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ABSTRACT: In this contribution, we report chemoenzymatic
bromodecarboxylation (Hunsdiecker-type) of α,ß-unsaturated
carboxylic acids. The extraordinarily robust chloroperoxidase
from Curvularia inaequalis (CiVCPO) generated hypobromite
from H2O2 and bromide, which then spontaneously reacted with a
broad range of unsaturated carboxylic acids and yielded the
corresponding vinyl bromide products. Selectivity issues arising
from the (here undesired) addition of water to the intermediate
bromonium ion could be solved by reaction medium engineering.
The vinyl bromides so obtained could be used as starting materials
for a range of cross-coupling and pericyclic reactions.

KEYWORDS: biocatalysis, Hunsdiecker reaction, decarboxylation, vinyl bromides, unsaturated carboxylic acids,
vanadium chloroperoxidase

■ INTRODUCTION

Vinyl halides are versatile intermediates in organic chemistry,
especially as starting materials in carbon−carbon cross-
coupling reactions.1−3 Halodecarboxylation of α,β-unsaturated
carboxylic acids represents a convenient synthetic access to a
broad range of vinyl halides.4 In addition to the classical
Hunsdiecker reaction5 starting from silver carboxylates and its
later modifications such as the Cristol−Firth modification
(utilizing HgO as a catalyst)6 and the Kochi reaction (utilizing
stoichiometric amounts of Pb(OAc)4),

7 some metal-free
alternatives have been developed. The Barton reaction, for
example, utilizes organic hypohalites as stoichiometric
reagents,8 while the Suarez reaction is based on hypervalent
iodosobenzene diacetates.9 More recently, N-halo succinimide
(NXS)4,10 reagents have become dominant as a source for
electrophilic halide species to initiate the halodecarboxylation
reaction.
From an environmental and practical point of view,

stoichiometric halide sources such as NXS10 or other N-
halides11 may be questionable due to the formation of large
amounts of succinimide waste products lowering the atom
efficiency of the transformation and complicating product
isolation and purification. Therefore, alternative methods for
the in situ generation of electrophilic halides have been
investigated comprising chemical12,13 or electrochemical halide
oxidation14 methods. Particularly, vanadate15−18 and molyb-
date19 complexes have been investigated as mimetics for
haloperoxidase enzymes. Their poor catalytic activity, however,
necessitates high catalyst loadings of up to 10−50 mol %.

Already in 1985, Izumi and co-workers have pioneered an
enzymatic approach for the oxidative generation of hypohalites
with H2O2 and chloroperoxidase from Caldariomyces fumago
(CfCPO) as a biocatalyst.20 Unfortunately, these pioneering
contributions have not resulted in great interest from the
research community, which can largely be ascribed to the
difficulties using CfCPO as a catalyst.21,22 In addition to the
issues in recombinant production of this catalyst, predom-
inantly, it’s poor robustness against the stoichiometric oxidant
(H2O2) represents a major practical hurdle.
With this in mind, we set out to evaluate whether the

vanadium-dependent chloroperoxidase from Curvularia inae-
qualis (CiVCPO) may be a more suitable (bio)catalyst to
promote H2O2-driven bromodecarboxylation reactions
(Scheme 1). CiVCPO23−26 excels as a robust and active
enzyme tolerating high concentrations of H2O2 and organic
solvents. Overall, a chemoenzymatic reaction scheme was
envisioned wherein CiVCPO catalyzes the H2O2-driven
oxidation of bromide to hypobromite with the latter
spontaneously (nonenzymatically) reacting with α,ß-unsatu-
rated carboxylic acids yielding the corresponding vinyl bromide
and CO2.
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■ RESULTS AND DISCUSSION

The biocatalyst (CiVCPO) was produced via heterologous
expression in recombinant Escherichia coli following previously
established procedures.25 Using p-coumaric acid (1a, 30 mM)
as a model substrate, the desired product 4-(2-bromovinyl)
phenol (1b) was readily obtained under the reaction
conditions chosen initially ([CiVCPO] = 400 nM, [KBr] =
50 mM, [H2O2] = 30 mM, Figure 1). An initial reaction rate of
6.97 mM h−1 was observed (corresponding to a catalytic
turnover frequency of the biocatalyst of 4.8 s−1). After approx.
6 h, a final yield of 82% (gas chromatography, GC yield) was
obtained corresponding to 61,600 turnover number (TON)
for CiVCPO. The reaction could be scaled up to 50 mL,
resulting in 58% isolated yield (173 mg, Figures S1−S3). All
relevant negative controls (i.e., performing the reaction in the

absence of either CiVCPO or H2O2 or using thermally
inactivated CiVCPO) failed to form any bromination products.
Also substituting CiVCPO with a 25-fold excess of NaVO3

(under otherwise identical reaction conditions) did not give
any decarboxylated product (Table S1).
Next, we investigated some key parameters (enzyme

concentration, pH, H2O2 and KBr concentration) influencing
oxidative decarboxylation in more detail (Table 1). The
reaction rate correlated with the enzyme concentration (Table
1, entries 1−3). Increasing the concentration of H2O2 had a
slightly negative effect on the product formation (Table 1,
entries 3, 7−9). On one hand, the H2O2 concentration applied
was significantly higher than the reported KM(H2O2) value for
CiVCPO of ≪0.1 mM, which is why the catalytic activity of
CiVCPO can be considered as being independent of the H2O2

Scheme 1. Envisioned Biocatalytic Hunsdiecker-Type Reactiona

aThe overall reaction comprises a biocatalytic step in which the reactive halide species (hypohalite) is formed in situ from halides and H2O2
catalyzed by the V-dependent chloroperoxidase from C. inaequalis (CiVCPO). In the second step, the hypobromite spontaneously (nonenzyme-
mediated) reacts with the starting material inducing the bromodecarboxylation reaction.

Figure 1. Time course of the chemoenzymatic decarboxylation of p-coumaric acid (●) (1a) to 4-(2-bromovinyl) phenol (▲) (1b). Conditions:
[1a] = 30 mM, citrate buffer (100 mM, pH 5.0), [CiVCPO] = 400 nM, [KBr] = 50 mM, [H2O2] = 30 mM, 5% dimethyl sulfoxide (DMSO), 30
°C, 1 mL. The data shown are the results from duplicate experiments.
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concentration applied in these experiments. On the other
hand, the rate of the hypobromite-initiated dismutation of
H2O2

27 increases at increasing H2O2 concentrations and
thereby decreases the in situ concentration of hypobromite
and H2O2. In line with the reported pH optimum25 of
CiVCPO, the highest catalytic rates were observed between pH
5 and 6 (Table 1, entries 3−6). An increase in the KBr
concentration could lead to an increase in the reaction rate and
product concentration (Table 1, entries 8 and 10), which we
attribute to an increase in the in situ hypobromite
concentration and the resulting acceleration of the chemical
reaction step.
The highest formal CiVCPO activity observed in these

experiments (i.e., initial rate divided by the biocatalyst
concentration) was 10.5 s−1 (Table 1, entry 1), which is in
line with CiVCPO activities previously observed (under
comparable reaction conditions) ranging from 8.7 s−1 (in the
case of Achmatowicz-type reactions)28 and 75 s−1 (as observed
in the oxidative decarboxylation of glutamic acid).23 Bearing
the chemoenzymatic character of these reactions in mind, the
apparent differences in the formal CiVCPO activity most likely
originate from different reactivities of the chemical starting
materials with OBr−, suggesting the chemical step of the
reaction sequence being overall rate-limiting.
It should be noted that in all experiments, some formation of

p-hydroxyphenylacetaldehyde (1c, Figure S4, ranging between
0.04 and 0.81 mM corresponding to 0.3−6.2%) was observed.
Presumably, nucleophilic attack of water to the intermediate
bromonium ion leading to the aldehyde product was observed
(Scheme 2).
As a phenolic staring material, some ring halogenation was

expected to occur.29 Interestingly, only upon prolonged

reaction times, traces of the ring-brominated vinyl bromide
product were observed in the case of decarboxylation of 1a
(Figure S4). Apparently, the conjugated CC double bond
reacted more readily than the aromatic ring system.
Next, we evaluated the substrate scope of the chemo-

enzymatic Hunsdiecker reaction in a 1.5 mmol scale by
screening some commercially available substrates (Figure 2).
Both substituted and nonsubstituted α,ß-unsaturated carbox-
ylic acids could be transformed into the corresponding vinyl
bromide products with good isolated yield (Figures S5−S37
and Table S2). Especially electron-donating substituted styrene
derivates turned out to be good starting materials. Aromatic
rings containing electron-withdrawing substituents such as
halides, CN, CF3, or NO2 were not converted and the staring
material was recovered. Also, for aliphatic α,ß-unsaturated
carboxylic acids, no conversion was detectable under the
experimental conditions applied here, which is in line with a
previous report using CfCPO.20

We found no obvious correlation between the substitution
pattern of the aromatic substituent with the selectivity (halide
vs aldehyde product).
As shown in Figure 2, the vinyl bromide selectivity was

rather poor in some cases. Based on the mechanistic proposal
(Scheme 2), we hypothesized that the water activity may play a
decisive influence on the vinyl bromide/aldehyde selectivity.
To test this, we performed a range of experiments increasing
the cosolvent concentration (DMSO) from 5% (v/v) to 50%
(v/v) (Figure 3). Indeed, this approach proved successful
increasing of the selectivity for 10b and 11b from roughly 25
to 95% (see also Figures S38 and S39 for 10a and Figures S40
and S41 for 11b). Also, other cosolvents such as methanol,
isopropanol, or acetone had similar effects. We therefore

Table 1. Optimization of the Reaction Conditionsa

entry c(CiVCPO) (nM) pH c(H2O2) (mM) concn (mM) initial rateb (mM h−1) TONc selectivityd (%)

1 100 5 30 10.3 ± 1.1 3.80 10,2700 99
2 200 5 30 14.6 ± 1.6 5.68 73,200 99
3 400 5 30 24.6 ± 1.2 6.97 61,600 97
4 400 4 30 10.9 ± 1.9 2.95 27,100 96
5 400 6 30 19.6 ± 1.0 6.49 48,880 96
6 400 7 30 12.3 ± 0.1 4.03 30,600 94
7 400 5 50 23.5 ± 5.7 6.36 58,700 98
8 400 5 100 19.4 ± 0.4 3.14 48,000 98
9 400 5 200 21.6 ± 3.5 5.76 54,000 98
10 400 5 100e 26.0 ± 0.7 7.95 65,000 97

aReaction conditions: [p-coumaric acid] = 30 mM, citrate buffer (100 mM, pH 4−5) or NaPi buffer (100 mM, pH 6−7), [CiVCPO] = 100−400
nM, [KBr] = 50−100 mM, [H2O2] = 30−200 mM, 30 °C, 5% DMSO, 6 h, 1 mL. bThe initial rate is based on concentration of 1b at 3 h. cTON =
Turnover number ([1b]/[CiVCPO]). dThe selectivity was determined by gas chromatography−mass spectrometry (GC−MS). Selectivity = [1b]/
([1b] + [1c]) × 100%. e[KBr] = 100 mM. A duplicate experiment was performed.

Scheme 2. Proposed Nucleophilic Attack of Water to the Intermediate Bromonium Ion Competing with Its Decarboxylation
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concluded that medium engineering represents an excellent
handle to control the selectivity of the oxidative decarbox-
ylation.

Finally, we explored the synthetic potential of the vinyl
bromides obtained from the chemoenzymatic Hunsdieker
reaction. For this, we submitted the products 3b and 12b to a
photocatalytic [2 + 2] cycloaddition reaction with styrene,30

the Suzuki−Miyaura cross-coupling reaction with phenyl
boronic acid,31 and a Pd-catalyzed Ullmann homocoupling
reaction32 (Figure 4). In all cases, acceptable isolated yields of
the desired products were obtained (for details, see the
Supporting Information, Figures S43−S52).

■ CONCLUSIONS

Overall, we have shown that vanadium chloroperoxidase from
C. inaequalis is a robust catalyst for the oxidative decarbox-
ylation of a broad scope of α,β-unsaturated carboxylic acids,
establishing a chemoenzymatic Hunsdiecker reaction.
The selectivity of the reaction can be controlled by medium

engineering, giving access to either the aldehyde or the vinyl
bromide product.
The high activity and selectivity of the reaction and the mild

and clean reaction conditions make the reaction attractive for
the synthesis of valuable α,β-unsaturated halides from readily
available starting materials.

Figure 2. Substrate scope of preparative-scale chemoenzymatic decarboxylative bromination reaction. Conditions: [substrates] = 30 mM, citrate
buffer (100 mM, pH 5), [CiVCPO]= 400 nM, [KBr] = 50 mM, [H2O2] = 30 mM, 30 °C, 10 h, 50 mL scale. 5−20% DMSO to improve the
substrate solubility. Isolated yield was calculated after the purification. The selectivity was determined by GC−MS using 5% DMSO in the reaction.
Yield means isolated yield. Selectivity = ([1−12b])/([1−12b] + [1−12c]) × 100%. ND = not detected.

Figure 3. Dependence of the selectivity on the solvent content.
Conditions: [substrates] = 30 mM, citrate buffer (100 mM, pH 5),
[CiVCPO]= 400 mM, [KBr] = 50 mM, [H2O2] = 30 mM, 30 °C, 6 h,
5 and 50% DMSO. A duplicate experiment was performed.
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