

Delft University of Technology

TeachBooks Manual

van Woudenberg, T.R.; Lanzafame, R.C.; Kirsch, J.A.A.; Jungbacker, C.A.A.; Pols, C.F.J.; den Ouden-van
der Horst, D.; Slingerland, I.C.
DOI
10.5281/zenodo.15100848
Publication date
2024
Document Version
Final published version
Citation (APA)
van Woudenberg, T. R., Lanzafame, R. C., Kirsch, J. A. A., Jungbacker, C. A. A., Pols, C. F. J., den Ouden-
van der Horst, D., & Slingerland, I. C. (2024). TeachBooks Manual. GitHub.
https://doi.org/10.5281/zenodo.15100848

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5281/zenodo.15100848
https://doi.org/10.5281/zenodo.15100848

TeachBooks Manual
Contents

How to Use this Manual

This manual is primarily designed for and by teachers for use in education, but should be a
useful resource for anyone interested in creating and collaborating on . Our
aim is to provide a simple way to start book-making for new users (it only takes 10 clicks!)
through advanced usage for experienced users. We hope you find this resource useful and
refer back to it often.

TeachBooks originated at Delft University of Technology in the Netherlands, and some of the
material in this Manual reflects tools and resources specific to TU Delft. With the exception
of a few tools for which we have educational licenses at Delft, everything in this Manual is
open source. Despite this, we are happy to grow our community beyond Delft and welcome
contributions from all users.

For more information about TeachBooks, visit https://teachbooks.io/. Do not hesitate to
reach out via email at info@teachbooks.io or contribute on GitHub via discussions, issues or
pull requests.

Happy book building!

How to Use this Manual
There are several “parts” to the manual:

Your First TeachBook! introduces the essential platforms and workflows, and contains a
workshop that can be completed independently or as part of a TeachBooks training. We
recommend even experienced Jupyter Book users go through this material to better
understand the TeachBooks vision on how to make books collaboratively, as this drives
much of our tool development. The workshop is designed to be completed in 1-2 hours
and does not require any prior knowledge or installation (just a GitHub account).

Getting Going! begins with an overview of User Types, which are used to help
understand which parts of the Manual are most relevant to you. Detailed software

https://jupyterbook.org/
https://jupyterbook.org/
https://teachbooks.io/
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io

installation instructions, book and team setup and workflows are also provided in this
part.
The Features part describes a suite of tools that are useful for teachers, many of which
are developed by TeachBooks contributors specifically for use in education. Many of
these tools are illustrated in the Examples.

A few special tools are included in the Editing Tools that are useful when writing
content.

See the final chapters of this book (under Miscellaneous) for additional information about
References, Credits, etc.

What is a TeachBook?
Contents

Three Key Ingredients

How is a book made?

Why are Git and GitHub Important?

What’s next?

Never seen a TeachBook before? Here’s a small demo of our MUDE-book!

Interactive Book Demonstration - Confidence IntervalsInteractive Book Demonstration - Confidence Intervals

So what are you looking at? It’s a website generated with the Jupyter Book package. Various
extensions have been added to improve the student-experience, especially for technical
topics! The actual website you’re looking at now is a Jupyter Book. With TeachBooks we aim
to make it easy to collaboratively use it, even if you’ve little experience with the software
package which is part of it.

Three Key Ingredients
To create a Jupyter Book, three key ingredients are needed:

1. A configuration file to define functionalities, _config.yml

https://www.youtube.com/watch?v=gbBsWo6em4c
https://jupyterbook.org/

2. A table of contents file to list which files should end up in the book, _toc.yml , as well
as define its structure

3. Content for your book! Text-based files which allows you to embed figures, videos,
math and interactive elements.

The files are typically organized together in a files structure like this:

Note the arrangement of the 3 key book ingredients in a subdirectory called book/ ; this is
where you should focus when you are just getting started with TeachBooks and are making
your first book. Additional files can be used to control the book-building process, and these
are typically stored outside the book/ directory to keep the book contents separate. For
now, all you need to understand that everything needed to create a book can be collected in
a single top-level directory (my_book_directory/ , in this case), and this directory is what
becomes the collection of files in our Git repository (described elsewhere).

└── my_book_directory/
 ├── README.md
 ├── requirements.txt
 └── book/
 └── _config.yml
 └── _toc.yml
 └── contents/
 └── intro.md
 └── chapter1.md
 └── chapter2.ipynb
 └── images/
 └── figure1.png

How is a book made?
A book is made by by writing content in text-based files such as Markdown (*.md), Jupyter
Notebooks (*.ipynb), etc. After that, software is used to “parse” these files and create the
final book (e.g., Jupyter Book). Fortunately when getting started you don’t need to worry
about the software because TeachBooks has set up GitHub tools for you that take care of
this process automatically! The process is illustrated in the diagram below.

Text-based files are digital files on your computer that you can open in a text editor
and read directly. There are many file extensions used for text-based files, a few
common ones related to Jupyter Book are: Markdown (*.md), Jupyter Notebooks
(*.ipynb), and YAML (*.yml).

YAML (or YML) is a text-based file format that is primarily used to store data. It is
useful because it is easy for humans to read and write, and easy for machines to
parse and generate., which is why YAML is often used for configuration files. Here is
an example of a YAML file…can you tell what information is being stored?

parts:
 - caption: Your First TeachBook!
 chapters:
 - file: intro/book.md
 - file: intro/workflow.md
 - file: intro/template.md
 - file: external/next.md
 - caption: Getting Going!
 chapters:
 - file: ...

You can see quite clearly that a number of files are listed, and that they
are organized into chapters and sections. This defines the structure of the
book—you can confirm this by comparing to the left sidebar, as this book
is where this example YAML snippet came from!

Text-based files? yml? What is that?!

Description of the YAML file

Source Code
(Repository)

*.md, *.ipynb

Online Book
(webserver)

html files
(website)

Markup
Software

jupyter-book

You edit text-based files
(source code)

TeachBooks tools and GitHub do the rest!

Fig. 1 The process of building a book with TeachBooks. When just getting started, TeachBooks
tools enables you to focus on what matters most: learning to write content for your book!

Why are Git and GitHub Important?
The fun part is the collaborative aspect of TeachBooks! However, the amount of software
required when doing this by yourself can be intimidating. Git and GitHub are tools used by
TeachBooks to make this process as smooth as possible for newcomers.

There are three reasons why Git and GitHub are important for TeachBooks:

1. Version control: Git is a version control system that allows you to track changes to your
files over time. This is especially useful when you’re working with others on a book, as it

Have you ever used LaTeX? It turns out there are a lot of similarities with Jupyter
Book. Here is a quick list:

1. Writing “source code” in text-based files (i.e., *.tex versus *.md , *.ipynb ,
etc) that is generally easy to read without the markup and uses special
functions to format rich document objects (e.g., tables, figures, etc).

2. The “book” is created by using a piece of software that parses the source code
and creates the final document (a *.pdf versus a *.html for Jupyter Book).

3. Creating the document structure using a list of files that contain source code
that automatically generates the Table of Contents and Index..

4. Sometimes you can spend more time than you like troubleshooting “bugs”
that turn out to be simple syntax errors.

If you’ve used LaTeX before, it will be relatively easy to learn to use a Jupyter Book.

Familiar with LaTeX? There are similarities!

https://teachbooks.io/manual/_images/intro-book.svg

allows you to see who made what changes and when.
2. Collaboration: GitHub is a company that provides a wide array of online tools. These

augment the version control features incorporated directly in Git. In short, tools at
github.com allow you to share your files with others and work on them together. This is

especially useful when you’re working on a book with multiple authors, as it allows you
to easily share your work and collaborate.

3. Automation: GitHub provides a number of tools that can help automate the process of
building your book. TeachBooks has carefully developed a number of these tools
specifically to support teachers and students in the process of creating and sharing
educational content.

What’s next?
The following pages will introduce you to a standard “workflow” for editing a book, which is
focused entirely in the “source code” of a book (the first box in the diagram above). After we
cover this, you’ll be ready to make your first book!

How can you do it?
Contents

1 get an idea

2 create your version of the book

3 edit the book

4 check changes

5 repeat, edit and check

6 submit for review

The fun part is the collaborative aspect of TeachBooks! Because all the files are text-based,
they’re well suited for using git. That allows us to use the version-control principles of git to
its best!

Assuming you have a book (well make that happen soon!) and you’re ready to collaborate,
the process is as follows:

1 get an idea
You have an idea to improve a book or add some content! Let’s make that
happen! Share you idea with the book-authors to let them know you’re
starting something! Maybe someone else has some ideas on it as well. Later
on, you can use GitHub Issues , Projects and Milestones to keep track of
this.

2 create your version of the book
Let’s create a space for you idea to form. You can create your own version
of the book, visible for everyone to see. On GitHub, you’ll use branches or
forks .

https://teachbooks.io/manual/_images/idea.png
https://teachbooks.io/manual/_images/branch.png

3 edit the book
Creativity activated, let’s start adding content to your book! You’ll add
text, images, videos, math, interactive quizes, coding, widgets, etc. As
editing the book is not directly done in a graphical interface with buttons
like Microsoft Word, you’ll need to learn a bit of syntax. The MyST syntax
cheat sheet will be added to your bookmarks. The changes you’ll make have to be added to
the GitHub version control system, creating commits on the your git branch .

4 check changes
You’ve made a change, how does is look like? Your raw file have to be
parsed. You can do that yourself or use the tooling provided by use in a
GitHub Action . As soon as you uploaded (pushed in Git language) your
changes to GitHub, it’ll create a nice looking website for you!

5 repeat, edit and check
You’ll make mistakes and you’ll want to alter content… many, many
times… As long as your idea is not ready to be shared with other, keep
iterating step 3 and 4 until it’s perfect!

6 submit for review
You’re done! Great! Now let’s see what others think of your contribution.
You’ll submit your changes to the original book, in GitHub language this is
called a Pull request . Other will be able to review, adapt and eventually
merge your version into the book!

I hope that all of this seems fun! Let’s continue on making this happen!

https://teachbooks.io/manual/_images/edit.png
https://teachbooks.io/manual/_images/check.png
https://teachbooks.io/manual/_images/review.png
https://teachbooks.io/manual/_images/online.png
https://jupyterbook.org/en/stable/reference/cheatsheet.html
https://jupyterbook.org/en/stable/reference/cheatsheet.html

It only takes 10 clicks!
Contents

1. Create a GitHub account

2. Use the template—it’s really just 10 clicks!

3. Let’s practice!

Now that you’ve been introduced to the basics of a Jupyter Book,
let’s make one! The TeachBooks Team has put together a set of
tools to make the book-creation process as smooth and automatic
as possible. This page guides you through the process of creating
a book, followed by a series of exercises that are designed to help
you get used to the syntax and structure of a Jupyter Book, as well
as the tools and essential workflows associated with the editing,
checking and review processes.

1. Create a GitHub account
TeachBooks relies of freely available services from GitHub to store files online, carry out the
book-building process and host your book as a website. All you need to get started is a
GitHub account (not counted in the 10 clicks 🤭).

If you don’t already have one, create a GitHub account here by visiting
github.com/signup.

2. Use the template—it’s really just 10 clicks!
Now, let’s make a book: we’ve made a template on GitHub which carries out most of the
technical steps required to create a book and put it online. Instructions for using the
template are in the README of the TeachBooks Template repository on GitHub, which is by
default visible on the repository homepage.

Exercise 1✏

https://teachbooks.io/manual/_images/template.jpg
https://github.com/signup

Go to the TeachBooks Template repository on GitHub and follow the instructions to
create your book. At the end, it should be visible at
<your_username>.github.io/<book> . When finished, come back to this page.

3. Let’s practice!
Getting used to the syntax of writing in a Jupyter Book can be a bit daunting at the start, not
to mention becoming familiar with the various tools and workflows required. To help make
the learning curve somewhat easier to travel, a number of exercises covering the TeachBooks
workflow have been prepared for you. The exercises are designed such that no prior
experience with any tools or programming is required, as long as you have read the
preceding introductory pages.

The exercises on the TeachBooks Workflow can be found in your book at https://<username
or organiszation_name>.github.io/<repository_name>/exercises/exercises (case sensitive) or at
https://teachbooks.io/template/exercises.html.

Exercise 2✏

https://github.com/TeachBooks/template
https://teachbooks.io/template/exercises.html

https://raw.githubusercontent.com/TeachBooks/template_figures/refs/heads/main/exercises.png

Maybe you’re already comfortable with Git, GitHub and the concept of using
software to parse text-based files and create marked-up documents. In that case,
can you answer the following questions (refering to the exercises):

1. Can you add some content to the intro page?
2. Can you add the file named file_to_be_added_to_toc.md to the book website?
3. Can you edit the repository url defined in the _config.yml , change the title

shown below the logo and change the author as shown in the footer?
4. Can you make a new branch of your book with an additional file

file_on_new_version.md and view it online?
5. Can you merge your branch into main with a pull request?
6. Can you fork someone else’s repo, and suggest a change in a pull request?

If something is not clear, dive into to the relevant exercise page.

Tip

You Know the Basics: What
Next?

You’ve seen what a JupyterBook is, how TeachBooks tries to help you with making those, and
what the potential is in teaching. So what’s next?

In this manual we explain how to get going depending on the way you want to use it. If you
successfully followed the steps until here, you’ll be able to make book as a ‘user type 3’!

Fig. 2 User type 3

In the next part of this manual ‘Getting going!’, we’ll explain which options you have as more
advanced user, how to collaboratively edit books en how to organize you team, tools,
websites and copyright-considerations.

Furthermore, in the ‘Features’ part we’ll collect a suite of existing open-source software to
ease the editing process, add functionalities, improve styling and improve the student-
experience. Finally, the ‘Examples’ page contain some example pages of some book.

We hope you enjoin making books with TeachBooks. If you encounter any problem, please
reach out to us on email or our GitHub Discussions. We’d be happy to collaborate with you
or simple receive some feedback, examples, cool ideas. Happy book building!

https://teachbooks.io/manual/_images/TB_user3.png
mailto:info%40teachbooks.io
https://github.com/orgs/TeachBooks/discussions

User types
Contents

User type 1: Students providing feedback via the book website

User type 2: Colleague providing feedback on a draft website

User type 3: Colleague making adjustments via the browser

User type 4: Colleague making adjustments locally

User type 5: Colleague making adjustments and incorporating them in the book locally

Different types of users will interact with the website or the Jupyter Books differently and will
therefore need to know more or less about the composition of the book. For now we will
differentiate 5 types of users.

User type 1: Students providing feedback via
the book website

There are multiple tools of providing feedback in the built book:

1. using the issue button in the top-right corner to directly create issues visible to the
editor team.

2. Using the hypothesis-extension which allows public/private highlighting and annotating
parts of the book.

https://teachbooks.io/manual/_images/TB_user1.png
https://teachbooks.io/manual/basic-features/hypothesis.html

3. Using the Utterances-extension which allows commenting on pages for books which are
hosted on GitHub visible for everyone. Those comments are converted to issues on
GitHub for the editors to handle.

User type 2: Colleague providing feedback
on a draft website

In a similar manner as students, colleagues and team members can leave content-related
comments on the website through extensions or GitHub/GitLab features (e.g., Issues). In this
way, multiple teachers can give input in the draft of the textbook and course material
without requiring a complete understanding of Jupyter Books or GitLab/GitHub. The
responsible teacher (or student assistants) can then make adaptations to the book as
recommended by their colleagues.

User type 3: Colleague making adjustments

https://teachbooks.io/manual/basic-features/utterances.html
https://teachbooks.io/manual/_images/TB_user2.png

via the browser

This type of user requires only very basic knowledge in GitLab/GitHub in order to make
changes to the website themselves. Most importantly, there is no need to install any
software! Making adjustments to a file only requires the user to be able to login into
GitLab/GitHub and edit .md or .ipynb files. The changes can be done directly in an existing
branch, or, if unsure, a new branch can be used for the changes then the set-up and merging
can be completed by someone more familiar with GitLab/GitHub. Files can be edited
individually or many-at-a-time using the VS Code-style browser application.

User type 4: Colleague making adjustments
locally

User 4 is a hybrid between type 3 and 5. Basically this user is making changes by editing the
.md files locally using, for example, VS Code. Therefore, this user requires a little bit more
knowledge on git (think of pulling and pushing changes) but their main focus remains to
make adjustments to the content of the book by editing .md files whereas user type 5 has
more knowledge to make changes to python files the book as well. This user can build the

https://teachbooks.io/manual/_images/TB_user3.png
https://teachbooks.io/manual/_images/TB_user4.png

book online and therefore does not need to have special software installed besides a text
editor (e.g., Python is not required). Using this skills, this user type can take the role as editor,
managing more than just book content.

User type 5: Colleague making adjustments
and incorporating them in the book locally

This user has more knowledge in GitLab/GitHub than the previous user and can take care of
branching and merging directly. They know how to work with software for editing .md and
.ipynb files. They can use the Deploy Book Workflow online to view their changes in the book
and coordinate peer review, and/or build the book locally. This user can easily take the role
as editor, and might even add additional features to the book. If you do so, please share
those on the TeachBooks-community so that other people can benefit and contribute to
your tooling.

At this point, you might already be trying to see which user type fits you the best.
We are aware that the lines between user types can be a bit blurry, especially
between type 3, 4 and 5. If you’ve no experience in git and programming, we
advise you to start as user type 3, if you’re a bit more experienced you can consider
skipping that step. In case you’re (1) a user type 3 and want to dabble in git or (2) a
user type 4/5 and want to make some quick edits with only a few clicks, then you
might consider using a more advanced online editor in GitHub (GitHub Dev) as
explained further on in Collaborative book-editing > Edit > User type 3 > GitHub >
Using VS Code in your browser.

Note

https://teachbooks.io/manual/_images/TB_user5.png
https://github.com/teachbooks
https://teachbooks.io/manual/workflows/edit_book.html

Collaboration tool: Git
Contents

What is Git?

You will need to interact with Git to collaborate on a TeachBook, even if you are working by yourself! You’ve been
introduced to it in the exercises in the template and you’ll be guided through all of the steps in detail in Collaborative book-
editing, but what is this “thing” that sounds suspiciously like something only a computer scientist would want to use?

Perhaps you are wondering: Why a new tool? Why not something I already know like Microsoft Word and Track
Changes? Or something like OneDrive or Dropbox?

Git is 100% free, and online tools like GitHub extend this functionality for free.
Git is explicitly designed for text-based files, which is how the content of a TeachBook is written.
You will never have to work with many versions of the same file again (e.g., no more
“My_Doc_FINAL_v3_RL_again_final.docx”!).
Online tools like GitHub provide an easy way to backup your work and to allow others to see it.
Online tools like GitHub also provide a great way to collaborate, for example: discuss changes to your
content, allow others to make suggestions for improvement and fix software issues.
Online tools like Zenodo allow for long term (decades!) preservation of your work and the ability to update
your work with version numbers, dates and DOI’s.

We don’t deny that it can take some time to get familiar to the new terminology and workflow associated with Git,
and even longer to feel comfortable with it. However, we promise that if you dedicate a little bit of time to learning
about this tool it will make your new life creating online interactive textbooks much easier and more enjoyable.

What is Git?
Git is a version control system (VCS), used by a wide variety of engineers and software developers to work on projects in
parallel together. It provides multiple benefits such as tracking changes to files, working side by side with other people, and
the ability to rollback to previous versions of files without losing track of newer changes. It is a free and open sources
software. It is especially useful for TeachBooks because it is explicitly designed to handle text-based files, which are essential
for writing the contents of a book.

What is GitHub?
GitHub is a software service that is accessed primarily via a web browser at github.com ; since 2018 it is owned by Microsoft.
It is the most well-known cloud-based Git provider and provides a lot of functionalities for free for open source projects,
and even more free services for education. Via a service called GitHub Pages, it also allows you to host websites on
github.io for free eliminating the need for your own web server (however, you don’t have full control over the server setup

and operation).

For new TeachBooks users, we advise you to use GitHub. In addition, we recommend you start by making all of your
respositories public (unless they contain sensitive information); this will make it easier for others to collaborate with and

Tip

https://teachbooks.io/manual/intro/template.html
https://teachbooks.io/manual/workflows/collaboration.html
https://teachbooks.io/manual/workflows/collaboration.html

help you if you get stuck!

What is GitLab?
GitLab is a cloud-based version control system built around Git; it is a competitor of GitHub, as the two provide many of the
same services (but note the names of things can differ, for example, a Pull Request on GitHub is a Merge Request on GitLab).
GitLab provides a lot more features to extent Git such as Issues, Merge Requests, CI/CD pipelines, etc.

For TU Delft employees: TU Delft has a license to use GitLab on our own local webservers—this means that all of the files
are stored digitally on the TU Delft campus, rather than some unkown webserver that could be physically located in an
undesirable (physical) location. This is also why we have our “own” GitLab located at gitlab.tudelft.nl , rather than the
“normal” GitLab at gitlab.com . One reason we don’t recommend beginning TeachBooks users at TU Delft start with the TU
Delft GitLab is that it does not have an automatic website hosting service set up; instead, it must be manually set up on a TU
Delft web server (this is straightforward to do, for example, by BSc students from the Computer Science faculty). GitHub
Pages provides this service for free and has proven to be very reliable, so start there!

Additional lessons
Software carpentry offers git-lessons if you’d like to learn more than just it’s specific use for TeachBooks. The lessons are
available online and TU Delft offers these as part of a Software Carpentry workshop

https://swcarpentry.github.io/git-novice/
https://www.tudelft.nl/library/research-data-management/r/training-evenementen/training-voor-onderzoekers/software-carpentry-workshops

Which git provider to choose
Contents

Book URL

Real-time editing book

Setting up book repository and website

Book access with SSO

Access to source code

Book size limits

Integration with GitHub Desktop

Intergration with Utteranc.es

Summary

The setup of tools and URLs is dependent on agreements you’ve made on collaboration.

Choosing between GitHub and GitLab depends on multiple criteria. GitHub provides more functionalities, but you might
prefer the TU Delft-closed GitLab system if you’re a TU Delft employee.

Book URL
Github allows you to host your book on the GitHub server using GitHub pages (to be recognized by the
<organization/username>.github.io/<book> url, for example the template book), which takes all the steps of hosting out of

your hands. Next to GitHub-provided URLs, you can set up a custom owned URL, although this requires some additional
skills on a domain which you should own.

If you’re part of TU Delft, you can put your book in the TUDelft-Book organisation, which allows you to host your book at
oit.tudelft.nl/<book> . If you’ve a private book which is part of the GitHub Enterprise TU Delft and is using SSO, a random

url is generated <random>.github.io/<book> . For courses we advise you to create a organization with the course name so
that the URL represent that course.

On TU Delft’s GitLab you need a webserver, which was offered by TeachBooks in the past (to be recognized by the url
teachbooks.tudelft.nl/<book>), and is still offered by the TU Delft OIT team (to be recognized by the url
interactivetextbooks.tudelft.nl/<book>).

Real-time editing book
Editing the book can happen both locally as online on GitHub/GitLab. If done locally, the book can be generated and
viewed locally too (typically takes around 1 minute) but this requires you to be at least user type 4 or 5 depending on the
book content. The built book can also be viewed online separate from the released version.

On GitHub we developed a automatic process which builds the book and publishes it online in a very flexible way
(publication of multiple version of the book, insights in book building errors, parallel so fast build, custom urls in
subdirectories). For a private repository, there is an extensive but limited amount of actions-minutes required for published
your book. If this proves to be a limit, consider applying for Teacher benefits or joining the GitHub Enterprise of TU Delft.

https://teachbooks.io/manual/installation-and-setup/collab.html
https://teachbooks.github.io/template/
https://github.com/tudelft-books
https://github.com/enterprises/tudelft
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-education-for-teachers/about-github-education-for-teachers#github-education-features-for-teachers
https://github.com/enterprises/tudelft

On GitLab a webserver is required to process book-changes online. Both we and other people at TU Delft have a simplistic
workflow which can be used when you’re set up on those Git environments and webservers. This simplistic workflow doesn’t
build all branches, is not easily adaptable, doesn’t cache environments, doesn’t give a visual summary, and doesn’t allow for
parallel processes (for every build a runner needs to be assigned for which there’s typically only one available). If you want
to use GitLab but still want to make use of the GitHub workflow, you can mirror your repository to GitHub. For the TU Delft
OIT webserver you’re required to publish your book more officially, it cannot be used for viewing your book online in an
active editing-phase since constant copyright checks have to be performed. The amount of computing power available is
dependent on how you set the server yourself.

Setting up book repository and website
On GitHub you can start right away with a git environment and online book using our template without the need for any
webserver setup!

On GitLab you can set up your own git environment, but you need to be given access by TU Delft OIT to view your build
book online if you don’t have your own webserver-setup.

Book access with SSO
When you’re releasing your book on a server on which you’re in control (connected to GitLab or GitHub), you can set up
SSO login for visitors of the website. In the past, this was arranged for for TU Delft employees at teachbooks.tudelft.nl.
However, this is depreciated.

If you want the same functionality with GitHub pages, your book should be part of the GitHub Enterprise of TU Delft. This
SSO login is a bit different as you’re required to give access to specific accounts. Furthermore, the url of you’re book on
GitHub pages is a random one, so you might consider using a custom URL.

Access to source code
Both GitLab and GitHub allow for extensive options for visibility of the source code, both private, public or internally. On
GitHub, public allows for collaboration with anyone. For SSO login, your book should be part of the GitHub Enterprise of TU
Delft. If you’d like a private repo on GitHub, apply for a GitHub Team (free as a teacher as described in the github
documentation) to make use of GitHub pages (for public repos GitHub pages is not restricted).

The TU Delft GitLab requires SSO login for editing the book. Although this is useful for TU Delft employees, it limits the
collaboration with people outside of TU Delft.

Book size limits
In GitLab, an artifact (the book export) can have a maximum size of 150 MB. In GitHub, the total GitHub pages may not
exceed 1 GB (including all branches)

Integration with GitHub Desktop
GitHub has a nice integration with the GitHub Desktop application. For GitLab it works as well, but has less functionality.

https://docs.gitlab.com/ee/user/project/repository/mirror/push.html#set-up-a-push-mirror-from-gitlab-to-github
https://teachbooks.io/manual/external/template/README.html
mailto:Interactive-textbooks%40tudelft.nl
http://teachbooks.tudelft.nl/
https://github.com/enterprises/tudelft
https://github.com/enterprises/tudelft
https://github.com/enterprises/tudelft
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-education-for-teachers/about-github-education-for-teachers#github-education-features-for-teachers
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-education-for-teachers/about-github-education-for-teachers#github-education-features-for-teachers
https://teachbooks.io/manual/installation-and-setup/git-setup_local.html
http://utteranc.es/

Intergration with Utteranc.es
Utteranc.es requires a GitHub repository to host the discussions. If you’re using a GitLab repository, you need a separate
GitHub repository and the discussions and book content is not at the same place.

Summary
Here’s a table summarizing the information:

If you have doubt about this choice, we advise you to start on GitHub. Moving/duplicating your content to GitLab or
hosting to a custom URL is always possible at a later stage.

GitHub TU Delft GitLab

Book url GitHub pages
(<organization/username>.github.io/<book>), for TU
Delft books a custom URL (oit.tudelft.nl/<book>), for
private books on TU Delft GitHub Enterprise with SSO a
random URL (<random>.github.io/<book>), or custom
url <anything>.<anything>/<book> > 🌐

TU Delft OIT
(interactivetextbooks.tudelft.nl/<book>) 🎓

Real-time
book
editing

Automated and flexible (multiple version of the book,
building error insights, fast, custom urls) 🚀

Automated but simplistic (not easily adaptable,
no caching environments, no visual summaries,
no parallel processes) 🛵 For TU Delft OIT:
restricted adaptations because of copyright
checks 🚫

Setting up
book
website

Immediate and automated with template ⚡ Manual setup on personal webserver, or access
required by TeachBooks or TU Delft OIT 🚧

Book
access with
SSO

Only available for GitHub pages on GitHub Enterprise
of TU Delft 🎓, optional with custom URL ✅

Optional ✅

Access to
source
code

Private (if part of organization linked to educational
account) /public / internally TU Delft (on GitHub
Enterprise of TU Delft) 👥

Private / public (read-only) / internally TU Delft,
editing requires requires SSO login 👥 👀

Book size
limits

1 GB for all branches 📚 150 MB per book 📕

GitHub
Desktop

Well integrated 😎 Basic integration 🙂

Utteranc.es Can be linked to same repository 🏷 Requires GitHub repository next to GitLab
repository 🏷🏷

http://utteranc.es/
https://teachbooks.io/manual/basic-features/utterances.html
https://teachbooks.io/manual/external/template/README.html
http://utteranc.es/

Install & authenticate required software
Now that the types of users have been explained, you might have an idea which type corresponds to you!

The following table will link the relevant installation and setup steps for you.

User
Types Required actions Installation

Type 1
Type 2

Review book No software needed! Just open your interactive book online and give a review in
the way you’re asked to

Type 3 Edit single files online No software needed! But you’ll interact with Git, which might be a new thing for
you

Type 4 Editing text
Git

VS Code
GitHub Desktop / Git in VS Code

Type 5 Editing text
Git
Managing code-related
software
Build your book

VS Code
GitHub Desktop / Git in VS Code
Anaconda
Jupyter Book

Editing text: VS Code
Contents

Installation

Extensions

VS Code is a text editor with some extra features, such as integrated source control and a file browser. Moreover, extensions
are available to add functionality to VS Code.

Installation
VS Code can be downloaded from here. The installation is fairly simple and won’t be covered here.

Extensions
When working with Jupyter Book (or Notebooks in general), these extensions are highly recommended:

User type 4-5:

MyST-Markdown - adds support for MyST markdown, including previews.

Spell checker - Spelling checker for source code and text

User type 5

YAML - enables validation of .yml files (the format of the Jupyter Book configuration files).

Python - for obvious reasons. Also includes Jupyter Notebook rendering.

GitHub Copilot - Your AI pair progammer

Jupyter Cell Tags - Jupyter Cell Tags support

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ExecutableBookProject.myst-highlight
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-cell-tags

Git: GitHub Desktop / Git in VS Code
Contents

Installing Git

Setting up SSH-keys

Updating the local Git environment

GitHub Desktop

Terminology

More on GitLab/GitHub

In this section you will learn how to install Git locally. Courses on Git usually make use of the command line interface to do
run Git, but this introduces a steep learning curve. Instead, using Git from VS Code / GitHub Desktop is much more visual
(i.e., more “clicky”), and therefore easier to use for those inexperienced with the command line.

Installing Git
First, we need to install Git itself. Although this isn’t strictly required when using GitHub Desktop

Setting up SSH-keys
When we want to visit repositories on GitLab or GitHub, we need to log in. The same holds if we want to interact with these
repositories with Git from VS Code. This means that everytime we make a commit, pull, et cetera, we need to provide our
password, which becomes very tedious. Alternatively, we can provide GitLab/GitHub with an SSH-key of our system, so that
GitLab/GitHub knows it is indeed us that are making the changes to the repository, removing the need to provide a
password. If you’re only using GitHub and GitHub desktop, SSH-keys aren’t strictly required, but it’s still advised you set
these up.

1. Open up a terminal window (Git Bash on Windows). Next, type (or copy and paste) the following command:

2. You will get output that looks something like this:

1. Go to this webpage and download the correct version of Git for your system.

2. Execute the installer and go through it. You can leave all options to the default values, but make sure the option “Git
from the command line and also from 3rd-party software” is selected. Without this option, we won’t be able to use
Git from VS Code.

3. Once the installation is finished, check if everything works. Open the start menu, then type git . From the search
results, open the application Git Bash . This will open a terminal window, in which you can execute commands. Type in
the command git , and execute it by pressing enter. If Git is installed correctly, you should see some sort of help page.
If it outputs an error, then something may went wrong with the installation (you may have selected a wrong option).

 ssh-keygen -t ed25519 -C "GitLab"

git on Windows git on MacOS

https://git-scm.com/download/win

Press enter to use the default path (the one between parenthesis). Keep note of this path, as we will need to visit it later
on.

3. You will now be asked to enter a passphrase. You can give one, but you will be asked for it everytime you make a
commit, so it’s better to leave this field emtpy and use this key only for GitLab. After the command is done executing, it
will generate two files: id_ed25519 and id_ed25519.pub . The .pub file is the public part of the SSH-Key which we need.

 Generating public/private ed25519 key pair.
 Enter file in which to save the key (/Users/<user>/.ssh/id_ed25519):

4. Go to GitLab and log in using your NetID. Click on your profile icon on the top-right of the page, then go to
Preferences. In the menu on the left, go to SSH-Keys. You are now greeted with a screen that looks like this:

5. Navigate to the id_ed25519.pub file that we generated in step 2. Open the file with a text editor (Notepad on
Windows, textEdit on Mac). Copy its contents and paste it in the ‘Key’ field of SSH-Keys menu. Give the key a Title
and click ‘Add key’.

On MacOS, the .ssh/ folder is hidden by default, so you won’t be able to find it in finder. To show hidden
files and folders, press Command + Shift + .

6. Now test the connection. Go to the terminal (Git Bash on windows) and type:

You should get a huge output, but somewhere at the end of that output it should say something like:

 ssh -vT git@gitlab.tudelft.nl

 Welcome to GitLab, <netid>!

continue on GitLab

Note

continue on GitHub

https://gitlab.tudelft.nl/

Updating the local Git environment
The final step is to provide a username and email address to Git, so our commits can be identified. To do this, in the
terminal (Git Bash on Windows) type in the following command for the username:

And type the following command to set the email address:

GitHub Desktop
GitHub is a competitor company to GitLab. It provides very similar services, but they are often called different names, or
have slightly different features. GitHub provides a free software that is very useful: GitHub Desktop! While GitLab is a cloud-
based version control system built around Git, GitHub Desktop makes it possible to manage our Git repositories locally on
our computers, even though they are stored on GitLab. This is very useful for working with the jupyter-book more
extensively and work on interactive features. GitHub Desktop provides an alternative to Git in VS Code, and will be
described on a later stage.

Terminology
This is a (non-exhaustive) list of terminology that will be used in Git for local use.

Repository: a collection of files and folders, along with a history of their changes and who made them.

Commit: a snapshot of the current state of the repository.

Staging: preparation of files to be committed. During staging, we propose files to be committed.

Branch: a development line.

Local: on your own computer.

Remote: on someone elses computer.

Pushing: uploading new commits to the remote repository.

Pulling: downloading new commits from the remote repository to your local repository.

Tracked (files): files that Git knows about and keeps track of their history.

Untracked (files): files that Git does not yet know about.

More on GitLab/GitHub
To get to know more about working in GitLab/GitHub and getting familiar with its features, click here or watch this video!

git config --global user.name "<first name> <last name>"

git config --global user.email "<your TU Delft email>"

https://desktop.github.com/
https://teachbooks.io/manual/workflows/collaboration.html
https://www.youtube.com/watch?v=1SBtM3znviU&t=1s

Managing code-related software:
Anaconda

Contents
Installing anaconda

Software version control: environments

Before you can start using python in your book, you need Anaconda. ‘Anaconda’s conda tool simplifies package and
environment management across operating systems’ (Anaconda.com), such as windows or MacOS. It makes getting started
with python a lot easier because it already has a lot of useful python packages pre-installed. Unfortunately, each of these
packages are themselves require a number of different packages to function properly. Do you like installing all of them? You
shouldn’t—but where do you get them come from? Many of those packages are packages required by only a few specific
packages. These packages are called dependencies, and are necessary to make your Python packages function as expected.
When you run install a specific package, conda (part of Anaconda) checks all of the dependent packages that are needed
and makes sure they are also provided in the environment (collection of software with a specific version) that is being
created. In reality, this is simply a folder on your computer with all of the *.py files stored in it. This package management
is what conda and pip are really doing when you use them to install a package. It also checks that it has a suitable version
of each dependency; this is why it sometime takes a long time to install a package Unfortunately, this means that as you
add more packages to a particular environment, it gets more and more difficult to make sure everything works well
together. Luckily, there is a practical solution: create new environments for specific projects to make sure the proper
packages can function properly!

Installing anaconda
You can download the installation files here.

When installing Anaconda, keep in mind the following:

In general you should use the default file location (don’t put it on a separate disk drive, or in a disk partition that is
different than your primary OS); however, an exception to this is if you have a space in your Windows username (e.g.,
C:/Users/First Last/Program Files). In this case, install directly ìn a folder on C:/

install it only for your User on the computer (this is especially important on Windows; do not install for all users)

Once installed, we will check to make sure you are ready to use Python. Anaconda provides environments, like small virtual
mini-computers inside your real computer, and inside each of those environments you have Python (as well as a lot of
Python packages)!

1. Open a command line interface on your computer:
Windows users: this will be the anaconda or conda prompt (search for it in the Start menu at the bottom left of your
screen)
Mac users: use the “terminal” application

2. Once the command line interface is open, type and execute (hit enter) the following: python --version

3. You should be running at least Python 3.11. If not, don’t worry, we will try to fix it below (but first make sure you have
updated Anaconda as described above)

http://anaconda.com/
https://www.anaconda.com/download

4. Which environment are you in? The name is between parenthesis at the bottom of your Anaconda Prompt: by default,
this should be (base) .

5. How many other environments do you have? Execute conda env list to see a complete list.

6. Do you see the * in the list of environments? That is indicating your current active environment. Unless you have
changed something, it should be base . And if you just installed Anaconda for the first time, this will be your only
environment!

Software version control: environments
A python virtual environment is, like the name might suggest, a reserved space within the computer that contains
downloaded python packages. Each environment is like a clean slate and the packages and dependencies of one
environment have no influence on other environments. In that sense, it makes sense to create a new (working) environment
every time you start a new project. You’ll redo the next steps on this page therefor many times in the future!

Set-up environments
Now we will set up your first environment. The following steps will create an Anaconda environment and install Python 3.11.
Even if you already have Python 3.11, it is still good practice to create a dedicated Anaconda environment for each of your
major projects such as creating a jupyter book.

For simplicity we will call this environment my_new_book_env , but you can give it any name you like.

1. Open the commmand line interface (see above) or continue in the same session if it is still active

2. Execute: conda create --name my_new_book_env pip (this may take several minutes)

3. Activate: conda activate my_new_book_env
Check: you should now see your new environment displayed somewhere in the prompt between parenthesis, like this:
(my_new_book_env)

4. Additional 4th step: pip install -r requirements.txt (explanation in the following section)

Now everytime you want to work on your jupyter-book, you need to activate the environment! (step 3) If you don’t activate
your environment, you will work in a ‘wrong’ working environment that might not contain all the packages you need.

As mentioned before, python packages can be downloaded in the environments you create. Both NumPy and pandas are
popular Python packages used for data manipulation and analysis. For the creation of Jupyter Books, we will use the
package teachbooks which is a wrapper around JupyterBooks. More information about this package here.

Import environments
Working on larger projects (with many cool interactive features) may require you to install a lot of python packages. It can
be useful to specify the required packages in a text-based file (for example environment.yml) and then telling conda to
create the environment based on the contents of the file!

Moreover, if you are joining a team that is working on complex projects, it can be useful for you to create a new
environment based on use such a text-based file in order to create an up-to-date environment that will give you a flying
start. The team might also provide a requirements.txt file which specifies all the packages you need to download in order
to work on the project. Now it should also become clear why its preferable to create new environment for each
project/book that you work on because they might require you to use different packages!

Here’s an example of what a requirements.txt file might look like.

https://teachbooks.io/manual/installation-and-setup/jupyter-book-setup.html

This file needs to be manually updated by the team everytime a new package is required. It will be useful to routinely
update the packages in your environment by downloading the required packages again. The packages used by sphinx-
thebe or JupyterLite-Sphinx are not influenced by requirements.txt .

You can do this by navigating your command line interface to the folder with requirements.txt :

Now you can install the required packages with: pip install -r requirements.txt . The TeachBooks team works with these
requirements.txt files which makes this an essential step in the set-up of your environment!

Export environment
If you want to create a file listing the required packages yourself, you can do it by creating a file with the following file
extension: the *.yml file (pronounced “yah-mul”). It is a text-readable file, that stands for “Yet another Markup Language.”
This is one of many types of files that use a particular type of text formatting to give a computer specific instructions. It is
very similar to the way Markdown formatting works.

The environment.yml file will look something like this:

You should see that it uses a colon : to list the information, like name and dependencies. This will be processed by conda
when creating the new environment.

If you want to create an environment based on an existing *.yml file, you can follow these steps:

1. You need to have the file locally on your computer (for example by cloning the git repositery that it is in)

2. Open Anaconda Prompt

3. Navigate to your working directory (where this file and environment.yml is located)

4. Finally, execute this command: conda env create -f environment.yml

This may take several minutes because you are installing many packages at once! Keep an eye on the terminal window as
this process is completed. First conda is collecting information about the dependencies, then it will solve the environment;

first list the packages you wish to download from PyPI
sympy
teachbooks
jupyterbook_patches

now list the packages (and the respective url) you wish to download from the GitLab package registry
--extra-index-url https://gitlab.tudelft.nl/api/v4/projects/11239/packages/pypi/simple
sphinx-thebe ~= 0.9.9

1. Open the folder you wish to use as your working directory in the File Explorer

2. Right-click the folder and click Git bash here

3. Confirm you are in the right place by inspecting the path listed in your prompt (it should typically start with be C:\ ...
and end wit >)

4. You can also inspect the contents of the directory by executing dir

name: MUDE
dependencies:
 - python=3.11
 - numpy
 - scipy
 - matplotlib
 - statsmodels
 - pip
 - conda-forge::jupyterlab

Windows Mac

in other words, figure out which version of each package it should use. Once it is ready, it will present the list of packages
and proceed with the “installation” (really just downloading *.py files and putting them in a folder on your computer) Note
that the prompt may ask you to confirm that the installation should proceed, depending on your system settings.

Once the environment is created, we can activate it, and also check that everything was installed properly. Try conda env
export -n my_new_book_env to see what was installed by “default.” The list is very long, even though we only asked for a few
packages!

It is also interesting to try conda env export --from-history (make sure you activated it already), which shows the specific
packages requested.

Deleting Environments
Although the environments do not interfere with each other, you might want to delete environment you don’t use. Try
running the following in a Terminal or Anaconda prompt, which will list the file locations of your environment.

conda info --envs

If you have many projects, the amount of environments can take up a lot of space on your computer as one environment
can get very large. It is a good idea to remove environments once you know they are no longer useful.

To remove an environment, in your Anaconda Prompt, run:

conda remove --name my_new_book_env --all

You will be asked to confirm the deletion, then it may take a while to remove all of the files. To verify that the environment
was removed, in your terminal window or an Anaconda Prompt, run:

conda info --envs

The environments list that displays should not show the removed environment.

This information has been taken from the Anaconda documentation.

Now you can delete any other useless environments you have lying around on your computer!

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#removing-an-environment

Combining Git Bash, VS Code and Conda
Contents

Conda in Git Bash

Using Git Bash in VS Code (Windows only)

Conda in Git Bash
Git Bash is a shell (also referred to as “the terminal”) that is automatically installed with git. It provides Unix-like commands
on a Windows OS, and is recommended for working with open source projects like Jupyter (for example pip install ,
building Jupyter books, using Git Bash in VS Code, etc). To do this, conda needs to be setup properly; this is described here:

Using Git Bash in VS Code (Windows only)
By default, Powershell is the default terminal used in VS Code. However, Git Bash is recommended because it provides Unix-
like commands, making it much easier to find help on sites like Stack Exchange. It also works better with open source

There are two things to do before you can use conda in your Git Bash CLI: 1) adding Anaconda to your PATH variables (as
user, not as system/admin), and 2) setting up Anaconda to run on Git Bash.

1. update the PATH variables:

search for ‘env’ in the windows search to find the settings page. Anaconda doesn’t recommend adding them to the
system PATH , therefore when searching for the setting with the Windows search, so be careful to open “edit
environment variables for your account”; do not “edit the system environment variables”.

Identify the box for adding variables for a specific user (the top box), not the system.

select the line with ‘Path’ and click edit

Add the Anaconda3 and Anaconda3/Scripts directories to PATH .

You will know if this worked because the conda commands below will not produce an error. You can also check by opening
a Git Bash terminal and listing your Anaconda environments with conda env list .

2. To setup Anaconda, open git bash and run the collowing commands (note, the first two commands to create myenv
can be skipped if you already have an Anaconda environment; e.g., default is base):

conda create -n myenv python

conda install -n myenv numpy

run conda init bash to link conda to Git Bash

restart shell (type exit to close)

run conda activate myenv

restart shell

Check if it worked by opening a notebook in an aribtrary DIR using the command jupyter lab --notebook-dir DIR .

Windows - Git Bash (preferred) MacOS Windows - Powershell

projects like Jupyter. Git Bash installs automatically with git which you’ll learn in the next chapter; to set as default:

Type Ctrk+Shift+P to open the command palette (it’s also the top item in the “View” menu list)

Start type “terminal default” and you will soon see and be able to select the setting “Terminal: Select Default Profile” (hit
Enter)

select Git Bash and hit “Enter” again to set as default

When creating a new terminal via the menu bar you should now automatically start with a Git Bash terminal. Note that if a
Powershell terminal still opens by default, you can always create a new terminal and manually select Git Bash.

Build your book: JupyterBook
Contents

Build a book

View the book locally

 is a regular Python package which converts our content into a website. It’s part of all of the
requirements.txt files for a book repository. At TeachBooks we developed a Python package called teachbooks which takes

over the these features and adds additional features. One of those additional features, for example, is the workflow to
GitHub Pages.

Concretely, this means that the teachbooks package can be used to replace the package when calling these
features. You could think of it as jupyter-book being a dependency of teachbooks .

Don’t forget to add the package teachbooks in the requirements.txt files in your book repository and to have it
installed in your working environment (pip install teachbooks).

Build a book
As soon as you’ve installed your book environment with jupyter-book you can build your book locally. The official

 documentation is quite extensive. You can navigate to the directory where your book is to leave out the
path-to-book .

Alternatively:

Note: use --all for the jupyter-book whenever building a book to make sure the table of contents fully updates. Or
alternatively, delete the old _build folder before building the new book.

View the book locally
Once the build process is completed successfully, you will see the file location in your terminal output. Your terminal will
look something like this. Simply open this in the browser (you may have to copy/paste).

teachbooks build <path-to-book>

jupyter-book build <path-to-book> --all

Note

https://jupyterbook.org/
https://jupyterbook.org/
https://teachbooks.io/manual/features/overview.html
https://jupyterbook.org/
https://jupyterbook.org/
https://jupyterbook.org/
https://jupyterbook.org/
https://teachbooks.io/manual/_images/Terminal.PNG

Fig. 3 Terminal

Bookmark the (local) file location for easy access!

Tip

Collaborative book-editing
A jupyter book is composed out of many files which contain the educational content produced by you. Through the use of
branches it is possible to work on the book at the same time as your team-members. Working on content for the book is
mainly individual work, the beauty of Git comes in when everybody’s changes are merged into the main branch.

We have previously introduced the notions of using Git in the online environment (remote) or locally. All the (text, figures,
etc.) files that make up the book are contained on the remote repository on GitLab or GitHub. This could be on an open
repository on gitlab.com or github.com . In the context of creating educational books for students at TU Delft, the
repository will most likely be located on github.com or gitlab.tudelft.nl . If this is the first time you interact with books,
you’re advise to use github.com .

The steps involved are as follows:

1. Assign a task to yourself (milestones, issues)

2. Create your own version of the book as…

3. Edit the book as …

4. Check changes online

5. Repeat steps 3 and 4 until you’re satisfied

6. Reviewing (merge request), (eventually repeat steps 3 and 4) and combine (merging) your version with main
draft version of book

… by creating your own version of the book (branching) or selecting existing version:

branching

… by directly adding changes on a single file to Git-timeline (committing):

adding file or making changes to single file

committing

… user type 3 … … user type 4 and 5.

… user type 3 … … user type 4 … … user type 5 …

Assign task to yourself
(milestones, issues)

In a repository, team members can define Milestones and Issues. Milestones are used to
track the overall progress of the project to make sure that deadlines are met. A milestone
can group many issues, which are individual tasks that need to be finished in order to reach
the milestone.

An issue is built up of the following attributes:

the title, this should just be a quick description of the task

a label, to assign a category to the task such as: new content

an assignee, the person who created the task can assign a team-member to the task or
the task can remain without an assignee. Then whoever would like to pick up the task
can assign it to themselves!

a discussion section, here team-members can discuss any questions about the task

a due date, in case the task is urgent or to keep track of deadlines

Every team member can create issues when they think of a task that would improve the
book.

Make and assign task to yourself (issues) in …

The issues in GitHub can be found in your repositery in the top bar.

Clicking on Issues will open up the page with all the issues on this repositery.

… GitHub … GitLab

Finally, by clicking the green New Issue button you can create a new issue and specify all
the attributes we mentioned before!

The follwing steps explain how to create a branch from a new issue. By doing
this you can create most of the steps described in the section called branching.
However, if you are unfamiliar with the term make sure to still read the section
to understand the function.

After creating the issue, the description of the issue will automatically open. On the
bottom left there is an option create a branch (in yellow) from this issue. This will create
a new branch in the repositery which you can use to solve the issue.

Note

https://teachbooks.io/manual/workflows/branches.html

When the task is completed, the issue can be closed and you can move on to the next!

Clicking on create a branch will open the following window in which you can specify the
name and the repositery.

Create your own version
(branching, cloning, pulling)

Branches are a very useful feature of Git. Branches allow you to work on multiple versions of
your codebase simultaneously; you create a copy of your codebase, on which you can work
independently of the main codebase. The main branch is the default branch. The content on
this branch will be the most up to date version of the book. Therefore, new branches, which
are made to add or fix some content in the book, are usually cloned from the main branch.
This has many advantages compared to making the edits immediately in the main branch.
Some advantages of working with branches are:

Isolation: when you work on your own branch, your changes are isolated from the main
codebase. Unfinished or unreviewed parts of your book are “hidden”. Your own branch
helps to keep an overview of the changes made to the book.

Collaboration: branches make it easier for multiple project members to work on the
same codebase simultaneously. If every member works on their own branch, they can
make their changes without having to worry about interfering with another members’
changes. In case those changes made in parallel lead to conflicts, they can be resolved
during the merging of the branches.

This systematic workflow guarantees that editing the book goes smoothly.

The act of making a new branch from an existing one is called branching. Usually, you want
to branch from the main branch, but you can of course also choose to branch from another
branch. The branch from which you create a new branch is called the source branch.

Create your own version as …

… by directly creating your own version of the book (branching) or selecting an
existing version in …

How to branch is demonstrated in the figure below, all steps are elaborated on in the
following step-by-step tutorial.

… user type 3 … … user type 4 and 5 …

… GitHub … GitLab

Fig. 4 Demonstration, video available here

1. Open the repository in which you want to work in. In the top bar you will see
your current branch main and next to that there is a tab called Branches .

Fig. 5 Overview

2. Clicking on Branches will bring you to an overview of all the branches in the
repository. Click on the green Create Branch button.

Fig. 6 Overview Branches

3. Finally, give your branch a name and specifiy the source branch.
Tip: It makes sense to give the branch a name related to the content you will be
creating or altering.

https://youtu.be/3ceMSLQpD70

Fig. 7 New Branch

4. You will find your new branch in the drop down menu as seen on the figure
below. You can then select your new branch and start working in it (new version)
but you can also work in any other branch if you are helping out a colleague with
their chapter for example (existing version).

Fig. 8 Select New Branch

https://teachbooks.io/manual/_images/NewBranch_GitHub3.PNG

Edit (merge conflicts, staging,
committing, pushing)

Suppose we are writing a new chapter, or are updating an existing chapter for our Jupyter
Book. We’ve created a new branch on which we are going to make the changes.

Edit files as …

… by directly adding changes on a single file to the Git-timeline (committing) in …

How to make an edit and make a commit is demonstrated in the gif below.
Don’t worry if the steps are too fast, all steps are elaborated on in the following
step-by-step tutorial.

Fig. 32 Demonstration, video available here

In GitHub, you can directly make changes in the files on the remote repository.
You can make changes to the files already in the repository using the text editor

… user type 3 … … user type 4 … … user type 5 …

… GitHub… … GitLab

… using ‘Edit in place’ … using ‘VS Code in your browser’

https://youtu.be/LG1vzrOLQHA

but you can also upload new files!

1. Navigate to the repository you want to work in and make sure you’re in the
correct branch.

2. Create a new file by clicking on the button called Add file in the top bar. You
can either create an entirely new file by clicking Create new File or if you
already have created a file you can upload it by clicking Upload files .

Fig. 33 Create new file

3. In the new window, you can start typing your content. Give your file a name
and make sure to use the markdown extension: file_name.md . Once you are
done, commit the new file to the repository by clicking the green button
Commit changes .

Fig. 34 Edit new file

4. In case you want to make changes to an existing file, navigate to the file in
your remote repository. Then click the downward pointing arrow on the very
left in the top bar. Select the option Edit in place .

https://teachbooks.io/manual/_images/HubUser3_NewFile.PNG
https://teachbooks.io/manual/_images/HubUser3_NewFile2.PNG
https://teachbooks.io/manual/_images/HubUser3_EditFile.PNG

Fig. 35 Edit in place

5. Make your changes in the text editor and when you are ready, commit your
changes to the remote repository by clicking on the green Commit changes
button.

Fig. 36 Commit changes

6. In case you added a new file, you also need to include it table of contents of
your book! The table of contents is specified in a file called toc.yml and it is
already included in your repository if you used the teachbooks template. You
can edit it and commit the changes in the same manner as with markdown
(file.md) files.

Fig. 37 Table of contents

https://teachbooks.io/manual/_images/HubUser3_EditFile2.PNG
https://teachbooks.io/manual/_images/HubUser3_toc.PNG

Check changes online

This page is relevant for user type 4 and 5. When making changes to the book it
can be useful to get an idea on how they will be realized in the online book.
Whereas user type 5 can also build the book locally, user type 4 is more focused on
the changes to the content.

However both users would certainly benefit from checking whether their changes
look good in the book!

Now that you’ve pushed your changes online, it’s time to check the change in the online
build book to make sure that your changes are processed correctly. For this step it is
assumed you’re using TeachBook’s GitHub actions or TeachBook’s GitLab pipeline.

You can keep on editing and checking your changes until you’re satisfied and ready for a
review by a colleague.

Once GitHub Pages is enabled and your book is published, you can view it by visiting the
GitHub Pages URL for your repository. A summary can be seen under the Actions - All
workflows - call-deploy-book in GitHub. It shows you a descriptive summary. The
summary also provides build error messages, which you might fix in a new commit.

If this is not activated yet, you can do so as describe here. Here you can also find more
information.

Note

In GitHub In GitLab

https://teachbooks.io/manual/workflows/edit_book.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html

Reviewing and combine
versions (merge/pull request,

merging)
Merging a branch into the main branch is also good moment to let a team-member review
the content. By assigning a colleague to review your branch you can check the quality of
your new content.

There is a slight difference in terminology between GitLab and GitHub. GitLab uses
the term Merge Request while GitHub uses the term Pull Request. Both actions
refer to the merging of a branch into the main branch.

We’re finished with our chapter, and now it’s time to include all of our commits in the main
branch. However, it’s good practice to first merge main into our branch, so that we can see
if there are any merge conflicts. Assuming that those merge conflicts are solved before, we’ll
now continue this example with the following merge of our branch into main .

1. Make sure that you’ve committed all your new sections and changes, and that
they’re pushed to the remote repository.

2. In GitHub, navigate to the repositery you want to work in. In the top bar click Pull
Requests . Then, in the new window click on New Pull Request .

Note

In GitHub Locally with GitHub Desktop for GitHub repositories In GitLab

3. You can now choose a base branch and a compare branch.

Base Branch: The base branch is the branch into which you want to merge your
changes.

Compare Branch: The compare branch, also known as the “head” branch, is the
branch that contains the changes you want to merge into the base branch.

In the figure, you can see that we want to merge our changes from the branch
merge_conflict into main , merge_conflict is the compare branch and main is the base

branch. Note that in the figure it says that the branches cannot be automatically merged.
The reason for this is that there are conflicts in the two branches, which you can see
when scrollong down.

You can still create the pull request but you will have to manage the conflicts. Once
you’ve selected the correct branches, click View Pull Request .

4. As previously mentioned, before merging the two branches we have to resolve the
conflicts. Click on ‘Resolve conflicts`. Note that if your branches do not have
conflicting changes you can merge directly and skip this step.

Clicking on ‘Resolve conflicts`, will open the conflicted files in the text editor. There you
can manually edit the files to the version you would like to retain.

Once you are done, click on mark as resolved in the top right of the window. Do this for
all conflicted files. In case you have cloned the repositery you can also resolve the
conflicts locally using VS Code for example. You can read more about it [here]
(edit_book.md#… GitHub Desktop)

5. Commit the changes by clicking on Commit merge .

6. You can now complete the pull request by clicking merge pull request .

Organize editing team, collaboration and
visibility

Contents
Roles and responsibilities

Review process

Define draft version of book

Book previews of contributions

Protect branches

Private, internally or public

Roles and responsibilities
To ensure smooth collaboration, it is essential to define the roles and responsibilities within your team. Firstly, designate
who will be in charge of team organization (‘administrators’) who should be at least user type 4. Additionally, assign
‘maintainers’ responsible for combining content, also requiring at least user type 4. ‘Editors’ should be identified for editing
and reviewing content, requiring at least user type 3.

Finally, ensure that team members identify themselves according to the user types. It is crucial to have at least one user type
4 or 5 on the team. While this role can be filled by a teaching assistant (TA), it is recommended that one of the teachers is
also comfortable with this user type to provide adequate support and oversight.

Review process
Furthermore, establish a clear editing and review process.

For the editing process, establish some practical rules on whether to use issues, branches and forks for adding content,
fixing typos or making other changes. Furthermore, it can help to write down when you expect (draft) merge/pull requests
and how to use the assign and review options in GitHub/GitLab. It is advisable to have at least a maintainer review each
piece of content to maintain quality and consistency. Provide explanation on how you organize the book-editing and how
you’d like to receive feedback in both the readme as the published book. The use of the repository button , suggest edit

 and issue button is advised.

Define draft version of book
If there’s many people working on different parts of the book and material is staged for publication to students, we
recommend using at least two separate branches, one which is released to students, the other one for development. Using
the Releasing book online, it’s very easy to share multiple versions of your book on the same root-URL.

Firstly, create a release branch which contains the students’ version of this year. This branch could be named release ,
main , or <current academic year> . It is recommended to set this branch as the PRIMARY BRANCH when using the GitHub

workflow. This ensures that students are redirected to a consistent URL, even when new versions of the book are added

https://jupyterbook.org/en/stable/basics/repository.html
https://jupyterbook.org/en/stable/basics/repository.html
https://jupyterbook.org/en/stable/basics/repository.html
https://jupyterbook.org/en/stable/basics/repository.html
https://jupyterbook.org/en/stable/basics/repository.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#gh-workflow-settings
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#gh-workflow-settings

later. If you plan on maintaining only one public version, it is advisable to set BEHAVIOR_PRIMARY from the default redirect
to copy . This ensures that the primary branch is copied to the root, making the URL more compact.

Next, establish a development branch that contains all the new content combined but not yet published to students. This
branch could be named dev , main , <current academic year>-draft . Using dev is recommended if you prefer the default
branch to be the most recent published version, as main is commonly expected to be the default branch.

We advise you to enable two options in the general repository setting regarding pull requests in GitHub:

Enable Always suggest updating pull request branches , suggesting a merge from the default branch into any separate
branch before merging into the default branch.

Enable Automatically delete head branches to delete branches after they are merged (you’ll still be able to restore
those).

Book previews of contributions
Using the Releasing book online, it’s very easy to show a preview of the changes for branches within the same repository.
Using Build pull requests from forks you allow previews of changes for forks of your repository too.

Add the way you organized branches and builds in your README.

Protect branches
To ensure the integrity of your book’s content, it is crucial to set up protected branches in both GitHub and GitLab.
Protected branches prevent accidental changes and ensure that only authorized modifications are made. In GitHub, you can
configure branch protection rules by navigating to the repository settings, selecting “Branches,” and then adding branch
protection rules for the branches you want to protect. Similarly, in GitLab, you can protect branches by going to the
repository settings, selecting “Repository,” and then configuring the branch protection settings.

Once the branches are protected, it is advised to assign appropriate permissions to team members based on their roles. In
GitHub, you can manage permissions by navigating to the repository settings, selecting “Manage access,” and then inviting
collaborators with specific roles such as “Admin,” “Write,” or “Read.” In GitLab, permissions can be managed by going to the
project settings, selecting “Members,” and then adding users with roles like “Maintainer,” “Developer,” or “Reporter.”

Additionally, it is advisable to document the branch protection strategy and the assigned permissions in the readme file.
This documentation should explain the rationale behind the branch protection rules and provide clear instructions on how
team members can request access or permission changes. By doing so, you create a transparent and organized workflow
that facilitates collaboration and minimizes the risk of unauthorized changes. We would advise a ruleset:

Bypassable by repository admins

Targeting default branch

Restrict deletions

Require a pull request before merging with 1 required approval

Block force pushes

Private, internally or public
Choose whether you want to share your source code and built book privately, internally or publicly. In any case, you need to
obey copyright-rules. We advise public repositories and books in line with a vision on open education.

https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/features/pull_request_build.html
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-rulesets/creating-rulesets-for-a-repository

Versioning and URLs
Online books can be easily updated, however, this might confuse readers. Therefore, it’s good practice to be aware of this
and, where needed, provide an explicit version to the readers.

For example when making taylor-made books for specific academic years, you want students to be able to find their own
book (even after the academic year is over). For students which take the course twice, you might want to provide some sort
of changelog of what has been changed.

Another example could be a book in which you add content and solutions during the course or you’re fixing mistakes which
may have misinformed the reader. If this is not directly visible in the table of contents, students might not be aware of these
changes. Again, a changelog could be useful to inform the reader about the change. Furthermore, a smart versioning
system might tell the reader something about the impact of the addition differentiating errata and additions.

You could also think of your published book which is referenced by other people. Don’t be afraid, git makes it very easy to
make this possible. Git allows you to go back in the git history. To make this as easy as possible for readers, you can assign
versions using TeachBooks versioning instead of having the readers scroll through a long list of (not alway very descriptive)
commit descriptions.

Maybe this all sounds confusing and difficult. No worries! A use-case could be a book which progresses in time, but in
which you don’t want to deal with the additional hassle of versioning. Your book could be perfectly fine without any
measures on this topic!

If you are part of the previous group, but at some point decide to make a new version of the book while keeping the old
one, you could do so without dealing with version numbers and changelogs. Just publish both versions online.

Finally, you might consider publishing your book at an online publisher. This could increase findability of your book and you
might benefit from the brand of the publisher, but it may have flexibility, copyright and licensing consequences.

So, there’s a few use-cases for which different (combinations) of solutions exist. These are summarized in the table below in
order of increasingly effort and impact. You can combine use-cases to your liking:

Read more about each of these measures on the following sub-pages.

Use-case
Publish versions on

separate URLs

Use TeachBooks
versioning with a

changelog
Publish your book
with a publisher

Book changes over time, but you don’t
want to deal with versioning

Occasionally releasing a new version while
keeping the previous version, with minimal

effort for versioning

Recommended

Continuously adding content and
solutions or updating crucial mistakes

Recommended

Allow referencing specific versions Can be considered Recommended

Taylor-made book per academic year Recommended Recommended in case of
students retaking a course

Increase findability or benefit from
publisher’s brand

Recommended

https://teachbooks.io/manual/installation-and-setup/versions_URLs.html
https://teachbooks.io/manual/installation-and-setup/versions_URLs.html
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html
https://teachbooks.io/manual/installation-and-setup/publisher.html
https://teachbooks.io/manual/installation-and-setup/publisher.html

Publish version on separate
(fixed) URLs

As soon as you have different versions online, you have to make a decision about URLs.
Using the Releasing book online, you can release the different version of your book all under
the same root URL. So, it uses the same workflow as used for draft versions of your book as
describe before, the only difference being that URLs of draft versions are generally not
shared publicly.

If you plan on maintaining only one public version, it is advisable to set BEHAVIOR_PRIMARY
from the default redirect to copy . This ensures that the primary branch is copied to the
root, making the URL more compact.

To share the built book / website of old versions for your book on GitHub you have a few
options:

Create a branch for each version. When doing this, the GitHub workflow will build it on
GitHub pages. Here’s a few tips:

It’s advised to use the version as branch name. In case of versions per academic
year, you can just name each branch to the current academic year, this leads to the
URL with the same academic year..

It is recommended to update the primary branch as the PRIMARY BRANCH when using
the GitHub workflow whenever a new version is considered to be the most primary
one. This ensures that readers are redirected to a consistent URL, even when new
versions of the book are added later.

Eventually, you can add old branches to the list of BRANCHES_ARCHIVED when using
the GitHub workflow to include a banner on the page indicating its archived state.
Alternatively, you can add a banner manually to _config.yml , as explained here.

If you’re using tags (as will be explained in later), you can create a branch from a
tag locally by running: git branch <new_branch name> <tag/version> .

If you have many version of the book, at some point you might reach the 1 GB
GitHub Pages limit. This is only expected for extremely large books with a lot of
non-text-based (binary) content. To prevent going over that limit, store large
content not used for building the website (like images) on an external server. This
can be another GitHub repository or a (paid) object store.

https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/installation-and-setup/collab.html#draft-book
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#gh-workflow-settings
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#gh-workflow-settings
https://teachbooks.io/manual/basic-features/banner.html
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html

An example can be found in the book ‘Engineering Systems Optimization’: it has
two versions for readers online, the 2023-version and the 2024-version,
recognizable by the URL. Both versions originate from their respective branches in
the GitHub-repository

Add a zip of the built book to the release in GitHub as binary asset. This requires readers
to download the zip and open the html files locally, but doesn’t require you to host it
somewhere. This zip can be easily downloaded as an artifact from the GitHub action. An
example can be found here. Note that this requires you to set up tags and releases, as
explained in TeachBooks versioning with changelog

Use Read the Docs to build a website for all your branches, forks and tags as Read the
docs doesn’t have a 1 GB limit, but has a very different URL structure and the free
community version has advertisement. In case you’re using tags and releases, refer to
the URL of this built from your GitHub release to make sure that GitHub visitors find
their way to Read the Docs.

If you have your own webserver, you can publish each version on it manually.

Don’t forget to explain how you organize your URLs and old versions in your README and
eventually in the book itself too with a sentence like this (as can be seen in this book too):

This is the <version_number> -version of this book. Go to <link to root URL> to view the
most recent version of this book, or adapt the year in <link to root URL>/<year> to the
year when you took the course.

https://oit.tudelft.nl/CME4501/2023
https://oit.tudelft.nl/CME4501/2024
https://github.com/TUDelft-books/CME4501
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://github.com/TUDelft-books/CME4501/releases/tag/v2024.1.0
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html
https://teachbooks.io/manual/features/pull_request_build.html
https://oit.tudelft.nl/CME4501/2024/intro.html

TeachBooks versioning with
changelog

Contents
Changelog

Note on version change on page

Implement tags and releases

Versions combined with a changelog can be a very effective way to communicate book
changes to the reader and allow reuse of specific versions. We recommend TeachBooks
versioning, which comes in two flavors:

1. academic_year.additions.errata versioning for books tailed-made for courses in which
content is added / adapted during the course and might be restructured extensively
every year while remaining to be available in the original form. An example can be seen
in the source repository of the Engineering Systems Optimization book showing tags for
different versions.

2. major.errata versioning for books which are more stable over years, in which big
changes are covered only by the version number.

The details of TeachBooks versioning are covered here

Changelog
To communicate changes, we advise creating a changelog in the book. The template
contains an empty changelog to fill:

https://teachbooks.io/manual/features/versioning.html
https://teachbooks.io/manual/features/versioning.html
https://github.com/TUDelft-books/CME4501/tags
https://teachbooks.io/manual/features/versioning.html
https://github.com/TeachBooks/template/blob/main/book/changelog.md

An example can be found here

Note on version change on page
When making errata changes or additions, it’s advised to notify the reader not only in the
changelog, but also on the relevant pages. You can do so using the versionadded and
versionchanged admonitions:

and

Leads to for example:

An example can be found here

Implement tags and releases
Tags can be added to your source code by adding the version number as a tag to a specific
commit.

Changelog

`<latest version>`: `<date>`
- `<Added/modified/deleted>` [](`<relative link to changed file>`)
- ...
- Full Changelog: `[<previous version>...<current version>](<link to diff as provided by G

`<previous version>`: <...>
- <...>

<...>

::::::{versionchanged} <version_number> <date of version release>
<explanation of change on current page>
::::::

::::::{versionadded} <version_number> <date of version release>
<explanation of addition on/of current page>
::::::

 Changed in version v2025.3.5: 2025-02-23

TeachBooks versioning added

https://ciem5000-2025.github.io/book/changelog.html
https://oit.tudelft.nl/CME4501/2024/pages/linear_constrained_optimization_class.html

You can do so in GitHub when creating a new release (on the Code page of your repository.)
There, you can enter a name for your tag and select one of your branches or recent commits:

Locally, you can do so in GitHub Desktop by clicking ‘Create Tag…` for a specific commit in
the History tab.

Once the tags is pushed to GitHub/GitLab. You can create a release of the version by clicking
Release on the Code page of your repository. There you can select a tag and generate

release notes.

https://teachbooks.io/manual/_images/tags_github.png
https://teachbooks.io/manual/_images/tags.png

It’s recommended to add the relevant part of the changelog to the release notes on GitHub.
An example can be found here

https://github.com/CIEM5000-2025/book/releases/tag/v2025.2.0

Publishing your book with a
publisher

You can choose to publish your online book with a publisher. This could increase findability
of your book, but may have consequenses on the ease of editing, choice of platforms,
versioning restrictions, and copyright and licensing considerations.

For TU Delft employees, you can decide to publish via TU Delft OPEN interactive textbooks.
Publishing will give you a copyright check, ISBN or DOI number, and registration in several
shared databases but limits the amount of changes you can make to your book: for
substantial changes a new published version is needed with an updated copyright checks.
Small changes like typos can always be made, which are processed in the published version
every hour. In case of editing a book for a course during that actual course and/or your book
has limited value outside your course’s content, we advise you only to publish an archived
version of your book whenever the academic year is over.

Copyright and Licenses checklist
Contents

The Copyright Checklist

Item 0: Your book is already published!

Items 1-4: Attribute the work of others properly

A Final Note: Open Licenses Make Life Easy!

The previous sections have familiarized you with the necessary software for your user type, the basics of Git, and how to
collaborate with your team using Git. Now it’s time to create your own content. This section will provide an overview of the
copy right laws which need to be taking into account when creating and including content at TU Delft!

Although the focus of TeachBooks is mostly to help the teaching staff create interactive textbooks for their students, it can
be attractive to spread ones wings a bit and reach a wider audience. The checklist on this page provides a quick overview of
the minimium information you should be aware of when getting started in terms of copyright, avoiding legal issues and
making your life easier later on when/if you decide to publish your book with an open license, for example via TU Delft
Open.

For more information specifically related to online books read the following pages; for more generic information about
publishing visit the TU Delft Copyright website.

The Copyright Checklist
This checklist is meant to quickly illustrate the proper way of using the copyrighted work of others. In particular for online
books that are available on the internet, it is important to be aware that publicly accessible content is already considered
published.

Item 0: Your book is already published!
0) If your book is accessible online, it is already published!

This may surprise you, but legally speaking, once your book content is available online, it is technically already published. A
quick search on the internet reveals most definitions involve two key words: to issue something for distribution. Thus, the act
of sharing book material with students via the internet is a form of publishing. Of course this is different than doing so via
an established publisher, for example: others may not be able to easily find the material, the product may be unfinished,
mistakes may be present, etc. However, this means that copyright ownership and authorship has been established and must
be considered (by you!) in at least two ways:

1. You are responsible for properly attributing the work of others included in your book, and

2. You should explicitly state how you would like others to (re)use the content in your book.

The remaining checklist items cover the first point, which is where the risk of legal and financial consequences for you and
your employer lie. Continue with the following pages to find out more about the second point.

https://www.tudelft.nl/library/support/copyright

Items 1-4: Attribute the work of others properly
1) Your own new content

If you have created the content yourself, you are allowed to use it if there are no other agreements in place.

Note that this is specifically for new content; as in unpublished anywhere else! If you have already published it elsewhere,
you should attribute yourself as if you would any other material.

2) Somebody else’s content

If you want to reuse someone else’s work (that is not released under an open license!) you need to ask for permission.
When you ask for permission please do it in a written format and let the copyright holders know that you are going to use
their work in an open licensed work.

If you are granted permission, be sure to exclude the work from the open licensed conditions specified in your book
(typically easiest by stating so in the attribution/footnote/caption, as well in the colophon of the work). If you have asked
for permission and received no answer, consider it as a negative response and abstain from using the work you were
intended to.

If you really need to reuse someone else’s work, please also check whether the copyright exception right to quote is
applicable to you.

Here are a few selected answers from the Copyright Information Point:

Citations of other work

Use of copyrighted multimedia

Use of copyrighted text.

3) Your own old content

Even if created by you, you need to attribute yourself in order to avoid self-plagiarism. If the material has an open license,
this is straightforward. If there is no license, or a non-open license, you may need permission from your university (the
copyright holder; explained here). Read more here

If you want to use your own content that a (commercial) publisher has published, you must check your contract to see if
you are allowed to use it. Read more here.

Even if you have created the work yourself but years ago, check whether you have the right to reuse it. If you have created it
while you were under the employment of your previous employer, then you will need to ask permission from them.

4) Open licensed work

Work by others that is provided with an open license can be used without asking for permission; if you find yourself
considering whether to reuse someone else’s work that does not have an open license, you should try to check if there is an
alternative available that is provided with an open license (i.e., replace the work you wanted to reuse in the first place). It
turns out there are many online platforms that can help you locate open licensed work.

If you use open licensed work, you need to attribute the license under which the work is licensed and you need to check the
compatibility of the licenses. This means you need to check which license the work you want to reuse has as well as the
license that your TeachBook will be provided with (more information is provided on the Licenses page).

When you want to adapt previously published work you need to ask permission for it. Otherwise please check whether you
can find an open licensed work that you can adapt if their license it permits it.

https://www.tudelft.nl/library/support/copyright
https://www.tudelft.nl/library/support/copyright/researcher-copyright-answers#c1131017
https://www.tudelft.nl/library/support/copyright/researcher-copyright-answers#c1131031
https://www.tudelft.nl/library/support/copyright/researcher-copyright-answers#c1131032
https://teachbooks.io/manual/installation-and-setup/copyright/considerations.html#copyright-considerations-copyright
https://www.tudelft.nl/library/support/copyright/teacher-copyright-answers#c1132157
https://www.tudelft.nl/library/support/copyright/teacher-copyright-answers#c1132153
https://www.tudelft.nl/en/library/collections/open-educational-resources
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#copyright-licenses

A Final Note: Open Licenses Make Life Easy!
If it’s not clear by now, hopefully you see the value of creating and using material with open licenses. This makes it much
easier to reuse content, as the license itself allows for this, and you don’t have to spend time asking for permission!

Find out more about open licenses specifically for books on the following pages.

Copyright Considerations
Contents

Copyright

Types of Material

You Don’t Own Everything

Licensing

Summary

Copyright law dictates how online book material can and should be created, maintained and shared. An author should
understand a few key concepts, as well as best practices, in order to create a book that not only is a useful resource, but,
also fairly reuses the work of others and, if provided with an open license, enables original content to also be reused.

Before getting into specific license types and our recommendations for properly attributing and referencing the work of
others, let’s review a few key copyright-related concepts that are specific to online textbooks.

Here we only focus on aspects that are explicitly relevant to the creation and sharing of online books. Visit the TU
Delft Copyright Information Point website for a more thorough explanation of these important concepts.

Copyright
The legal right of the content owner to use, publish, distribute, share, and/or duplicate the work. Copyright is divided into
legal rights and moral rights, depending on the material and circumstances under which it was created.

As indicated below, it is the moral rights that give you, the author, the right to be named as the creator of the work.

Types of Material
It appears that copyright law distinguishes between two types of material (not including that of students):

1. Educational material

2. Articles, book (chapter), conference paper, etc.

We aren’t really sure what the definition of educational material is, but since pretty much everything we do is for teaching
students or teachers about things, we are pretty sure it includes all of it. Perhaps it is easier to see a few examples of what is
not included: journal article, book (chapter), conference paper.

Tip

https://www.tudelft.nl/library/support/copyright
https://www.tudelft.nl/library/support/copyright

The TeachBooks Team isn’t really sure when the “line is crossed” from educational material to book. More
specifically, when the copyright owner is you (the author) or the University (your employer). For now, we assume
that all books made by employees of a university are considered educational material.

Do you have a better answer than this? Let us know!

If you can read Dutch, the report Leermaterialen kiezen may shed some light on uncertainty about what is
considered “educational material” (download PDF here).

You Don’t Own Everything
The law is very clear on this, and the TU Delft Copyright page states it quite clearly:

In case that wasn’t clear enough, TU Delft owns the copyright, not you! In other words, you should do this:

Don’t do this:

We recognize that this may make you angry, and we can relate: as teachers we put a lot of effort into the material we create.
However, we have come to see that this is not a horrible situation; in fact, it is a good one. As the creator of the material you
still retain moral rights to be named as the author, and there are other benefits as well. For example, the ability of other
teachers that may take your place after you are gone to legally use and build upon your work in the future.

One reason copyright lies with TU Delft is because educational material must remain available for students when
the author leaves. Additional justification can be found in the Open Educational Resources (OER) Policy Document,
here.

The use of open licenses actually does not prohibit the author from using the material in the future, even if not
employed at TU Delft. For example, if you publish a TeachBook at TU OPEN, with a CC BY license, you are always
entitled to “take” the book with you when leaving by simply changing the cover.

Still don’t agree? Sorry. Please take this up with your nearest library or copyright expert and let us know if you get a
different response! In the meantime, we will simply list ourselves as authors, use CC BY licenses and remember that TU Delft
holds the copyright for our work produced as teachers.

Copyright to educational material made by a TU Delft teacher, rests with TU Delft. Amongst the other moral rights, the
teacher retains the right to be named.

by Last, First © TU Delft, Year

© Last, First, Year

Warning⚠

Tip

https://www.versnellingsplan.nl/wp-content/uploads/2021/08/Digitale-leermaterialen-leermaterialen-kiezen.pdf
https://repository.tudelft.nl/record/uuid:68a07efc-fc4d-4a57-8e93-88a3af37465a

The TeachBooks Team isn’t sure where code and data lie here. Since TeachBooks is oriented towards education, we
assume that TU Delft also owns the copyright for this.

Do you have a better answer? Let us know!

Licensing
This dictates how others may or may not be able to share or (re)use your work. It is (fortunately) becoming more common
to include licenses with educational material (including books), which makes it much easier to understand how specific
material can be used. Note that in the absence of a license, you must assume that nothing can be reused! In this case you
have to ask permission to the copyright holder, which can be a time-consuming process. License considerations are
described in more detail in the following pages.

The TeachBooks Team isn’t really able to explain why an author can dictate the license of material they create
while TU Delft is the copyright holder. In other words, if I create a new assignment, I can choose to license it as CC
BY.

Do you know? Please get in touch with us and help!

Summary
There are many legal aspects to consider when creating an online book. Hopefully this page simplifies the story somewhat
and indicates that there is a finite set of actions you should take to ensure that your book properly attributes and references
the work of others, as well as indicates to others how they can use your work. This includes the following:

1. Choose a license and including with the source code and website of your book (we hope you choose CC BY!).

2. Clearly indicate where and how you have used the work of others in your book (i.e., within the content of your
book).

3. Summarize all sources used in your book, as well as what may or may not be included under the license which you
have chosen.

The following pages illustrate how to do this. It turns out to be not only a clear set of instructions for (re)users of your
content, but also to help you remember what you have used in your book and where to find it later if changes are needed.

Warning⚠

Warning⚠

Licenses
Contents

License Types in Context

A Note to the Wary

Examples from Related Applications

Here we present an overview of various license types, with a particular focus on the preference of TeachBooks to use
Permissive Open Licenses, regardless of whether material is content, code or data (described below).

Since we (TeachBooks) authors have been working on making online books, we see the value in making content
available for reuse. When preparing a new page or assignment, nothing makes us happier than seeing a CC BY
license on something that we would like to (re)use ourselves. Why? Because we know that all we have to do is
properly attribute the work and we can get on with our true passion: teaching!

This page is written expressly for content authors of online interactive textbooks (e.g., those including, but not restricted to,
Jupyter Books), which are composed of two parts:

1. An online document in the form of a website, accessible at a specific URL, and

2. The source code, which defines the content and is required to create the website.

This generally does not include the software required to convert the source code in the the website.

Because the source code of an online book defines the content, and only occasionally includes code required to
create the website, one should consider the source code of a book as content and not code. When this is not the
case, we recommend included a code-specific license and indicate the specific files to which the license applies in
your repository.

If you are personally undecided on which license to choose for your work, we hope that the information in this chapter
convinces you to also have a preference for permissive open licenses. If you are still unsure, we recommend reading the
blog post by Hall (2021) that inspired this page. Another useful resource is the website choosealicense.com, which includes
many more options than those described here. Finally, consider also the policies of your own university or organization; for
example, TU Delft polcies can be found here.

License Types in Context
Have you ever been overwhelmed by the massive amount of information (and especially opinions!) available regarding
licenses? We have too! However, you are in luck: by dividing all possible license types into openness and material type, it
becomes much easier to understand the differences, and make a decision that fits your situation best.

Why permissive open licenses?

Note

https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose
https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose
https://teachbooks.io/manual/references.html#id3
https://choosealicense.com/
https://www.tudelft.nl/en/library/support/library-for-researchers/publishing-outreach/open-access-policy-and-guidelines

Fig. 86 Overview of license types, emphasizing “openness” and subdivided by material type: content, code and data. Source:
Hall (2021), CC BY. Find out more here.

Although this figure only includes a few different license types, the way of dividing by openness and material type can be
applied to any license. This is especially useful when you are unsure which license to choose, or when you are considering a
license that is not included in the figure. Remember to check the website choosealicense.com, which includes many more
options than those described here. You can also an immediate comparison in the choosealicense.com appendix.

Open versus Not Open
We recommend using open licenses to allow other people to reuse your material, just like you’d like to reuse material from
others.

Content, Code and Data
For content, we use a CC BY 4.0 license, for Code we primarily use the BSD-3-Clause license. Both of these are open to allow
reuse.

A Note to the Wary
Are you thinking something like this?

I’ve put a lot of work into my material, and I don’t want people to take credit for it or use it without my knowledge.
However, I do see the value of choosing a license, especially an open one. Maybe I will choose something like CC BY-
NC-SA, which allows others to use my work but not for commercial purposes, and not allowing them to modify it. That
way, I can still get credit for my work and others can use it for educational purposes.

https://teachbooks.io/manual/references.html#id3
https://teachbooks.io/manual/credits.html#external-resources
https://choosealicense.com/
https://choosealicense.com/appendix/

This is a nice sentiment, but when it comes to books, we don’t advise it for several reasons. The following sections
anecdotally explain “not open” and “permissive” licenses are not preferred.

Think you can improve on the examples described in the following sections? Make an Issue or Pull Request!

Why is ND not preferred?
The “ND” license prohibits derivative works: in other words, the material cannot be modified and must be used in its
entirety. This is problematic for a few reasons:

What if you have a wonderful page describing Topic X, but there are a few contextual phrases that are undesired, for
example: “this is required reading for Tuesday, December 17, 2024 in CIEM1000.” That would be distracting for your
own students, but you can’t remove it.

What is the point of including a website together with another website? It’s easier to just link to your material directly.

What if someone only wants a small part of your book? They can’t use it.

What if someone else makes similar material and releases it under CC BY and you include it in your own book under an
ND license? It seems unfair not to also provide them an opportunity to benefit from your work. In addition, this is not
allowed! You can’t put work under a more restrictive license (see also compatibility table below).

Often someone creates a copy of your work and makes improvements. The Git system (e.g., forks, commits, pull
requests, etc) make it very straightforward to also include these improvements back into your original work. This would
not be possible if you did not allow for reuse in the first place!

Why is NC not preferred?
The “NC” license prohibits commercial use. It sounds nice, right?

To be honest, it is more trouble than it’s worth, primarily because the law seems to be vague on what constitutes
commercial use. Many universities require tuition to cover operating expenses, which is often broken down into by number
of students, credits, courses, etc. This could be interpreted as a form of commercial use and thus prevent other educators
from using your work, which is precisely the opposite of what you were trying to facilitate!

Why is SA not preferred?
The “SA” license requires that any derivative works be released under the same license. If you have two sources, each of
which has a different SA license, how can you include your work that incorporates that content under the same license? You
can’t! Once again, if your goal is to convince others to share your work in a responsible way, your effort is thwarted. As with
NC, this type of license seems to be more trouble than it’s worth. A similar story holds for the other ‘copyleft’ lincenses, as
all copyleft licences require that the original license is perserved in derivative work to some degree.

Summary of License Type Compatibility
The previous sections can be illustrated by examining a so-called “license compatibility chart,” which illustrates whether or
not you can reuse material from a specific license type in another. Upon examination, you will see that CC BY is the most

Great, I can guarantee that big for-profit companies can’t use my work for their own gain. This is important to me at a
public or non-profit institution.

Note

permissive license, both in terms of what you can do with the work of others, as well as what others can do with your work.
We hope you will consider this when choosing a license for your own work!

Fig. 87 Compatibility between Creative Commons license types. Source: Kennisland, CC0. Find out more here.

Examples from Related Applications

Work in progress.

Code in a Book Repository
For example, a simple script to parse files in your repository. You can include a special license with this code.

Educational Materials with Code
What if your content includes code. This happens in many science and engineering courses where programming is a key
part of the learning process.

For example, the MUDE Team is working towards releasing the files associated with assignments under an open license.
Since the majority of the content is written in a storytelling style in Jupyter notebooks, a CC BY license is probably the best
choice if only one license is applied to a single file. However, if released in bulk it may be better to follow the advice of Matt
Hall:

You have to be practical; maybe it depends on whether you consider your notebooks to be ‘content’ or ‘source code’. I
sometimes put at the bottom of a notebook something like Open source content. Text is CC-BY, code is Apache 2.0
and I think this makes my intent clear.

Warning⚠

https://teachbooks.io/manual/credits.html#external-resources
https://mude.citg.tudelft.nl/
https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose
https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose

Recommendations
Contents

Key Locations in the Book

Special Cases

As authors, one important set of objectives is to make sure that we:

1. Avoid plagiarism and copyright infringement,

2. Properly attribute (reused) content, and

3. Indicate to readers where to find the original content,

4. Create a record for ourselves that clearly documents what we have used.

As item number 3 aligns with the standard approach of citation and references in academic writing, much of the work is
already quite clear. At TeachBooks we use APA guidelines by default; instructions for implementing this in your book can be
found on this page.

Addressing Items 1 and 2 can be overwhelming at first, but we have tried to illustrate them clearly in this manual. In
particular, the sections in this chapter, especially this page, which collects best practices used by TeachBooks collaborators,
along with explanations for why we do it that way. We try to present a standard way of referencing material and attributing
authors clearly; however, this can vary widely based on your own content, book setup and discipline.

The recommendations illustrate:

1. An efficient and consistent approach to accomplish the objectives above, and

2. How you can implement this easily in the source code of your own book.

We believe the approach outlined here is also a useful way for you as an author to remember which material you have used
in your book and find or update it later if changes are needed. This is Item 4 in the list above, and hopefully avoids frustration
in the future if you need to revise your book after a long period of inactivity and cannot remember what content was
written by you, or written by others.

The recommendations on this page are designed for content that is available in two formats: source code and a public
website. Additionally, it is focused primarily on file formats and open content relevant to Jupyer Books, which means content
written primarily in text files (e.g., .md, .ipynb, etc.), also called source code, shared with an open license and used to create a
website (e.g., HTML files accessible at a specific URL). Software is used to convert the source code into a website, however,
this is generally not included in the creative content shared using the book license.

Key Locations in the Book
Note that there are several types of pages and files that can be incorporated into your TeachBook which, together,
accomplish our goals of proper attribution and referencing. These are summarized in the table and explained in more detail
in the following sections, along with examples for implementation in a Jupyter Book.

https://teachbooks.io/manual/features/apa.html#apa

Content Pages
Make sure you show the source of your content where it is provided. We adopt a standard icon and link to help readers
recognize this: Find out more here.. This can be used to provide attribution to authors for specific pages too

How to implement this in your book
Some examples can be found in this manual:

Releasing book online: a content page which is taken fully from another repository

Figure Overview of license types, emphasizing “openness” and subdivided by material type: content, code and data.
Source: hall21, CC BY. Find out more here.: a single licensed figure added to a page taken from another website

Copyright and Licenses checklist: a content page which adapts material from another website

Format as citation

Copy the following line into your content file

This produces

Format as custom admonition

The previous syntax might be used for other purposes as well. An alternative is a custom attribution admonition:

Therefore, use the following syntax:

Table 1 Key Locations in the Book for Attribution and Referencing Best Practices

Page Name File Name Example in this book Purpose

Content Page *.md , *.ipynb , etc. Licenses page Identifies source and links
to credits page.

Credits and License Page credits.md Credits page Collets license and
copyright information in
one place.

References Page references.md References page Documents all sources, as in
any other published work.

License Page LICENSE File stored in repository
here.

Document license terms;
includes licenses of reused
content.

> Written by `<author(s)>`
> This page reuses <license> content from {cite:t}`bib_id`. {fa}`quote-left`{ref}`Find out more here.<link to external r

This page reuses CC BY content from Moore (2023). Find out more here.

https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-types
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-types
https://teachbooks.io/manual/installation-and-setup/copyright.html
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#copyright-licenses
https://teachbooks.io/manual/credits.html#credits
https://teachbooks.io/manual/references.html
https://github.com/TeachBooks/manual/blob/release/LICENSE
https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/credits.html#external-resources

To make this possible we use the custom admonitions of the custom named colors sphinx extension in combination with a
 custom css file in book/_static/ and the line named_colors_custom_colors: {'attributiongrey':[150,150,150]} in
book/_config.yml under sphinx: config:

Credits and License Page
This place describes all relevant information in one place regarding copyright and licenses, including reused content. This
page should also be useful to the author returning to the book after a long period of inactivity.

How to implement this in your book
That’s easy! Just copy the page from out template and adapt to your purposes.

References Page
Lists all references used in the book, including those not directly cited in the text (e.g., reused material).

A special case is made for material licensed under the public domain, for example, the “no rights reserved” CC0 license. As
these can include a large number of single files (e.g., images), each with their own link and author, by default we do not
include these in the References Page, but we do list the source in the credits. This is especially useful for finding the material
later, or allowing anyone who would like to reuse your content to find and cite the public domain source material directly.

One example in this manual is Compatibility between Creative Commons license types. Source: Kennisland, CC0. Find out
more here., listed on the credits page here.

How to implement this in your book
Proper referencing typically involves setting up an entry in your *.bib file and using a citation key in the text on the
content and Credits pages, which can be handled automatically if you are using the APA references tool. This also allows
you to use the text (t) and parentheses (p) citation styles.

which produce these citations: text by Moore (2023). And parentheses (Moore, 2023) when using APA references tool.

License File
Specifies license and copyright of book, along with licenses of reused content also included in source code.

Entire file only included in source code. License type stated on Credits page and included in footer.

````{margin}
```{attributiongrey} Attribution
:class: attribution
Written by <author(s)>
This page reuses <license> content from {cite:t}`bib_id`. {fa}`quote-left`{ref}`Find out more here.<link to external res
```
````

{cite:t}`cite_key`
{cite:p}`cite_key`

https://teachbooks.io/manual/external/Sphinx-Named-Colors/README.html#admonitions
https://teachbooks.io/manual/_downloads/45da90be402d5c1eef3bd9ab49f4437e/attribution.css
https://github.com/TeachBooks/template/blob/main/book/credits.md
https://creativecommons.org/public-domain/cc0/
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-compatibility
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-compatibility
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/features/apa.html#apa
https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/features/apa.html#apa

How to implement this in your book
Create a LICENSE file in the root of your repository (note that there is conventionally no extension in the file name).
Platforms like GitHub and GitLab can help you with this via the home page of your repository (look for a button that says
“Add a License”).

The file should contain the full text of the license you have chosen for your book, along with any other licenses that apply to
content you have reused. For example, the TeachBooks Manual uses a CC BY 4.0 license, which is included in the LICENSE
file in the source code at github.com/TeachBooks/manual.

Note that although most of the license text can be created from a template by GitHub, you may still want to identify
yourself as the author and/or the copyright holder at the top of the file. This provides clarity to readers and, if reusing your
work, it is also easier for others to identify your license when including it in their own source code.

Special Cases
Is there a special case you would like to know more about that is not covered here? Please let us know by creating an issue
in the appropriate TeachBooks GitHub repository.

It can also be very useful to check what others commonly do in the open source community. Note, however, some
discretion should be applied, as not everything you see on the internet is done properly. Our advice is to find a few good
examples of people you can trust and copy them.

For example, when Robert and Tom are in this position, they often wonder WWJD? (What Would Jason Do?) Jason Moore
has been making and (re)using open source material for a long time, and his GitHub repositories and websites at
github.com/moorepants are a great source of inspiration!

https://creativecommons.org/licenses/by/4.0/
https://github.com/TeachBooks/manual/blob/release/LICENSE
https://github.com/moorepants/

Overview
Contents

TeachBooks Python Package

Deploy Book Workflow

As TeachBooks, we collect a suite of existing open-source software so you don’t have to! Some of the software is developed
with our TA’s to improve the learning experience of our students and ease the book-development process for our teachers.
As the open-source software landscape changes rapidly, it is essential to keep in contact and share resources amongst
ourselves to minimize maintenance and downtime for our book websites and focus on what really matters: teaching!

Since the list of TeachBook features is getting quite long, we have grouped them in categories:

Original Jupyter Book and Sphinx features

Easy editing process

Additional functionality

Book styling

TeachBooks student-view features

Additionally, not all features are built and shared in the same way. We do our best to make sure that as many tools as
possible are included automatically when using our TeachBooks Template Book; if you are not using the Template, we try to
make sure each of our tools can be used independently. For transparency, tags will help differentiate between the different
backgrounds of the features:

Javascript overlay

Chrome Extension

GitHub App and Javascript script

Python Package: teachbooks

GitHub Reusable Action

GitHub Template

Git Workflow

Sphinx Extension

iframe

Finally, the purpose, installation process and usage of each features is elaborated on in the respective sub-sections.

To see examples for these features, go to the Examples chapter.

As the TeachBooks Python Package and the Deploy Book Workflow are important tools that incorporate and deploy more
than one feature, an additional explanation is provided on this page in more detail, with links to the pages in this manual
where individual features are described.

TeachBooks Python Package
The TeachBooks Python package is a collection of tools that are used to enhance the Jupyter Book software package by
adding features and making customization easier. In general, it is only of interest to user types 4 and 5 when building a

https://teachbooks.io/manual/examples/overview.html

book locally. However, it may be important for other users to know what the package does, as it is incorporated in the
Deploy Book Workflow and, therefore, any book created from the TeachBooks Template. This raises two important points:

1. If you are a book user using the TeachBooks Template and/or the Deploy Book Workflow, your book is by default built
with the teachbooks package, and the way your book is built and features that are included in the book may change
automatically when it is updated (these will be non-breaking changes; if not, we will notify our mailing list).

2. If you are using the jupyter-book package to build your book, some of the features described in this Manual may not
be available to you (i.e., those listed on this page). This will be the case if you are using a setup described in the Jupyter
Book Manual, for example, this GitHub workflow.

For those who wish to use the package, it is available on PyPI and can be installed using pip install teachbooks . As
teachbooks is a wrapper, the package is meant to replace the usage of jupyter-book commands (although it does indeed

add a few new commands to the CLI, e.g., serve). It is conventionally used in an identical way, as follows:

This Manual describes the main features and usage of the package. For those who wish to understand more of hte technical
details, note that the implementation the API is is documented at teachbooks.readthedocs.io/.

List of Features
Items in the list here are currently implemented in the TeachBooks package and described on other pages of this manual:

Draft-Release Workflow

External Contents

Local Server

The package is also set up to handle APA references when using the Draft-Release Workflow (the _ext subdirectory and its
contents are manually copied during the pre-build phase). This will not be necessary once the APA Reference feature is
turned into a proper Sphinx extension or Pybtext plugin.

Deploy Book Workflow
The Deploy Book Workflow is by default incorporated into any book that has been created using the TeachBooks Template.
We also strongly encourage anyone to consider this tool as an alternative to the “standard” workflow provided by Jupyter
Book, as ours automatically builds a different version of your book for every branch in your respository, along with a
number of settings that can be used to customize the build process and URL structure of your book(s). This tool is described
in more detail on the Deploy Book Workflow page of this manual, and one should note that it influences a number of other
aspects of a TeachBook.

Related Features
A list of tools and features that are dependent on, or related to, the Deploy Book Workflow (DBW) is provided here:

Important for these features:

Releasing book online: the main DBW page

TeachBooks template: books created from the Template include DBW by default

Draft-Release Workflow: can be configured directly using the DBW

Auto-updating packages: behaviors of this tool may influence the DBW

teachbooks build book

https://teachbooks.io/manual/external/template/README.html
https://teachbooks.io/manual/external/template/README.html
https://jupyterbook.org/en/stable/publish/web.html
https://jupyterbook.org/en/stable/publish/web.html
https://jupyterbook.org/en/stable/publish/gh-pages.html
https://pypi.org/project/teachbooks/
https://teachbooks.readthedocs.io/
https://teachbooks.io/manual/features/draft-release.html
https://teachbooks.io/manual/features/external_toc.html
https://teachbooks.io/manual/features/local_server.html
https://teachbooks.io/manual/features/apa.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/template/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/template/README.html
https://teachbooks.io/manual/features/draft-release.html
https://teachbooks.io/manual/features/update_env.html

TeachBooks Python Package: included by default in the DBW

Build pull requests from forks: created to provide DBW-like behavior for PR’s from forked repositories

APA References: a temporary fix is included in teachbooks to enable use in the DBW

Book Build Commands
By default the DBW builds books using the following command:

To use the Draft-Release Workflow with the Deploy Book Workflow the BRANCHES_TO_PREPROCESS variable must be configured
for a specific branch, which will then execute the following command:

Environmnets and Caching
As described on the DBW page, there is a lot going on “under the hood” with regards to caching of GitHub Action artifacts.
This can lead to undesired behavior when using the DBW, especially if package version numbers are not precisely defined.
In general we expect the risk of this occurring to be low, as it should only happen when multiple branches are being actively
used (new commits on each branch at least once per week), a package from the requirements.txt file is updated in the
time between creation of two or more branches, and that package also has a significant impact on the book building
process. As the Python virtual environment cache is replaced by default if older than one week, the issue should resolve
itself within that time frame.

Note that Specifying package version numbers explicitly and updating them via Dependabot is an excellent way to ensure
that environments in the DBW are always up to date and this issue is avoided.

If you are not using Dependabot and are not able to get your packages updated when the DBW is running, delete the cache
manually and rerun your GitHub Actions job (go to Actions tab, then looking for the “Caches” section under the
“Management” pane on the left hand side of the screen).

teachbooks build book/

teachbooks build --release book/

https://teachbooks.io/manual/features/pull_request_build.html
https://teachbooks.io/manual/features/apa.html
https://teachbooks.io/manual/features/draft-release.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/features/update_env.html

Original Jupyter Book and Sphinx
Features

These pages will provide a list of some common, basic book features which are all available in the original
package. Additionally, this page includes also best-practices.

https://jupyterbook.org/
https://jupyterbook.org/

Anatomy of a Jupyter Book
Contents

Anatomy of a Jupyter Book

Equations

To build a Jupyter Book, you need three things:

1. A configuration file

2. A table of contents

3. Content

The configuration file
The configuration file of Jupyter Books is named _config.yml . It mainly contains settings
that apply when building the book. Here is a basic example of a configuration file, taken
from this book:

Technically speaking, a _config.yml file is not required to build a Jupyter Book. If you don’t
make one, jupyter book will just use all default values. However, you should make a
configuration file which includes at least the following settings:

title : the title of your book, which appears on the top-left of every page, under the
logo.

author : authors of the book, which appears in the bottom margin of every page.

title: Jupyter Book Manual
author: Interactive Textbooks CiTG
logo: images/TUDelft_logo_rgb.png
copyright: CC BY-NC

execute:
 execute_notebooks: auto

sphinx:
 extra_extensions:
 - sphinx_inline_tabs

logo : (relative) path to the logo of your book (optional).

copyright : the licenses attached to your book.

In addition, the following option can also be useful:

execute_notebooks : turn on/off the execution of Jupyter Notebooks during the build
process. On by default. If you perform heavy computations in your notebook (machine
learning, FEM models, et cetera), you might be better off running the notebooks on a
more powerful machine as opposed to the CI/CD server. To turn it off, specify the value
'off' . You can also exclude specific notebooks by creating exclude patterns in the

filenames. For more info, see the Jupyter Book documentation.

The configuration and table of contents files are in YAML format (short for YAML
Ain’t Markup Language). YAML has a specific syntax, which can cause some errors if
you don’t adhere to it. Just like Python, indentation is very important. You can find
an overview of the syntax here.

The table of contents
The table of contents (_toc.yml) file is where you define the structure of your book. You can
organize content in parts, chapters, and sections (and subsections, each new section creating
a dropdown menu in the ToC). This is what a table of contents could look like:

root is the landing page of your book. It will be the first page that people see when they
visit the book. You can include files by providing their relative path (so the location with
respect to _toc.yml). These files can be a combination of Markdown, Jupyter Notebooks,

- format: jb-book
- root: intro

chapters:
- file: chapter_1
 sections:
 - file: section_1_1
 - file: section_1_2
- file: chapter_2
 sections:
 - file: section_2_1

et cetera...

Warning⚠

https://creativecommons.org/share-your-work/cclicenses/
https://jupyterbook.org/en/stable/content/execute.html#exclude-files-from-execution
https://en.wikipedia.org/wiki/YAML#Syntax

and Restructured Text. The example above does not have parts, so the menu on the left will
consist of just a list of the chapters. You can also group chapters in parts like this:

Content
The main thing people are interested in, is the content of the book. To help the reader, you
can structure the book into chapters, each which sections and subsections as explained
below.

The structure of a chapter
The ‘nested’ structure in the TOC is one way to organize your book. Another way to do so is
in the file itself. The structure is defined by the number of # :

The depth for numbered subsection can be set in the TOC file:

- format: jb-book
- root: <homepage>

parts:
- caption: Part 1
 chapters:
 - file: chapter_1
 sections:
 - file: section_1_1
 - file: section_1_2
 sections:
 - file: subsection_1_2_1
 - file: subsection_1_2_2
 - file: chapter_2
- caption: Part 2
 chapters:
 - file: chapter_3
 sections:
 - file: section_3_1

et cetera...

Chapter 1 title

Section 1.1

Subsection 1.1.1

Section 1.2

Subsection 1.2.1

Including a chapter twice
In some cases you want to include the same chapter in two different places in your book (for
instance parts). However, you do not want to make the same adjustments in different files,
the content should only ‘live’ in one place. The solution is to use include :

The argument in this case is the location of the file you want to include (for instance:
/basic-features/equations.md). Note that when building the book locally, you get some

warnings for duplicate labels..

We provide an example of the use of include below: We included the chapter equations in
this page.
Equations can be included in two ways: inline or display mode.

To make an inline equation, just put the LaTeX equation between $-signs. For example, $F =
m \cdot a$ produces: .

Display mode equations (the ones that take up a whole line), can be inserted using double
$-signs, like this:

which will produce:

parts:
- caption: Part 1
 numbered: 2
 chapters:
 - file: chapter_1
 sections:
 - file: section_1_1
 - file: section_1_2

  ```{include} Argument
  ```

F = m ⋅ a

$$
 F = m \cdot a
$$

F = m ⋅ a

https://teachbooks.io/manual/basic-features/equations.html

The scientific rules dictate that quantities (, , etc.) should be printed in italics.
Units, however, should not! One can use \text{m} in an equation to comply to this
rule:

To number the equations and refer in text, you need to provide a label to the equation. Just
put the label between brackets and place it after the last $$, like this:

Resulting in:

(1)

Equation (1) can now be referred to.

F m a

F = m ⋅ a = 10 ⋅ 9.81 = 98N

Warning

Make sure there is a blank line before the display mode equations, otherwise it will
render as inline and display the outer set of $$$ symbols. Also, the Euro symbol is not
included in MathJax (see note below) and must be specified using \unicode{0x20AC}
(note that it displays incorrectly in some Markdown renderers like VS Code).

$$
 F = m \cdot a
$$ (newtons_second_law)

F = m ⋅ a

Note

The Jupyter Book uses MathJax to display equations, which provides some LaTeX-like
functionality, but not all! For example, the Euro symbol is missing, and packages like
siunitx are not available (hint, use \textrm{} and \textrm{}). When something is not

working, it’s useful to search for MathJax-specific solutions (hint, include “mathjax” in
your Google search).

Tip

Figures
To add a figure, just copy the figure to the correct directory. Then, in your markdown file, include the figure as follows:

For example:

provides this output, which looks nice.

Fig. 88 example 1: width (70%) as percentage, align center

Using the name label, you can refer to the figure as done with Figure 88.

You can find more documentation on including figures here.

There are many settings, for instance aligning right:

    ```{figure} <figurename>.png/.jpg
    ---
    height/width: <height or width in pixels>
    name: <name of the figure>
    align: left / center / right
    figclass: left blank or "margin"
    ---
    <Figure caption>
    ```

    ```{figure} ../images/TUDelft_logo_rgb.png
    ---
    width: 70%
    name: demoexample1
    align: center
    ---
    example 1: width (70%) as percentage, align center
    ```

https://teachbooks.io/manual/_images/TUDelft_logo_rgb.png
https://jupyterbook.org/en/stable/content/figures.html

Fig. 89 example 2: width (50%) as percentage, align right

Fig. 90 example 3: width (50%) as percentage, align right with additional div style

with the result:

Aligning right can come with the potential
downside (not always wanted) that text is
wrapped around the figure. To avoid this one
can use <div> elements, both before and
after the text (make sure to leave an empty
line after the <div> !):

with the result:

including figclass: margin sets the figure to the column at the right.

    ```{figure} ../images/TUDelft_logo_rgb.png
    ---
    width: 50%
    name: demoexample2
    align: right
    ---
    example 2: width (50%) as percentage, align right
    ```

 <div style="clear: both;">
 and the output
 </div>
 <div style="clear: both;">

    ```{figure} ../images/TUDelft_logo_rgb.
    ---
    width: 50%
    name: demoexample3
    align: right
    ---
    example 3: width (50%) as percentage, a
    ```

 </div>

    ```{figure} demo97/demo97_figure1.jpg
    ---
    figclass: margin
    width: 50%
    name: demoexample2
   
    ---
    example 2:including figclass: margin
    ```

https://teachbooks.io/manual/_images/TUDelft_logo_rgb.png
https://teachbooks.io/manual/_images/TUDelft_logo_rgb.png

Equations
Equations can be included in two ways: inline or display mode.

To make an inline equation, just put the LaTeX equation between $-signs. For example, $F =
m \cdot a$ produces: .

Display mode equations (the ones that take up a whole line), can be inserted using double
$-signs, like this:

which will produce:

The scientific rules dictate that quantities (, , etc.) should be printed in italics.
Units, however, should not! One can use \text{m} in an equation to comply to this
rule:

To number the equations and refer in text, you need to provide a label to the equation. Just
put the label between brackets and place it after the last $$, like this:

F = m ⋅ a

$$
 F = m \cdot a
$$

F = m ⋅ a

F m a

F = m ⋅ a = 10 ⋅ 9.81 = 98N

Warning

Make sure there is a blank line before the display mode equations, otherwise it will
render as inline and display the outer set of $$$ symbols. Also, the Euro symbol is not
included in MathJax (see note below) and must be specified using \unicode{0x20AC}
(note that it displays incorrectly in some Markdown renderers like VS Code).

Tip

Resulting in:

(2)

Equation (1) can now be referred to.

$$
 F = m \cdot a
$$ (newtons_second_law)

F = m ⋅ a

Note

The Jupyter Book uses MathJax to display equations, which provides some LaTeX-like
functionality, but not all! For example, the Euro symbol is missing, and packages like
siunitx are not available (hint, use \textrm{} and \textrm{}). When something is not

working, it’s useful to search for MathJax-specific solutions (hint, include “mathjax” in
your Google search).

https://teachbooks.io/manual/basic-features/jupyterbook.html#equation-show-newtons-second-law

Videos
Videos uploaded to YouTube can be embedded in the Jupyter Book. There are several ways
to do so:

1. To embed them in the Jupyter Book, first obtain the embedding link of the video. In order
to do so, go to the YouTube page of the video (so not the Brightspace page), then click share
in the description box. There should be a button embed, click that. Copy the HTML code that
appears in the panel. Then, to embed the video, use the following

The src can be used in combination with Iframes:

Or the HTML-iframe code can be directly included in the markdown file.

Resulting in the video below:

 <iframe
 width="560"
 height="315"
 src="https://www.youtube.com/embed/UCb-b82tzLo?"
 align="center"
 frameborder="0"
 allowfullscreen
 ></iframe>

```{video} https://www.youtube.com/embed/UCb-b82tzLo?
```

https://teachbooks.io/manual/external/sphinx-iframes/README.html

Voorstellen onderzoek docent Wim BouwmanVoorstellen onderzoek docent Wim Bouwman

2. Another option is to use a python coding cell. As this code cell should be run when the
book is made, you have to change the config file and set execute_notebooks: to force. This
comes with the downside that it takes considerable more time to deploy the book.

Moreover, it requires one to have this code at the top of your markdown file:

Note that this is not needed when you use a .ipynb (jupyter notebook) file.

    ```{code-cell} ipython3
    :tags: [remove-input]
    from IPython.display import YouTubeVideo
    VideoWidth=600
    YouTubeVideo("YDBr1Lof_mI", width=VideoWidth, align='center')
    ```

 jupytext:
 text_representation:
 extension: .md
 format_name: myst
 format_version: 0.13
 jupytext_version: 1.10.3
 kernelspec:
 display_name: Python 3 (ipykernel)
 language: python
 name: python3

https://www.youtube.com/watch?v=UCb-b82tzLo

References
To make references to figures, equations et cetera, use the following syntax:

For figures, use: {numref}`Figure {number} <name of the figure>`

For equations, use: {eq}`<equation label>`

For citations, use: {cite:p}`<bibtex_entry>` for a citation between parenthesis, or
{cite:t}`<bibtex_entry>` for an inline citation.

Examples

Using {numref}`Figure {number} <fig-gitpush>` produces the output: Figure 92.

Fig. 92 Some caption here

Using {eq}`<eq:Newton>` to refer to Newton’s second law (3).

(3)F = m ⋅ a

https://teachbooks.io/manual/_images/git-push.png

Code
There are two main ways to include code: directly within a Markdown file or within a Jupyter
notebook. More methods are available, but we don’t include them here. The first option is
great for including simple calculations, or generating simple figures when an image file is
not practical. More will be added later.

Note that if you are using a *.ipynb file or including a code snippet in a *.md file, including
a blank line between the text and the closing three tick marks will generate an empty code
box of one line in the Jupyter Book.

When making notebooks for the Book, you might want to hide certain cells from the reader.
For example, when including a simple figure generated from code or making a JupyterQuiz,
we have to execute a code cell that generates the quiz. This code cell is ugly and distracting,
so we do not want to render this in the final book.

We can change how the compiler treats notebook cells by using cell tags. You can find a
detailed explanation on cell tags here. Specifically, have a look at the sections on hiding cell
inputs and removing cell inputs.

The workflow of editing cell tags depends on your editor. If you’re using Jupyter Lab, you
can find instructions here.

For example, the following tag is used to convert the code input into either a drop-down
(hide-input) or make it invisible (replace hide-input with remove-input). Replace input
with output to do the same with the cell output:

Once a correctly typed tag is added to the notebook it will appear in the buttons at the top
and can be added to other cells. Multiple tags can be added to the same cell, in which case
the tags are separated by commas.

{
 "tags": [
 "remove-input"
]
}

https://jupyterbook.org/en/stable/interactive/hiding.html?highlight=cell%20tag
https://jupyterbook.org/en/stable/content/metadata.html#jupyter-cell-tags

Code blocks that produce
figures

This can be done with notebooks, but it’s not easy to make references to figures in
notebooks. You can also place the code that produces and saves the figure in a separate
.py file, and include that in a markdown file. Let’s say we want to make a simple sine wave:

1. Place the code of the figure in a .py file. In this case, sinewave.py produces our figure.
The code looks like this:

2. Test your code and make sure that the figure looks good. When you are ready to
commit, place your code file in book/code .

The book uses a Matplotlib style sheet; to see what this looks like on your local machin you
will have to run plt.style.use('../../config/matplotlibrc') after importing Matplotlib. This
should be done outside of the *.py file you are creating. Note that the example style sheet
path assumes you are working in the book/code directory. It is recommended to preserve a
list of figures using a notebook in code_checks , where there are also working examples. It is
not necessary to commit *.svg files as these are cleaned when the book is generated.

3. Now include the code file by using the following directives:

 import numpy as np
 import matplotlib.pyplot as plt

 x = np.linspace(0, 2*np.pi, endpoint=True)
 y = np.sin(x)

 plt.figure()
 plt.plot(x, y)
 plt.title('$y=\sin(x)$')
 plt.xlabel('x')
 plt.ylabel('y')
 plt.savefig('sinewave.svg')

Warning

It is important that the name of the saved figure is exactly the same as the name of the
Python script that generates it. Otherwise, the figure will not be generated by the
Runner.

https://matplotlib.org/stable/tutorials/introductory/customizing.html

4. Include the figure as described above. Remember that figures are saved in the
book/figures directory. We also use a naming convention of *_py.svg for figures

generated from code, to easily include them in .gitignore , since they are built in the
CI/CD pipeline.

 ````{toggle}
 ```{eval-rst}
 .. literalinclude:: ../sinewave.py
 :language: python
 ```
 ````

Note

the outer most directive needs an extra tick mark for nested cases.

Badges, Buttons & Icons
Contents

Badges

Buttons

Icons

 provides a range of features which are visually appealing and functional.
These elements can enhance the interactivity and visual design of your book, offering
additional information or links in a compact and visually engaging way. The badges, buttons
and icons are made available through Sphinx and they themselves wrote a documentation
about it.

Badges
Badges are small visual indicators often used to convey concise or important information.
They can be very useful for categorising or tagging content for the reader like has been
done for the subchapters under the features chapter of this manual.

There are three types of badges: plain, link and reference (for cross references within book)
which are fully customizable and can simply be added with Markdown syntax:

Here’s an overview of all the available colours:

Type Badge Code Syntax

Plain plain_text {bdg-primary}`plain_text`

Link https://teachbooks.io/ {bdg-link-primary}`https://teachbooks.io/`

Hidden
Link

TeachBooks {bdg-link-primary}`TeachBooks

<https://https://teachbooks.io/> `

Reference Badges {bdg-ref-primary}`my_ref`

https://jupyterbook.org/
https://jupyterbook.org/
https://sphinx-design.readthedocs.io/en/latest/badges_buttons.html
https://teachbooks.io/manual/features/overview.html
https://teachbooks.io/
https://https//teachbooks.io/

Buttons
Buttons provide a way to create clickable elements that are more attractive than links, for
example, to link to key sections of your book such as downloads or external resources.
Jupyter-Book supports buttons using Markdown making them highly customizable. It is
possible to link to external websites as well as chapters within your book. To link to an
external page, use {button-link} . {button-ref} must be used when linking to a part within
your book.

The basic code syntax for creating a button is as follows:

https://teachbooks.io

Full
Colour Code Syntax

Colour
Outline Code Syntax

my_text {bdg}`my_text`

my_text {bdg-primary}`my_text` my_text {bdg-primary-line}`my_text`

my_text {bdg-secondary}`my_text` my_text {bdg-secondary-line}`my_text`

my_text {bdg-success}`my_text` my_text {bdg-success-line}`my_text`

my_text {bdg-info}`my_text` my_text {bdg-info-line}`my_text`

my_text {bdg-warning}`my_text` my_text {bdg-warning-line}`my_text`

my_text {bdg-danger}`my_text` my_text {bdg-danger-line}`my_text`

my_text {bdg-light}`my_text` my_text {bdg-light-line}`my_text`

my_text {bdg-muted}`my_text` my_text {bdg-muted-line}`my_text`

my_text {bdg-dark}`my_text` my_text {bdg-dark-line}`my_text`

my_text {bdg-white}`my_text` my_text {bdg-white-line}`my_text`

my_text {bdg-black}`my_text` my_text {bdg-black-line}`my_text`

https://teachbooks.io/

Overview

Overview

Buttons can be customized in markdown in a similar way as figures. You can experiment with
these styles to create buttons that align with your book’s theme. Here are the set of
parameters which can be customized:

Finally here are some examples:

TeachBooks

    ```{button-link} https://teachbooks.io
    :color: primary
    ``` 

    ```{button-ref} feature_overview
    :color: secondary
    ``` 

Parameter Options Functionality

color primary, secondary, success, danger,
warning, info, light, dark, muted

Set the color of the button
(background and font)

outline / white button, coloured outline

align left, right, center Align the button on the page

expand / Expand to fit parent width

click-
parent

/ Make parent container also
clickable

tooltip / Add tooltip on hover

shadow / Add shadow CSS

class / Additional CSS classes

https://teachbooks.io/manual/features/overview.html
https://teachbooks.io/manual/features/overview.html#feature-overview
https://teachbooks.io/

TeachBooks

Icons
Icons can be included to visually represent actions or categories. They can take many shapes,
such as an image or button inserted in-line within a text paragraph. Icons can be integrated
using HTML syntax.

To add an icon, use the following syntax:

1. Image Icons

Let’s have a look at the first sentence of this chapter again: provides a range
of features which are visually appealing and functional.

Here the Jupyter-book logo was inserted for a more professional look. It’s including a link
href and and image saved as ../images/logo-wide.svg

2. SVG Icons

A library of SVG icons can be found in the Bootstrap library.

By scrolling through the available icons in the library you can find just about any icon. Once
selected, you need to copy the SVG of the icon to include it in the path in the HTML code.
This paragraph includes a globe:

    ```{button-link} https://teachbooks.io
    :color: warning
    :shadow:

    TeachBooks
    ```

    ```{button-link} https://teachbooks.io
    :color: success
    :expand:

    TeachBooks
    ```

<img style="display:inline-block; height:1.5em; width

https://teachbooks.io/
https://jupyterbook.org/
https://jupyterbook.org/
https://icons.getbootstrap.com/#icons

If you want to keep your files clean, you won’t like these svgs. However, your icons is
probably available in one of the following icon providers.

3. GitHub Octicon Icons

GitHub icons like can be added using the syntax: {octicon}`mark-github`

Where mark-github can be replaced by any of the name of the icon provided here

By default the icon will be of height 1em (i.e. the height of the font).

4. Material Design Icons

The use of Material Design Icons like is explained here

5. FontAwesome Icons

The use of FontAwesome Icons like is explained here. There’s no need to add the
FontAwesome CSS.

6. Combining Buttons and Icons

Icons can also be included within buttons using the icon font for a modern, professional
look. The code can also be downloaded in the Bootstrap library.

This button includes a download icon alongside some text: “Download it!”.

Loving this book? Download it!

<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class=
<path d="M0 8a8 8 0 1 1 16 0A8 8 0 0 1 0 8m7.5-6.923c-.67.204-1.335.82-1.887 1.855A8 8 0 0
</svg>

Loving this book?
 <i class="fas fa-download"></i> Download it!

https://primer.style/foundations/icons
https://primer.style/foundations/icons
https://sphinx-design.readthedocs.io/en/latest/badges_buttons.html#material-design-icons
https://sphinx-design.readthedocs.io/en/latest/badges_buttons.html#fontawesome-icons
https://icons.getbootstrap.com/#icons
https://jupyterbook.org/

Banners and Announcements
Contents

Known Issue

A banner can be added to the top of a Jupyter Book:

Fig. 93 Example of a banner in the MUDE book.

This is a commonly used feature, described in the Jupyter Book manual here. However, note
that if you are using the Sphinx-Thebe interactive Python feature, or other features that
customize the top part of a Jupyter Book website (for example, the download page buttons),
the banner does not always work. In this case, the banner should be specified using the
announcement option in the html_theme_options setting in the _config.yml file:

sphinx:
 config:
 ...
 html_theme_options:
 ...
 announcement : "This book is under construction ✍🏻; it's continuously updated from
 ...

https://teachbooks.io/manual/_images/banner_mude.png
https://jupyterbook.org/en/stable/web/announcements.html

You should always enclose your announcement in quotes to make it a complete
string. Use a different type of quote if your announcement itself contains them (for
example, "like 'this'"). If you are using HTML elements, it is best to make your
announcement a complete HTML tag, not Markdown with HTML inside.

Markdown links do not work in the announcement, requiring you to use HTML!

Known Issue
Note that there seems to be a bug if you only use the announcement and
launch_buttons:thebe:true option; including additional buttons seems to fix this issue (see

Issue 65 in the MUDE book), for example:

sphinx:
 config:
 ...
 html_theme_options:
 repository_url: "https://github.com/TeachBooks/mechanics-BSc"
 use_repository_button: true
 use_issues_button : true
 announcement : "This book is under construction ✍🏻; it's continuously updated from
 launch_buttons:
 thebe: true

Tip

https://gitlab.tudelft.nl/mude/book/-/issues/65

Easy Editing Process
The following tools are created by TeachBooks to ease the process of making books. We acknowledge that making books is
a difficult process; it requires advanced knowledge on CLI, python packages, html-files, data-storage and website hosting.
The tools in this chapter are intended for those users who lack knowledge on these topics (which includes most of the
TeachBooks’ community members itself).

TeachBooks template
Contents

How to get started

Features

Contribute

This page reuses CC BY 4.0 licensed content from TeachBooks (2024). Find out
more here.

This page is useful for user type 3, 4 and 5.

GitHub template

The template allows you to start your own TeachBook and hosting that TeachBook online
without knowledge on Git, the Jupyter book package, python or anaconda. It doesn’t
elaborate on the collaborative functionalities of Git or how to edit the book. Please look at
our manual (https://teachbooks.io/manual) to find more about that!

How to get started
How to use the template is demonstrated in the figure below, all steps are elaborated on in
the following step-by-step tutorial.

Attribution“

User types

https://teachbooks.io/manual/references.html#id15
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual

Fig. 94 Demonstration for a public repository, video available here

1. To get started making your TeachBook with our functionalities, use the template
TeachBook as template:

2. Fill in a repository name, this name will be used in the future url of your book:

https://youtu.be/nN3Oi_MVvF0
https://github.com/TeachBooks/main/template
https://github.com/TeachBooks/main/template

3. You can choose for Private only if you’ve GitHub Pro, GitHub Team, GitHub Enterprise
Cloud, or GitHub Enterprise Server. Otherwise, you won’t be able to publish your
TeachBook online. Furthermore, it prevents people from contributing to your book,
making your book essentially ‘closed’ instead of ‘open’. Note that the built book website
is always public.

4. You need to activate GitHub pages so that your website is published to the internet. As
long as you don’t do this your TeachBook is not published online. Actually, now that
you’ve taken this template our workflow tries to publish it to GitHub pages, which you
didn’t have the chance to activate yet. That’s why you probably received an email with
‘call-deploy-book: Some jobs were not successful’ and you see the failed job under
Actions - All workflows - call-deploy-book - Initial commit . You can activate

GitHub pages by setting the source for GitHub pages to GitHub Actions under
Settings - Pages - Build and deployment - Source - GitHub Actions :

5. Make an edit to the TeachBook by editing and committing changes to one of the files in
the book/ subdirectory (available under Code). Now checkout the progress of the
publishing workflow under Actions - All workflows - call-deploy-book - <the most

recent workflow run> . Remember, the first commit which is there has failed because
GitHub Pages wasn’t activated at the time of Initial commit , you could also re-run that
job if you don’t want to make an edit. You can do so by running the workflow from
Actions - All workflows - call-deploy-book - Initial commit - Re-run all jobs

- Re-run jobs :

6. When the workflow has finished, visit your build TeachBook at https://<username or
organiszation_name>.github.io/<repository_name> (case sensitive). For our example it is
https://dummydocent.github.io/test_book_from_template/ for the shown repository.
These links are visible in the action’s summary as well, as shown in the figure of step 4.

7. Want to get started directly? Your book contains a few exercises to get your started!
Visit https://<username or
organiszation_name>.github.io/<repository_name>/exercises/exercises (case sensitive) to
get started with the first ones to get the basics of how to interact with your book on
GitHub.

https://dummydocent.github.io/test_book_from_template/

Additional tip: Set the repository website as your GitHub Pages website under Code -
About - - Website - Use your GitHub Pages Website

https://github.com/TeachBooks/template_figures/blob/main/exercises.png?raw=true

Features
A github repository structure for making a Jupyter Book (/book)

An empty TeachBook containing an intro page on root, an example markdown page, an
example jupyter notebook page, an example references page. and an example credits
page. (/book/_toc.yml , /book/_config.yml , /book/credits.md , /book/intro.md ,
/book/references.md , /book/some_content/overview.md ,
/book/some_content/text_and_code.ipynb)

A file ready for adding references (references.bib , /book/references.md)

An example favicon (web browser icon) (/book/figures/favicon.ico , book/_config.yml .)

An example logo (/book/figures/TUDelft_logo_rgb.png , /book/config.yml)

The configuration files set ready to make your Jupyter Notebooks pages work with live
code using our sphinx-thebe extension and our recommended settings
(/book/config.yml)

An example of setting up preprocessing your table of contents to hide certain draft
chapters for eg. students (_toc.yml)

A file containing all the recommended software packages (requirements.txt)

A file containing the recommended license CC BY 4.0 (LICENSE.md)

Our GitHub workflow for publishing your TeachBook to GitHub Pages
(.github/workflow/call-deploy-book.yml)

https://github.com/executablebooks/jupyter-book
https://teachbooks.io/manual/features/live_code.html
https://teachbooks.io/manual/features/live_code.html
https://github.com/TeachBooks/deploy-book-workflow

A gitignore file containing standard python filetype to ignore (.gitignore)

A readme containing information how to use the template, which can adjusted after
using the template (README.md)

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual_description
is also part of the TeachBooks manual as a submodule. If you’d like to contribute, you can
create a fork and open a pull request on the GitHub repository. To update the README.md
shown in the TeachBooks manual, create a fork and open a merge request for the GitHub
repository of the manual. If you intent to clone the manual including its submodules, clone
using: git clone --recurse-submodulesgit@github.com:TeachBooks/manual.git .

https://github.com/TeachBooks/template
https://teachbooks.io/manual/external/template/README.html
https://github.com/TeachBooks/template
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

Draft-Release Workflow
Contents

Draft-Release Workflow

Draft-Release Workflow

Often it is necessary to prepare, review and edit materials in parallel to material that is currently being used by students, or
another target audience. This workflow enables an author to easily maintain separate versions of a book without having to
repeatedly comment out lines of a table of contents or page when building different versions. It is also easy to implement in
CI/CD settings (it is already implemented in the {ref}Deploy Book Workflow `, which builds our TeachBooks).

Consider a case where you have been using two branches to develop and maintain a book: release (shared with
students) and draft (shared with colleagues to review contents before release). You are probably also using other
branches to develop contents, but rely on the draft branch as a way to collect the “finalized-but-not-yet-
released” material. Things go smoothly as long as you add pages to the draft branch one at a time, then merge
the branch into release as they are needed.

But what happens when you have 2 pages: one is ready to share with students, but the other is still being
reviewed by your colleague. The only way to get the proper page into release is to comment the undesired page
in the ToC using a commit on draft , merge the commit into release , then uncomment the ToC in a new commit
on draft . This is very tedious, and prone to error as there it is not straightforward to tell which pages are
available in the draft versus release books!

The Draft-Release workflow solves this problem by using commented tags to clearly denote which pages are
available in the draft book and which are left out of the release book.

The workflow is enabled by a teachbooks CLI feature that identifies and removes any lines from the files _config.yml and
_toc.yml file that are surrounded by REMOVE-FROM-RELEASE tags.

For example, pages in a developed book (e.g., draft branch) can be manually stripped out of the table of contents when a
merge request from draft to release is made. This prevents the page being included in the released book. Pages marked
with this feature are still visible in the draft book. Lines tagged in the configuration file _config.yml can be used in exactly
the same manner. The tag is applied as follows:

There is no limit to the number of stripped sections, they can be sequential and indentation does not matter.

format: jb-book
root: intro

parts:
 - caption: ...
 chapters:
 - file: ...
 ...
START REMOVE-FROM-PUBLISH
 - file: files_to_remove
END REMOVE-FROM-PUBLISH

Why is this useful?

To invoke the tag and remove content during the book build process, use the following optional argument when building
the book with the teachbooks package:

Note that teachbooks build book would build a book without stripping the tagged lines, just as jupyter-book build book
would. This is called “draft mode” and is the default behavior. You can recognize it in the stdout after running the build
command:

Installation
The package is currently available on PyPI and can be installed as follows:

The first stable release (v1.0.0) is expected to be released in Spring 2025. Until then the package is very much useable but
will be updated frequently. Therefore, get in the habit of updating the package regularly:

We recommend you install this in an environment that is specifically dedicated for building books. Python virtual
environments are a good way to manage this and would be consistent with what is used by the GitHub servers via the
Deploy Book Workflow. However, if you use non-Python tools to edit and check your book, a Conda environment may be a
better choice.

The package is a CLI tool that primarily provides a wrapper around the Jupyter Book package which is used for pre- and
postprocessing. In this case “wrapper” refers to the CLI usage: CLI commands generally invoke jupyter-book commands
internally; the jupyter-book package is not distributed within the teachbooks package.

The source code and function of the package will eventually be documented on a Sphinx-built website
(teachbooks.io/TeachBooks/), however, this is currently still under construction.

teachbooks build --publish book

TeachBooks: running build with strategy 'draft'

pip install teachbooks

pip install --upgrade teachbooks

https://pypi.org/project/teachbooks/
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#deploy-book-workflow
https://teachbooks.io/TeachBooks/

Releasing book online
Contents

How to start using this workflow

Customize the workflow: TeachBook releasing settings

Common Usage Examples

Private submodules

Additional GitHub settings

View the workflow progress and summary

Book Build

Caching

Contribute

We developed a workflow which builds your TeachBook in your repository for all branches and releases them online via
GitHub Pages. In simplified terms, it automatically builds the book website based on updates to your repository, creates
multiple instances of your book (defined by each branch) and provides the ability to customize the URL’s at which each
instance of the book can be accessed. This tool is designed specifically for educational contexts, for example, when you may
want to preserve book versions from multiple academic years so that students are able to access it later. The TeachBooks
Template uses this functionality for example.

The workflow call-deploy-book.yml calls the deploy-book.yml workflow, which builds a Jupyter Book at the calling
repository for all branches, and deploys them via GitHub Pages. It is currently configured to create a Jupyter Book using the
TeachBooks Python package (i.e., teachbooks build book), although this may be adapted in the future to make it easier to
use in other applications (e.g., to build books with other software or any static website in general).

The workflow has the following features:

Releasing of your TeachBook-repository (built with Jupyter Book) to GitHub Pages

Ability to release both private (GitHub Pro, GitHub Team, GitHub Enterprise Cloud, or GitHub Enterprise Server
required) and public (GitHub Free is enough) repositories.
GitHub Teams is free for teachers as described in the GitHub documentation.
If you have an organization for your TeachBook on GitHub, link your GitHub team rights to your organization as
described on the GitHub website.

Releasing all or a selection of branches, allowing to build a draft version of the TeachBook online which reduces the
need for local builds of the book

Provides a summary describing where the TeachBook is released, errors in the build process per branch and how the
release step is configured

Caching of already built books so that it can be partially reused when another branch is released or the next build
contains critical errors

Caching of python environment to speed up the workflow

Allowing use of submodules within your book

Customizable trigger for the workflow itself

Optionally preprocess branches using the teachbooks package (e.g., Draft-Release Worklflow).

Converting branch-names to well-defined URLs

https://github.com/TeachBooks/template
https://github.com/TeachBooks/template
https://teachbooks.io/
https://github.com/executablebooks/jupyter-book
https://docs.github.com/en/education/explore-the-benefits-of-teaching-and-learning-with-github-education/github-education-for-teachers/about-github-education-for-teachers#github-education-features-for-teachers
https://github.com/team#organizations
https://github.com/TeachBooks/TeachBooks

Customizable settings on where the books should be deployed including alias for branch-names and selection of one
branch to be deployed on root. The workflow will gives warnings if these settings are ill-defined or conflicting.
Although aliases are generally not allowed by GitHub Pages, it seems you can use one alias, but not more.

Customizable behavior of book URL root directory, either by redirecting the root to one of the branches or by copying
or moving one of the branches to root.

Adds an ‘archived’-banner to old branches / branches of previous years.

How to start using this workflow
As previously mentioned, this workflow is used in TeachBooks/template . Feel free to use it for your TeachBook as well:

1. Add teachbooks to your requirements.txt file in your root folder

2. Move all the TeachBook files (including _config.yml and _toc.yml) to a subdirectory book/ .

3. Copy the call-deploy-book.yml workflow to the /.github/workflows folder in your repository.

4. Set source for GitHub pages to GitHub Actions under Settings - Pages - Build and deployment - Source -
GitHub Actions (as long as you don’t do this the workflow deploys all branches which build successfully).

5. Trigger the workflow by making an edit to the TeachBook by editing and committing changes to one of the files in the
book/ subdirectory (available under Code) or manually activating the workflow under Actions - All workflows -
call-deploy-book - Run workflow - Use workflow from branch: <the branch you did step 1, 2 and 3 in> - Run workflow

(this workflow).

6. Now checkout the progress and summary of the releasing workflow under Actions - All workflows -
call-deploy-book - <the most recent workflow run> .

Customize the workflow: TeachBook releasing settings
You can adapt the behaviour by setting repository variables as explained here or using the VS Code Extension GitHub
Actions. Define the following repository variables:

PRIMARY_BRANCH which is set to main whenever it’s not defined in the repository variables.

This sets the branch or alias (when using ‘redirect’ for BEHAVIOR_PRIMARY) which is shown on root.

It is advised to show either your default branch on root, or the branch shared with your primary/active book
audience (e.g., your current students).

BEHAVIOR_PRIMARY which is set to redirect whenever it’s not defined in the repository variables.

This indicates whether to copy the PRIMARY_BRANCH to root (‘copy’), move the PRIMARY_BRANCH to root
(‘move’) or redirect from root to the PRIMARY_BRANCH (‘redirect’)

Advised to use ‘redirect’ if you expect to archive a version in the future so that the URL doesn’t change for the
reader (e.g., to preserve URL containing the current academic year shared with students).

Use copy or move when you only expect readers to use the root URL. Move is useful to remove unnecessary build
artifacts and if you don’t need to visit the URL containing the branch or alias name.

BRANCH_ALIASES which is set to (just a space) whenever it’s not defined in the repository variables.

This defines an alias (custom URL) for a branch

Variables should be a space-separated list of branch names, e.g. ‘alias:really-long-branch-name`

If no alias is wanted, BRANCH_ALIASES may be set to (just a space)

BRANCHES_TO_DEPLOY which is set to * (all branches) whenever it’s not defined in the repository variables.

This defines the branches to deploy.

It should be a space-separated list of branch names, e.g. ‘main second third’.

BRANCHES_TO_PREPROCESS which is to to (just a space = no branch) whenever it’s not defined in the repository variables

https://github.com/TeachBooks/TeachBooks
https://github.com/TeachBooks/deploy-book-workflow/blob/main/.github/workflows/call-deploy-book.yml
https://docs.github.com/en/actions/learn-github-actions/variables#creating-configuration-variables-for-a-repository
https://marketplace.visualstudio.com/items?itemName=GitHub.vscode-github-actions
https://marketplace.visualstudio.com/items?itemName=GitHub.vscode-github-actions

This defines the branches to preprocess with the TeachBooks package, which removed book-pages and config
lines defined with # START REMOVE FROM RELEASE and # END REMOVE FROM RELEASE

It should be a space-separated list of branch names, e.g. ‘main second third’.

If no preprocessing is required, BRANCH_TO_PREPROCESS may be set to ‘ ‘ (space).
BRANCHES_ARCHIVED which is set to (space, no branch) whenever it’s not defined in the repository variables

This adds a banner to the released branch: You are viewing an archived version of the book. Click here for the
latest version.

It should be a space-separate list of branch names, e.g. ‘main second third’.

In call-deploy-book.yml itself you can specify the trigger for this workflow. By default, a push to any branch triggers the
workflow. You can limit the branches or subdirectories.

Common Usage Examples
Relevant use cases are explained here, along with an explanation for how to set up the workflow accordingly. Note that it is
not required to set your PRIMARY_BRANCH to the default branch of your GitHub repository; this is a choice that is determined
by what version of the source code you want visitors to see (i.e., work in progress, or the most recent “complete” or
“released” version of a book).

Books with active users of different versions (academic years)
Consider a case where each academic year you would like to create a new book for your students. However, you need to
ensure that students from previous years can still access “their” version of the book.

Assume for this example that we are working in the “my_organization” GitHub Organization in repository “my_book” and
that the current academic year is 2025, and that we have one or more books in our repository from previous years. The
desired URL structure is thus:

students from this year use the book at my_organization.github.io/my_book/2025/

students from last year use the book at my_organization.github.io/my_book/2024/

visitors to my_organization.github.io/my_book/ will automatically be redirected to the book from the current year

To create this behavior, do the following:

Create a branch for each year: a logical name would have format YYYY , (technically it can be anything, as the URL can
be set to YYYY with BRANCH_ALIASES).

Set PRIMARY_BRANCH to the branch for the current academic year (e.g., 2025)

Set BEHAVIOR_PRIMARY to redirect (default)

Alternative without redirect to current year
One possible modification to this setup would be if you are progressively releasing content to your current students (e.g.,
2025) but you wanted visitors to my_organization.github.io/my_book/ to see a complete version of your book. Assuming

that the ideal version for such visitors is the completed book from the previous year (2024), you could do this:

Set PRIMARY_BRANCH to 2024

Set BEHAVIOR_PRIMARY to copy

As your current students may then accidentally go to the older version of the book, we recommend you use a banner to
indicate to readers that there is a (partial) new version available, and advise them where to find it. You can add a banner
using this workflow (BRANCHES_ARCHIVED) or the standard Jupyter Book banner feature.

https://teachbooks.io/TeachBooks/cli/cli.html#cmdoption-teachbooks-build
https://jupyterbook.org/en/stable/web/announcements.html

Books with active editors working in parallel
Consider a case where several authors are working on material for a book and you would like to be able to see the work of
any author at any time. You also have a branch that is used to share finalized material with your readers (we call this a
“release” branch) and a branch that is used to collect and review the work of all authors before releasing it (we call this a
“draft” branch).

Assume for this example that we are working in the “my_organization” GitHub Organization in repository “my_book.” The
released book is on branch release the draft book is on branch draft ; author branches are author_1 , author_2 , etc. The
desired URL structure is thus:

official (released) version of the book is at my_organization.github.io/my_book/

draft version of the book is at my_organization.github.io/my_book/draft/

the work of each author can be found at my_organization.github.io/my_book/author_1/ , etc.

To create this behavior, do the following:

Create a branch for each author as well as release and draft branches

Set draft to the default branch

Set PRIMARY_BRANCH to release

Set BEHAVIOR_PRIMARY to copy

Note that in this situation we strongly recommend using the Draft-Release workflow that is incorporated in the TeachBooks
Python package, which allows you to restrict specific content from appearing in the release book that is already
incorporated in the draft book. Find out more in the TeachBooks Manual. This is useful, for example, if you would like to
review many chapters, but release only one at a time, or use a banner in the draft book (e.g., via _config.yml) but not the
released book.

Why make the draft branch default?
What if you want to make sure the source code for the released book is visible in the repository, rather than the draft
version (e.g., you want to make sure external visitors see this version of the material)? You can do this by making release
your default branch instead of draft . However, this also means that Pull Requests will be default be made into the release
branch instead of draft , which may alter the working method of your team in an undesirable way (e.g., not being able to
use a draft branch, accidentally releasing material before checking on draft , or having to manually adjust every PR that is
created by GitHub to merge into draft instead of release).

Private submodules
In case your book includes private submodules, you’ll need to create a Personal Access Token (classic) with at least the
scope repo as described in the github documentation, and add this token with the name GH_PAT as a Repository secret or
Organization secret (Settings > Secrets and variables > Actions > Repository secrets or Organization secrets .)

Furthermore, manually copy the workflow (.github/workflows/deploy-book.yml) in your own repository as the authorization
doesn’t work with the called workflow.

Additional GitHub settings
We advise you to enable two options in the general repository setting regarding pull requests in GitHub:

Enable Always suggest updating pull request branches , suggesting a merge from the default branch into any separate
branch before merging into main.

https://teachbooks.io/manual/features/draft-release.html
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

Enable Automatically delete head branches to delete branches after they are merged (you’ll still be able to restore
those).

View the workflow progress and summary
Whenever the workflow is triggered, its progress and a summary can be seen under the Actions - All workflows -
call-deploy-book in GitHub! It shows you a descriptive summary:

Ill-defined repository configuration variables (in Annotations)

Which branches are released and where (https://<username/organization_name>.github.io/<repository_name> (case
sensitive)) including which branch is released on the website root and the applied alias

Errors in the build process

How the repository variables are defined during the build.

Here’s an example for a summary for the template book:

Branches deployed

Legend for build status
✅ Released - build success, new version released.

🔴 Build failed [1] - build failure, previous version of the book reused.

⭕ Build failed [2] - build failure, no previous version reused.

Primary book at root
The book at the website root https://teachbooks.github.io/template/ redirects to the primary branch main (status: ✅
Released).

Aliases

Branch 🎋 Link 🔗 Build status ☑

main https://teachbooks.github.io/template/main ✅ Released

version2 https://teachbooks.github.io/template/version2 🔴 Build failed [1]

version3 https://teachbooks.github.io/template/version3 ⭕ Build failed [2]

Alias ➡ Target 🎯 Link 🔗 Build status ☑

draft main https://teachbooks.github.io/template/draft ✅ Released

https://teachbooks.github.io/template/
https://teachbooks.github.io/template/main
https://teachbooks.github.io/template/version2
https://teachbooks.github.io/template/version3
https://teachbooks.github.io/template/draft

Book Build
The Jupyter Book is built using the TeachBooks Python package teachbooks , which is a wrapper around the jupyter-book
command line tool that makes it easier to customize the build and deploy workflow. The package is documented at
teachbooks.readthedocs.io/ for those interested in the package implementation and API; for those interested in a higher
level overview and how-to, see the package overview page in the TeachBooks Manual.

By default the book is built using the following command:

The Draft-Release workflow allows tagged lines of code to be removed from yml files (for example, if some pages of a
book must be removed from a specific version). This is activated in the Deploy Book Workflow using the
BRANCHES_TO_PREPROCESS variable, which will then execute the following command:

More information about the Draft-Release workflow can be found here.

Caching
The GitHub Action Cache is used in the Deploy Book Workflow (DBW) to save time when building the book. This is
accompliched by caching two sets of files for each branch: 1) the Python virtual environment, and 2) the build artifact (the
HTML files forming each book website).

Preview of build errors & warnings
For more details please see the corresponding build-books jobs in the left pane.

On branch version2 :

On branch version3 :

Repository configuration variables
Variables can be set at TeachBooks/template

�[91m/home/runner/work/template/template/book/some_content/overview.md:5: WARNING: Non-consecutive header level inc

/home/runner/work/_temp/ff8c8325-8d8b-4c0b-a2b2-32d2169c55bc.sh: line 8: teachbooks: command not found

PRIMARY_BRANCH=main (default value used)
BRANCH_ALIASES=draft:main
BRANCHES_TO_DEPLOY=* (default value used)
BRANCHES_TO_PREPROCESS=main
BEHAVIOR_PRIMARY=redirect (default value used)
BRANCHES_ARCHIVED= (default value used)

teachbooks build book/

teachbooks build --release book/

https://teachbooks.readthedocs.io/
https://teachbooks.io/manual/features/overview.html#teachbooks-python-package
https://teachbooks.io/manual/external-content-teachbooks-v0.2.0/features/draft-release.html
https://github.com/actions/cache
https://github.com/TeachBooks/template/settings/variables/actions

The reason for doing this stems from the primary purpose of the Deploy Book Workflow, which builds many versions of a
book based on each branch, as well as creating a Python virtual environment from the requirements.txt file in the
repository. A unique environment for each branch is necessary to test changes to book dependencies and configuration in
an isolated way, but can dramatically increase the time required to build all versions of the book when the DBW runs. In
addition, it also takes time to build the book itself. For this reason, both of these sets of files are cached (although at the
moment, most of the time savings is primarily caching the build artifact).

This works by hashing a specific set of files and including that in the filename of the cache. Every time the workflow is
triggered, a new hashed filename is created and compared to the list of existing caches to see if one with the same name
exists; if so, the cache is reused. If not, a new environment and/or build artifact is constructed and a new cache is made.

Cached files can be found in GitHub under the Actions tab, then looking for the “Caches” section under the “Management”
pane on the left hand side of the screen. For example, this link shows the caches for the TeachBooks Manual. If needed,
caches can be deleted manually from this page. A cache will expire if unused for longer than 1 week or if the maximum
allowed disk space for all cached files is exceeded (both are GitHub policies).

Files created during a GitHub Action are called artifacts. Although this is not the same thing as a cache, the files in a specific
cache or artifact are identical. Artifacts have their own expiration period, which is possible to customize in the repository
settings (default is 90 days). Unexpired artifacts can be viewed at the bottom of any workflow run summary that is available
on the Actions tab of a GitHub repository.

To add even more confusion to the situation, if an artifact built during an Action is a set of HTML files (a website) that are
used to create a GitHub Pages website, the files served when visiting the URL for that are stored on a webserver; they are
not the artifact files, but are identical. Fortunately webserver files are preserved indefinitely (or until GitHub changes this
policy), meaning that even though your cache or artifact may be deleted, the website will still remain active.

The cache is a key component of the DBW and leads to several considerations for the building and maintenance of a book,
which are explained below, after the criteria for each cache type are described.

Cached Environment
The DBW uses Python virtual environments (python -m venv .venv) and python -m pip install -r requirements.txt to install
packages and create the book building environment. The entire .venv directory is preserved in the cache with a file name
beginning with venv-... . The week number is also included in the file hash, which ensures that a new hash is created at
least once per week.

Once created during a successful build action, an existing cached environment will be found and reused unless two specific
criteria are met: 1) a book build is required (replacing the cached build artifact), and 2) the requirements.txt file is changed.
Requirements for a “book build” are described in the next section.

Note that any change to the requirements.txt file will trigger creation a new environment, not necessarily one that
specifies the version number of a package.

Cached Build Artifacts
Build artifacts are the HTML files that define the website (i.e., the book) and are typically located in the subdirectory
book/_build/html of a repository once the book is built. Note that these files are typically only visible if you are building the

book locally, as they are not committed to the repository by default (i.e., .gitignore). For users only using the DBW and the
GitHub browswer editor, downloading the build cache is the easiest way to view these files, which have filenames beginnig
with html-build-<branch-name>-... .

Once created during a successful build action, an existing cached build artifact will be found and reused unless any of three
specific criteria are met: 1) a change is made to a file in book/ , 2) the requirements.txt file is changed, or 3) the status of a

https://github.com/TeachBooks/manual/actions/caches
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow
https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-period-for-github-actions-artifacts-and-logs-in-your-organization
https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-period-for-github-actions-artifacts-and-logs-in-your-organization
https://docs.python.org/3/library/venv.html

branch as archive or preprocess has changed (BRANCHES_TO_PREPROCESS of BRANCHES_ARCHIVED).

Immediately after a successful build action, the book website files exist in three places: cache, artifact and on a GitHub
webserver. However, as described at the beginning of this section, the cache will be automatically deleted after 1 week, if
unused, and the artifact will be deleted based on the setting in your repository (90 days by default).

Effect of Caching on Book Workflow
Implementation of the DBW has several characteristics that should be noted which could help understand certain behaviors
of the book build and website deployment process. These points may be useful to consider if you are experiencing
undesired behavior in your Actions builds and/or your actual book websites.

Remember that the DBW action will only run if a commit is made that changes requirements.txt or contents of book/

When first creating a repository, the action may not run, or may run and fail; occasionally it is needed to make a new
commit to get the workflow to run for the first time (remember to modify something in book/) or you may try to re-
run the job from the Actions tab

when using multiple branches, only the branch that is edited will be updated

the website for each branch may be built with a different Python environments (different package versions)

Unlike the virtual environments (next subsection), caches of the book build do not influence subsequent builds of the book,
as this artifact is replaced whenever a commit to a specific branch triggers a new build process. As described above, old
cached build artifacts are used if the build process from a new commit fails, ensuring that the URL of a website does not
return a 404 page.

Effect of Caching on Virtual Environment
In particular, note that older branches may have been built with cached environments that are different than those in a
newer branch, leading to (undesired) differences in book appearance or functionality—often without the author being
aware! This occurs if a package in requirements.txt is updated in the time between the creation of environments on
different branches, as pip will use the newest version when downloading a package (the first time a venv cache is created
in the DBW), but it will not always automatically update a package if pip install -r requirements.txt is used on an existing
environment (this happens every time an existing cache is used!). This means that, when compared to the venv on a newer
branch, a frequently used branch (where the cache has not expired) may retain old and out of date packages long after an
updated version is available; however, since the week number is included in the venv file hash, this will last for a maximum
of 1 week. A best practice to avoid this situation is to pin version numbers explicitly (e.g., teachbooks==0.2.0) if you want
book builds to remain consistent. In addition, a feature like dependabot can be used to automatically notify you when an
update is made; this is described in the TeachBooks Manual.

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual_docs is also part of the TeachBooks manual
as a submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To
update the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository
of the manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

To test changes to the deploy book workflow do the following:

1. Create a fork of the repository and make a commit to deploy-book.yml

2. Using a book repository (e.g., a book created from the TeachBooks Template), edit the call-deploy-book..yml file such
that TeachBooks/deploy-book-workflow/.github/workflows/deploy-book.yml@main is replaced with the repository and

https://teachbooks.io/manual/features/update_env.html
https://github.com/TeachBooks/deploy-book-workflow
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://github.com/TeachBooks/deploy-book-workflow
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

branch path to your modified file deploy-book.yml
3. Make a commit in the book repository that triggers the workflow and confirm that the job runs successfully.

Future improvements to the DBW may address the ability for a user to specify additional aspects of the build process, for
example, the Python version or the specific book build commands (e.g., teachbooks build or jupyter-book build). If this is
something that interests you, please create an Issue in the repository (perhaps with “feature request” in the title).

Build pull requests from forks
Contents

Usage

Setting up

When writing a TeachBook it is useful to automatically build and view these changes online. This exactly why we designed
and build the deploy-book-workflow tool, which also allows for multiple versions of your book to exist at any time with
customizable URL’s. However, it doesn’t cover all use cases. Luckily, Read the Docs is a free tool that can easily be used for
this purpose. It also provides a very easy way to view differences between versions on each page!

Pull Requests are a key tool for allowing anyone with a GitHub account to make a contribution to your work by forking your
repository, adding commits, then sending them back to your repository via a Pull Request. Unfortunately you are not able
to automatically build the book based on proposed changes in a pull request from a fork of your repository, as this requires
the deploy-book-workflow in the fork to have GitHub Actions enabled to show the proposed changes in the book.
Furthermore, when proposing your contribution in a pull request, you’d have to manually refer to your own built book (e.g.,
with a hyperlink). This process can be made easier by using Read the Docs, as it can automatically build a book based on
changes proposed in a pull request, and includes a link to the book directly in the pull request page.

Read the Docs is not recommended for final versions of your book because of the advertisement in the free version. If you’d
like to pay for it, it can replace the functionality of the deploy-book-workflow.

This tool works using Sphinx, which is the core engine for Jupyter Book; it is carried out using a Jupyter Book command to
generate a Sphinx configuration file, for example:

In theory this should work with the TeachBooks Python package teachbooks as well as local extensions (e.g., those in
book/_ext like APA References), but we have not checked this yet. If you are interested, try setting it up as a PR related to

this issue.

Once set up, this tool is only accessible via the Pull Request page for a repository in the ‘Checks’ part of the
automated rule set box (illustrated below under ‘Usage’). This is different from our deploy-book-workflow, which
is accessed under the Actions tab of a GitHub repository.

A Read the Docs account and admin privelages for a repository are the only requirements needed set this up; all
visitors to the pull request page will be able to view the book, including the differencing feature.

Usage
After visiting the summary page of a pull request you will be able to see the following line (make sure you click “show all
checks” to see it!):

jupyter-book config sphinx book/

Tip

https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://about.readthedocs.com/?ref=readthedocs.org
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/features/apa.html
https://github.com/TeachBooks/Read-the-Docs-example-book/issues/3

Click ‘Details’ to see the logs of the build process.

Whenever the build is done, click ‘Details’ again to see the build book. Tip, click d or add ?readthedocs-diff=true to the url
to see the differences on the pages highlighted. Note that this differencing functionality is not perfect as it might indicate
elements which are not changed intentionally. It is known to have issues visualizing changes associated with buttons, LaTeX
and figures.

Example
As an example, Read the Docs is configured in this example book. Fork it and open a pull request to test it’s functionality.

There’s an example pull request with corresponding built book on Read the Docs.

Setting up
This tool is a specific automation rule that is enabled within the GitHub pull request ecosystem.

Add configuration file to your repository
Add a file .readthedocs.yaml to the root of your repository, containing the following content:

You might need to add standard-imghdr to your requirements.txt file if the build fails when you’ve configured it in Read
the Docs (if the error tells you ModuleNotFoundError: No module named 'imghdr')

Setup Read The Docs account
Setup an account at app.readthedocs.org/accounts/login/. We recommend using your GitHub account for authentication.

version: 2

build:
 os: ubuntu-24.04
 tools:
 python: "3.13"
 jobs:
 pre_build:
 - "jupyter-book config sphinx book/"

python:
 install:
 - requirements: requirements.txt

sphinx:
 builder: html
 fail_on_warning: true
 configuration: book/conf.py

https://github.com/TeachBooks/Read-the-Docs-example-book
https://github.com/TeachBooks/Read-the-Docs-example-book/pull/1
https://read-the-docs-example-book--1.org.readthedocs.build/1/intro2.html?readthedocs-diff=true
https://app.readthedocs.org/accounts/login/?next=/dashboard/

When authorizing Read the Docs for your GitHub account, you can also grant access by Read the Docs for an organization
of which you are an owner, as well, which we also recommend.

Authorize access to organization
When you didn’t do so in the previous step, or you’d like to grant access at a later moment, you can grant/revoke access by
Read the Docs to your organization by following these menu items in settings: personal GitHub Settings - Integrations -
Applications - Authorized OAuth Apps - Read the Docs Community .

Add project in Read The Docs
On your dashboard, add a new project. Find your GitHub repository (you might need to refresh your repositories if you’ve
recently updated authorizations).

Enable Pull Request build
In the setting of your newest project, enable build of pull request by selecting the option in Building - Pull request builds
- Build pull requests for this project .

Additional settings
The following settings are recommended:

Setup - Settings - URL versioning scheme - Multiple versions without translations (/<version>/<filename>) , as
translated books can be implemented with Multilingual book

Setup - Settings - Addons - Search - disabled, as your books already contain a search function and the Read the
Docs search functions requires additional setup

Setup - Settings - Addons - Link previews - disabled, Multiple versions without translations
(/<version>/<filename>) , as previews can be implemented with Rich hover over tips

Setup - Settings - Automation rules - Add rule , to build all tagged versions of your book:

Description : ‘Build all tags’

Match : Custom Match

Custom match : .*

Version type : Tag

Action : Activate version

https://github.com/settings/connections/applications/fae83c942bc1d89609e2
https://github.com/settings/connections/applications/fae83c942bc1d89609e2
https://app.readthedocs.org/dashboard/
https://teachbooks.io/manual/external/Sphinx-launch-buttons/README.html
https://docs.readthedocs.com/platform/stable/intro/sphinx.html#configure-read-the-docs-search
https://teachbooks.io/manual/external/teachbooks-sphinx-tippy/README.html

Local Server to view interactive elements
locally

Contents
TeachBooks Server: teachbooks serve

Live Server: a VS Code Extension

Python Server: python -m http.server

Perhaps you have already noticed that when building a book and testing it locally on your computer, some features do not
work the way you expect, or worse—do not work at all! This is because many interactive features rely on browser
functionality to work properly, for example: Grasple/H5p iframe exercises, Sphinx-Thebe Python interactivity and
HTML/Javascript elements. Although the website is static (i.e., there is no code running on a webserver that generates the
content), modern web browsers have their own internal computing environments that run processes to deliver the rich
content we desire in our books.

Technically what is needed to facilitate this during the editing and checking of your book locally is a static web server that
can serve the files in the ./book/_build/html directory of your book (this subdirectory is created as a result of the command
build book). We refer to this as a local server because it is running on your local machine.

A Jupyter Book is really just a static website. This means that all book content and interactivity is available via the
(static) files that are provided to you by a webserver when you visit a specific URL. After this initial request, all
required files are available in your web browser, however, some features require the request and response
protocol to work properly.

We recommend you use the TeachBooks Python Package, which has a serve command in the CLI tool to start and stop
local servers. Find out more on the TeachBooks Package page.

This page presents just a few additional examples that are used by TeachBooks collaborators. There are many more options
available out there, for example, this list illustrates many servers that can be activated with a single line of code!.

Remember that the browser is serving static files provided by the local server and does not always keep track
when they are updated.

You should reload the page if you are editing and rebuilding the book. You can try CTRL+R ctrl + F5 . If this does
not work, on Chrome try right-clicking somewhere on the page, select “Inspect”, open the “Network” tab, then
reload with CTRL+R .

TeachBooks Server: teachbooks serve
If you have the TeachBooks Python package installed (pip install teachbooks), starting a server is as simple as:

Why do you need a local server?

Tip

https://gist.github.com/willurd/5720255

See the TeachBooks Package page for additional guidance on using the CLI tool.

By default it assumes you have a book in ./book/ , are running the command from the root ./ of your repository and will
serve ./book/_build/html . If not, it will serve the repository root. You can also specify the directory to serve:

Remember that the browser is serving static files provided by the local server and does not always keep track
when they are updated.

You should reload the page if you are editing and rebuilding the book. You can try CTRL+R ctrl + F5 . If this does
not work, on Chrome try right-clicking somewhere on the page, select “Inspect”, open the “Network” tab, then
reload with CTRL+R .

To stop the server, simply run

The CLI tool is set up to make the book edit and check workflow as easy as possible locally:

you can rebuild the book without restarting the server.

it reuses an existing server if already running.

it prints the URL where the book is served after building the book to easily access it by clicking the link in standard
output.

the teachbooks serve stop command prevents Python processes running in the backgroudn and slowing down your
computer (it saves the server state in a pickle file).

Installation of TeachBooks
The TeachBooks package is currently available on PyPI and can be installed as follows:

The first stable release (v1.0.0) is expected to be released in Spring 2025. Until then the package is very much useable but
will be updated frequently. Therefore, get in the habit of updating the package regularly:

We recommend you install this in an environment that is specifically dedicated for building books. Python virtual
environments are a good way to manage this and would be consistent with what is used by the GitHub servers via the
Deploy Book Workflow. However, if you use non-Python tools to edit and check your book, a Conda environment may be a
better choice.

The package is a CLI tool that primarily provides a wrapper around the Jupyter Book package which is used for pre- and
postprocessing. In this case “wrapper” refers to the CLI usage: CLI commands generally invoke jupyter-book commands
internally; the jupyter-book package is not distributed within the teachbooks package.

teachbooks serve

teachbooks serve path unconventional_book_dir/_build/html

teachbooks serve stop

pip install teachbooks

pip install --upgrade teachbooks

Tip

https://pypi.org/project/teachbooks/
https://teachbooks.io/manual/external/deploy-book-workflow/README.html#deploy-book-workflow

The source code and function of the package will eventually be documented on a Sphinx-built website
(teachbooks.io/TeachBooks/), however, this is currently still under construction.

Live Server: a VS Code Extension
A local server is easy to initialize directly in VS Code using the Live Server extension. Once installed, it can be activated with
a “Go Live” button in the bottom right corner of VS Code. The extension will automatically serve index.html, so depending
on your book build settings you may need to navigate to the correct directory/file manually using the URL address in the
browser.

You can install this extension by searching for Live Server (or even easier, extension ID ritwickdey.LiveServer)in
the Visual Studio Code extensions marketplace.

Python Server: python -m http.server
The Python standard library has a built-in server that can be activated from the command line. This is a simple way to serve
a book locally

If you don’t mind typing a bit more, you can specify the port number and the directory to serve:

This is actually what the teachbooks serve command is using, but there we have added additional features to make the
process more user-friendly for the book edit and check workflow.

Stopping the Python Server
It can be challenging to stop the Python server, especially when using Windows OS. Even though you may force end the
process (e.g., with CMD+C), the server may still be running in the background.

For Mac and Linux users (or for Windows if you have Git Bash installed or another Unix-type terminal), you can try this:

Or this:

A Windows-specific command for the CMD prompt or Powershell is:

python -m http.server

python -m http.server 8000 --directory book/_build/html

pid=$(ps aux | grep http.server | head -n 1 | awk '{ print $2 }')
kill -9 $pid

tskill python

Install Live Serve Extension

https://teachbooks.io/TeachBooks/
https://github.com/ritwickdey/live-server-web-extension/raw/master/img/icon.png

TASKKILL /IM python.exe /F

Sharing content between books in table
of contents

Contents
Introduction

What does it do?

Installation

Usage

Contribute

Introduction
When creating books, you might want to reuse material from other people or from other books you made. In some cases
you might even want to have the exact same material into your book. You could do so by manually copying material over.
However, whenever the source material is updated, you have to do that again. As an alternative, you can use the underlying
git system to refer to the source file directly. This allows you to pick a specific version, or keep the most up-to-date version
of it. This pages explains how to do so directly in the table of contents using the External Content (or External TOC)
feature which is part of the TeachBooks Python package.

Previously, this book feature was implemented using submodules, but the implementation was more difficult to use.
Despite this, submodules are still a widely used Git feature that can be very useful for book authors, so check out the
submodules page to learn more, especially if the External TOC tool does not satisfy your needs. Submodules have a few
additional features not (yet) implemented using the External TOC.

The External TOC features are incorporated in the teachbooks package starting with version 0.2.0 .

What does it do?
This functionality, part of the TeachBooks package allows you to refer to .ipynb , .md and .rst files stored on public
repositories. These files are then handles as if they were normal files in your book, leading to a the file as a page in your
built book. To prevent issues it validates that the external content has a permissive license, automatically combines any
reference.bib files, and warns you if there’s a mismatch in requirements.txt or with plugins in _config.yml .

Installation
To use this extenstion, follow these steps:

Step 1: Install the Package

Install the module teachbooks package using pip :

pip install teachbooks>=0.2.0

https://teachbooks.io/manual/external/Nested-Books/README.html
https://teachbooks.io/manual/external/Nested-Books/README.html
https://github.com/TeachBooks/TeachBooks

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

Usage
To use the functionality, take the URL of a file and add it to your _toc.yml as follows:

The link can be pointing to a file on a branch (which will take the most recent version of that file on the branch) or a commit
or tag (which will take a specific version of the file). For example:

external: https://github.com/TeachBooks/manual/blob/release/book/intro.md will take the most recent version of the
intro page of this book on the release branch

external: https://github.com/TeachBooks/manual/blob/06d67e8a0110c94d9147ce07090656dedc7d0e64/README.md will take the
file during the state of a specific commit (06d67e8).

external: https://github.com/TeachBooks/manual/blob/v1.1.1/README.md will take the file during the state of a specific
tag (v1.1.1)

If you’re building your book online in GitHub, the deploy-book-workflow will deal with these files during the teachbooks
build command. If you want to build the book locally, run the command teachbooks build .

If the source file is from another book, the contents of the requirements.txt , _config.yml are checked for any
missing/incompatible entries. If this leads to compatibility issue, you’ll be warned during the build which will help you solve
these dependencies or plugins manually by updating your main book’s _config.yml and requirements.txt Additionally, any
references.bib files are merged into your main book’s references.bib file, and the licenses of the external content are

validated to allow for re-use. External content without a permissive license will result in an error to try to prevent any
accidental copyright infringement.

Contribute
This tool’s repository is stored on GitHub. If you’d like to contribute, you can create a fork and open a pull request on the
GitHub repository.

teachbooks>=0.2.0

format: jb-book
root: .

parts:
 - caption: ...
 chapters:
 - file: ...
 .
 .
 .
 - external: <link to GitHub / GitLab source .md or .ipynb file>
 .
 .
 .

https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://github.com/TeachBooks/TeachBooks
https://github.com/TeachBooks/TeachBooks

Share content between books using
submodules

Contents
Adding external content to your book

Editing

Cloning with submodules

The external book is updated

Build book on GitLab/GitHub with submodule

Delete submodules

More info

Contribute

Git Workflow

When creating books, you might want to reuse material from other people or from other books you made. In some cases
you might even want to have the exact same material into your book. You could do so by manually copying material over.
However, whenever the source material is updated, you have to do that again. As an alternative, you can use the underlying
git system to refer to the source file directly. This allows you to pick a specific version, or keep the most up-to-date version
of it. This pages explains how to do so using ‘git submodules’

This feature is now considered deprecated by the TeachBooks Development Team because we have developed an
easier way to incorporate content from other source via the “external content” module in the teachbooks Python
Package. You can find out more by visiting the TeachBooks Manual or GitHub repository. Note, however, that if
you are comfortable with the steeper learning curve, the submodules feature of Git is still useful for some use
cases, as it allows one to embed pages in a book which:

include local images referenced with raw-HTML code and relative filepath references,
refer to content in the _static folder of the other book (i.e., relative filepath references after book build),
are part of a private book (private repository),
automatically notify you upon changes in the source book using Github’s “Dependabot”, mentioned below.

More generally, you should consider submodules if you want to have all of the files in a submodule book
repository available in the main book repository (especially during and after the book build process); if you would
like to use the dependabot feature to automatically update your book every time a commit is made in the
submodule repository; or, if you prefer to update content based on a specific commit hash rather than a tag or
branch. In fact, submodules is how we keep the pages in this manual up to date for each of our TeachBooks Tools!

Adding external content to your book
If you want to add the repository of an external book to the repository of your book you can do so by importing the other
repository using Git Submodules. Your book is then called the parent book. This will basically nest the external repository in

Tip

https://teachbooks.io/manual/features/external_toc.html
https://github.com/teachbooks/teachbooks

the parent repository, and it will appear as if we’ve manually copied the entire repository into the parent repository. I will
use this repository as an example parent repository, and I’m going to add parts of an old MUDE book.

First, let’s define the location where the external book should live. Good practice is to put it in book/external to highlight
the fact that the content is in fact part of an external book. So the first step is to create the subdirectory book/external/ in
your repository. If you’d like to do that with the command line interface (CLI) you can do so as follows:

Now we can add the external book in this folder. You’ll need to use the CLI for that! (open the CLI by opening Git Bash or
click Repository - Open in command prompt in GitHub Desktop):

where

<branch> should be the branch you want of the external book/repository. If you only want the default branch, omit the
part -b <branch> from the command.

<https-link> is the link to the external book/repository, for example https://github.com/tudelft-citg/mude.git .

You can see that the book/external directory now contains a directory with the name of the external repository (MUDE for
example), so the result looks equivalent to simply running a git clone inside book/external , however what is important to
note here is that the contents of book/external/<external repository> are not part of the parent repository. Instead,
book/external/<external repository> is a fully functional Git Repository itself. This means that you can make changes to the

external book, from inside the parent book.

If you did not add the submodule with an explicit branch, you can still do this by adding this to the .submodules file that
has been created. In our example, we see the lines

Changes these to

with again <branch> replaced by the preferred branch.

After the git submodule command, you can make a commit to your parent repositery:

Now, you can add sections of the external book to the table of contents of your parent book (_toc.yml):

mkdir -p book/external

cd book/external
git submodule add -b <branch> <https-link>

[submodule "book/external/MUDE"]
path = book/external/MUDE
url = https://github.com/TUDelft-CITG/MUDE

[submodule "book/external/MUDE"]
path = book/external/MUDE
url = https://github.com/TUDelft-CITG/MUDE

 branch = <branch>

 git commit -m "Add external book"

chapters:
- file: external/MUDE/book/intro.md

… using CLI … using GitHub Desktop

https://github.com/TeachBooks/Nested-Books
https://github.com/tudelft-citg/mude

In the above line, I have added the introduction of the MUDE book to my book.

You might want the title of your book page in the table of contents to be different than the title provided as the first header
in your nested file. You can adapt the title by specifying it in _toc.yml :

Editing
If you want to make an edit to the content of an external repository, which is a submodule of your parent repository
(meaning it’s nested), you’ll need to make changes to the external repository so that the parent repository has a commit to
point to when ‘updating’ its content. You can do this from within the parent repository! We’ll break down the steps:

- file: <somefile>
 title: <Some custom title to show in the table of contents>

1. Navigate to the parent repository

Open your terminal, for example Git Bash or the integrated terminal in VS Code and use the cd command followed by
the full path of your parent repository that you have previously cloned to your laptop.

Alternatively, you can locate the submodule in your files, hover your mouse above the path and right click - copy
adress as text . Then you can paste the adress in between quotation marks. (This works only on windows)

Once you are in the right folder, git bash will indicate the branch you are in in blue brackets.

2. Update the submodule

In case someone else has edited the content of the submodule you want to make sure that you ave pulled all recent
changes.

3. Navigate to the submodule

Or

4. Checkout a new branch (optional)

It is good practice to create a new branch for every set of changes you make to the conent.

cd /<path>/<parent-repo>

cd "C:\<path>\<parent-repo>"

git submodule update

cd /<path>/<parent-repo>/external/<submodule>

cd "C:\<path>\<parent-repo>\external\<submodule>"

git checkout -b <new-branch>

… using CLI … using GitHub Desktop … using GitHub Dev with codespaces online

5. Make changes, stage, and commit them in the submodule

Now you can make changes to your file. To open the file in VS Code type:

Save the file in VS Code and return to the terminal. To stage all changes type:

If you only want to stage one file type:

Next commit the changes:

6. Push the submodule changes to its remote repository

Next you’ll need to push the changes to the external repository. The syntax you need to follow to push is <repository>
<branch> . The repository name will most likely be origin which refers to the cloned repository you are in.

7. Return to the parent repository

Or

8. Stage the submodule update in the parent repo and commit

Now we have to ‘update’ the parent repository with the changes pushed to the external repository (submodule). First,
stage the submodule update. Then commit the change.

9. Push the parent repository changes

Finally push the update to the remote repository.

code <file-name.ext>

git add .

git add <file-name.ext>

git commit -m "Commit message"

git push origin <branch-name>

cd /<path>/<parent-repo>

cd "C:\<path>\<parent-repo>"

git add book/external/<submodule>
git commit -m "Updated submodule"

git push origin <branch-name>

Cloning with submodules
If you’re cloning a repository that features submodules, the directories of the submodules will not be populated by default.
To fix that, you need to do a recursive clone (i.e., clone the parent repository, as well as the submodules):

The external book is updated
When you add the external book as a submodule to your repository, Git will pin its version. When the external book is
updated, you’ll need to manually pull the updates to the parent book or use the automatic GitHub Dependabot.

git clone --recurse-submodules <link to parent repository>

It is possible to set up Github in such a way that periodically and on demand the submodules in the default branch of
the parent repository. To enable this, perform the following steps:

1. Go to your repository on Github.

2. Choose Settings.

3. Choose Code security.

4. Choose Enable behind Dependabot version updates.

5. In opened file editor, edit the code to resemble below code and select “Commit changes…”

This will check every sunday around midnight (UTC) whether any of the submodules have a newer commit in the
preferred branch. If so, several things will happen:

1. A new branch starting with dependabot will be created in the repository and any relevant workflows will be
triggered.

2. A pull request will be created to pull the new branch into the default branch. This pull request must be manually
reviewed and merged. Afterwards the dependabot branch can be deleted.

If the workflow call-deploy-book is used, and the dependabot branch should not be built and deployed (and all other
branches you do want), you can achieve this by adding the next to the file call-deploy-book.yml :

If you want another scheduled workflow, see Dependabot options reference for the options.

To get started with Dependabot version updates, you'll need to specify which
package ecosystems to update and where the package manifests are located.
Please see the documentation for all configuration options:
https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabo

version: 2
updates:
 - package-ecosystem: "gitsubmodule" # See documentation for possible values
 directory: "/" # Location of package manifests
 schedule:
 interval: "weekly"
 day: "sunday"
 time: "23:59"

on:
 push:
 branches:
 - '**'
 - '!dependabot**'

automatic using GitHub Dependabot manual using CLI manual using GitHub Desktop

https://github.com/
https://docs.github.com/en/code-security/dependabot/working-with-dependabot/dependabot-options-reference#schedule-

Build book on GitLab/GitHub with submodule
If you’re using a GitLab/GitHub workflow, make sure you force it to fetch all the submodules as well. If you’re using the
TeachBooks GitHub/GitLab workflow, that has been taken care of.

Delete submodules
Deleting submodules is a bit notrocious… These steps https://www.baeldung.com/ops/git-submodule-add-remove proved
to be useful:

1. Checkout to main

2. Deinitialize submodule

3. Remove submodule Git directory

If you want to manually trigger the Dependabot workflow, you can do this by doing the next steps:

1. Go to your repository on Github.

2. Choose Insights.

3. Choose Dependency graph.

4. Choose Dependabot.

5. Choose Recent update jobs next to .gitmodules .

6. Choose Check for updates.

If you’ve private repositories, expand .github/dependabot.yml to:

GH_PAT should be a a personal access token added to the repository action secrets with ‘repo’ scope. If you’re making
use of the deploy-book-workflow, this is the same personal access token as required for cloning the submodules in the
deploy-book-workflow

version: 2
registries:
 submodule1-registry:
 type: "git"
 url: https://github.com/
 username: x-access-token
 password: ${{secrets.GH_PAT}}

updates:
 - package-ecosystem: "gitsubmodule" # See documentation for possible values
 directory: "/" # Location of package manifests
 schedule:
 interval: "weekly"
 day: "sunday"
 time: "23:59"
 registries:
 - submodule1-registry

git checkout main

git submodule deinit -f book/external/<external repository>

… using CLI … using GitHub Desktop

https://www.baeldung.com/ops/git-submodule-add-remove
https://github.com/
https://github.com/TeachBooks/deploy-book-workflow/tree/main?tab=readme-ov-file#private-submodules

Directly from file explorer or

4. Remove from .gitmodules

Directly with text editor or:

5. Stage Changes to .gitmodules

6. Remove from Git cache

7. Commit and push changes

8. Delete repo and clone again For some reason the existence of the submodule is stored locally somewhere. To prevent
further issues, you might want to delete the full parent repository and reclone it.

9. Merge with other branches Merge this change with all other branches which still have this submodule.

More info
Here you can find more information on Git submodules.

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual-description is also part of the TeachBooks
manual as a submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository.
To update the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub
repository of the manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

rm -rf .git/modules/book/external/<external repository>

git config -f .gitmodules --remove-section submodule.book/external/<external repository>

git add .gitmodules

git rm --cached book/external<external repository>

git add .
git commit -m 'rm submodule: <external repository>'
git push

… using CLI … using GitHub Desktop

… using CLI … using GitHub Desktop

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/TeachBooks/Nested-Books
https://teachbooks.io./manual/external/Nested-Books/README.html
https://teachbooks.io./manual/external/Nested-Books/README.html
https://github.com/TeachBooks/Nested-Books
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

Auto-updating packages
Contents

Notifications updated packages with Dependabot

When building your book, you are making use of various Python packages: the teachbooks and jupyter-book packages
themselves, but also packages for extensions. These are regularly updated, however, those updates are not necessarily
incorporated into your book automatically. The list of packages and their versions are defined in the requirements.txt file,
which is provided as part of the template. Consider the following three options for how packages can be specified:

1. requirements.txt only contains names of packages like: download_link_replacer . In that case, your deploy-book-
workflow will take the most up-to-date version when making your book website once a week (as the chache will be
cleared once a week). This might lead to unexpected changes when a new version has been released (although new
versions will generally be backwards compatible).

2. requirements.txt contains names of packages with a specified version like: download_link_replacer==1.0.4 . In that case,
your deploy-book-workflow always uses that specific version. In doing so, you’ll never get a new update unless you
explicitly adapt the version in requirements.txt . If you’d like to get notified for updates, you might consider using
GitHub’s Dependabot.

3. A combination of 1. and 2.: In that case (once a week at most) you will receive new versions for only the unfixed
packages, no updates for the fixed versions.

For the case of specified versions, you can use GitHub’s Dependabot to notify you that a new version is available and to
automatically set up a Pull Request to update your book with the new version.

Notifications updated packages with Dependabot
Dependabot checks the specified version of packages in your requirements.txt file and, if a new version is found, will create
a new branch, update the requirements.txt file and open a Pull Request whenever there’s an update available for that
package. Note that packages without a fixed version are ignored by Dependabot.

To activate this feature:

1. Specify version for all packages you want to be notified on in your requirements.txt file. See requirements.txt of this
manual as an example

2. In the .github/ directory, add a file named dependabot.yml with the following content (note that sphinx-thebe (used in
python live coding) and docutils (using in APA referencing) are ignored because these require a very specific version to
work):

version: 2
updates:
 - package-ecosystem: "pip"
 directory: "/"
 schedule:
 interval: "weekly"
 day: "sunday"
 time: "22:59"
 ignore:
 - dependency-name: "sphinx-thebe"
 - dependency-name: "docutils"

https://teachbooks.io/manual/external/template/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://github.com/TeachBooks/manual/blob/release/requirements.txt
https://teachbooks.io/manual/features/live_code.html
https://teachbooks.io/manual/features/apa.html

This check will run every Sunday around midnight (UTC) whether any of the fixed-version packages are updated. If so,
several things will happen:

1. A new branch is created with a name that begins with dependabot... in the repository

2. A commit is made updating requirements.txt (e.g., jupyterbook_patches==1.4.2 is changed to
jupyterbook_patches==1.4.4)

3. A pull request will be created to merge the new branch into the default branch. This pull request must be manually
reviewed and merged. Afterwards the dependabot branch can be deleted (automatically).

Note that these activities will occur automatically and may trigger other workflows in your repository (for example, the
building of a book on another branch). If the workflow call-deploy-book is used, and you don’t want the dependabot
branches to be built and deployed (and all other branches you do want), you can achieve this by adding the following text
to the file call-deploy-book.yml :

If you want another scheduled workflow, see Dependabot options reference for the options.

If you want to manually trigger the Dependabot workflow, you can do this by doing the next steps:

1. Go to your repository on Github.

2. Choose Insights.

3. Choose Dependency graph.

4. Choose Dependabot.

5. Choose Recent update jobs next to requirements.txt .

6. Choose Check for updates.

on:
 push:
 branches:
 - '**'
 - '!dependabot**'

https://docs.github.com/en/code-security/dependabot/working-with-dependabot/dependabot-options-reference#schedule-
https://github.com/

TeachBooks Versioning
Inspired by versioning systems in software management (i.e. semantic and CalVer versioning) TeachBooks suggests a
versioning guideline in which the version number tells the reader about the impact of the change. This might more suitable
for your online books than the more traditional way of versioning paper books (version 1, 2, etc.), because of the amount of
edits which online books allow. We recommend TeachBooks versioning, which comes in two flavors:

1. academic_year.additions.errata versioning for books tailed-made for courses in which content is added / adapted
during the course and might be restructured extensively every year while remaining to be available in the original form.

2. major.errata versioning for books which are more stable over years, in which big changes are covered only by the
version number.

We have come up with guidelines how to use the two TeachBooks-versioning options (adapted from (Preston-Werner,
2025)):

Read TeachBooks versioning with changelog on how to combine this with a changelog, tags and releases!

1. A normal version number MUST take the form academic_year.additions.errata where academic_year is the
academic year in which the book is used, and additions , and errata are non-negative integers, and MUST NOT
contain leading zeroes. Each element MUST increase numerically. For instance: 2025.9.0 -> 2025.10.0 -> 2025.11.0

2. Once a versioned book has been released, the contents of that version MUST NOT be modified. Any modifications
MUST be released as a new version.

3. Errata versions MUST be incremented if a small change is made which should be communicated to the reader in
both the source code and in the book itself. If the small change is not crucial (like a simple typo), you might
consider not defining it as a new version but combining it with other changes in the next errata or additions version.

4. Additions version MUST be incremented if an addition is made to the book. It MUST be communicated in both the
source code and in the book itself. It MAY include errata level changes. The errata version MUST be reset to 0 when
the addition version is incremented.

5. Academic year version MUST be incremented if a fresh book is started for which additions will follow later. It MUST
be communicated in both the source code and in the book itself. Additions and errata versions MUST be reset to 0
when academic version is incremented.

6. Precedence refers to how versions are compared to each other when ordered.

1. Precedence MUST be calculated by separating the version into academic year, additions and errata identifiers
in that order.

2. Precedence is determined by the first difference when comparing each of these identifiers from left to right as
follows: Academic year, additions and errata versions are always compared numerically. Example: 2024.0.0 <
2025.0.0 < 2025.1.0 < 2025.1.1.

7. The way in which the version number is incremented after the initial release should be explained in the README of
the source code and in the book itself.

An example can be seen in the source repository of the Engineering Systems Optimization book showing tags for
different versions.

academic_year.additions.errata major.errata

https://teachbooks.io/manual/references.html#id19
https://teachbooks.io/manual/references.html#id19
https://teachbooks.io/manual/installation-and-setup/versioning_changelog.html
https://github.com/TUDelft-books/CME4501/tags

Additional functionality
This sections includes the features developed by TeachBooks which add functionality to the book. Most of them are
implemented as sphinx extensions Sphinx Extension , which are plugins developed for the Sphinx documentation ecosystem
(which Jupyter Book is built upon). They extend or modify Sphinx’s capabilities. Since Sphinx extensions are not an integral
part of jupyter-book, as opposed to original jupyter-book features, they must be installed and configured explicitly, for
example in the _config.yml and requirements.txt files.

Download link replacer
Contents

1. Disabling download

2. Add/replace download link

Contribute

You can control the download option of the book in two ways:

Disabling downloading using cell tags disable-download-page

Add / replace download link with custom link using sphinx- download-link-replacer

1. Disabling download
If you add disable-download-page as a cell tag to a cell in a python notebook, the download button () will disappear from
the topright corner. The cell tag can be added to any code cell in the notebook. This function might be handy if your page
includes code which you don’t want the students to see. Be aware that this also removes the option to download a PDF of
the page.

2. Add/replace download link
The download link –> can be replaced by using the following code in any markdown / notebook file:

Replace <link_target> with the download location. It can either be a remote link (http , https , or ftp), or a local path
(relative to the location of the file containing the directive). Local files must be located within or below the source folder of
the book (i.e. the folder containing _config.yml).

The replace_default key is optional. When set to True , the default download link will be replaced with the custom one.
When set to False , the default download link will be kept, and the custom one will be added below it. If the key is not set,
the default behavior is to add the link to the list, without changing the default one.

The directive can appear multiple times in a single file.

A potential application of this functionality is when creating a page in which students have to do some coding.
Downloading the page allows the student to save their work and work with their local environment. However, the original
source file might include code (jupyterbook formatting, widgets, answers) which is not necessary for students. You can make
a copy of the notebook file without these elements and replace the link to this custom notebook file.
Furthermore, you can add any additional data as an additional file.

.ipynb

```{custom_download_link} <link_target>
:text: "Custom text"
:replace_default: "True"
```

.ipynb

.zip

2.1. Installation
To install the Download-Link-Replacer follow these steps:

Step 1: Install the Package

Install the download-link-replacer package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml file, add the extension to the list of Sphinx extra extensions:

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual_docs is also part of the TeachBooks manual
as a submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To
update the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository
of the manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

pip install download-link-replacer

download-link-replacer

sphinx:
 extra_extensions:
 - download-link-replacer

https://github.com/TeachBooks/Download-Link-Replace
https://teachbooks.io/manual/external/Download-Link-Replacer/README.html
https://github.com/TeachBooks/Download-Link-Replace
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

Multilingual book
Contents

What does it do?

Installation

Usage

Contribute

The custom launch button extension allows you to create a customizable button in the top right of your jupyter book. This
may have many applications, one of them being that you can create different language versions of the book available for
the user.

What does it do?
This extension add a button to the top bar which allows you to link to other website. In combination with a translated book
on another branch you can use this to create multilingual books.

Installation
1. Install the sphinx-launch-buttons package using pip if you’d like to build your book locally:

2. Make sure that the package is included in your project’s requirements.txt to track the dependency:

3. To use the extension in your book, add the extension to the list of Sphinx extra extensions in your _config.yml file,
(important: underscore, not dash this time):

Usage
This section will explain how to create a “Languages” button, like you might be used to seeing on just about any website.
The use of the button, however, is completely customizable and may be used in many different ways.

1. Include a _launch_buttons.yml file in the same location (root directory of your book) as your _config.yml file. The
following code cell shows the main structure of that file.

pip install sphinx-launch-buttons

sphinx-launch-buttons

sphinx:
 extra_extensions:
 - sphinx-launch-buttons

Here, buttons is an array of launch buttons, each can be identified using 2 types: ‘dropdown’ or ‘button’. The cell above
shows 2 buttons, one of type dropdown and one of type button .

The button/dropdown can be visualized using either an svg icon or text.

2. Lastly you need to specify the items of your button. So assuming you want to have different language versions, each
item will be one of the languages.

As you can see in the items: line, each dropdown option links to the branch of the repository in the respective language.

Setting up your repository for multilingual book
For the implementation to your book, it is handy to create a branch for each language version you want to offer. Make a
new branch using for example main as a source. Assuming we want to create a dutch version of you can call this branch
Dutch or Nederlands .

You will then need to translate the content in the dutch branch to dutch which can take some time. From experience, DeepL
is a good tool for this but any AI chatbot might be helpful as well. Make sure to proofread the translation.

You’ll need to add (merge) the updated _config.yml and the new _launch_buttons.yml to all of your branches.

Example

buttons:
 - type : dropdown

 - type : button

buttons:
 - type : dropdown
 label: Language
 - type : button
 icon : <svg> ...
 </svg>

buttons:
 - type : dropdown
 label: Language

 - type : button
 icon : <svg> ...
 </svg>
 items:
 - label: English
 url: url of branch
 - label: Nederlands
 url: url of branch

buttons:
 - type: dropdown
 icon: <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-globe" viewBox
 <path d="M0 8a8 8 0 1 1 16 0A8 8 0 0 1 0 8m7.5-6.923c-.67.204-1.335.82-1.887 1.855A8 8 0 0 0 5.145 4H7.5zM4.
 </svg>
 items:
 - label: English
 url: https://teachbooks.github.io/files-and-folders/EN
 - label: Nederlands
 url: https://teachbooks.github.io/files-and-folders/NL

https://icons.getbootstrap.com/#icons
https://www.deepl.com/en/translator

The code in the above cell is the _launch_buttons.yml file of a repository called “files-and-folders”. The buttons created look
like this:

Fig. 107 Custom Button

An example of this usage in a book can be found in [this book called Files and Folders](https://teachbooks.io/files-and-
folders/EN/intro.html}

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual is also part of the TeachBooks manual as a
submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To update
the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository of the
manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

https://teachbooks.io/manual/_images/language_button.PNG
https://teachbooks.io/files-and-folders/EN/intro.html
https://teachbooks.io/files-and-folders/EN/intro.html
https://github.com/TeachBooks/Sphinx-launch-buttons
https://teachbooks.io/manual/intro.html
https://github.com/TeachBooks/Sphinx-launch-buttons
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

Discussions in your book: Utterances
Contents

Example discussion

Utterances 🔮 is a lightweight open-source widget which allows you, your colleages and your students to discuss stuff in a
blog post in your book. It is build on GitHub issues, so requires a GitHub repository, although the book can be hosted
anywhere (so also on GitLab).

The utterances website clearly explains the required steps. Three things to take care of are:

1. With the current setup of the deploy book workflow on GitHub, this widget only works on the primary branch.

2. The baseurl is the root url of your book (the part of the url that doesn’t change when opening different pages of the
book). It needs to be defined in the _config.yml so that utteranc.es knows where to redirect users while interacting
with the widget:

3. It’s advised to use Issue title contains page pathname as an option on utteranc.es, because that url is most stable.

The given script can be added anywhere in your book, just copy the html-script into your .md -file or a markdown cell in
your .ipynb -file. The blogpost is not visible when you do a local build of the book, build it online or use a local python
server as shown in Local Server to view interactive elements locally.

Users need to have a GitHub-account to post a message. Although this might be a burden, it allows students to track their
previous posts and set up notifications on follow-up posts.

If you’d like notifications on new posts in your book, which end up as issues in your GitHub repository, you can configure
the GitHub watch settings to do so as explained here.

Below you see an example of this feature!

Example discussion

html:
 baseurl : "https://<user/organization>.github.io/<repo>" #Replace this with your own URL

https://utteranc.es/
https://utteranc.es/
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
http://utteranc.es/
http://utteranc.es/
https://teachbooks.io/manual/features/local_server.html#setup-local-server
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications#configuring-your-watch-settings-for-an-individual-repository

H5p interactive elements
Contents

Instruction

Instruction
H5p elements are interactive HTML-blocks which can be embedded in a Jupyter Book using an iframe. An H5p element can
be created in the TU Delft portal on the H5p website (sign in via Brightspace to H5p required first). The iframe code can be
copied at Edit - Publish - Public - Embed code. This html code can be directly added to your markdown file using Iframes:

Alternative, you can use raw html:

A full list of all available interactive elements is available on the website of H5p, these include among others:

Multiple choice questions

Fill in the blanks

Drag and drop

Interactive video

Image hotspot

Some best-practices on the use of H5p:

H5p requires its own hosting. TU Delft provides this for TU Delft employees.

To startup your H5p-account, first login to H5p via Brightspace. You can follow instructions as under
https://www.tudelft.nl/teaching-support/educational-tools/h5p.

After that, direct login is possible via tudelft.h5p.com

Place your H5p-elements in a shared folder in H5p.

Disable the display options “Toolbar Below Content” and “Display author’s name to public (anonymous users) (only
relevant when content’s status is set to Public)” for each element for a smooth experience. On the other hand, the
options ‘Toolbar below content’ in combination with ‘Allow users to download content’ allow people to reuse your
questions, making them more open.

Use it in combination with Iframes to allow for a proper dark mode, dynamic scaling and a transparent background.

In the next subpage, these exampled are shown.

More information on H5p using the TU Delft provided hosting: Teaching Support - Educational Tools - H5P

```{h5p} https://....h5p.com/content/.../embed
```

<iframe src="https://....h5p.com/content/.../embed" aria-label="..." width="1088" height="200" frameborder="0" allowfull

https://tudelft.h5p.com/content
https://teachbooks.io/manual/external/sphinx-iframes/README.html
https://h5p.org/content-types-and-applications
https://www.tudelft.nl/teaching-support/educational-tools/h5p
https://tudelft.h5p.com/
https://teachbooks.io/manual/external/sphinx-iframes/README.html
https://www.tudelft.nl/teaching-support/educational-tools/h5p

Examples of H5p Quizzes
Contents

Dialog cards

Question Set

Complex fill in the blanks

True or False

Drag and Drop

Dialog cards
Dialog cards can be used to ask open questions about the content students are reading or,
more intrestingly, to check the conclusion the students draw from the interactive exercises
built into the book.

Engineering Systems Optimization

A great example of this can be found in the book: Engineering Systems Optimization.
Chapter 4 called Mulit-objective optimization has an in depth sub-chapter which is used to
compare the relation between engine power and emissions and how to optimize for both.

Fig. 108 Problem Statement

As can be seen on the right-hand-side menu, the sub-chapter includes the problem
statement, the elaboration on the model and solution method and finally an exercise for the
student. The code in the page is activated by pressing the live code button which will make

https://teachbooks.io/engineering-systems-optimization/2023/pages/moo_example.html
https://teachbooks.io/manual/_images/Live_code.PNG

the code cells editable and executable. Additionally, interactive figures are included into the
text with movable sliders to directly see the effect of the changes made.

The H5p quizzes can shine in the section on questions, discussions and comments. Next to
many multiple choice questions (which are discussed later) there are dialog cards which can
ask more conceptual and open ended questions. Pressing on the blue button Turn will flip
around the card and reveal the model answer. The great thing about the integration of both
interactive aspects (coding and questions) helps the student to play around with the code
and understand the topic from a less theoretical point-of-view.

RPM 1000

Weighted 🏋 Objective: = - 1/3 * POWfunc(1000) + 2/3 * CO2func(1000) = - 1/3 * 263.24 +
2/3 * 696.89 = 376.85
Goal 🥅 Attainment: max(460 - POWfunc(1000), CO2func(1000) - 640) = max(460 - 263.24,
696.89 - 640) = 196.76

680 685 690 695 700 705
400

350

300

250

200

150

CO2 vs Power

CO2 (g/kWh)

Po
w

er
 f
un

ct
io

ns
 (

kW
)

Question Set
Question sets consist of a question and one or more possible answers to that question.

MUDE - Observation Theory

The following question sets are taken from chapter 3.3. Weighted least-squares estimation of
the MUDE 23/24 book. The chapter builds on the previous chapter on simple least-squares
estimation and dwelves into the importance and properties of the weight matrix. The

student is primarily quizzed using multiple choice questions to check their understanding.
The answers can be provided in the shape of text, figures, equations, matrices and probably
much more.

Since these questions are meant to develop the understanding of the students, feedback is
vital! Feedback can be built into the questions to explain the reasoning behind a correct
answer.

Select the correct statement(s).

The weighted least-squares solution provides the smallest possible \
(\hat{\epsilon}^T\hat{\epsilon}\).

If we apply weighted least-squares, we 'expect' the residuals of observations with
smaller weight to be larger.

Ordinary least-squares estimation is also a form of weighted least-squares.

 Check

You and your fellow students are asked to measure the width of a canal. You all
decide to take a different approach. Alice is asked to come up with an estimate of
the canal width using all \(m\) observations. Based on her own 'ranking', Alice
decides to give different weights to the different observations. Which of the
following is the equation that Alice will use to estimate the canal width? The
individual weights are called \(w_i\), \((i=1,..., m) \)

\(\hat{x} = \sum_{i=1}^{m} \frac{y_i}{w_i} \)

\(\hat{x} = \frac{1}{\sum_{i=1}^{m}w_i}\sum_{i=1}^{m}y_i \)

\(\hat{x} = \frac{1}{\sum_{i=1}^{m}w_i}\sum_{i=1}^{m}(w_i y_i) \)

\(\hat{x} = \frac{1}{m}\sum_{i=1}^{m}y_i \)

 Check

Fig. 109 Correct Answer Feedback

And when the answer is not correct, tips can be given to nudge the student towards the
right solution.

Fig. 110 Tips

Try it out!

Have a look at the following 7 questions.

https://teachbooks.io/manual/_images/Question_set_3.PNG
https://teachbooks.io/manual/_images/Question_set_4.PNG

Complex fill in the blanks
The complex fill in the blanks can be used to evaluate numerical answers.

MUDE - Observation Theory

Chapter 3.7. Non-linear least-squares estimation from the MUDE 23/24 book makes use of
the complex fill in the blanks quiz in order to check that the students understood the
composition of the Jacobian Matrix specifically used in deriving the linearized functional
model. This model is essential for accurately estimating values and assessing system
behavior of complex processes that arent linear.

As you can see, the precision of the answer sought for is specified and the figure below
shows again the incorporation of feedback.

Fig. 111 Wrong Answer + Feedback

MUDE - Optimization

Since the cells can be used to evaluate numerical answers, they are an easy way to quiz the
student on matrices and evaluate the result of each position independently. The
optimization team of MUDE took this a step further and used this set-up to quiz the
students on the SIMPLEX method. This method automates the solving of the augmented
form of a linear programming problem with continuous variables. It makes use of tables and

https://teachbooks.io/manual/_images/blanks2.PNG

the manipulation of equations to find the optimal values. Unfortunately, with a large number
of variables this tables tend to get quite big and filling in the cells becomes laborious.

Truss structure

Truss structures are modelled as rigid bars (so elements which cannot deform) connected by
hinges (so elements can rotate with respect to one each other). In our model, hinges are
indicate with a circle, and bars with a line. For example, the structure you’ve seen in the
second example (with two diagonal bars removed) is modelled as follows:

hinges

bars

Fig. 112 Bars and hinges in truss structure

Now that you’ve been introduced to truss structures, answer the following question:

Build the first table of the simplex method.

 || \(Z\) || \(x_1\) | \(x_2\) | \(s_1\) | \(s_2\) |

 \(s_3\) || \(b\)

\(Z\) || || | | | | ||

\(S_1\) || || | | | | ||

\(S_2\) || || | | | | ||

\(S_3\) || || | | | | ||

True or False
This next type of quiz is fairly self explainatory :)

MUDE - Optimization

Once again the chapter on optimization in the MUDE book integrated many true and false
questions to test the students on the problem statement which, like in many engineering
problems, is just as important if not more important than the solution procedure. This is
especially when the case when small tweaks to the equations, such as seen in the figure
below, can change the result of the optimization drastically.

Fig. 113 Problem Statement

The small circles below the question indicates that there are more questions in this series
which can be viewed by clicking on the blue arrow pointing towards the left or right. Open
the second, fourth and fifth question:

https://mude.citg.tudelft.nl/book/optimization/sand_and_clay.html#lp-formulation-of-the-problem
https://teachbooks.io/manual/_images/truefalse0.PNG

Try it out!

Drag and Drop
Drag and Drop questions are useful to make the distinction between different concepts that
might often cause confusion.

MUDE - Optimization

In this chapter, it was important that the students made the distinction between the
terminology and mathematical meaning between different elements of the graphical
solution method. A drag and drop question was used to link the term to its definition. The
answer boxes can be dragged to the correct title in a playful manner.

Let's consider an estimation problem with \(m\) observables and functional model
(\mathbb{E}(Y)=\mathrm{Ax}\) and stochastic model \(\Sigma_Y = \sigma^2 I_m\)
(i.e., the covariance matrix is a scaled identity matrix).

Find the expressions for the ordinary (unweighted) least squares estimator and
the best linear unbiased estimator.

True or False:

The ordinary least squares and best linear unbiased estimator are equal to each
other.

 True False

 Check

The fourth question in this question set is a drag and drop question:

The correct answer leads to:

Fig. 114 Solution

The intersection of the gradient vector with the feasible solution space polygon
determines the optimal solution.

 True False

 Check

https://teachbooks.io/manual/_images/drag2.PNG

Interactive plots: plotly
The use of the plotly package is an example which allows you to create HTML/Javascript widgets from python code without
any knowledge on HTML/Javascript.

The example below is taken from the FEM-module by Frans van der Meer. When using Plotly graphs, make sure the
notebook is executed in Jupyter Lab / Jupyter Notebook for the figures to be shown in the book. Running the code in VS
code might break the result in the book, although the output is visible in VS code. Alternatively, add the following lines of
code to your notebook to have a valid output in the book as well:

import plotly.io as pio
pio.renderers.default = 'notebook'

0 5 10 15

0

0.2

0.4

0.6

0.8

1

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Legend
Exact solution
Numerical solution
Node shape for node 1
Node shape for node 2

Number of elements: 1

1 2 3 4 5 6 7 11 15 19 23 27 31 35 43 51

Applying shape functions

x x

N
od

e
sh

ap
e

va
lu

e

y

Shape functions Exact and approximated solution

https://plotly.com/python/getting-started/

Grasple
Contents

Installation

Usage

Important Note

Contribute

This package contains a Sphinx extension for inserting Grasple exercises into a Jupyter book as an iframe. It allows you to
easily add Grasple question with some formatting and, more importantly, the creation of QR codes in the PDF version of the
page. This leads to the source link of the iframe.

This package is a continuation of the package dbalague/sphinx-grasple.

Grasple gives you an embed code for each exercise, which can be added directly to your markdown-file. This package
improved the embedding. More information on Grasple and the support of TU Delft can be found on: Teaching Support -
Educational Tools - Grasple

Installation
To install the teachbooks-sphinx-grasple extension, follow these steps:

Step 1: Install the Package

Install the teachbooks-sphinx-grasple package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

Usage
To use, include the following in your Jupyter book

pip install teachbooks-sphinx-grasple

teachbooks-sphinx-grasple

sphinx:
 extra_extensions:
 - teachbooks_sphinx_grasple

http://www.sphinx-doc.org/en/master/
https://github.com/dbalague/sphinx-grasple/
https://app.grasple.com/
https://www.tudelft.nl/en/teaching-support/educational-tools/grasple
https://www.tudelft.nl/en/teaching-support/educational-tools/grasple

In the jupyter book this leads to:

Cross product in ?

In the PDF this leads to:

Note that the iframe doesn’t load locally in VSCode or in the build file, only in the online book or if shown in a local server.

Important Note
The tests provided are still the original ones from sphinx-exercise and have not (yet) been adapted.

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch manual_docs is also part of the TeachBooks manual
as a submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To
update the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository
of the manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

::::{grasple}
:iframeclass: dark-light
:url: https://embed.grasple.com/exercises/f6c1bb4b-e63e-492e-910a-5a8c433de281?id=75093
:label: grasple_exercise_1_3_4
:dropdown:
:description: Cross product in R^4?

::::

R
4

Grasple Exercise 1

https://github.com/TeachBooks/Sphinx-Grasple-public
https://teachbooks.io/manual/external/Sphinx-Grasple-public/README.html
https://github.com/TeachBooks/Sphinx-Grasple-public
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual

Interactive HTML/JavaScript elements
In this section, we will discuss how to create and embed interactive HTML/Javascript elements created in HTML/JavaScript in
a TeachBook. These HTML/Javascript element work very fluently and don’t require a python kernel running in the
background.

This could be for example interactive 3d figures:

Or other interactive graphs:

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

https://teachbooks.io/manual/features/creating_basic_HTML_elements.html
https://teachbooks.io/manual/features/adding_HTML_elements.html

−y

Click anywhere in the scene to start interacting

Adding interactive HTML/JavaScript
elements

Contents
Storing the HTML file

Embedding HTML files via iframes

Viewing result at local build

HTML code for the 3D render element

In this section, we will discuss how to embed interactive elements created in HTML/JavaScript in a TeachBook. If you are
interested in learning how to create these elements yourself, we will discuss an example in the next article. As an example,
let us discuss how to embed an interactive 3D model of a subsurface environment I created:

Storing the HTML file
TeachBooks like this one are built from a Git project, comprising of different files and folders that are assembled into a
webpage. It is generally not possible to paste the code of your HTML element directly into one of the project’s Markdown
files. Instead, you will have to store the files separately somewhere in the folder structure, then embed them later on. For
this project, the book’s root folder contains a ´_static´ folder which we can use to store our HTML/JS file. Some elemenets -
such as the one above - may require additional files. The HTML element above, for instance, specifies a renderer using
THREE.js that displays a digital model. This model is specified as an .obj file (which defines its geometry) and a .mtl file
(which defines its materials - its colors, reflectivity, transparency, and so on). We can store these files in the same ´_static´
folder.

Embedding HTML files via iframes
If we want to embed our HTML/JS element in a Markdown page, we must use an inline frame, also known as an iframe. In a
book, an iframe can be added using Iframes:

https://teachbooks.io/manual/features/creating_basic_HTML_elements.html
https://threejs.org/
https://teachbooks.io/manual/external/sphinx-iframes/README.html

or alternatively using raw HTML:

What does this code do? In HTML, certain active parts of the code are defined as tags surrounded by < and > symbols.
The tag <iframe> opens the iframe environment, the <iframe/> tag closes it again. Inside the opening tag, we can further
specify properties of the iframe. These properties are usually defined as strings, that is to say, surrounded by quotation
marks. Some of the more common iframe properties are:

src : This specifies the source of the iframe, the HTML file it will display.

width : This specifies the width of the iframe in pixels.

height : This specifies the height of the iframe in pixels.

frameborder : This flag specifies whether a border should be drawn around the iframe ("1") or not ("0").

scrolling : Specifies whether or not to display scrollbars for the iframe, in case the embedded content is larger than
the iframe. Possible values are "yes" , "no" , and "auto" . I recommend either creating HTML elements of the same
size, or adjusting their size dynamically to their contained - in this case, the iframe.

allowfullscreen : Specifies whether or not to allow the iframe to be displayed in fullscreen mode.

loading : Specifies how the browser should handle the loading of the iframe content. Possible values are eager (load
immediately) and lazy (load on demand).

Let’s take a closer look at the source. Since this project uses a local file structure, we can make use of relative paths such as
../_static/element_render box.html . What does this path do? In this project, the markdown file for this article is located in

the directory book/features/adding_HTML_elements.md . The HTML element we want to embed is located in the directory
book/_static/element_render_box.html . The relative path thus works as follows:

We start in the markdown file’s directory book/features/adding_HTML_elements.md

The string "../" tells the iframe to move up one folder to book . If you need to move up more subdirectories, use it
recursively, eg. ../../ moves up two directories.

The following string "_static/" tells the iframe to navigate into the _static folder. We are now in book/_static/ .

Finally, the string "element_render_box.html" selects the HTML file we want to embed. We are now in
book/_static/element_render_box.html .

Viewing result at local build
To view the final result locally, it’s required to setup a local Python webserver.

HTML code for the 3D render element
To conclude, I provide the HTML/JavaScript code for the 3D render element above. To understand what the code below
does in more detail, please refer to the next article. One thing I want to direct your attention to are the paths specified in
the first few lines of the <script> environment. Here, we do not have to navigate to a different local folder because we
initially stored our .obj and .mtl files in the same folder as the element_render_box.html file. If they would be stored in a
different folder, we have to specify either an absolute path (e.g., via a URL) or a relative path, as explained above.

```{iframe} ../_static/element_render_box.html
:width: 600px
:height: 300px
```

<iframe src="../_static/element_render box.html" width="600" height="300" frameborder="0"></iframe>

https://teachbooks.io/manual/features/local_server.html#setup-local-server
https://teachbooks.io/manual/features/creating_basic_HTML_elements.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Subsurface</title>
 <style>
 html, body {
 margin: 0;
 height: 100%;
 }
 #c {
 width: 100%;
 height: 100%;
 display: block;
 }
 </style>
</head>
<body>
 <canvas id="c"></canvas>

 <script type="module">

 // Path to object
 var path_obj = "bimodal_field.obj";
 var path_mtl = "bimodal_field.mtl";

 // Three.js - Load .OBJ and .MTL file - Windmill2
 // from https://threejsfundamentals.org/threejs/threejs-load-obj-materials-windmill2.html

 import * as THREE from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/build/three.module.js';
 import { OrbitControls } from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/examples/jsm/controls/
 import { OBJLoader } from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/examples/jsm/loaders/OBJLo
 import { MTLLoader } from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/examples/jsm/loaders/MTLLo

 function main() {
 const canvas = document.querySelector('#c');
 const renderer = new THREE.WebGLRenderer({ canvas });

 const fov = 45;
 const aspect = 2; // the canvas default
 const near = 0.1;
 const far = 100;
 const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
 camera.position.set(0, 10, 20);

 const controls = new OrbitControls(camera, canvas);
 controls.target.set(0, 5, 0);
 controls.update();

 const scene = new THREE.Scene();
 scene.background = new THREE.Color('white');

 {
 const skyColor = 0xB1E1FF; // light blue
 const groundColor = 0xB97A20; // brownish orange
 const intensity = 1;
 const light = new THREE.HemisphereLight(skyColor, groundColor, intensity);
 scene.add(light);
 }

 {
 const color = 0xFFFFFF;
 const intensity = 1;
 const light = new THREE.DirectionalLight(color, intensity);
 light.position.set(5, 10, 2);
 scene.add(light);
 scene.add(light.target);
 }

 function frameArea(sizeToFitOnScreen, boxSize, boxCenter, camera) {
 const halfSizeToFitOnScreen = sizeToFitOnScreen * 0.5;
 const halfFovY = THREE.MathUtils.degToRad(camera.fov * .5);
 const distance = halfSizeToFitOnScreen / Math.tan(halfFovY);
 // compute a unit vector that points in the direction the camera is now
 // in the xz plane from the center of the box
 const direction = (new THREE.Vector3())
 .subVectors(camera.position, boxCenter)
 .multiply(new THREE.Vector3(1, 0, 1))
 .normalize();

 // move the camera to a position distance units way from the center

 // in whatever direction the camera was from the center already
 camera.position.copy(direction.multiplyScalar(distance).add(boxCenter));

 // pick some near and far values for the frustum that
 // will contain the box.
 camera.near = boxSize / 100;
 camera.far = boxSize * 100;

 camera.updateProjectionMatrix();

 // point the camera to look at the center of the box
 camera.lookAt(boxCenter.x, boxCenter.y, boxCenter.z);
 }

 {
 const mtlLoader = new MTLLoader();
 mtlLoader.load(path_mtl, (mtl) => {
 mtl.preload();
 const objLoader = new OBJLoader();
 objLoader.setMaterials(mtl);
 objLoader.load(path_obj, (root) => {
 scene.add(root);

 // compute the box that contains all the stuff
 // from root and below
 const box = new THREE.Box3().setFromObject(root);

 const boxSize = box.getSize(new THREE.Vector3()).length();
 const boxCenter = box.getCenter(new THREE.Vector3());

 // set the camera to frame the box
 frameArea(boxSize * 1.2, boxSize, boxCenter, camera);

 // update the Trackball controls to handle the new size
 controls.maxDistance = boxSize * 10;
 controls.target.copy(boxCenter);
 controls.update();
 });
 });
 }

 function resizeRendererToDisplaySize(renderer) {
 const canvas = renderer.domElement;
 const width = canvas.clientWidth;
 const height = canvas.clientHeight;
 const needResize = canvas.width !== width || canvas.height !== height;
 if (needResize) {
 renderer.setSize(width, height, false);
 }
 return needResize;
 }

 function render() {

 if (resizeRendererToDisplaySize(renderer)) {
 const canvas = renderer.domElement;
 camera.aspect = canvas.clientWidth / canvas.clientHeight;
 camera.updateProjectionMatrix();
 }

 renderer.render(scene, camera);

 requestAnimationFrame(render);
 }

 requestAnimationFrame(render);
 }

 main();
 </script>
</body>
</html>

Creating basic interactive
HTML/JavaScript elements

Contents
HTML code for the pdf/cdf element

At the bottom of this page, I will provide the full code for the interactive element above. In
this section, let us go through the code one piece at a time. Let us begin from the top.

In the first line, we specify that this file is a HTML file. In the header (<head>), we can load
packages we need later on. Within the <script> tags, we are loading three different libraries
from web servers: math.js , which provides functions for basic mathematical operations
(similar to Python’s numpy library), as well as two versions of the library d3.js , which
contains many extremely useful functions for web interactivity.

The <style> tag below defines CSS properties that, unsurprisingly, style the element. Two
common settings for the body are margin: 0 , which makes sure that the useable space
extends all the way to the edges, and overflow: hidden , which effectively clips content that
extends outside the element’s borders by removing the scrollbars.

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
cu

m
ul

at
iv

e
pr

ob
ab

ilit
y

cdf

https://en.wikipedia.org/wiki/CSS

Next, we create a <div> . This is an HTML element that groups other HTML elements. In our
case, it only contains a SVG named "click" . This SVG will serve as the canvas on which we
will later place the interactive content.

So far, all of this has just been setup. The real magic begins in the HTML’s <body> , which
contains the <script> environment. This is where we code the actual content of the
interactive element in JavaScript.

The first few lines of our JavaScript code are simple. To scale our element with the size of its
container (the iframe we created above), the code first reads the width vw and height vh of
its container. For this element, we define the interactive element to be twice as wide as tall,
so we define the height of the canvas as half its width . We then select the "click" canvas
we created before, create a variable for quick access called svg , and set its height and width
to the new dimensions we just computed.

<!DOCTYPE html>
<html>
 <head>
 <script src="https://unpkg.com/mathjs/lib/browser/math.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.17/d3.min.js"></script>
 <script src="https://d3js.org/d3.v4.min.js"></script>
 <style>
 body{
 margin: 0; overflow: hidden;
 font-family: Helvetica, sans-serif;
 }
 </style>
 </head>

 <!-- Create a div where the graph will take place -->
 <div id="my_datavisualization">
 <svg id="click" xmlns="http://www.w3.org/2000/svg">
 </svg>
 </div>

https://en.wikipedia.org/wiki/SVG

Next, we may want to define some functions for our element. The first function linspace is
simply creates resolution points between a start and end value, similar to
numpy.linspace in Python. The second and third functions evaluate the pdf and cdf of a

standard Gaussian distribution for a given x value.

 <body>
 <script>
 // Get the viewport height and width
 const vw = Math.max(document.documentElement.clientWidth || 0, window.innerWidth
 const vh = Math.max(document.documentElement.clientHeight || 0, window.innerHeig

 // Fit to viewport
 var height = vw * 0.5;
 var width = vw;

 // Create the canvas. We will use only part of it for the main plot
 var svg = d3.select("#click") // This selects the div
 .attr("width", width) // This defines the canvas' width
 .attr("height", height) // This defines the canvas' height

 function linspace(start, end, resolution) {
 var spacing = [];
 // Go through a for-loop
 var i;
 for (i = 0; i < resolution; i++) {
 spacing.push(start + (end - start) * i / (resolution - 1))
 }
 return spacing; // The function returns the linspace between p1 and p2
 }

 function standard_Gaussian_pdf(x) {
 mean = 0;
 std = 1;
 // Create a dummy variable
 var result = [];
 normalize = math.dotDivide(
 1,
 math.sqrt(
 math.dotMultiply(
 math.dotMultiply(
 2,
 math.PI),
 math.pow(
 std,
 2))));

 var i;
 for (i = 0; i < x.length; i++) {
 // Evaluate the first element of the Gaussian mixture
 expon = math.exp(
 -math.dotDivide(
 math.pow(
 x[i] - mean,
 2),
 math.dotMultiply(
 2,
 math.pow(
 std,
 2))))
 temp = math.dotMultiply(
 normalize,
 expon)
 result.push(temp)
 }
 return result
 }

 function standard_Gaussian_cdf(x) {
 mean = 0;
 std = 1;
 // Create a dummy variable
 var result = [];
 for (i = 0; i < x.length; i++) {
 // Evaluate the first element of the Gaussian mixture
 temp = 0.5 * (1 + math.erf(x[i] /math.sqrt(2)))
 result.push(temp)
 }
 return result
 }

Now, let us prepare the two subplots for the pdf (left side) and cdf (right side). First, we
define what range of values we want to plot on the x-axis and y-axis. On the x-axis, we want
to plot values between -3 and +3. For the pdf subplot’s yaxis, we want to see everything
from 0 to the pdf*s maximum at x=0 , plus 20% padding. In JavaScript, we have significant
control on how we want to create our plot. This means that we must define where exactly we
want to place our subplots on the canvas. Let us start by defining the horizontal width of the
left subplot from 10% of the canvas’s width to 50% of the canvas’s width, and its height from
10% of the canvas’s height to 89% of the canvas’s height (recall that our canvas is twice as
wide as it is tall). Mind that in Javascript, the point at 0% width and 0% height is located in
the top-left corner.

Next, we create three helper functions. If we want to add an element to the canvas, we must
define its position and size in pixel values. For plotting, this is inconvenient, so here we
define three functions that

convert x-values to horizontal pixels (xScale_pdf),

convert horizontal pixels to x-values (xScale_pdf_inverse), and

convert pdf-values to vertical pixels (yScale_pdf).

With these functions in hand, let us draw the first subplot. We start by drawing the x-axis and
its label first, where we define the font-sizes relative to the canvas’s width to ensure the font
scales with its container’s size. Next, we do the same for the y-axis. Finally, we add a label on
top.

 // Define a subplot for the standard normal
 const x_limits = [-3, 3];
 const y_limits_pdf = [0, 1 / math.sqrt(2 * math.pi) * 1.2];

 const window_x_pdf = [width * 0.1, width * 0.5];
 const window_y_pdf = [height * 0.1, height * 0.89];

 // Get scaling functions for the x scale and the y_scale
 const xScale_pdf = d3.scaleLinear()
 .domain([x_limits[0], x_limits[1]])
 .range(window_x_pdf)
 const xScale_pdf_inverse = d3.scaleLinear()
 .domain(window_x_pdf)
 .range([x_limits[0], x_limits[1]])
 const yScale_pdf = d3.scaleLinear()
 .domain([y_limits_pdf[0], y_limits_pdf[1]])
 .range([window_y_pdf[1], window_y_pdf[0]])

Now, let us add actual content. We start by creating 201 equally-spaced points on the x-axis
between -3 and +3 using the linspace function we created above, then evaluate the
corresponding densities using our standard_Gaussian_pdf . The first real feature we add to
the subplot is a simple round marker that indicates where we currently are on the pdf. We
can add geometric shapes via a syntax like svg.append("circle) , then define its attributes via
.attr() . Defining a circle requires a radius attribute r , a horizontal position cx , and a

vertical position cy . We initially place our marker at x=0 . Note the use of the Scale
functions we created earlier to convert subplot coordinates into canvas pixel coordinates.
The fill and stroke-width properties define the style of the marker. An important
property is the id , which we can use later to select and update this marker.

Next, we concatenate our x and pdf vectors into a list of dictionaries, which we then
convert into pixel coordinates with a valueline_pdf function we create. Finally, we add it to
the subplot as a path via the svg.append("path") function. In addition, we want to represent
the fact that the cdf (which we will later plot on the right) represents the integral of all pdf
values to the left of the current x-value. To this end, we want to create a filled shape that

 // Draw the x axis
 svg
 .append("g")
 .attr("transform", "translate(0," + window_y_pdf[1].toString() + ")")
 .call(d3.axisBottom(xScale_pdf).ticks(5))
 .style("font-size", (12 * width / 600).toString() + "px")
 svg.append("text")
 .attr("transform",
 "translate(" + (math.mean(window_x_pdf)).toString() + "," + (height * 0.9
 .style("text-anchor", "middle")
 .text("x")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the y axis
 svg
 .append("g")
 .attr("transform", "translate(" + (window_x_pdf[0]).toString() + ",0)")
 .attr("id", "mainxaxis")
 .call(d3.axisLeft(yScale_pdf))
 .style("font-size", (12 * width / 600).toString() + "px");
 svg.append("text")
 .attr("transform",
 "translate(" + (width * 0.03).toString() + "," + (math.mean(window_y_pdf
 .style("text-anchor", "middle")
 .text("probability density")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the subplot label
 svg.append("text")
 .attr("transform",
 "translate(" + ((window_x_pdf[1] - window_x_pdf[0])/2 + window_x_pdf[0])
 .style("text-anchor", "middle")
 .text("pdf")
 .style("font-size", (16 * width / 600).toString() + "px")

highlights this area. We can do so by creating another path that follows the pdf from the left
border to the currently selected value (initially: x=0), then moves back to the subplot origin
along the x-axis. The path-information data_fill is created the same way as before, but
now we add it as a svg.append("path") that has the fill attribute, which - as the name
implies - fills the region inside it with a solid color.

The next block essentially repeats the same procedure for the right subplot, but replaces the
pdf evaluation with a cdf evaluation. We also add a dashed horizontal line that marks the

 // Evaluate the normal pdf
 var x = linspace(-3, 3, 201);
 var pdf = standard_Gaussian_pdf(x);

 svg.append("circle")
 .attr("r", 10 * height / 600)
 .attr("cx", xScale_pdf(0))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([0])))
 .attr("fill", "#666666") // "#c3e7f9"
 .attr("stroke-width", 5 * height / 600)
 .attr("id", "marker_pdf");

 // Get the data for the path
 var data_pdf = [];
 for (i = 0; i < x.length; i++) {
 data_pdf.push({
 x: x[i],
 y: pdf[i]
 })
 }

 var valueline_pdf = d3.svg.line()
 .x(function(d) {
 return xScale_pdf(d.x);
 })
 .y(function(d) {
 return yScale_pdf(d.y);
 });

 svg.append("path")
 .attr("d", valueline_pdf(data_pdf))
 .attr("fill", "none")
 .attr("stroke-width", 3 * height / 600)
 .attr("stroke", "#666666")
 .attr("id", "thatline")

 var fill_x, fill_pdf
 var xpos = 0;
 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)
 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]
 })
 }
 svg.append("path")
 .attr("d", valueline_pdf(data_fill))
 .attr("fill", "#999999")
 .attr("stroke", "None")
 .attr("id", "fill")
 .lower()

integral value on the y-axis. Go through the code and see if you recognize parallels to the
code above.

 // Define a subplot for the standard normal
 const y_limits_cdf = [0, 1];
 const window_x_cdf = [width * 0.585, width * 0.985];
 const window_y_cdf = [height * 0.1, height * 0.89];

 // Get scaling functions for the x scale and the y_scale
 const xScale_cdf = d3.scaleLinear()
 .domain([x_limits[0], x_limits[1]])
 .range(window_x_cdf)
 const xScale_cdf_inverse = d3.scaleLinear()
 .domain(window_x_cdf)
 .range([x_limits[0], x_limits[1]])
 const yScale_cdf = d3.scaleLinear()
 .domain([y_limits_cdf[0], y_limits_cdf[1]])
 .range([window_y_cdf[1], window_y_cdf[0]])

 // Draw the x axis
 svg
 .append("g")
 .attr("transform", "translate(0," + window_y_cdf[1].toString() + ")")
 .call(d3.axisBottom(xScale_cdf).ticks(5))
 .style("font-size", (12 * width / 600).toString() + "px")
 svg.append("text")
 .attr("transform",
 "translate(" + (math.mean(window_x_cdf)).toString() + "," + (height * 0.9
 .style("text-anchor", "middle")
 .text("x")
 .style("font-family", "arial")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the y axis
 svg
 .append("g")
 .attr("transform", "translate(" + (window_x_cdf[0]).toString() + ",0)")
 .attr("id", "mainxaxis")
 .call(d3.axisLeft(yScale_cdf))
 .style("font-size", (12 * width / 600).toString() + "px");
 //.call(d3.axisLeft(yScale).tickFormat(""));
 svg.append("text")
 .attr("transform",
 "translate(" + (width * 0.525).toString() + "," + (math.mean(window_y_cdf
 .style("text-anchor", "middle")
 .text("cumulative probability")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the subplot label
 svg.append("text")
 .attr("transform",
 "translate(" + ((window_x_cdf[1] - window_x_cdf[0])/2 + window_x_cdf[0])
 .style("text-anchor", "middle")
 .text("cdf")
 .style("font-size", (16 * width / 600).toString() + "px")

 // Evaluate the normal pdf
 var cdf = standard_Gaussian_cdf(x);

 svg.append("circle")
 .attr("r", 10 * height / 600)
 .attr("cx", xScale_cdf(0))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([0])))
 .attr("fill", "#666666") // "#c3e7f9"
 .attr("stroke-width", 5 * height / 600)
 .attr("id", "marker_cdf");

So far, this element is purely static. It’s time to introduce some interactivity! We start by
defining three new variables: movex (x-position of the mouse), movey (y-position of the
mouse), and xpos (what x-value we currently are looking at).

Make interactive elements with d3 is extremely easy. Here, for instance, we simply use the
syntax svg.on("mousemove") , which calls a function whenever the mouse moves over the
canvas. We then define an unnamed function that reads out the current coordinates of the
cursor (d3.event.x and d3.event.y), then does whatever we want with it. For this element,
we choose to only update the figure if the cursor’s x-position is within one of the subplots.
We can test this with a simple if-clause:

If the cursor’s x-position is within the first subplot (i.e., (movex >= window_x_pdf[0] && movex <=
window_x_pdf[1]) == True), then we convert the x-position to an x-value using the
xScale_pdf_inverse function we created before. We then

select the circular position markers for the pdf (d3.select("#marker_pdf")) and cdf
(d3.select("#marker_cdf")) we created before via their IDs, and update their positions in

 // Get the data for the path
 var data_cdf = [];
 for (i = 0; i < x.length; i++) {
 data_cdf.push({
 x: x[i],
 y: cdf[i]
 })
 }

 var valueline_cdf = d3.svg.line()
 .x(function(d) {
 return xScale_cdf(d.x);
 })
 .y(function(d) {
 return yScale_cdf(d.y);
 });

 svg.append("path")
 .attr("d", valueline_cdf(data_cdf))
 .attr("fill", "none")
 .attr("stroke-width", 3 * height / 600)
 .attr("stroke", "#666666") //"#4794c1")
 .attr("id", "thatline")

 svg.append('line')
 .attr('x1', window_x_cdf[0])
 .attr('x2', window_x_cdf[1])
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([0])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([0])))
 .attr('stroke', '#000000')
 .attr("stroke-width", 3 * height / 600)
 .style("stroke-dasharray", ((10 * height / 600).toString()+","+(5 * height / 60
 .attr("id","line_cdf")
 .lower();

both subplots.
Likewise, we update the fill path in the pdf plot (d3.select("#fill")) with the new
xpos , and

update the horizontal bar in the cdf subplot (d3.select("#line_cdf")). If our cursor is
within the second subplot, the second else-if clause gets activated. This clause basically
does the same thing as the one for the first subplot, but uses the helper function
xScale_cdf_inverse instead, thereby ensuring that we update both subplots by hovering

over either one.

One of the nice things about these interactive JavaScript elements is that you can make the
updates to your elements as complex as you want, as long as you find a way to code it. The
sky is the limit! In this simple example, we really just update the properties of pre-existing
elements, but in principle you can also dynamically create new elements, destroy old
elements, and so on.

Finally, we close all open environments, and are done with this simple interactive element!

 // Shift the marker around on mouseover; restrict it to the contour
 var movex, movey, xpos

 svg
 .on("mousemove", function() {
 // Get the current mouseover coordinates
 movex = d3.event.x;
 movey = d3.event.y;

 if (movex >= window_x_pdf[0] && movex <= window_x_pdf[1]) {
 xpos = xScale_pdf_inverse(movex);

 d3.select("#marker_pdf")
 .attr("cx", xScale_pdf(xpos))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([xpos])));
 d3.select("#marker_cdf")
 .attr("cx", xScale_cdf(xpos))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([xpos])));

 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)
 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]
 })
 }
 d3.select("#fill")
 .attr("d", valueline_pdf(data_fill))
 .lower();

 d3.select("#line_cdf")
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .lower();

 } else if (movex >= window_x_cdf[0] && movex <= window_x_cdf[1]) {
 xpos = xScale_cdf_inverse(movex);
 d3.select("#marker_pdf")
 .attr("cx", xScale_pdf(xpos))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([xpos])));
 d3.select("#marker_cdf")
 .attr("cx", xScale_cdf(xpos))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([xpos])));

 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)
 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]

HTML code for the pdf/cdf element
Here is the code for the element above in full:

 })
 }
 d3.select("#fill")
 .attr("d", valueline_pdf(data_fill))
 d3.select("#fill_cdf")
 .attr('y', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('height', window_y_cdf[1] - yScale_cdf(standard_Gaussian_cdf([x
 .lower();

 d3.select("#line_cdf")
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .lower();

 }

 });

 </script>
 </body>
</html>

<!DOCTYPE html>
<html>
 <head>
 <script src="https://unpkg.com/mathjs/lib/browser/math.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.17/d3.min.js"></script>
 <script src="https://d3js.org/d3.v4.min.js"></script>
 <style>
 body{
 margin: 0; overflow: hidden;
 font-family: Helvetica, sans-serif;
 }
 </style>
 </head>
 <!-- Create a div where the graph will take place -->
 <div id="my_datavisualization">
 <svg id="click" xmlns="http://www.w3.org/2000/svg">
 </svg>
 </div>
 <body>
 <script>
 // Get the viewport height and width
 const vw = Math.max(document.documentElement.clientWidth || 0, window.innerWidth
 const vh = Math.max(document.documentElement.clientHeight || 0, window.innerHeig

 // Fit to viewport
 var height = vw * 0.5;
 var width = vw;

 // Create the canvas. We will use only part of it for the main plot
 var svg = d3.select("#click") // This selects the div
 .attr("width", width) // This defines the canvas' width
 .attr("height", height) // This defines the canvas' height

 function linspace(start, end, resolution) {
 var spacing = [];
 // Go through a for-loop
 var i;
 for (i = 0; i < resolution; i++) {
 spacing.push(start + (end - start) * i / (resolution - 1))
 }
 return spacing; // The function returns the linspace between p1 and p2
 }

 function standard_Gaussian_pdf(x) {
 mean = 0;
 std = 1;
 // Create a dummy variable
 var result = [];
 normalize = math.dotDivide(
 1,
 math.sqrt(
 math.dotMultiply(
 math.dotMultiply(
 2,
 math.PI),
 math.pow(
 std,
 2))));

 var i;
 for (i = 0; i < x.length; i++) {
 // Evaluate the first element of the Gaussian mixture
 expon = math.exp(

 -math.dotDivide(
 math.pow(
 x[i] - mean,
 2),
 math.dotMultiply(
 2,
 math.pow(
 std,
 2))))
 temp = math.dotMultiply(
 normalize,
 expon)
 result.push(temp)
 }
 return result
 }

 function standard_Gaussian_cdf(x) {
 mean = 0;
 std = 1;
 // Create a dummy variable
 var result = [];
 for (i = 0; i < x.length; i++) {
 // Evaluate the first element of the Gaussian mixture
 temp = 0.5 * (1 + math.erf(x[i] /math.sqrt(2)))
 result.push(temp)
 }
 return result
 }

 // Define a subplot for the standard normal
 const x_limits = [-3, 3];
 const y_limits_pdf = [0, 1 / math.sqrt(2 * math.pi) * 1.2];

 const window_x_pdf = [width * 0.1, width * 0.5];
 const window_y_pdf = [height * 0.1, height * 0.89];

 // Get scaling functions for the x scale and the y_scale
 const xScale_pdf = d3.scaleLinear()
 .domain([x_limits[0], x_limits[1]])
 .range(window_x_pdf)
 const xScale_pdf_inverse = d3.scaleLinear()
 .domain(window_x_pdf)
 .range([x_limits[0], x_limits[1]])
 const yScale_pdf = d3.scaleLinear()
 .domain([y_limits_pdf[0], y_limits_pdf[1]])
 .range([window_y_pdf[1], window_y_pdf[0]])

 // Draw the x axis
 svg
 .append("g")
 .attr("transform", "translate(0," + window_y_pdf[1].toString() + ")")
 .call(d3.axisBottom(xScale_pdf).ticks(5))
 .style("font-size", (12 * width / 600).toString() + "px")
 svg.append("text")
 .attr("transform",
 "translate(" + (math.mean(window_x_pdf)).toString() + "," + (height * 0.9
 .style("text-anchor", "middle")
 .text("x")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the y axis
 svg
 .append("g")

 .attr("transform", "translate(" + (window_x_pdf[0]).toString() + ",0)")
 .attr("id", "mainxaxis")
 .call(d3.axisLeft(yScale_pdf))
 .style("font-size", (12 * width / 600).toString() + "px");
 svg.append("text")
 .attr("transform",
 "translate(" + (width * 0.03).toString() + "," + (math.mean(window_y_pdf
 .style("text-anchor", "middle")
 .text("probability density")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the subplot label
 svg.append("text")
 .attr("transform",
 "translate(" + ((window_x_pdf[1] - window_x_pdf[0])/2 + window_x_pdf[0])
 .style("text-anchor", "middle")
 .text("pdf")
 .style("font-size", (16 * width / 600).toString() + "px")

 // Evaluate the normal pdf
 var x = linspace(-3, 3, 201);
 var pdf = standard_Gaussian_pdf(x);

 svg.append("circle")
 .attr("r", 10 * height / 600)
 .attr("cx", xScale_pdf(0))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([0])))
 .attr("fill", "#666666") // "#c3e7f9"
 .attr("stroke-width", 5 * height / 600)
 .attr("id", "marker_pdf");

 // Get the data for the path
 var data_pdf = [];
 for (i = 0; i < x.length; i++) {
 data_pdf.push({
 x: x[i],
 y: pdf[i]
 })
 }

 var valueline_pdf = d3.svg.line()
 .x(function(d) {
 return xScale_pdf(d.x);
 })
 .y(function(d) {
 return yScale_pdf(d.y);
 });

 svg.append("path")
 .attr("d", valueline_pdf(data_pdf))
 .attr("fill", "none")
 .attr("stroke-width", 3 * height / 600)
 .attr("stroke", "#666666") //"#4794c1")
 .attr("id", "thatline")

 var fill_x, fill_pdf
 var xpos = 0;
 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)

 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]
 })
 }
 svg.append("path")
 .attr("d", valueline_pdf(data_fill))
 .attr("fill", "#999999")
 .attr("stroke", "None") //"#4794c1")
 .attr("id", "fill")
 .lower()

 // Define a subplot for the standard normal
 const y_limits_cdf = [0, 1];
 const window_x_cdf = [width * 0.585, width * 0.985];
 const window_y_cdf = [height * 0.1, height * 0.89];

 // Get scaling functions for the x scale and the y_scale
 const xScale_cdf = d3.scaleLinear()
 .domain([x_limits[0], x_limits[1]])
 .range(window_x_cdf)
 const xScale_cdf_inverse = d3.scaleLinear()
 .domain(window_x_cdf)
 .range([x_limits[0], x_limits[1]])
 const yScale_cdf = d3.scaleLinear()
 .domain([y_limits_cdf[0], y_limits_cdf[1]])
 .range([window_y_cdf[1], window_y_cdf[0]])

 // Draw the x axis
 svg
 .append("g")
 .attr("transform", "translate(0," + window_y_cdf[1].toString() + ")")
 .call(d3.axisBottom(xScale_cdf).ticks(5))
 .style("font-size", (12 * width / 600).toString() + "px")
 svg.append("text")
 .attr("transform",
 "translate(" + (math.mean(window_x_cdf)).toString() + "," + (height * 0.9
 .style("text-anchor", "middle")
 .text("x")
 .style("font-family", "arial")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the y axis
 svg
 .append("g")
 .attr("transform", "translate(" + (window_x_cdf[0]).toString() + ",0)")
 .attr("id", "mainxaxis")
 .call(d3.axisLeft(yScale_cdf))
 .style("font-size", (12 * width / 600).toString() + "px");
 //.call(d3.axisLeft(yScale).tickFormat(""));
 svg.append("text")
 .attr("transform",
 "translate(" + (width * 0.525).toString() + "," + (math.mean(window_y_cdf
 .style("text-anchor", "middle")
 .text("cumulative probability")
 .style("font-size", (12 * width / 600).toString() + "px")

 // Draw the subplot label
 svg.append("text")
 .attr("transform",
 "translate(" + ((window_x_cdf[1] - window_x_cdf[0])/2 + window_x_cdf[0])
 .style("text-anchor", "middle")

 .text("cdf")
 .style("font-size", (16 * width / 600).toString() + "px")

 // Evaluate the normal pdf
 var cdf = standard_Gaussian_cdf(x);

 svg.append("circle")
 .attr("r", 10 * height / 600)
 .attr("cx", xScale_cdf(0))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([0])))
 .attr("fill", "#666666") // "#c3e7f9"
 .attr("stroke-width", 5 * height / 600)
 .attr("id", "marker_cdf");

 // Get the data for the path
 var data_cdf = [];
 for (i = 0; i < x.length; i++) {
 data_cdf.push({
 x: x[i],
 y: cdf[i]
 })
 }

 var valueline_cdf = d3.svg.line()
 .x(function(d) {
 return xScale_cdf(d.x);
 })
 .y(function(d) {
 return yScale_cdf(d.y);
 });

 svg.append("path")
 .attr("d", valueline_cdf(data_cdf))
 .attr("fill", "none")
 .attr("stroke-width", 3 * height / 600)
 .attr("stroke", "#666666") //"#4794c1")
 .attr("id", "thatline")

 svg.append('line')
 .attr('x1', window_x_cdf[0])
 .attr('x2', window_x_cdf[1])
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([0])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([0])))
 .attr('stroke', '#000000')
 .attr("stroke-width", 3 * height / 600)
 .style("stroke-dasharray", ((10 * height / 600).toString()+","+(5 * height / 60
 .attr("id","line_cdf")
 .lower();

 // Shift the marker around on mouseover; restrict it to the contour
 var movex, movey, xpos

 svg
 .on("mousemove", function() {
 // Get the current mouseover coordinates
 movex = d3.event.x;
 movey = d3.event.y;

 if (movex >= window_x_pdf[0] && movex <= window_x_pdf[1]) {
 xpos = xScale_pdf_inverse(movex);

 d3.select("#marker_pdf")

 .attr("cx", xScale_pdf(xpos))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([xpos])));
 d3.select("#marker_cdf")
 .attr("cx", xScale_cdf(xpos))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([xpos])));

 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)
 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]
 })
 }
 d3.select("#fill")
 .attr("d", valueline_pdf(data_fill))
 .lower();

 d3.select("#line_cdf")
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .lower();

 } else if (movex >= window_x_cdf[0] && movex <= window_x_cdf[1]) {
 xpos = xScale_cdf_inverse(movex);
 d3.select("#marker_pdf")
 .attr("cx", xScale_pdf(xpos))
 .attr("cy", yScale_pdf(standard_Gaussian_pdf([xpos])));
 d3.select("#marker_cdf")
 .attr("cx", xScale_cdf(xpos))
 .attr("cy", yScale_cdf(standard_Gaussian_cdf([xpos])));

 fill_x = linspace(x_limits[0], xpos, 201);
 fill_pdf = standard_Gaussian_pdf(fill_x);
 fill_x.push(xpos)
 fill_x.push(x_limits[0])
 fill_pdf.push(0)
 fill_pdf.push(0)
 var data_fill = [];
 for (i = 0; i < fill_x.length; i++) {
 data_fill.push({
 x: fill_x[i],
 y: fill_pdf[i]
 })
 }
 d3.select("#fill")
 .attr("d", valueline_pdf(data_fill))
 d3.select("#fill_cdf")
 .attr('y', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('height', window_y_cdf[1] - yScale_cdf(standard_Gaussian_cdf([x
 .lower();

 d3.select("#line_cdf")
 .attr('y1', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .attr('y2', yScale_cdf(standard_Gaussian_cdf([xpos])))
 .lower();

 }

 });

 </script>
 </body>
</html>

Interactive content: Run Python inside
your book

Contents
Setting up Python live coding

Instructions: local build

Custom cell tags

Additional packages

Alternative with JupyterLite (less well integrated)

Sphinx Extension

Our book has been enable to run Python code live in the browser (thanks Max!). This extension makes code cells in your
.ipynb book pages editable and executable by the reader! Opposed to the original sphinx-thebe extensions, our extension

runs python in the reader’s browser and doesn’t rely on an external webserver for the python kernel. We highly recommend
this extension as it allows you to use the strength of combining text/figures and code of a jupyter book with interactivity!

This page contains some installation instructions and the other sections show how to use this functionality to create
interactive figures and feedback on code

To see this happening, click –> on the top right corner of this page

There are two tools presented on this page: Sphinx-Thebe and JupyterLite (at the bottom). Both tools rely on
Pyodide, a software tool that is the backbone allowing for a Jupyter Notebook-like experience in a web browser
without requiring the user to install any software.

Most of the TeachBooks Team uses a custom version of Sphinx-Thebe, a Sphinx Extension, because it can be
integrated directly in a TeachBooks and provides a notebook-style experience (a “your page is a notebook”
experience), whereas JupyterLite is more of a “notebook-in-a-window-in-your-page” experience.

This use of Sphinx-Thebe with Pyodide was made possible in Summer 2023 by Max Guichard, originally as a set of
static files loaded in the MUDE Book. In January of 2024 this was converted to a custom Sphinx extension hosted
on MUDE’s TU Delft GitLab. As of February, 2025, we are currently working on improving this extension and
providing it via PyPI, similar to our other tools. Stay tuned!

Sphinx-Thebe can be configured to use two types of “computers” in the background: Pyodide (what we use,
running 100% in the browser) and Binder, which is a third-party service that provides cloud-based computers for
free (i.e., code runs on a separate server). This is a great tool, but often the time required to wait for the free cloud
computer to be ready is too long (or simply does not work). As most of our teaching applications only require
simple pieces of code, we prefer the Pyodide-based options because it is more reliable and loads faster.

Live Code

print('hello world')

Note

https://mude.citg.tudelft.nl/book
https://gitlab.tudelft.nl/mude/sphinx-thebe/-/tree/lite-main?ref_type=heads

Setting up Python live coding
To set up the Python live coding you need to add our own sphinx-thebe extension to your book. This extensions doesn’t
rely on a 3rd party like Binder and it supports local python execution and custom features. Therefore, you need to add some
lines to requirements.txt and _config.yml

For requirements.txt add the following line:

This will download the correct version of the sphinx extension when the book is built (which loads the required packages
from requirements.txt)

If you want to build the book locally, you need to install this version of sphinx-thebe in your environment as well with:

Afterwards, this sphinx extension needs to be enabled in your book. This can be done by adding the following lines to
_config.yml :

The html_js_files link calls for some required javascript files. use_thebe_lite makes sure you initiate our adapted sphinx
thebe extensions. The exclude_patterns makes sure you import all files so that they can be accessed from your code, except
for the files matching the patterns shown.

If you’ve a lot of big files which are not used by the code, the build book repository might grow a lot in size.
Include unnecessary filetypes like images (i.e. "**/*.png) to exclude_patterns . Make sure you use proper
markdown or MyST syntax for referencing to images. Using HTML code might lead to figures not being available
in the final book. You can use this python script to list all filetypes in your book.

By launch_buttons you initiate the –> on the top right corner of every page generated from a .ipynb file.

Note, if you’re messing around with html_theme_options (for example when adding more buttons), all button behaviour is
affected. In that case, as opposed to the jupyter book documentation, all buttons have to be specified from within sphinx:
html_theme_options where you might also specify other buttons as well (ie. the code repository button).

git+https://github.com/TeachBooks/Sphinx-Thebe

pip install -r requirements.txt

launch_buttons:
 thebe: true

sphinx:
 config:
 html_js_files:
 - https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js
 thebe_config:
 use_thebe_lite: true
 exclude_patterns: ["**/_*.yml", "**/*.md", "**/*.ipynb"]

Live Code

Note

https://github.com/TeachBooks/Sphinx-Thebe
https://teachbooks.io/manual/_downloads/6ca00634e011415e313e0a6ac8db1642/directories.py
https://jupyterbook.org/en/stable/basics/repository.html

Instructions: local build
To test the fuctionality, you have to run a local server, otherwise the interactivity doens’t work. So, you cannot just open the
index.html file any more. This can be done with the steps shown in Local Server to view interactive elements locally.

If you push to main, you can test the interactivity on the book-draft website as well.

Custom cell tags
With the extended functionality of live code, additional cell tags have been developed to be added to python cells (not
markdown cells) in any .ipynb file, next to the [existing tags] of the jupyter book
(https://jupyterbook.org/en/stable/content/metadata.html):

disable-execution-cell disables the ability to execute the cell when thebe is activated. This might be useful if you
notebook file includes interactivity for only a part of the coding cells

disable-execution-page disables the ability to execute the entire page. This might be useful if you use python code for
creating a page, but the code is not part of the actual content of the book.

auto-execute-page automatically starts the thebe live coding functionality whenever the page is opened. This is
particularly useful if you’re using widgets on a page.

thebe-init directly starts running this cell as soon as the thebe live coding functionality starts.

thebe-remove-input-init , as thebe-init , starts the cell directly as soon as the thebe live coding functionality starts.
However, the input is not shown to the students (in static and interactive mode). The original remove-input tag will not
work as it deletes the entire cell, so it can never be executed.

Additional packages
The python kernel doesn’t have all packages standard included. Some of the most used packages which are included are:

python

numpy

scipy

sympy

matplotlib

ipywidgets

If you’d like to install more package, you can do so by added a codecell (preferably hidden using thebe-remove-input-init)
with the following command:

sphinx:
 config:
 html_js_files:
 - https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js
 thebe_config:
 use_thebe_lite: true
 exclude_patterns: ["**/_*.yml", "**/*.md", "**/*.ipynb"]
 html_theme_options:
 repository_url: "hello!"
 use_repository_button: true
 launch_buttons:
 thebe: true

https://teachbooks.io/manual/features/local_server.html#setup-local-server
https://jupyterbook.org/en/stable/content/metadata.html

This will install the packages: Micropip will look at the Pyodide package index, but also at the general PyPi index. If a
package is pure python (i.e. no C extensions), then it can also be used by Pyodide.

Custom packages
If you have some custom packages you can also create a wheel to import. Therefore, create a wheel from your package by
running this in the root directoy of your package:

Copy the wheel from dist/<something>.whl to your book and import the package from within a notebook using:

Preferably with the tag thebe-remove-input-init .

Other packages not in Pyodide but on PyPI
If the packages are not included in Pyodide, you can use `pip:

Import module from subdirectory
In case you’ve a module in a subdirectory you cannot do directly import <module_name> as <local_module_name> . To solve this,
you first have to add that subdirectory to the path with sys.path.insert(1, '/<module_name/subdirectory>') (preferably in a
hidden cell with theme-remove-input-init)

Alternative with JupyterLite (less well integrated)
Another option to use python in your browser is to use JupyterLite. However, compared to Sphinx-Thebe, described above,
this doesn’t give a similar seamless interface within your page. Nevertheless, depending on your application, JupyterLite
could be a useful tool, especially as it allows for three IDE types: Jupyter Notebook, Jupyter Lab and the iPython REPL.

One example use case is to create ‘iframe-like’ Ipython consoles / jupyterbook / jupyter lab environments in your book. As
these ‘iframes’ are separate modules added to your page, the integration with the other content in your book is less flexible
as with our sphinx-thebe extension. If you need to manage several different environments for JupyterLite within the book,
you can use a JupyterLite session from a separate repo with the jupyter lab interface anyway, so you get the full browser
experience. Alternatively, the ipython REPL better can be useful, as shown in our Python for Engineers book.

import micropip
await micropip.install("package_name")

python setup.py bdist_wheel

import micropip
await micropip.install('<directory>/<something>.whl')

%pip install package_name

https://jupyterlite.readthedocs.io/en/stable/
https://teachbooks.io/learn-python/main/Python_Toolbox.html

The TeachBooks Team has focused primarily on the use of Sphinx-Thebe and has not looked at JupyterLite over
the last couple years. If you have an interesting application of this tool for teaching, please get in touch, we would
love to see it! You can use GitHub Discussions or sent us an email at info@teachbooks.io.

Tip

https://github.com/orgs/TeachBooks/discussions
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io

Ipywidgets
Contents

matplotlib widgets

Example

If you publish widgets in a jupyter book they might (depending on your implementation)
require an active python kernel for the output to be interactive. Using the thebe-integration,
this is possible. Note: You can circumvent the use of a kernel by using packages which don’t
need such a kernel, for example the non-kernel-based widgets using Plotly.

matplotlib widgets
When you’d like to use ipywidgets in combinations with a matplotlib figure, import the
following packages:

Activate the correct output format:

Write the code which generates your plot in a function:

Initiate the widget:

import ipywidgets as widgets
import micropip
await micropip.install("ipympl")

%matplotlib widget

fig = plt.figure() # Define the figure once
ax = fig.add_subplot(1,1,1) # Define the axis once

def update_plot(input_variables_from_widget):
 ax.clear() # Clear the existing plot
 ax.plot(x,y) # Plot your actual data
 plt.draw() # Update the plot whenever this function is executed

https://teachbooks.io/manual/examples/live_code.html
https://teachbooks.io/manual/features/plotly.html

Finally, When using %matplotlib widget , there’s the following toolbar:

Which only shows up when you hoover above. If you want to disable the toolbar you can
use:

If you want it to be visible even if you don’t hoover above it, use:

Please note:

You might want to hide the output before the thebe has been activated.

You can hide the code by adding a custom-made tag: thebe-remove-input-init .

You can automatically start the thebe functionality when you add auto-execute-page to
a cell.

Example
The code below shows an example of the strain energy in a structure and work done by a
force for different trial functions. Because of the actual python code, the plot ‘refreshes’
upon updating a widgets. This can be avoided by updating the current figure instead of
plotting a new figure. Remember, first press –> and then wait until all cells are
executed:

input_slider = widgets.FloatSlider(value=0, min=0, max=10, step=1, description='Input var
widgets.interact(update_plot, input_variable_from_widget = input_slider);

fig = plt.gcf()
fig.canvas.toolbar_visible = False

fig = plt.gcf()
fig.canvas.toolbar_visible = True

Live Code

The graph will appear below in interactive mode:

Exercise checking using check-
answer button

Contents
Example

Using the python-enabled interactivity, exercise checking can be intuitively incorporated
using a widgets which checks the value of certain variables with respect to the answer. These
examples show different approaches to achieving this goal.

A function has been made to check the value of a variable. As input values it takes the
variable name, the expected value (correct answer) and how these values should be
compared. You need to add this function to each page, including the imports, and add the
thebe-remove-input-init tag to the cell.

To check a float value, you could use math.isclose as a function. For checking the
equivalence of arrays, you might consider numpy.array_equiv

You can choose to include the correct answers in the same notebook. If students download
the page and you didn’t specify a custom url, they can find the correct answers. You can also
place the correct answers in a seperate .py file which you import in the notebook.

import ipywidgets as widgets
from IPython.display import display
import operator

def check_answer(variable_name, expected, comparison = operator.eq):
 output = widgets.Output()
 button = widgets.Button(description="Check answer")
 def _inner_check(button):
 with output:
 if comparison(globals()[variable_name], expected):
 output.outputs = [{'name': 'stdout', 'text': 'Correct!', 'output_type': '
 else:
 output.outputs = [{'name': 'stdout', 'text': 'Incorrect!', 'output_type':
 button.on_click(_inner_check)
 display(button, output)

Example

run run all add cell clear

This example has the user type in the answer as a Python variable, bu
pi = 3.14

1
2

JupyterQuiz
Contents

JupyterQuiz

Type numeric answer here:

JupyterQuiz is a code-based implementation of multiple-choiche questions and numerical answer questions. This is a basic
open course tool which requires you to write your quiz questions in Python language as a dict or to a .json file. An
example is given below:

A pre-fabricated bridge design is being considered for river crossings in a remote region of the world, as shown in Figure 1.
Cities 1, 2 and 3 are labelled C1, C2 and C3, with bridges labelled B1-B4.

JupyterQuiz

If the probability of failure for an individual bridge is 0.1 per
year, compute the probability that you cannot drive from City
1 to City 2:

https://teachbooks.io/manual/_images/simple-city.png

Iframes
Contents

What does it do?

Installation

Configuration

Provided code

Examples and details

Contribute

This extension provides an interface to include iframes with relative ease, but does try to provide manners to interact with
the various options. This rests purely by setting default CSS values, that the user can overwrite if preferred for individual
iframes, but also globally. In general, each iframe is embedded within a div element, which eases sizing.

Using CSS is complicated and error prone, so always check and never expect that you get what you want.

What does it do?
This extension provides several Sphinx directives:

iframe

h5p

video

iframe-figure

that can be used to quickly insert an iframe with standard sizing and styling.

Installation
To use this extenstion, follow these steps:

Step 1: Install the Package

Install the module sphinx-iframes package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

pip install sphinx-iframes

sphinx-iframes

Note

Step 3: Enable in _config.yml

In your _config.yml file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

Configuration
The extension provides several configuration values, which can be added to _config.yml :

iframe_blend : true (default) or false :

if true all iframes are standard blended with the background and in dark-mode also inverted.

if false all non-blended iframes will have background a colored background and no inversion for dark-mode is
applied.

there’s no need to set the blend or no-blend for individual iframes if it’s set in the _config.yml , unless you want to
deviate from the setting set there.

iframe_saturation : 1.5 (default) or float:

Blended iframes are inverted in darkmode using the CSS filter invert(1) hue-rotate(180deg)
saturation(iframe_saturation) .

iframe_h5p_autoresize : true (default) or false :

if true all h5p iframes are automagically resized to fit the element in which the iframe is loaded.

if false no h5p iframes are automagically resized to fit the element in which the iframe is loaded.

iframe_background : "#ffffff" (default) or CSS string:

sets the standard background color of non-blended iframes.

Any CSS string defining colors can be used, see CSS data type.

Surround with " " for hex strings.

Only visible if the content of the iframes has a transparant background.

iframe_width : calc(100% - 2.8rem) (default) or CSS string:

sets the standard width of the iframe within the parent element;

Any CSS string defining a width can be used, see width CSS property.

iframe_aspectratio : auto 2 / 1 (default) or CSS string:

sphinx:
 extra_extensions:
 .
 .
 .
 - sphinx_iframes
 .
 .
 .

sphinx:
 config:
 -
 -
 -
 iframe_blend: true # default value
 iframe_saturation: 1.5 # default value
 iframe_h5p_autoresize: true # default value
 iframe_background: "#ffffff" # default value
 iframe_width: calc(100% - 2.8rem) # default value
 iframe_aspectratio: auto 2 / 1 # default value
 -
 -
 -

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/width

sets the standard aspect ration of the iframe within the parent element;

Any CSS string defining an aspect ratio can be used, see aspect-ratio CSS property.

Provided code

Directives
The following new directives are provided:

In case of a YouTube-link, it is inverted to an embed link if the normal web URL is provided.

Note that you don’t need the full embed code of an iframe. Only the source url should be used.

All of these have the following options:

:class:

If further CSS styling is needed, then use this option to append a CSS class name to the rendered iframe.

We recommend to only use the classes blend and no-blend , see Examples and details.

:width:

Sets the width of the iframe. Use CSS compatible strings.

:height:

Sets the width of the iframe. Use CSS compatible strings.

:aspectratio:

Sets the width of the iframe. Use CSS compatible strings.

:styleframe:

Sets the style of the iframe. Use CSS compatible strings. Surround with ” “.

:stylediv:

Sets the style of the surrounding div. Use CSS compatible strings. Surround with ” “.

The directive iframe-figure also inherits all options from the figure directive from Sphinx.

```{iframe} <link_to_webpage_to_embed>
```

```{h5p} <link_to_h5p_webpage_to_embed>
```

```{video} <link_to_video_to_embed>
```

```{iframe-figure} <link_to_webpage_to_embed>
:name: some:label

The caption for the iframe.
```

https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio

Examples and details

iframe directive
To clearly show the blending and sizing, we showcase everthing in a general titled admonition.

Default behavior
For use inline or in other directives and admonitions, iframes can be added using the following syntax:

For example:

Blending
Blending can be enabled or disabled by using the classes blend and no-blend . Results may differ depending on other
extensions and CSS code.

```{iframe} <link_to_webpage_to_embed>
```

````{admonition} Default
```{iframe} ./some_content/element_pdf_and_cdf.html
```
````

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

````{admonition} Enable blending
```{iframe} ./some_content/element_pdf_and_cdf.html
:class: blend
```
````

Default

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

Sizing aspects
The size of the shown iframe can be controlled with atmost two out the following three options:

width : Sets the width of the iframe. Use CSS compatible strings.

height : Sets the height of the iframe. Use CSS compatible strings.

aspectratio : Sets the aspect ratio of the iframe. Use CSS compatible strings.

These options will be applied to the encapsulating div element.

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
pr

ob
ab

ilit
y

de
ns

ity
pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

````{admonition} Disable blending
```{iframe} ./some_content/element_pdf_and_cdf.html
:class: no-blend
```
````

Enable blending

Disable blending

Using CSS is complicated and error prone, so always check and never expect that you get what you want.

This extension does not check the validity of the given options, nor checks whether at most two options are
entered.

````{admonition} Width and height
```{iframe} ./some_content/element_pdf_and_cdf.html
:width: 600px
:height: 200px
```
````

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

um
ul

at
iv

e
pr

ob
ab

ilit
y

cdf

````{admonition} Width and aspect ratio
```{iframe} ./some_content/element_pdf_and_cdf.html
:width: 600px
:aspectratio: 2 / 3
```
````

-3 -2 -1 0 1 2 3x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

````{admonition} Height and aspect ratio
```{iframe} ./some_content/element_pdf_and_cdf.html
:height: 150px
:aspectratio: 2 / 2
```
````

Note

Warning⚠

Width and height

Width and aspect ratio

Styling aspects
The style of the shown iframe can be controlled with two options:

styleframe : Sets the style of the iframe. Use CSS compatible strings. Include surround with " " .

stylediv : Sets the style of surrounding div. Use CSS compatible strings. Include surround with " " .

Using CSS is complicated and error prone, so always check and never expect that you get what you want.

This extension does not check the validity of the given option.

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

````{admonition} iframe styling
```{iframe} ./some_content/element_pdf_and_cdf.html
:styleframe: "border-style: dotted;border-color: #0047AB;border-width:5px;"
```
````

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

Height and aspect ratio

Note

Warning⚠

iframe styling


````{admonition} div styling
```{iframe} ./some_content/element_pdf_and_cdf.html
:stylediv: "border-style: dashed;border-color: olive;border-width:20px;"
```
````

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

````{admonition} iframe and div styling
```{iframe} ./some_content/element_pdf_and_cdf.html
:styleframe: "border-style: dotted;border-color: #0047AB;border-width:5px;"
:stylediv: "border-style: dashed;border-color: olive;border-width:20px;"
```
````

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pr
ob

ab
ilit

y
de

ns
ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

div styling

iframe and div styling

h5p directive
For iframes intended for H5P elements, the code

can be reduced to

resulting in

Note that you don’t need the full embed code as provided by H5P. Only the source url (often with the following syntax
https://<h5p_host_server>/content/<h5p_element_id>/embed) should be used. This url can be obtained from the url in your

H5P application with an addtional /embed , or in the html-embed-code.

video directive
For iframes intended for videos, the code

can be reduced to

or it can take the regular YouTube URL:

````{admonition} H5P example
```{iframe} https://tudelft.h5p.com/content/1292011179114024347/embed
:class: blend
:aspectratio: auto
```
````

````{admonition} H5P example
```{h5p} https://tudelft.h5p.com/content/1292011179114024347/embed
```
````

If you want to run the command `numpy.linspace(0,100,100)` after importing as shown above, what is
the code you need to enter?

 Check

````{admonition} video example
```{iframe} https://www.youtube.com/embed/B1J6Ou4q8vE?si=XZDT83fcR6W3Dxut
:class: no-blend
:styleframe: "background: transparent;"
:aspectratio: auto 16 / 9
```
````

````{admonition} video example
```{video} https://www.youtube.com/embed/B1J6Ou4q8vE?si=XZDT83fcR6W3Dxut
```
````

H5P example

resulting both in

Animation vs. MathAnimation vs. Math

iframe-figure directive
In Fig. 115 you can find the result of the below code. The reference is made using {numref} and label behind :name: .

````{admonition} video example
```{video} https://www.youtube.com/watch/B1J6Ou4q8vE
```
````

````{iframe-figure} ./some_content/element_pdf_and_cdf.html
:name: some:label

The caption for the iframe.
````

video example

https://www.youtube.com/watch?v=B1J6Ou4q8vE

Fig. 115 The caption for the iframe.

Contribute
This tool’s repository is stored on GitHub. If you’d like to contribute, you can create a fork and open a pull request on the
GitHub repository.

The README.md of the branch Manual is also part of the TeachBooks manual as a submodule.

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
pr

ob
ab

ilit
y

de
ns

ity

pdf

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

cdf

https://github.com/TeachBooks/sphinx-iframes
https://github.com/TeachBooks/sphinx-iframes
https://teachbooks.io/manual/intro.html

PRIME applets
Contents

What does it do?

Installation

Applet directive

Parameters for an applet

Contribute

This extension provides an interface to include PRIME applets with relative ease.

What does it do?
This extension provides one Sphinx directives (applet) that can be used to quickly insert a PRIME applet.

Installation
To use this extenstion, follow these steps:

Step 1: Install the Package

Install the module sphinx-prime-applets package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

pip install sphinx-prime-applets

sphinx-prime-applets

sphinx:
 extra_extensions:
 .
 .
 .
 - sphinx_prime_applets
 .
 .
 .

https://openla.ewi.tudelft.nl/

Applet directive

The url parameter should be the part of the URL after /applet/ . So if the full URL is
https://openla.ewi.tudelft.nl/applet/lines_and_planes/normal_equation_plane_origin , you should set the

parameter to lines_and_planes/normal_equation_plane_origin .

Parameters for an applet
Some parameters can be set for an applet. Only the url , fig and name parameters are required; the rest is optional. It is
recommended to add a status to the applet, which can be unreviewed , in-review or reviewed .

Optional parameters

Control parameters

Work in progress

```{applet}
:url: lines_and_planes/normal_equation_plane_origin
:fig: Images/image_shown_in_print_version.svg
:name: name_that_is_used_to_refer_to_this_figure
:class: dark-light
:title: This title is shown when you full-screen the applet

A plane through the point $P$.
```

```{applet}
:url: lines_and_planes/normal_equation_plane_origin # Required url
:fig: Images/lines_and_planes/normal_equation_plane_origin.svg  # Image shown in print version
:status: reviewed # default is "unreviewed". Other options are "in-review" and "reviewed"
:name: Fig:InnerProduct:ProjectionVectorLine

A title that describes the applet
```

Parameter Description Default

title A string that will be shown as the title of the applet when the applet is in fullscreen mode “”

status The status of the applet. Can be unreviewed , in-review or reviewed unreviewed

width The width of the applet in pixels 100%

height The height of the applet in pixels 400px

Note

Warning⚠

2D Specific parameters

You should add split-* before the parameter to make it apply to the right scene

3D Specific parameters

You should add split-* before the parameter to make it apply to the right scene

Contribute
This tool’s repository is stored on GitHub. If you’d like to contribute, you can create a fork and open a pull request on the
GitHub repository.

The README.md of the branch manual is also part of the TeachBooks manual as a submodule.

Parameter Description Default

position2D The position of the applet in the 2D plane 0,0

zoom2D The zoom level of the applet in the 2D plane 1

Parameter Description Default

position3D The position of the applet in the 3D plane 0,0,0

zoom3D The zoom level of the applet in the 3D plane 1

Tip

Tip

https://github.com/TeachBooks/Sphinx-PRIME-applets
https://github.com/TeachBooks/Sphinx-PRIME-applets
https://teachbooks.io/manual/intro.html

Book styling
TeachBooks developed a few improvements of the book which improve the visual book styling.

Image Inverter
Contents

How does it work?

Installation

Usage

Contribute

When toggling dark mode in JupyterBook, images and figures are not inverted by default, but a white background is
inserted. However, this white background might not always be desired in dark mode.

The Sphinx-Image-Inverter extension provides a solution by applying an automatic filter to images and iframes. If this
filter is not desired for certain items, the Sphinx-Image-Inverter extension provides a solution by allowing selective
disabling using the dark-light class.

If the filter should only be applied to a small number of images, this can be done by applying the filter only to items with
the dark-light class, in combination with setting inverter_all to true in _config.yml .

The inversion does not apply to the logo. If a different logo is preferred in dark mode compared to light mode,
please use Different logos for light and dark mode.

How does it work?
This Sphinx extension applies a filter such that dark and light colors are switched, however keeps the colours recognizable.
This is particularly useful for graphs in which a certain colour is mentioned in accompanying text. Items are not converted if
they are marked with the dark-light class (recommended for example for photos).

In more detail, first the colors of the element are inverted, then the hue of the colors is shifted by 180 degrees, so the
inverted colors change to their complementary hues. This flips the brightness and contrast, while keeping the hue
somewhat recognizable (so a blue line will be a blue line in both ligth and dark mode). Black and white stay inverted (so
white becomes black, and black becomes white), because they don’t have a hue. Next, the colors are (by default) saturated
to enforce a better contrast. After this, the element blends with the background, making similar colors appear dark and very
different colors appear bright. The overall effect creates high contrast between the element and the background, depending
on their colors.

Installation
To install the Sphinx-Image-Inverter, follow these steps:

Step 1: Install the Package

Install the sphinx-image-inverter package using pip :

pip install sphinx-image-inverter

Note

https://pydata-sphinx-theme.readthedocs.io/en/latest/user_guide/branding.html#different-logos-for-light-and-dark-mode

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml file, add the extension to the list of Sphinx extra extensions:

Usage

Enable/Disable Inversion of all Images/Figures
By default all images and figures will be inverted. If this is wished for, use the following in your _config.yml :

This stops automatic inversion of images and figures. Inversion of specific images and figures can be achieved by enabling
this using the dark-light class, see below.

Disable/change saturation
The saturation level is preset to 1.5 . If no saturation or a different saturation is requested, use the following in your
_config.yml :

where <saturation> should be replace with a positive number. The value 1.0 represent no saturation and the value 1.5 is
the default value.

Disable/Enable Image/Figure Inversion
By default, when dark-mode is toggled in JupyterBook, all images and figures are inverted. To prevent certain images from
being inverted, apply the dark-light class. The steps for both Markdown and HTML formats are given below.

For Markdown Format

1. Locate the markdown file that contains the image or figure you want to exclude from inversion.

2. Add the :class: dark-light attribute to the figure directive.

Example:

sphinx-image-inverter

sphinx:
 extra_extensions:
 - sphinx_image_inverter

sphinx:
 config:
 inverter_all: false

sphinx:
 config:
 inverter_saturation: <saturation>

For HTML Format

If your image or figure is defined using HTML, apply the dark-light class directly to the tag.

Now your image will not be inverted when dark mode is toggled (in the default scenario).

If inverter_all has been set to false , only the image with the dark-light class will be inverted.

Display Text According to Theme
You may want to display different text depending on whether the dark mode or light mode is enabled. To do that, you can
use the following classes:

Light Mode only:

Dark Mode only:

These classes make sure that your text is only visible in the specified modes.

Compatible LaTeX colours
If you’d like to use LaTeX colours which invert similarly, use the approach Sphinx extension Sphinx-Named-Colors.

Contribute
This tool’s repository is stored on GitHub. The README.md of the branch Manual is also part of the TeachBooks manual as a
submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To update
the README.md shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository of the
manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

```{figure} example_folder/example_image.jpg
:class: dark-light
:width: 400```

<iframe 
    src="some_figure.html" 
    width="600" 
    height="300" 
    class="dark-light">
</iframe>

<span class="only-light">Text only visible in Light Mode.</span>

<span class="only-dark">Text only visible in Dark Mode.</span>

https://github.com/TeachBooks/Sphinx-Named-Colors
https://github.com/TeachBooks/Sphinx-Image-Inverter
https://teachbooks.io/manual/external/Sphinx-Image-Inverter/README.html
https://github.com/TeachBooks/Sphinx-Image-Inverter
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual


JupyterBook-Patches
Contents

Installation

Contribute

This Sphinx extension fixes:

an issue where drop down menus would still take up space after being minimized, and the patch fixes it through some
css.

an issue where in drop down code cells the shown summary remained lightgray instead of turning darkgrey. Fix
through css.

an issue where the size of code in a header is not the correct font size. Fix through css.

an issue where two buttons for interactive matplotlib widget do not appear.

an issue where the sidebar shows a scrollbar even if that’s not needed

Installation
To install the Sphinx-JupyterBook-Patches, follow these steps:

Step 1: Install the Package

Install the jupyterbook_patches  package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt  to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml  file, add the extension to the list of Sphinx extra extensions:

Contribute
This tool’s repository is stored on GitHub. The README.md  of the branch manual_docs  is also part of the TeachBooks manual
as a submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To
update the README.md  shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository

pip install jupyterbook_patches

jupyterbook_patches

sphinx: 
    extra_extensions:
        - jupyterbook_patches

https://github.com/TeachBooks/JupyterBook-Patches
https://teachbooks.io/manual/external/JupyterBook-Patches/README.html
https://github.com/TeachBooks/JupyterBook-Patches
https://github.com/TeachBooks/manual


of the manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

https://github.com/TeachBooks/manual


TU Delft theme
Contents

What does it do?

Installation

Usage

Contribute

The default theme in JupyterBooks is usually not desired and need to be changed by adding custom stylesheets. The
Sphinx-TUDelft-theme extension provides a simple solution to have a uniform theme across all the books created at Delft
University of Technology that matches the TU Delft identity.

What does it do?
This extension applies styling changes, being

particular colours (different colors for light and dark themes) for:

admonitions (e.g. hint, note, tip, error, etc.),

proofs (e.g. theorem, axiom, lemma, corollary, etc.),

exercises,

buttons,

badges,

custom components,

,

the primary and secondary color of the book (mainly used for typesetting links).

particular icons for:

proofs (e.g. theorem, axiom, lemma, corollary, etc.),

exercises,

custom components.

Unless specified otherwise, see Usage, this extension also automatically sets:

a Delft University of Technology logo;

a Delft University of Technology favicon;

the Delft University of Technology preferred fonts;

rendering text inside MathJax as the surrounding text;

an always visible logo (i.e. a sticky logo).

You can see how the TU Delft theme looks like applied in this example book.

Installation
To implement the TU Delft theme, follow these steps:

LT XA
E

http://teachbooks.io/TU-Delft-Theme-Example/


Step 1: Install the Package

Install the sphinx-tudelft-theme  package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt  to track the dependency:

Step 3: Enable in _config.yml

In your _config.yml  file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

The following Sphinx extra extensions (if used) must be added before this extension:

sphinx_proof

sphinx_exercise

teachbooks_sphinx_grasple

If this is forgotten, the CSS of this extension cannot be applied correctly.

Usage
By following the steps above, the theme will be applied automatically.

To use the defined colors inside  rendered with MathJax, one should use the command

where <color>  is one of the following colors:

tud-red

tud-blue

tud-green

tud-raspberry

tud-yellow

tud-darkGreen

tud-orange

tud-cyan

tud-gray

pip install sphinx-tudelft-theme

sphinx-tudelft-theme

sphinx: 
    extra_extensions:
        .
        .
        .
        - sphinx_tudelft_theme
        .
        .
        .

LT XA
E

\class{<color>}{<math>}



tud-purple

tud-pink

tud-darkBlue

and <math>  is the  that should be rendered in the color <color> .

If a Delft University of Technology logo should not be set (i.e. use logos defined by the user), include the following in your
_config.yml  file:

If a Delft University of Technology favicon should not be set (i.e. use a favicon defined by the user), include the following in
your _config.yml  file:

If the Delft University of Technology fonts should not be set (i.e. use fonts defined by the user), include the following in your
_config.yml  file:

If rendering text inside MathJax should not be the same as the surrounding html, include the following in your _config.yml
file:

If a sticky logo is not preferred, include the following in your _config.yml  file:

Contribute
This tool’s repository is stored on GitHub. The README.md  of the branch Manual  is also part of the TeachBooks manual as a
submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To update
the README.md  shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository of the
manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

LT XA
E

sphinx:
  config:
    ...
    tud_change_logo: false

sphinx:
  config:
    ...
    tud_change_favicon: false

sphinx:
  config:
    ...
    tud_change_fonts: false

sphinx:
  config:
    ...
    tud_change_mtext: false

sphinx:
  config:
    ...
    tud_sticky_logo: false

https://github.com/TeachBooks/Sphinx-TUDelft-theme
https://teachbooks.io/manual/intro.html
https://github.com/TeachBooks/Sphinx-TUDelft-theme
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual


Rich hover over tips
Contents

What does it do?

Installation

Usage

Contribute

Sphinx-tippy allows you to create rich hover over tips as demonstrated here: https://sphinx-tippy.readthedocs.io/en/latest/.
This TeachBooks Tippy extension makes it plug-and-play within a TeachBook.

The differences with Sphinx-tippy are:

Default inclusion of useful CSS-file.

Default activation of sphinx.ext.mathjax.

Default loading method of defer changed to None for supporting JavaScript.

Default support for TeachBooks Sphinx Grasple such that images are shown (as iframes are not loaded).

Limit the showing of tool tips to the <main>  anchor of the Sphinx book.

Limit the maximum height of a tool tip.

Force tool tips to remain with visible document body.

No arrow that points from the tool tip to the link.

What does it do?
You can see how the this works in the example book.

Installation
To install TeachBooks-Sphinx-Tippy, follow these steps:

Step 1: Install the Package

Install the teachbooks-sphinx-tippy  package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt  to track the dependency:

Step 3: Enable in _config.yml

pip install teachbooks-sphinx-tippy

teachbooks-sphinx-tippy

https://sphinx-tippy.readthedocs.io/en/latest/
https://github.com/TeachBooks/Sphinx-Grasple-public
https://teachbooks.io/TeachBooks-sphinx-tippy-Example


In your _config.yml  file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

Usage
By following the steps above, the extension will be added automatically.

Contribute
This tool’s repository is stored on GitHub. The README.md  of the branch Manual  is also part of the TeachBooks manual as a
submodule. If you’d like to contribute, you can create a fork and open a pull request on the GitHub repository. To update
the README.md  shown in the TeachBooks manual, create a fork and open a merge request for the GitHub repository of the
manual. If you intent to clone the manual including its submodules, clone using: git clone
--recurse-submodulesgit@github.com:TeachBooks/manual.git .

sphinx: 
    extra_extensions:
        - teachbooks_sphinx_tippy

https://github.com/TeachBooks/teachbooks-sphinx-tippy
https://teachbooks.io/manual/intro.html
https://github.com/TeachBooks/teachbooks-sphinx-tippy
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual


APA References
Contents

Introduction

Installation

Usage

Implementation

Contribute

This feature is stable but because it relies on a local extension that is part of your book files and not managed as
part of a computing environment (e.g., pip  or conda ), unknown issues may arise. We would like to convert this
feature into an independent Sphinx extension and/or Pybtext plugin. Visit the project page on GitHub to learn
more.

The instructions provided here will work under conventional usage with Jupyter Book (e.g., jupyter book build
book ).

A temporary fix has also been implemented in the TeachBooks package for use with the Deploy Book Workflow
(release mode) (see release notes from v0.1.0).

Introduction
Do you include references in your book, but you’re tired of the default options available in Jupyter Book? For example, the
square-bracket style of citation and reference, where the first three letters of the name year are combined in a way that
seems designed to minimize transparency?

There is a solution! This extension allows you to have APA formatting in your book.

Installation
To use APA-references, a set of Python files need to be manually loaded into your book

Step 1: files to root directory of your book

Download this zip-file  _ext.zip , which contains the necessary files, unzip it and place the contents in the root of your
book directory so that it looks like the schematic here:

Note

https://github.com/orgs/TeachBooks/projects/17
https://github.com/TeachBooks/TeachBooks/releases/tag/v0.1.0
https://teachbooks.io/manual/_downloads/a85c47412cba96809a60317a4edf9acb/_ext.zip


Step 2: Add to requirements.txt

Add a specific version of docutils  to your requirements file:

Step 3: Enable in _config.yml

In your _config.yml  file, add a bibtex_default_style , bybtex_reference_style  and the local extensions apastyle  and
bracket_citation_style.py

Usage
All references are now made in APA-style. See for example this reference: Moore (2023) which shows up on the references
page too. The form of the citation looks like this:

Here are three examples for making citations:

For more options on the in-line citation style, see https://jupyterbook.org/en/stable/content/citations.html#change-the-in-
line-citation-style.

Known Issues
Two issues are known:

During the build, warning will be raised with ... WARNING: duplicate label for keys ... . In most cases, these warnings
can be ignored. As noted above, the book will not build references properly

book
├── _ext/
│   ├── pybtexapastyle/
│   ├── apastyle.py
│   ├── bracket_citation_style.py
├── _config.yml
├── _toc.yml
├── requirements.txt
├── <book files>

docutils==0.17.1

sphinx:
  config:
    ...
    bibtex_default_style: myapastyle
    bibtex_reference_style: author_year_round
  local_extensions:
    apastyle: _ext/
    bracket_citation_style: _ext/
  ...

{cite:t}`jason_moore`

Syntax Result

{cite:t} Moore (2023)

{cite:p} (Moore, 2023)

{cite} (Moore, 2023)

https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/references.html
https://teachbooks.io/manual/references.html
https://jupyterbook.org/en/stable/content/citations.html#change-the-in-line-citation-style
https://jupyterbook.org/en/stable/content/citations.html#change-the-in-line-citation-style
https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/references.html#id4
https://teachbooks.io/manual/references.html#id4


In case you have both an .ipynb  and .md  version of a file, the .md  version will always be used whenever this
extension is used. This removes the possibility to show code outputs.

Implementation
The extension is based on pybtex , which is a BibTeX-compatible bibliography processor in Python that is extendible with
plugins.

Although some customization is possible with the standard Jupyter Book features, as described here, this extension
implements the complete APA style, as well as enforcing round brackets (like this).

The need to enforce docutils==0.17.1  version is the only known solution to the issue where empty brackets []  are left on
the references page.

Contribute
This tool needs to be developed further to make it into a proper sphinx-extension (and/or an independent pybtext  plugin).
The process is described in this project page on GitHub. If you’ve ideas or questions, please reach out to us at
info@teachbooks.io!

https://pybtex.org/
https://jupyterbook.org/en/stable/content/citations.html#change-the-in-line-citation-style
https://github.com/orgs/TeachBooks/projects/17
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io


Custom named colors
Contents

What does it do?

Installation

Configuration

Provided code

Examples & details

Contribute

This extensions provides a simple solution to use CSS named colors and custom named colors in:

;

MarkDown text;

Admonitions.

What does it do?
This extension defines, based on the CSS named color and custom named colors (provided by the user), several new

 commands;

Sphinx roles;

Sphinx admonitions;

Sphinx admonition classes;

that are styled by a generated CSS file.

If specified, each color will have a different value in the light and dark data-theme.

Installation
To use this extenstion, follow these steps:

Step 1: Install the Package

Install the sphinx-named-colors  package using pip :

Step 2: Add to requirements.txt

Make sure that the package is included in your project’s requirements.txt  to track the dependency:

Step 3: Enable in _config.yml

LT XA E

LT XA E

pip install sphinx-named-colors

sphinx-named-colors

https://developer.mozilla.org/en-US/docs/Web/CSS/named-color


In your _config.yml  file, add the extension to the list of Sphinx extra extensions (important: underscore, not dash this
time):

Configuration
This extension provides some configuration values, which can be added to:

If set to true all CSS named colors will be included in the extension.

If set to false no CSS named colors will be included in the extension. If no custom named colors are defined, this
extension will do nothing.

true: for all CSS named colors and all custom named colors a secondary value will be generated for use in the dark
data-theme, unless otherwise specifed for custom colors. The generated colors emulate the same as the CSS filter
invert(1) hue_rotate(180) saturate(<val>);  where <val>  is the value set by named_colors_saturation . This filter is also

used in the Sphinx Image Inverter

false: This disables the use of different colors in the dark data-theme, even if specified for custom colors.

number: The saturation value used in the generation of the dark data-theme colors.

None: No custom named colors will be included.

dictionary: A Python dictionary where each key  defines a custom name and the value  is a list of 3 or 6 integers, with
each integer at minimum 0 and at maximum 255.

If 3 integers are provided, these are the RGB values of the custom named color and, if specified, the dark data-
theme color will be generated.

sphinx: 
    extra_extensions:
        .
        .
        .
        - sphinx_named_colors
        .
        .
        .

sphinx: 
    config:
        .
        .
        .
        named_colors_include_CSS: true # default value
        named_colors_dark_and_light: true # default value
        named_colors_saturation: 1.5 # default value
        named_colors_custom_colors: None
        .
        .
        .

named_colors_include_CSS: true # default value

named_colors_dark_and_light: true # default value

named_colors_saturation: 1.5 # default value

named_colors_custom_colors: None

https://developer.mozilla.org/en-US/docs/Web/CSS/named-color
https://developer.mozilla.org/en-US/docs/Web/CSS/named-color
https://developer.mozilla.org/en-US/docs/Web/CSS/named-color
https://github.com/TeachBooks/Sphinx-Image-Inverter


If 6 integers are provided, the first set of 3 integers form the RGB values of the custom named color and the
second set of 3 integers form the RGB values of the dark data-theme color.

Each key should contain only characters from the ranges a-z . Hyphens ( - ) are allowed, however this is not
recommended.

An example value:

{'onlylight':[165,21,160],'lightanddark':[45,180,117,204,158,110]}

Provided code

In the next part, replace namedcolor  by the name of the CSS/custom named color.

 elements
Named colors without hyphens

Only use in  code.

This will typeset ...  in the color namedcolor.

Named colors with hyphens

Only use in  code.

This will typeset ...  in the color namedcolor.

MarkDown elements

Only use in MarkDown code.

This will typeset ...  in the color namedcolor.

To provide the use of strong and/or emphasis colored text, we als provide the next three roles:

These extra roles have been created using the extension sphinxnotes-comboroles.

LT XA
E

\namedcolor{...}

LT XA E

\class{namedcolor}{...}

LT XA E

{namedcolor}`...`

{namedcolor_strong}`...`

{namedcolor_emphasis}`...`

{namedcolor_strong_emphasis}`...`

Note

https://sphinx.silverrainz.me/comboroles/


Admonitions
Colored admonitions can be generated in two ways, explained below.

1. By adding a class to an existing admonition

2. By using a new admonition

If the title is omitted in the new admonition, the title bar will not be displayed.

In both cases extra classes can be added to the admonition to apply other styling.

A special new class for existing admonitions is also introduced: no-title . This suppresses printing of the title bar, even if
the title is given. For the named color admonitions this happens automatically if no title is given.

For the named color admonitions the class show-bar  is introduced for titleless admonitions. This forces printing of the title
bar. If a title is given, the title will be printed too and adding the class show-bar  is redundant.

Note that, because of the use of CSS, sometimes results may differ from the expected result.

Examples & details

Overview of chosen options for the examples

 colors
Some examples of CSS named colors and the custom named colors used within LaTeX code. Do not forget to check out
the colors in the dark data-theme!

::::{type} Title (optional or required, depending on type)
:class: namedcolor
Content
::::

::::{namedcolor} Title (optional)
Content
::::

sphinx:
  config:
    named_colors_dark_and_light: true # default value
    named_colors_saturation: 1.5 # default value
    named_colors_include_CSS: true # default value
    named_colors_custom_colors: {'onlylight':[165,21,160],'lightanddark':[45,180,117,204,158,110],'hyphen-color':[45,180

LT XA
E

Warning⚠

https://developer.mozilla.org/en-US/docs/Web/CSS/named-color


All of the  commands can be used in all components that already support .

MarkDown text colors
The defined roles can be used in regular MarkDown code, similar to other roles such as numref  and code .

Colored admonitions
Any existing admonition supporting the class  option, whether provided by Sphinx or by a Sphinx extension, can be given
a different color by adding a CSS/custom named color to the list of classes.

An alternative option is to use an admonition with the name of the CSS/custom named color and add the type of
admonition to the list of classes. In that case and for admonitions without the title argumentbut an automatic title (such as
wanring ), a title has to be set explicitly. This alternative approach does take over numbering (if any) of the oringinal

admonition type (if any).

Following are some examples with different colors, with the two code options next to each other, followed by the two
results.

A special feature is a new class for existing admonitions: no-title . This suppresses printing of the title, even if the title is
given. For the named color admonitions this happens automatically if no title is given.

General admonition

Color  Code Result

olive \olive{\int_a^bf(x)dx}

hotpink 1.\hotpink{\mathbf{49}}

darkturquoise \dfrac{\darkturquoise{\partial}f}{\darkturquoise{\partial}x}

onlylight \onlylight{\LaTeX}

lightanddark \lightanddark{\sum}_{n=1}^\infty

hyphen-color \class{hyphen-color}{\sum}_{n=1}^\infty

LT XA E

∫ b

a
f(x)dx

1.49

∂f

∂x

LT XA
E

∑∞

n=1

∑∞

n=1

LT XA E LT XA E

Color Style Markdown Code Result

olive regular {olive}`regular` regular

hotpink strong {hotpink_strong}`strong` emphasis

onlylight emphasis {onlylight_emphasis}`emphasis` emphasis

lightanddark strong emphasis {lightanddark_strong_emphasis}`strong emphasis` strong emphasis

hyphen-color regular {hyphen-color}`regular` regular



Dropwdown admonition

Common admonitions

Admonitions from Sphinx-Proof

::::{admonition} General admonition with title
:class: olive
Content of general admonition.
::::

::::{olive} General admonition with title
Content of general admonition.
::::

Content of general admonition. Content of general admonition.

::::{admonition} Dropdown admonition with title
:class: hotpink, dropdown
Content of general admonition.
::::

::::{hotpink} Dropdown admonition with title
:class: dropdown
Content of general admonition.
::::

Content of general admonition. Content of general admonition.

::::{warning}
:class: darkturquoise
Content of warning.
::::

::::{darkturquoise} Warning
:class: warning
Content of warning.
::::

Content of warning. Content of warning.

General admonition with title General admonition with title

Dropdown admonition with title Dropdown admonition with title

Warning⚠ Warning⚠



Titleless admonitions

Titleless admonitions with dropdown

In case a dropdown admonition is required without a title, only the new CSS/custum named color admonitions can safely be
used.

Titleless admonitions with title bar

In case an admonition is required without a title but with a title bar, only the new CSS/custum named color admonitions can
safely be used. In that case add the class show-bar .

::::{prf:defintion}
:class: onlylight
Content of definition.
::::

::::{onlylight} Definition
:class: definition
Content of definition.
::::

Content of definition. Content of definition.

::::{admonition} This title will not be shown
:class: lightanddark, no-title
Content of admonition.
::::

::::{lightanddark}
Content of admonition.
::::

Content of admonition. Content of admonition.

::::{lightcoral}
:class: dropdown, warning
Content of admonition.
::::

Content of admonition.

Definition 1 Definition

 ⚠



Contribute
This tool’s repository is stored on GitHub. If you’d like to contribute, you can create a fork and open a pull request on the
GitHub repository.

The README.md  of the branch manual  is also part of the TeachBooks manual as a submodule.

::::{gold}
:class: show-bar, warning
Content of admonition.
::::

Content of admonition.

 ⚠

https://github.com/TeachBooks/Sphinx-Named-Colors
https://github.com/TeachBooks/Sphinx-Named-Colors
https://teachbooks.io/manual/intro.html


TeachBooks Student-view
Features

This chapter includes some TeachBooks features which aim to improve the way students can
use TeachBooks. These tools are fully student-side, they don’t influence the book website
and the author doesn’t have to setup anything. Nevertheless, the author could point the
students to the availability of these tools and use it as part of the didactical approach. These
tools could also be useful for other users.



Local Annotator Extension
Contents

Features

Installation

How to Use

Technical Challenges: The Overlap Problem

Feedback and Contributions

A tool for making annotations on websites, with the primary application for use with online interactive textbooks. This
extension provides students, readers and anyone with the ability to use an online textbook in a similar way as a paper book:
highlight text and make notes in the margins. The extension is developed by the TeachBooks team (info@teachbooks.io)

You can download the extension directly from the Chrome Web Store.

If you want to try it in developer mode, follow the step-by-step instructions below.

Features

Current Features
Multiple Highlight Colors: Choose from four different highlight colors (Yellow, Pink, Green, Blue) to organize your
highlights.

Annotations: Add annotations with a clean red underline style.

Filtering System:

Toggle visibility of annotations

Toggle visibility of specific highlight colors

Filters persist across page refreshes

Export/Import System:

Selectively export annotations and highlights

Choose which color highlights to include in export

Export data in JSON format

Import previously exported data

Share annotations and highlights with others through exported files

Statistics View: See a summary of your highlights and annotations for the current page

Search Functionality: Search through your highlights and annotations

Overlap Prevention:

Prevents overlapping highlights

Prevents overlapping annotations

Prevents highlighting annotated text

Contextual Toolbars:

mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
https://chromewebstore.google.com/detail/teachbooks-annotator/dimjlbhnlppdgeckiigomiidepaopidm


Floating toolbar for text selection

Annotation toolbar for managing existing annotations
Annotation Sidebar:

View all annotations for the current page

Edit and delete annotations

Animated scrolling to selected annotations

Persistent Storage: All highlights and annotations are saved locally and persist across sessions

Extension State Management: Ability to activate/deactivate the extension

Multi-block Selection: Support for selecting text across multiple blocks/paragraphs

Toast Notifications: User-friendly feedback for actions

Future Features
Tags for Annotations: Allow users to categorize annotations using custom tags

Organized Dashboard: A centralized dashboard to manage annotations across multiple pages

Multi-page View: Navigate and manage annotations across multiple tabs or pages

Enhanced Export Options: Export in multiple formats (PDF, Markdown, CSV)

Collaborative Features: Real-time collaboration on annotations with others

Installation

From Chrome Web Store
1. Visit the Chrome Web Store link.

2. Click the “Add to Chrome” button.

3. Once installed, the Local Annotator extension icon will appear in your Chrome toolbar.

Developer Mode
1. Clone or download this repository

2. Run npm install  to install dependencies

3. Run npm run build  to build the extension

4. Load the extension in Chrome:

Open Chrome and navigate to chrome://extensions/

Enable “Developer mode”

Click “Load unpacked” and select the dist  directory

How to Use

Highlighting Text
1. Select any text on the page

2. Click one of the highlight color buttons in the floating toolbar

https://chromewebstore.google.com/detail/teachbooks-annotator/dimjlbhnlppdgeckiigomiidepaopidm


3. Toggle highlight visibility using the filter menu in the extension popup

Adding Annotations
1. Select text you want to annotate

2. Click the annotation button in the floating toolbar

3. Add your annotation in the sidebar that appears

4. The annotated text will be marked with a red underline

Managing Visibility
1. Click the extension icon to open the popup

2. Use the “Filters” tab to:

Toggle annotation visibility

Toggle specific highlight colors

3. Filter settings persist across page refreshes

Exporting Data
1. Click the extension icon

2. Click “Export Data”

3. Select what to include in the export:

Choose which highlight colors to export

Choose whether to include annotations

4. Click “Export Selected” to download the JSON file

Importing Data
1. Click the extension icon

2. Click “Import Data”

3. Select a previously exported JSON file

4. Your highlights and annotations will be restored

Viewing Statistics
1. Click the extension icon

2. The “Statistics” tab shows:

Count of highlights by color

Total number of annotations

All statistics for the current page



Technical Challenges: The Overlap Problem
One of the most significant challenges during development was handling overlapping highlights and annotations. This is an
inherently complex problem due to the nature of DOM manipulation and the various ways text can be selected across
different HTML elements.

Attempted Solutions
1. DOM Tree Traversal:

Attempted to traverse the DOM tree to find and split overlapping ranges

Failed because nested highlights created complex DOM structures that were difficult to traverse reliably

Led to inconsistent results when multiple highlights overlapped

2. Range Intersection Detection:

Tried to detect intersections between ranges before applying highlights

Worked for simple cases but failed with complex selections spanning multiple DOM elements

Couldn’t handle cases where selections partially overlapped existing highlights

3. DOM Fragment Manipulation:

Attempted to extract content, modify it, and reinsert it

Led to issues with DOM structure integrity

Lost event listeners and broke existing highlights

4. Layer-based Approach:

Tried to create separate layers for different highlights

Failed because it required significant DOM restructuring

Caused issues with text selection and copy/paste functionality

5. Virtual DOM Implementation:

Attempted to maintain a virtual representation of the highlights

Synchronization between virtual and actual DOM became extremely complex

Performance issues with large numbers of highlights

6. CSS-only Solution:

Tried using pure CSS for highlighting without DOM manipulation

Couldn’t achieve the required precision for text selection

Failed to handle multi-block selections properly

Current Implementation
Due to these challenges, the current implementation prevents overlapping entirely. When a user tries to create a highlight
or annotation that would overlap with existing ones, the operation is blocked and a user-friendly message is displayed. This
decision was made because:

1. DOM Stability:

Each highlight and annotation modifies the DOM structure

Overlapping modifications can lead to unpredictable results

Maintaining DOM integrity is crucial for proper functionality

2. User Experience:

Clear feedback when overlap is detected

Consistent behavior across different scenarios



No risk of corrupting existing highlights or annotations
3. Future Maintainability:

Clean separation between different highlights and annotations

Simpler codebase without complex overlap handling

More reliable storage and restoration of highlights

Future Considerations
While overlapping highlights and annotations remain unsupported, potential future solutions might include:

Implementing a layer-based system using modern web technologies

Using Web Components for better encapsulation

Exploring new DOM manipulation techniques as browsers evolve

Feedback and Contributions
Feel free to submit feedback or suggest new features by creating an issue in this repository. Your input helps make the Local
Annotator better for everyone!



Making comments on the website:
Hypothesis

Contents
Set up Hypothesis in your book

Using Hypothesis

Student-controller with browser extension

Hypothesis is a third-party application that allows anyone to make publicly visible comments on a website (once you create
a free account). This section explains how to use and install the extension. As this tool requires an account with a third-
party, we advise to use our local-annotator with similar capabilities but which store annotations locally. By default
Hypothesis stores annotations publicly, which might confuse other students.

Annotations created using the Hypothesis feature are linked to the specific URL of a website, so keep this in mind
if you move a book, or change the file name, as you could lose track of your work! Note that while changing the
URL may make a page invisible, you can still find the annotations using the View group activity feature.

For example, if there is no annotation visible on this page, the URL probably changed!

Set up Hypothesis in your book
Add this to _config.yml . Need to create an account.

Using Hypothesis
Once on a hypothesis version of this page, look at the top right corner: you will see three icons, an arrow, an eye and a
note-pad. Clicking on the arrow will open the extension and allow you to view the annotations. Create an account and log
in if you would like to reply or make your own annotations. You can also highlight text, but this is not publicly visible, it is
only for your own reference.

Note that the annotations are only visible for the page that you are currently viewing. You can see all the Annotations on a
website by opening the “Public” menu at the top of the dialog pane, selecting “Public” again in the drop-down, then “View
group activity.” Make sure you type in the URL to search (e.g., teachbooks.io/manual ).

Student-controller with browser extension
As an alternative to activating this for everyone, you can also advise your students to use the hypothesis browser extension.
In this way, students are not distracted by potential unnecessary public annotation and comments by fellow students and

html:
  comments:
    hypothesis: true

Be careful of changing website URL’s!⚠

https://teachbooks.io/manual/external/annotater/README.html
https://web.hypothes.is/start/


teachers.



TeachBooks Examples
This chapter will showcase some TeachBooks making great use of Jupyter Book and
TeachBooks features. They can serve as an inspiring starting point for structuring your own
TeachBook or just to get an idea of how other teachers and students are using it. Lastly some
example pages are shown which combine theory and interactive questions and coding to
different degrees.



Well-Structured Book
Contents

Table of contents

Tagged content

One thing that students love is having all practical information about a course collected and
updated on one page. No more scrolling through the introduction lecture on Brightspace
while veryfing assessment methods on the online studyguide or finding out about the
schedule on MyTimetable. As will be shown in the following section, a Jupyter Book can be
used to clarify the logistics of a course on top of providing the course material to the
students.

The crossover module Data Science and Artifical Intelligence for Engineers, or in short DSAIE,
aims to teach powerful data science tools to 2nd master students from the Civil Engineering
and Geosciences faculty. In order to do that they use a combination of practical projects and
theory provided to the students through their online interactive book.

Table of contents

Fig. 116 DSAIE Overview Page

While the left menu shows the first two chapters in the table of contents (Home & Logistics),
the right hand side menu shows the sections of the current chapter where an introduction is
given on the different units of the course, the responsible lecturers as well as the schedule of

https://interactivetextbooks.citg.tudelft.nl/dsaie/intro.html
https://teachbooks.io/manual/_images/nice_overview1.PNG


lectures and practicals. Additionally, the book layout is explained to the students which can
help clarify how to use the interactive sections!

The anatomy of a jupyter book is explained more in detail on this page. In short, you can
create structure in your book by having chapters and subschapters defined in the .toc  file.
In each chapter you can organize the content in sections using the #  syntax which is visible
in the menu on the right.

Tagged content
Since all of this information can get a bit overwhelming it might be useful to tag the content
so that students can easily grasp how the course is built up. Clicking on Assessment  in the
contents menu on the right will bring you to the following paragrapgh.

Fig. 117 DSAIE Assessment Methods + Tags

The lecturers have introduced some tags such as written-exam  and group-assignment .
Likewise, the reading material is also tagged with different sources so that students know in
which textbook they can find more information if interested.

Throughout the book, those tags might be integrated as follows:

https://teachbooks.io/manual/basic-features/jupyterbook.html
https://teachbooks.io/manual/_images/nice_overview2.PNG


Fig. 118 Additional reading reference

my_new_tag

Make your own!

These badges as they are called are provided by the spinx-design extension . Different
colours can be found through a bit of research online or here as a starting point.

+++
{bdg-primary}`your_new_tag`

https://teachbooks.io/manual/_images/nice_overview4.PNG
https://github.com/executablebooks/sphinx-design/blob/main/docs/badges_buttons.md


Live Code (Sphinx Thebe)
Contents

Python for Engineers

MUDE - Signal Processing

MUDE - Machine Learning

The live-coding option is what makes working with these interactive textbooks extra
attractive for courses where coding might be involved or useful to showcase examples.
Additionally, it is useful to illustrate the content in a way which the student will recognize
during programming assignments.

This page will show some examples where live coding is used in combination with
theoretical questions as well as as stand-alone exercises used to round off a theoretcal
chapter with a practical application.

Python for Engineers
Python for engineers is a book used to introduce basic programming concepts to students
coming from different universities where programming is not a big part of the curriculum
like at TU Delft. The students are encouraged to follow the course online before the start of
the year to hit the ground running in September. Chapter 7 introduces the students to
Matplotlib and teaches them various ways of making a graph.

Live coding is the perfect learning tool as the students can see how the code relates to the
visual result of the graph. subsequently, they can adapt the code and observe the changes.
Let’s have a look at the implementation.

https://teachbooks.io/learn-python/intro.html
https://teachbooks.io/learn-python/07/Theory/01.html


Fig. 119 Rocket Button

To activate the live coding, the rocket button has to be activated like in the figure above. It’s
always useful to point this out in the beginning of the chapter because it might not be
obvious to new users. Here’s a note used in the MUDE book.

Interactive Pages — Use Python in your Browser! This online textbook has a
number of pages that are set up to be used interactively. You can use the “Live
Code” button under the Rocket Ship icon in the top right to activate the interactive
features and use Python interactively!

Sometimes the interactivity will involve completing an exercise, wheras on other
pages it might simply provide the opportunity to edit the contents of code cells
and execute it to explore the page contents interactively. Other pages may provide
interactive figures (e.g., widgets).

This feature is supported by TeachBooks.

Once the live coding is activated the code cells run the python code. They even display error
messages if there is a mistake in the code.

Note

https://teachbooks.io/manual/_images/live_code3.PNG


Fig. 120 Python Ready

After introducing some types of plots and breaking down and explaining the lines of code, it
is time for the student to have little go themselves. The code is given and they can
customize the input.

Fig. 121 Graph Customization

https://teachbooks.io/manual/_images/live_code4.PNG
https://teachbooks.io/manual/_images/live_code5.PNG


This example is rather basic but a similar concept can be applied to more difficult concepts
in engineering. The student is getting direct feedback from the code to see how a different
input changes the output which reinforces the theory.

MUDE - Signal Processing
In MUDE, the concept of Signal Processing is introduced. On top of the theory, a working
example is used to test the understanding of the students. When talking about Signal
Processing, the Fourier Series is a foundational block that has to be well understood. The
fourier series is used to describe basically any periodic function/signal as a sum of multiple
cosines and sines with different frequencies. This is illustrated with the concept of the square
wave.

Fig. 122 Superposition of two signals

https://mude.citg.tudelft.nl/book/signal/intro.html
https://mude.citg.tudelft.nl/book/signal/fourier_nb.html#
https://mude.citg.tudelft.nl/book/signal/fourier_nb.html#
https://teachbooks.io/manual/_images/live_code6.PNG


By adding more signals themselves, the students will see that the fourier series approximates
the square wave. They might even see which frequencies work better than others.

Finally lets look at a more computationally heavy example.

MUDE - Machine Learning
In the chapter on the k-nearest neighbour, live-coding is activated by default in order to run
all the coding which supports the theory. For more complex topics, it is useful to keep the
actual code cells hidden and only display the graphs with interactive sliders in order to focus
the learning objective more on the content and less on the coding.

The k-nearest neighbour method predicts the value f(x) for a given x by taking the average
value of its neigbhours and assigning it to f(x). The amount of neighbours considered is
governed by the variable k.

Fig. 123 Interactive Graph

Multiple sliders modify the predicted graph (in orange) by taking into account a different
amount of neighbours, training size, frequency of the signal and amount of noise. The
student is able to verify the claims made by the theory throught the interactive graph.

https://mude.citg.tudelft.nl/book/ml/knn_interactive.html
https://teachbooks.io/manual/_images/live_code7.PNG


Programming assignment with
checks

Contents
Gumbel Distribution Exercise

This page shows how you can recreate the classical Jupyter Notebook assignments that are
given in many courses to a Jupyter Book format with live coding. A widget has been
implemented to check the answers, of which the data is included in a separate python file.
The page automatically loads and a custom download page has been added

Keep in mind that Jupyter Book sections might not be the best environment for
programming assignments you have in mind for your course due to the limitation
posed by jupyter book. In fact, in jupyter book, python runs in the browser of the
students’ laptop. Nothing needs to be installed which can be an advantage but also
a disadvantage depending on the learning goals of your course. TeachBooks
suggests using it’s live coding feature to support the theory in textbooks and not
as a replacement for Jupyter Notebook.

Gumbel Distribution Exercise
Imagine you are concerned with the concentration of an airborne contaminant, , measured
in ppm. A previous benchmark study estimates that there is a 10% and 1% chance,
respectively, of exceeding 4 and 10 ppm, respectively. You have been asked by the
regulatory agency to estimate the contaminant concentration with 0.1% probability of being
exceeded. Prior studies suggest that a Gumbel distribution can be used to model
contaminant concentration, given by the CDF:

X

Note



Using the cell blocks below as a guide (and also to check your analysis): Task 1) find the
parameters of a Gumbel distribution that matches the information provided above, then,
Tasks 2-3) use it to estimate the concentration with exceedance probability 0.1%.

To complete this assignment, you can use numpy , matplotlib  and from the math  library,
log  and e  (these are imported for you when you inialize the notebook).

Task 0: fill in the appropriate fitting points:

Task 1: derive the distribution parameters:

FX(x) = exp( − exp( −
x − μ

β
))

run run all add cell clear

x_1 = _
p_1 = _
x_2 = _
p_2 = _

1
2
3
4



The cells below will print your parameter values and create a plot to help confirm you have
the right implementation.

Task 2: write a function to solve for the random variable value (it will be tested for you with
the Check answer button, along with the distribution parameters).

run run all add cell clear

run run all add cell clear

def gumbel_2_points(x_1, p_1, x_2, p_2): 
    """Compute Gumbel distribution parameters from two points of the CD
        Arguments:
            x_1 (float): point one
            p_1 (float): cumulative probability for point 1
            x_2 (float): point two
            p_2 (float): cumulative probability for point 2
    """

    # YOUR CODE GOES HERE #
    beta = _
    mu = _
    #######################

return mu, beta

mu, beta = gumbel_2_points(x_1, p_1, x_2, p_2)

print(f"Your mu: {mu:0.5f}\nYour beta: {beta:0.5f}")

gumbel_distribution = lambda x: 1 - e**(-e**(-(x - mu)/beta))

plot_distribution(mu, beta, x_1, p_1, x_2, p_2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7



Task 3: use the function find_x_with_probability_p  to evaluate the random variable value
with exceedance probabiltiy of 0.001.

run run all add cell clear

run run all add cell clear

Check Answer(s)

def find_x_with_probability_p(p): 
    """ Compute point in the gumbel distribution for which the CDF is 
        Use the variables mu and beta defined above!
        Hint: they have been defined globally, so you don't need to 
                include them as arguments.
    """
    # YOUR CODE GOES HERE #
    x = _
    #######################

    return x

# YOUR CODE GOES HERE #
x = _
#######################

print(f"The value of x with probability of exceedance 0.001 os {x:0.5f

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5



Combining theory & interactive
quizzes

Contents
Truss structures

This page shows you how to combine theory with questions so there is no coding involved.

Truss structures
Truss structures are structures assembled of straight elements connected in nodes. These
elements partly create triangles, which are of importance for its deformability. Of course, the
structures you’ll design shouldn’t deform, so it’s crucial to understand this topic.

Examples truss structures
Examples of these structures are commonly found in rail bridges like the one below:

Furthermore, these structures are commonly found in building as well, both invisible and
visible:

https://teachbooks.io/manual/_images/pic0.jpg


Modelling truss structures
Truss structures are modelled as rigid bars (so elements which cannot deform) connected by
hinges (so elements can rotate with respect to one each other). In our model, hinges are
indicate with a circle, and bars with a line. For example, the structure you’ve seen in the
second example (with two diagonal bars removed) is modelled as follows:

hinges

bars

Now that you’ve been introduced to truss structures, answer the following question:

Test Yourself

How many hinges and bars does the structure contain?

 hinges

 bars

https://teachbooks.io/manual/_images/pic1.jpg


Mechanisms
A mechanism is a structure which can deform as a whole, while the individual elements don’t
deform. This deformation doesn’t have to be large. An example of a mechanism is a
rectangular truss structure, it can deform as shown below:

A triangle cannot deform:

For structures which consists of partly triangles, partly quadrilaterals, it is not directly clear
whether the structure can deform. To identify whether the truss structure is a mechanism,
you can try to move each node with respect to the nodes with which it is connected:

An example of a truss structure of partly triangles, partly quadrilaterals, which is not a
mechanism is the following:

Now that you’ve been introduced to mechanisms, answer the following questions:

Test Yourself

https://teachbooks.io/manual/_images/gifje.gif


Which sentence is true?

A truss stucture can be a mechanism

A truss structure is always a mechanism

A mechanism can be a truss structure

 Check

Test Yourself

Which sentence(s) is/are true?

A truss structure which contains both triangles and quadrilaterals is always a
mechanism



A truss structure which is a mechanism cannot contain any triangles

A truss tructure which contains both triangles and quadrilaterals might be a
mechanism.



A truss structure which is a mechanism should contain only triangles



Theory, interactive quizzes &
live code

Contents
Weighted least-squares estimation

This page shows an example of how to combine theory, quizzes and code on one page. With
headings and boxes, the interactive parts can be indicated (for now only if part of one cell).
Automatic execution has been activated and a custom ipynb.file has replaced the download
button.

Weighted least-squares estimation
In ordinary least-squares estimation, we assume that all observations are equally important.
In many cases this is not realistic, as observations may be obtained by different
measurement systems, or under different circumstances. We want our methodology for
least-squares estimation to be able to take this into account.

We achieve this goal by introducing a weight matrix in the minimization problem:

In the unweighted least-squares approach, we arrive at the normal equation by pre-
multiplying both sides of  with the transpose of the design matrix :

In the weighted least-squares approach, we now need to add weight matrix  to this pre-
multiplication factor, i.e., , to obtain the normal equation:

min
x

(y − Ax)TW(y − Ax)

y = Ax AT

y = Ax → AT y = AT Ax

W

ATW

y = Ax → ATW y = ATW Ax



The normal matrix is now defined as . From this, assuming that the normal
matrix  is invertible (non-singular) we find the weighted least-squares estimate ,

We also find the derived estimate  and :

Quiz question

N = ATWA

N x̂

x̂ = (ATWA)−1ATWy

= arg min
x

(y − Ax)TW(y − Ax)

ŷ ϵ̂

ŷ = Ax̂ = A(ATWA)−1ATWy

ϵ̂ = y − ŷ = y − Ax̂ = y − A(ATWA)−1ATWy = (I − A(ATWA)−1ATW)y

You and your fellow students are asked to measure the width of a canal. You
all decide to take a different approach. Alice is asked to come up with an
estimate of the canal width using all  observations. Based on her own
'ranking', Alice decides to give different weights to the different observations.
Which of the following is the equation that Alice will use to estimate the canal
width? The individual weights are called , 

m

wi ( )i = 1, . . . , m


x̂ =

1

∑m
i=1 wi

m

∑
i=1

yi


x̂ =

m

∑
i=1

yi

wi


x̂ =

1

∑m

i=1 wi

m

∑
i=1

(wiyi)


x̂ =

1

m

m

∑
i=1

yi

 Check



Video

1_6_1b Video WLS1_6_1b Video WLS

Discussion on the weight matrix
The weight matrix  expresses the (relative) weights between the observations. It is always
a square matrix. The size of the weight matrix depends on the number of observations, .
The size of the weight matrix is .

If it is a unit matrix ( ), this implies that all observations have equal weight. Note that in
this case the equations are equal to the ordinary least-squares solution.

If it is a diagonal matrix, with different values on the diagonal, this implies that entries with a
higher value correspond to the observations which are considered to be of more
importance. If the weight matrix has non-zero elements on the off-diagonal positions, this
implies that (some) observations are correlated.

Weighted least-squares estimator: properties
Until now, we have looked at the weighted least-squares solution of a single realization of
the observations, where generally we assume that it is a realization of the random
observable vector , since measurements are affected by random errors. As such it follows
the the weighted least-squares estimator is given by:

This estimator has two important properties: it is linear and unbiased.

W

m

m × m

W = I

Y

X̂ = (ATWA)−1ATWY

https://www.youtube.com/watch?v=iJmkkz37EuU


The linearity property is due to the fact that  is a linear function of the observables .

The unbiased property means that the expectation of  is equal to the true (but unknown) 
. This can be shown as follows:

This a very desirable property. It applies that if we would repeat the measurements many
times to obtain a new estimate, the average of the estimated values would be equal to the
truy values.

Exercise

X̂ Y

X̂ x

E(X̂) = (ATWA)−1ATWE(Y ) = (ATWA)−1ATWAx = x

You have a time series of 8 measurements and fit a model assuming a linear trend
(constant velocity).

Times of observations, observed values and number of observations are given as the
variables t , y  and m , as well as numpy  and matplotlib.pyplot  abbreviated as np  and
plt

Fill in the correct -matrix.A



run run all add cell clear

Check answer

Define the weight matrix for W = Im

run run all add cell clear

Check answer

# design matrix
A = np.column_stack((np.ones(m), t))

# Weight matrix for case 1
W_1 = ?

1
2

1
2



Define the weight matrix with the weight of first 3 observations is five times as large as
the rest

run run all add cell clear

Check answer

Define the weight matrix with the weight of 4th and 5th observation is five times as
large as the rest

# Weight matrix for case 2
W_2 = ?

1
2



run run all add cell clear

# Weight matrix for case 3
W_3 = ?

1
2



Coding theory, interactive
quizzes & live code

Contents
Example unconstrained optimization

This page shows an example on how to combine the introduction of a certain coding
implementation with interactive questions. Compared to the previous template, the learning
objective is to learn a new skill in programming using the live coding feature whereas before
programming was used to illustrate a theoretic concept unrelated to coding (for example
statistics).

Example unconstrained optimization
In this chapter, we’ll cover how to apply scipy.optimize.minimize  to unconstrained
optimization problems. As a reminder, unconstrained optimization considers:

(4)

with  the design variable of length  and  the objective function.

Method
In this course, we’re making use of the function scipy.optimize.minimize . The
documentation of this function is available here:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html. In this
course we’ll cover only the relevant parts.

For unconstrained optimization we need to run at least scipy.optimize.minimize(fun, x0,
...)  with:

fun , the objective function  to be minimized. fun  is a callable. The
scipy.optmize.minimize  function takes care of defining and inputing our design variable

min
x

f (x)

x n f

f(x)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


.
x0 , the initial guess for our design variable . It needs to be a ndarray  with length 

The function scipy.optimize.minimize  outputs an object scipy.optimize.OptimizeResult .
with:

scipy.optimize.OptimizeResult.x  the optimized solution of the design variable x . It is a
ndarray  with length 

scipy.optimize.OptimizeResult.success , a indication whether or not the optimizer was
executed succesfully. It is a bool , indicating True  or False

scipy.optimize.OptimizeResult.message , a message describing the cause of termination
of the optimizatino algorithm. It is a str .

scipy.optimize.OptimizeResult.fun , the values of the optimized objective function . It
is a int  or float

scipy.optimize.OptimizeResult.nit , the number of iteration performed by the optimizer.
It is a int

Example 1

Problem
It is desired to determine the number of bathymetry maps  of a local area that should be
produced to maximize the profit of a company. The total cost of production and distribution
is €  per unit . The revenues are proportional to the number of units multiplied by its
price: 

The demand depends on the price ( ), as shown in the graph:

x

x n

n

f

How many possible input does scipy.optimize.minimize have?

 Check

n

75 n

Revenues = n ⋅ Price

Price = 150 − 0.01n2



The profit can be estimated as the revenues minus the total costs.

Model
The function for the profit can be found by combining the relations in the problem
statement. However, this is the profit which should be maximized. To turn this into a
minimization problem, the profit can be multiplied with . The final model of this problem
results in:

(5)

−1

min
n

(75n − (150 − 0.01n2)n)

This problem is

Linear

Nonlinear

 Check 

https://teachbooks.io/manual/_images/output.png


Method
This model is described using scipy.optimize.minimize .

Importing libraries

Defining the variables

There are very few variables in this problem. In fact, the only variable we have to specify is
the initial guess for the optimization algorithm. The objective function will be treated later.
The length of  doesn’t have to be specified.

run run all add cell clear

n

import scipy as sp 
import numpy as np
import matplotlib.pylab as plt

1
2
3



Defining the objective function

In the objective function, the formula given in the model description can be inserted. Or,
each individual step can be calculated on a seperate line. Again, note that the profit is
multiplied with  to maximize the profit in the minimization formulation. This results in:

run run all add cell clear

The length of the design variable  doesn't have to be specified. How do you
think the optimization method can proceed?

n

It doesn't need to know the length of  n

It uses the length of the initial guess  as a length for  n0 n

It uses the output of the objective function  as a length for  f n

It uses the input of the objective function  as a length for  f n

 Check

−1

n0 = 201



Solving the problem

Now, the problem can be solved. The result is stored in the variables result  which is
printed.

run run all add cell clear

def negprofit(n):
    price = 150 - 0.01 * n**2
    revenues = price * n
    totalcost = 75 * n
    profit = revenues - totalcost
    return -profit

1
2
3
4
5
6



run run all add cell clear

  message: Optimization terminated successfully.
  success: True
   status: 0
      fun: -2499.9999999998727
        x: [ 5.000e+01]
      nit: 8
      jac: [ 0.000e+00]
 hess_inv: [[ 3.503e-01]]
     nfev: 22
     njev: 11

result = sp.optimize.minimize(negprofit,n0)
print(result)

1
2



Postprocessing

As this case is only one-dimensional and the potential range of values is limited, we can
easily check this answer by an exhaustive search, evaluating all possible values for . The
plot below shows the  for . It shows a clear minimum which
coincides with the minimum found by scipy.optimize.minimize

Which solver(s) might be used by `scipy.optimize.minimize`?

Nelder-Mead

Powell

CG

BFGS

Newton-CG

L-BFGS-B

TNC

COBYLA

SLSQP

trust-constr

dogleg

trust-ncg

trust-exact

trust-krylov

 Check

n

negative profit 0 < n < 100



run run all add cell clear

n_range = np.linspace(0,100,100)
negprofit_result = negprofit(n_range)
plt.plot(n_range,negprofit_result)
plt.plot(result.x,result.fun,'o');
plt.xlabel('$n$')
plt.ylabel('Negative profit');

1
2
3
4
5
6



Exercise

Was it necessary to plot the all possible options to check the optimality of the
result of optimization? Think of why it is or isn't?

Yes

No

 Check

Adapt the code to answer the following questions.

What is the optimum number of bathymetry maps if the costs of production
are €  ? Round you answer to the nearest integer100

 Check

What is the output of the optimisation if the costs of production
exceeds € ?150

 Turn

Card 1 of 2 



Parametric questions
Contents

Exercises on Taylor expansion

On this page an example is given for parametric questions, in which an equation is checked
on equivalence with the correct answer.

Exercises on Taylor expansion
This page shows some exercises on calculation Taylor expansion. If you reload this page,
you’ll get new values.

Exercise 1
Calculate the taylor series expension of:

around:

Fill in your answer and run the cell before clicking ‘Check answer’.

3x
2

x = 4



Exercise 2
Calculate the taylor series expension of:

around:

discard any  terms.

Fill in your answer and run the cell before clicking ‘Check answer’. Furthermore, use pi  for 
:

run run all add cell clear

Check answer

3 tan (x)

x = −2π

O(x3)

π

eq1_answer =1



Exercise 3
Calculate the taylor series expension of:

around:

discard any  terms.

Fill in your answer and run the cell before clicking ‘Check answer’:

run run all add cell clear

Check answer

5

1 − x

x = −1

O(x3)

eq2_answer =1



run run all add cell clear

Check answer

eq3_answer =1



Figure syntax maker
One might quickely forget the code for making figures, here is a useful tool to make your figures, just specify all information
and the code is produced for you:

Label:

Image Location + name + extension:

Caption:

Select type:
Figure
Table

Submit

Stored Array:

Figuur code:
```{figure} figures/usertype1.jpg

name: usertype1

```
Figuur referentie:

{numref}`{number} <usertype1>` Remove

Figuur code:
```{figure} ./structure.svg

name:

```
Figuur referentie:

{numref}`{number} <>` Remove

Figuur code:
```{figure} https://files.mude.citg.tudelft.nl/

name: figure_label

caption
```
Figuur referentie:

{numref}`{number} <figure_label>` Remove

Figuur code:
```{figure} https://files.mude.citg.tudelft.nl/

name: figure_label

caption
```
Figuur referentie:

{numref}`{number} <figure_label>` Remove



Scripts for automating
workflow

This chapter contains a few scripts which can be useful in the book-editing process:

LaTeX to markdown conversion to convert a LaTeX file into jupyter-book compatible
markdown.

Snippitall to insert the same code snippet at a certain point in each md file in a specific
folder and all subfolder.

Snippitonce to insert the same code snippet at a certain point in each md file only in a
specific folder.

Extensionchecker to identify the kind of files present in subfolder

Filedownloader to return the downloadlink for markdown for all files with a specified
extension

Figreturner to return the markdown code for a figure in a specific extension

Figshrinker to compress JPEG images.

https://teachbooks.io/manual/helper_code/converter.html#tex-md-converter
https://teachbooks.io/manual/external/Useful_python_code/snippit.html#snippitall
https://teachbooks.io/manual/external/Useful_python_code/snippit.html#snippitonce
https://teachbooks.io/manual/external/Useful_python_code/extensionfildownloadreturn.html#extensionchecker
https://teachbooks.io/manual/external/Useful_python_code/extensionfildownloadreturn.html#filedownloader
https://teachbooks.io/manual/external/Useful_python_code/extensionfildownloadreturn.html#figreturner
https://teachbooks.io/manual/external/Useful_python_code/figshrinker.html


Convert LaTeX to Markdown
A script is to convert LaTeX files to Markdown for use in Jupyter Books (Idema (Delft
University of Technology), 2024).

This script has been used successfully on at least one book in the TU Delft OPEN library:
Introduction to particle and continuum mechanics, by Timon Idema. The author is able to
convert nearly everything in this book automatically, with only a few manual adjustments
needed (e.g., a special character and a figure caption).

Depending on the number of custom LaTeX commands used in your book, you may need to
adjust the script to handle them.

Additional information about the script, along with the source code itself which is distributed
under a BSD 3-clause license, is available at the following link on TU Delft GitLab:
gitlab.tudelft.nl/opentextbooks/latex-to-markdown-conversion.

https://teachbooks.io/manual/references.html#id2
https://teachbooks.io/manual/references.html#id2
https://textbooks.open.tudelft.nl/textbooks/catalog/book/81
https://opensource.org/license/BSD-3-Clause
https://gitlab.tudelft.nl/opentextbooks/latex-to-markdown-conversion


Move images to separate
hosting

Storing big binary files like images in your git repository and book is not good practice: diffs
on binary files don’t make sense and blow up the size of your repository. Furthermore, the
size of your book website blows up too. Therefore, you can consider hosting your binary files
on a different server, as explained here in an example for the MUDE-book. To take all the
images of your existing book and update the relative links,  a Python script has been
developed. This script processes Markdown ( .md ) and Jupyter Notebook ( .ipynb ) files
listed in a _toc.yml  file. It identifies local image references (including MyST figure  syntax)
in these files, copies the images to a specified folder ( new_images ), and replaces the local
image paths with a public URL (e.g., https://files.mude.citg.tudelft.nl/<image_name> ).

https://tudelft-mude.github.io/teacher/FTP.html
https://teachbooks.io/manual/_downloads/8a38458ff05ec229385d7e497e61e29a/parse_images.py


Snippit
Contents

Snippitall

Snippitonce

Snippitall
This code inserts a code snippet (defined in code line 6) on a specified place for each md file
in the directory of your choosing, including all subfolders.

This page reuses BSD 3-Clause License content from TeachBooks (2024). Find out
more here.

https://teachbooks.io/manual/references.html#id16
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/credits.html#external-resources


Snippitonce
This code inserts a code snippet (defined in code line 6) on a specified place for each md file
in the directory of your choosing.

# Snippetall: code for adding code snippet in each md file in a specified directory inclu
import os

# Specify the path to your base folder and line where snippet should be added
directory = 'book/demos'
include_at_line = 1

def insert_code_in_md_files(directory):
    # Define the code snippet to insert
    code_snippet = """\n<div style="clear: both;">\n\n```{figure} ../../figures/open.png\

    # Walk through all directories and subdirectories
    for dirpath, dirnames, filenames in os.walk(directory):
        for filename in filenames:
            if filename.endswith(".md"):  # Check if the file is a Markdown file
                file_path = os.path.join(dirpath, filename)
                
                # Read the existing content of the file
                with open(file_path, 'r', encoding='utf-8') as file:
                    lines = file.readlines()
                
                # Insert the code snippet at the specified line
                include_at_line = 1
                if len(lines) > include_at_line:
                    lines.insert(include_at_line, code_snippet)
                else:  # If the file has less than two lines, append the snippet
                    lines.append(code_snippet)
                
                # Write the modified content back to the file
                with open(file_path, 'w', encoding='utf-8') as file:
                    file.writelines(lines)
                print(f"Updated {file_path}")

insert_code_in_md_files(directory)



# Snippitonce: code for adding code snippet in specific folder 
import os

# Specify the path to your folder
specific_folder = 'book/pedagogy'
include_at_line = 1

def insert_code_in_md_files(specific_folder):
    # Define the code snippet to insert
    code_snippet = """\n<div style="clear: both;">\n\n```{figure} ../figures/confirmed.pn

    # Iterate over all files in the specified folder
    for filename in os.listdir(specific_folder):
        if filename.endswith(".md"):  # Check if the file is a Markdown file
            file_path = os.path.join(specific_folder, filename)
            
            # Read the existing content of the file
            with open(file_path, 'r', encoding='utf-8') as file:
                lines = file.readlines()
            
            # Insert the code snippet at the second line
            if len(lines) > include_at_line:
                lines.insert(include_at_line, code_snippet)
            else:  # If the file has less than two lines, append the snippet
                lines.append(code_snippet)
            
            # Write the modified content back to the file
            with open(file_path, 'w', encoding='utf-8') as file:
                file.writelines(lines)
            print(f"Updated {filename}")

insert_code_in_md_files(specific_folder)



Extensionchecker,
filedownloader and figreturner
Contents

Extensionchecker, filedownloader and figreturner

Extensionchecker

Filedownloader

Figreturner

This code walks through a specified folder and all subfolders to identify the kind of files that
are present. It returns the extensions.

Code searches for specified extensions and returns them as a downloadlink for markdown

This page reuses BSD 3-Clause License content from TeachBooks (2024). Find out
more here.

# Extensionchecker: A script that checks what kind of files are in a folder and its subfo

import os

directory = '..'

def find_file_extensions(directory):
    extensions = set()  # Used to exclude duplicates
    # Iterate over all files in the specified folder
    for root, dirs, files in os.walk(directory):
        for file in files:
            _, ext = os.path.splitext(file)  # Splits the filename to extract the extensi
            if ext:  # Check whether the extension already exists
                extensions.add(ext.lower())  # Adds the extension and uses lowercase
    return print(extensions)

find_file_extensions(directory)

https://teachbooks.io/manual/references.html#id16
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/credits.html#external-resources


A script that searches in a specified folder and all subfolders for figure files (jpg) and returns
the code for figures in markdown.

# Filedownloader: A script that searches for specified extensions and returns them as a d

import os
from urllib.parse import quote

directory = '..'

def find_files(directory):
    markdown_links = []
    # Loop door de directory en alle subdirectories
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith((".pdf", ".jpg", ".docx", )):
                # Creëer het volledige pad naar het bestand
                full_path = os.path.join(root, file)
                # Converteer het pad naar een relatief pad (verwijder de opgegeven root d
                relative_path = os.path.relpath(full_path, directory)
                # Encode het pad voor gebruik in URL
                url_encoded_path = quote(relative_path)
                # Formatteer het pad en de bestandsnaam als een Markdown link

                
                markdown_link = f"[{file}]{url_encoded_path})"
                markdown_links.append(markdown_link)
    return markdown_links

# Stel de root directory in waar je wilt beginnen met zoeken naar PDFs
links = find_files(directory)

# Print alle gevonden Markdown links
for link in links:
    print(link)



# Return figure for md
# Note that you should replace %5C with / and %20 with space

import os
from urllib.parse import quote

directory = '..'

def find_jpg_files(directory):
    markdown_links = []
    # Loop door de directory en alle subdirectories
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".jpg"):
                # Creëer het volledige pad naar het bestand
                full_path = os.path.join(root, file)
                # Converteer het pad naar een relatief pad (verwijder de opgegeven root d
                relative_path = os.path.relpath(full_path, directory)
                # Encode the path for use in URL, preserving slashes and spaces
                url_encoded_path = quote(relative_path, safe='/ ')
                # Formatteer het pad en de bestandsnaam als een Markdown link

                
                markdown_link = f"``` {directory}/{url_encoded_path} \n--- \nwidth: 50% \
                markdown_links.append(markdown_link)
    return markdown_links

# Stel de root directory in waar je wilt beginnen met zoeken naar PDFs
pdf_links = find_jpg_files(directory)

# Print alle gevonden Markdown links
for figs in pdf_links:
    print(figs)



Figshrinker
This page reuses BSD 3-Clause License content from TeachBooks (2024). Find out
more here.

# shrink file size of JPG
# file zoekt naar jpg bestanden en comprimeert deze tot een gewenste formaat.

from PIL import Image
import os

def compress_image(file_path, output_quality=50):
    """ Compress the image by changing its quality. """
    picture = Image.open(file_path)
    # You can also resize the image if needed using picture.resize()
    picture.save(file_path, "JPEG", optimize=True, quality=output_quality)

def find_and_compress_images(directory, max_size=1.5*1024*1024):
    """ Find all jpg files exceeding max_size and compress them. """
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.lower().endswith(".jpg"):
                full_path = os.path.join(root, file)
                if os.path.getsize(full_path) > max_size:
                    print(f"Compressing: {full_path}")
                    compress_image(full_path)

# Specify the root directory to start from
root_directory = 'I:/Book/2023'
find_and_compress_images(root_directory)

https://teachbooks.io/manual/references.html#id16
https://teachbooks.io/manual/credits.html#external-resources
https://teachbooks.io/manual/credits.html#external-resources


References
Hall, M. (2021). Which open licence should i choose? Online; posted 17-February-2021.
CC BY. URL: https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-
choose

Idema (Delft University of Technology), T. (2024). Latex to markdown conversion.
Retrieved December, 2024. BSD-3. URL: https://gitlab.tudelft.nl/opentextbooks/latex-to-
markdown-conversion

Moore, J. (2023). Learn multibody dynamics, sympy. URL:
https://moorepants.github.io/learn-multibody-dynamics/sympy.html

Preston-Werner, T. (2025). Semantic versioning specification. Retrieved February 2025.
CC BY 3.0. URL: https://semver.org/

TeachBooks (2024). Custom launch buttons. Retrieved December, 2024. BSD-3-Clause.
URL:  TeachBooks/Sphinx-launch-buttons

TeachBooks (2024). Git workflow: share content between book. Retrieved December,
2024. CC BY 4.0. URL:  TeachBooks/Nested-Books

TeachBooks (2024). Github reusable action: publish your book online to github pages.
Retrieved December, 2024. BSD-3-Clause. URL:  TeachBooks/deploy-book-workflow

TeachBooks (2024). Local annotator extension. Retrieved December, 2024. BSD-3-Clause.
URL:  TeachBooks/annotator

TeachBooks (2024). Sphinx named colors. Retrieved January 2025. MIT. URL:
 TeachBooks/Sphinx-Named-Colors

TeachBooks (2024). Sphinx extension: grasple. Retrieved December, 2024. MIT. URL:
 TeachBooks/Sphinx-Grasple-public

TeachBooks (2024). Sphinx extension: image inverter. Retrieved December, 2024. BSD-3-
Clause. URL:  TeachBooks/Sphinx-Image-Inverter

TeachBooks (2024). Sphinx extension: jupyterbook-patches. Retrieved December, 2024.
BSD-3-Clause. URL:  TeachBooks/JupyterBook-Patches

https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose
https://agilescientific.com/blog/2021/2/17/which-open-licence-should-i-choose
https://gitlab.tudelft.nl/opentextbooks/latex-to-markdown-conversion
https://gitlab.tudelft.nl/opentextbooks/latex-to-markdown-conversion
https://moorepants.github.io/learn-multibody-dynamics/sympy.html
https://semver.org/
https://github.com/TeachBooks/Sphinx-launch-buttons
https://github.com/TeachBooks/Nested-Books
https://github.com/TeachBooks/deploy-book-workflow
https://github.com/TeachBooks/annotator
https://github.com/TeachBooks/Sphinx-Named-Colors
https://github.com/TeachBooks/Sphinx-Grasple-public
https://github.com/TeachBooks/Sphinx-Image-Inverter
https://github.com/TeachBooks/JupyterBook-Patches


TeachBooks (2024). Sphinx extension: tu delft theme. Retrieved December, 2024. MIT.
URL:  TeachBooks/Sphinx-TUDelft-theme

TeachBooks (2024). Sphinx extension: download link replacer. Retrieved December,
2024. BSD-3-Clause. URL:  TeachBooks/Download-Link-Replacer

TeachBooks (2024). Teachbooks sphinx extension: rich hover over tips. Retrieved
December, 2024. MIT. URL:  TeachBooks/teachbooks-sphinx-tippy

TeachBooks (2024). Useful python code. Retrieved December, 2024. BSD-3-Clause. URL:
 TeachBooks/Useful_python_code

TeachBooks (2024). Your first teachbook using the github template. Retrieved December,
2024. CC BY 4.0. URL:  TeachBooks/template

TeachBooks (2025). Sphinx prime applets. Retrieved April 2025. MIT. URL:
 TeachBooks/Sphinx-PRIME-applets

TeachBooks (2025). Sphinx iframes. Retrieved April 2025. MIT. URL:
 TeachBooks/sphinx-iframes

TU Delft Library (2024). Copyright information point. Retrieved December, 2024. CC BY
4.0. URL: https://www.tudelft.nl/library/support/copyright

https://github.com/TeachBooks/Sphinx-TUDelft-theme
https://github.com/TeachBooks/Download-Link-Replacer
https://github.com/TeachBooks/teachbooks-sphinx-tippy
https://github.com/TeachBooks/Useful_python_code
https://github.com/TeachBooks/template
https://github.com/TeachBooks/Sphinx-PRIME-applets
https://github.com/TeachBooks/sphinx-iframes
https://www.tudelft.nl/library/support/copyright


Credits and License
Contents

Acknowledgements

License

You can refer to this book in its entirety as:

This book is registered on Zenodo too: DOIDOI 10.5281/zenodo.1510084810.5281/zenodo.15100848

The introduction, structure and decisions on content is done under direction of the
TeachBooks Development Team. The content is written by many contributors, of which there
are many.

We anticipate that the content of this book will change continuously. Therefore, if you’d like
to refer to a specific chapter, we recommend using the source code directly with the citation
that refers to the GitHub repository and lists the date and name of the file. Although content
will be added over time, chapter titles and URL’s in this book are expected to remain
relatively static. You can refer to individual chapters or pages within this book as:

Better yet, include a link to the specific commit! If you know what this means, we assume you
know how to do it.

Acknowledgements
This book has many contributors, many of whom are also key members of the TeachBooks
Team:

TeachBooks Development Team (2024), TeachBooks Manual.  TeachBooks/manual.
Retreived [Month, Year]. CC BY 4.0.

<Title of Chapter or Page> . In TeachBooks Manual.  TeachBooks/manual (chapter
./book/intro/ , retrieved [ <date> ]).

https://doi.org/10.5281/zenodo.15100848
https://doi.org/10.5281/zenodo.15100848
https://github.com/TeachBooks/manual
https://github.com/TeachBooks/manual


Tom van Woudenberg

Robert Lanzafame

Freek Pols

Dennis den Ouden-van der Horst

Julie Kirsch

Caspar Jungbacker

All from Delft University of Technology.

This doesn’t include small contributions from various people from within and outside Delft
University of Technology.

A better way to see the contributions is to check the Contributors Page of the GitHub
repository.

A big “thank you” is also due to the various colleagues and teaching assistants that have
worked as part of the TeachBooks Team for developing tools and providing support to
improve this book, as well as the faculty of Civil Engineering and Geosciences and the Library
at Delft University of Technology for significant financial support. The faculties of of Applied
Sciences and Electrical Engineering, Mathematics and Computer Science have also provided
support in the form of contributions from employees and student assistants..

License
This manual is CC BY 4.0 licensed allowing you to share and adapt the material, as long as
the source is named. External resources that are reused in this manual are listed below.

External resources
Parts of this book are taken from other external resources and reused in various ways. If an
author is not listed on a particular page, it is by the Authors, except as follows:

The following pages are included directly from an external resource and is not edited by the
TeachBooks Team:

page Local Annotator Extension. Original content licensed under BSD 3-Clause license.

Page Releasing book online. Original content licensed under BSD 3-Clause license.

Page Download link replacer. Original content licensed under BSD 3-Clause license.

Page JupyterBook-Patches. Original content licensed under BSD 3-Clause license.

https://github.com/TeachBooks/manual/graphs/contributors
https://teachbooks.io/
https://creativecommons.org/licenses/by/4.0/
https://teachbooks.io/manual/external/annotater/README.html
https://teachbooks.io/manual/external/deploy-book-workflow/README.html
https://teachbooks.io/manual/external/Download-Link-Replacer/README.html
https://teachbooks.io/manual/external/JupyterBook-Patches/README.html


Page Share content between books using submodules. Original content licensed under
CC BY 4.0 license.

Page Grasple. Original content licensed under MIT license.

Page Image Inverter. Original content licensed under BSD 3-Clause license.

Page Multilingual book. Original content licensed under BSD 3-Clause license.

Page TU Delft theme. Original content licensed under MIT license.

Page Rich hover over tips. Original content licensed under MIT license.

Page TeachBooks template. Original content licensed under CC BY 4.0 license.

Page Custom named colors. Original content licensed under MIT license.

Pages Extensionchecker, filedownloader and figreturner, Figshrinker and Snippit.
Original content licensed under BSD 3-Clause license.

The following pages contain content written by others, part of has been reused and/or
modified by the TeachBooks Team:

Pages Copyright and Licenses checklist and Copyright Considerations include text from
TU Delft Library (2024) that is used in the copyright checklist items. Original content
licensed under CC BY.

Page Licenses: Figure 86 is included unmodified, along with paraphrased and quoted
text (including hyperlinks) from Hall (2021). Work is licensed under CC BY.

Page Licenses: Figure 87 is included unmodified. Work is provided by Kennisland under
a CC0 license. Accessed at on December 17, 2024.

page TeachBooks Versioning: includes text from Preston-Werner (2025) that has been
modified. Original content licensed under CC BY 3.0.

https://teachbooks.io/manual/external/Nested-Books/README.html
https://teachbooks.io/manual/external/Sphinx-Grasple-public/README.html
https://teachbooks.io/manual/external/Sphinx-Image-Inverter/README.html
https://teachbooks.io/manual/external/Sphinx-launch-buttons/README.html
https://teachbooks.io/manual/external/Sphinx-TUDelft-theme/README.html
https://teachbooks.io/manual/external/teachbooks-sphinx-tippy/README.html
https://teachbooks.io/manual/external/template/README.html
https://teachbooks.io/manual/external/Sphinx-Named-Colors/README.html
https://teachbooks.io/manual/external/Useful_python_code/extensionfildownloadreturn.html
https://teachbooks.io/manual/external/Useful_python_code/figshrinker.html
https://teachbooks.io/manual/external/Useful_python_code/snippit.html
https://teachbooks.io/manual/installation-and-setup/copyright.html#copyright
https://teachbooks.io/manual/installation-and-setup/copyright/considerations.html#copyright-considerations
https://teachbooks.io/manual/references.html#id5
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#copyright-licenses
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-types
https://teachbooks.io/manual/references.html#id3
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#copyright-licenses
https://teachbooks.io/manual/installation-and-setup/copyright/licenses.html#fig-license-compatibility
https://teachbooks.io/manual/features/versioning.html
https://teachbooks.io/manual/references.html#id19


Changelog
Contents

v1.1.0

v1.0.0

v1.1.0
Various updates with new and updates tooling, exercises and documentation. The full
changelog is available here:  TeachBooks/manual

v1.0.0
First release

https://github.com/TeachBooks/manual/releases/tag/v1.1.0
https://github.com/TeachBooks/manual/releases/tag/v1.1.0
https://github.com/TeachBooks/manual/releases/tag/V1.0.0


Contact
Contents

Contact

Contribute

Contact
If you encounter any issues report it by clicking  on the top right corner of this page.

If you have questions, contact the editors at info@teachbooks.io.

Contribute
This book will continue to develop, so feel free to contribute  TeachBooks/manual! You can
do so directly by forking this repository and creating a pull request.

The released book can be found on on https://teachbooks.io/manual. This page shows the
built book of the release  branch. All branches will also be visible online, as pointed to in the
actions summaries:  TeachBooks/mirror_teachbook_manual

Some parts of this book are taken from other sources in the form of submodules (linked in
the folder book/external). To contribute to those pages, contribute to the source repository
directly with a fork and merge/pull request. If you intent to clone this book including its
submodules, clone using: git clone --recurse-submodules
git@github.com:TeachBooks/manual.git

mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
mailto:info%40teachbooks.io
https://github.com/TeachBooks/manual
https://teachbooks.io/manual
https://github.com/TeachBooks/mirror_teachbook_manual/actions
https://github.com/TeachBooks/manual/tree/release/book/external

	TeachBooks Manual
	Your First TeachBook!
	What is a TeachBook?
	How can you do it?
	It only takes 10 clicks!
	You Know the Basics: WhatNext?

	Getting going!
	User types
	Collaboration tool: Git
	Which git provider to choose

	Install & authenticate required software
	Editing text: VS Code
	Git: GitHub Desktop / Git in VS Code
	Managing code-related software:Anaconda
	Combining Git Bash, VS Code and Conda
	Build your book: JupyterBook

	Collaborative book-editing
	Assign task to yourself(milestones, issues)
	Create your own version(branching, cloning, pulling)
	Edit (merge conflicts, staging,committing, pushing)
	Check changes online
	Reviewing and combineversions (merge/pull request,merging)

	Organize editing team, collaboration andvisibility
	Versioning and URLs
	Publish version on separate(fixed) URLs
	TeachBooks versioning withchangelog
	Publishing your book with apublisher

	Copyright and Licenses checklist
	Copyright Considerations
	Licenses
	Recommendations


	Features
	Overview
	Original Jupyter Book and SphinxFeatures
	Anatomy of a Jupyter Book
	Equations
	Videos
	References
	Code
	Code blocks that producefigures
	Badges, Buttons & Icons
	Banners and Announcements

	Easy Editing Process
	TeachBooks template
	Draft-Release Workflow
	Releasing book online
	Build pull requests from forks
	Local Server to view interactive elementslocally
	Sharing content between books in tableof contents
	Share content between books usingsubmodules
	Auto-updating packages
	TeachBooks Versioning

	Additional functionality
	Download link replacer
	Multilingual book
	Discussions in your book: Utterances
	H5p interactive elements
	Examples of H5p Quizzes

	Interactive plots: plotly
	Grasple
	Adding interactive HTML/JavaScriptelements
	Creating basic interactiveHTML/JavaScript elements
	Interactive content: Run Python insideyour book

	Ipywidgets
	Exercise checking using check-answer button

	JupyterQuiz
	Iframes
	PRIME applets

	Book styling
	Image Inverter
	JupyterBook-Patches
	TU Delft theme
	Rich hover over tips
	APA References
	Custom named colors

	TeachBooks Student-viewFeatures
	Local Annotator Extension
	Making comments on the website:Hypothesis


	Examples
	TeachBooks Examples
	Well-Structured Book
	Live Code (Sphinx Thebe)
	Programming assignment withchecks
	Combining theory & interactivequizzes
	Theory, interactive quizzes &live code
	Coding theory, interactivequizzes & live code
	Parametric questions

	Editing Tools
	Figure syntax maker
	Scripts for automatingworkflow
	Convert LaTeX to Markdown
	Move images to separatehosting
	Snippit
	Extensionchecker,filedownloader and figreturner
	Figshrinker


	Miscallaneous
	References
	Credits and License
	Changelog
	Contact


