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Summary
A new industrial revolution is ongoing, namely Industry 4.0. This revolution focuses on using resources
more efficiently and leveraging data, communication, and new technology to achieve this goal. Indus-
try 4.0 covers all fields of industry and is becoming increasingly relevant and required to compete in
today’s market. This research focuses on the maintenance part of Industry 4.0, specifically on fault
diagnostics methods for turbomachinery such as compressors. Compressors play a crucial role in the
industry, and maintaining high reliability and availability is desirable. In the chemical industry, deal-
ing with toxic and corrosive products, maintenance of compressors on-site presents difficulties and is
preferably scheduled far in advance. Furthermore, compressors are machines with multiple possible
failure mechanisms and different degradation patterns. The mean time between failures is not reliable;
the deviation between life cycles is widely spread and highly dependent on the production process,
where errors in previous process stages impact the degradation of the compressor. This degradation
behavior means that a time-based approach to maintenance could be too late or a waste of time and
resources on a well-operating machine. Therefore, developing a fault diagnostic model that provides
insight into the health condition of machinery could be beneficial. This opportunity is well known in the
industry, and a lot of research is being done in this direction.

The aim of this research is to develop a diagnostic model for the chlorine compressor that is able to
asses the health, which could be used to optimize the maintenance strategy in order to reduce down-
time and improve the performance of the production line with the use of data collected by multiple
sensors. The focus is establishing a model that gives insight in the health of the asset and is able to de-
tect degradation and failures. To achieve this goal the available measurement data and failure history
is studied to get an understanding of what failure mechanisms could occur and how the degradation
pattern of these mechanisms could be detected.

To find the best method for this problem literature is reviewed to find possible solutions, from which
the method with the best fit for this research is selected. Condition monitoring includes the observa-
tion of the operational parameters and condition of equipment to detect anomalies that could indicate
potential faults. The increasing availability of condition monitoring on systems has facilitated the in-
creasing research in fault diagnosis techniques. FDD takes the information from condition monitoring
and applies diagnostic algorithms to detect, isolate, and identify the faults. FDD gives insight in the
state of equipment and is important to maintain high productivity, efficiency and safety in production
plants (Arias Chao et al., [2022]). A lot of the research is focused on a single failure mechanism, for
example: the study into fouling mechanism by deriving the equivalent compressor performance map
at various degrees of fouling with a consideration of gas properties and stage efficiency variation and
without prior knowledge of the detailed geometrical features Al-Busaidi and Pilidis, (2016).

An approach that is able to assess the machine as a whole is the construction of a health indicator (Lei
et al., [2018]Jardine et al., [2006]Schwartz et al., [2022]Wang et al., [2012]). Well constructed Health
indicators could also be used as basis for remaining useful life prediction methods. HIs can be divided
into two categories based on their construction strategies: physical HIs (PHI) and virtual HIs (VHI) (Lei
et al., [2018]). PHI correspond to direct underlying degradation factor and the physics of failure and are
generally directly extracted from monitoring signals. VHIs are generally built by fusing multiple PHIs
or multi-sensor signals. VHIs describe the degradation trend of the equipment, but loses the direct
physical meaning. For this research there are no monitoring signals available that directly correspond
to a physical degradation, so a VHI should me constructed using multi-sensor signals. This could be
achieved by statistical approaches, in Wang et al., (2012) the framework for constructing generic HIs
is provided by employing a linear data transformation method. This method is suitable for continuously
collected measurements and is a process of information fusion which provides a unified measure being
used to characterize the health condition of the system. Schwartz et al., (2022) uses kernel functions
in combination with principal component analysis to provide a non linear approach to data fusion as
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basis for the HI construction. These methods are trained with the help of failure data. Due to preven-
tive maintenance approach limited failure data of compressors is available. This gives the challenge
of learning the degradation and failure behaviour without having training data of this. Model should be
able to learn the characteristics of a healthy compressor.

A different approach is provided using a machine learning method, where the HIs are constructed
with the help of neural networks (NN) Kim et al., (2019). This has the advantage of not requiring the
exact failure threshold and does not limit the application of the method for a specific degradation pro-
cess. Another study uses Semi-Supervised Deep Neural Network (SSDNN) for data fusion in order to
create HIs Moradi et al., (2023). Here the model is trained to construct HIs with high prognosability
by using evaluation metrics for HIs during the training process, these are often used for this practice
(Eleftheroglou et al., [2018]). Liu et al., (2020) proposes the use of a Long-Short Term Memory AutoEn-
coder (LSTM-AE). The structure of LSTM predicts the next time steps and is able to learn long-term
memory information to provide a solution to long-term dependencies X. Chen et al., (2023), this makes
it functional for using the dtaa in an optimal manner. The AE is a reconstruction method that recov-
ers the original input from its compressed representation to measure the reconstruction error. This
reconstruction error is used as the basis for the HI. HIs are not only sensitive to degradation, but they
also might be influenced by abnormalities in environmental conditions and operations. de Pater and
Mitici, (2023) extends on this method by making the LSTM-AE feasible for varying operation conditions
and applying attention to increase accuracy. Most of these use the same type of data set, which are
created by a simulation using a degradation function (Arias Chao et al., [2021]) and thus providing a
clear degradation behaviour the challenge is to construct accurate HIs for real world applications which
are robust enough to deal with impurities in data. Malhotra et al., (2016) also uses LSTM-AE to con-
struct HIs with a different approach. Their goal is to construct a mapping of the reconstruction losses
over time, resulting in a HI function that is used for RUL prediction. The limitation here is that the model
only assumes one type of degradation curve, which does reflect the occurrence of multiple degradation
mechanisms in reality. This highlights the difficulties of performing fault diagnosis and identification in
real world cases. The considered methods should meet the following criteria to be considered feasible:

• Can be trained with limited or without failure data.
• Is able to deal with changing operating conditions.
• Is capable of detection and identification of the degradation by multiple faults simultaneously.

This has resulted in the selection of the LSTM-AE as foundation for the methodology of this research.

To study the selected method for the purpose of fault detection and identification, a case study
is conducted at Nobian Rotterdam. The research question that will be answered with this tudy is as
follows: How can the failure mechanisms of chlorine compressor be diagnosed and the health of the
compressor be monitored? The scope of this research are the chlorine compressors that are used in
the chlorine production plant. The compressor is a complex system with a lot of inlet, outlets and sub-
systems, this provides many boundary uncertainties. The most difficult part of the compressor system
to replace or repair is the compressor itself and the internal parts, this due to the corrosive nature of
chlorine and the precision requirements for the turbomachinery. To limit the scope of the study, the sys-
tem boundaries of the compressor are chosen to be at the coupling between the rotor and the gearbox
and at the flanges of the inlets and outlets of the compressor. The main focus of this research is on de-
veloping a fault diagnosis model that is able to identify the chosen failure mechanisms by constructing
health indicators for the compressor. The contribution to the prognostic part of predictive maintenance
is limited in this research due to limited recorded failure instances of the compressors, with this lack
of data it is at this moment not possible to develop a reliable prognostic model. The steps that will be
executed are presented in Figure 1.

First the characteristics and failure mechanisms of the compressor are described. The compressor
used for chlorine liquefaction consists of four compressing stages with cooling between the stages,
except after the first stage. It operates at a high rotational speed and is considered as turbomachinery.
The compressor is driven by an electrical engine, which is coupled by a gearbox to the rotor of the
compressor. The rotor is hold in place by journal bearings on both ends of the compressor and an
axial bearing on the non driven end to limit axial movement. These bearing are fed from an auxiliary
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Figure 1: The steps of PHM with encircled in green the focus of this research.

oil system, this oil functions as both lubricant and coolant of the bearings. Labyrinth seals are used to
separate the stages and prevent leakages. At both ends where the rotor leaves the compressor casing
a labyrinth gas seal is applied.
The failure mechanisms that are included into this research are selected based on occurrence, severity
and the ability to be detected with the available data. The following failure mechanisms are included
into the fault identification model: leakages, fouling and bearing failures. Due to the corrosive and toxic
nature of chlorine leakages are a great risk for compressors. Leakages have effect on the temperature
and pressure in the compression stages and on the pressure difference between the dry air and chlorine
feedback in the gas seal. Fouling occurs when contaminants enter the compressor system, this results
in performance losses of the compressor. The main cause of fouling in chlorine compressors is the
presence of moisture in the chlorine which in combination with the cast iron casing and chlorine reacts
to ferrochlorine’s. These particles can deposit inside the compressor and lead to internal blockages.
The effect of fouling is decreasing efficiency of the compressor and is noticeably in the temperature
between stages as well by the increase of power consumption. Bearing failure is the best known failure
mechanism when dealing with rotary equipment and is normally detected with high frequency vibration
measurements, these are not included in this case study. The purpose of the axial bearing is to absorb
the axial forces and prevent axial movement, so out of bound axial displacement is a sign of a defect.
Furthermore, defects on the bearings create extra friction and lead to increasing temperatures.

The next steps are data acquisition and data preprocessing. The data of 5 compressor lifecycles
is available with length varying between 2.5 and 5.5 years. The sensor measurements are collected
and stored each minute, this rate results in a large amount of data. In this case study the change in
measurement values is slow, therefore the measurements are aggregated per hour by considering the
mean per hour. There are 56 functional sensors outputting data, resulting in a total of almost 9 million
sensor measurements. To reduce the data input for the model, sensor selection is performed. Follow-
ing industry safety standards critical sensor measurements are executed twice or even three times to
implement a safety factor, this brings sensor duplicates of which only one is selected. Also non identi-
cal sensors can have a high correlation, only one of two is selected if the correlation is 0.95 or higher.
There are a total of as = 16 sensors selected and ao = 3 are considered as the operation conditions.
To train a model to recognise the health state of a system a footprint of the state where the system
is considered healthy is required. To establish time intervals in the data from where the training data
can be acquired an assumption has to be made. It is assumed that the compressor data is considered
healthy the first few months after the compressor is replaced.

The preprocessing of the raw data is required to make the model functional by giving it clean data
as input. The preprocessing of raw data consists of multiple steps including: outlier removal, noise
reduction, normalization and sequencing. The acquired data contains outliers that could be caused
by various reasons for example sensor failures. The assumption is made that the training sets do not
contain outliers, since these sets are of created of data during relatively short healthy period. To identify
potential outliers in the test sets the overall mean and standard deviation of the training sets is used to
establish the operation boundaries of the parameters that are measured. To find the potential outliers
the data of the test sets is subjected to these boundaries, in case of outliers the data is replaced by
interpolating between the neighbouring non outlier data points. The noise reduction will be performed
with the moving average method, this makes the time series more smooth and will give a better per-
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formance for the model. Standardisation is performed on the data. Here the the mean µ and standard
deviation std are calculated from the data and used for standardization. It is important to note that the
mean value and standard deviation of the training sets is also used on the testing set, for the reason
that these are considered to be the values of the healthy state of the compressor. The time series of
a data set can not be fed to the LSTM-AE at once and is therefore split in smaller sequences. The
sequences are extracted with a rolling window. The stride and length of this rolling window is different
for the training and testing set.

Figure 2: The approach for tuning the model.

After the implementation of themodel is verified the optimal parameters of themodel are determined,
these are acquired by performing a grid-search. This optimization loop is shown in the schematic Fig-
ure 2. This optimization loop is executed with the help of grid search, where systematically each logical
combination of parameters is evaluated. The model parameters in the grid search that had the highest
fitness overall are considered to be the optimal parameters. The weights of the training epoch with the
lowest validation losses are applied to the model. Only sensors with a high trendability are included
in the construction of the HI. The trendability provides information over the difference in reconstruction
loss at start of a lifecycle and the end of a lifecycle. For features with high trendability it is expected that
the reconstructed signal deviation is minimal in the early stage of a lifecycle, this deviation increases
with increasing time in the lifecycle, this corresponds to the increasing degradation. The final verifi-
cation steps compares the proposed method to two different approaches of LSTM-AE. One approach
ignores the operating conditions, analysing this version by comparing its metrics with that of the pro-
posed method it is clear that the evaluation metrics decrease significantly. This result emphasize the
effect of training the model independently from the operating conditions has positive impact on the
performance of the HI construction. The proposed model is trained with the training data of all com-
pressors and could therefore be applied immediately for a newly placed compressor. The version of
the method where the weights are trained for each compressor lifecycle separately could only be a
applied to a new compressor when the months that are used for collecting training data are passed.
However when dealing with real world data each compressor could have a different initial state, which
brings extra noise and offsets to the HI construction. This expected difference in performance is visible
in Table 1, where the evaluation metrics increase with this approach.

Table 1: Evaluation of the different version of LSTM-AE architecture. Here the sets corresponds to the compressor lifecycle.
Mon, Tre and Pro stand for the monotinicity, trendability and prognosability respectively, which are the evaluation metrics for the

constructed HIs.

Set 1 Set 2 Set 3 Set 4 Set 5 Mean
Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Pro Fitness

proposed LSTM-AE 0.01 0.88 0.02 0.87 0.02 0.51 0.00 0.91 0.03 0.86 0.02 0.81 0.519 0.612

proposed LSTM-AE
without operating conditions 0.03 0.79 0.05 0.91 -0.01 0.51 -0.01 0.65 0.05 0.47 0.02 0.67 0.398 0.525

proposed LSTM-AE with
trained weights per compressor lifecycle 0.03 0.94 0.05 0.88 0.04 0.72 0.04 0.88 0.08 0.92 0.05 0.87 0.704 0.764

The validation of the results is conducted by evaluating the health assessment and fault identifica-
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tion. Health assessment is performed to divide the health state of the compressor using the constructed
HI. There is no nuance in health state, there is only healthy or unhealthy, this has as result that the
compressor are considered unhealthy relatively early on their lifecycle and operate for a long time be-
fore they are overhauled, see Figure 3.

Figure 3: The health state division of the compressor lifecycles sets 1 to 5 from the left to the right. The unhealthy state is
marked by the red circles.

The HI is based on the reconstruction losses of a subset of sensors that are considered for each HI
of a failure mechanism. These subsets are based on the expected effect and location of the failure
mechanism as previously described. Furthermore the trendability of the reconstruction loss has to be
higher than 0.5 for the sensor to be included. The HI for detecting leakages will be constructed from the
sensors that are relevant to the gas sealing. The selected sensor for fouling are measuring parameters
of the gas path in the compressor. The subset for the bearing HI includes the temperature and pres-
sure of the oil, the bearing temperatures and the position of the rotor. The identification is performed
by checking whether the separate HIs of the test sets cross the health threshold, that is determined
for each failure mechanism. The fault identification is performed by analysing the failures per set for
each constructed HI, the results of analysis is presented in Table 2. The results of the fault identifica-
tion are used to calculate the KPIs and are shown in Table 6.7. The first instance of an compressor
marked as unhealthy triggers the start of the fault identification, which has resulted in a identification
with an accuracy of 73% and a precision of 56% for the three considered failure mechanisms. The
performance of the model is increased by training the weights of the model for each compressor life-
cycle separately. The trade-off using this approach is that health assessment and fault identification
is not possible in the start of a new lifecycle, because this period is used to acquire the training data.
To overcome this trade-off a combination of both approaches should be used, where the health as-
sessment during this first period of a new compressor is performed original model and after this initial
period the model specifically trained for this lifecycle is used for fault identification with higher accuracy.

Table 2: Confusion matrix of the fault identification

Confusion matrix Diagnosed Fault
Fault is present Fault is absent

Identified fault Fault is identified 5 TP 4 FP
Fault is not identified 0 FN 6 TN

Table 3: Case study results of the fault identification.

KPI Score
Accuracy 0.73
Precision 0.56
Recall 0.45
F1-score 0.5

To conclude, the proposed LSTM-AEmethod is able to correctly detect and thereafter identify single
or multiple failure mechanism present in chlorine compressors with an accuracy of 73 %, while only
being trained with healthy data and is therefore applicable for real world cases with unlabeled data.
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Therefore the goal of this study has been achieved.

The main contributions of this research are:

• A method is proposed for health indicator construction for compressors with the purpose of health
assessment and fault identification. By constructing health indicators for each detectable failure
mechanisms the model is able to perform fault identification even when multiple faults are devel-
oping. The model is tested with a real world case study of chlorine compressors of which little
failure data is available so the model is trained to learn the healthy characteristics of the compres-
sor. In this study it is shown that this method is able to correctly identify the failure mechanism
present in the compressor and is therefore applicable for real world cases.

• The health indicators are constructed with the reconstruction loss of the LSTM-AE. The model
is trained to reconstruct the measurements independently of the operation conditions, which in-
creases the robustness of the model.

• The collected real world data requires extensive preprocessing to reduce the effect of corrupted
data and format it to the correct form before it is used as input to the LSTM-AE. This research
proposes the tools to realise this and shows the effect of the quality of the preprocessing.
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1
Introduction

1.1. Industry 4.0
A new industrial revolution is ongoing, namely Industry 4.0. This revolution focuses on using resources
more efficiently and leveraging data, communication, and new technology to achieve this goal. Indus-
try 4.0 covers all fields of industry and is becoming increasingly relevant and required to compete in
today’s market. This research focuses on the maintenance part of Industry 4.0, specifically on fault
diagnostics methods for turbomachinery such as compressors.

Figure 1.1: An overview when maintenance takes places based on a failure Ran et al., (2019).

In industry there are three main maintenance strategies: reactive maintenance, preventive mainte-
nance and predictive maintenance, see Figure 1.1. By reactive maintenance the action to repair or re-
place components takes place at he moment of a failure. With preventive maintenance the equipment
is maintained periodically. This has the advantage that the unexpected failures are largely reduced,
however this also means that the cost of the maintenance strategy increases, because the equipment
is not used for its full useful lifetime. Predictive maintenance uses condition monitoring techniques in
combination with fault diagnosis and the prediction of the remaining useful lifetime (RUL). One of the
main advantages of adapting this strategy is that incipient faults can be detected, which allows time to
come up with an optimal plan for maintaining the system. The disadvantage of predictive maintenance
are the costs upfront to establish a system of sensors so the condition of the equipment can be as-
sessed and for implementing a predictive model, however the availability and reliability of equipment
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increases considerably that for critical systems it quickly becomes profitable. In the industry complex
and critical equipment is usually already monitored for process control and safety measures, these
sensors could also be used to further reduce implementation costs. Predictive condition monitoring
and preventive maintenance are both used to achieve high reliability and availability of complex rotat-
ing machinery, and to reduce unplanned production shutdowns. To achieve these goals, it is not only
necessary to implement effective fault detection and diagnosis, but also respond to the detected faults
by continuously assessing and predicting the health status of the system. As previously mentioned
predictive maintenance consists of condition monitoring and a prediction of the RUL, this can be elab-
orated with the help of figure Figure 1.2. The step that are executed includes: data acquisition, data
processing, detection, fault diagnosis, prognosis and maintenance decision making. To refer back to
the industry 4.0, big data is a term often used in this context and means analysing the data industrial
companies already continuously collects. However, to gain value out of this big data the approach for
data analysis should structuralized, hence the introduction of the workflow in Figure 1.2.

Figure 1.2: The worklfow of predictive maintenance (Achouch et al., [2022])

1.2. Nobian Rotterdam
Nobian is a company specialised in the production of essential chemicals for industries and has pro-
duction plants in the Netherlands, Germany and Denmark. Their core business is the production of
salt, chlorine and caustic soda. The plant in Rotterdam is the largest chlorine producer of the company.
The plant has been modernised several times and has also increased its production capacity. This
has influenced the usage of assets in the plant. The object for this research are the chlorine compres-
sors, that are used in the process of liquefying the chlorine and are critical to the plants capacity. The
compressors are parallel to one another and originally only one was operating, while the other was on
stand-by. Due to the increase of the production capacity of the plant both compressors are required
to be operated at maximum capacity to reach the target production capacity of the plant. This change
results in the loss of the redundancy of the chlorine compressors, this situation makes the need for an
efficient maintenance strategy high.
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1.3. Problem description
The compressor is a critical part in the plants process to liquefy chlorine, which is necessary to store
and transport the chlorine. Therefore stopping one of the compressors means losing 50% of produc-
tion capacity, the company desires an optimized maintenance strategy for the chlorine compressors.
Furthermore, the chlorine compressor is a complex machine with multiple possible failure mechanisms
and different degradation patterns. The mean time between repair (MTBR) is not reliable, the deviation
between life cycles is spread widely and highly depended on the production process, where errors in
previous process stages have an impact the degradation of the chlorine compressor. In the current
situation a preventive maintenance strategy is used with an time-based interval of 6 years, in this in-
terval failures still occur. Two compressors operate continuously at full capacity without redundancy.
The plant has an turnaround interval of 2 years, in the turnaround the production is stopped entirely.
The moment is coordinated with the customers, who rely on the supply of chlorine. The turnaround
is an ideal moment to replace the chlorine compressor without losing any unplanned production ca-
pacity. Furthermore there are moments of opportunity in the interval between turnarounds where the
production demand is relatively low, this moment is used if the condition of the compressor is degraded
that an overhaul within this opportunity moment is beneficial. Maintenance of the compressor means
exchanging the operating compressor with the spare compressor, because opening the compressor in
the field and executing repairs locally is not an option, due to the corrosive nature of chlorine and short
period of time during the turnaround. That is why the compressor is taken out of the field and revised in
a workshop and the spare compressor is placed in the same location. The time the compressor placed
on its location is from now on referred to compressor lifecycle. Thus, the ideal situation would be to
make predictions for the asset whether it can operate optimally till the next turnaround.

1.4. Research Objective
The aim of this research is to develop a diagnostic model for the chlorine compressor that is able to
asses the health, which could be used to optimize themaintenance strategy in order to reduce downtime
and improve the performance of the production line with the use of data collected by multiple sensors.
The focus is establishing a model that gives insight in the health of the asset and is able to detect
degradation and failures. To achieve this goal the available measurement data and failure history is
studied to get an understanding of what failure mechanisms could occur and how the degradation
pattern of these mechanisms could be detected. The research objective is formulated into a main
research question and several sub research questions that contribute to reaching the objective:

Main research question
How can the failure mechanisms of chlorine compressor be diagnosed and the health of the compres-
sor be monitored?

Sub-research questions
1. What are characteristics and the failure mechanisms of the chlorine compressor and which will

be included in the model?
2. What is the current state of failure diagnosis methods in literature and what method is best appli-

cable to this case study?
3. How to develop the proposed fault detection and indication model for the chlorine compressor?
4. What data is available and how can it be retrieved and analysed for the purpose of fault detection

and diagnosis?
5. How to verify and validate the proposed method?

1.5. Research Scope
The scope of this research are the chlorine compressors that are used in the chlorine production plant
of Nobian Rotterdam. The compressor is a complex system with a lot of inlet, outlets and subsystems,
this provides many boundary uncertainties. The most difficult part of the compressor system to replace
or repair is the compressor itself and the internal parts, this due to the corrosive nature of chlorine and
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the precision requirements for the turbomachinery. To limit the scope of the study, the system bound-
aries of the compressor are chosen to be at the coupling between the rotor and the gearbox and at the
flanges of the inlets and outlets of the compressor.

The chlorine compressor is a turbomachinery dealing with a highly corrosive medium and has therefore
multiple possible separate or combination of failure mechanisms. Not all of the mechanisms occur as
frequently, to limit the scope of this research there is chosen to only include three main failure mecha-
nisms.

Nowadays a lot of mechanical failures are identified by vibration monitoring, however vibrations mea-
surements are performed by a third party and the raw data is not available for the entire chosen research
period, so high freq vibration data is not included in the scope.

The main focus of this research is on developing a fault diagnosis model that is able to identify the
chosen failure mechanisms by constructing health indicators for the compressor. The contribution to
the prognostic part of predictive maintenance is limited in this research due to limited recorded failure
instances of the compressors, with this lack of data it is at this moment not possible to develop a reliable
prognostic model. The steps that will be executed are presented in Figure 1.3.

Figure 1.3: The steps of PHM with encircled in green the focus of this research.

1.6. Report outline
The each chapter of this research provides the answer of a research subquestion. Chapter 2 contains
the background information of the production process, the characteristics of the compressor and the
failure mechanisms. Chapter 3 gives an overview of fault detection and diagnosis methods in literature,
and the method selection is presented here. In Chapter 4 the methodology of the proposed method is
described and the tools the evaluate the outputs. Chapter 5 gives an overview of the data acquisition
and preprocessing. Chapter 6 contains the implementation and verification of the proposed methodol-
ogy along with the validation of the results. Chapter 7 answers the main research question by providing
the conclusion of the research and its limitations.



2
Background information

The goal of this chapter is to answer the following research question: What are characteristics and
the failure mechanisms of the chlorine compressor? This goal is achieved by firstly emphasizing the
criticality of the chlorine compressor by describing the production process, thereafter the characteristics
of the compressor and in it auxiliary system are described. Then an overview of the possible failure
mechanisms of the chlorine compressor are provided and at last with this basis the failure mechanism
that are included in this research are selected.

2.1. Production process
In this section the production process of chlorine is shortly described to empathise the criticality of the
compressor and to provide an understanding of the production process it is integrated in. The process
from salt to chlorine has the following steps:
Salt-> Brine -> Electrolyse -> Chlorine gas -> Cooling -> Drying -> Pre Cooling -> Compression ->
Condensation -> Liquid chlorine -> Storage/ Distribution

2.1.1. Electrolysis process
At Nobian vacuum salt is used to create chlorine, this is a high quality salt and has the advantage that
it does not require a purification process at the plant. The brine is prepared from depleted brine circu-
lating back from the electrolysis process, which is re-saturated by adding salt and water. The depleted
brine is saturated with chlorine and is de-chlorinated to prevent corrosion and chlorine emissions. The
chlorine extracted from the brine are fed to the quench. After dissolving the salt and water in the brine,
impurities originating from the salt are removed in several purification steps, before being fed to the
electrolysers. The purity of the brine has effect on the degradation and efficiency of the electrolysers.
Currently the most used method for electrolyse is the membrane technique, this is also used at the
plants of Nobian. The membrane cell process has an ion-exchange membrane that separates the an-
ode and cathode of the electrolyser. Only sodium ions and water pass through the membrane in one
direction. The saturated brine is fed to the anode side of the electrolyse cell, here the chloride ions
react to chlorine:
2Cl- -> Cl2 + 2e-
The electric field causes the sodium ions to migrate through the membrane into the cathode compart-
ment. The cathode is the negative electrode of the electrochemical cell and supplies electrons to the
medium, causes the following reaction:
2H2O + 2e- -> H2 + 2 OH-
The hydroxyl ions together with the sodium ions forms caustic soda, which is also processed towards
an final product of Nobian. The hydrogen is released as a gas and is distributed towards costumers
and power facilities. At the anode side the chlorine in gas form saturated with water leaves the com-
partment and travels towards the anolyte tower via a cyclone, where it is separated from the depleted
brine. Chlorine gas that holds water is called wet chlorine and is highly corrosive. The chlorine gas
has a high temperature of around 85 degrees Celsius when leaving the electrolyser and is saturated
with water vapor. The wet chlorine requires cooling to prepare it for the drying and to purify it. The
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first cooling takes place in the anolyte tower where the gas passes purified brine which acts as coolant
and decreases the temperature towards around 70 degrees Celsius. In this process the chlorine gas
stream is also cleaned by the brine. Hereafter the gas travels into the quench where it is cooled and
cleaned on multiple packed beds by a reversed stream of chilled brine towards 15 degrees Celsius. By
cooling the chlorine stream is separated from a large part of the present water, this is condensed and
added to the brine streams.

Figure 2.1: Flow diagram of the chlorine street

2.1.2. Chlorine street
The chlorine leaves at the top of the quench and flows towards the drying unit. Here the stream is
divided over two identical streets, presented in a schematic overview in Figure 2.1.

Drying
At the start of the street the stream passes through a wet demister where contaminants and small
droplets are removed. The chlorine contains to much water and is still considered wet, before the
chlorine is considered dry the moisture content should be lower than 10 ppm. The drying process
occurs in two consecutive drying towers where sulphuric acid flows in opposite direction of the chlorine
gas and absorbs the water. At the end of the drying process a dry demister is located, which removes
the fine sulphuric acid mist.

Pre cooling
The dry chlorine leaving the demister is cooled down to around -32 degrees Celsius before entering the
compressor to reduce the compression load. This cooling takes places with the use of liquid chlorine,
which also cleans the chlorine gas ones more. The liquid chlorine is returning from the liquefaction
process. This technique increases the flow through the compressor and it removes no heat from the
process. One of the contaminants that is removed from the gas stream here is nitrogen trichloride,
which is a hazardous compound. The concentration of NCl3 should not exceed 2% according to the
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chlorine institute (Brinkmann et al., [2014]). In the bottom of the precooler NCl3 accumulates in the
liquid chlorine, therefore the bottom of the cooling installation is coupled to a NCl3 decomposer.

Compression
The cooled chlorine enters the multistage centrifugal compressor at the suction side, the ideal suction
pressure is 1.368 bar. The compressor consist of four stages, with a double intercooler between stage
2 and 3 and single intercooler between stage 3 and 4. The intercoolers are in place to avoid overheating
of the chlorine, this is an issue because chlorine reacts combustively withmost metals. The temperature
is kept below 110 degrees Celsius, which is considered a safe margin for prevention of iron chlorine fire
(Dokter, [1985]). Due to the precooling no intercooler is required between the first and second stage.
The ideal pressure on the pressure side after the last stage is 11 bar. After the compression of the
chlorine gas, it travels towards the first condenser of the first condensation stage. On this path there is
also a branch for recirculation to the precooler, this is used for pressure control and surge prevention.

Condensation
The liquefaction of the chlorine occurs in two steps to reach a high liquefaction degree. The first step
consists of two condensers in series that use water as cooling medium, here the largest part of the
chlorine is condensed. The liquid chlorine is collected in a receiver and is transferred towards the
storage and distribution section via an aftercooler. The remaining chlorine gas that leaves the second
condenser flows to the second condensation step where it is condensed with the use of evaporating
cold chlorine. The liquid chlorine flows from the second condensation step to the precooler, while the
remaining tail gas is diluted with air to avoid explosion risk and sent to the chlorine destruction.

Distribution
The liquid chlorine of both liquefaction street is combined and can be stored under pressure in two large
tanks or directly distributed towards the costumers by the long distance pipe network.

2.2. Characteristics of the chlorine compressor
The centrifugal compressor is a dynamic machine that uses rotation energy to compress gasses. The
impeller rotates at high speed and through the impellers design the gasses are driven from the center
to the outside edge, this creates an under pressure in the center and draws gasses through the inlet
towards the impeller, so the pressure of the gas is increased by the spinning of the impeller. The gas
at the outside with the high velocity is directed into a diffuser. The shape of the diffuser reduces the
velocity of the gas resulting in an additional increase of pressure. It is possible to add multiple stages of
this process by leading the gas from the diffuser into the next impeller. Centrifugal turbo compressors
with a mono or multi-stage can have a throughput up to 1800 tons per day and a discharge pressure
up to 16 bar. In the large industry, the multi stage centrifugal compressor is most commonly installed,
as is the case at Nobian (Talk, [2020]).

The components, subsystems and auxiliary systems of the centrifugal multi stage compressor are dis-
cussed here. In Figure 2.2 an intersected compressor is shown, where the internals are visible in their
operating location. This specific figure provides a clear cross sectional view of the compressor and is
retrieved from compressor manufacturer Group, (2014).

2.2.1. Casing
The casing is the outermost pressure containing part of the compressor and includes the inlet and outlet
nozzles. There are two types of casings used for centrifugal compressors that differ in the way how
they are opened; the horizontal split casing and vertical split casing, also known as the barrel type. The
vertical split casing is suited for high pressure applications. The horizontal split casing is the one used in
this case study. Horizontal split casing consists of a top and bottom half which are bolted together along
the center line and is shown in figure Figure 2.3. The internals can be accessed by removing the top
half. To ease maintenance the piping connections are mostly on the bottom half, so it can stay in place.
This type of casing is used for low pressure application up to 40 bar discharge pressure (Talk, (2020)).
With higher pressures the possibility exist that the two parts break up and leaks occur. This should be
prevented at all cost when dealing with chlorine, luckily for the liquefaction of chlorine is a pressure of
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Figure 2.2: New modifications made on the chlorine compressor produced by Elliot Engineered Solutions Group, (2014)

16 bar sufficient. To ensure the prevention of chlorine leaks a sealing is applied between the two halves.

2.2.2. Rotor
The rotor of a centrifugal compressor is an assembly of the shaft and impellers. The rotor should be
perfectly balanced for the high speed rotations and is hold in place by bearings on either side.

Shaft
The shaft consists of a stiff solid rod, that is machined to fit all the parts. The impellers are mounted on
the shaft even as the spacers. Towards both ends of the shaft it contains grooves, these are functional
for the labyrinth seal.

Impeller
The impellers provide the head pressure and are available in different designs. For multi stage turbo
machinery enclosed impellers are most of the time the best choice. This type functions well at the high
rotation speeds of the compressor that is required in the industry.

2.2.3. Bearings
Two types of bearings are required to hold the rotor in position and make it functional. Journal bearings
are placed to let the rotor rotate, while the thrust bearings are used to hold the rotor in position axially.
The journal bearings operate as radial bearings and make use of a pressurized oil fluid films between
the shaft and the bearing itself to support the rotating shaft. The most commonly type of journal bearing
that is used is the the tilting pad journal bearing. These can handle the unbalancing action of the oil
film. The thrust bearing operates as axial bearing and are suitable of resisting axial motion. The inner
part of the bearing, the thrust collar is hydraulically fitted on the shaft, so it is fixed and rotates along.
Thrust bearings have a stationary thrust surface, thrust pads and a thrust collar which revolves with the
shaft. In normal condition there is a thin layer of oil in between thrust collar and thrust shoe. Any axial
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Figure 2.3: The lower half of the casing with the tefloncoard and Hylomar applied for a sealing layer.

motion is prevented by the thrust shoes.
Both type of bearings make use of oil as lubricant, for continuous lubrication this requires a lubrication
system which maintain the oil levels. Mixing of oil with the operating gas should not occur due to the
reactive nature of chlorine, which has a negative effect on the lubrication, therefore the bearings have
to be properly sealed from the medium.

2.2.4. Diaphragm
The diaphragm are placed in the casing and are stationary. It contains the the diffuser in which the im-
peller discharges the gasses and and a channel to redirect the gasses to the next stage. The diaphragm
are fabricated in halves to ease the installation and are bolted together. The two halves want to move
away from one another due to the pressurized gasses inside, therefore the assembly is important to
prevent leakage.

2.2.5. Sealing
Operating with chlorine brings risks due to reactive nature of the element, therefore choosing the correct
materials it contacts is important. Also, the sealing of the entire system should be sufficient to prevent
the chlorine of making contact with different components or leaking out of the casing. Different type of
seals are used inside the compressor. As stated above the diaphragms and the casing consist of two
halves which are bolted together, to make sure no leakage can occur a seal is applied between the two
halves, so the chlorine is contained, see figure 2.3. Labyrinth dry gas sealing called a tandem seal is
in place to keep the gas in the process area and is placed along the shaft between the bearings and
the process area. The labyrinth seals used for chlorine compressors has three chambers where dry air
is lead through to create an over pressure and ensure that the chlorine is prevented from leaving the
compressor, this type of sealing is shown in Figure 2.4.

2.2.6. Power
Consistent power is required to operate the compressor efficiently, nowadays the most commonly used
power source is an electrical engine. These can provide a consistent power input to the compressor
with stable amount of revolutions. The option exist to have an variable frequency driver that makes it
possible to have different operating points of the compressor, which could benefit the efficiency. This
is however not the case for this particular compressor.

2.2.7. Gearbox
The centrifugal multistage turbo compressor requires high rotation speeds, to increase the rpm deliv-
ered by the engine a gearbox is set in place to realise this. The type of gearbox that is commonly used
is one made of planetary gears. The gearbox also includes the coupling between the driving engine
and the compressor rotor.
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Figure 2.4: Type of labyrinth seal that uses three chambers with gasses.

2.2.8. Auxiliary units
For the compressor to function it requires extra inputs from auxiliary systems. The seals require dry air
or nitrogen to function, which is supplied by the dry air system. Furthermore the compressor requires
interstage cooling for improved efficiency and the bearings require oil for lubrication.

Intercoolers
In the case the compressor consists of multiple stages it is often usual to cool the chlorine in between
stages. This method increases the efficiency of the compressors. The gas is then lead to the inter-
cooler after it passes the diffuser and lead back to the next impeller stage after it is cooled down. The
advantage of pressurized chlorine is that it can be cooled at ambient temperatures.

Oil system
A machine with moving and rotating parts requires oil. This oil is multifunctional, it is used for lubrica-
tion in the bearings and gearbox and circulating the oil through the system it also dissipates the heat
produced at those locations. The oil system consists of pumps, coolers, filters and a reservoir.

2.3. Failure mechanism
The failure mechanisms that are included into this research are selected based on occurrence, severity
and the ability to be detected with the available data. The following failure mechanisms are included
into the fault identification model.

2.3.1. Fouling
Fouling occurs when contaminants enter the compressor system, this results in performance losses of
the compressor. Fouling can be divided in two groups, the first being non reactive contaminants that en-
ter the compression circuit and do not change state Barnard, (2001). This group typically settles in calm
places, erode labyrinths and the edges of impeller blades. The other group consists of contaminates in
gas or liquid form and these cause problems if they change state as they pass through the compression
circuit. The main cause of fouling in chlorine compressors is the presence of moisture in the chlorine
which in combination with the cast iron casing and chlorine reacts to ferrochlorines (Brinkmann et al.,
[2014]). These particles can deposit inside the compressor and lead to internal blockages. For exam-
ple see figure 2.5a where fouling has occurred and the diffuser of the third stage is clogged, which
results in a smaller diffuser and effects the performance of the compressor. The effect of fouling is
decreasing efficiency of the compressor and is noticeably in the temperature between stages as well
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(a) Fouling in the diffuser of the third stage (b) Labyrinth Damage (c) Damaged axial bearing pads

Figure 2.5: Representations of the selected failure mechanisms

by the increase of power consumption.

2.3.2. Leakages
Due to the corrosive and toxic nature of chlorine leakages are a great risk for compressors. Most im-
portant is that external leakages of chlorine are prevented, since it has a large influence on the direct
environment and personnel. Multiple types of leakage can occur in the compressor, namely between
the two halves of the horizontal split casing and in the cavities between the rotor and stator. The leakage
between the casing halves can occur due to the temperature and pressure causing the flanges to not
be tight anymore Bidaut et al., (2013). The cavities between rotor and stator exist between compressor
stages, between the first stage and the bearing and also between the last stage and other bearing.
The leakage through this cavities influence the flow in the compressor circuit and therefore also the
performance of the compressor decreases Qiao et al., (2019). The leakage towards the bearings and
through the casing halves are disastrous when dealing with chlorine due to the toxic behaviour of the
gas. These types of leakages are prevented by using the correct type of sealing. Between the two
halves of the casing a thin film can be applied to seal the the casing Bidaut et al., (2013). The corrosive
chlorine limits the types of sealing that can be used in this application. Leakages have effect on the
performance of the compressor, it can effect the flow rate of the chlorine or it can raise temperatures in
the compressor stages. The possibility exist that part of the sealing could fail as shown in Figure 2.5b,
here the labyrinth is damaged which caused an internal leakage that effected the performance of the
compressor.

2.3.3. Bearing failures
Bearing failure is the best known failure mechanism when dealing with rotary equipment and is normally
detected with high frequency vibration measurements, these are not included in this case study. The
purpose of the axial bearing is to absorb the axial forces and prevent axial movement, so out of bound
axial displacement is a sign of a defect. Furthermore, defects on the bearings create extra friction and
lead to increasing temperatures. Bearing failures could be caused by contaminated oil, a deviation of
the prescribed oil pressure or uneven divided stress in the bearing. In Figure 2.5c axial bearing pads
are shown with the effects of pitting and scratching, this was caused by chlorine contamination in the
oil in combination with a decreased oil pressure. This is an example of one failure mechanism causing
another, since the oil contamination was caused by a leakage.
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2.3.4. Unbalance and misalignment
Rotor stability is essential for turbomachinery, an instability can occur due to unbalance and misalign-
ment. The rotor misalignment is the misalignment of the axis of the compressor rotor and the axis
of the output shaft of the gearbox, this misalignment can occur in the form of an offset, inclination or
combination of the two. The main types of misalignment are defined by this study Manikandan and
Anwar, (2018):

• Parallel: The axes of the driving and driven shafts are parallel but have a laterally displacement.
• Angular: The axes of the shafts cross each other and are not parallel.
• Axial: The compressor rotor is not in its correct axial position on the bearing.

Misalignment has an influence on the compressor performance, however it can also cause extra stress
and fatigue in the bearings.
Every rotating machine has an inherent degree of unbalance, therefore unbalance as fault can be rede-
fined as unbalance outside of a given tolerance level (Walker et al., [2013]). To prevent unbalance the
rotor center of mass axis should coincides with geometric central axis. Unbalance does not necessarily
directly lead to machine failure, however overtime it can induce vibrations which lead to failures as rub
and wear.

2.3.5. Wear
Wear is the erosion of components in compressor. The erosion occurs due to particles in gas flow and
is hard to completely prevent. Recognising the points sensitive to erosion would lead to more accurate
determination of the components life times. High erosion rates mainly occurs at the impeller eye and
the blade roots according to Biglarian et al., (2019). Wear can also be caused by rubbing of rotating and
stationary parts of the compressor. This should be prevented at all times, but due to large tolerances,
large vibrations, external forces it could occur. Wear has multiple effects that depend on the location
of the mechanism. Wear can lead to performance decrease of the compressor, however due to the
destructive nature of wear it can also cause direct mechanical failures. The particles that erode due
to wear act as contaminants and can lead to more erosion and fouling. If wear occurs in the labyrinth
sealing it can lead to less effective sealing and even internal leakages. Wear is also one the major
causes to bearing defects.

2.3.6. Selection of failure mechanisms
Not all previously described failure mechanisms occur frequently, which makes it hard to include those
in the research. Moreover, somemeasurements to acquire essential data are lacking whichmakes it not
feasible to identify these mechanisms. The selection is based on the severity, frequency of occurrence
and the possibility to detect them with available sensors. The mechanisms that are selected to be
included in this research are the following:

• Leakages
• Fouling
• Bearing failures

2.4. Concluding remarks
With the overview of the production process the criticality of the compressors is emphasized. The
characteristics of the compressor are presented by describing all important parts of the system. Lastly,
the failure mechanisms that could occur in the compressor are presented. The insight into these factors
resulted in the selection of the three failure mechanisms that are considered for diagnosis.



3
Literature review

In this chapter the answer is provided to the following research question: What is the current state of
failure diagnosis methods in literature and what method is best applicable to this case study? This
question is answered in steps, starting with understanding Fault detection and diagnosis (FDD) in
general. Then the possible approaches for health indicator construction are presented and finally the
method best applicable to this study is selected.

3.1. Fault detection and diagnosis
Condition monitoring includes the observation of the operational parameters and condition of equip-
ment to detect anomalies that could indicate potential faults. The increasing availability of condition
monitoring on systems has facilitated the increasing research in fault diagnosis techniques. FDD takes
the information from condition monitoring and applies diagnostic algorithms to detect, isolate, and iden-
tify the faults. FDD gives insight in the state of equipment and is important to maintain high productivity,
efficiency and safety in production plants (Arias Chao et al., [2022]). A lot of the research is focused on
a single failure mechanism, for example: the study into fouling mechanism by deriving the equivalent
compressor performance map at various degrees of fouling with a consideration of gas properties and
stage efficiency variation and without prior knowledge of the detailed geometrical features Al-Busaidi
and Pilidis, (2016). An improved qualitative simulation (QSIM) based fault diagnosis method is pro-
posed to diagnose the faults of centrifugal compressors in Lu et al., (2016). This study uses the thermal
parameters to detect the occurrence of faults in the gas flow path. The method presented in Luo et al.,
(2022) is a Dynamic Recurrence Index (DRI) and is used to detect the occurrence and quantify the evo-
lution of oil film instability in the journal bearing system. However, as stated in the previous Chapter 2,
the compressor is a complex machine where often multiple degradation modes are developing. This
means these approaches of fault diagnosis for single failure mechanism are not sufficient. A different
approach is the construction of health indicators and using them as tool to assess the machine in its
entirety (Lei et al., [2018]) (Jardine et al., [2006]) (Schwartz et al., [2022]) (Wang et al., [2012]).

3.2. Health indicator construction
The aim of using a HI in the PdM model is capturing the degradation process of a complex machine
into a single function, so FDD becomes feasible. HIs are often applied for anomaly detection and as
a basis for prognosis. HIs can be classified in two categories based on their construction strategies:
model based HIs and data driven HIs(Lei et al., [2018]) (K. T. P. Nguyen, [2022]), the categories are
shown in Figure 3.1. A model based HI correspond to direct underlying degradation factor and the
physics of failure and are generally directly extracted from monitoring signals. Thus, the construction
of a model based HI requires an understanding of the working principle of the system and the possible
deviation from expected behaviour. A data driven HI describes the degradation trend of the equipment,
but loses the direct physical meaning. The underlying assumption of data-driven approaches is that the
relevant information concerning the evolution of the system health and the failure time can be learned
from past data (Arias Chao et al., [2022]). For the construction of data driven HIs the fusion of multi-
sensor measurements is required. The techniques for accomplishing this fusion could be divided in
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Figure 3.1: Overview of health indicator construction methods split into model based and data driven approaches
(K. T. P. Nguyen, [2022]).

three categories: optimization methods for feature combination, statistical projection and deep learn-
ing based (Arias Chao et al., [2022]). The first group, optimization method of feature fusion want to
find the best mathematical expressions that produces high-level diagnostic and prognostic features by
combining low level features, for example by using genetic algorithms (Firpi & Vachtsevanos, [2008]).
These methods require expertise knowledge about the HI formulation, which is limited with complex
machinery, where multiple degradation patterns could occur simultaneously. The next group based on
statistical projection aims to project high-dimensional multivariate data to a lower dimensional space.
This method is suitable for continuously collected measurements and is a process of information fusion
which provides a unified measure being used to characterize the health condition of the system. For
example, in the study of Wang et al., (2012) the framework for constructing generic HIs is provided
by employing a linear data transformation method. These methods are trained with the help of failure
data. Due to preventive maintenance approach limited failure data of compressors is available. This
gives the challenge of learning the degradation and failure behaviour without having training data of
this. Model should be able to learn the characteristics of a healthy compressor. The final group deep
learning methods, provides a different data driven approach for automatically extracting and construct-
ing useful information, without the necessity for expertise knowledge in presence of big data. However,
a disadvantage of using machine learning for FDD is the need for data on failure instances to learn
the correlation between the multi-sensor measurements. This data if often not widely available for
complex and expensive machinery due to preventive measures. The model based approaches and
optimization methods for feature combination are not compatible with the research scope. These are
not further looked into due to the lack of required measurements for the model based approach and
the lack of required expertise knowledge about the HI formulation, where multiple degradation patterns
could occur simultaneously. Hereafter, extra insight is gathered on the statistical projections and deep
learning based method to provide the basis for the optimal chose of proposed methodology.

3.2.1. Statistical approach for HI construction
One of the methods for data reduction that is often proposed is the Principal Component Analysis (PCA)
(Jolliffe, [2002]). Using PCA for data-driven analysis and empirical modelling is a promising approach
as it gives the ability to learn different operating condition of the machinery without the need for any
physical understanding of the process. PCA is a valuable technique for compressing a large amount of
information in a compact and easily interpretative form, therefore is the PCA a popular option as feature
extraction method for fault diagnosis methods (He et al., [2009]) (H. Chen et al., [2020]). The PCA
technique is a linear projection that is standardized and which maximizes the variance in the projection
space. The main advantage of PCA is the reduction of the data dimension and therefore reduction of
the computation time, while losing minimal information. However PCA is limited, since it only allows
linear dimensionality reduction. Therefore different derivations of the PCA method are developed over
time which can solve this limitation, examples are: Probabilistic PCA (PPCA) and Kernel PCA (KPCA).
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Kernel PCA
KPCA is described by Schölkopf et al., (1999) and is a tool to generalize standard PCA to nonlinear
dimensionality reduction, this is required when dealing with more complicated structures that cannot
be presented in a linear subspace. An example of the adaptation of KPCA by Feng et al., (2016), here
KPCA is use to establish a basis for the health index and RUL estimation for a turbofan engine. The
principal idea of KPCA is to go to a higher dimension space in which the decision boundary becomes
linear (Feng et al., [2016]) . However, by doing this the generic non-linear combination of the original
variables will have a huge number of new variables which will overload the computational complexity
of the problem. The exact combination of non-linear terms needed is unknown, that is why the large
number of combinations that are required. This can be overcome by using the kernel trick (Schölkopf
et al., [1999]), which enables us to get to the eigenvalues and eigenvector without actually calculating
it explicitly, by using the kernel function.

Probabilistic PCA
PPCA is established by deriving PCA within a density estimation framework. The main advantages of
PPCA is that multiple PCA models can be combined as a probabilistic mixture and the possibility to
obtain PCA projections while data is missing (Tipping & Bishop, [1999]). Also it is capable of reduction
of dimension and can be used as a constrained Gaussian density model, where maximum likelihood
estimates for the parameters can be efficiently computed from the data principal components. This has
the benefit that PPCA can be used for classification and novelty detection.

Canonical Variate Analysis
Canonical Variate analysis (CVA) is also referred to in literature as Canonical Correlation Analysis and
is in the basis a method for analysing the correlations between two data sets. CVA searches for linear
combinations which are responsible for the most correlation in two data sets, where PCA only focuses
on the linear combinations with the most variance in one data set. This gives the advantage that this
method could handle two data sets with different origins and format. The use of the CVA method has
the benefit that it is possible to combine process data with vibration and electric current data (Ruiz-
Cárcel et al., [2016]). The goal of CVA is to find linear combinations between two sets of variables that
maximize the correlation. CVA is capable to detect and diagnose faults in systems with dynamically
changing conditions, which is its main advantage compared to other methods. The working principal
of CVA according to literature Ruiz-Cárcel et al., (2016), Pilario and Cao, (2018), Larimore, (1983) is
explained next. CVA takes time correlations in account by expanding the observation vector y(k) ∈ Rm

at each time point k of the training period with considering p previous and f future measurements. This
creates the past and future observation vectors yp,k and yf,k.

Support Vector Machine
A support vector machine (SVM) is a method that is useful when the underlying process of the real-
world system is unknown or to complex to sufficiently model. It is mostly used for classification tasks
due to its high accuracy even for non linear problems. For fault diagnosis support vector regression
(SVR) is used in combination with the HilbertHuang transform to extract health indicator. In this form
SVR is capable of determining the RUL of machinery with time series data.

3.2.2. Deep learning for data driven HI construction
In this section deep learning approaches for constructing HIs are explored and described. Also the
important aspects of machine learning in general all researched to gain an understanding of the matter.
A different approach is provided using a machine learning method, where the HIs are constructed with
the help of neural networks (NN) Kim et al., (2019). This has the advantage of not requiring the exact
failure threshold and does not limit the application of the method for a specific degradation process.
Neural Networks use nodes in hidden layers in combination with weights to give an output. These
nodes can activate when the input surpasses a certain threshold, most often this threshold is connected
with a sigmoid function. The input of every node is an product of the original input and a weight factor.
These weight factors are the learning parameters of the network and makes that a NN requires historic
knowledge to function. The NNs basic learning procedure cannot effectively extract the informative
features hidden in raw data and therefore require additional feature selection Ran et al., (2019). NNs
can have good approximations of non linear functions, however this technique is limited since a lot
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weight parameters need to be trained, it is easily possible to over-fit by choosing to many layers and
nodes and might require large computational power.
Many adaptions of NNs are constructed to deal with these limitations, such as convolutional neural
network (CNN) and the recurrent neural network (RNN).

Convolutional neural network
CNN normally consists of multiple layers; the input layer, convolution layer, pooling layer, fully con-
nected layer and the output layer. This setup makes it possible to extract local features of the input
data and combine them layer by layer to generate high-level features (Ran et al., [2019]).

Recurrent neural network
RNNs is capable of dealing with sequential data such as time series. RNN can build circular connections
in its hidden layers and use that feature to keep memory of previous inputs in the networks internal
state (Ran et al., [2019]). The limitation of the RNN is that the gradient can be unstable and explode
or disappear due to the back propagation used during training.

Long Short-Term Memory Network
Long Short-Term Memory (LSTM) neural network is an improvement of the RNN and consist of multiple
connected recurrent units recursively. LSTM was introduced as an efficient gradient based method by
Hochreiter and Schmidhuber, (1997). The recurrent unit has three gating structures, namely a forgetting
gate, an input gate and an output gate (X. Chen et al., [2023]). The two main advantages of LSTM are
the following; the structure of LSTM can learn long-term memory information and provide a solution
to long-term dependence. Also LSTM has an activation function that combines the sigmoid function
and tanh function, which avoids explosion or disappearance of the gradient, while also accelerating the
convergence speed of the model. This all makes the LSTM network valuable for applications with time
series predictions.

Figure 3.2: Network of LSTM cell that encodes and decodes multivariate time series H. D. Nguyen et al., (2020).

LSTM Autoencoder
The LSTM cells are often used in a LSTM-autoencoder (LSTM-AE) network, see Equation (4.3), which
is a variation of an autoencoder that uses an Encoder-Decoder LSTM architecture to process sequence
data (de Pater & Mitici, [2023]) (H. D. Nguyen et al., [2020]). This is an unsupervised machine learning
method that encodes a sequence to an embedding with a smaller dimension and decodes this em-
bedding to the reconstructed sequence. The goal of this process is to learn the important aspects of
the system by reducing the dimension of the data, while maintaining the important information struc-
ture. The possibility to learn patterns and dependencies between features over longer periods makes
LSTM-AE relevant for time series prediction and anomaly detection.
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3.3. Method selection
In this section the methods will be compared on their strong points and weaknesses for the adaption
to this research and taken in account the scope. The selection of methods will be made on the ba-
sis of criteria that are important to the research. The methods are described above along with their
characteristics, advantages and limitations.

3.3.1. Selection criteria
The selection criteria are based on the requirements of the methods for this research. In the optimal
case the criteria are fully independent of one another, so the selection of methods is fully objective. The
criteria are as follows: Accuracy, Feasibility, Computational effort and Robustness. Below the criteria
are described concisely along with the reasoning of the importance for this selection procedure.

Accuracy : The output should be accurate enough useful for the research
Feasibility :It is important that the proposed method can be applied and executed with the available
resources
Computational effort :The cost to implement the method in the model should be reasonable, these
costs are mainly the time to understand and adapt the method for the model and the calculation time
Robustness :The method should easily adapt to minor changes or the loss of a measurement, it would
not be beneficial if the model based on this method should be entirely reconstructed all the time.

Feasibility for the purpose of this research is a limiting factor for many of the considered methods. The
selected method should be able to deal with the following requirements to be feasible:

• Can be trained with limited or without failure data.
• Is able to deal with changing operating conditions.
• Is capable of detection and identification of the degradation by multiple faults simultaneously.

Scores are provided in a range of one to five based on the characteristics of the method and the
results of consulted literature. The final scores of the methods are presented in table 3.1. The best
option is the LSTM-Autoencoder, which is selected as the foundation of the proposed methodology in
the next chapter.

Table 3.1: Evaluation matrix for methods vs selection criteria

Statistical projection methods Robustness Accuracy Ease of
implementation Feasibility Total Score

Kernel-PCA 3 4 4 2 13

Probability-PCA 3 3 3 1 10

Canonical Variate Analysis 3 4 4 2 13
Support Vector Machine 3 4 4 2 13

Deep learning based methods
Convolutional-NN 4 4 2 2 12

Recurrent-NN 2 3 5 4 14

LSTM-RNN 3 3 4 3 13

LSTM-AutoEncoder 4 4 2 5 15

3.4. Concluding remarks
In this chapter literature that focuses on FDD and HI construction is consulted to get an understand-
ing of what techniques are available and suitable for this research subject. It has become clear that
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the best approach for machine diagnosis of a compressor with limited recorded failure instances, is
health assessment by constructing of health indicators. The construction of health indicators requires
fusion of the multivariate data, which provides four groups of health indicator construction methods:
Model based, optimization methods for feature combination, statistical projection and deep learning
based. The last two groups are subjected to case specific selection criteria: Accuracy, Feasibility,
Computational effort and Robustness. The considered methods should meet the following criteria to
be considered feasible:

• Can be trained with limited or without failure data.
• Is able to deal with changing operating conditions.
• Is capable of detection and identification of the degradation by multiple faults simultaneously.

This has resulted in the selection of the LSTM-AE as foundation for the methodology of this research,
which provides the answer to the question; What is the current state of failure diagnosis methods in
literature and what method is best applicable to this case study?



4
Methodology

In this chapter the following subquestion is answered: How to develop the proposed fault detection
and indication model for the chlorine compressor?, by firstly introducing the LSTM-AE, along with the
format of the time series data. Secondly, the reconstruction loss is used to construct the HIs. Then the
training and the tuning process for the optimal parameters is described. At last the application of the HIs
for health assessment and fault identification is presented, along with the key performance indicators
(KPIs).

4.1. LSTM Autoencoder
In this section the characteristics of the LSTM-AE are described. Let X⃗c,d = X⃗c,d

t , t ∈ {1, 2, ..., nc,d}
be the multi-sensor measurement of compressor lifecycle c during sequence d , where t denotes the
time step during this sequence. The compressor lifecycle c refers to period that the compressor starts
operating after placement till it either fails or is replaced. The input for the LSTM-AE should have a
limited length for the model to function effectively, therefore the lifecycle are split in sequences d of size
nc,d which are used as input. The X⃗c,d

t = [Xc,d,1
t , Xc,d,2

t , ..., Xc,d,as

t ] is the multi-sensor measurement
at time step t, with as the amount of considered sensors. Furthermore, the amount of sequences in a
compressor lifecycle c is indicated as Dc. The operation conditions are separated with the purpose of
developing a model that constructs the HI independent of these conditions. The sensors that qualify for
this purpose are the ones measuring the inlet conditions of the chlorine gas and oil, more precise: the
inlet temperature and pressure of the chlorine gas and the inlet temperature of the oil. These are the
parameters that could change depending on the season or the production process that precedes the
compression and influence the other parameters in the system. The measurements of the operation
conditions have their own notification. Let O⃗c,d = O⃗c,d

t , t ∈ {1, 2, ..., nc,d} be the conditions of sequence
d of compressor lifecycle c, then O⃗c,d

t = [Oc,d,1
t , Oc,d,2

t , ..., Oc,d,ao

t ] refers to the conditions at time step t
of this sequence d and ao correspond to the amount of operating conditions. The LSTM-AE consists of
an encoder part and a decoder part, which recurrent layers exist of enrolled series of LSTM cells and
encodes the input data to the repeat vector and reconstruct the time series at the decoder part, see
Figure 4.1 where the architecture with one layer is shown.

4.1.1. LSTM cell
The LSTM technique is an adapted version of the original LSTM structure by Hochreiter and Schmid-
huber, (1997). This version described by de Pater and Mitici, (2023) consists of two variable states
that are updated by every cell and than past on to the next cell, these states are the memory state ct
and the hidden state ht. This results in the situation that every cell has four inputs; the features and
operation conditions at the current time step X⃗c,d

t and O⃗c,d
t , the initial memory ct−1 and hidden state

ht−1 and two outputs; the updated memory and hidden state. The LSTM cell is shown in figure 4.2
and consists of three gates that update the variable states with the use of the inputs and an activation
function. The two types of activation functions that are used in the LSTM cell are the simgoid function
σ and the tanh function, see Equations (4.1) and (4.2).
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Figure 4.1: Architecture of the LSTM-AE

σ(x) =
ex

ex + 1
(4.1)

tanh(x) =
ex − e−x

ex + e−x
(4.2)

The first operation in the LSTM cell is the forget gate, here is decided what old information is removed
of the previous memory state. The portion of the memory state that should be forgotten is determined
by passing the inputs through the sigmoid function as shown in Equation (4.3), hereWg, Vg, Ug are the
weights and bg is the bias of the forget gate.

gt = σ(WgX⃗
c,d
t + VgO⃗

c,d
t + Ught−1 + bg) (4.3)

Secondly the input gate provides a potential memory state cpott and simultaneously an input state it
that will decide what part of the potential memory state will be added to update the memory state, see
Equations (4.4) and (4.5) . Here Wc, Vc, Uc,Wi, Vi, Ui are the weights and bc and bi are the biases of
the input gate.

cpott = tanh(WcX⃗
c,d
t + VcO⃗

c,d
t + Ucht−1 + bc) (4.4)

it = σ(WiX⃗
c,d
t + ViO⃗

c,d
t + Uiht−1 + bi) (4.5)

The new memory state ct is determined with the information of the forget and input gate by, see Equa-
tion (4.6).

ct = (ct−1 ⊗ gt)⊕ (it ⊗ cpott ) (4.6)

At last, the output gate generates the new hidden state ht by determining what part of the new memory
state should be used, see Equations (4.7) and (4.8). HereWp, Vp, Up are the weights and bp is the bias
of the output gate.

pt = σ(WpX⃗
c,d
t + VpO⃗

c,d
t + Upht−1 + bp) (4.7)

ht = pt ⊗ tanh(ct) (4.8)
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Figure 4.2: Schematic overview of the LSTM cell structure.

4.1.2. Encoder
At the encoder side of the LSTM-AE the sequences are imported into a LSTM cell for every time step
together with the hidden and memory state of the previous LSTM cell, see Figure 4.1. The operation
conditions and the sensors measurements are separate inputs so the reconstruction of the data is
independent of the operation conditions. The last hidden and memory state at time point nc,d are the
starting conditions of the decoder.

4.1.3. Decoder
The decoder uses the reconstructed measurements of the previous time step X̂c,d

t−1 as input, except
at t = 1, here the original data is used. Furthermore, it also uses the previous hidden and memory
state and the operation conditions as inputs. The reconstructed measurement X̂c,d

t is the output of this
network and is generated by a fully connected layers of a neural network. This network consist of three
layers where the last layer has an output of as, corresponding to the number of input sensors. The fully
connected layers have the hidden state of the recurrent layer and the original operation conditions as
input. By separating the operation conditions the autoencoder is forced to learn that the reconstruction
of the sensor data is independent of the operation conditions.

4.1.4. Reconstruction losses
The reconstruction loss is determined by the difference between the input measurements and the recon-
structed measurements. The mean reconstruction loss RLc,s

d of sensor s in sequence d of compressor
lifecycle c is equal to:

RLc,s
d =

1

nc,d − 1

nc,d∑
t=2

∣∣ ˆ⃗Xc,d,s
t − X⃗c,d,s

t

∣∣ (4.9)

HIcd =

ms∑
s=1

RLc,s
d (4.10)

The LSTM-AE is trained to minimize the reconstruction error, so it learns to capture the essential char-
acteristics of the healthy chlorine compressor, while discarding noise and irrelevant information. During
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training phase teacher forcing will be applied to improve the training efficiency. Teacher forcing is per-
formed by giving the original Xc,d

t−1 as input at the decoder side of the reconstructed measurements.
In this manner the parameters further down the recurring LSTM cells are determined with the exact
values instead of the predicted values.

4.2. Health Indicator construction
The data driven health indicators are based on the reconstruction loss of the LSTM-AE. As previously
described there will be constructed four different data driven HIs with the use of the model.

4.2.1. Sensor selection
As shown in Equation (4.10) the HI is a summation of the reconstruction losses for set of sensors. This
subset is specific for a HI. The usefulness of a sensor is dependent on the change of the reconstruction
loss towards failure. This can be determined in an objective manner by using the trendability, which
will be explained further in section 4.2. The sensors that are included in Equation (4.10) to construct
the HI have a high trendability.

4.2.2. Health Indicator Evaluation Metrics
To evaluate the health indicators three metrics are defined: the monotonicity (M ), trendability (T ) and
prognosability (P ). These metrics are adopted from the work of Liu et al., (2020) and de Pater and
Mitici, (2023) to test the behaviour of the HI during a compressor lifecycle.

Monotonicity. The general increasing or decreasing pattern of a feature over time. For a HI the
monotonicity should increase when a incipient fault occurs and evolves.

M =
1

Dc − 1

∣∣∣∣∣
Dc−1∑
d=1

I(HIcd+1 −HIcd)− I(HIcd −HIcd−1)

∣∣∣∣∣ ,
where I(x) =

{
1, if x > 0

0, if x ≤ 0

(4.11)

Trendability. The Spearman correlation coefficient is used between the HI and the sequences
{1, 2, ..., Dc} to define the trendability.

T =

Dc

Dc∑
d=1

rHIc

d d− (

Dc∑
d=1

rHIc

d )(

Dc∑
d=1

d)√√√√(Dc

Dc∑
d=1

(rHIc

d )2)×

√√√√(Dc

Dc∑
d=1

d2)− (

Dc∑
d=1

d)2

(4.12)

Prognosability. The prognosability is the variance of the final state of the HI for each compressor
lifecycle divided by the average lifecylce length. This metrics tells how well the HI could be used to
detect the fault.

P = exp

 −std(HIcDc , e ∈ Ctest

1
|Ctest|

∑
e∈Ctest

|HIc1 −HIcDc |

 (4.13)

4.2.3. Tuning
The architecture of the LSTM-AE depends on the chosen model parameters, these are presented in
Table 4.1. The settings of the model parameters have a big influence on the behaviour of the model
and The optimal parameters are found using the approach presented in Figure 4.3, where the model
parameters are updated after each training process. This optimization loop is executed with the help
of grid search, where systematically each logical combination of parameters is evaluated.
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Figure 4.3: The approach for tuning the model.

Table 4.1: The model parameters of the LSTM-AE that are included in the grid search for the optimal model.

Architecture parameters
Number of stacked LSTM layers
Size of hidden and memory state
Sequence length of test data
Number of fully connected output layers

4.3. Health Assessment
The purpose of constructing the HI of the compressor is the ability to diagnose the state of the compres-
sor. To determine the difference in the state of the compressor a fault threshold for the HI is proposed.
When the upper bound of this threshold is passed the HI is considered unhealthy. The threshold is
determined following Equation (4.14), which corresponds to the Chebyshev’s inequality (Kong & Yang,
[2019]).

P (|HIcd − µ ≥ kσ) ≤ 1

k2
, (4.14)

where P () is the probability, k determines the confidence interval, µ is the mean and σ is the standard
deviation. The mean and standard deviation are retrieved from the healthy training sets. The condition
of the threshold is adapted from Chebyshev’s inequality to Equation (4.15).

HIcd ≥ kσ + µ (4.15)

To filter out outliers of the HI the condition should be met v times in a row for the compressor to be
diagnosed as unhealthy. This condition is used for the general HI to determine the state of the entire
compressor and to determine whether fault identification is necessary.

4.4. Fault Identification
HIs are constructed in the same manner as described in Section 4.2 for each failure mechanism. Here,
the sensor selection for the subset that is used in Equation (4.10) is based on both system knowledge
and trendability. For each HI of the included failure mechanisms a threshold is determined in the same
way as described in Section 4.3. Fault identification takes place if the compressor is considered un-
healthy and is the process assess the health of the HIs corresponding to each failure mechanism. Note,
by performing the fault identification in this way it is possible to detect multiple developing faults simul-
taneously. The assess the performance of the fault identification key performance indicators (KPIs) are
introduced, that are frequently used in this research field (Bohutska, [2021]), (AI, [2021]). These KPIs
are based on the confusion matrix, which is a visualisation of the fault identification results in a tabular
representation, see Figure 4.4.
The outcome of the classification is split in four categories:

• True positive (TP)

– Correctly identified positive prediction
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Figure 4.4: The confusion matrix presents an overview the results of a classification problem (AI, [2021]).

• True negative (TN)

– Correctly identified negative prediction

• False positive (FP)

– Incorrectly identified positive prediction

• False negative (FN)

– Incorrectly identified negative prediction

The confusion matrix presents the absolute results, however it is desired for the KPIs to be relative
metrics. These can easily be derived from the matrix:

• Accuracy

– the number of correct predictions made by the model Equation (4.16).

• Precision

– how correctly the model has detected positive outcomes Equation (4.17).

• Recall

– evaluates the effectiveness of a classification model in identifying all positive instances.
It is calculated as the proportion of relevant instances that were correctly detected Equa-
tion (4.18).

• F1-score

– identifies overall performance by combining precision and recall Equation (4.19).

Accuracy =
TP + TN

TP + TN + FP + FN
(4.16)

Precision =
TP

TP + FP
(4.17)

Recall =
TP

TP + FN
(4.18)

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(4.19)
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4.5. Concluding remarks
In this chapter the research sub question: How to develop the proposed fault detection and indication
model for the chlorine compressor? is answered by describing the methodology. The main part is
about the characteristics of LSTM-AE model which is the foundation of the proposed method. Then it
is described how the health indicators are constructed based on the reconstruction error of the autoen-
coder. To evaluate the developed model three metrics are proposed are proposed that determine the
characteristics of the development of the HI over time, namely; Monotonicity, trendability and prognos-
ability. Furthermore, Chebychev’s inequality is introduced to establish the threshold for health state
division between the healthy and unhealthy state of the compressor. Hereafter the verification steps of
the model are described, which includes:

• The implementation of the model with a different dataset that is frequently used in literature.
• Parameter tuning with the help of a grid search.
• Sensor selection for HI construction.

At the end the methods for health assessment and fault identification are described.



5
Case Study: Data

Goal of the of the chapter data handling is to answer the following sub question: What data is available
and how can it be retrieved and analysed for the purpose of fault detection and diagnosis? This ques-
tion is answered in multiple sections; The proposed method is tested on the case study of a chlorine
production plant, where two chlorine compressors operate parallel to pressurize and cool down chlorine
with the purpose of liquefaction. First, the data acquisition is described this includes the description of
historic data and the sensor selection. Then data preprocessing is described, which is an important
aspect when real world data is used as input for the model.

5.1. Data Acquisition
The compressor is handling a toxic substance and is qualified as a turbomachinery with a high rotational
speed, to ensure the safety of themachine their aremultiplemeasures tomake the system shut off when
certain parameters reach a threshold. To keep track of these critical parameters sensors are installed
in system to conduct measurements. Besides these sensors for safety needs, there are also sensors
that are used to indicate the state of the system and ongoing process. The main types of parameters
that are measured are the following: temperature, pressure, pressure difference, flow, displacement.
The database stores the measurements at a frequency of 1 measurement per 5 seconds. However
after storage for a few months the time span between data points is changed to a minute by averaging
the data, this is done to reduce the required storage space. The degradation of the compressor is a
slow process, therefore a lower sampling rate should also be sufficient. The only exception for this
statement are the vibration measurements, they require a high frequency in the order of 10 times the
rpm to capture all information hidden in the vibrations, which comes close to 1800 measurements per
second. These measurements are executed by a third party and are not directly stored in the database
and therefore not available for this research. The sampling at which the data is retrieved from the
database is chosen to be 1 measurement per hour, which is sufficient for capturing slow changes in the
behaviour of the compressor and limits the data size, while having sufficient data to train and test the
model. The data of 5 compressor lifecycles is available with length varying between 2.5 and 5.5 years.
The sensor measurements are collected and stored each minute, this rate results in a large amount of
data. In this case study the change in measurement values is slow, therefore the measurements are
aggregated per hour by considering the mean per hour.

Table 5.1: Selected failure mechanisms with their effect on the compressor and the affected sensor measurements.

Failure mechanism Effect on compressor Affected sensor measurements

Fouling Reduced performance
Increasing stage temperatures Critical temperature inside compressor

Bearing damage Increasing bearing temperature
Increasing rotor displacements

Maximum axial displacement
Critical bearing temperature

Leakage Reduced performance
Increasing stage temperatures

Critical temperature inside compressor
Critical chlorine concentration outside compressor

26
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Figure 5.1: Overview of the sensor selection, the final two blocks present the sensor that will be used as input for the model.

5.1.1. Sensor Selection
There are more than a 100 sensors of different types in the compressor system that log measurements
to the database. To limit the amount of unnecessary data analysis a selection of sensors is made to
be considered as input for the model. The sensor selection occurs in multiple steps, a schematic of
these steps is shown in Figure 5.1. The first step is to only include the sensors relevant to detecting
the included failure mechanisms, in Table 5.1 the affected sensor measurements are presented. This
is used as basis for the selection criteria:

• Only sensors that measure parameters in the gas path, oil circuit, bearings and engine are in-
cluded.

• The sensors measure one of the following types of parameters: temperature, pressure, displace-
ment and engine power.

Applying this criteria on the sensor set is reduced to 56 functional sensors that are outputting data,
resulting in a total of almost 9 million sensor measurements. Following industry safety standards critical
sensor measurements are executed twice or even three times to implement a safety factor, this brings
sensor duplicates of which only one is selected. Also non identical sensors can have a high correlation,
only one of two is selected if the correlation is 0.95 or higher, the correlation matrix can be reviewed
in Appendix B. The next step is analysing the data on the stability of the output of the sensor over the
considered period, with the purpose of eliminating sensors that have failed in parts of this period. The
last step is to determine which sensor measurements are considered as operation conditions of the
compressor. There are a total of as = 16 sensors selected and ao = 3 are considered as the operation
conditions, see Table 5.2 and Figure 5.2.

Figure 5.2: Schematic of the compressor with the location of the sensors.



5.1. Data Acquisition 28

Table 5.2: The operation conditions and selected sensors. DE stands for Driven End and NDE for non driven end.

Sensor Description Unit
Operation conditions
P1 Suction pressure barg
T1 Inlet temperature °C
T8 Oil temperature °C
Selected sensors
dP Pressure difference dry air and labyrinth mbar
E1 Power consumption Amp
P2 Press pressure barg
P3 Oil pressure barg
T2 Temperature outlet stage 1 °C
T3 Temperature outlet stage 2 °C
T4 Temperature inlet stage 3 °C
T5 Temperature outlet stage 3 °C
T6 Temperature inlet stage 4 °C
T7 Discharge temperature °C
T9 Axial bearing temperature °C
T10 NDE journal bearing temperature °C
T11 DE journal bearing temperature °C
X1 Axial displacement NDE mm
X2 Rotor vibration NDE µm
X3 Rotor vibration DE µm

5.1.2. Historic data
The previous named database first recordings that are accessible are from around 2008, however not
all measurements of the sensors in the compressor system are stable or recorded in the first years,
this group is so large that the data of this first period can not be used. The data is acquired in intervals
that correspond to the stand time of the equipment, from now one referred to as compressor lifecycles.
In total 5 compressor lifecycles covering both functional locations are included in this research. Fur-
thermore to simplify the model the two parallel compressor systems are considered identical and the
sensors of both systems are considered the same. Data is not labeled, the correlation between data
and the failures are not recorded, most of the time the compressors have not failed but are overhauled
in the interest of preventive maintenance. So a direct relation between sensor readings and the degra-
dation or failure pattern is unknown, dealing with this fact is one of the main reasons for the choice of
the proposed method.

Lifecycle data
The lifecycle data is used as test data and is collected during the stand time of the compressor on a
functional location, in Table 5.3 the period of the lifecycles are shown. For reference the functional
locations are in short called K8411 and K8421 for street 1 and 2 respectively. The aim is to have both
compressors operating continuously at steady-state during their lifecycle. However, there have been
moments the compressor is out of operation for maintenance or process safety, so to ensure the correct
data is used the data is only included when the compressor is operating at steady-state. Unfortunately
there is no rotational speed measurement that could be used to indicate the steady-state operation.
Instead the requirement for steady-state is that the inlet pressure P1 and the amperage of the engine
E1 are between the boundaries of the normal operation.

Healthy data
To train a model to recognise the health state of a system a footprint of the state where the system
is considered healthy is required. To establish time intervals in the data from where the training data
can be acquired an assumption has to be made. It is assumed that the compressor data is considered
healthy the first few months after the compressor is replaced. After installation of a new or overhauled
compressor the possibility exist that system has to deal with infant diseases due to errors during the
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installation. To limit the possibility of having corrupted data in the healthy state data the healthy periods
are all checked by hand, the cut off date for this period is present Table 5.3.

Table 5.3: Compressor lifecycles along with the corresponding cut off date for the healthy period .

Data set Compressor start date end date healthy date

1 K8421 24-4-2015 29-8-2019 23-8-2015

2 K8421 13-7-2019 14-3-2024 20-2-2020

3 K8411 20-2-2013 17-8-2018 3-8-2013

4 K8411 9-9-2018 17-3-2021 25-11-2018

5 K8411 8-7-2021 14-3-2024 13-10-2021

5.2. Data preprocessing
When using real world data, it is important to clean the input data to ensure that the measurements
best represent the compressor behaviour. The preprocessing of raw data consists of multiple steps
including: outlier removal, noise reduction, normalization and sequencing. The function and method of
the preprocess step will be described in this section in the order of application, see Figure 5.3.

Figure 5.3: The order of the preprocessing steps that are applied to prepare the data for the model.

Outlier Removal
The possibility exist that dataset contain extreme values that are outside the range of what is expected
and unlike the other measurements. These values are called outliers and often machine learning mod-
eling could be improved by understanding and even removing these outlier (Sharma, [2018]). Outliers
can have different possible causes, such as: measurement or input error and data corruption. If it
assumed that the distribution of values in the sample is Gaussian or Gaussian-like, there can be made
use of the standard deviation of the healthy data as a cut-off for identifying outliers (de Cheveigné &
Arzounian, [2018]). The acquired data contains outliers that could be caused by various reasons for
example sensor failures. The assumption is made that the training sets do not contain outliers, since
these sets are of created of data during relatively short healthy period. To identify potential outliers
in the test sets the overall mean and standard deviation of the training sets is used to establish the
operation boundaries of the parameters that are measured. The upper and lower boundaries are equal
to the mean plus/minus three times the standard deviation. To find the potential outliers the data of the
test sets is subjected to these boundaries and the data points outside these boundaries are checked by
hand to confirm whether they are outliers or not. In case of outliers the data is replaced by interpolating
between the neighbouring non outlier data points.

Noise Reduction
When dealing with real world data noise is present in the raw data, this could give disturbances to
the output of a fault diagnosis model. Different types of noise exist, in this research it is assumed
the noise is primarily caused in measurement equipment, which results in Gaussian noise. A simple
method for denoising time-series data involves using a rolling window to compute summary statistics
(Bilogur, [2018]). A rolling window groups observations into sets of size n. These groups shift by one
observation at a time, creating a moving ”window” across the dataset. Each observation belongs to n−1
groups, except those near the beginning or end, which may appear in fewer groups unless adjusted.



5.3. Concluding remarks 30

Any summary statistic, such as the average, median, minimum, or maximum, can be used within the
rolling window to aggregate the data, with the average being the most commonly used.

Advantages of Rolling Windows:

• Simplicity and Ease of Computation: Rolling windows are straightforward to understand and com-
putationally simple.

• Adjustable Smoothing Factor: By varying n, you can significantly increase or decrease the smooth-
ing effect.

• Flexibility: You can use any aggregation function (mean, median, min, max, quantile, etc.).
• Familiarity: They extend familiar record-oriented algorithms to time-series data without additional
complexity.

Disadvantages of Rolling Windows:

• Edge Clipping: They clip the beginnings and ends of the observations, reducing the total number
of observations. This can be significant if the window is large or the dataset is small.

• Periodic Limitation: They cannot capture macro periodicity without losing micro periodicity

The noise reduction will be performed with the moving average method, which replaces data points
with the local mean of the window around the point. The window rolls through the time series with the
data of each point as middle point and a size D = 48. This operation smooths the time series and
reduces the noise.

Normalization
Normalization is used to scale all sensor to the same standard. Standardizing a dataset involves re-
scaling the distribution of values so that the mean of the set of values is 0 and the standard deviation
is 1 (Brownlee, [2020]). This can be thought of as subtracting the mean value or centering the data.
Standardization is useful in cases where time series data has input values with differing scales. Stan-
dardization assumes that themulti-variate data fit a Gaussian distribution, the results are of lower quality
if this expectation is not met. Standardization requires knowing or being able to accurately estimate
the mean and standard deviation of observable values. The type of normalisation that will be used is
the mean normalisation, also known as standardisation. Here the the mean µ and standard deviation
std are calculated from the data and used to normalize the set as shown in Equation (5.1). It is impor-
tant to note that the mean value and standard deviation of the training sets is also used on the testing
set, for the reason that these are considered to be the values of the healthy state of the compressor.
In Figures 5.4a and 5.4b the time series of temperature T2 is visualised before and after the prepro-
cessing steps, except sequencing. The value of preprocessing is clearly visible in the in significantly
cleaner curve of the after plot. Also, in Appendix C the data of all sensors is presented before and after
preprocessing, where mainly the effect of standardization is noticeable.

Xc,s
t =

Xc,s
t − µc,s

stdc,s
(5.1)

Sequencing
The time series of a data set can not be fed to the LSTM-AE at once and is therefore split in smaller
sequences d of size nc,d . The sequences are extracted with a rolling window. The stride and length
of this rolling window is different for the training and testing set. The training data has sequences
with a length of 48, which corresponds to 2 days worth of data. For the training data the order of the
sequences does not matter and overlapping windows are useful to increase the amount of training data.
The length of the sequences of the test data is set to nc,d = 12, which means that the HI is constructed
for every 12 hours.

5.3. Concluding remarks
This chapter describes the acquisition of the real world data of the case study. There are in total
16 sensors and 3 operation conditions selected to be used as input for the model. The multivariate
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(a) T2 of compressor lifecycle set 1 before preprocessing. (b) T2 of compressor lifecycle set 1 after preprocessing steps.

measurements of these sensors are collected of five compressor lifecycles with a sampling rate of one
hour, this collected data is the testing data. The training data is collected from the first months of each
lifecycle that are considered healthy, this data will be used to train the LSTM-AE. The data sets are
prepared for usage as input to the proposed model. The preprocessing steps include:

• Outlier removal by a assuming a Gaussian distribution of the data.
• Noise reduction will be performed with the moving average method, which replaces data points
with the local mean of the window around the point.

• Standardization for both training and testing data, the mean and standard deviation of the training
sets is used.

• Sequencing are extracted with a rolling window. The stride and length of this rolling window is
different for the training and testing set.



6
Verification & Validation

The goal of this chapter is to answer the following sub question: How to verify and validate the proposed
method? The solution is provided in multiple verification and validation steps following the overview
in Figure 6.1. First the implementation of the model in python and the functioning of the method is
verified. Then the model is subjected to the validation steps to check if it is providing the expected
outputs. Lastly the verification and validation of the model are evaluated and discussed.

Figure 6.1: Overview of verification and validation steps that are executed

6.1. Verification
After and also during the implementation of the model verification takes place to ensure the model func-
tions as it is designed. As described previously the functioning model is checked during the developing
process with the help of the NASA data set (Arias Chao et al., [2021]), since this is a simulation data
set with a known degradation pattern. To verify that the model is also applicable to the data of this re-
search it is subjected to some logical tests. First a reconstructed sequence is compared to its original
sequence by plotting them.

6.1.1. Implementation
The deep learning library of Pytorch is used to construct the autoencoder in python, the author has
no experience in programming with this tool, so online libraries are consulted (Vasilev, [2019]) and
the construction of the autoencoder is based on the work found on github by Vincrichard, (2020). The
model is constructed in multiple versions where new features are added to the architecture in the newer
versions. First the basic LSTM-AE is constructed, followed by the separation of the operation conditions
and the addition of the fully connected layers. At last a different version is constructed where teacher
forcing is applied to train the model.

32
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Separation of the operation conditions
To program the structure as described in the methodology (see Figure 4.1) the operation conditions are
separated from the features to be used as an input in both the encoder and decoder side. This action
is performed to make the LSTM-AE model independent of the operation conditions.

Fully connected layers
The fully connected layers on top of the decoder outputs provide an extra step for reconstructing the
time series. These make the model more robust to changing conditions and increase the reconstruction
accuracy overall.

Teacher Forcing
To speed the training of the model teacher forcing is applied, by using the replacing the inputs of the
features for the LSTM cells on the decoder side with the original input of the encoder. So at every
enrolled LSTM cell the true inputs are used instead of the predicted ones.

Training
During training an initial set of weights and biases are set, which are updated with the use of back
propagation on the error of the training loss. How large the adjustments of the weights and biases
are is depended on the set learning rate. The training loss is determined with the mean squared error
between the input and the reconstructed output. The model is trained for a predetermined amount
of epochs, where for each epoch the training loss and validation loss is calculated, see figure 6.2.
The validation losses should decrease per epoch, when the decrease becomes to small the training is
stopped early to prevent overfitting.

Figure 6.2: Training and validation loss

6.1.2. Model verification with N-CMAPSS data set
To help building and verifying the model the NASA dataset for jet engines by Arias Chao et al., (2021)
is used as study material. A lot of research in the predictive maintenance part of literature is based on
this dataset and therefore is ideal to verify the model implementation in python.
The dataset is created by simulating the flights of aircraft engines until failure, so no real world data.
The data has a very slow degradation for the first flights till flight from this flight on the degradation
pattern follows and exponential trend. The first part of the data is used as training data. Health Indica-
tors generated for this data should therefore be predictable. Since the dataset is predictable and the
outputs are known it is used as a tool during the building of the LSTM-AE model in python. It is used
to give insight in functions that are required for development of the autoencoder model.

The model implementation steps described previously are verified with the use of the NASA data, be-
cause the expected degradation are known for these outputs as opposed to the real world data of the
case study. If the model with the complete architecture functions as intended, then it is expected that
the evaluations metrics should increase for every addition. In table Table 6.1 it is shown that indeed
the mean values of the metrics are higher for the full version than for the basic LSTM-AE, which means
that the model functions as expected. As can be seen in Table 6.1, according to the metrics the addi-
tions to the architecture improves the performance of the model, except for the addition of the teacher
forcing. The explanation of this because the amount of training epochs are large enough to reach the
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optimum with conventional training, however it does increase the speed of the training. Furthermore, it
should be noted that the NASA dataset the operation conditions fluctuate heavily and thus have a large
influence on the reconstruction losses, for the version without the separation of operations conditions
the HI construction will perform bad, see Figure 6.3. A different explanation for unexpected trend of
the HI is not taking in account the varying length of each flight during the training phase.

Figure 6.3: The constructed HIs of the test engines of the NASA data set constructed with basic LSTM-AE.

Table 6.1: Evaluation of the different LSTM-AE architectures, where the first five columns describe the differences in the
architecture and the last three columns present the evaluation metrics.

Model version seperate
OC

FC
layers

Teacher
Forcing

Stacked
layer

Mean values of the metrics
Monotinicity Trendability Prognosability

Basic LSTM-AE No No No No -0.03 0.01 0.11

LSTM-AE-OC Yes No No No 0.16 0.77 0.67

LSTM-AE-OC-FC Yes Yes No No 0.21 0.82 0.72

LSTM-AE-OC-FC
with TF Yes Yes Yes No 0.15 0.84 0.73

Proposed LSTM-AE Yes Yes Yes Yes 0.19 0.95 0.8

Sequence reconstruction
Another way to visualise that the model functions properly is plotting the reconstructed time series to-
gether with the original input. For the healthy state of the compressor the difference between these plots
should be minimal. In Figure 6.4 the reconstructed sequence of the compressor in a assumed healthy
state is shown, note that the reconstruction is similar to the original input, which provides evidence that
the autoencoder functions as supposed.

6.1.3. Parameter Tuning
After the verification of the implementation of the model, the optimal parameters of the model are
determined, these are acquired by performing a grid-search. This optimization loop is shown in the
schematic Figure 4.3. The grid search is evaluated with the metrics described in the methodology;
monotonicity (M ), trendability (T ) and prognosability (P ), the results of the grid search are shown
in Appendix D. The fitness of the model is added to the evaluation metrics, this is equal to the sum
of the other metrics. The model parameters in the grid search that had the highest fitness overall
are considered to be the optimal parameters, these are presented in Table 6.2 along with the other
important hyperparameters. The weights of the training epoch with the lowest validation losses are
applied to the model.
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Figure 6.4: A reconstructed sequence (blue line) of T3 from the training set compared with the original sequence (red line).

Table 6.2: The hyperparameters that are applied to this case study and optimized by performing a grid search.

Architecture parameters value
Number of stacked LSTM layers 3
Size of hidden and memory state 128
Sequence length of test data 12
Number of fully connected output layers 3
Hyperparameters
Optimizer Adam
Initial learning rate 0.001
Number of epochs 100
Patience before decreasing the learning rate 5
Decrease the learning rate by factor 0.1
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6.1.4. Sensor selection for HI construction
Only sensors with a high trendability are included in the construction of the HI. These sensors are added
to subset SHI which will be the input for Equation (4.10). The trendability provides information over
the difference in reconstruction loss at start of a lifecycle and the end of a lifecycle. For sensor with
high trendability it is expected that the reconstructed signal deviation is minimal in the early stage of a
lifecycle, this deviation increases with increasing time in the lifecycle, this corresponds to the increasing
degradation. On the left in Figure 6.5 a feature is shown with a high trendability, this corresponds to
described expectation. On the right in Figure 6.5 a feature is shown with low trendability, this does not
correspond to described expectation and looks more like random noise. The sensor that are used for
the construction of the HI have a high trendability and are included in subset SHI .

Figure 6.5: Reconstruction loss per sequence of compressor lifecyle set 1.

The HI is based on the reconstruction losses of a subset of sensors that are considered for each HI
of a failure mechanism. These subsets are based on the expected effect and location of the failure
mechanism as described in section 2.3. Furthermore the trendability of the reconstruction loss has to
be higher than 0.5 for the sensor to be included. The HI for detecting leakages will be constructed
from the sensors that are relevant to the gas sealing. The selected sensor for fouling are measuring
parameters of the gas path in the compressor. The subset for the bearing HI includes the temperature
and pressure of the oil, the bearing temperatures and the position of the rotor. The subsets of the
selected sensors are shown in Table 6.3 and Figure 6.6.

Table 6.3: The subsets for each type of constructed health indicator (HI).

Health indicator Sensor subset

General HI {dP, P2 T2, T4, T5, T6, T7,T9, T10, T11, X2}
Leakage HI {dP, P2}
Fouling HI {P2, T2,T3, T4, T5, T6, T7}
Bearing HI {P3, T9, T10, T11, X1, X2, X3}

6.1.5. Health indicator evaluation
The metrics of the HIs of the proposed method are compared with those of different versions of the
method, see Table 6.4. The version of LSTM-AE without the operation conditions ignores the operat-
ing conditions. Analysing this version by comparing its metrics with that of the proposed method it is
clear that the evaluation metrics decrease significantly. This result emphasize the effect of training the
model independently from the operating conditions has positive impact on the performance of the HI
construction.

The proposed model is trained with the training data of all compressors and could therefore be ap-
plied immediately for a newly placed compressor. The version of the method where the weights are
trained for each compressor lifecycle separately could only be a applied to a new compressor when
the months that are used for collecting training data are passed. However when dealing with real world
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(a) A schematic overview of the gas path in the chlorine
compressor and the sensors that are involved. (b) Gas path through the compressor with location of sensors

(c) A schematic view of the oil supply, axial bearing, journal bearings, gearbox and the location of the corresponding
sensors

Figure 6.6: The selected sensor for the HI construction of failure specific HIs
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data each compressor could have a different initial state, which brings extra noise and offsets to the
HI construction. This expected difference in performance is visible in Table 6.4, where the evaluation
metrics increase with this approach.

Table 6.4: Evaluation of the different version of LSTM-AE architecture. Here the sets corresponds to the compressor lifecycle.
Mon, Tre and Pro stand for the monotinicity, trendability and prognosability respectively.

Set 1 Set 2 Set 3 Set 4 Set 5 Mean
Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Pro Fitness

proposed LSTM-AE 0.01 0.88 0.02 0.87 0.02 0.51 0.00 0.91 0.03 0.86 0.02 0.81 0.519 0.612

proposed LSTM-AE
without operating conditions 0.03 0.79 0.05 0.91 -0.01 0.51 -0.01 0.65 0.05 0.47 0.02 0.67 0.398 0.525

proposed LSTM-AE with
trained weights per compressor lifecycle 0.03 0.94 0.05 0.88 0.04 0.72 0.04 0.88 0.08 0.92 0.05 0.87 0.704 0.764

6.2. Validation of the results
After the implementation and verification of the model, the validation takes place. Since the model
has two main purposes, namely assessment of the health and fault identification, the validation should
cover both of these purposes.

6.2.1. Health Assessment
The health state division of the compressor lifecycle is shown in Figure 6.7. There is no nuance in
health state, when applying the threshold for the division between a healthy and unhealthy state as
proposed in the methodology, this has as result that the compressor are considered unhealthy rela-
tively early and operate for a long time before they are overhauled. The threshold could be increased
or established in an entire different way to overcome this. The health state division could be used as
bases for RUL prediction, since it indicates that degradation is taking place. To realise RUL prediction
for this case study more failure data is required and in the best case addition of run-to-failure data. For
generalisation and ease of implementation the original method has advantages over the method where
for each lifecycle the model has to be retrained, while the latter has better performance.

Figure 6.7: The health state division of the compressor lifecycles sets 1 to 5 from the left to the right. The unhealthy state is
marked by the red circles.
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6.2.2. Fault Identification
The process of fault identification is started from the moment the compressor lifecycle is marked un-
healthy for the first time. This model has the possibility to identify what fault is developing in the com-
pressor. As mentioned multiple times before there is no clear data of failures available, adding to this
the documentation of failures that occurred in the compressors are also lacking. This makes it hard to
objectify this validation step, therefore it is chosen to discuss the occasions where the fail mechanisms
of the compressor are known to a certain degree. These are found by analysing the notifications and
inspection reports of the compressors. These are found by analysing the notifications and inspection
reports of the compressors and are presented in Table 6.5. The identification is performed by check-
ing whether the separate HIs of the test sets cross the health threshold. Instances of the passing the
threshold for each HI are shown in Figure 6.8. In the left graph of Figure 6.8 fouling HI of set 1 is
shown, it is clearly visible that the HI passes the threshold, so fouling is identified. This lifecycle has
been diagnosed with fouling so this identification is correct. The middle and right graph of Figure 6.8
are both of lifecycle set 5 and show the presence of bearing damage and leakage respectively. These
failure mechanisms are diagnosed for this compressor lifecycle so the identification is correct. The
fault identification is performed by analysing the failures per set for each constructed HI, the results
of analysis are presented in a confusion matrix (Table 6.6). In Appendix E the results of the same
validation task are presented, however here the fault identification is performed by hand and trends of
the HIs are analysed instead of the crossing of thresholds. This has resulted in a similar outcome. The
results of the fault identification are used to calculate the KPIs proposed in Section 4.4 and are shown
in Table 6.7.

Table 6.5: The fail mechanisms that have developed during the corresponding compressor lifecycle.

Dataset Compressor Fail mechanism
Compressor lifecycle 1 K8421 Fouling
Compressor lifecycle 2 K8411 Fouling
Compressor lifecycle 3 K8411 Unknown
Compressor lifecycle 4 K8421 Fouling
Compressor lifecycle 5 K8411 Bearing and Leakage

Figure 6.8: Fault identification instances. The left figure shows that fouling is detected in lifecycle set 1. The figure in the
middle and on the right show that bearing damages and leakage are detected in compressor lifecycle set 5.

Table 6.6: Confusion matrix of the fault identification

Confusion matrix Diagnosed Fault
Fault is present Fault is absent

Identified fault Fault is identified 5 TP 4 FP
Fault is not identified 0 FN 6 TN

6.3. Discussion
The results of the case study are validated to determine the quality of the model. In section 6.1.5 the
performance of the proposed method is presented. The LSTM-AE which is trained for each compressor
lifecycle separately performs considerably than the original proposed method, it has a mean monotonic-
ity of 0.05, a mean trendability of 0.87 and a prognosability of 0.704. The health assessment and fault
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Table 6.7: Case study results of the fault identification.

KPI Score
Accuracy 0.73
Precision 0.56
Recall 0.45
F1-score 0.5

identification are therefore executed with this version. The health state division as shown in Figure 6.7
functions as start signal for the fault identification. The HIs behave as expected with increasing recon-
struction losses towards the end of life, however it is noticeable that the HI is not only increasing over
time. The HI corresponds to the degradation of the compressor and degradation can not be undone
without repairs, therefore this decreases of the HI are in theory not logical. However, they can be ex-
plained acknowledging that this is real data of compressors in a controlled process, this means that
performance can be boosted by changing the process parameters. For the fault identification it is re-
quired to identify and couple the failure mechanism for each test set. However, there is no clear data of
failures available, adding to this the documentation of failures that occurred in the compressors are also
lacking, this has the effect that is hard to objectively quantify the performance. To make the validation of
the fault identification possible educated assumptions based on the data that is available, are made on
the failure mechanism of the compressor lifecycles. These are then analysed for compressor lifecycle
and the results are presented in a confusion matrix (see Table 6.6). This results in a identification with
an accuracy of 73% and a precision of 56%, which means that the proposed method could successfully
identify faults in real world compressors even when multiple faults are occurring simultaneously. The
use of the HI construction as basis for RUL prediction is not possible to be tested with the lack of run
to failure instances in the available data.



7
Conclusion and recommendations

This chapter presents the final conclusion of the research by answering the main research question.
The sub-questions have been answered the previous chapters. Furthermore it provides recommen-
dations on future research on this topic and lastly a section is devoted on how this work could be
implemented at Nobian.

7.1. Conclusion
The main research question that is asked to achieve the goal of this study is as follows:

How can the failure mechanisms of chlorine compressor be diagnosed and the health of the com-
pressor be monitored?

This main question is concluded by answering the sub research question one by one.

Sub-research questions 1: What are characteristics and the failure mechanisms of the chlorine
compressor and which will be included in the model?

The chlorine compressor is a critical part of the chlorine liquefaction unit, if one of the two compressors
is not available the production capacity of the plant reduces to 40%. Therefore reducing the down-
time by optimizing the maintenance strategy is beneficial to the whole production plant. The first step
towards this goal is determining what the main failure mechanisms of the compressor are. By research-
ing the literature for compressor failures in general and researching the database of the company it is
found that the main failure mechanisms are: fouling, leakages and damaged bearings.

Sub-research questions 2: What is the current state of failure diagnosis methods in literature and
what method is best applicable to this case study?
Literature tis reviewed hat focuses on FDD and HI construction is consulted to get an understand-
ing of what techniques are available and suitable for this research subject. It has become clear that
the best approach for machine diagnosis of a compressor with limited recorded failure instances, is
health assessment by constructing of health indicators. The construction of health indicators requires
fusion of the multivariate data, which provides four groups of health indicator construction methods:
Model based, optimization methods for feature combination, statistical projection and deep learning
based. The last two groups are subjected to case specific selection criteria: Accuracy, Feasibility,
Computational effort and Robustness. The considered methods should meet the following criteria to
be considered feasible:

• Can be trained with limited or without failure data.
• Is able to deal with changing operating conditions.
• Is capable of detection and identification of the degradation by multiple faults simultaneously.

41
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This has resulted in the selection of the LSTM-AE as foundation for the methodology of this research,
which provides the answer to the question.

Sub-research questions 3: How to develop the proposed fault detection and indication model for
the chlorine compressor?

This answer is provided by describing the methodology of the proposed method. The main part is about
the characteristics of the LSTM-AE model which is the foundation of the proposed method. Then it is
described how the health indicators are constructed based on the reconstruction error of the autoen-
coder. To evaluate the developed model three metrics are proposed are proposed that determine the
characteristics of the development of the HI over time, namely; Monotonicity, trendability and prognos-
ability. Furthermore, Chebychev’s inequality is introduced to establish the threshold for health state
division between the healthy and unhealthy state of the compressor. Hereafter the verification steps of
the model are described, which includes:

• The implementation of the model with a different dataset that is frequently used in literature.
• Parameter tuning with the help of a grid search.
• Sensor selection for HI construction.

At the end the methods for health assessment and fault identification are described.
Sub-research questions 4: What data is available and how can it be retrieved and analysed for

the purpose of fault diagnosis?

The used database is considered to provide stable data for the period of the past ten years. The avail-
able measurements have the function to provide insight in the process and driving alarms when the
parameters are out of bound. The types of parameters that are included are the following: temperature,
pressure, pressure difference, and displacement. There are in total 16 sensors and 3 operation con-
ditions selected to be used as input for the model. The multivariate measurements of these sensors
are collected of five compressor lifecycles with a sampling rate of one hour, this collected data is the
testing data. The training data is collected from the first months of each lifecycle that are considered
healthy, this data will be used to train the LSTM-AE. The datasets are prepared for usage as input to
the proposed model. The preprocessing steps include:

• Outlier removal by a assuming a Gaussian distribution of the data.
• Noise reduction will be performed with the moving average method, which replaces data points
with the local mean of the window around the point.

• Standardization for both training and testing data, the mean and standard deviation of the training
sets is used.

• Sequencing are extracted with a rolling window. The stride and length of this rolling window is
different for the training and testing set.

Sub-research questions 5: How to verify and validate the proposed method?

At first, the implementation of the model is verified by analysing it with the help of simulated public
data. The usage of this data set for verification purposes has as advantage that the expected outputs
such as the degradation pattern are known. The results using this dataset are comparable with a refer-
ence paper, although of less quality, which can be explained by the lack the attention mechanism and
the selection of a uniform length for all flights. The next verification steps are parameter optimization
with a grid search and sensor selection for HI construction, which are heavily depended of one an-
other. The optimal architecture, according to the considered variable parameters, is determined with
the grid search and has been implemented for the following steps. Also, the sensors with high trend-
ability that will be used for the HI construction are determined. The final verification steps compares
the proposed method to two different approaches of LSTM-AE. One approach ignores the operating
conditions, analysing this version by comparing its metrics with that of the proposed method it is clear
that the evaluation metrics decrease significantly. This result emphasize the effect of training the model
independently from the operating conditions has positive impact on the performance of the HI construc-
tion. The proposed model is trained with the training data of all compressors and could therefore be
applied immediately for a newly placed compressor. The version of the method where the weights are
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trained for each compressor lifecycle separately could only be a applied to a new compressor when
the months that are used for collecting training data are passed. However when dealing with real world
data each compressor could have a different initial state, which brings extra noise and offsets to the
HI construction. This expected difference in performance is visible in Table 6.4, where the evaluation
metrics increase with this approach.

The validation of the results is conducted by evaluating the health assessment and fault identification.
Health assessment is performed to divide the health state of the compressor using the constructed HI.
There is no nuance in health state, there is only healthy or unhealthy, this has as result that the com-
pressor are considered unhealthy relatively early on their lifecycle and operate for a long time before
they are overhauled. The first instance of an compressor marked as unhealthy triggers the start of the
fault identification, which has resulted in a identification with an accuracy of 73% and a precision of 56%
for the three considered failure mechanisms. The performance of the model is increased by training
the weights of the model for each compressor lifecycle separately. The trade-off using this approach
is that health assessment and fault identification is not possible in the start of a new lifecycle, because
this period is used to acquire the training data. To overcome this trade-off a combination of both ap-
proaches should be used, where the health assessment during this first period of a new compressor
is performed original model and after this initial period the model specifically trained for this lifecycle is
used for fault identification with higher accuracy.

To conclude, the proposed LSTM-AE method is able to correctly detect and thereafter identify single or
multiple failure mechanism present in chlorine compressors with an accuracy of 73 %, while only being
trained with healthy data and is therefore applicable for real world cases with unlabeled data. Therefore
the goal of this study has been achieved.

The main contributions of this research are:

• A method is proposed for health indicator construction for compressors with the purpose of health
assessment and fault identification. By constructing health indicators for each detectable failure
mechanisms the model is able to perform fault identification even when multiple faults are devel-
oping. The model is tested with a real world case study of chlorine compressors of which little
failure data is available so the model is trained to learn the healthy characteristics of the compres-
sor. In this study it is shown that this method is able to correctly identify the failure mechanism
present in the compressor and is therefore applicable for real world cases.

• The health indicators are constructed with the reconstruction loss of the LSTM-AE. The model
is trained to reconstruct the measurements independently of the operation conditions, which in-
creases the robustness of the model.

• The collected real world data requires extensive preprocessing to reduce the effect of corrupted
data and format it to the correct form before it is used as input to the LSTM-AE. This research
proposes the tools to realise this and shows the effect of the quality of the preprocessing.

7.2. Recommendations for further research
Exploring the possibilities for predictive maintenance that are available using machine learning has
given insight in what possible improvements and follow up research could occur. In general a lot of
the research in literature that try to perform fault diagnosis and prognosis make use of simulated data,
which is stable, has Gaussian distribution and a clear degradation path. During this research the lack of
research with real-world data is noticed, this provides a lot of opportunity for beneficial future research
into the implementation of the these methods in real cases.

Furthermore, the constructed HIs could be used as the basis for RUL predictions, it is however required
to establish a maximum for the HI which corresponds to the failure of the equipment. For the determi-
nation of this maximum more compressor lifecycles are required to create a better understanding of
the behaviour of the compressor towards failure.

For case study specific recommendations there should be started with improving the input data by taking
in account sensor failures and process parameter shifts. Also the failures should be better traced to
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provided a better data base of failure data. This provides a bases to compare the results of this case
study with other research to find a possible better method. Lastly, the best option would be to fill the
gap of missing interstage pressure measurements, which would provide the opportunity to construct a
model-based method or a combined hybrid method.

7.3. Company Implementation
The goal of this research and case study is to develop a model that could improve the decision making
for the maintenance of operational chlorine compressors. Although there are limitations to the model, it
could be used as a tool by the companies maintenance engineers to gain insight in the health status of
the compressors. The strength of the model is to get a fast first indication of changing health condition
of the compressors. Since the model is a promising tool for the company an installation and users
manual is constructed, so the model can proof its value in the future.



References
Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2022). Fusing physics-based and deep learning

models for prognostics. Reliability Engineering & System Safety, 217, 107961. doi:https://doi.org/
10.1016/j.ress.2021.107961

Al-Busaidi, W., & Pilidis, P. (2016). Modelling of the non-reactive deposits impact on centrifugal com-
pressor aerothermo dynamic performance. Engineering Failure Analysis, 60, 57–85. doi:https :
//doi.org/10.1016/j.engfailanal.2015.11.027

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic
review from data acquisition to rul prediction. Mechanical Systems and Signal Processing, 104,
799–834. doi:https://doi.org/10.1016/j.ymssp.2017.11.016

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics
implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7),
1483–1510. doi:https://doi.org/10.1016/j.ymssp.2005.09.012

Schwartz, S., Montero Jiménez, J. J., Vingerhoeds, R., & Salaün, M. (2022). An unsupervised approach
for health index building and for similarity-based remaining useful life estimation. Computers in
Industry, 141, 103716. doi:https://doi.org/10.1016/j.compind.2022.103716

Wang, P., Youn, B. D., & Hu, C. (2012). A generic probabilistic framework for structural health prog-
nostics and uncertainty management. Mechanical Systems and Signal Processing, 28, 622–637.
Interdisciplinary and Integration Aspects in Structural Health Monitoring. doi:https://doi.org/10.
1016/j.ymssp.2011.10.019

Kim, M., Song, C., & Liu, K. (2019). A generic health index approach for multisensor degradation mod-
eling and sensor selection. IEEE Transactions on Automation Science and Engineering, 16(3),
1426–1437. doi:10.1109/TASE.2018.2890608

Moradi, M., Broer, A., Chiachío, J., Benedictus, R., Loutas, T. H., & Zarouchas, D. (2023). Intelligent
health indicator construction for prognostics of composite structures utilizing a semi-supervised
deep neural network and shm data.Engineering Applications of Artificial Intelligence, 117, 105502.
doi:https://doi.org/10.1016/j.engappai.2022.105502

Eleftheroglou, N., Zarouchas, D., Loutas, T., Alderliesten, R., & Benedictus, R. (2018). Structural health
monitoring data fusion for in-situ life prognosis of composite structures. Reliability Engineering &
System Safety, 178, 40–54. doi:https://doi.org/10.1016/j.ress.2018.04.031

Liu, C., Sun, J., Liu, H., Lei, S., & Hu, X. (2020a). Complex engineered system health indexes extraction
using low frequency raw time-series data based on deep learning methods. Measurement, 161,
107890. doi:https://doi.org/10.1016/j.measurement.2020.107890

Chen, X., Ding, X., Wang, X., Zhao, Y., Liu, C., Liu, H., & Chen, K. (2023). Multi-task data imputation
for time-series forecasting in turbomachinery health prognostics. Machines, 11(1). doi:10.3390/
machines11010018

de Pater, I., & Mitici, M. (2023). Developing health indicators and rul prognostics for systems with
few failure instances and varying operating conditions using a lstm autoencoder. Engineering
Applications of Artificial Intelligence, 117, 105582. doi:https://doi.org/10.1016/j.engappai.2022.
105582

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-to-failure dataset under
real flight conditions for prognostics and diagnostics. Data, 6(1). doi:10.3390/data6010005

Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). Multi-
sensor prognostics using an unsupervised health index based on lstm encoder-decoder. arXiv:
1608.06154 [cs.LG]. Retrieved from https://arxiv.org/abs/1608.06154

Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems,
purposes and approaches.Comput. Sci. Eng.Retrieved from https://arxiv.org/pdf/1912.07383.pdf

Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda,
M. (2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied
Sciences, 12(16). doi:10.3390/app12168081

45

https://doi.org/https://doi.org/10.1016/j.ress.2021.107961
https://doi.org/https://doi.org/10.1016/j.ress.2021.107961
https://doi.org/https://doi.org/10.1016/j.engfailanal.2015.11.027
https://doi.org/https://doi.org/10.1016/j.engfailanal.2015.11.027
https://doi.org/https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/https://doi.org/10.1016/j.compind.2022.103716
https://doi.org/https://doi.org/10.1016/j.ymssp.2011.10.019
https://doi.org/https://doi.org/10.1016/j.ymssp.2011.10.019
https://doi.org/10.1109/TASE.2018.2890608
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105502
https://doi.org/https://doi.org/10.1016/j.ress.2018.04.031
https://doi.org/https://doi.org/10.1016/j.measurement.2020.107890
https://doi.org/10.3390/machines11010018
https://doi.org/10.3390/machines11010018
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105582
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105582
https://doi.org/10.3390/data6010005
https://arxiv.org/abs/1608.06154
https://arxiv.org/abs/1608.06154
https://arxiv.org/pdf/1912.07383.pdf
https://doi.org/10.3390/app12168081


References 46

Brinkmann, T., Santonja, G. G., Schorcht, F., Roudier, S., & Sancho, L. D. (2014). Best available tech-
niques (bat) reference document for the production of chlor-alkali. JRC (Joint Research Center
EU), JRC91156.

Dokter, T. (1985). Fire and explosion hazards of chlorine-containing systems. Journal of Hazardous
materials, 10(1), 73–87.

Talk, T. P. (2020). Centrifugal compressor parts & their function. Retrieved October 24, 2022, from
https://thepipingtalk.com/centrifugal-compressor-parts-their-function/

Group, E. (2014). Multi-stage centrifugal compressor modifications and rerates. Retrieved November
11, 2022, from https://www.elliott-turbo.com

Barnard, P. (2001). Centrifugal compressors fouling-understanding, mitigating, and cleaning. In Com-
pressors and their systems: 7th international conference (pp. 241–250). John Wiley and Sons.

Bidaut, Y. et al. (2013). The influence of thermal loading on the leak tightness behaviour of horizon-
tally split centrifugal compressors. In Middle east turbomachinery symposia. 2013 proceedings.
Turbomachinery Laboratory, Texas A&M Engineering Experiment Station.

Qiao, B., Ju, Y., & Zhang, C. (2019). Numerical investigation on labyrinth seal leakage flow and its
effects on aerodynamic performance for a multistage centrifugal compressor. Journal of Fluids
Engineering, 141(7).

Manikandan, A., & Anwar, Z. (2018). Case Study – To Identify and Fix the Contributing Factors on a
Complex Turbo Machinery Driver Misalignment. (Vol. Day 1 Mon, November 12, 2018). doi:10.
2118/192641-MS

Walker, R., Perinpanayagam, S., & Jennions, I. K. (2013). Rotordynamic faults: Recent advances in
diagnosis and prognosis. International Journal of Rotating Machinery, 2013.

Biglarian, M., MomeniLarimi, M., Ganji, B., & Ranjbar, A. (2019). Prediction of erosive wear locations
in centrifugal compressor using cfd simulation and comparison with experimental model. Journal
of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 1–10.

Lu, Y., Wang, F., Jia, M., & Qi, Y. (2016). Centrifugal compressor fault diagnosis based on qualitative
simulation and thermal parameters. Mechanical Systems and Signal Processing, 81, 259–273.
doi:https://doi.org/10.1016/j.ymssp.2016.03.018

Luo, H., Bo, L., Peng, C., & Hou, D. (2022). Detection and quantification of oil whirl instability in a
rotor-journal bearing system using a novel dynamic recurrence index. Nonlinear Dynamics, 1–
33.

Nguyen, K. T. P. (2022). Feature engineering and health indicator construction for fault detection and
diagnostic. In K. P. Tran (Ed.), Control charts and machine learning for anomaly detection in
manufacturing (pp. 243–269). doi:10.1007/978-3-030-83819-5_10

Firpi, H., & Vachtsevanos, G. (2008). Genetically programmed-based artificial features extraction ap-
plied to fault detection. Engineering Applications of Artificial Intelligence, 21(4), 558–568. doi:htt
ps://doi.org/10.1016/j.engappai.2007.06.004

Jolliffe, I. (2002). Principal component analysis. Springer. Retrieved from https : / / books .google . nl /
books?id=%5C_olByCrhjwIC

He, Q., Yan, R., Kong, F., & Du, R. (2009). Machine condition monitoring using principal component
representations.Mechanical Systems and Signal Processing, 23(2), 446–466. doi:https://doi.org/
10.1016/j.ymssp.2008.03.010

Chen, H., Huang, W., Huang, J., Cao, C., Yang, L., He, Y., & Zeng, L. (2020). Multi-fault condition
monitoring of slurry pump with principle component analysis and sequential hypothesis test. Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 34(07), 2059019. doi:10.1142/
S0218001420590193. eprint: https://doi.org/10.1142/S0218001420590193

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1999). Kernel principal component analysis. In Advances
in kernel methods: Support vector learning (pp. 327–352). Cambridge, MA, USA: MIT Press.

Feng, D., Xiao, M., Liu, Y., Song, H., Yang, Z., & Zhang, L. (2016). A kernel principal component
analysis–based degradation model and remaining useful life estimation for the turbofan engine.
Advances in Mechanical Engineering, 8(5), 1687814016650169. doi:10.1177/16878140166501
69. eprint: https://doi.org/10.1177/1687814016650169

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 61(3), 611–622. Retrieved July 25, 2023,
from https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop19
99.pdf

https://thepipingtalk.com/centrifugal-compressor-parts-their-function/
https://www.elliott-turbo.com
https://doi.org/10.2118/192641-MS
https://doi.org/10.2118/192641-MS
https://doi.org/https://doi.org/10.1016/j.ymssp.2016.03.018
https://doi.org/10.1007/978-3-030-83819-5_10
https://doi.org/https://doi.org/10.1016/j.engappai.2007.06.004
https://doi.org/https://doi.org/10.1016/j.engappai.2007.06.004
https://books.google.nl/books?id=%5C_olByCrhjwIC
https://books.google.nl/books?id=%5C_olByCrhjwIC
https://doi.org/https://doi.org/10.1016/j.ymssp.2008.03.010
https://doi.org/https://doi.org/10.1016/j.ymssp.2008.03.010
https://doi.org/10.1142/S0218001420590193
https://doi.org/10.1142/S0218001420590193
https://doi.org/10.1142/S0218001420590193
https://doi.org/10.1177/1687814016650169
https://doi.org/10.1177/1687814016650169
https://doi.org/10.1177/1687814016650169
https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop1999.pdf
https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop1999.pdf


References 47

Ruiz-Cárcel, C., Jaramillo, V., Mba, D., Ottewill, J., & Cao, Y. (2016). Combination of process and
vibration data for improved condition monitoring of industrial systems working under variable
operating conditions. Mechanical Systems and Signal Processing, 66-67, 699–714. doi:https :
//doi.org/10.1016/j.ymssp.2015.05.018

Pilario, K. E. S., & Cao, Y. (2018). Canonical variate dissimilarity analysis for process incipient fault
detection. IEEE Transactions on Industrial Informatics, 14(12), 5308–5315. doi:10.1109/TII.2018.
2810822

Larimore,W. E. (1983). System identification, reduced-order filtering andmodeling via canonical variate
analysis. In 1983 american control conference (pp. 445–451). doi:10.23919/ACC.1983.4788156

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–
1780. doi:10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/
813796/neco.1997.9.8.1735.pdf

Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2020). Forecasting and Anomaly Detection
approaches using LSTMand LSTMAutoencoder techniques with the applications in Supply Chain
Management. International Journal of Information Management. Retrieved from https://hal.scien
ce/hal-03083642

Liu, C., Sun, J., Liu, H., Lei, S., & Hu, X. (2020b). Complex engineered system health indexes extraction
using low frequency raw time-series data based on deep learning methods. Measurement, 161,
107890. doi:https://doi.org/10.1016/j.measurement.2020.107890

Kong, X., & Yang, J. (2019). Remaining useful life prediction of rolling bearings based on rms-mave and
dynamic exponential regression model. IEEE Access, 7, 169705–169714. doi:10.1109/ACCESS.
2019.2954915

Bohutska, J. (2021). Anomaly detectionhow to tell good performance from bad. Retrieved February 24,
2024, from https://towardsdatascience.com/anomaly-detection-how-to-tell-good-performance-
from-bad-b57116d71a10

AI, E. (2021). How to interpret a confusion matrix for a machine learning model. Retrieved February
24, 2024, from https://www.evidentlyai.com/classification-metrics/confusion-matrix#:~:text=A%
20confusion%20matrix%20is%20a%20table%20that%20summarizes%20the%20performance,
FN)%20of%20the%20model’s%20predictions.

Sharma, N. (2018). Ways to detect and remove the outliers. Retrieved January 24, 2024, from https:
//towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba

de Cheveigné, A., & Arzounian, D. (2018). Robust detrending, rereferencing, outlier detection, and
inpainting for multichannel data. NeuroImage, 172, 903–912. doi:https : / / doi . org / 10 . 1016 / j .
neuroimage.2018.01.035

Bilogur, A. (2018). Denoising algorithms. Retrieved January 24, 2024, from https://www.kaggle.com/
code/residentmario/denoising-algorithms

Brownlee, J. (2020). How to use standardscaler and minmaxscaler transforms in python. Retrieved
January 23, 2024, from https://machinelearningmastery.com/standardscaler-and-minmaxscaler-
transforms-in-python/

Vasilev, I. (2019).Advanced deep learning with python: Design and implement advanced next-generation
ai solutions using tensorflow and pytorch. Packt Publishing Ltd. Retrieved from https://scholar.g
oogleusercontent.com/scholar.bib?q=info:In7B-vrY5dQJ:scholar.google.com/&output=citation&
scisdr=ClGORIirEILhn2KGFyU:AFWwaeYAAAAAZs6ADyXNNPpA9by5t02DcOxhYPk&scisig=
AFWwaeYAAAAAZs6ADxqxTiIaHif49m6QxwZ6Qeg&scisf=4&ct=citation&cd=-1&hl=nl

Vincrichard. (2020). Lstm-autoencoder-unsupervised-anomaly-detection. https://github.com/vincrichar
d/LSTM-AutoEncoder-Unsupervised-Anomaly-Detection/tree/master. GitHub.

https://doi.org/https://doi.org/10.1016/j.ymssp.2015.05.018
https://doi.org/https://doi.org/10.1016/j.ymssp.2015.05.018
https://doi.org/10.1109/TII.2018.2810822
https://doi.org/10.1109/TII.2018.2810822
https://doi.org/10.23919/ACC.1983.4788156
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://hal.science/hal-03083642
https://hal.science/hal-03083642
https://doi.org/https://doi.org/10.1016/j.measurement.2020.107890
https://doi.org/10.1109/ACCESS.2019.2954915
https://doi.org/10.1109/ACCESS.2019.2954915
https://towardsdatascience.com/anomaly-detection-how-to-tell-good-performance-from-bad-b57116d71a10
https://towardsdatascience.com/anomaly-detection-how-to-tell-good-performance-from-bad-b57116d71a10
https://www.evidentlyai.com/classification-metrics/confusion-matrix#:~:text=A%20confusion%20matrix%20is%20a%20table%20that%20summarizes%20the%20performance,FN)%20of%20the%20model's%20predictions.
https://www.evidentlyai.com/classification-metrics/confusion-matrix#:~:text=A%20confusion%20matrix%20is%20a%20table%20that%20summarizes%20the%20performance,FN)%20of%20the%20model's%20predictions.
https://www.evidentlyai.com/classification-metrics/confusion-matrix#:~:text=A%20confusion%20matrix%20is%20a%20table%20that%20summarizes%20the%20performance,FN)%20of%20the%20model's%20predictions.
https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.01.035
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.01.035
https://www.kaggle.com/code/residentmario/denoising-algorithms
https://www.kaggle.com/code/residentmario/denoising-algorithms
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/
https://scholar.googleusercontent.com/scholar.bib?q=info:In7B-vrY5dQJ:scholar.google.com/&output=citation&scisdr=ClGORIirEILhn2KGFyU:AFWwaeYAAAAAZs6ADyXNNPpA9by5t02DcOxhYPk&scisig=AFWwaeYAAAAAZs6ADxqxTiIaHif49m6QxwZ6Qeg&scisf=4&ct=citation&cd=-1&hl=nl
https://scholar.googleusercontent.com/scholar.bib?q=info:In7B-vrY5dQJ:scholar.google.com/&output=citation&scisdr=ClGORIirEILhn2KGFyU:AFWwaeYAAAAAZs6ADyXNNPpA9by5t02DcOxhYPk&scisig=AFWwaeYAAAAAZs6ADxqxTiIaHif49m6QxwZ6Qeg&scisf=4&ct=citation&cd=-1&hl=nl
https://scholar.googleusercontent.com/scholar.bib?q=info:In7B-vrY5dQJ:scholar.google.com/&output=citation&scisdr=ClGORIirEILhn2KGFyU:AFWwaeYAAAAAZs6ADyXNNPpA9by5t02DcOxhYPk&scisig=AFWwaeYAAAAAZs6ADxqxTiIaHif49m6QxwZ6Qeg&scisf=4&ct=citation&cd=-1&hl=nl
https://scholar.googleusercontent.com/scholar.bib?q=info:In7B-vrY5dQJ:scholar.google.com/&output=citation&scisdr=ClGORIirEILhn2KGFyU:AFWwaeYAAAAAZs6ADyXNNPpA9by5t02DcOxhYPk&scisig=AFWwaeYAAAAAZs6ADxqxTiIaHif49m6QxwZ6Qeg&scisf=4&ct=citation&cd=-1&hl=nl
https://github.com/vincrichard/LSTM-AutoEncoder-Unsupervised-Anomaly-Detection/tree/master
https://github.com/vincrichard/LSTM-AutoEncoder-Unsupervised-Anomaly-Detection/tree/master


A
Scientific Paper

48



Health Indicator construction for health assessment and fault
identification of industrial compressors
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Abstract: A model has been developed for the health assessment of a chlorine compressor
that is capable of constructing Health Indicators (HI). This model is a Long-Short Term
Memory AutoEncoder (LSTM-AE), which is an unsuperised machine learning method
and works as follows: an LSTM-based encoder maps a multivariate input sequence
to a fixed-dimensional vector representation. The decoder, another LSTM network,
uses this vector representation to produce the target sequence. The loss between the
reconstructed sequence and the input sequence forms the basis for the HI. The model
is trained exclusively with healthy data. The LSTM-AE is designed to reconstruct
the measurements independently of the operating conditions, enhancing the model’s
robustness in varying operational contexts. Health assessment is conducted by using
the constructed HI to classify the health state of the compressor. The first instance
of the compressor being marked as unhealthy triggers the start of fault identification.
The proposed method is tested on real-world data through a case study on chlorine
compressors, resulting in an identification accuracy of 73% and a precision of 56% for
the three considered failure mechanisms.

1. Introduction

A new industrial revolution is ongoing, namely Indus-
try 4.0. This revolution focuses on using resources
more efficiently and leveraging data, communication,
and new technology to achieve this goal. Industry
4.0 covers all fields of industry and is becoming in-
creasingly relevant and required to compete in today’s
market. This research focuses on the maintenance
part of Industry 4.0, specifically on fault diagnostics
methods for turbomachinery such as compressors.
Compressors play a crucial role in the industry, and
maintaining high reliability and availability is desir-
able. In the chemical industry, dealing with toxic
and corrosive products, maintenance of compressors
on-site presents difficulties and is preferably sched-
uled far in advance. Furthermore, compressors are
machines with multiple possible failure mechanisms
and different degradation patterns. The mean time
between failures is not reliable; the deviation between
life cycles is widely spread and highly dependent on
the production process, where errors in previous pro-
cess stages impact the degradation of the compressor.
This degradation behavior means that a time-based

approach to maintenance could be too late or a waste
of time and resources on a well-operating machine.
Therefore, developing a fault diagnostic model that
provides insight into the health condition of machinery
could be beneficial. This opportunity is well known
in the industry, and a lot of research is being done in
this direction.

1.1. Literature review
As mentioned there are already numerous studies
focused on fault diagnostics in compressors, however
a lot of these are focused on a single failure
mechanism, for example: the study into fouling
mechanism by deriving the equivalent compressor
performance map at various degrees of fouling
with a consideration of gas properties and stage
efficiency variation and without prior knowledge of
the detailed geometrical features (Al-Busaidi and
Pilidis, 2016). An improved qualitative simulation
(QSIM) based fault diagnosis method is proposed
to diagnose the faults of centrifugal compressors
in Lu et al. (2016). This study uses the thermal
parameters to detect the occurrence of faults in the
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gas flow path. The method presented in Luo et al.
(2022) is a Dynamic Recurrence Index (DRI) and is
used to detect the occurrence and quantify the evolu-
tion of oil film instability in the journal bearing system.

An approach that is able to assess the machine as a
whole is the construction of Health Indicators(HIs)
(Lei et al., 2018, Jardine et al., 2006, Schwartz et al.,
2022, Wang et al., 2012). Well constructed Health
indicators could also be used as basis for remaining
useful life prediction methods. HIs can be divided
into two categories based on their construction strate-
gies: physical HIs (PHI) and virtual HIs (VHI) (Lei
et al., 2018). PHI correspond to direct underlying
degradation factor and the physics of failure and are
generally directly extracted from monitoring signals.
VHIs are generally built by fusing multiple PHIs or
multi-sensor signals. VHIs describe the degradation
trend of the equipment, but loses the direct physical
meaning. For this research there are no monitoring
signals available that directly correspond to a phys-
ical degradation, so a VHI should me constructed
using multi-sensor signals. This could be achieved
by statistical approaches, in Wang et al. (2012) the
framework for constructing generic HIs is provided
by employing a linear data transformation method.
This method is suitable for continuously collected
measurements and is a process of information fusion
which provides a unified measure being used to char-
acterize the health condition of the system. Schwartz
et al. (2022) uses kernel functions in combination
with principal component analysis to provide a non
linear approach to data fusion as basis for the HI con-
struction. These methods are trained with the help of
failure data. Due to preventive maintenance approach
limited failure data of compressors is available. This
gives the challenge of learning the degradation and
failure behaviour without having training data of this.
Model should be able to learn the characteristics of a
healthy compressor.
A different approach is provided using a machine
learning method, where the HIs are constructed with
the help of neural networks (NN) Kim et al. (2019).
This has the advantage of not requiring the exact fail-
ure threshold and does not limit the application of the
method for a specific degradation process. Another
study uses Semi-Supervised Deep Neural Network
(SSDNN) for data fusion in order to create HIs Moradi

et al. (2023). Here the model is trained to construct
HIs with high prognosability by using evaluation met-
rics for HIs during the training process, these are often
used for this practice (Eleftheroglou et al., 2018). Liu
et al. (2020a) proposes the use of a Long-Short Term
Memory AutoEncoder (LSTM-AE). The structure of
LSTM predicts the next time steps and is able to learn
long-term memory information to provide a solution to
long-term dependencies Chen et al. (2023), this makes
it functional for using the dtaa in an optimal manner.
The AE is a reconstruction method that recovers the
original input from its compressed representation to
measure the reconstruction error. This reconstruction
error is used as the basis for the HI. HIs are not only
sensitive to degradation, but they also might be influ-
enced by abnormalities in environmental conditions
and operations. de Pater and Mitici (2023) extends
on this method by making the LSTM-AE feasible for
varying operation conditions and applying attention
to increase accuracy. Most of these use the same type
of data set, which are created by a simulation using a
degradation function (Arias Chao et al., 2021) and thus
providing a clear degradation behaviour the challenge
is to construct accurate HIs for real world applications
which are robust enough to deal with impurities in
data. Malhotra et al. (2016) also uses LSTM-AE to
construct HIs with a different approach. Their goal
is to construct a mapping of the reconstruction losses
over time, resulting in a HI function that is used for
RUL prediction. The limitation here is that the model
only assumes one type of degradation curve, which
does reflect the occurrence of multiple degradation
mechanisms in reality. This highlights the difficulties
of performing fault diagnosis and identification in real
world cases.

1.2. Research Objective
The aim of this research is to develop a model that is
able to asses the health of compressors, which could
be used to optimize the maintenance strategy in order
to reduce downtime and improve the performance of
the production line with the use of data collected by
multiple sensors. The focus is establishing a model
that gives insight in the health of the asset and is able
to identify failure mechanisms of real world cases.

The main contributions of this research are:
• A method is proposed for health indicator con-
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struction for compressors with the purpose of
health assessment and fault identification. By
constructing health indicators for each detectable
failure mechanisms the model is able to perform
fault identification even when multiple faults are
developing. The model is tested with a real world
case study of chlorine compressors of which little
failure data is available so the model is trained
to learn the healthy characteristics of the com-
pressor. In this study it is shown that this method
is able to correctly identify the failure mecha-
nism present in the compressor and is therefore
applicable for real world cases.

• The health indicators are constructed with the
reconstruction loss of the LSTM-AE. The model
is trained to reconstruct the measurements in-
dependently of the operation conditions, which
increases the robustness of the model.

• The collected real world data requires extensive
preprocessing to reduce the effect of corrupted
data and format it to the correct form before it
is used as input to the LSTM-AE. This research
proposes the tools to realise this and shows the
effect of the quality of the preprocessing.

1.3. Paper outline

The rest of the paper is organised as follows: in
Section 2 the proposed methodology is described.
Then, the case study is introduced in Section 3 and the
HI construction is presented together with the tuning
of the model. Thereafter, in Section 4 the results
of the health assessment and fault identification are
presented and discussed. Finally the conclusion is
provided in Section 5.

2. Methodology

In this section the LSTM-AE is introduced first, along
with the format of the time series data. Secondly, the
reconstruction loss is used to construct the HIs. Then
the training and the tuning process for the optimal
parameters is described. At last the application of the
HIs for health assessment and fault identification is
presented.

2.1. LSTM Autoencoder
In this section the characteristics of the LSTM-AE
are described. Let ®𝑋𝑐,𝑑 = ®𝑋𝑐,𝑑

𝑡 , 𝑡 ∈ {1, 2, ..., 𝑛𝑐,𝑑}
be the multi-sensor measurement of compressor
lifecycle 𝑐 during sequence 𝑑 , where 𝑡 denotes the
time step during this sequence. The compressor
lifecycle 𝑐 refers to period that the compressor
starts operating after placement till it either fails
or is replaced. The input for the LSTM-AE should
have a limited length for the model to function
effectively, therefore the lifecycle are split in
sequences 𝑑 of size 𝑛𝑐,𝑑 which are used as input.
The ®𝑋𝑐,𝑑

𝑡 = [𝑋𝑐,𝑑,1
𝑡 , 𝑋

𝑐,𝑑,2
𝑡 , ..., 𝑋

𝑐,𝑑,𝑎𝑠

𝑡 ] is the multi-
sensor measurement at time step 𝑡, with 𝑎𝑠 the amount
of considered sensors. Furthermore, the amount of se-
quences in a compressor lifecycle 𝑐 is indicated as 𝐷𝑐.

The operation conditions are separated with the
purpose of developing a model that constructs the
HI independent of these conditions. The sensors
that qualify for this purpose are the ones measuring
the inlet conditions of the chlorine gas and oil,
more precise: the inlet temperature and pressure
of the chlorine gas and the inlet temperature of the
oil. These are the parameters that could change
depending on the season or the production process
that precedes the compression and influence the other
parameters in the system. The measurements of the
operation conditions have their own notification. Let
®𝑂𝑐,𝑑 = ®𝑂𝑐,𝑑

𝑡 , 𝑡 ∈ {1, 2, ..., 𝑛𝑐,𝑑} be the conditions
of sequence 𝑑 of compressor lifecycle 𝑐, then
®𝑂𝑐,𝑑
𝑡 = [𝑂𝑐,𝑑,1

𝑡 , 𝑂
𝑐,𝑑,2
𝑡 , ..., 𝑂

𝑐,𝑑,𝑎𝑜

𝑡 ] refers to the
conditions at time step 𝑡 of this sequence 𝑑 and 𝑎𝑜

correspond to the amount of operating conditions.

The LSTM-AE consists of an encoder part and a
decoder part, which recurrent layers exist of enrolled
series of LSTM cells and encodes the input data to
the repeat vector and reconstruct the time series at the
decoder part, see Fig. 1 where the architecture with
one layer is shown.

A. LSTM cell
The LSTM technique is an adapted version of the
original LSTM structure by Hochreiter and Schmid-
huber (1997). This version described by de Pater and
Mitici (2023) consists of two variable states that are
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Figure 1. Architecture of the LSTM-AE

updated by every cell and than past on to the next cell,
these states are the memory state 𝑐𝑡 and the hidden
state ℎ𝑡 . This results in the situation that every cell
has four inputs; the features and operation conditions
at the current time step ®𝑋𝑐,𝑑

𝑡 and ®𝑂𝑐,𝑑
𝑡 , the initial

memory 𝑐𝑡−1 and hidden state ℎ𝑡−1 and two outputs;
the updated memory and hidden state. The LSTM
cell is shown in figure 2 and consists of three gates
that update the variable states with the use of the
inputs and an activation function. The two types of
activation functions that are used in the LSTM cell
are the simgoid function 𝜎 and the tanh function, see
Eqs. (1) and (2).

𝜎(𝑥) = 𝑒𝑥

𝑒𝑥 + 1
(1)

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2)

The first operation in the LSTM cell is the forget
gate, here is decided what old information is removed
of the previous memory state. The portion of the
memory state that should be forgotten is determined
by passing the inputs through the sigmoid function as
shown in Eq. (3), here 𝑊𝑔, 𝑉𝑔,𝑈𝑔 are the weights and
𝑏𝑔 is the bias of the forget gate.

𝑔𝑡 = 𝜎(𝑊𝑔
®𝑋𝑐,𝑑
𝑡 +𝑉𝑔

®𝑂𝑐,𝑑
𝑡 +𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) (3)

Secondly the input gate provides a potential memory
state 𝑐

𝑝𝑜𝑡
𝑡 and simultaneously an input state 𝑖𝑡 that

will decide what part of the potential memory state
will be added to update the memory state, see Eqs. (4)
and (5) . Here 𝑊𝑐, 𝑉𝑐,𝑈𝑐,𝑊𝑖 , 𝑉𝑖 ,𝑈𝑖 are the weights
and 𝑏𝑐 and 𝑏𝑖 are the biases of the input gate.

𝑐
𝑝𝑜𝑡
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐

®𝑋𝑐,𝑑
𝑡 +𝑉𝑐

®𝑂𝑐,𝑑
𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (4)

𝑖𝑡 = 𝜎(𝑊𝑖
®𝑋𝑐,𝑑
𝑡 +𝑉𝑖 ®𝑂𝑐,𝑑

𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (5)

The new memory state 𝑐𝑡 is determined with the
information of the forget and input gate by, see Eq. (6).

𝑐𝑡 = (𝑐𝑡−1 ⊗ 𝑔𝑡 ) ⊕ (𝑖𝑡 ⊗ 𝑐
𝑝𝑜𝑡
𝑡 ) (6)

At last, the output gate generates the new hidden state
ℎ𝑡 by determining what part of the new memory state
should be used, see Eqs. (7) and (8). Here𝑊𝑝, 𝑉𝑝,𝑈𝑝

are the weights and 𝑏𝑝 is the bias of the output gate.

𝑝𝑡 = 𝜎(𝑊𝑝
®𝑋𝑐,𝑑
𝑡 +𝑉𝑝

®𝑂𝑐,𝑑
𝑡 +𝑈𝑝ℎ𝑡−1 + 𝑏𝑝) (7)

ℎ𝑡 = 𝑝𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡 ) (8)

B. Encoder
At the encoder side of the LSTM-AE the sequences are
imported into a LSTM cell for every time step together
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Figure 2. Schematic overview of the LSTM cell structure.

with the hidden and memory state of the previous
LSTM cell, see Fig. 1. The operation conditions
and the sensors measurements are separate inputs so
the reconstruction of the data is independent of the
operation conditions. The last hidden and memory
state at time point 𝑛𝑐,𝑑 are the starting conditions of
the decoder.

C. Decoder

The decoder uses the reconstructed measurements of
the previous time step 𝑋̂

𝑐,𝑑

𝑡−1 as input, except at 𝑡 = 1,
here the original data is used. Furthermore, it also
uses the previous hidden and memory state and the
operation conditions as inputs. The reconstructed
measurement 𝑋̂𝑐,𝑑

𝑡 is the output of this network and
is generated by a fully connected layers of a neural
network. This network consist of three layers where
the last layer has an output of 𝑎𝑠, corresponding to the
number of input sensors. The fully connected layers
have the hidden state of the recurrent layer and the
original operation conditions as input. By separating
the operation conditions the autoencoder is forced
to learn that the reconstruction of the sensor data is
independent of the operation conditions.

D. Reconstruction losses

The reconstruction loss is determined by the difference
between the input measurements and the reconstructed
measurements. The mean reconstruction loss 𝑅𝐿𝑐,𝑠

𝑑

of sensor 𝑠 in sequence 𝑑 of compressor lifecycle 𝑐 is
equal to:

𝑅𝐿
𝑐,𝑠

𝑑
=

1
𝑛𝑐,𝑑 − 1

𝑛𝑐,𝑑∑︁
𝑡=2

�� ®̂𝑋𝑐,𝑑,𝑠
𝑡 − ®𝑋𝑐,𝑑,𝑠

𝑡

�� (9)

𝐻𝐼𝑐𝑑 =

𝑚𝑠∑︁
𝑠=1

𝑅𝐿
𝑐,𝑠

𝑑
(10)

The LSTM-AE is trained to minimize the recon-
struction error, so it learns to capture the essential
characteristics of the healthy chlorine compressor,
while discarding noise and irrelevant information.
During training phase teacher forcing will be applied
to improve the training efficiency. Teacher forcing is
performed by giving the original 𝑋𝑐,𝑑

𝑡−1 as input at the
decoder side of the reconstructed measurements. In
this manner the parameters further down the recur-
ring LSTM cells are determined with the exact values
instead of the predicted values.

2.2. Health Indicator construction
The data driven health indicators are based on the re-
construction loss of the LSTM-AE following Eq. (10).
As previously described there will be constructed four
different data driven HIs with the use of the model.

A. Sensor selection
As shown in Eq. (10) the HI is a summation of the
reconstruction losses for set of sensors. This subset
is specific for a HI. The usefulness of a sensor is
dependent on the change of the reconstruction loss
towards failure. This can be determined in an objec-
tive manner by using the trendability, which will be
explained further in section 2.2. The sensors that are
included inEq. (10) to construct the HI have a high
trendability.

B. Health Indicator Evaluation Metrics
To evaluate the health indicators three metrics are
defined: the monotonicity (𝑀), trendability (𝑇) and
prognosability (𝑃). These metrics are adopted from
the work of Liu et al. (2020b) and de Pater and
Mitici (2023) to test the behaviour of the HI during a
compressor lifecycle.

Monotonicity. The general increasing or decreas-
ing pattern of a feature over time. For a HI the
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monotonicity should increase when a incipient fault
occurs and evolves.

𝑀 =
1

𝐷𝑐 − 1

�����𝐷𝑐−1∑︁
𝑑=1

𝐼 (𝐻𝐼𝑐𝑑+1 − 𝐻𝐼𝑐𝑑) − 𝐼 (𝐻𝐼𝑐𝑑 − 𝐻𝐼𝑐𝑑−1)
����� ,

where 𝐼 (𝑥) =
{

1, if 𝑥 > 0
0, if 𝑥 ≤ 0

(11)

Trendability. The Spearman correlation coef-
ficient is used between the HI and the sequences
{1, 2, ..., 𝐷𝑐} to define the trendability.

𝑇 =

𝐷𝑐

𝐷𝑐∑︁
𝑑=1

𝑟𝐻𝐼𝑐

𝑑 𝑑 − (
𝐷𝑐∑︁
𝑑=1

𝑟𝐻𝐼𝑐

𝑑 ) (
𝐷𝑐∑︁
𝑑=1

𝑑)√√√
(𝐷𝑐

𝐷𝑐∑︁
𝑑=1

(𝑟𝐻𝐼𝑐

𝑑 )2) ×

√√√
(𝐷𝑐

𝐷𝑐∑︁
𝑑=1

𝑑2) − (
𝐷𝑐∑︁
𝑑=1

𝑑)2

(12)
Prognosability. The prognosability is the variance

of the final state of the HI for each compressor lifecycle
divided by the average lifecylce length. This metrics
tells how well the HI could be used to detect the fault.

𝑃 = 𝑒𝑥𝑝


−𝑠𝑡𝑑 (𝐻𝐼𝑐

𝐷𝑐 , 𝑒 ∈ 𝐶𝑡𝑒𝑠𝑡

1
|𝐶𝑡𝑒𝑠𝑡 |

∑︁
𝑒∈𝐶𝑡𝑒𝑠𝑡

��𝐻𝐼𝑐1 − 𝐻𝐼𝑐𝐷𝑐

��
 (13)

C. Tuning
The architecture of the LSTM-AE depends on the cho-
sen model parameters, these are presented in Table 1.
The optimal parameters are found using the approach
presented in Fig. 3, where the model parameters are
updated after each training process. This optimization
loop is executed with the help of grid search, where
systematically each logical combination of parameters
is evaluated.

2.3. Health Assessment
The purpose of constructing the HI of the compressor
is the ability to diagnose the state of the compres-
sor. To determine the difference in the state of the
compressor a fault threshold for the HI is proposed.
When the upper bound of this threshold is passed the

Table 1. The model parameters of the LSTM-AE that are
included in the grid search for the optimal model.

Architecture parameters
Number of stacked LSTM layers
Size of hidden and memory state
Sequence length of test data
Number of fully connected output layers

HI is considered unhealthy. The threshold is deter-
mined following Eq. (14), which corresponds to the
Chebyshev’s inequality (Kong and Yang, 2019).

𝑃( |𝐻𝐼𝑐𝑑 − 𝜇 ≥ 𝑘𝜎) ≤ 1
𝑘2 , (14)

where 𝑃() is the probability, 𝑘 determines the con-
fidence interval, 𝜇 is the mean and 𝜎 is the standard
deviation. The mean and standard deviation are re-
trieved from the healthy training sets. The condition of
the threshold is adapted from Chebyshev’s inequality
to Eq. (15).

𝐻𝐼𝑐𝑑 ≥ 𝑘𝜎 + 𝜇 (15)

To filter out outliers of the HI the condition should
be met 𝑣 times in a row for the compressor to be
diagnosed as unhealthy. This condition is used for the
general HI to determine the state of the entire com-
pressor and to determine whether fault identification
is necessary.

2.4. Fault Identification
HIs are constructed in the same manner as described
in Section 2.2 for each failure mechanism. Here, the
sensor selection for the subset that is used in Eq. (10)
is based on both system knowledge and trendability.
For each HI of the included failure mechanisms a
threshold is determined in the same way as described
in Section 2.3. Fault identification takes place if
the compressor is considered unhealthy and is the
process assess the health of the HIs corresponding
to each failure mechanism. Note, by performing
the fault identification in this way it is possible to
detect multiple developing faults simultaneously. The
assess the performance of the fault identification key
performance indicators (KPIs) are introduced, that
are frequently used in this research field. These
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Figure 3. The approach for tuning the model.

KPIs are based on the confusion matrix, which is
a visualisation of the fault identification results in a
tabular representation. The KPIs:

• Accuracy, the number of correct predictions made
by the model.

• Precision, how correctly the model has detected
positive outcomes

• Recall, evaluates a classification model’s effec-
tiveness in identifying all positive instances. It is
calculated as the proportion of relevant instances
that were correctly detected.

• F1-score, identifies overall performance by com-
bining precision and recall.

3. Case Study: Chlorine compressor
The proposed method is tested on the case study
of a chlorine production plant, where two chlorine
compressors operate parallel to pressurize and cool
down chlorine with the purpose of liquefaction. First
the characteristics of these compressor are described
along with the failure mechanism that are included
for the fault identification. Secondly, the data and
acquisition of it is explained. The processing of the
data is an important aspect when dealing with real
world data is described next. Then results of the health
indicator construction are described, which includes
the tuning of the model, the sensor selection and the
evaluation of the HIs.

3.1. Characteristics of the compressor
The compressor used for chlorine liquefaction
consists of four compressing stages with cooling
between the stages, except after the first stage. It
operates at a high rotational speed and is considered

as turbomachinery. The compressor is driven by an
electrical engine, which is coupled by a gearbox to the
rotor of the compressor. The rotor is hold in place by
journal bearings on both ends of the compressor and
an axial bearing on the non driven end to limit axial
movement. These bearing are fed from an auxiliary
oil system, this oil functions as both lubricant and
coolant of the bearings. Labyrinth seals are used to
separate the stages and prevent leakages. At both
ends where the rotor leaves the compressor casing a
labyrinth gas seal is applied. The failure mechanisms
that are included into this research are selected based
on occurrence, severity and the ability to be detected
with the available data. The following failure mech-
anisms are included into the fault identification model.

Leakage. Due to the corrosive and toxic nature of
chlorine leakages are a great risk for compressors.
Most important is that external leakages of chlorine
are prevented, since it has a large influence on the
direct environment and operating personnel. Multiple
types of leakage can occur in the compressor, namely
between the two halves of the horizontal split casing,
in the cavities between the stages and at the ends of the
compressor where the rotor exists the casing. Leak-
ages have effect on the temperature and pressure in the
compression stages and on the pressure difference be-
tween the dry air and chlorine feedback in the gas seal.

Fouling. Fouling occurs when contaminants enter
the compressor system, this results in performance
losses of the compressor. Fouling can be divided in
two groups, the first being non reactive contaminants
that enter the compression circuit and do not change
state (Barnard, 2001). This group typically settles
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in calm places, erode labyrinths and the edges
of impeller blades. The other group consists of
contaminates in gas or liquid form and these cause
problems if they change state as they pass through
the compression circuit. The main cause of fouling
in chlorine compressors is the presence of moisture
in the chlorine which in combination with the cast
iron casing and chlorine reacts to ferrochlorine’s.
These particles can deposit inside the compressor
and lead to internal blockages. The effect of fouling
is decreasing efficiency of the compressor and is
noticeably in the temperature between stages as well
by the increase of power consumption.

Bearing failures. Bearing failure is the best known
failure mechanism when dealing with rotary equip-
ment and is normally detected with high frequency
vibration measurements, these are not included in this
case study. The purpose of the axial bearing is to
absorb the axial forces and prevent axial movement,
so out of bound axial displacement is a sign of a
defect. Furthermore, defects on the bearings create
extra friction and lead to increasing temperatures.

3.2. Data Acquisition
The data of 5 compressor lifecycles is available with
length varying between 2.5 and 5.5 years. The sensor
measurements are collected and stored each minute,
this rate results in a large amount of data. In this
case study the change in measurement values is slow,
therefore the measurements are aggregated per hour
by considering the mean per hour. There are 56 func-
tional sensors outputting data, resulting in a total of
almost 9 million sensor measurements. To reduce
the data input for the model, sensor selection is per-
formed. Following industry safety standards critical
sensor measurements are executed twice or even three
times to implement a safety factor, this brings sensor
duplicates of which only one is selected. Also non
identical sensors can have a high correlation, only
one of two is selected if the correlation is 0.95 or
higher. There are a total of 𝑎𝑠 = 16 sensors selected
and 𝑎𝑜 = 3 are considered as the operation conditions,
see Table 2 and Fig. 4.
To train a model to recognise the health state of a
system a footprint of the state where the system is
considered healthy is required. To establish time

intervals in the data from where the training data
can be acquired an assumption has to be made. It
is assumed that the compressor data is considered
healthy the first few months after the compressor is
replaced.

Table 2. The operation conditions and selected sensors.
DE stands for Driven End and NDE for non driven end.

Sensor Description Unit
Operation conditions
P1 Suction pressure barg
T1 Inlet temperature °C
T8 Oil temperature °C
Selected sensors
dP Pressure difference dry air and labyrinth mbar
E1 Power consumption Amp
P2 Press pressure barg
P3 Oil pressure barg
T2 Temperature outlet stage 1 °C
T3 Temperature outlet stage 2 °C
T4 Temperature inlet stage 3 °C
T5 Temperature outlet stage 3 °C
T6 Temperature inlet stage 4 °C
T7 Discharge temperature °C
T8 Oil temperature °C
T9 Axial bearing temperature °C
T10 NDE journal bearing temperature °C
T11 DE journal bearing temperature °C
X1 Axial displacement NDE mm
X2 Rotor vibration NDE µm
X3 Rotor vibration DE µm

3.3. Data preprocessing

The preprocessing of the raw data is required to make
the model functional by giving it clean data as input.
The preprocessing of raw data consists of multiple
steps including: outlier removal, noise reduction,
normalization and sequencing. The function and
method of the preprocess step will be described in
this section in the order of application, see Fig. 5.
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Figure 4. Schematic of the compressor with the location of the sensors.

Figure 5. The order of the preprocessing steps that are
applied to prepare the data for the model.

A. Outlier Removal
The acquired data contains outliers that could be
caused by various reasons for example sensor failures.
The assumption is made that the training sets do not
contain outliers, since these sets are of created of data
during relatively short healthy period. To identify
potential outliers in the test sets the overall mean
and standard deviation of the training sets is used to
establish the operation boundaries of the parameters
that are measured. The upper and lower boundaries are
equal to the mean plus/minus three times the standard
deviation. To find the potential outliers the data of the
test sets is subjected to these boundaries and the data
points outside these boundaries are checked by hand
to confirm whether they are outliers or not. In case of
outliers the data is replaced by interpolating between
the neighbouring non outlier data points.

B. Noise Reduction
The noise reduction will be performed with the moving
average method, this makes the time series more
smooth and will give a better performance for the
model. The moving average replaces data points with

the local mean of the window around the point. The
window rolls through the time series with the data of
each point as middle point and a size 𝐷 = 48. This
operation smooths the time series and reduces the
noise.

C. Normalization
Normalization is used to scale all features to the
same standard. The type of normalisation that will
be used is the mean normalisation, also known as
standardisation. Here the the mean 𝜇 and standard
deviation 𝑠𝑡𝑑 are calculated from the data and used to
normalize the set as shown in Eq. (16). It is important
to note that the mean value and standard deviation of
the training sets is also used on the testing set, for the
reason that these are considered to be the values of
the healthy state of the compressor.

𝑋
𝑐,𝑠
𝑡 =

𝑋
𝑐,𝑠
𝑡 − 𝜇𝑐,𝑠

𝑠𝑡𝑑𝑐,𝑠
(16)

D. Sequencing
The time series of a data set can not be fed to the
LSTM-AE at once and is therefore split in smaller
sequences 𝑑 of size 𝑛𝑐,𝑑 . The sequences are extracted
with a rolling window. The stride and length of this
rolling window is different for the training and testing
set. The training data has sequences with a length
of 48, which corresponds to 2 days worth of data.
For the training data the order of the sequences does
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not matter and overlapping windows are useful to
increase the amount of training data. The length of
the sequences of the test data is set to 𝑛𝑐,𝑑 = 12, which
means that the HI is constructed for every 12 hours.

3.4. Results of Health Indicator construction
First the optimal parameters are determined with a
grid search with the help of the metrics described
in the methodology 2.2. Next the sensor selection
is described, then the health indicators of different
versions of the autoencoder are compared.

Plotting the reconstructed time series together with
the original input is a way to visualise that the model
functions properly. For the healthy state of the com-
pressor the difference between these plots should be
minimal. In Fig. 6 the reconstructed sequence of
the compressor in a assumed healthy state is shown,
note that the reconstruction is similar to the original
input, which provides evidence that the autoencoder
functions as supposed.

Figure 6. A reconstructed sequence (blue line) of T3
compared with the original sequence (red line).

A. Tuning
After the implementation of the model is verified
the optimal parameters of the model are determined,
these are acquired by performing a grid-search. This
optimization loop is shown in the schematic Fig. 3.
The grid search is evaluated with the metrics described
in the methodology; monotonicity (𝑀), trendability
(𝑇) and prognosability (𝑃). The fitness of the model
is added to the evaluation metrics, this is equal to the
sum of the other metrics. The model parameters in

the grid search that had the highest fitness overall are
considered to be the optimal parameters, these are
presented in Table 3 along with the other important
hyperparameters. The weights of the training epoch
with the lowest validation losses are applied to the
model.

Table 3. The hyperparameters applied to this case study

Architecture parameters value
Number of stacked LSTM layers 3
Size of hidden and memory state 128
Sequence length of test data 12
Number of fully connected output layers 3
Hyperparameters
Optimizer Adam
Initial learning rate 0.001
Number of epochs 100
Patience before decreasing the learning rate 5
Decrease the learning rate by factor 0.1

B. Sensor selection for HI construction
Only sensors with a high trendability are included in
the construction of the HI. These sensors are added to
subset 𝑆𝐻𝐼 which will be the input for Eq. (10). The
trendability provides information over the difference
in reconstruction loss at start of a lifecycle and the
end of a lifecycle. For features with high trendability
it is expected that the reconstructed signal deviation is
minimal in the early stage of a lifecycle, this deviation
increases with increasing time in the lifecycle, this
corresponds to the increasing degradation. On the left
in Fig. 7 a feature is shown with a high trendability,
this corresponds to described expectation. On the
right in Fig. 7 a feature is shown with low trendability,
this does not correspond to described expectation
and looks more like random noise. The features that
are used for the construction of the HI have a high
trendability and are included in subset 𝑆𝐻𝐼 .

C. Health indicator evaluation
The metrics of the HIs of the proposed method are com-
pared with those of different versions of the method
(see Table 4. The version of LSTM-AE without the
operation conditions ignores the operating conditions.
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Figure 7. Reconstruction loss per sequence of compressor
lifecyle set 1.

Analysing this version by comparing its metrics with
that of the proposed method it is clear that the evalu-
ation metrics decrease significantly. This result em-
phasize the effect of training the model independently
from the operating conditions has positive impact on
the performance of the HI construction.
The proposed model is trained with the training data
of all compressors and could therefore be applied
immediately for a newly placed compressor. The ver-
sion of the method where the weights are trained for
each compressor lifecycle separately could only be a
applied to a new compressor when the months that are
used for collecting training data are passed. However
when dealing with real world data each compressor
could have a different initial state, which brings extra
noise and offsets to the HI construction. This expected
difference in performance is visible in Table 4, where
the evaluation metrics increase with this approach.

4. Validation of the results
After the implementation and verification of the model,
the validation takes place. Since the model has two
main purposes, namely assessment of the health and
fault identification, the validation should cover both
of these purposes. Lastly the value of the results is
discussed.

4.1. Health Assessment
The health state division of the compressor lifecycle
is shown in Fig. 8. There is no nuance in health state,
when applying the threshold for the division between
a healthy and unhealthy state as proposed in the
methodology, this has as result that the compressor
are considered unhealthy relatively early and operate
for a long time before they are overhauled. The

threshold could be increased or established in an
entire different way to overcome this. The health state
division could be used as bases for RUL prediction,
since it indicates that degradation is taking place.
To realise RUL prediction for this case study more
failure data is required and in the best case addition
of run-to-failure data. For generalisation and ease of
implementation the original method has advantages
over the method where for each lifecycle the model has
to be retrained, while the latter has better performance.

4.2. Fault Identification
The process of fault identification is started from the
moment the compressor lifecycle is marked unhealthy
for the first time. This section first describes the
selected sensors for each HI following and then the
process of identifying the faults is presented along
with the final results.

A. Sensor selection
The HI is based on the reconstruction losses of a
subset of sensors that are considered for each HI
of a failure mechanism. These subsets are based
on the expected effect and location of the failure
mechanism as described in section 3.1. Furthermore
the trendability of the reconstruction loss has to be
higher than 0.5 for the sensor to be included. The
HI for detecting leakages will be constructed from
the sensors that are relevant to the gas sealing. The
selected sensor for fouling are measuring parameters
of the gas path in the compressor. The subset for
the bearing HI includes the temperature and pressure
of the oil, the bearing temperatures and the position
of the rotor. The subsets of the selected sensors are
shown in Table 5.

B. Fault Identification
This model has the possibility to identify what fault is
developing in the compressor. As mentioned multiple
times before there is no clear data of failures avail-
able, adding to this the documentation of failures that
occurred in the compressors are also lacking. This
makes it hard to objectify this validation step, there-
fore it is chosen to discuss the occasions where the fail
mechanisms of the compressor are known to a certain
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Table 4. Evaluation of the different version of LSTM-AE architecture. Here the sets corresponds to the compressor
lifecycle. Mon, Tre and Pro stand for the monotinicity, trendability and prognosability respectively.

Set 1 Set 2 Set 3 Set 4 Set 5 Mean

Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Mon Tre Pro Fitness

proposed LSTM-AE 0.01 0.88 0.02 0.87 0.02 0.51 0.00 0.91 0.03 0.86 0.02 0.81 0.519 0.612

proposed LSTM-AE
without operating conditions

0.03 0.79 0.05 0.91 -0.01 0.51 -0.01 0.65 0.05 0.47 0.02 0.67 0.398 0.525

proposed LSTM-AE with
trained weights per compressor lifecycle

0.03 0.94 0.05 0.88 0.04 0.72 0.04 0.88 0.08 0.92 0.05 0.87 0.704 0.764

Figure 8. The health state division of the compressor lifecycles sets 1 to 5 from the left to the right. The unhealthy state
is marked by the red circles.

Table 5. The subsets for each type of constructed health
indicator (HI).

Health indicator Sensor subset

General HI {dP, P2 T2, T4, T5, T6, T7,T9, T10, T11, X2}
Leakage HI {dP, P2}
Fouling HI {P2, T2,T3, T4, T5, T6, T7}
Bearing HI {P3, T9, T10, T11, X1, X2, X3}

degree. These are found by analysing the notifica-
tions and inspection reports of the compressors. The
identification is performed by checking whether the
separate HIs of the test sets cross the health threshold.
Instances of the passing the threshold for each HI are
shown in Fig. 9. In the left graph of Fig. 9 fouling
HI of set 1 is shown, it is clearly visible that the HI
passes the threshold, so fouling is identified. This
lifecycle has been diagnosed with fouling so this iden-
tification is correct. The middle and right graph of
Fig. 9 are both of lifecycle set 5 and show the presence
of bearing damage and leakage respectively. These
failure mechanisms are diagnosed for this compressor
lifecycle so the identification is correct. The fault
identification is performed by analysing the failures
per set for each constructed HI, the results of analysis
is presented in Table 6. The results of the fault iden-
tification are used to calculate the KPIs proposed in

Section 2.4 and are shown in Table 7.

Table 6. Confusion matrix of the fault identification

Confusion matrix
Diagnosed Fault

Fault is present Fault is absent

Identified fault
Fault is identified 5 True Positives 4 False Positives
Fault is not identified 0 False Negatives 6 True Negatives

Table 7. Case study results of the fault identification.

KPI Score
Accuracy 0.73
Precision 0.56
Recall 0.45
F1-score 0.5

4.3. Discussion
The results of the case study are validated to deter-
mine the quality of the model. In section 3.4 the
performance of the proposed method is presented.
The LSTM-AE which is trained for each compressor
lifecycle separately performs considerably than the
original proposed method, it has a mean monotonicity
of 0.05, a mean trendability of 0.87 and a prognos-
ability of 0.704. The health assessment and fault
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Figure 9. Fault identification instances. The left figure shows that fouling is detected in lifecycle set 1. The figure in the
middle and on the right show that bearing damages and leakage are detected in compressor lifecycle set 5.

identification are therefore executed with this version.
The health state division as shown in Fig. 8 functions
as start signal for the fault identification. The HIs
behave as expected with increasing reconstruction
losses towards the end of life, however it is noticeable
that the HI is not only increasing over time. The
HI corresponds to the degradation of the compressor
and degradation can not be undone without repairs,
therefore this decreases of the HI are in theory not
logical. However, they can be explained acknowledg-
ing that this is real data of compressors in a controlled
process, this means that performance can be boosted
by changing the process parameters. For the fault
identification it is required to identify and couple the
failure mechanism for each test set. However, there
is no clear data of failures available, adding to this
the documentation of failures that occurred in the
compressors are also lacking, this has the effect that
is hard to objectively quantify the performance. To
make the validation of the fault identification possi-
ble educated assumptions based on the data that is
available, are made on the failure mechanism of the
compressor lifecycles. These are then analysed for
compressor lifecycle and the results are presented in
a confusion matrix (see Table 6). This results in a
identification with an accuracy of 73% and a precision
of 56%, which means that the proposed method could
successfully identify faults in real world compressors
even when multiple faults are occurring simultane-
ously. The use of the HI construction as basis for RUL
prediction is not possible to be tested with the lack of
run to failure instances in the available data.

5. Conclusion
The maintenance history of the chlorine compressors
is analysed, which has resulted in 3 main failure
mechanisms being identified. The sensor measure-

ments of 5 historical compressor lifecycles have
been acquired, preprocessed and used as input for
HI construction. The proposed method for the
HI construction is unsupervised machine learning
LSTM-AE model, where the model is trained with
healthy data only. The LSTM-AE is trained to
reconstruct the measurements independently of the
operation conditions, which increases the robustness
of the model in varying operation conditions. Health
assessment is performed to divide the health state
of the compressor using the constructed HI. The
first instance of an compressor marked as unhealthy
triggers the start of the fault identification, which
has resulted in a identification with an accuracy of
73% and a precision of 56% for the three considered
failure mechanisms. The performance of the model
is increased by training the weights of the model for
each compressor lifecycle separately. The trade-off
using this approach is that health assessment and
fault identification is not possible in the start of a
new lifecycle, because this period is used to acquire
the training data. To overcome this trade-off a
combination of both approaches should be used,
where the health assessment during this first period
of a new compressor is performed original model
and after this initial period the model specifically
trained for this lifecycle is used for fault identification
with higher accuracy. To conclude, the proposed
LSTM-AE method is able to correctly identify single
or multiple failure mechanism present in chlorine
compressors with an accuracy of 73 %, while only
being trained with healthy data and is therefore
applicable for real world cases with unlabeled data.
Therefore the goal of this study has been achieved.
Furthermore, the constructed HIs could be used as
the basis for RUL predictions, it is however required
to establish a maximum for the HI which corresponds
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to the failure of the equipment. For the determination
of this maximum more compressor lifecycles are
required to create a better understanding of the
behaviour of the compressor towards failure.
Exploring the possibilities for predictive maintenance
that are available using machine learning has given
insight in what possible improvements and follow up
research could occur. In general a lot of the research
in literature that try to perform fault diagnosis and
prognosis make use of simulated data, which is stable,
has Gaussian distribution and a clear degradation
path. During this research the lack of research with
real-world data is noticed, this provides a lot of
opportunity for beneficial future research into the
implementation of the these methods in real cases.
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B
Correlation matrix

Here the correlation matrix that is used for sensor selection is shown.
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Figure B.1: Correlation matrix of the 56 sensors



C
Data preprocessing

The preprocessing of raw data consists of multiple steps including: outlier removal, noise reduction,
normalization and sequencing. The effect of the preprocess step are presented in Figures C.1 to C.4
following the order of Figure 5.3.

Figure C.1: Raw data that is the input of the model before the data preprocessing.
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Figure C.2: The time series of the features of data set 1 after outlier removal
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Figure C.3: The time series of the features of data set 1 after applying the moving average



69

Figure C.4: The time series of the features of data set 1 after normalization
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It is observable that the trend of the data has become more visible after the preprocessing steps.
An interesting thing to note is the trend of the temperature sensors, which corresponds to the seasons,
since it is depended on the cooling water temperature. Learning and identifying this seasons trend



D
Grid search for parameter tuning

This appendix contains the grid search used for the parameter tuning. The model parameters that are
adjustable for model optimization are presented in Table D.1 along with the possible values that are
considered, note that there are parameters in the architecture of the model that could be optimized,
however to limit the grid search these are determined by assumption.

Table D.1: The adjustable parameters for model optimization

Parameters Possible values
Number of stacked layers 1-5
Size of hidden and memory state 32,64,128,256
sequence length of test data 12,14,24,48
sample rate test data 12,1

The grid search is evaluated with the metrics described in the methodology; monotonicity (M ),
trendability (T ) and prognosability (P ). The fitness of the model is added to the evaluation metrics,
this is equal to the sum of the other metrics. The results of the grid search are presented in table
D.2. When analysing the results it can be seen that version 19 has the highest fitness value, however
before appointing this as the optimal settings the training speed and the risk for overfitting should be
considered. Due to the 5 stacked layers and the large hidden size the time to train increases immensely
and overfitting becomes a problem. When excluding the versions with 5 layers, version 8 has the
highest fitness.
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Table D.2: Grid search for optimal parameters settings of the LSTM-AE

Version seq
len

sample
rate

nr.
layers

Hidden
size Monotinicity Trendability Prognosability Fitness

1 14 12h 2 32 0.07 0.77 0.423 1.263
2 14 12h 2 64 0.05 0.738 0.444 1.230
3 14 12h 2 128 0.10 0.742 0.492 1.336
4 14 12h 2 256 0.05 0.792 0.481 1.319
5 14 12h 1 32 0.02 0.666 0.398 1.086
6 14 12h 1 128 0.08 0.738 0.445 1.261
7 14 12h 3 32 0.06 0.754 0.456 1.272
8 14 12h 3 128 0.11 0.764 0.566 1.438
9 14 12h 4 32 0.10 0.766 0.431 1.293
10 14 12h 4 128 0.04 0.774 0.516 1.334
11 14 12h 3 128 0.10 0.794 0.455 1.347
12 14 12h 3 128 0.08 0.81 0.543 1.433
13 48 1h 3 128 0.02 0.692 0.475 1.189
14 24 1h 3 128 0.02 0.746 0.503 1.267
15 24 1h 5 128 0.04 0.834 0.575 1.449
16 24 1h 5 256 0.03 0.784 0.586 1.402
17 24 1h 3 256 0.02 0.728 0.546 1.292
18 12 1h 3 128 0.01 0.806 0.519 1.339
19 12 1h 5 128 0.03 0.838 0.590 1.460
20 12 1h 5 256 0.03 0.814 0.574 1.415



E
Extra verification and validation results

E.1. Trendability
The trendability is highly depended on the reconstruction loss of each feature. The reconstruction
losses of compressor lifecyle set 1 are displayed in Figure E.1. The average trendability per feature
are shown in table E.1, the features that are used for the construction of the HI have a high trendability
and are included in subset SHI , the trendability per lifecycle of the features of this subset are shown in
figure E.2.

Table E.1: Average trendability of all features

Feature Trendability Feature Trendability
84EI110 0.447541 84TI170 0.497934
84PI103 0.537791 84TI171 0.613885
84PI124 0.33705888 84TI172 0.507401
84TI104 0.41878486 84TI174 0.459196
84TI117 0.5687834 84TI176 0.577804
84TI118 0.48005 84X110A 0.687018
84TI119 0.5817658 84X114A 0.597977
84TI120 0.6288814 84X115A 0.65348
84TI133 0.7545174 84XI111A 0.605298
84TI166 0.4750996 84XI112A 0.308984
84TI168 0.4120144

Figure E.1: Reconstruction loss RLc,s
d per daily sequence of compressor lifecyle set 1.
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Figure E.2: Trendability of features

E.2. Manual fault identification
The identification is performed by checking whether the separate HIs of the test sets cross the health
threshold. The HIs for fouling, leakage and bearings are shown in figures E.3, E.4 and E.5 respec-
tively. The fault identification is performed by analysing the failures per set for each constructed HI,
this analysis is presented in table E.2. While the analysis is not quantified it provides a good insight in
performance of the model.

Figure E.3: The fouling HI for the 5
cases

Figure E.4: The leakage HI for the 5
cases

Figure E.5: The bearing HI for the 5
cases
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Table E.2: The analysis of the HIs per lifecycle

Set Fail
mechanism

Analysis of the HI
Fouling Leakage Bearing

df11 Fouling
Clear rise of the HI towards the end
of the lifecycle, which indicates the
occurrence of fouling

A minimal trend is visible,
which is not enough to
indicate a leakage

No trend is visible, the bearings
can be considered healthy

df12 Fouling
Clear rise of the HI towards the end
of the lifecycle, which indicates the
occurrence of fouling

No trend is visible, which
indicates that there are no
significant leakages present

No trend is visible, the bearings
can be considered healthy

df13 Unknown A minimal trend is visible, which is
not enough to indicate fouling

No trend is visible, which
indicates that there are no
significant leakages present

An increasing trend is visible,
which indicate bearing
problems

df14 Fouling
Clear rise of the HI towards the end
of the lifecycle, which indicates the
occurrence of fouling

No trend is visible, which
indicates that there are no
significant leakages present

The HI is constant, with the
exception of a jump in the
constant, which could be
explained by calibration of the
measuring instrument

df15 Bearing
Leakage

A small trend is visible, which could
point to the occurrence of fouling

Some large jumps are visible
which indicates the possibility
of a leakage

An increasing trend is visible,
which indicate bearing
problems
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