning and deep ... reinforcement learning by building intelligent app. PACKT Pub-
lishing Limited, 2018.

[57] John Schulman et al. “Proximal Policy Optimization Algorithms”. In:CoRR abs/1707.06347 (2017).
arXiv: 1707.06347. URL: http://arxiv.org/abs/1707.06347.

[58] John Schulman et al. “Trust Region Policy Optimization”. In: (Feb. 2015). URL: http://arxiv.
org/abs/1502.05477.

[59] Peter Seres. “Distributional Reinforcement Learning for Flight Control A risk-sensitive approach
to aircraft attitude control using Distributional RL”. MA thesis. the Netherlands: Delft University of
Technology, 2022. URL: https://repository.tudelft.nl/islandora/object/uuid:6cd3efd
1-b755-4b04-8b9b-93f9dabb6108.

[60] Shyh Pyng Shue and Ramesh K. Agarwal. “Design of automatic landing systems using mixed
H2/H∞ control”. In: Journal of Guidance, Control, and Dynamics 22 (1 1999), pp. 103–114. ISSN:
15333884. DOI: 10.2514/2.4356.

[61] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: 31st International Conference
on Machine Learning, ICML 2014 1 (June 2014).

[62] Bo Sun and Erik Jan Van Kampen. “Incremental Model-Based Global Dual Heuristic Program-
ming for Flight Control”. In: vol. 52. Elsevier B.V., 2019, pp. 7–12. DOI: 10.1016/j.ifacol.2019.
12.613.

[63] R.S. Sutton and A.G. Barto. “Reinforcement Learning: An Introduction”. In: IEEE Transactions on
Neural Networks 9.5 (1998), pp. 1054–1054. DOI: 10.1109/TNN.1998.712192.

[64] Richard Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function Approx-
imation”. In: Adv. Neural Inf. Process. Syst 12 (Feb. 2000).

[65] Richard S. Sutton et al. “Policy gradient methods for reinforcement learning with function approx-
imation”. In: 2000.

[66] K. Tamkaya, L. Ucun, and I. Ustoglu. “H∞-based model following method in autolanding systems”.
In: Aerospace Science and Technology 94 (Nov. 2019). ISSN: 12709638. DOI: 10.1016/j.ast.
2019.105379.

[67] Chi Tang and Ying Chih Lai. “Deep Reinforcement Learning Automatic Landing Control of Fixed-
Wing Aircraft Using Deep Deterministic Policy Gradient”. In: Institute of Electrical and Electronics
Engineers Inc., Sept. 2020, pp. 1–9. ISBN: 9781728142777. DOI: 10.1109/ICUAS48674.2020.
9213987.

[68] Casper Teirlinck. “Reinforcement Learning for Flight Control Hybrid Offline-Online Learning for
Robust and Adaptive Fault-Tolerance”. MA thesis. the Netherlands: Delft University of Technology,
2022. URL: https://repository.tudelft.nl/islandora/object/uuid:dae2fdae- 50a5-
4941-a49f-41c25bea8a85?collection=education.

[69] Edward L. Thorndike. “The Law of Effect”. In: The American Journal of Psychology 39.1/4 (1927),
pp. 212–222. ISSN: 00029556. URL: http://www.jstor.org/stable/1415413 (visited on
11/25/2022).

[70] Antonios Tsourdos et al. “Developing flight control policy using deep deterministic policy gradient”.
In: 2019. DOI: 10.1109/ICARES.2019.8914343.

[71] Hado Van Hasselt. “Reinforcement Learning in Continuous State and Action Spaces”. In: Adap-
tation, Learning, and Optimization (Aug. 2013), pp. 207–251. DOI: 10.1007/978-3-642-27645-
3_7.

[72] Ganesh K. Venayagamoorthy, Ronald G. Harley, and Donald C. Wunsch. “Comparison of heuris-
tic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a
turbogenerator”. In: IEEE Transactions on Neural Networks 13 (3 May 2002), pp. 764–773. ISSN:
10459227. DOI: 10.1109/TNN.2002.1000146.

[73] Lilian Weng. Policy gradient algorithms. Apr. 2018. URL: https://lilianweng.github.io/
posts/2018-04-08-policy-gradient/.

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://repository.tudelft.nl/islandora/object/uuid:6cd3efd1-b755-4b04-8b9b-93f9dabb6108
https://repository.tudelft.nl/islandora/object/uuid:6cd3efd1-b755-4b04-8b9b-93f9dabb6108
https://doi.org/10.2514/2.4356
https://doi.org/10.1016/j.ifacol.2019.12.613
https://doi.org/10.1016/j.ifacol.2019.12.613
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1016/j.ast.2019.105379
https://doi.org/10.1016/j.ast.2019.105379
https://doi.org/10.1109/ICUAS48674.2020.9213987
https://doi.org/10.1109/ICUAS48674.2020.9213987
https://repository.tudelft.nl/islandora/object/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85?collection=education
https://repository.tudelft.nl/islandora/object/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85?collection=education
http://www.jstor.org/stable/1415413
https://doi.org/10.1109/ICARES.2019.8914343
https://doi.org/10.1007/978-3-642-27645-3_7
https://doi.org/10.1007/978-3-642-27645-3_7
https://doi.org/10.1109/TNN.2002.1000146
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

References 102

[74] Steven DWhitehead and Long-Ji Lin. Artificial Intelligence Reinforcement learning of non-Markov
decision processes. 1995, pp. 271–306.

[75] Yuhuai Wu.OpenAI Baselines: ACKTR amp; A2c. June 2020. URL: https://openai.com/blog/
baselines-acktr-a2c/.

[76] Sibo Yang et al. “Investigation of neural networks for function approximation”. In: vol. 17. Elsevier
B.V., 2013, pp. 586–594. DOI: 10.1016/j.procs.2013.05.076.

[77] Ye Zhou, Erik Jan van Kampen, and Qi Ping Chu. “Incremental model based online dual heuristic
programming for nonlinear adaptive control”. In: Control Engineering Practice 73 (Apr. 2018),
pp. 13–25. ISSN: 09670661. DOI: 10.1016/j.conengprac.2017.12.011.

[78] Meixin Zhu, Xuesong Wang, and Yinhai Wang. “Human-like autonomous car-following model
with deep reinforcement learning”. In: Transportation Research Part C: Emerging Technologies
97 (2018). ISSN: 0968090X. DOI: 10.1016/j.trc.2018.10.024.

https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
https://doi.org/10.1016/j.procs.2013.05.076
https://doi.org/10.1016/j.conengprac.2017.12.011
https://doi.org/10.1016/j.trc.2018.10.024

A
DRL algorithms

Figure A.1: DDPG algorithm, retrieved from [40]

103

104

Figure A.2: TD algorithm, retrieved from [21]

Figure A.3: SAC algorithm, retrieved from [25]

105

Figure A.4: TRPO algorithm, retrieved from [58]

Figure A.5: PPO algorithm, retrieved from [57]

B
Testing results

B.1. Trained without wind

Table B.1: Actor-Critic DRL algorithms average performance in 1000 episodes of the standard Lunar Lander problem and with
wind introduced with wpower = 15

Algorithm Wind
Power

Time per
ep [min]

Steps per
ep

Time per
step [ms]

Mean
reward

Standard
deviation

PID 0 0.204 232.2 0.878 252.6 62.9
15 0.202 216.2 0.934 57.8 175.3

DDPG 0 0.201 215.6 0.932 278.4 31.4
15 0.201 243.2 0.826 266.1 51.9

TD3 0 0.226 188.1 1.201 283.4 20.5
15 0.269 244.9 1.098 269.2 34.1

SAC 0 0.184 198.1 0.928 280.1 16.9
15 0.337 255.6 1.318 252.8 71.8

A2C 0 0.783 462.5 1.693 221.3 39.5
15 0.415 326.2 1.3 125.8 141.2

PPO 0 0.340 275.4 1.234 220.2 82.1
15 0.421 286.1 1.471 151.2 135.3

106

B.2. Trained with wind 107

B.2. Trained with wind

Table B.2: Wind trained Actor-Critic DRL algorithms performance in 1000 episodes of the Lunar Lander problem with wind
power wpower = 10

Algorithm Wind
Power

Time per
ep [min]

Steps per
ep

Time per
step [ms]

Mean
reward

Standard
deviation

PID 10 0.148 221.8 0.667 159.7 127.8
15 0.124 214.2 0.578 127.0 129.8
20* 0.206 291.3 0.707 77.6 78.0

DDPG 10 0.212 205.1 1.033 271.9 41.3
15 0.236 214.4 1.100 271.3 39.1
20 0.232 234.6 0.988 268.0 45.3

TD3 10 0.215 208.9 1.028 276.9 20.3
15 0.190 213.6 0.889 274.5 24.8
20 0.241 232.9 1.034 270.9 28.5

SAC 10 0.173 174.3 0.992 283.6 19.2
15 0.191 186.6 1.023 279.8 20.1
20 0.163 195.7 0.832 277.7 26.0

A2C 10 - - - - -
15 - - - - -
20 - - - - -

PPO 10 0.4284 287.8 1.488 195.1 108.4
15 0.401 286.2 1.401 156.1 131.6
20 0.545 333.5 1.634 150.224 135.1

The * accounts for the fact that the hill climbing PID tuning procedure was not capable of finding parameters that
reached 200 in any given episode, being the best result a score of 158 reward points.

	Preface
	Nomenclature
	Introduction
	Background & Motivation
	Objectives & Research Questions
	Outline

	Article
	Literature Review
	Automatic Landing Systems
	Aircraft Landing Basics
	Challenges of Automatic Landing Systems
	Related Work
	Conclusions

	Reinforcement Learning
	Reinforcement Learning Basics
	Reinforcement Learning Approaches
	Approximate Dynamic Programming - ADP
	Deep Reinforcement Learning - DRL
	Proposed Framework
	Conclusions

	Preliminary Analysis
	Testing objective & Structure
	Problem introduction
	Tests set-up

	Results & Discussion
	Test 1 - Robustness to the unknown
	Test 2 - Robustness to uncertainties
	Discussion

	Training Consistency Test & Discussion
	Conclusions

	Additional Results
	Effect of CAPS
	ILS Bias
	Alternative Controllers
	Roll Attitude - Trained with Active Pitch control
	Full Attitude Controller

	Verification & Validation
	Verification
	Simulation Model
	Reinforcement Learning Algorithm

	Validation
	Simulation Model
	Reinforcement Learning Algorithm
	Limitations

	Conclusion & Recommendations
	Conclusions
	Recommentations

	References
	DRL algorithms
	Testing results
	Trained without wind
	Trained with wind

