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Abstract

The electric field integral equation can describe scatter-
ing by closed and open surfaces, surfaces containing junc-
tions, and even non-orientable surfaces. The boundary el-
ement discretisation of this equation results in linear sys-
tems whose condition number grows as the square of the
inverse mesh size. This eventually leads to systems that in
practice cannot be solved, not even when using powerful
iterative solvers such as GMRES and efficient matrix com-
pression algorithms such as the fast multipole algorithm or
an H-matrix based low rank representation. As a remedy,
Calderón preconditioners are used to significantly reduce
the number of iterations required to reach an acceptable so-
lution. This type of preconditioners are available for open
and closed surfaces, and recently also for surfaces contain-
ing junctions. In this contribution, a Calderón type pre-
conditioner will be constructed for the electric field inte-
gral equation applied to non-orientable surfaces such as the
Moebius strip. It is based on a redundant representation for
the induced current, and a block-diagonal preconditioning
strategy. Numerical experiments corroborate the correct-
ness and efficiency of this approach.

1 Introduction

The electric field integral equation can model the scattering
of time-harmonic electromagnetic fields by perfectly con-
ducting objects. It is often preferred over other approaches
(notably the magnetic field integral equation) because it is
applicable in a wide variety of situations: scattering by sur-
faces that can either be open or closed, surfaces that contain
junctions, and even surfaces that are non-orientable, such
as the Moebius strip. The solution to the electric field inte-
gral equation can be approximated by the boundary element
method: the induced surface current is approximated by a
linear combination of basis functions subordinate to a tri-
angular mesh on the surface and the equation is tested by
the same set of basis functions. This process results in a
linear system that can be solved for the unknown expansion
coefficients.

Because the single layer boundary integral operator at the
heart of the electric field integral equation acts as an in-
tegrator on solenoidal currents and as a differentiator on

non-solenoidal currents, the condition number grows as the
square of the inverse mesh size. More importantly, the solu-
tion time required by Krylov iterative solvers such as GM-
RES grows accordingly. This phenomenon is dubbed the
dense grid breakdown of the electric field integral equation
and precludes its solution when high accuracy is desired or
when small geometric details are included in the design.

To counteract this problem, Calderón preconditioners have
been designed. For closed surfaces, the self-regularising
property of the single layer boundary operator is clear from
the Calderón identities, which provide a relation the single
layer and double layer boundary operators. For open sur-
faces, more theoretical observations allow to conclude that
the spectral condition number may grow at most as loga-
rithm of the mesh size [5].

For surfaces containing junctions, submitting to quotient-
space paradigm allows the formulation of integral equations
that are singular, and whose solution yields one of an infi-
nite number of equivalent radiating surface currents [2]. For
geometries that allow decoupling the various sides of the
surface by making cuts along its boundary, a block diagonal
preconditioner has been introduced in [4]. This precondi-
tioner has been analysed in [3] for the Laplace equation and
for geometries of type A as defined in that paper.

For non-orientable surfaces like the Moebius strip, it is im-
possible to define a continous field of normals. Because of
this, we cannot construct a global Calderón preconditioner.
Here, this problem will be resolved by covering the Moe-
bius strip by orientable open surfaces. This entails intro-
ducing redundant (non-radiating) degrees of freedom, but
allows for the construction of an efficient block diagonal
preconditioner for the discretised single layer boundary op-
erator, resulting in a small number of iterations required by
solvers like GMRES in order to reach an accurate approx-
imate solution. This is similar to what is done for surfaces
that contain junctions, but unlike for type the A geometries
from [3], the boundary of the orientable open surfaces is no
longer fully contained in the boundary of Γ. Fortunately,
this poses no obstacle as long as sufficient overlap is main-
tained in choosing the covering.
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Figure 1. The Moebius strip Γ is covered by orientable
open surfaces Γi. For this example, four overlapping sur-
faces are used, which are depicted in different colours. For
clarity, the corresponding normals are also displayed. Note
that, as a consequence of Γ’s non-orientability, it is not true
that these normals are opposite to each other at all points
where the Γi overlap.

2 Equations and Discretisation

Consider the Moebius strip Γ in Fig. 1. The idea is to cover
Γ by ∪iΓi such that each Γi is oriented by a consistent nor-
mal field ni, and such that each point in the interior of Γ is in
the interior of at least one of the Γi as well. This guarantees
that each current u on Γ can be represented by a (in general
not unique) sum of currents ui on the Γi. This means, in
particular, that their radiated fields -and hence the traces of
those radiated fields- are identical. We will make use of this
insight to devise our method.

Take an incident time-harmonic electromagnetic field vary-
ing with frequency ω . The space surrounding Γ is occupied
by a material characterised by permittivity ε and perme-
ability µ or equivalently by wave number κ = ω

√
εµ and

impedance η =
√

µ/ε .

The boundary element method is applied to compute an ap-
proximate solution to the scattering problem: the surfaces
Γi are imbued with a triangular mesh Γi,h that agrees with
the triangular mesh on Γ j where the two surfaces over-
lap. Let RWG(Γi,h) be the space of Rao-Wilton-Glisson
functions subordinate to Γi,h, and with vanishing binor-
mal components on ∂Γi,h. We are looking for a current
(ui)i ∈ ∏i RWG(Γi,h) such that, for all test currents (ki)i ∈
∏i RWG(Γi,h), it holds that

η ∑
i
< ni × ki,Ti ju j >Γi= ∑

i
< ni × ki,n× einc >Γi (1)

with < ·, ·>Γi the L2 pairing on Γi, and

Ti j(u j)(x) =− ικni ×
∫

Γ j

e−ικ|x−y|

4π|x− y|
u j(y)dy

+
1

ικ
ni ×grad

∫
Γ j

e−ικ|x−y|

4π|x− y|
divΓ j u j(y)dy.

Figure 2. The number of iterations required for GMRES
to produce a solution up to a relative error of 2.0 ·10−4 us-
ing our preconditioner is small compared to the number of
DoFs and only depends mildly on h.

Using the standard basis
(

f (i)m

)
m,i

for this boundary ele-

ment space, this results in the linear system
T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44




u1
u2
u3
u4

=


e1
e2
e3
e4

 (2)

Since on each of the Γi a consistently oriented field of nor-
mals ni has been chosen, it is possible to build the following
block diagonal preconditioner: N−T

11
. . .

N−T
44


 T̃11

. . .
T̃44


 N−1

11
. . .

N−1
44

 , (3)

with (Nii)m,n =< ni × f (i)m ,g(i)n >Γi , and (T̃ii)m,n =< ni ×
g(i)m ,Tiig

(i)
n >Γi , and

(
g(i)m

)
m,i

the Buffa-Christiansen basis

functions on (Γi,h)i [1].

3 Numerical Results

Consider an incident wave with signature einc(x) =
(1,0,0)T exp(−ικx3). The geometry from Fig. 1 is imbued
with a triangular mesh generated with target mesh size h.
In the overlapping regions these meshes are conforming but
not necessarily oppositely oriented. It is important that each
subsurface Γi is given a consistently oriented field of nor-
mals and that each edge of Γh is in the interior af at least one
of the Γi. The induced current is computed for κ = 1.0m−1

and κ = 3.0m−1.

For each value of h, the number of iterations is recorded
and plotted in Fig. 2. No values for the number of iterations
required to solve the traditional (single-trace) electric field
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integral equation are included because, even for the coarsest
mesh (at h = 0.2m), GMRES fails to converge, stressing the
importance of an efficient preconditioner.

To verify correctness of the solution, the solution of the
method presented here is projected onto the single-trace
boundary element space and compared to the traditional so-
lution (Fig. 3) as computed by LU decomposition, showing
complete agreement.
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Figure 3. Induced currents computed by a redundant ap-
proach (top), the corresponding projection onto the single-
trace space (middle), and the solution of a classic single-
trace equation (bottom). Note that even though the repre-
sentative for the radiating part of the current clearly depends
on the covering (Γi)i, its projection and thus its radiated
field agrees with the classic solution.
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