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ABSTRACT

Polymer flooding is the most widely used chemical EOR method. Despite being widely used, the apparent
shear-thickening behaviour of the polymer solutions in porous flow at high flow rates is poorly understood.
One of the supposed mechanisms is the strain-thickening behaviour of polymer solutions. This fluid prop-
erty will alter the flow dynamics during porous flow compared to Newtonian and purely shear-thinning flow.
In this research, the objective is to improve our understanding of polymer flow through a simple single slit
geometry (e-VROC) and more complex geometries (porous flow characterised by pore network models) in
order to allow oil recovery optimisation for polymer flooding.
The intrinsic viscosity of HPAM3630S is investigated experimentally using the Extensional Viscometer/ Rheome-
ter On a Chip (e-VROC). The e-VROC has a microfluidic hyperbolically-shaped contraction-expansion geom-
etry. The water salinity is used as a control parameter to reduce the fluid viscosity. Initial calibration of the
device with Newtonian fluids and analytical analysis of the e-VROC geometry indicate that the shear com-
ponent of the flow is large in the converging section – contrary to the claimed advantages of the hyperbolic
geometry. Newtonian flow can therefore not be regarded as extension dominated. Consequently, the pro-
vided analysis of the e-VROC pressure data is currently unable to determine the true extensional viscosity of
a Newtonian fluid. Therefore the analysis should be regarded as an extensional viscosity indexer in compar-
ing different fluids.
For polymer flow the pressure gradient over the contraction-expansion area increases more than linearly with
increasing flow rate. This indicates strain-thickening behaviour. The salinity highly impacts the amount of
strain-thickening; the higher the brine salinity the lower the pressure gradient over the contraction-expansion
area. Furthermore, a high noise content in the time-pressure signal is observed together with reproducibility
problems regarding polymer flow. Differences upto 30% in pressure gradients between measurements are
reported for the same fluid. Both can probably be attributed to elasticity due to the short residence time of
the polymer solutions in the contraction-expansion geometry compared to their relaxation times.
The fluid flow process is modelled using finite element modelling (GeoDict&COMSOL) and pore network
modelling using MATLAB to study the (changed) fluid flow behaviour. It was shown that Newtonian flow
through the e-VROC can be modelled using both COMSOL and GeoDict. Furthermore, it was shown that the
pressure drop due to pure shear losses in the e-VROC can be significant during polymer flow.
The developed Matlab code enables modelling the steady state response of pore network systems. The sys-
tems contains more than 10000 non-linear throat equations. This captures both extension-thickening and
shear-thinning pressure losses. This successfully demonstrates proof of concept set out at the beginning of
this study. Using the pore network model, it is studied how a macroscopic pressure over a rock sample is
redistributed in microscopic pressure drops between individual pores. It is shown that the microscopic pres-
sure drop distribution for Newtonian flow predicted by the pore network model is in good agreement with the
microscopic pressure drop distribution inside the porous medium predicted by GeoDict. However, the cor-
responding permeability predicted by the pore network modelling is one order of magnitude too low. From
this it can be concluded that the resistance to flow between the pores is overestimated by the used transport
equations. Nevertheless, a qualitative interpretation of the (changed) microscopic redistribution of pressure
for non-Newtonian flow can still be made.
Secondly, the microscopic pressure drop distribution within the sample for purely shear-thinning flow is
compared to Newtonian flow. The variance and kurtosis of the distribution decrease compared to Newto-
nian flow. This implies better conformance control during using purely shear-thinning flow. Above a critical
flow rate, strain-thickening behaviour reverses this process. The variance and kurtosis of the pressure drop
distribution increase. This has a negative impact on conformance control.
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1
INTRODUCTION

1.1. OIL RECOVERY
Rising living standards and growing population increase the global demand for energy. It is estimated that
the world’s population will grow from around 2 billion people to 9 billion by the middle of the century. Due to
this population growth the global energy demand will increase around 60% by 2050 [1]. The global primary
energy supply in 2012 is given in Figure 1.1 [2].

Figure 1.1: Global primary energy supply in 2012.

Approximately one third of the primary energy supply consists of oil. Although in the future more and
more of the energy will come from renewables, most of the energy will still come from oil and gas [1]. To meet
this demand for oil and gas, new reserves should be unlocked. Both by drilling and exploration campaigns
and increasing the oil recovery in existing assets.
The conventional techniques for extracting oil include primary and secondary recovery. During primary re-
covery, oil production relies on the natural energy of the reservoir. This consists of three mechanisms: the
aquifer drive, the gas cap drive and gravity flow. Over time the reservoir pressure decreases due to the extrac-
tion of the reservoir fluids (oil, gas and water) resulting in lower production rates. With time, the remaining
natural energy in the system will not be sufficient to produce the oil to surface. Typically between 5-15% of
the oil initial in place (OIIP) is recovered by primary recovery depending on the oil reservoir [3].
Secondary recovery involves the injection of water or gas into the reservoir, hence external energy is added to
the system. Waterflooding is the most applied secondary recovery method with the main purpose to main-
tain reservoir pressure, thereby maintaining oil production rates and increasing oil recovery. However, after
a certain time the injected water breaks through in the production wells and water production increases as
production continues, resulting in less efficient oil production. On average secondary recovery methods have
a recovery factor of 30-50% of the OIIP [3]. Although in the North Sea the recovery factors are between 45-55%
of OIIP after secondary recovery [3].

1



2 1. INTRODUCTION

1.2. ENHANCED OIL RECOVERY
Enhanced oil recovery (EOR) methods are recovery techniques in which substances are injected which are not
naturally occurring in the reservoir [4]. These techniques can be subdivided in two main groups: Thermal and
non-thermal methods. This thesis focusses on a non-thermal method, more specifically polymer flooding.
Thermal methods are best suited for very viscous oil reservoirs. Non-thermal methods mainly use gas or
chemicals (polymers and surfactant) to increase the oil recovery. Polymer flooding is the most used chemical
EOR method.

1.2.1. POLYMER FLOODING
During waterflooding not all of the OIIP is contacted by the waterflood. This can be expressed by the volu-
metric sweep efficiency, EV (Equation 1.1).

EV = Volume of oil contacted by displacement fluid

Volume of oil initial in place
(1.1)

While displacing a viscous fluid (oil) using an immiscible less viscous fluid (water), the interface between
these fluids is unstable and viscous fingering occurs (Figure 1.2). This effect causes a low sweep efficiency
of the reservoir, leaving large volumes of oil behind. This problem can be solved by optimizing the water-oil
mobility ratio [4] (Equation 1.2), which depends on the relative permeability of water and oil in the porous
medium, kw and ko respectively, and their viscosity (µw and µo).

M = kw

ko

µo

µw
(1.2)

For a water-oil mobility less than or equal to 1 the flow is more piston like and the sweep efficiency is
increased. At high mobility ratios viscous fingering occurs and volumetric sweep efficiency can be low. How-
ever, it also depends, among others, on the heterogeneity of the reservoir, gravity and well locations. During
a polymerflood, polymer is added to the water of a waterflood. The polymer molecules increase the viscosity
of the water and hereby decrease the mobility ratio. This lowering causes more of the OIIP to be contacted by
the polymerflood as compared to a waterflood, therefore more oil is mobilized to flow to the production well
(Figure 1.2).

Figure 1.2: Viscous fingering of water (top) and polymer - more piston-like - flow (bottom) (modified from [5]).

1.3. POLYMERS SOLUTIONS
Roughly two types of polymer solutions for EOR exist: Synthetic polymers (PAM and HPAM) and biopolymers
(e.g. xanthan). Synthetic partially hydrolysed polyacrylamides (HPAM) are the most widely used polymers in
polymer flooding. The chemical structure of HPAM is shown in Figure 1.3. Generally, the degree of hydrolysis
is between 25-30% [4]. Due to its long flexible coil structure, the molecules can be deformed while flowing
through the porous reservoir rock. Unlike water, polymer solutions are non-Newtonian; they cannot be char-
acterized by one viscosity value since the viscosity depends on the rate of shear stress e.g. flow rate through
the porous medium. Generally, the viscosity of polymer solutions decreases with increasing shear stress,
so-called shear-thinning behaviour. This behaviour is observed because the polymer molecules uncoil and
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align with the shear flow [4]. However, in a porous flow polymer solutions experience both compression and
extensional forces. This affects the fluids apparent viscosity and may cause the apparent behaviour to alter.
Previous research has shown that HPAM solutions exhibit apparent shear thickening behaviour in porous
flow above a critical flow rate [6–8]. Xanthan solutions do not show this behaviour [9].

When the partially hydrolysed polymers (charge bearing) are dissolved in water containing salts a reduc-
tion in shear viscosity is observed, compared to water that does not contain salts. The loss of shear viscosity
is attributed to the shielding effect of the electric repulsion between the polymer coils. Consequently the
hydrodynamic volume is reduced resulting in a reduction off the shear viscosity (Figure 1.4).

Figure 1.3: Chemical structure of HPAM.

Figure 1.4: The effect of in the hydrodynamic volume of a polymer coil affecting its viscosity [10].

1.4. AIM AND SCOPE OF THIS THESIS
In this research, the objective is to improve our understanding of polymer flow through a simple single slit
geometry (e-VROC) and more complex geometries (porous flow characterised by pore network models) in
order to allow oil recovery optimisation for polymer flooding.
Firstly, the intrinsic viscosity is investigated experimentally using a microfluidic flow device (e-VROC). The
experimental objective was to test and characterise polymer solutions flowing through the e-VROC for quan-
tifying the pressure losses due to shear-and elongational-stress in order to improve our understanding of fluid
properties. After the use of calibration fluids, HPAM polymer (FP3630S) is used and the water salinity is used
as a control parameter to reduce the fluid viscosity.
Secondly, the fluid flow process is modelled using finite element modelling (GeoDict & COMSOL) and pore
network modelling using MATLAB to study the (changed) fluid flow behaviour. The modelling objective was
to develop a framework in MATLAB to calculate the total system pressure-rate steady state response of pore
network systems. The systems should contain more than 10000 non-linear throat equations for single-phase
flow. This should capture both extension-thickening and shear-thinning pressure losses. The model serves as
a proof of concept for a very simplified polymer fluid flowing through a porous medium incorporating both
the shear and extensional behaviour of polymer solutions.
This thesis report is subdivided into five parts. The first part covers the theoretical concepts, governing the
flow of polymer solutions through porous media (Chapter 2). Secondly, the materials and methods used to
improve our understanding and predictability of polymer flow through a pore throat are described in Chap-
ter 3. Chapter 4 discusses the results of the flow experiments. Chapter 5 compares the experimental and
numerical (Geodict & COMSOL) results of the flow experiments. Furthermore, the pore network modelling
(MATLAB) and its results is explained in more detail. Finally, the conclusions and recommendations drawn
from the results are given in Chapter 6 and 7.





2
THEORETICAL CONCEPTS

Polymer solutions are Non-Newtonian fluids; the relationship between stress and rate of strain is non-linear
or an initial yield stress is present. Non-Newtonian fluids can be divided in three groups [11]:

1. Time-independent fluids: The strain rate is only dependent on the instantaneous stress.

2. Viscoelastic fluids: Fluids that have both properties of viscous fluids and elastic solids, therefore they
show (partial) elastic recovery when the deforming stress is removed.

3. Time-dependent fluids: Apart from the magnitude of the deforming stress, the strain rate is also de-
pendent on the duration of the deforming stress. They may also be dependent on the time between
two subsequent deforming stresses.

Polymer solutions are generally classified as viscoelastic time-dependent fluids, since these fluids show
elastic recovery upon deformation and because the strain rate is a function of the time between two subse-
quent deforming stresses. Both the viscous and elastic behaviour of the polymer solutions contribute to the
resistance to flow due to the contraction-diverging geometry of porous media.

Understanding the complex rheology of polymer solutions is essential to know how the fluid will perform
under porous flow conditions. The fluid’s extensional viscosity can be several magnitudes higher than the
corresponding shear viscosity at high flow rates (near wellbore). This can be decisive in the performance of a
polymer flood, since it is likely to dominated the injection pressure response near the wellbore.

2.1. FLUID DYNAMICS AND RHEOLOGY
The motion of fluid can be described by the Cauchy equations. Applying Newton’s second law, conservation
of momentum, a general form is given by [12]:

ρ
∂u

∂t
+ρu ·∇u =−∇p +∇·T+ f (2.1)

where ρ the density of the fluid, u is the fluid velocity, p the pressure tensor, T the stress tensor and f the
body forces acting on the fluid such as gravity. If the velocity field can be linked to the deviatoric stress by a
constitutive relation, these equations can be solved. For an incompressible Newtonian fluid, the stress tensor
T in Equation 2.1 can be replaced with Newton’s law, reducing it to the Navier-Stokes equations:

ρ
∂u

∂t
+ρu ·∇u =−∇p +η∇2u+ f (2.2)

in which η is the viscosity of the fluid. However, many fluids show Non-Newtonian behaviour and other
constitutive laws have to be used, such as generalized Newtonian models [13]. For a generalized Newtonian
fluid, the shear stress depends on the shear rate at a given time but is independent of the history of deforma-
tion [13, 14]:

T = 2η(γ)E (2.3)

5



6 2. THEORETICAL CONCEPTS

where γ is the shear rate and E is the strain tensor and given by[13]:

E = 1

2
(∇u+∇uT ) (2.4)

in which u +∇uT is the rate of deformation tensor. The deformation tensor describes both rotation and
stretching of the fluid.

However, since polymer solutions have a memory regarding deformation history, Equation 2.3 cannot
accurately describe the stress tensor when the polymer solution is subjected to two subsequent deforming
stresses. No model yet exists that describes all visco-elastic phenomena of polymer solutions (shear-thinning,
extension-thickening, normal stresses and time dependence), however most existing models account for
time-dependence with characteristic time parameters that represent the memory of the fluid. The most pop-
ular model that includes the history of deformation is the Oldroyd-B model [15]:

T+τr
O
T = 2η

(
E+τr t

O
E
)

(2.5)

where τr t is the retardation time,
O
T and

O
E are the rate of change of the stress and deformation tensors of a

small parcel of fluid respectively. The so-called upper-convected time derivatives are defined as:

O
T = ∂

∂t
T+u ·∇T− ((∇u)T ·T+T · (∇u)) (2.6)

O
E = ∂

∂t
E+u ·∇E− ((∇u)T ·E+E · (∇u)) (2.7)

Although viscoelastic shear flow is adequately described by the model, at some extensional rates the cal-
culated extensional viscosities are non-physical. This problem arises since the Oldroyd-B model is derived
using infinitely extensible Hooke’s Law springs. If the strain tensor can be linked to the stress tensor by a
constitutive relation the Olderoyd-B model can be used together with the Cauchy equation (Equation 2.1) to
solve these equations.

2.1.1. SHEAR FLOW

The typical behaviour of the shear viscosity of polymer solutions is depicted in Figure 2.1. After an initial
Newtonian plateau at low shear rates, polymer solutions experiences shear-thinning behaviour at increasing
shear rate. If the shear rate is increased even more a second plateau is reached, referred to as the upper
Newtonian plateau. Many different fluid models exist to describe this behaviour [11, 16]. Of these methods
the Carreau-Yasuda is most frequently used since it can accurately describe the shear-thinning as well as the
lower and upper Newtonian plateaus:

η= η∞+ (η0 −η∞)[1+ (λγ)α](n−1)/α (2.8)

in which η0 and η∞ are the limiting Newtonian viscosities at zero and infinite shear rate respectively, λ and n
are fluid specific empirical constants; α is generally taken to be 2.

2.1.2. EXTENSIONAL FLOW

Besides shear forces, a fluid also experiences extension during porous flow. The resistance to extension is
called extensional or elongational viscosity. The extensional behaviour of HPAM solutions, as opposed to
shear, is typically strain-hardening as depicted in Figure 2.2. At low extensional rates, the elongational viscos-
ity is constant, the so-called zero-extension rate extensional viscosity. This extensional viscosity is equal to
that of a Newtonian fluid. Increasing the extensional rate results in a strain-hardening effect. At high exten-
sional rates, the extensional viscosity reaches a second plateau. If the rate is increased even more the polymer
chains will break and therefore the extensional viscosity will decrease. It also should be noted that polymer
solutions that show the same shear response do not necessarily show the same extensional behaviour [17].

Furthermore, the extensional viscosity depends on the type of extension e.g. uniaxial, equibiaxial or pla-
nar extension and therefore on the geometry of the contraction (Figure 2.3). Generally, the rate of strain
tensor for extension can be written as [17–19]:
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Figure 2.1: Schematic of the shear-thinning behaviour of polymer solutions on log-log scales [11].

Figure 2.2: Schematic of the behaviour of polymer solutions under extensional flow on log-log scales [11].



8 2. THEORETICAL CONCEPTS

E = ε
1 0 0

0 m 0
0 0 −(1+m)

 (2.9)

where ε is the largest principal strain rate and the parameter m describes the geometry of the extensional
flow, with − 1

2 ≤ m ≤ 1 in general. For three standard cases, uniaxial, equibiaxial and planer extension, the
parameter m equals − 1

2 , 1 and 0 respectively. The extensional viscosity is defined as the ratio between tensile
stress and extensional rate under steady flow conditions:

ηE = τ11 −τ22

ε
= N1

ε
(2.10)

The extensional viscosity of polymer solutions is non-constant in both steady and unsteady extensional
flow [11]. However, the extensional viscosity of polymer solutions as function of elongation rate can be de-
scribed as a power-law [14, 20]:

ηE = Bεk−1 (2.11)

with B the consistency index or the extensional viscosity of the polymer solution at a shear rate of 1s−1 and
k > 0 is the power-law exponent of extensional viscosity. Strain-thickening and strain-thinning are indicated
by k > 1 and k < 1 respectively. For isotropic, incompressible Newtonian fluids, k = 1, this corresponds to
an extensional viscosity ηE of 3ηsh for uniaxial extension [14, 18, 21], 6ηsh for equibiaxial extension [18] and
4ηsh for planar extension [14, 18].

Figure 2.3: Schematic representation of uniaxial, equibiaxial and planar extension.

2.1.3. MIXED FLOW
Unfortunately, it is experimentally not possible to generate an extensional flow without any shear compo-
nent [14, 22]. Especially for converging dies, where a shear flow component is inevitable due to the no slip
boundary at the channel wall. In so-called mixed flows, both shear and elongational viscosity contribute to
the resistance to flow. In view of the geometrical dependency and the fact that purely elongational flow is
almost never achieved, the viscometers provide an extensional viscosity rather than the extensional viscosity.

To describe the resistance to flow under mixed flow conditions, it can be assumed that both viscosity
effects are additive, although this is not strictly valid [14, 19, 22]:

η= ηsh +ηE (2.12)

According to Wunderlich [14] the polymer dynamics can be altered considerably by a combination of
shear and extensional flow, thereby undermining the additivity assumption. Adding a shear component to a
purely extensional flow could have two effects [14]:

1. The polymers get stretched and aligned by the shear component in the direction of flow. Consequently,
the polymers are subjected to larger frictional forces, so that the apparent extensional viscosity is in-
creased.
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2. Oppositely, the shear flow component rotates the polymer molecules out of the alignment relative to
the extensional flow. Due to this tumbling, the polymers are less stretched in the extensional flow di-
rection, hereby reducing the apparent extensional viscosity.

The predominate effect is determined by the relative magnitudes of shear and extensional flow and their
relative orientation. Depending on the relative magnitudes of extension due to shear and extensional flow,
three regimes can be recognized [14]:

1. Extension dominated regime: The shear components only have a minor impact on the flow, conse-
quently the additional friction can be neglected. In this regime the apparent extensional viscosity is
approximately equal to the extensional viscosity in purely extensional flow.

2. Extension comparable to shear: Depending on the relative orientation of extension due to shear and
extensional flow, the apparent extensional viscosity can be larger or smaller than the extensional vis-
cosity in purely extensional flow. Resulting from the mechanisms explained above.

3. Shear dominated regime: The polymers are subjected to large frictional forces due to their stretching
and alignment in the extensional flow direction, hereby increasing the apparent extensional viscosity.

Since polymer solutions are visco-elastic fluids, it can be argued that an extra resistance to flow is intro-
duced by elastic storage [20]. For polymer solutions this resistance is again a power-law function of deforma-
tion rate, while for Newtonian fluids it equals zero:

ψ= pγq−1 (2.13)

However, if the contraction-expansion geometry is symmetrical, the elastic contribution cancels out. The
elastic energy stored by contraction is fully released when the solution expands again.

2.1.4. IN-SITU RHEOLOGY
Although polymer solutions commonly show shear-thinning behaviour for bulk experiments, a dilatant be-
haviour is observed above a certain rate in porous media (Figure 2.4). This strain hardening region can be at-
tributed to either the extensional viscosity or the memory of polymer solutions. At low flow rates the viscosity
and elasticity behaviour is almost the same as in bulk. Therefore the pressure response is mainly determined
by shear viscosity. However, when the flow rate is increased the apparent in-situ rheology is significantly dif-
ferent. Because of the more dominant visco-elastic effects the polymer solutions show dilatant behaviour.
There is not really agreement in literature at which flow rate the visco-elatic effect becomes dominant. How-
ever, it is agreed that they become important when the fluid is significantly deformed in a time comparable
to the relaxation time of the fluid. The quantification of these phenomena are further enhanced by the simul-
taneous occurrence of polymer adsorption, retention and partial pore blockage, which also cause pressure
drops to exceed their expected value [11]. While examining visco-elasticity in porous media, three principal
effects have to be considered: transient time-dependence, steady-state time-dependence and dilatancy at
high flow rates.

TRANSIENT TIME-DEPENDENCE

After starting or ending the displacement of polymer solutions, transient time-dependent behaviour is ob-
served. During this period, overshoots and undershoots of stress are observed before the fluid reaches a
constant value if the strain is kept constant (Figure 2.5).

STEADY-STATE TIME-DEPENDENCE

Depending on the relaxation time of the polymer solution and the time scale of the flow, the fluid may show
elastic or viscous behaviour. Therefore flow in pores media can be characterized by the fluid relaxation time
and average residence time of the fluid inside the pore throat. The Deborah number is defined as the ratio of
the time it takes for a material to adjust to an applied stress and the characteristic time scale of an experiment:

De = τr

τE
(2.14)

where τr the relaxation time of the polymer solution and τE the average residence time. If De ¿ 1 the
flow is purely viscous, if De À 1 the flow is elastic.
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Figure 2.4: Schematic of the behaviour of polymer solutions in porous media [11].

Figure 2.5: Schematic of the time dependence behaviour of polymer solutions after a step increase in flow rate [11].
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Assuming the reciprocal value of the (effective) shear rate is a good approximation of the average resi-
dence time τE [23], the Deborah number in Equation 3.18 can be written as [6]:

De ≡ τr

τE
= τrγe f f (2.15)

Others [24, 25] approximate the average residence time by the reciprocal value of the extension rate:

τE = 1

ε
(2.16)

If the transit time through a pore throat is large compared to the relaxation time of the polymer solution,
no elastic effects will occur since the fluid has enough time to adjust to the changing flow field. However,
if the residence time is small compared to the relaxation time, the fluid does not have time to adjust to the
new flow conditions and elastic effects will occur. These elastic effects are then observed as an extra pressure
drop.

DILATANCY AT HIGH FLOW RATES

Dilatant behaviour is observed above a certain rate in porous media (Figure 2.4). This strain hardening region
can be attributed to the memory of polymer solutions, the extension viscosity or both. The dominance of
extension is further enhanced by the shear-thinning behaviour of polymer solutions. As flow rate is increased
the resistance due to shear will drop, whereas the extensional viscosity will increase. As a consequence the
observed resistance will be governed by strain-thickening.

Different empirical models have been proposed to describe extensional viscosity given by Equation 2.12
in porous media. All are functions of the dimensionless Deborah number and assume that the additivity of
shear viscosity and extension viscosity is valid.

The model by Hirasaki and Pope [24]:

ηE = ηsh

1−De
(2.17)

where De is the Deborah number.
Masuda’s proposed the model [23]:

ηE = ηshCc Demc (2.18)

in which Cc and mc are empirical constants.
The model proposed by Delshad et al [6]:

ηE = ηmax [1−exp(−(λ2Den2−1)] (2.19)

where ηmax , λ2 and n2 are polymer-specific empirical constants.

2.2. OSCILLATORY RHEOMETRY
The relaxation time, τr , for polymer solutions can be determined by oscillatory experiments. In these exper-
iments a sinusoidal stress is applied by the rheometer. The resulting strain in the fluid sample can be divided
into two parts: An in phase (elastic) and out of phase (viscous) response. This data provides information on
energy storage and dissipation, respectively the storage modulus G ′ (pronounced G prime) and loss modulus
G" (pronounced G double prime). Together they form the complex modulus G∗ as function of frequency:

G∗ =G ′+ iG" (2.20)

As stated above, the G ′ is a measure of the energy stored by the sample during deformation. If the stress on
the fluid sample is removed this stored energy is released. This will (partially) restore the fluid to its preloaded
condition. Therefore, the storage modulus described the elasticity of the fluid sample [26].
The loss modulus on the other hand describes the energy used in deforming the fluid sample. During the
deformation energy is dissipated and therefore the deformation is irreversible. Thus, G" describes the viscous
behaviour of the fluid sample [26]. For ideally viscous flow behaviour G ′ → 0, for ideally elastic flow behaviour
G" → 0 and viscoelastic flow behaviour is characterized by G" > G ′ [26]. For a Newtonian fluid, G ′ = 0 and
η= G"

ω , where ω is the frequency [13].
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It is proposed that the inverse of the frequency at which G ′ and G" cross, is the relaxation time of the
polymer solution [6, 7, 17, 27]. Since polymer solutions have a certain molecular weight distribution, the
solution cannot be characterized by one relaxation time. Many different models exist to obtain the spectrum
of relaxation times [6, 17, 28]. However, one relaxation time will be dominating since the spectrum will have
a peak corresponding to the most common polymer molecule size. From the existing models the Cross-Over
Point model and Rouse model are the most widely used.

Cross-Over Point Model It is suggested that the cross-over frequency between G’and G" indicates the re-
laxation time since they represent the elastic and viscous components respectively. The relaxation time is
obtained by the inverse of the cross-over frequency.

Rouse Model If the polymer coil is described as a series of equally spaced beads and springs the relaxation
spectrum is obtained by:

G ′ = cp RT

M

N∑
i=1

ω2τ2
i

1+ω2τ2
i

(2.21)

G" = cp RT

M

N∑
i=1

ωτi

1+ω2τ2
i

(2.22)

where cp is polymer concentration, ti the relaxation times.



3
MATERIALS AND METHODS

First this chapter describes the materials used in the different experiments in section 3.1. Secondly, the con-
cepts of the devices used in the experiments are described in section 3.2.

3.1. EXPERIMENTAL FLUIDS
Both calibration and polymer fluids were used during the experiments. This section describes which fluids
and how they were prepared.

3.1.1. CALIBRATION FLUIDS
For calibration of the e-VROC (Extensional Viscometer/Rheometer On a Chip) multiple Newtonian calibra-
tion fluids of different viscosity were used (Section 3.2.2). The fluids consisted of a glycerol-water solution,
olive oil and two silicon oils (Fluid 50 and Fluid 100) made by Brookfield, with serial numbers 033111 and
101786 respectively.

3.1.2. PREPARATION OF POLYMER SOLUTIONS
Three different polymer solutions were made (Table 3.1) in which the polymer type and concentration were
kept constant and only the salinity was varied, no divalent salts were added to the brines. Note that the
number in the name of the solutions indicates the salinity of the fluid.

Name Solutions Polymer Type Polymer Concentration [ppm] NaCl concentration [ppm]
FP2500 FP3630S 1500 2500
FP5000 FP3630S 1500 5000

FP10000 FP3630S 1500 10000

Table 3.1: The different polymer solutions that were used in this research in which the polymer type and concentration were kept con-
stant and only the salinity was varied.

The procedure to prepare these polymer solutions was as follows:

1. Calculate the required amounts of make-up water, salt, oxygen scavenger (sodium bisulphate, N aHSO3),
polymer and ITW.

2. Prepare the make-up water and filter over a 0.45 µ Millipore filter.

3. Weigh the correct amount of filtered make-up water into a glass bottle.

4. Add the salt and oxygen scavenger and stir until dissolved.

5. Add ITW protective package (a loading of 20% is usually adequate). ITW is a mixture of Isopropanol (15
wt%), Thiourea (7.5 wt%) and water (77.5 wt%) that protects the polymer from chemical degradation
through free radical attack, especially when the fluid contains dissolved oxygen and traces of iron. A

13
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20% ITW loading means that the total amount of Isopropanol added is equivalent to 20% of the total
weight of polymer added to the solution.

6. Place the glass beaker onto a magnetic stirrer, insert a magnetic stirrer bar and create a deep water
vortex.

7. Weigh out the correct amount of the dry polymer powder.

8. Sprinkle the polymer gently on the side of the water vortex, ensuring that no agglomerates (“fish eyes”)
are formed. If any agglomerates do form, discard the contents of the beaker and start again (the poly-
mer should be added within 20 to 30 seconds; if it is added too fast lumps will form and if it is added
too slow the solution will get too viscous for the last amount of polymer to go into solution).

9. Stir at full vortex for 5 minutes until the polymer is well-dispersed.

10. Close the bottle (to minimize oxygen dissolution) and reduce the stirrer speed to a level at which the
surface of the liquid is just moving. Stir at this speed for a further 24-48 hours.

11. After stirring, filter the polymer solution through a 5µm filter.

3.2. RHEOMETRIC DEVICES
Two kinds of rheometers were used: A shear rheometer and an extension rheometer. Their working principals
are explained in this section.

3.2.1. SHEAR RHEOMETER

The shear viscosity of fluid samples was measured with an Anton Paar MCR 302 using the concentric cylinder
geometry. The temperature can be kept constant. Shear viscosities were measured over a range of 0.1 to 1000
s−1. For the concentric geometry, Couette flow holds [13]:

µ= T (b2 −a2)

4πΩab2L
(3.1)

in which T is the measured torque, a and b are the radii of the inner and outer cylinders respectively
(Figure 3.1) andΩ the angular frequency.

Figure 3.1: Schematic representation of the concentric cylinder rheometer.
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3.2.2. E-VROC: EXTENSIONAL VISCOSITY MEASUREMENTS
To measure the extensional viscosity of fluid samples the e-VROC, a commercial device by Rheosense, was
used. The e-VROC chip is engineered with a microfluidic channel of uniform width and depth. It has a
hyperbolic contraction/expansion zone in the middle of the channel and four pressure sensors (Figure 3.2).
When a liquid enters, it first experiences shear flow in the straight channel and then experiences an uniform
planar extension in the contraction zone. This extension of the liquid causes an extra pressure drop next to
the pressure drop attributed to shear. This section will follow the work published by Ober et al. [29]. An
alternative analytical derivation of Newtonian flow through the contraction geometry is discussed in the next
subsection that seems to provide a good alternative with respect to the interpretation of the experimental
results [30].

Figure 3.2: Schematic representation of the hyperbolic contraction within the e-VROC. The contraction dimensions are h = 200µm,
lc = 400µm, wc = 400µm and wu = 2920µm.

Figure 3.3: A schematic representation of a typical pressure profile over the hyperbolic planar contraction.L12,L23 and L34 indicate the
distance between the four pressure sensors.

The geometry of the contraction shown in Figure 3.2 can be described by:

w(x) = K

x0 +x
(3.2)

where w(x) is the width of the contraction as function of x for 0 É x É lc , x0 = lc wc /(wu −wc ) and K =
x0wu . Neglecting shear flow contributions, a flow rate Q results in an extention rate through the contraction
given by:

εa = Q

lc h
(

1

wc
− 1

wu
) (3.3)

where wu the width of the channel, wc the width of the contraction, Q the flow rate, lc the length of the
contraction and h the height of the channel and contraction. The true strain or Hencky strain experienced by
the fluid is maximum at the throat of the contraction and defined as:

εH =
∫ t

0
εa dt = ln

wu

wc
(3.4)

A schematic representation of a typical pressure profile over the hyperbolic planar contraction is given in
Figure 3.3. Because the pressure sensors are located outside the contraction area, the measured extensional
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pressure drop is bigger than the true pressure drop over the contraction. The true total pressure drop over the
contraction is given by [29]:

∆Pc =∆23

{
1− 1

2
(

1

P
−1)

L23 −2lc

L

}
(3.5)

in which∆P23 is the pressure drop between sensors 2 and 3, P ≡ ∆P23
∆P14

, L23 the distance between sensors 2 and
3. If assumed that the flow through the constriction is an extension dominated mixed flow, the pressure drop
over the contraction has both an elongational ∆Pe and shear ∆Pvi s component and can be decomposed as:

∆Pc =∆Pe +∆Pvi s (3.6)

The pressure drop over the contraction due to shear flow can be written as [29]:

∆Pvi s = 2n+2

n +1
(

2n +1

n
)n(

lc

h
)n+1

{
(

wu

wu −wc
)n+1 − (

wc

wu −wc
)n+1

}
ηεa = K mε (3.7)

where n is the power law index. For a Newtonian fluid (n = m = 1) Equation 3.7 reduces to:

∆Pvi s = 12(
lc

h
)2

{
wu +wc

wu −wc

}
ηεa (3.8)

The associated apparent extensional viscosity can be calculated by Equation 3.9:

ηE ,a = ∆Pe

εHεa
(3.9)

in which ∆Pe the pressure drop due to fluid extension over the contraction, εH the Hencky (true) strain
and εa the extensional rate respectively.

Equations 3.3 to 3.9 can only be applied when the flow is not dominated by inertia forces compared to
viscous forces, so when:

Rec = ρdhU

η0
= ρdh lcεa

η0
< 20 (3.10)

in which Rec is the crtical Reynolds number, ρ the density of the fluid and dh the hydraulic diameter of the
contraction which is defined as 2hwc

h+wc
. When Re > 20 inertia forces become dominant however flow is fully

laminar if Re < 10 [29].
Furthermore, the dimensionless Trouton number, Tr , is often used to compare extensional and shear

viscosities:

Tr = Extensional viscosity

Shear viscosity
(3.11)

For an incompressible Newtonian fluid under ideal fully-developed planer extension, the Trouton number
equals 4.

Before each test, the e-VROC cell was flushed with a sufficient amount of the test sample such that no
air bubbles remained in the contraction geometry. Hereafter, the pressure field was allowed to equilibrate by
allowing the test sample to rest for 20 minutes. After this the baseline pressure was measured the test was
started. The measuring duration of each flow rate was such that the pressure profile attained a steady state
value. The full experimental procedure can be found in Appendix A.
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ANALYTICAL DERIVATION OF NEWTONIAN FLOW IN THE E-VROC CELL

In this section the theoretical pressure drop contributed to shear and extension over the contraction-expansion
area of the e-VROC cell for a Newtonian fluid are given. The full derivation can be found in Appendix B and
was provided by Paddington and De of Eindhoven University of Technology [30] . In the derivation the fric-
tion with the side walls is neglected, however the friction with the top and bottom is included. Furthermore,
the expansion-contraction geometry is designed such that ’pure’ elongational flow can be assumed along the
center plane.

∆P E
c = ηQ

1

lc hwu

[
48

5

(
wu

wc
−1

)
ln

(
wu

wc

)]
(3.12)

∆P S
c = ηQ

1

lc hwu

[
4

3

(
lc

h

)2 (
wu

wc
+1

)
+

(
wu

wc
−1

)( wu

h

)2
(
1−

(
wc

wu

)2)]
(3.13)

From these equations it can be concluded that for a Newtonian fluid the pressure drop is dominated by
shear flow, when Poiseuille flow in the z-direction is assumed. Therefore, the flow through the contraction-
expansion geometry is not dominated by extensional forces as assumed in the derivation of Equation 3.9
but by shear forces. The above equations will be used in Section 4.1.4 to show that they match with the
experiments.

WHY MICROFLUIDICS?
In this thesis a microfluidic device is used to characterize the resistance to elongation of polymer solutions.
Microfluidics is the science of systems that use small amounts of fluids (10−9 to 10−8 litres), using channels
with dimensions of tens to hundreds of micrometers [31]. As a technology, microfluidics takes advantage of
fundamental differences between fluid flow is large channels and fluid flow in microfluidic channels. The
main advantage is the ability to measure low viscosity elastic fluids at high deformation rates while main-
taining laminar flow. Therefore, large viscoelastic effects can be achieved, making microfluidics an excel-
lent technology to study extension rheometry. If hyperbolic contractions are used in combination with mi-
crochannels a nearly constant extension rate is induced at the center line of the geometry, allowing accurate
determination of the apparent extensional viscosity [32]. Besides the ability to measure at high deformation
rates, microfluidic devices also reduce the effects of viscous heating, characterized by the Nahme number:

N a = ηβγ2d 2

kT
(3.14)

where β is the thermal sensitivity ∂(logη)
∂(logT ) , k the thermal conductivity and T the temperature. Viscous

heating can be neglected when N a ¿ 1, since N a ∝ d 2 microfluidic devices enable to measure at constant
temperature at high deformation rates [33]. Furthermore, the small fluid samples and device dimensions
induce quick measurements.

Due to the small dimensions of microfluidic devices, the flow is generally dominated by viscous forces
compared to inertia forces. The relative magnitude of both forces is called the Reynolds number:

Re =−ρvD

η
(3.15)

where vD is a characteristic velocity of the flow. Low Reynolds numbers represent laminar flow, at higher
Reynolds numbers inertia forces become dominant and extra friction is introduced by flow turbulence. When
flow is laminar it is possible to accurately compute the flow.

Fluid interface formation of complex liquids are governed by capillary and body forces. Generally, capil-
lary forces (σ) dominate the body forces in a microfluidic device, resulting in a Bond number much smaller
than one:

Bo =−ρd 2g

σ
(3.16)

Because of the large capillary forces air bubbles can have a tremendous effect on the measurements.
Since polymer solution are viscoelastic and due to relative absence of of inertia, viscoelastic forces may be
important [33]. Three important dimensionless groups that describe these elastic effects are the Weissenberg,
Deborah and Elasticity number. The strength of the shear rate (γ) can be defined by the Weissenberg number:
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W i =−γτr (3.17)

where τr is the relaxation time of the fluid. The Deborah number is defined as the ratio of the time it takes
for a material to adjust to an applied stress and the characteristic time scale of an experiment:

De = τr

τE
(3.18)

where τE the average residence time. If De ¿ 1 the flow is purely viscous since the fluid relaxes relatively
quick, if however De À 1 the fluid does not relax and the time scale of the experiment and the subsequent
flow is elastic. While the Deborah and Weissenberg number are similar and often the same, they have dif-
ferent physical interpretations. The Deborah number described the rate at which elastic energy is stored or
released and therefore accounts for flows with a non-constant stretch history. Oppositely, the Weissenberg
number describes a flow with constant deformation history and therefore indicates the anisotropy generated
by the deformation.
All the dimensionless groups mentioned above, are functions of flow rate. The Elasticity number (El ) is inde-
pendent of flow rate and therefore only dependent on the fluid properties and flow geometry.

El = De

Re
= λη

ρd 2 (3.19)

From Equation 3.19 it is evident that elastic effects are amplified in microfluidic geometries.
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EXPERIMENTAL RESULTS

4.1. CALIBRATION: NEWTONIAN FLUIDS
Although the e-VROC has already been used and tested in previous studies [29, 34, 35], this study verified the
shear and extensional viscosity of multiple Newtonian calibration fluids with a viscosity range of 15-100cP
(Table 4.1). The shear rheometer measurements of these fluids can be found in Appendix D. From the plots
it can be concluded that the fluids behave Newtonian since their viscosity is independent of shear rate. The
average rheometer values are stated in Table 4.1.

Fluid Name Fluid Type Shear Viscosity [mPas] Density [kg/m3] Temperature [C]
N15 32−68w% H2O−Glycerol 15.8 1175 25
N25 Fluid 25 26 800 60
N50 Fluid 50 49.1 960 25
N75 Olive Oil 71.6 910 23

N100 Fluid 100 97 960 25

Table 4.1: The different Newtonian fluids that were used for the calibration of the e-VROC cells.

4.1.1. PRESSURE-TIME RESPONSE
The pressure-rate relationship was examined for each fluid. Newtonian fluids show a linear dependence of
pressure as function of flow rate. To ensure the quality of the measurements, the flow should be steady state.
Figure 4.1 shows pressure response over time for N50. After an initial ramp after start of injection the pressure
response over time is stable after about three seconds. Still some noise is observed however the magnitude of
this noise is within the accuracy of the pressure transducers.

4.1.2. PRESSURE-FLOW RATE BEHAVIOUR
Figure 4.2 shows the measured pressure data within the e-VROC for N50. The same plots for the N25 to
N100 can be found in Appendix D. Figure 4.3 shows a linear dependency of the pressure gradients to flow
rate for N50, both before and after the contraction. It can also be concluded that the gradient before and
after the contraction are the same. This is what you would expect since the dimensions before and after
the contraction are the same. The same behaviour is observed for the other calibration fluids (Appendix
D). Furthermore, a linear dependency over the contraction is observed. From this it is concluded that the
Newtonian calibration fluids indeed show Newtonian behaviour.

19
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Figure 4.1: Pressure at each pressure sensor as function of time for a flow rate of 299.9µL/mi n for N50.

Figure 4.2: Measured pressures within the e-VROC cell for N50 for different flow rates.
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Figure 4.3: Pressure gradients as function of flow rate for N50.
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4.1.3. VISCOSITY DETERMINATION
Now that Newtonian flow has been verified, the shear viscosity can be determined from the e-VROC data.
Since wu

h À 1 the shear viscosity for laminar Newtonian flow in the microfluidic slit channel is given by [33]:

ηsh = wh3∆P

12LQ(1+ h
w )

(4.1)

The shear viscosities at different flow rates calculated from the e-VROC pressure data are shown in Table
4.2 for N50. Although overestimating the shear viscosity, the calculated values are in good agreement with
the viscosity determined by the rheometer, within 10% of the rheometer value (50cP). At low flow rates the
calculated shear viscosities are more erroneous, this is likely due to the fact that the pressure traducers have
higher accuracy at higher pressure e.g at higher flow rates.

Flow rate (µL/min) µsh12 (cP) µsh34 (cP)
300 55.5 52.2
564 54.7 51.9
828 53.7 52.3

1093 53.4 52.0
1356 53.2 52.0
1620 53.0 51.9
1885 52.6 51.8
2149 52.3 51.9
2413 52.0 51.7
2678 52.3 51.9
2942 52.1 51.6
3206 52.2 51.5
3470 52.1 51.5
3735 51.9 51.6
3998 52.1 51.5

Table 4.2: Shear viscosities determined from the e-VROC data for N50.

To see whether Equation 3.9 determines the extensional viscosity of a fluid or an apparent extensional
viscosity, the corresponding Trouton ratio (Equation 3.11) is compared to the theoretical Trouton ratio for
planar extension (Tr = 4). The calculated extensional viscosities (Equation 3.9) for N50 at different rates are
shown in Table 4.3. Also the corresponding Trouton ratio and the Reynolds number is shown. From Table 4.3
is concluded that the apparent extensional viscosity of N50 is around 77. Almost a factor of 20 higher than the
theoretical value. The Reynolds number (Equation 3.10) for all flow rates is below 20. Consequently, the high
Trouton ratio is not due to an extra pressure drop resulting from turbulent effects. Therefore, it should be
noted that the e-VROC device apears to be more of an extension viscosity indexer rather than an extensional
rheometer [36] because it gives an indication of the extensional behaviour of a fluid but is unable to quantify
the exact value.
According to [29] Trouton ratios around 70 are to be expected for Newtonian fluids measured in the e-VROC
and the high apparent extensional viscosity can be attributed to two factors. Firstly, the abruptness of the con-
traction causes the flow divergence far upstream of the contraction (Section 5.2.1). They even reported flow
divergence at three contraction lengths upstream of the contraction. Secondly, the corners of the microflu-
idic cell are not idealized sharp corners but are rounded such that the cross-sectional area of the contraction
is 10-20% smaller than the designed cross-sectional area. These two factors result in discrepancies between
measured and anticipated kinematics, therefore the actual apparent extensional viscosity is higher than its
expected value [29]. However, these factors do not account for the entire discrepancy. The main reason is
that the dissipation due to shear in the contraction is significant and the generated flow cannot be seen as an
extension dominated flow as will be shown in Section 3.2.2.
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Flow rate (µL/min) ηe(cP) Tr (-) Re (-)
300 3771 74 1.3
564 3775 75 2.4
828 3798 76 3.5

1093 3813 77 4.6
1356 3829 77 5.7
1620 3846 78 6.7
1885 3844 78 7.9
2149 3851 78 9.0
2413 3847 79 10.1
2678 3865 79 11.2
2942 3848 79 12.3
3206 3849 79 13.4
3470 3850 79 14.5
3735 3855 79 15.6
3998 3852 79 16.7

Table 4.3: The extensional viscosities, the corresponding Trouton ratio and Reynolds number for N50 at the measured flow rates.

4.1.4. COMPARISON OF EXPERIMENTAL DATA TO ANALYTICAL SOLUTION
Figure 4.4 shows the comparison of the analytical prediction and the experimental pressure profile for N50.
The analytical expressions of Equations 3.12 and 3.13 are able to predict the pressure drop over the contraction-
expansion geometry within 2% for N50. From this it can be concluded that the experiments can be matched
with the theory within experimental accuracy. Together with Equation 4.1 the measured pressure profiles can
be reconstructed as shown in Figure 4.4.
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Figure 4.4: Comparison of analytical prediction and the experimental pressure profile for N50.
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4.2. POLYMER SOLUTIONS
After the initial calibration of the e-VROC with different Newtonian fluids, the behaviour of three polymer so-
lutions (FP3630S) with different salinities was studied (Table 3.1). First, the time-pressure signal was analysed
at different flow rates to determine when the flow can be considered as stable. Hereafter, the pressure-profiles
as function of flow rate were examined to investigate the extensional behaviour of these polymer solutions.
Furthermore, the reproducibility of the experimental results is discussed and finally the effect of salinity on
the extensional behaviour of FP3630S is addressed. Note that the number in the name of the polymer solu-
tions indicates the NaCl concentration. The shear rheometer results of the three solutions can be found in
Appendix C.

Name Solutions Polymer Type Polymer Concentration [ppm] NaCl concentration [ppm]
FP2500 FP3630S 1500 2500
FP5000 FP3630S 1500 5000

FP10000 FP3630S 1500 10000

Table 4.4: The different polymer solutions that were used in this research in which the polymer type and concentration were kept con-
stant and only the salinity was varied. Note that the number in the name of the polymer solutions indicates the NaCl concentration.

4.2.1. PRESSURE-TIME RESPONSE
To study the pressure response over time, FP5000 was flown through the e-VROC cell at 4 different flow rates
for times varying between 15 and 30 minutes. The resulting pressure measurements are shown in Figure
4.5. The pressure ramps up for about 10 seconds, a bit longer than with the Newtonian fluids. However, at
lower rates the start-up time can increase to around one minute. Furthermore, the pressure time response
signals of pressure transducers 1 and 2 and transducer 3 and 4 correlate reasonably well. However, there is no
correlation between the pressure transducers before and after the contraction geometry.
Unlike Newtonian fluids, the noise content of the time signals, about 400-500Pa, is above the error margin
of the individual pressure transducers. Fourier analysis was done to examine the frequency content of the
time signals. The noise seemed to be random (Appendix E). However, since the measured pressures are being
sampled at 5Hz, it very difficult to detect any noise above 5Hz. The high noise content may be attributed to
set-up and/or fluid driven features, such as:

1. Set-up

(a) Stick-slip: When two objects (e.g. plunger and barrel) slide past one-another, stick-slip motion
might occur due to the friction it generates. The plunger is therefore not moving continuously but
more as a discrete signal, the fluid will (although brief) stop flowing. After which, it will quickly
start flowing again. Since polymer solutions have a shear dependent viscosity, these short changes
in flow rate will therefore alter the viscosity of the solution. These possible changes in viscosity
might explain the irregularity of the pressure-time response.

2. Fluid

(a) Elasticity of polymer solutions: Since polymer solutions have a memory with respect to deforma-
tion, the high noise content may also be explained by the fact that not all polymer molecules are
in the same (relaxed) state and therefore behave differently upon extensional deformation. The
residence time of the polymer in the e-VROC is between 4.8 seconds and 1.2 seconds for flow rate
between 105µL/mi n and 630µL/mi n. The relaxation time of a polymer solution is dependent on
polymer type, salinity and polymer concentration. The residence time in contraction-expansion
area is 160 and 20 milliseconds respectively. The relaxation time for HPAM3630 at a concentration
of 1500ppm is around 0.1 to 1 second. This indicates that polymer molecules are still recovering
from the deformation in the contraction-expansion area while they pass by third and fourth pres-
sure sensors. From this it can be concluded that the polymer solutions show elastic deformation
(De > 1).
Appendix F shows the time signal response of Laponite, a non-elastic highly shear thinning arti-
ficial clay. Although, the noise content is slightly higher compared to Newtonian fluids, the noise
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is still within the measurement precision of the pressure transducers. Indicating that elasticity
probably causes the high noise content while measuring polymer solutions.

Figure 4.5: The pressure response over time of FP5000 at 4 different flow rate.

Besides the high noise content, also trends in the recorded pressure can be observed. Table 4.5 shows
the corresponding trends in the measured pressure for each pressure transducer at the 4 different flow rates.
Although the observed trends are generally very subtle, the trend at a flow rate of 500 µL/mi n is quite percep-
tible. Since the trends before and after the contraction for a flow rate of 400 µL/mi n are of opposite sign, also
a noticeable trend in the pressure drop between transducers 2 and 3 is observed. The trends may be explained
by the elasticity of the polymer, literally pulling the fluid through the microfluidic device. As a consequence
the boundary condition at the outlet is not constant and causes the trend in the pressure data.

Pressure trend [Pa/s]
Flow Rate (µL/min) Pressure Sensor 1 Pressure Sensor 2 Pressure Sensor 3 Pressure Sensor 4

300 -0.021 -0.028 -0.081 -0.12
400 0.10 0.072 -0.06 -0.068
500 -0.15 -0.19 -0.30 -0.38
643 0.12 0.19 0.027 0.041

Table 4.5: Observed time trends in the measured pressures for each pressure transducer at 4 different flow rates.

Hereafter only the pressure drops will be investigated rather than the individual pressures, since the shear
and extensional effects can be qualified by the amount of pressure drop over the different sections of the e-
VROC cell. In Figure 4.6 the moving average of the measured pressure differences is presented for 4 different
flow rates. The moving average was determined over a window of 20 seconds. The figure reveals that al-
though the time-pressure signal has a high noise content, on average the pressure is roughly constant. From
the graph it can be concluded that the moving average is stable after 20-40 seconds. Although it can be ar-
gued that the moving average at a flow rate of 643µL/mi n is not stable until 200 seconds. Therefore it was
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decided to measure for 200 seconds at each flow rate in future experiments, to ensure ’stability’ of the time-
pressure signal. Another thing that can be observed in Figure 4.6 is that the measured pressure differences
between sensors 1 and 2 and sensors 3 and 4 for all flow rates is around 50-100Pa. This is of the same mag-
nitude as the measurement precision of the MEMS pressure tranducers. Therefore the measured pressure
drop between these sensors cannot be considered reliable and no shear viscosities can be determined for the
polymer solutions.

Figure 4.6: The moving average over 20 seconds of the measured pressure differences over time at 4 flow rates for FP5000.

4.2.2. PRESSURE-FLOW RATE BEHAVIOUR
Figures 4.7, 4.8 and4.9 show the pressure profiles at different flow rates for FP2500, FP5000 and FP10000 re-
spectively. From all these graphs it is evident that most of the pressure dissipation (>90%) occurs between
pressure sensor 2 and 3. Since the shear rate in the contraction is very high, the pressure dissipation due
to shear is negligible because of the shear-thinning behaviour of the polymer solutions. From this it can be
concluded that for the polymer solutions most of the pressure drop in the e-VROC cell can be attributed to
extensional flow. Furthermore, some profiles seem to be ’unphysical’ since the ∆P12 and ∆P34 are negative,
resulting in an upward slope along the flow direction. However, as indicated before, the pressure drop be-
tween these sensors is so small that it is of the same magnitude as the sensitivity of the individual pressure
transducers. Also the absolute standard deviation of the measured pressures increases with increasing flow
rate. But when compared to the mean value, its relative value is more or less constant with flow rate (around
5%).

Figure 4.10 shows the pressure gradients between the pressure sensors as function of flow rate for the
three polymer solutions. For all polymer solutions it is observed that the pressure gradients between sensors
1 and 2 and sensors 3 and 4 are small and not necessarily monotonically decreasing with rate. This again can
be contributed to the fact that the pressure difference between these sensors is within the error margin of the
sensors. It is also observed that the pressure gradient between sensors 2 and 3 is increasing non-linearly with
flow rate. Therefore, it can be concluded that all these polymer solutions show strain-thickening behaviour,
since the main pressure drop is due to elongation.



4.2. POLYMER SOLUTIONS 27

Figure 4.7: Measured pressure in the e-VROC cell for FP2500 at different flow rates. The pressure values and their error bars are based on
the measured pressure over time, respectively the mean and standard deviation.

Figure 4.8: Measured pressure in the e-VROC cell for FP5000 at different flow rates. The pressure values and their error bars are based on
the measured pressure over time, respectively the mean and standard deviation.

Figure 4.9: Measured pressure in the e-VROC cell for FP10000 at different flow rates. The pressure values and their error bars are based
on the measured pressure over time, respectively the mean and standard deviation.
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Figure 4.10: The pressure gradient between the pressure sensors as function of flow rate for the three polymer solutions.

4.2.3. REPRODUCIBILITY
For all the three polymer solutions the flow experiments were repeated twice to access the reproducibility
of the results. Tables 4.6,4.7 and 4.8 show the mean value and standard deviation of the measured pressure
gradients for FP2500,FP5000 and FP10000 respectively. Note that the number in the name of the solution
indicate the amount of salt. Also the relative value of standard deviation and the mean is presented. The
provided tables show that the pressure gradients between the pressure sensor 1 and 2 and sensors 3 and 4
are far from reproducible, because of the pressure sensitivity limit of the transducers. Also the reproducibility
of the pressure gradients between sensors 2 and 3 is not obvious with relative errors ranging from 5 to 30%.
Whereas, the reproducibility of the shear rheometer results is very good (Appendix C). Solution FP2500 shows
quite good reproducibility, with a relative error of 5% on average. Although not enough data is available to
back up the statement, it can be argued that the reproducibility is better with increasing flow rate.

Mean value of experiments [Pa/m] Standard deviation of experiments [Pa/m] Relative ratio [%]

Flow rate
[µL/mi n]

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

107.3 1.98E+04 1.42E+05 1.96E+04 3.49E+04 1.63E+04 1.05E+04 176.1 11.5 53.6
183.8 5.97E+04 2.14E+05 2.36E+04 1.11E+05 1.06E+04 9.08E+03 186.7 5.0 38.4
260.4 -7.00E+03 4.34E+05 2.24E+04 2.32E+03 1.70E+04 7.82E+03 -33.1 3.9 35.0
337 -1.29E+04 8.33E+05 2.33E+04 4.23E+03 5.83E+04 1.06E+04 -32.8 7.0 45.4
413.7 -6.84E+03 1.12E+06 3.25E+04 3.91E+03 6.57E+04 1.51E+04 -57.2 5.9 46.5
490.3 -1.20E+04 1.44E+06 3.01E+04 2.39E+03 5.15E+04 1.16E+04 -19.9 3.6 38.6
566.9 -1.29E+04 1.85E+06 3.15E+04 4.06E+03 3.32E+04 1.38E+04 -31.4 1.8 44.0
643.4 -1.50E+04 2.28E+06 3.30E+04 3.93E+03 3.17E+04 1.61E+04 -26.3 1.4 48.7

Table 4.6: Data of multiple experiments using FP2500.
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Mean value of experiments [Pa/m] Standard deviation of experiments [Pa/m] Relative ratio [%]

Flow rate
[µL/mi n]

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

104.8 6.90E+03 7.63E+04 -3.01E+04 2.76E+04 2.30E+04 6.66E+04 400.39 30.16 -221.04
179.6 2.74E+03 1.62E+05 -2.51E+04 2.37E+04 5.74E+04 6.63E+04 866.11 35.39 -263.75
254.4 -3.93E+03 2.58E+05 -2.11E+04 1.55E+04 8.57E+04 6.57E+04 -394.34 33.21 -311.15
329.3 -7.81E+03 4.43E+05 -1.71E+04 7.70E+03 1.67E+05 6.54E+04 -98.69 37.65 -381.63
404.2 -4.48E+03 6.31E+05 -1.35E+04 2.25E+04 1.74E+05 6.53E+04 -502.07 27.52 -484.18
479.1 -1.52E+04 9.46E+05 -1.00E+04 3.96E+04 1.75E+05 6.50E+04 -260.94 18.52 -648.72
553.9 5.03E+03 1.15E+06 -7.76E+03 2.84E+04 4.86E+04 6.45E+04 565.45 4.23 -831.12
628.7 1.49E+03 1.42E+06 -5.00E+03 3.95E+04 4.65E+04 6.37E+04 2655.46 3.28 -1273.84

Table 4.7: Data of multiple experiments using FP5000.

Mean value of experiments [Pa/m] Standard deviation of experiments [Pa/m] Relative ratio [%]

Flow rate
[µL/mi n]

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

∆P12
x12

∆P23
x23

∆P34
x34

104.8 -3.05E+04 7.21E+04 2.27E+04 4.45E+04 2.47E+04 2.26E+04 -145.68 34.18 99.70
179.6 -3.75E+04 1.33E+05 2.74E+04 4.65E+04 2.81E+04 2.28E+04 -123.84 21.18 83.39
254.4 -4.53E+04 2.01E+05 3.02E+04 4.33E+04 2.25E+04 2.17E+04 -95.55 11.19 71.76
329.3 -4.11E+04 2.66E+05 3.36E+04 2.88E+04 4.14E+04 2.20E+04 -70.12 15.57 65.27
404.2 -1.29E+04 3.76E+05 3.63E+04 1.19E+04 4.96E+04 2.24E+04 -92.28 13.22 61.66
479.1 1.03E+04 5.52E+05 3.96E+04 4.05E+04 8.93E+04 2.37E+04 391.32 16.17 60.00
553.9 1.62E+04 7.06E+05 4.04E+04 6.20E+04 3.27E+04 2.11E+04 383.01 4.63 52.14
628.7 6.26E+03 9.45E+05 4.24E+04 9.08E+04 1.64E+05 2.07E+04 1450.60 17.34 48.74

Table 4.8: Data of multiple experiments using FP10000.
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4.2.4. REPRODUCIBILITY AND ADSORPTION HYSTERESIS
To assess the reproducibility of the experimental results with respect to adsorption hysteresis, the following
sequence of fluids was flown through a clean cell. First three flow experiments with N15 were performed.
Hereafter the cell was cleaned with water, after which three flow experiments with a polymer solution were
performed. The cell was cleaned again with water and three experiments with N15 were carried out ones
more. Figure 4.11 shows the measured pressure gradients in the e-VROC cell as function of flow rate for the
N15 for the described sequence. It shows that the experiments are reproducible. The normalized standard
deviation of experimental results is below 10%. It can also be observed that the pressure gradients have
increased by 8% on average after the cell has been contacted with polymer. This is likely due to polymer
adsorption to the surface of the e-VROC cell, hereby increasing the flow resistance. If it is assumed that the
adsorption is uniform over all edges of the e-VROC cell, then the pressure gradient increase corresponds to a
4.5 µm thick layer of adsorbed polymer. However, the adsorbed polymer layer will not form a smooth surface.
Therefore the apparent roughness of the cell walls increases which also induces an extra resistance to flow.
Furthermore, an irregularity is observed for one the N25 flow experiments. This may be due to an air bubble
inside the fluid sample affecting the pressure measurements. Applying a polymer breaker (bleach) to provide
additional evidence for the polymer adsorption on the cell wall was not done due to time constraints.

Figure 4.11: The measured pressure gradients in the e-VROC cell as function of rate for the N15 for the Glycerol-Polymer-Glycerol se-
quence.



4.2. POLYMER SOLUTIONS 31

4.2.5. SALINITY DEPENDENCE
The effect of salinity on the strain-thickening behaviour of FP3630S is show in Figure 4.12. An increase in
salinity causes a decrease in the pressure gradient over the contraction-expansion geometry, hence the strain-
thickening behaviour decreases. The conceptual model to explain this effect is as follows: As more salt is
added to the solution more of the negative charges along the polymer chain are getting shielded by the N a+
ions, causing it to shrink in size. This reduction in size reduces the flexibility of the polymer molecules, mak-
ing them stiffer. Since the polymer molecules become stiffer, they are less likely to uncoil, making it easier to
flow through a contraction-expansion geometry. This decrease in resistance is observed by a lower pressure
drop. It can also be observed that the salinity effect is more pronounced at higher flow rates. This is in line
with the conceptual model. At higher flow rates (extensional rates) the polymer has to uncoil further as it
passed through a constriction. Since salt ions reduce the uncoiling of the polymer molecules, the effect is
more pronounced at higher flow rates.

Figure 4.12: The effect of salinity on the extensional behaviour of FP3630S.





5
MODELLING

This chapter starts with a short description of the different modelling tools used in this research (GeoDict,
COMSOL Multiphysics and Matlab). This section is followed by a modelling study on the experiments done
with the e-VROC (Chapter 4). The last sections of the chapter are dedicated to a pore network modelling study
that investigates the effect of shear and elongation viscosity on the redistribution of a macroscopic pressure
drop inside a porous medium.

5.1. MODELLING TOOLS

5.1.1. GEODICT
Based on the morphology and geometry of a material or system GeoDict can predict the properties of the
material/system. To assess the properties of porous media or a microfluidic device, the FlowDict Module
can be used. The FlowDict module computes the material properties by solving for laminar incompressible,
stationary Newtonian flows. This can be done with two kind of boundary conditions [37]:

1. Prediction of mean flow velocity for a given pressure drop.

2. Prediction of the pressure drop for a given mean flow velocity.

From the results pressures and fluid velocities at various positions within the porous media or microflu-
idic cell can be extracted.

5.1.2. COMSOL MULTIPHYSICS
COMSOL Multiphysics can be used to solve a variety of physical problems, considering one or multiple cou-
pled phenomena. COMSOL solves the partial differential equations associated with the coupled phenomena
using a finite element analysis. To solve the flow through the e-VROC, the Computational Fluid Dynamics
(CDF) module of COMSOL Multiphysics 4.3 was used. This module allows you to solve fluid flow for nu-
merous fluid flow applications and enables you to incorporate compressible, isothermal, Non-Newtonian,
two-phase and porous media flow, both in the laminar and turbulent regime [38].

5.1.3. MATLAB
The pore network modelling code was developed in Matlab 7.11.0 (R2010b). The numerical computing en-
vironment of Matlab allows vector/matrix calculations, implementation of algorithms, numeric computing
and the analysis and visualization of data using programming languages such as C, C++ and Fortran.

33
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5.2. EVROC NUMERICAL MODELLING
In this section the Newtonian experimental measurements within the e-VROC are validated by numerical
simulation. Multiple numerical techniques are used, GeoDict and COMSOL Multiphysics 4.3.

5.2.1. NEWTONIAN VALIDATION

GEODICT

Calculated profiles of the axial (stream wise) and lateral velocity components at the center (z = h
2 ) of the e-

VROC at various axial positions are given in Figure 5.1. Far away from the contraction, the velocity profile
corresponds to developed flow in a rectangular duct. Moving closer to the contraction the flow is focussed
towards the centreline. The maximum axial velocity is found at the centreline (x = 0) and increases substan-
tially moving towards the contraction. Furthermore, the lateral velocity increases while moving towards the
contraction. However the lateral velocity also decreases again as the change in contraction width decreases.

Figure 5.1: Axial and lateral velocity profiles at the center plane (z = h
2 ) determined numerically for several axial and lateral positions

using GeoDict.

Figure 5.2 shows the velocity contour plots of the flow in all three spatial dimensions and their resulting
magnitude at the center plane (y = h

2 ). As observed previously in Figure 5.1 the axial velocity component
has its maximum at the centreline, whereas two off-center maxima can be observed for the lateral velocity
component. This can be explained by the relative large depth of the channel. This causes the momentum
diffusion in the x-y plane to dominate over diffusion in the z-direction. In this case, the flow in the center
plane (y = h

2 ) approaches 2D Stokes flow. Therefore only one maximum for the axial velocity exists. Whereas
two off-center maxima for the lateral velocity exist [32].
Flow convergence far before the contraction area can be observed in the pressure profile along the axial flow
direction. The pressure gradient at the second pressure sensor (905) differs almost 10% from the pressure
gradient at the inlet of the channel, whereas the difference equals 0.1% at the first pressure sensor (405). This
indicates that significant flow convergence occurs between pressure sensors 1 and 2. This causes a higher
pressure drop and therefore an apparent viscosity increase compared to flow through a microfluidic rectan-
gular duct. Also a non-zero velocity component in the z-direction exists. However, the magnitude is small
(order −4).
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Figure 5.2: The velocity contour plots of the flow in all three spatial dimensions at the center plane (y = h
2 ) using GeoDict. Respectively,

the lateral, axial, z-direction velocity and their resulting magnitude.
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Finally, the experimental pressure data for Newtonian flow is compared to the numerical result in Figure
5.3. Also the contours of the pressure distribution is shown. The experimental data fits reasonably well with
the numerical result. The difference can be explained by the non-ideal discretization since GeoDict can only
handle cubic grid blocks. Therefore, errors in the dimensions of the geometry are induced causing the differ-
ence between the numerical and experimental data. Note that since the dimensions change, also the aspect
ratio between the slit width and the width of the contraction slightly changes.

Figure 5.3: Contour plot of pressure distribution with e-VROC geometry and a comparison of experimental and numerical results of
pressure profile along the flow direction at the centreline (x = 0) for fluid N50.
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COMSOL MULTIPHYSICS

Similar to Figure 5.1, the axial (stream wise) and lateral velocity profiles at the center (z = h
2 ) of the e-VROC are

given at various axial positions in Figure 5.4. Although more irregular compared to the GeoDict simulation,
the velocity profiles generally have the same shape and are of the same magnitude as the profiles from the
GeoDict simulation.

Figure 5.4: Axial and lateral velocity profiles at the center plane (z = h
2 ) determined numerically for several axial and lateral positions

using GeoDict.

Again, the experimental pressure data for Newtonian flow is compared to the numerical results in Figure
5.5. Also this pressure profile fits reasonably well with the experimental data. In Section 4.1.3 it was already
stated that the the edges of the e-VROC were not completely sharp but rounded. According to [29] the real
cross-sectional area of the contraction could be 10-20% smaller than the designed cross-sectional area. This
difference could explain the difference between the numerical and experimental pressure profile. The error
made by COMSOL is larger than the error made by GeoDict. The opposite would be expected since the correct
geometry is used in the COMSOL simulation. Whereas, in GeoDict the geometry is non-ideal discretized of
GeoDict due to cubic grid blocks. Apparently, these dimension changes in the GeoDict simulation are such
that the predicted pressure drop is closer to the actual pressure drop.

Figure 5.5: Contour plot of pressure distribution with e-VROC geometry and a comparison of experimental and numerical results of
pressure profile along the flow direction at the centreline (x = 0) by COMSOL for fluid N50.
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5.2.2. POLYMER FLOW
From the experimental pressure data it is evident that the extensional viscosity dominates as compared to
the shear viscosity of polymer solutions. Still the flow of FP2500, FP5000 and FP10000 through the e-VROC is
modelled with COMSOL Multiphysics using the shear-thinning Carreau viscosity model (Equation 2.8). Con-
sequently it simulates how much of the measured pressure drop can be attributed to pure shear losses. Tables
5.1 to 5.3 show the pressure drop over the e-VROC determined by the experiments compared to numerical
pressure drop determined by COMSOL for the three different polymer solutions at different flow rates. Tables
5.1 to 5.3 clearly show that the relative contribution of shear to the total pressure drop is highest at lower
flow rates. This relative contribution decreases with increasing flow rate and increases with salinity. This
indicates that the strain-thickening (extensional) behaviour of the polymer solutions becomes more domi-
nant at higher flow rates and lower salinity. Furthermore, the tables show that the numerical pressures drop
(shear only) determined by COMSOL do not significantly decrease when the salinity is increased from 5000
to 10000ppm NaCl. However a significant decrease in pressure drop is still observed in the experiments (both
shear and extension). From this it can be concluded that the impact of salinity on the extensional viscosity of
HPAM solutions is more extensive than on the shear viscosity.

Extensional rate [µL/min] ∆Ptot,num[Pa] ∆Ptot,exp[Pa]
∆Ptot,num
∆Ptot,exp

107.3 265 511 0.52
183.8 400 864 0.46
260.4 528 1,673 0.32

337 652 2,944 0.22
413.7 775 4,008 0.19
490.3 895 5,421 0.17
566.9 1014 7,070 0.14
643.4 1132 8,780 0.13

Table 5.1: The predicted pressure drop over the e-VROC by COMSOL Multiphysics compared to the measured pressure drop for FP2500.

Extensional rate [µL/min] ∆Ptot,num[Pa] ∆Ptot,exp[Pa]
∆Ptot,num
∆Ptot,exp

107.3 265 307 0.79
183.8 334 565 0.59
260.4 411 781 0.53

337 479 1063 0.45
413.7 542 1668 0.32
490.3 600 2912 0.21
566.9 655 4203 0.16
643.4 707 5208 0.14

Table 5.2: The predicted pressure drop over the e-VROC by COMSOL Multiphysics compared to the measured pressure drop for FP5000.

Extensional rate [µL/min] ∆Ptot,num[Pa] ∆Ptot,exp[Pa]
∆Ptot,num
∆Ptot,exp

107.3 180 257 0.70
183.8 255 452 0.56
260.4 320 713 0.45

337 379 1103 0.34
413.7 435 1485 0.29
490.3 487 2004 0.24
566.9 538 2835 0.18
643.4 586 4179 0.14

Table 5.3: The predicted pressure drop over the e-VROC by COMSOL Multiphysics compared to the measured pressure drop for FP10000.
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5.3. PORE NETWORK MODELLING
At the microscopic scale the void space of a porous medium is represented by a lattice of pores connected by
throats. A voxel representation of the network can be obtained by a CT-scan image of the porous medium,
shown in Figure 5.6. To make calculations easier this voxel representation is converted into a topologically
equivalent network of pores and throats (Figure 5.6).

Figure 5.6: A 2D slice of the 3D CT voxel image of a rock sample and the equivalent network representation.

This so-called pore network extraction was done with the pore-network extraction code developed by
Imperial College [39]. The pore networks were generated from a rectangular subset of a Boise sandstone plug
with a permeability of 4.5 Darcy and a Berea sandstone with permeability of 1.1 Darcy taken from the Imperial
College Department of Earth Science and Engineering website [40]. The properties of the networks used in
this work are given in Table 5.4 and the sample analysis is given in Appendix G.

Dimensions Core Analysis
Rock Sample x y z Resolution [µm] Permeability [mD] Number of pores Number of throats

Boise 441 438 719 5 8500 8831 24812
Berea 400 400 400 5.345 1900 5341 11899

Table 5.4: The properties of rectangular subset of the Boise and Berea sandstone. The permeability of the samples were determined
numerically by GeoDict.

5.3.1. MODEL FEATURES
In this work we assume that the pores can be represented by spheres and the connecting throats by circular
sinusoidal tubes (Figure 5.7). Although the throats are asymmetrical along the flow direction, the correspond-
ing elastic effects (energy storage and release) are neglected in this model. In the model it is assumed that
the shape between the centres of two pores can be described by a sinusoidal tube varying between the pore
body radii and the throat radius. By applying certain rules governing the transport between these pores, both
macroscopic properties such as permeability and microscopic properties (pressure drop between pores) can
be estimated for a given network.

The radius of the sinusoidal tube is given by:

R = Rt

(
1+asi n

(
2πz

λ

))
(5.1)

where a = Rs
Rt

is the normalized amplitude.

MATHEMATICAL FORMULATION

Here we follow the approach as used by Denys [20]. Denys derived an analytical expression for flow of a
polymer liquid through a circular sinusoidal tube. Assuming the flow is at steady state and incompressible,
the total pressure drop during flow can be be calculated by making use of the mechanical energy balance [20]:
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Figure 5.7: 2D-schematic of sinusoidal tube equivalent to a pore throat.

∆Ptot = 1

Q

∫
V

(
T : D

)
dV −

∫
S

T · v ·ndS

= 1

Q

 L∫
z=0

R∫
r=0

(
T : D

)
2πr dr d z −

∫
S

T · v ·ndS

 (5.2)

here T : D is the double contraction of the stress tensor and the rate of deformation tensor. The negative
second term in Equation 5.2 describes the difference in surface forces between the beginning and end of the
tube. Since elastic contributions are neglected, this term is not relevant.

In the derivation, Denys furthermore assumes that both the shear and elongational viscosity can be de-
scribed as power-laws:

ηel o = g |ε|h−1 (5.3)

ηsh = m|γ|n−1 (5.4)

where g and m are the zero-strain and zero-shear viscosities respectively, ε the strain rate, γ the shear rate
and h and n fluid exponents. For Newtonian fluids n = h = 1, for shear-thinning and strain-thinning fluids
n < 1 and h < 1. Strain-thickening effects are described by h > 1.

Using Equations 5.3 and 5.4 it can be shown that:

T : D =∑
i , j

Ti j D j i = g |ε|h+1 +m|γ|n+1 (5.5)

LUBRICATION APPROXIMATION

The flow field in slowly varying geometries can be approximated by the Lubrication Approximation Method.
In this method the results of an uniform geometry is locally adapted to a slowly varying geometry. The Lubri-
cation Approximation Method holds if:

W = 8a

b (1+a)2 (1−a)2 ¿ 1 (5.6)

and

ρ f QW

πηshRt
¿ 1 (5.7)

where b = λ
Rt

.
Assuming power-law behaviour and no-slip at the wall, the velocity in the direction of flow yields:

vz = 3n +1

n +1

Q
2

(
1−β1+ 1

n

)
(5.8)
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and the velocity perpendicular to the flow direction:

vr =βvz Rz (5.9)

where β= r
R and Rz = dR

d z
The derivatives of Equation 5.8 towards z and r give the elongational and shear rate respectively:

ε= 3n +1

n +1

Q

πR3

(
3n +1

n
β1+ 1

n −2

)
Rz (5.10)

γ= 3n +1

n

Q

πR3β
1
n (5.11)

Combining Equations 5.1 to 5.11 gives the expression for the total pressure over a sinusoidal tube, which
consists of two terms:

Elongational term:

∆Pel o = 4g
(
κ2 −κ 3n+1

n

)(
2πaRt

λ

)h+1 (
3n +1

n +1

)h+1
(

Q

πR3
t

)h
Ia

Rt
(5.12)

where κ= n+1
n

√
2n

3n+1
Shear term:

∆Psh = 2m

(
3n +1

n

)n
(

Q

πR3
t

)n
Ib

Rt
(5.13)

where Ia and Ib are integrals:

Ia =
λ∫

z=0

|cos
( 2
λ

) |h+1(
1+asi n

( 2
λ

))3h+1
d z (5.14)

Ia =
λ∫

z=0

1(
1+asi n

( 2
λ

))3n+1 d z (5.15)

For Newtonian fluids Ia and Ib can be computed analytically, which gives:

Ia =λ
1
2(

1−a2
) 5

2

(5.16)

Ib =λ 1+ 3
2 a2(

1−a2
) 7

2

(5.17)

It can be shown that the pressure drop due to elongation (Equation 5.12) cancels out in the limit of a cylin-
drical tube geometry (a = 0). Furthermore, it can be shown that Equation 5.13 reduce to Hagen-Poiseuille’s
law for Newtonian fluids (n = h = 1) in the limit of a cylindrical tube geometry. Equation 5.12 and 5.13 can be
simplified to (note Rel o and Rsh are n and h dependent):

∆Ptot = Rel oQh +RshQn (5.18)

By applying this equation as the transport rule between pores and a volume conservation in each pore:∑
Qi , j = 0 (5.19)

the flow through the pore network can be solved by specifying boundary conditions at the inlet and outlet
of the system.
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5.3.2. NUMERICAL CODE DESCRIPTION
A schematic flow chart of the numerical code to solve (non-linear) flow through the pore network is shown
in Figure 5.8. First the network and its properties are loaded. After which the isolated pores and dead-end
branches are removed with a deletion algorithm, since these pores (and throats) do not contribute to the flow
from inlet to outlet. Secondly, the fluid parameters (zero-rate viscosities and fluid exponents) are specified.
From both the pore and throat properties and the fluid properties the resistance to shear and elongational
flow between each pore can be calculated using Equations 5.12 to 5.17. The equations by Denys assume a
sinusoidal tube varying between two values (i.e. one Rs ). However since two connected pores do not have
the same radius (Figure 5.7), the resistance to shear and elongational flow for the left and right side of the pore
throat are calculated separately using Equations 5.12 to 5.18. The total resistance to shear and elongational is
assumed to be the summation of the resistance of left and right part of the throat.

The system is solved by first solving the flow through the throats (Equation 5.18) for flow rate at the given
pore pressures using a combined Secant and Regula-Falsi method [41]. This method is able to simultane-
ously solve scalar non-linear algebraic equations as long as the equations are monotonically increasing and
properly scaled. The calculated flow rates between the pores from the secant method are then supplied to
the fsolve routine of Matlab to do one iteration step in solving Equation 5.19 (

∑
Qi , j = 0). The corresponding

pore pressures are again supplied to the secant solver to solve the flow through the throats (Equation 5.18).
This loop continues until the flow rates between the pores satisfy both Equation 5.19 (

∑
Qi , j = 0) and the flow

through the throats (Equation 5.18).

Figure 5.8: Flow chart describing the numerical code to solve the (non-linear) flow through a pore network.
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5.3.3. RESULTS
This section will discuss the results of the pore network modelling. The main focus is on how a macroscopic
pressure drop is redistributed in microscopic pressure drops between individual pores. First, the results of
the pore network model for Newtonian flow are compared to the results given by GeoDict using the actual
micro-CT image. Secondly, a comparison is made between the microscopic pressure drop distributions of
Newtonian and Non-Newtonian flow using pore network modelling. Non-Newtonian flow is divided in fully
shear-thinning flow (the strain-thickening effect is not incorporated) and actual polymer behaviour (both
shear-thinning and strain-thickening). Table 5.5 gives an overview of the used fluid properties and boundary
conditions.

Nr. Fluid Type h
m

[Pa sn]
n

Total pressure
[Pa]

Iterations
Boise

Iterations
Berea

1 Newtonian 1 1e-3 1 36Pa 11 10
2 Shear-thinning 1 10e-3 0.75 36Pa 146 102
3 Shear-thinning 1 10e-3 0.55 36Pa 974 462

4
Shear-thinning

Strain-thickening
1.25 10e-3 0.75 36Pa 92 28

5
Shear-thinning

Strain-thickening
1.5 10e-3 0.75 36Pa 64 89

6
Shear-thinning

Strain-thickening
1.5 10e-3 0.75 1800Pa 190 139

7
Shear-thinning

Strain-thickening
1.5 10e-3 0.75 3600Pa 231 127

8
Shear-thinning

Strain-thickening
1.5 10e-3 0.75 5400Pa 214 134

Table 5.5: The used fluid properties and pressure drops in the pore network models together with the number of iterations needed for
the solver to converge. Note that

g
m = 3 since the throats are assumed to be circular.

NEWTONIAN FLOW
Figure 5.9 shows the probability density functions of the relative pressure drop between pores to the total
pressure drop for the Boise sandstone sample for both the GeoDict and pore network modelling. Further-
more, the mean (µ), variance (σ), skewness (b) and kurtosis (g ) of both probability density functions are
given (Appendix H). The variance is a measure for how big the spread of numbers in the sample set is. The
higher the variance the bigger the spread. The skewness is a measure for how asymmetrical the sample set is
around its mean. If the skewness equals zero the sample set is symmetric around its mean. A large negative
number indicates a long tail to the left of the mean, whereas a large positive number indicates a long tail to
the right of the mean. Kurtosis is also a measure for the shape of a distribution. If the kurtosis is smaller than
zero, it indicates that the distribution is flatter than a log normal distribution. Whereas, a positive number
indicates that the distribution is more peaked.

Despite the pore network model being an abstraction of reality, the pressure distributions of GeoDict and
the pore network model are in good agreement. The Pore Network Modelling assumes circular pore throats
whereas in reality this is rarely the case and the throats are more irregular and slit like. Furthermore, the
Lubrication Approximation Method for small varying geometries is assumed to be valid (Equations 5.6 and
5.7). However, for the Boise sandstone sample, only 30% of the pore throats Equation 5.6 (W ) has a value
below 0.5 and for only 3% of the pore throats this value is below 0.01. Therefore, it can be concluded that
generally the lubrication approximation for slowly varying geometries is not valid. This gives rise to errors.
The variance (σ) and kurtosis (g ) of the GeoDict result is smaller compared to the pore network modelling
result. This indicates a less peaked and less spread distribution. The mean value of relative pressure drop is
around zero. Physically this implies that whereas the pore network modelling predicts no or little pressure
drop between certain pores (hence no or little flow), GeoDict still predicts (a larger) flow. The variance and
kurtosis for the Berea sandstone is more than twice as high as for the Boise sandstone. The pressure drop
distribution for the Berea has more spread and is more peaked than for the Boise sandstone, indicating less
conformance control. This can be attributed to the fact that the Berea sample on average has a lower pore
connection number.
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From the resulting flow rates the permeability of the samples can determined. The permeability accord-
ing to the pore network modelling for the Boise sample is 620mD. Almost a factor of 14 lower than the per-
meability determined by GeoDict. The permeability predicted by the pore network modelling for the Berea
sample is 160mD. A difference of a factor of 12 with the permeability determined by GeoDict. From this it
can be concluded that although the predicted pressures in the pores are in agreement with GeoDict, the cor-
responding flow rates are too low. However, qualitative interpretation of the (changed) flow behaviour for
Non-Newtonian flow can still be made.

Figure 5.9: The probability density functions of the relative pressure drop between pores to the total pressure drop for the Boise sand-
stone sample for both GeoDict and the pore network modelling.
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NON-NEWTONIAN FLOW
In this section the effect of the fluid exponents n (shear) and h (extension) on the relative pressure distribution
will be investigated. First only the effect of shear-thinning is investigated. Secondly, also the effect of strain-
thickening in combination with shear-thinning on the flow will be discussed.

Shear-thinning Flow Figure 5.10 shows the probability plots of the relative pressure drop between pores to
the total pressure drop for the Boise and Berea sandstone sample for Newtonian and Non-Newtonian shear-
thinning flow (n < 1 and h = 1). The pressure drop over the sample was kept constant. A straight line indicates
that the distribution is normally distributed. The mean of the distributions is where the plots intersect with
a probability of 0.5. The variance is indicated by the slope of the plot, the higher the slope the lower the vari-
ance. Any skew in the data set will show a bend (up or down) of the straight line. High positive kurtosis makes
the curve more S-shaped.
It can be observed that as the exponent n decreases also the variance (σ) and kurtosis (g ) decrease. This indi-
cates that the relative pressure drop distribution has less spread and is less peaked compared to Newtonian
flow. Physically, this implies that compared to Newtonian flow, flow passes through parts that are by-passed
by a Newtonian fluid. Also the pressure drop has less spread indicating better conformance control for Non-
Newtonian shear-thinning flow.

The effect is biggest in the Berea sample due to the lower average pore connection number of the network
compared to the Boise network. From this it can be concluded that the Berea network has less intercon-
nected flow paths. Therefore, heterogeneities in the throat resistances will have a bigger impact on the flow
behaviour in the porous medium. The shear-thinning behaviour of the polymer reduce this heterogeneity
effect, therefore the effect of shear-thinning is best visible in the Berea sample.

Figure 5.10: The probability plots of the relative pressure drop between pores to the total pressure drop for the Boise and Berea sandstone
samples for different shear exponents n.
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Shear-thinning And Strain-thickening Flow A schematic representation of Equation 5.18 is shown in Fig-
ure 5.11. Polymer solutions generally show shear-thinning and extension-thickening behaviour (n < 1 and
h > 1). The pressure drop is first dominated by shear flow. However, beyond a critical flow rate the exten-
sional forces dominated the flow.

Figure 5.11: Schematic representation of Equation 5.18 describing the pressure flow rate behaviour between pores.

At pressure drops of 324Pa the flow rate in most throats is below the critical flow rate (Figure 5.11). There-
fore, the flow between the majority of pores is shear dominated (1.3% and 1.9% of the throats are elongation
dominated for Boise and Berea network respectively). With dominate, it is meant that the shear contribution
to the pressure drop is bigger than the elongational contribution but elongational forces are not necessarily
negligible. Consequently, a change in the elongational behaviour of the fluid will not significantly alter the
behaviour of the fluid inside the porous medium. Also experimental studies have shown that the extensional
behaviour becomes dominant at higher flow rates and pressure drops [42]. To study the effect of extensional
viscosity on the flow behaviour the pressure gradient over the samples should be increased such that the flow
rate in enough throats exceeds the critical flow rate.

Figure 5.12: The pressure flow rate response of the Berea and Boise sample for a polymer solution (n = 0.75 and h = 1.5).
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The pressure flow rate response of the Berea and Boise sample for a polymer solution (n = 0.75 and
h = 1.5) is given in Figure 5.12. Two different slopes can be observed in the data. At first shear dominates
the pressure drop from pore to pore. However when a certain flow rate is reached, extensional flow starts to
dominated the flow and the slope increases. For both samples the transition occurs around a pressure differ-
ence of around 1800Pa. Note that the samples have different sizes and permeability. Therefore the transition
is at different flow rates and macroscopic pressure gradients. Figure 5.13 shows that the transition occurs
when roughly 40% of the actual flow is dominated by extension.
The probability plots of the relative pressure drop between pores to the total pressure drop of a shear-thinning
and strain-thickening fluid (n = 0.75 and h = 1.5) are shown above 1800Pa to study the changed flow be-
haviour (Figure 5.14). The percentage of throats dominated by elongation is 17% and 19% for the Boise and
Berea sample respectively at a macroscopic pressure drop of 1800Pa. For a macroscopic pressure drop of
5400Pa the percentage of throats dominated by elongation is around 37% for both the Boise and Berea sam-
ple (Figure 5.13). Increasing the pressure gradient increases the variance (σ) and kurtosis (g ) of the pressure
drop distributions in both samples. This indicates less conformance control. As the pressure gradient in-
creases even more the relative impact decreases since the flow paths do not change.

Figure 5.13: The percentage of throats and actual flow dominated by shear or extension for a polymer solution (n = 0.75 and h = 1.5).
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Figure 5.14: The probability plots of the relative pressure drop between pores to the total pressure drop for the Boise and Berea sandstone
samples for shear-thinning and strain-thickening flow at different pressure gradients.



6
CONCLUSIONS

The conclusions drawn from this research will be split into two parts: conclusions regarding the experiments
with the e-VROC and conclusion from the pore network modelling.

1. e-VROC

(a) The provided analysis of the e-VROC pressure data (Section 3.2.2) is currently unable to deter-
mine the true extensional viscosity of a fluid. This followed from comparisons with Couette cell
measurements using Newtonian fluids. The analysis can still be used as an extensional viscosity
indexer in comparing different fluids.

(b) Analytical analysis of the e-VROC geometry indicates that the shear component of the flow is large
in the converging section – contrary to the claimed advantages of the hyperbolic geometry. New-
tonian flow can therefore not be regarded as extension dominated.

(c) The analytically derived equations (Equations 3.12 and 3.13) and Geodict/COMSOL simulations
compare well with the experimental results and therefore can be used to estimate the pressure
drop for Newtonian fluids.

(d) A noisy pressure signal was observed when flowing HPAM3630S polymer. This is probably due
to the elasticity of the solution. The residence time of the polymer in the contraction-expansion
section is small (tens of milliseconds) as compared to the elastic relaxation time of the fluid (0.1-1
seconds). The latter thus predominates and shows in a pressure effect.

(e) The resistance to extension of HPAM3630S solutions increases with increasing flow rate. Due to
high flow rates near the wellbore, this may cause injectivity problems.

(f) Adding salt to the polymer solution decreases the shear viscosity and also lowers the resistance
to extension. As more salt is added to the solution more of the negative charges along the poly-
mer chain are getting shielded by the Na+ ions, causing it to shrink in size (Section 1.3). This
reduction in size reduces the flexibility of the polymer molecules, making them stiffer. Since the
polymer molecules become stiffer, they are less likely to uncoil, making it easier to flow through a
contraction-expansion geometry.

(g) The e-VROC is an useful device to quantify the extensional behaviour of HPAM. However due to
the large contribution of shear and low experimental reproducibility it is unable to quantify pure
extensional behaviour.
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2. Pore Network Modelling

(a) The developed Matlab code enables modelling the steady state response of pore network sys-
tems. The systems contained more than 10000 non-linear throat equations. This captured both
extension-thickening and shear-thinning pressure losses. This successfully demonstrated proof
of concept set out at the beginning of this study. The current model (Section 5.3.1) cannot predict
the permeability of the porous medium correctly.

(b) The microscopic pressure drop distribution for Newtonian flow from the pore network modelling
was in good agreement with the pressure drop distribution predicted by GeoDict.

(c) Compared to Newtonian flow, the variance and kurtosis of the pressure drop distribution are
smaller for purely shear-thinning flow (Table 5.5). This implies better conformance control in
the network.

(d) Above a critical flow rate, strain-thickening behaviour reverses this process. This increases the
variance and kurtosis of the pressure drop distribution. This has a negative impact on confor-
mance control.



7
RECOMMENDATIONS

The recommendations will be split into recommendations for both the experimental and numerical side of
the research. Starting with the recommendations regarding the experimental side.

In this research the effect of salinity on the extensional behaviour of HPAM3630S was investigated, in the
slit geometry of the e-VROC. Further work could also include the effects of polymer type, polymer concen-
tration, divalent ion concentration and temperature on the extensional behaviour. These parameters may be
assessed since different rocks require different polymer sizes (polymer type) due to the rock’s permeability.
Furthermore, the reservoir conditions will vary (temperature and brine composition) together with the oil
viscosity requiring a different polymer viscosity (polymer concentration/type).
Also the time pressure signal stability and experimental reproducibility could be assessed while varying these
parameters. In this way it might be possible to pinpoint the reason behind the stability and reproducibility
problems.
Secondly, one would like to be able to predict the flow behaviour through a (far more complex) porous
medium in the future. Such a porous medium will have multiple flow paths with consecutive contraction
and expansion geometries. Before this can be achieved it is recommended to investigated the flow behaviour
in a more simplistic geometry but more complex than the e-VROC geometry. Such a geometry may exist of
two (or more) parallel flow paths each having a different amount of consecutive contractions. If possible it
would be favourable to be able to close each flow path such that also the flow through one of these flow paths
can be investigated. By having multiple consecutive contractions the effect of elasticity can be investigated
which was not done in this research.

The recommendations regarding the improvement of the pore network modelling code cover both the
performance and the physics of the model.The performance of the code can be improved in different ways.
Although the code removes all dead-end branches and parts of the network that are not connected to the in-
or outlet of the network, it does not use the internal structure of the network any further. Algorithms exist
that are able to detect the shortest paths in networks and can identify parallel, paths and cycles in the net-
works. Making use of this knowledge, the flow through the network can be solved more efficiently. Although
the fsolve routine of Matlab is quite robust, the performance is highly impacted when the non-linearity of the
flow is increased. More work is needed to make the solver more efficient.
Furthermore, the physics in the model can be improved. At the moment the permeability of the rock sample
is underestimated by more than one order of magnitude. From this it can be concluded that the resistance
to flow between the pores is overestimated. This can have multiple causes: Either the pore network dimen-
sions are not in agreement with the actual rock samples. Or the used transport equations overestimated the
resistance to flow. More work can be done to investigate these possible causes. This may include the use of
different pore network generator codes and comparing the predicted pressure drop for a pore throat geome-
try with the predicted pressure drop by COMSOL/GeoDict.
Furthermore, a shape factor could be included to correct the resistance to flow if the throat is non-circular.
Secondly, it is assumed that the fluid is a power-law fluid, therefore as the rate approaches zero the viscosity
of the fluid keeps on increasing. In reality the fluid will show Newtonian behaviour below a certain flow rate.
This behaviour could be incorporated in the future model. If all these improvements are made, the modelling
results could be tested against experimental work and other modelling work (GeoDict/OpenFOAM) using the
micro-CT images for both Newtonian and Non-Newtonian flow.
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A
RECOMMENDED EXPERIMENTAL

PROCEDURE E-VROC

While carrying out the experiments with the e-VROC the following procedure was applied:

1. Will the syringe with the test sample. Be aware of any air bubble, since they can have a tremendous
effect on the measurement.

2. Flush the e-VROC cell with a sufficient amount of test sample such that no air bubbles remain in the
contraction-expansion geometry.

3. Let the test sample rest to allow the pressure field to equilibrate.

4. Flow the test sample through the e-VROC cell at the desired flow rates using an increasing sweep.

To determine the time needed to get a good quality measurement, it is recommended to flow the test
sample at four different flow rates within the desired range for 15 to 20 minutes. From the pressure-time
signals the minimum time needed for the flow to become stable can be determined.
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B
ANALYTICAL DERIVATION OF NEWTONIAN

FLOW IN THE E-VROC CELL

In this section an analytical derivation is made to determine the theoretical pressure drop contributed to
shear and extension over the contraction-expansion area for a Newtonian fluid. The derivation was done
and provided by Padding and De of Eindhoven University of Technology [30]. In the derivation the friction
with the side walls is neglected, however the friction with the top and bottom is included. Furthermore, the
expansion-contraction geometry is designed such that ’pure’ elongational flow can be assumed along the
center plane.

Kinematics If εc is the elongational rate at the centerplane, the tensor gradient ∇u at the center plane can
be written as:

∇u =
εc 0 0

0 −εc 0
0 0 0

 for x ∈ [0, lc ] (B.1)

∇u =
−εc 0 0

0 εc 0
0 0 0

 for x ∈ [lc ,2lc ] (B.2)

If we define ux = u0 and uy = 0 at x = 0 then we get:

ux =
{

u0 +εc x : x ∈ [0, lc ]
u0 +εc x (2lc −x) : x ∈ [lc ,2lc ]

uy =
{ −εc y : x ∈ [0, lc ]
εc y (2lc −x) : x ∈ [lc ,2lc ]

Mass Balance The analytical expression for the width of the channel in the contraction-expansion area can
be determined by a mass balance. The mass balance states:

ux (x) w (x) = c (B.5)

where w (x) is the width of the channel as function of x and c a constant. When we substitute Equation
B.3 in to Equation B.5 and apply w (0) = C

u0
= wu as boundary condition we get:

w (x) =


wu

1+ εc
u0

x
: x ∈ [0, lc ]

wu

1+ εc
u0

(2lc−x)
: x ∈ [lc ,2lc ]
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Furthermore if we apply w (lc ) = wu

1+ εc
lc

x
= wc the expression for the elongational rate at the centerplane εc

becomes:

εc = uo

lc

(
wu

wc
−1

)
(B.7)

Full kinematics If Poisseuille flow is assumed in the z-direction then:

ux (z) = u0

(
1−

(
2z

h

)2)
forx < 0z ∈ [−h

2
,

h

2
] (B.8)

Suppose the Poiseuille profile also exists in the contraction-expansion profile, then:

ux (x, z) =
 (u0 +εc x)

(
1− ( 2z

h

)2
)

: x ∈ [0, lc ]and∇u = 0

(u0 +εc (2lc −x))
(
1− ( 2z

h

)2
)

: x ∈ [lc ,2lc ]and∇u = 0

uy (x, z) =
 −εc y

(
1− ( 2z

h

)2
)

: x ∈ [0, lc ]and∇u = 0

εc y
(
1− ( 2z

h

)2
)

: x ∈ [lc ,2lc ]and∇u = 0

uz (x, z) = 0for x ∈ [0,2lc ]and∇u = 0 (B.11)

From this the tensor gradient ∇u is written as:

∇u =
 0 0 0

0 0 0
−u0

8z
h2 0 0

 for x < 0, x > 2lc (B.12)

∇u =


εc

(
1− ( 2z

h

)2
)

0 0

0 −εc

(
1− ( 2z

h

)2
)

0

− (u0 +εc x) 8z
h2 εc y 8z

h2 0

 for x ∈ [0, lc ] (B.13)

∇u =


−εc

(
1− ( 2z

h

)2
)

0 0

0 εc

(
1− ( 2z

h

)2
)

0

− (u0 +εc (2lc −x)) 8z
h2 −εc y 8z

h2 0

 for x ∈ [lc ,2lc ] (B.14)

Deformation leads to a stress in the fluid. For a Newtonian fluid, the non-zero stress components corre-
spond to the non-zero ∇u components, therefore the stress tensor is symmetric:

τ=
τxx 0 τxz

0 τy y τy z

τxz τy z 0

 (B.15)

The tensor can be interpreted as a summation of the elongational and shear stress:

τ= τe +τs =
τxx 0 0

0 τy y 0
0 0 0

+
 0 0 τxz

0 0 τy z

τxz τy z 0

 (B.16)

The elongational viscosity is then defined as:

ηE = τxx −τy y

ε
= τxx (x, z)−τy y (x, z)

εc

(
1− ( 2z

h

)2
) (B.17)

And the shear viscosity is defined as:
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ηs = τxz

− ∂ux
∂z

= τy z

− ∂uy

∂z

(B.18)

Note that the device will always measure an average elongational viscosity because of extensional rate
from 0 to εc are present.

Stress tensor for a Newtonian fluid The stress tensor is defined as (See Navier-Stokes):

τ= η[∇u+ (∇u)T ]=


2εc

(
1− ( 2z

h

)2
)

0 − (u0 +εc x) 8z
h2

0 −2εc

(
1− ( 2z

h

)2
)

εc y 8z
h2

− (u0 +εc x) 8z
h2 εc y 8z

h2 0

 for x ∈ [0, lc ] (B.19)

τ= η[∇u+ (∇u)T ]=


−2εc

(
1− ( 2z

h

)2
)

0 − (u0 +εc (2lc −x)) 8z
h2

0 2εc

(
1− ( 2z

h

)2
)

−εc y 8z
h2

− (u0 +εc (2lc −x)) 8z
h2 −εc y 8z

h2 0

 for x ∈ [lc ,2lc ] (B.20)

Dissipation of energy per unit volume

τ : ∇u = 4ηε2
c

(
1−

(
2z

h

)2)2

︸ ︷︷ ︸
extensional flow dissipation

+η (u0 +εc x)2
(

8z

h2

)2

+ηε2
c y2

(
8z

h2

)2

︸ ︷︷ ︸
shear flow dissipation

for x ∈ [0, lc ] (B.21)

Total energy dissipation due to extensional flow The total energy dissipated in the expansion-contraction
can be defined as:

E = E E +E S =Q∆P =
∫

V
τ : ∇udV (B.22)

Since the expansion-contraction geometry is symmetric the total dissipated energy due to extensional
flow can be written as:

E E = 2
∫ lc

0

∫ 1
2 w(x)

− 1
2 w(x)

d xd y
∫ h

2

− h
2

4ηε2
c

(
1−

(
2z

h

)2)2

d z (B.23)

Since
∫ 1

2 w(x)

− 1
2 w(x)

is equal to Equation B.6 this equation becomes:

E E = 8ηε2
c

∫ lc

0

wu

1+
(

wu
wc

−1
)

x
lc

d xd y
∫ h

2

− h
2

(
1−

(
2z

h

)2)2

d z (B.24)

E E = 8ηε2
c

∫ lc

0

wu

1+
(

wu
wc

−1
)

x
lc

d xd y
∫ h

2

− h
2

(
1−2

(
2z

h

)2

+
(

2z

h

)4)
d z (B.25)

E E = 8ηε2
c

[
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) x
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)
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wc −1

]lc
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[
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E E = 8ηε2
c wu ln
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1

)
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1

2
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(
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2

)3
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(
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Substitution of EquationB.7 result in:

E E = 8η

(
uo

lc

(
wu

wc
−1

))2 2wu lc h
wu
wc

−1
ln

(
wu

wc

)(
1

2
− 1

3
+ 1

10

)
(B.28)

E E = 16ηu2
o

wuh

lc

(
wu

wc
−1

)
ln

(
wu

wc

)
8

30
(B.29)
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Total flow rate The total flow rate through the contraction-expansion can be defined as:

Q =
∫ 1

2 wu

− 1
2 wu

d y
∫ h

2

− h
2

u0

(
1−

(
2z

h

)2)
d z (B.30)

Q =Wuu0

[
z − 4

3

z3

h2

] h
2

− h
2

= 2

3
hwuu0 (B.31)

Pressure drop due to extensional flow Dividing Equation B.29 by the flow rate Q and Substituting Equation
B.31 into Equation B.29 gives:

∆P E
c = E E

Q
= 16

8

30

3

2
η

1

lc
u0

(
wu

wc
−1

)
ln

(
wu

wc

)
(B.32)

Substitution of Equation B.7 gives:

∆P E
c = 6.4ηεc ln

(
wu

wc

)
(B.33)

Using Equation B.31 Equation B.29 can also be written in terms of flow rate:

∆P E
c = 16

8

30

3

2
η

1

lc

Q
2
3 wuh

(
wu

wc
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)
ln

(
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)
(B.34)

∆P E
c = 9.6η

Q

hlc

(
1
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− 1
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)
ln
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wc

)
(B.35)

Dissipation of energy due to shear flow

E S = 2
∫ lc

0
d x

∫ 1
2 w(x)

− 1
2 w(x)

d y
∫ h
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Pressure drop due to shear in terms of flow rate
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In summary:
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Example If wu = 3.314mm, wc = 0.400mm, lc = 0.800mm and h = 0.1965mm then Equations B.48 and B.49
become

∆P E
c = ηQ

1

lc hwu
[147.9] (B.50)

∆P S
c = ηQ

1

lc hwu
[205.2+2041.9] (B.51)





C
CALIBRATION FLUID DATA

Fluid Name Fluid Type Shear Viscosity [mPas] Density [kg/m3] Temperature [C]
N15 32−68w% H2O−Glycerol 15.8 1175 25
N25 Fluid 25 26 800 60
N50 Fluid 50 49.1 960 25
N75 Olive Oil 71.6 910 23

N100 Fluid 100 97 960 25

Table C.1: The different Newtonian fluids that were used for the calibration of the e-VROC cells.

C.1. SHEAR RHEOMETER DATA
Shear viscosity sweep of N15

Figure C.1: Viscosity of N15 for different shear velocities.
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Shear viscosity sweep of N25

Figure C.2: Viscosity of N25 for different shear velocities.

Shear viscosity sweep of N50

Figure C.3: Viscosity of N50 for different shear velocities.
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Shear viscosity sweep of N75

Figure C.4: Viscosity of N75 for different shear velocities.

Shear viscosity sweep of N100

Figure C.5: Viscosity of N100 for different shear velocities.
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C.2. E-VROC MEASURED DATA

Pressure profiles of N25

Figure C.6: Measured pressures within the e-VROC cell for N25 for different flow rates.

Pressure profiles of N75

Figure C.7: Measured pressures within the e-VROC cell for N75 for different flow rates.
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Pressure profiles of N100

Figure C.8: Measured pressures within the e-VROC cell for N100 for different flow rates.
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C.3. PRESSURE GRADIENTS AS FUNCTION OF FLOW RATE
Pressure gradients plot of N25

Figure C.9: Pressure gradients plot for N25.

Pressure gradients plot of N75

Figure C.10: Pressure gradients plot for N75.
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Pressure gradients plot of N100

Figure C.11: Pressure gradients plot for N100.
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C.4. E-VROC SHEAR VISCOSITY
Shear viscosity of N25

Flow rate [µL/min] µsh12 [cP] µsh34 [cP]
600 25.9 26.5
771 26.0 26.3
943 26.6 26.3

1114 26.2 26.3
1286 26.2 26.0
1456 26.2 26.2
1628 26.4 26.2
1799 26.3 26.1
1970 26.3 26.3
2142 26.1 25.9
2313 26.3 26.1
2485 26.3 26.2
2656 26.3 26.0
2828 26.2 25.9
2999 26.2 25.9

Table C.2: Shear viscosities determined from the e-VROC data for N25.

Shear viscosity of N75

Flow rate (µL/mi n) ηsh,12 (cP) ηsh,34 (cP)
153.6 66.4 64.7
257.1 72.7 71.5
360.7 72.8 71.6
464.3 72.7 71.4
567.9 72.5 71.3
671.4 72.7 71.3
775 72.7 71.4

878.6 72.5 71.5
982.1 72.5 71.9

1085.7 72.4 71.7
1189.3 72.0 71.8
1292.9 71.9 71.7
1396.4 71.8 71.7
1500 71.6 71.5

Table C.3: Shear viscosities determined from the e-VROC data for N75.
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Shear viscosity of N100

Flow rate (µL/mi n) ηsh,12 (cP) ηsh,34 (cP)
300 105.9 96.9

407.1 104.2 96.2
514.3 103.1 96.4
621.4 101.9 97.0
728.6 100.9 96.4
835.7 100.3 96.9
942.9 99.6 96.6
1050 98.9 96.5

1157.1 98.7 96.4
1264.3 98.2 96.3
1371.4 98.1 96.2
1478.6 98.3 96.7
1585.7 98.4 96.8
1692.9 98.3 96.5
1800 98.1 96.7

Table C.4: Shear viscosities determined from the e-VROC data for N100.
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C.5. EXTENSIONAL VISCOSITY, TROUTON AND REYNOLD NUMBERS
Extensional viscosity, Trouton and Reynold numbers of N25

Flow rate (µL/mi n ηe (cP) Tr Re
600 2078 79.9 2.2

771.4 2069 79.6 2.8
942.9 2053 79.0 3.4

1114.3 2056 79.1 4.0
1285.7 2065 79.4 4.7
1457.1 2054 79.0 5.3
1628.6 2061 79.3 5.9
1800 2061 79.3 6.5

1971.4 2061 79.3 7.1
2142.9 2076 79.8 7.8
2314.3 2060 79.2 8.4
2485.7 2065 79.4 9.0
2657.1 2073 79.7 9.6
2828.6 2071 79.7 10.3
3000 2075 79.8 10.9

Table C.5: The extensional viscosities, the corresponding Trouton ratio and Reynolds number for N25 at the measured flow rates

Extensional viscosity, Trouton and Reynold numbers of N75

Flow rate (µL/mi n ηe (cP) Tr Re
153.6 5233 73.1 0.062
257.1 5610 78.4 0.19
360.7 5608 78.3 0.32
464.3 5619 78.5 0.45
567.9 5592 78.1 0.58
671.4 5624 78.5 0.71
775 5641 78.8 0.84

878.6 5656 79.0 0.98
982.1 5669 79.2 1.1

1085.7 5684 79.4 1.2
1189.3 5679 79.3 1.4
1292.9 5690 79.5 1.5
1396.4 5688 79.4 1.6
1500 5682 79.4 1.7

Table C.6: The extensional viscosities, the corresponding Trouton ratio and Reynolds number for N75 at the measured flow rates
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Extensional viscosity, Trouton and Reynold numbers of N100

Flow rate (µL/mi n ηe (cP) Tr Re
300 7518 77.5 0.29

407.1 7537 77.7 0.40
514.3 7573 78.1 0.50
621.4 7600 78.4 0.60
728.6 7604 78.4 0.71
835.7 7628 78.6 0.81
942.9 7639 78.8 0.92
1050 7646 78.8 1.0

1157.1 7664 79.0 1.1
1264.3 7644 78.8 1.2
1371.4 7644 78.8 1.3
1478.6 7663 79.0 1.4
1585.7 7661 79.0 1.5
1692.9 7657 78.9 1.6
1800 7659 78.9 1.7

Table C.7: The extensional viscosities, the corresponding Trouton ratio and Reynolds number for N100 at the measured flow rates





D
POLYMER SHEAR RHEOMETRY

Figure D.1: Two shear viscosity scans of FP2500 at different shear rates.
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Figure D.2: Two shear viscosity scans of FP5000 at different shear rates.

Figure D.3: Two shear viscosity scans of FP10000 at different shear rates.



E
NOISE ANALYSIS OF POLYMER TIME SIGNAL

Figure E.1 shows the single-sided amplitude spectrum of the pressure as function of time for FP5000 mea-
sured by the first pressure transducer at a flow rate of 300 µL/mi n. If there is a noise of a certain frequency
present in the time signal, the single-sided amplitude spectrum shows a peak at the frequency of the noise.
However, Figure E.1 only shows a peak at a frequency of zero. This indicates that there is no dominant oscilla-
tion present in the time signal, hence the noise appears to be random. However, since the sampling frequency
is 5Hz, it very hard to detect any noise with a higher frequency. Therefore, there could still be frequent noise
on the time signal however its frequency cannot be quantified.

Figure E.1: single-sided amplitude spectrum of the pressure as function of time for FP5000 measured by the first pressure transducer at
a flow rate of 300 µL/mi n.
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F
TIME SIGNAL RESPONSE LAPONITE

To test if the elastic behaviour of the FP3630S was causing the high noise content of the time-pressure signal, a
Laponite solution was flown through the e-VROC cell. Laponite is an artificial clay and highly shear thinning.

Laponite (N a+0.7
[(

Si8M g5.5Li0.3
)

O20 (OH)4
]−0.7) consists of nano-disks which are positively charged at the

sides and negatively charged at the top and bottom. Because of this property the disks will form a house of
cards like structure (Figure F.1). When the fluid is deformed the structure is (partial) destroyed. As a result of
this structure demolition, Laponite has no memory regarding deformation history, thus completely inelastic.
Although it is a very different kind of system compared to FLOPAAM, it is a perfect fluid to test the hypothesis
that the elasticity of FLOPAAM might causes the high noise content in the time-pressure signal.

Figure F.2 shows the measured pressures over time in the e-VROC cells for a Laponite solution. Although
a slightly higher noise content is observed as compared to Newtonian fluids, 90% of the measured pressures
is within 200Pa of the measured mean, which is within the measurement precision of the MEMS tranducers.
From this it can be concluded that the high noise content of the FP3630S samples is likely not due to their
shear thinning behaviour but should probably be attributed to elasticity.

Figure F.1: The morphology and structure building of Laponite [43].
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Figure F.2: Pressure at each pressure sensor as function of time for a flow rate of 428.9 µL/mi n for a Laponite solution.



G
CORE ANALYSIS OF BOISE AND BEREA

SANDSTONE

In this research, a Boise sandstone core was used in the pore network modelling. A micro-CT image was made
to extract the properties of the voxel space of the core.

Before properties can be extracted from the micro-CT image, a difference between void space and rock
has to be made. The micro-CT provides an gray-scale image and can be visualized in AVIZO. Darker colors
indicate higher density material, whereas light colors indicate low density material. Therefore a difference
between void space and rock can be made based on the histogram of grey colors (Figure G.1). Two large peaks
are observed, the left peak indicating pore space and the right peak indicting rock. The boundary between
rock and void is chosen at the minimum be between these peak. Everything to the left of the boundary is
considered void space and everything to the right of this boundary is considered to be rock. But before the
micro-CT images can be used in any other procedures it needs to be watersheded first.

Besides rock and void there exists a third phase, namely the surrounding space around the sample, which
has a very low density density and is therefore currently considered as void space. However, we do not want
the fluid to flow outside the sample, therefore this open space around the rock sample has to be set to be
impermeable (hence as rock). This is the so-called watershedding.

Figure G.1: Histogram of the color scale of the Boise sandstone sample.
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G.1. PORE NETWORK EXTRACTION

An algorithm to extract the geometry of the pore space from voxel images, was developed by Hu Dong [39].
This so-called maximum ball algorithm determines the radius of the maximum inscribes sphere that touches
the pore walls. From the size of these maximum balls it is determined with part of the void space represents
pore bodies or pore throats.

A clustering algorithm groups the maximum balls into pore bodies and pore throats. The cluster algorithm
allows the maximum ball (’parent’) to absorb its neighbouring balls within a certain radius from its center
(Figure G.2). If a ball is absorbed it will be mark as an ’child’ of the principal (’parent’) ball. By doing this
a family tree is formed. In the algorithm the common ancestor of each cluster is defined a pore. When a
maximum ball is connected to two cluster (occurs in two family trees) its is defined as a throat (Figure G.3).

Figure G.2: Schematic of single cluster of principal maximum ball and neighbouring balls [39].

Figure G.3: Schematic of two family trees. Ancestor A and B defined as pore and the common child defined as throat [39].
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G.1.1. PORE GEOMETRY

(a) Boise (b) Berea

Figure G.4: Pore body and throat radius distribution for the Boise and Berea sandstone.

G.1.2. COORDINATION NUMBER

Figure G.5: Coordination number distribution for the Boise sandstone.





H
MOMENTS OF PROBABILITY DENSITY

FUNCTIONS

The four moments to compare the different probability density function are the mean, variance, skewness
and kurtosis. They are calculated as follows:

Mean The mean is the average of the sample set.

µ= 1

n

n∑
i=1

xi (H.1)

Variance The variance is a measure for how big the spread of numbers in the sample set is. The higher the
variance the bigger the spread.

σ= 1

n

n∑
i=1

(
xi −µ

)2 (H.2)

Skewness The skewness is a measure for how asymmetrical the sample set is around its mean. If the
skewness equals zero the sample set is symmetric around its mean. A large negative number indicates a long
tail to the left of the mean, whereas a large positive number indicates a long tail to the right of the mean.

b =
1
n

∑n
i=1

(
xi −µ

)3[
1

n−1

∑n
i=1

(
xi −µ

)2
] 3

2

(H.3)

Kurtosis Kurtosis is also a measure for the shape of a distribution. If g is smaller than zero, it indicates
that the distribution is flatter (broad and short) than a log normal distribution. Whereas, a positive number
indicates that the distribution is more peaked (small and high).

g =
1
n

∑n
i=1

(
xi −µ

)4[
1
n

∑n
i=1

(
xi −µ

)2
]2 −3 (H.4)
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