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The influence of the length of the calibration period and
observation frequency on predictive uncertainty in time series
modeling of groundwater dynamics
Joanne E. van der Spek1 and Mark Bakker1

1Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the
Netherlands

Abstract The influence of the length of the calibration period and observation frequency on the
predictive uncertainty in time series modeling of groundwater dynamics is investigated. Studied series are
from deltaic regions with predominantly shallow groundwater tables in a temperate maritime climate
where heads vary due to precipitation and evaporation. Response times vary over a wide range from �60
to �1200 days. A Transfer Function-Noise model is calibrated with the Markov Chain Monte Carlo method
to both synthetic series and measured series of heads. The model fit and uncertainty are evaluated for vari-
ous calibration periods and observation frequencies. It is often assumed that the required length of the
calibration period is related to the response time of the system. In this study, no strong relationship was
observed. Results indicate, however, that the required length of the calibration period is related to the
decay time of the noise. Furthermore, the length of the calibration period was much more important than
the total number of observations. For the measured series, the credible intervals could commonly be
reduced to �10% of the measured head range and the prediction intervals to �50% of the measured head
range with calibration periods of 20 years with approximately two observations per month.

1. Introduction

Over the past decades, time series analysis has become an important tool in groundwater hydrology. Time
series models are frequently used to characterize groundwater dynamics [e.g., Finke et al., 2004; Von Asmuth
and Knotters, 2004], decompose head fluctuations into the impacts of multiple stresses [e.g., Shapoori et al.,
2015a, 2015b; Von Asmuth et al., 2008], and estimate unobserved heads [e.g., Knotters and Van Walsum,
1997]. Time series analysis is highly data-driven, relying on the correspondence between input and output
series. One of the major questions that arises when developing a time series model is how long and how
frequent the head needs to be measured before reliable results can be expected.

Time series analysis has been widely applied since its extensive description by Box and Jenkins [1970]. Trans-
fer Function-Noise (TFN) models are a type of time series models often used in groundwater hydrology
[e.g., Knotters and Van Walsum, 1997; Von Asmuth et al., 2002; Berendrecht et al., 2003; Finke et al., 2004;
Obergfell et al., 2013; Peterson and Western, 2014] and consist of a deterministic part and a stochastic part.
Output series are modeled by transformation of input series, while the autocorrelation in the differences
between the observed and simulated output series is described by a noise model. TFN models owe their
popularity to their relatively easy construction and accurate results [Von Asmuth et al., 2008]. Von Asmuth
et al. [2002] presented a TFN model for groundwater dynamics based on predefined response functions.
The head is simulated as the sum of the responses to past stresses like precipitation and evaporation, and a
constant base elevation. The responses to stresses are calculated by convolution of observed stresses with
appropriate response functions. Von Asmuth et al. [2002] adopted a scaled-gamma function as response
function for precipitation and evaporation. This function has three parameters giving it a flexible shape
varying from exponential to skewed bell-shaped, the latter representing a delayed response. Noise decay is
approximated as exponential, which makes the model suitable for use with unevenly spaced data [Von
Asmuth and Bierkens, 2005; Yang et al., 2007].

Assessment of parameter and predictive uncertainty are important aspects of hydrological modeling
[Schoups and Vrugt, 2010; Thyer et al., 2009]. Uncertainty in model predictions is caused by input uncertainty,
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for example caused by measurement errors in precipitation and evaporation data, output uncertainty, for
example caused by errors in observed heads, structural uncertainty caused by simplifications in the model
structure, and parameter uncertainty [Renard et al., 2010]. Input uncertainty and output uncertainty can col-
lectively be called data uncertainty [Liu and Gupta, 2007]. The values of the parameters of a TFN model are
estimated by calibrating the model to a set of observations. Simplifications in the model structure and
errors in the calibration data make it impossible to determine the parameter values exactly. Bayesian statis-
tics offers the possibility to incorporate parameter uncertainty in the calibration process and to estimate the
posterior probability distributions of the parameters based on prior knowledge and the information con-
tained in the data [e.g., Box and Tiao, 1992]. The posterior distributions can be approximated with Markov
Chain Monte Carlo (MCMC) methods [e.g., Vrugt, 2016]. These methods are widely used in hydrological stud-
ies [e.g., Kuczera and Parent, 1998; Thyer and Kuczera, 2003; Marshall et al., 2004; Yang et al., 2007; Vrugt
et al., 2008; Schoups and Vrugt, 2010], including studies concerning groundwater modeling [Fu and G�omez-
Hern�andez, 2009; Hassan et al., 2009; Lu et al., 2012; Laloy et al., 2013].

Uncertainty analysis of hydrological models has been an important research topic for many decades (e.g.,
see reviews by Beck [1987], Liu and Gupta [2007], McMillan et al. [2011], and Moradkhani and Sorooshian
[2009]). One of the important issues is the calibration data requirement. Sorooshian et al. [1983] suggest
that at least 1 year of calibration data is needed to effectively calibrate a conceptual rainfall-runoff model,
but they state that the information contained in the calibration data is more important than the length of
the data set. Yapo et al. [1996] found that with about 8 years of calibration data, the calibration results of a
conceptual rainfall-runoff flood forecasting model are relatively insensitive to the selected period. Perrin
et al. [2007] show that robust estimates of parameter values of a rainfall-runoff model can be obtained with
350 observations sampled from a longer period. Furthermore, the specific temporal hydrological circum-
stances during the calibration period are important [Juston et al., 2009; Yapo et al., 1996; Knotters, 2001]. In
groundwater hydrology it is often assumed that the length of the calibration period required to calibrate a
time series model of groundwater dynamics is related to the response time, which is the period over which
a change in stress influences the head [e.g., Knotters and Van Walsum, 1997]. Knotters and van Walsum
[1997] reported the results of two observation wells with shallow water table depths in the Netherlands and
concluded that they only needed 4 years of calibration data to satisfactorily describe the groundwater
dynamics caused by excess precipitation. Furthermore, it is sometimes thought that a high observation fre-
quency, easily attainable with modern pressure transducers, can compensate for a short calibration period.

Understanding of the impact of the available calibration data on the predictive uncertainty in time series
modeling of groundwater dynamics is currently lacking. The objective of this study is to evaluate how the
length of the calibration period and the observation frequency influence the predictive uncertainty in time
series modeling of groundwater dynamics and to identify the main factors that affect the uncertainty. This
paper is restricted to groundwater dynamics caused by precipitation and evaporation. Both synthetic series
and long observation series are evaluated. A linear TFN model, described in section 2, is calibrated while the
calibration periods and observation frequencies are varied. The calibration method is explained in section 3.
The methods used to evaluate the uncertainty of the results are described in section 4, followed by a
description of the study area in section 5. Results for synthetic series of heads, generated with a wide range
of parameter values, are presented in section 6. Results for 18 observed series of heads with a wide range of
response times are presented in section 7. A discussion and conclusions are presented in sections 8 and 9,
respectively.

2. Transfer Function-Noise Model

The TFN model used in this research is the same as models used by, e.g., Von Asmuth et al. [2002], Obergfell
et al. [2013], and Peterson and Western [2014]. Observed heads hoðtÞ [L] are modeled as the sum of simulat-
ed heads h(t) [L] and a series of residuals r(t) [L]

hoðtÞ5hðtÞ1rðtÞ: (1)

The simulated heads are obtained through convolution of the groundwater recharge and a response func-
tion, plus a constant base level
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hðtÞ5d1

ðt

21

NðsÞhðt2sÞds; (2)

where N(t) [L/T] is the groundwater recharge, hðtÞ is the response function, and d [L] is the base level. The
recharge is calculated as

NðtÞ5PðtÞ2fEðtÞ; (3)

where P [L/T] is precipitation, E [L/T] is reference evaporation, and f is a factor that scales the reference evap-
oration to the actual evaporation and is called the evaporation factor here.

Following Von Asmuth et al. [2002], a scaled gamma function with shape parameters A [T], a [T], and n is
used for the response function

hðtÞ5A
tn21e2t=a

C nð Þan
ð0 � t � tpÞ; (4)

hðtÞ50 ðt < 0 and t > tpÞ: (5)

The scaled gamma function (equation (4)) approaches 0 for t going to infinity, but is truncated at time tp,
which is the time at which 100p percent of the response to recharge has taken place. Here p is set to 0.999.
A startup period with at least length tp must be used to include the impact of the stress on the heads at the
beginning of the simulation period.

The residuals r(t) are calculated as the differences between the observed and simulated heads

rðtÞ5hoðtÞ2hðtÞ: (6)

A noise model is used to calculate the random component of the residuals, called the innovations. The
noise model used here is equal to the noise models used by, e.g., Von Asmuth et al. [2002], Yang et al.
[2007], Peterson and Western [2014], and Shapoori et al. [2015a]. Noise decay is approximated as exponential,
such that the noise model is suitable for use with unevenly spaced head observations. More complex noise
models are not easily adapted to unevenly spaced data. The innovations v(t) [L] are computed as

vðtÞ5rðtÞ2e2Dt=arðt2DtÞ; (7)

where a [T] determines the decay rate of the noise. The exponential noise model largely removes autocorre-
lation in the residuals of many times series [e.g., Von Asmuth and Bierkens, 2005; Von Asmuth et al., 2002],
including the ones considered in this paper.

The standard deviation of the innovations rv [L] depends on the time step between them [Von Asmuth and
Bierkens, 2005; Yang et al., 2007]. The larger the time step, the larger the standard deviation. If the time step
becomes very large, the standard deviation of the innovations approaches the standard deviation of the
residuals, which is assumed to be constant. The relationship between the standard deviation of the innova-
tions and the time step Dt is (Appendix A)

rvðDtÞ5rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e22Dt=a

p
; (8)

where rr [L] is the standard deviation of the residuals.

3. Calibration

The model is calibrated to observed heads ho. Measurements of precipitation and evaporation are available
on a daily basis, while head observations are commonly available for unevenly spaced moments in time ti

(i51; 2; . . . ;M, where M is the number of observations). The head h is simulated on a daily basis and com-
pared to the available observations in order to estimate the probability distributions of in total seven
parameters: f, d, A, a, n, a, and rr. It is noted that in earlier studies by, e.g., Von Asmuth et al. [2002] and Peter-
son and Western [2014] the model is calibrated for the parameters f, A, a, n, and a, while the values of d and
rr are estimated after the calibration. The advantage of including d as one of the calibration parameters is
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that the uncertainty of this parameter is estimated
directly. Estimation of the distribution of rr is com-
mon when applying Markov Chain Monte Carlo
(MCMC) to the likelihood function.

Bayes’ theorem states that the posterior probability
of the parameters given the data is proportional to
the product of the likelihood L of the parameters
given the data and the prior probability of the
parameters [Box and Tiao, 1992]

pð/jDÞ / Lð/jDÞpð/Þ; (9)

where / stands for the parameters and D for the data. A normal likelihood function is used with uniform pri-
or distributions for all parameters. The likelihood function for the innovations v(t) is written as

L5
YM

i52

1

rvðDti21Þ
ffiffiffiffiffiffi
2p
p e

21
2

vðti Þ
rv ðDti21 Þ

� �2

; (10)

where vðtiÞ is calculated with equations (2), (6), and (7), and rvðDti21Þ is the standard deviation of vðtiÞ
(equation (8)), where Dti21 is the time step between ti21 and ti. In the remaining part of this paper the log-
likelihood function is used.

Parameter sets are sampled from the posterior probability distributions using PyMC2 [Patil et al., 2010], a
Python package for MCMC. Markov chains are obtained for all parameters. The distribution of the values in
these chains converges to a stationary distribution that equals the posterior probability distribution (for an
explanation of MCMC see, e.g., Dunn and Shultis, [2012]). The shapes of the posterior distributions are evalu-
ated to assess whether convergence to a stationary distribution was achieved and the distributions are
checked for multimodality. For the synthetic time series, the parameter values that give the largest log likeli-
hood are compared to the true parameter values. Additionally, reproducibility of the MCMC results is ascer-
tained by repetition of the parameter sampling for a number of time series.

Correlation between parameters may impede good mixing of MCMC chains. Two modifications, explained
in Appendix B, are used to reduce problems with mixing of the MCMC chains due to correlation between
the evaporation factor f and base elevation d, and between the decay factor of the noise a and the standard
deviation of the residuals rr. The distributions of the altered parameters d� [L] and r� [L] are sampled and
afterward transformed to those of d and rr. In all cases the same prior distributions (Table 1) are used.

In total 105,000 samples are drawn. The chains are started at the Maximum A Posteriori (MAP) estimates
(calculated with PyMC2’s MAP function) of the parameter values to reduce burn-in. Nonetheless, the first
5000 values are discarded, because the first parts of the chains seem to be less well mixed. A thinning factor
of 10 is used, resulting in chains of 10,000 values.

A start-up period of 1.5 times the t0:999 of the MAP estimate of the response function is included before the
beginning of the observed series of heads, such that sufficient startup data are available for sampled param-
eter sets with varying response times. The entire series of precipitation and evaporation are used to esti-
mate the MAP values.

4. Evaluation of Uncertainty

Uncertainty in simulated heads is caused by parameter uncertainty, data uncertainty, and model structural
uncertainty. All sources of uncertainty are combined in the predictive uncertainty of the model [Schoups
and Vrugt, 2010]. Uncertainty in simulated heads due to parameter uncertainty is represented by 95% credi-
ble intervals and total predictive uncertainty is represented by 95% prediction intervals. The 10,000 sampled
parameter sets in the MCMC chains each contain an estimate of the seven parameters of the TFN model.
Heads are simulated with each of the parameter sets (equation (2)). The 2.5 and 97.5 percentiles of the sim-
ulated heads give the 95% credible intervals. Residuals are added to the series of simulated heads to con-
struct the prediction intervals. For each series of heads, a series of residuals is drawn from a zero-mean

Table 1. Prior Distributions of Parameters, Used for Synthetic
and Measured Data

Parameter Prior

f U½0; 2�
d� (m) U½220; 150�
A (day) U½0; 10000�
a (day) U½1e29; 2000�
n U½0; 5�
a (day) U½1e29; 1000�
r� (m) U½1e29; 1�

Water Resources Research 10.1002/2016WR019704
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normal distribution with the standard deviation from the same parameter set as used for simulating the
heads. The 2.5 and 97.5 percentiles of the simulated heads plus residuals give the 95% prediction intervals.
The credible intervals and prediction intervals are estimated for the complete lengths of the series of
observed heads irrespective of the period used for calibration.

The Nash-Sutcliffe coefficient [Nash and Sutcliffe, 1970] is used to quantify the model fit and is calculated as
follows

NS512

X
½hoðtiÞ2hðtiÞ�2X
½hoðtiÞ2�hoðtiÞ�2

; (11)

where h is simulated with the set of parameters that, out of all the sampled parameter sets in the MCMC
chains, gives the largest log likelihood. This parameter set approaches the maximum likelihood solution
and will in the following be referred to as the ‘‘maximum likelihood estimate.’’ Nash-Sutcliffe coefficients are
calculated for three sets of observed heads: the calibration period, the validation period (all heads not used
for calibration), and the entire set of observations. It is noted that due to the long response times of ground-
water systems, time series of observed heads are rarely long enough to split into independent calibration
and validation data sets [Konikow and Bredehoeft, 1992]. Heads observed during the validation period are
influenced by stresses during the calibration period (or vice versa when the calibration period is after the
validation period).

5. Study Area

This research focuses on time series from the Netherlands, a deltaic region with a temperate maritime cli-
mate. Most precipitation infiltrates into the subsurface where a dense drainage system discharges precipita-
tion surplus [De Vries, 2007]. The groundwater table is generally shallow, with exceptions for ice-pushed
hills in the central and eastern parts of the country and uplifted areas in the southeastern part [De Vries,
2007]. Annual precipitation is �800 mm/yr, fairly evenly distributed over the year [KNMI, 2016a]. Makkink
reference evaporation is �540 mm/yr on average, but is considerably higher in summer than in winter, with
�8 mm/month in January and �90 mm/month in July (weather station ‘‘De Bilt’’ [KNMI, 2016b]).

6. Synthetic Data

In this section, the influence of the length of the calibration period and observation frequency on the uncer-
tainty of the model results is studied using synthetic data. Synthetic data enable analyzing the influence of
the different model parameters by varying them one by one. Furthermore, long series of heads can be gen-
erated with frequencies of one observation per day, which are not available in practice.

‘‘Observed’’ heads are generated on a daily basis for a 30 year period from 1 January 1975 to 31 December
2004 with precipitation and evaporation data from weather station ‘‘De Bilt’’ in the Netherlands [KNMI,
2015]. Heads h are generated with equation (2) and residuals are added to these heads to create observed
heads ho (equation (1)). The residuals r are generated using the inverse of equation (7), where the innova-
tions v are drawn from a zero-mean normal distribution. The correlated residuals represent the difference
between observed and modeled heads, which is caused by errors in the input data, errors in the output
data, and model structural errors.

Parameter values are used that are representative for deltaic regions such as the Netherlands. First a system
referred to as the ‘‘standard system’’ is considered. The results for the standard system are compared to
results for systems with shorter and longer response times and for systems with fast and slowly decaying
noise. The response time is characterized by the t0:9 value, the time at which 90% of the response has taken
place. The decay time of the noise is characterized by the s0:9 value, the time it takes for a residual to decay
by 90%.

The model is calibrated to the first 5, 10, and 20 years and to the total period of 30 years of ‘‘observed’’
heads to study the influence of the length of the calibration period. Additionally, the observed heads in
each of these four periods are sampled with time steps of 1, 15, 30, and 90 days to analyze the influence of
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the observation frequency. The model is fitted with
the same precipitation and evaporation as used for
generating the heads h.

Evaluation of the results is based on credible and pre-
diction intervals. The intervals are calculated for the
total period of 30 years irrespective of the period used
for calibration. Nash-Sutcliffe coefficients (equation
(11)) are not presented for the synthetic data, because
they vary little for the calibration periods and time
steps considered. In general, they approach the values

calculated by comparing the generated heads h, without noise, to the generated observed heads ho, which
include noise. It is noted that it is easier to obtain a good model fit for the synthetic heads than for mea-
sured heads, because the structure and distribution of the generated errors correspond exactly to the noise
model and likelihood function.

6.1. Synthetic Data Standard System
The parameter values of the standard system are given in Table 2. The response time of the standard sys-
tem is 230 days. Based on parameter estimates for series of measured heads, the value of the decay factor
of the noise a is half the value of model parameter a, such that the decay time of the noise is 115 days
(since n 5 1). The block response function, which is the impulse response function integrated over 1 day
with unit recharge, is shown in Figure 1 (red line). The Nash-Sutcliffe coefficient is �0.8 when the generated
heads h, without noise, are compared to the generated observed heads ho. As an example, the observed
heads of the total period of 30 years, sampled with a time step of 15 days (red dots), are shown in Figure 2b
together with the maximum likelihood estimate of the head (blue line), and the 95% prediction interval
(gray). Recharge calculated with the maximum likelihood estimate of the evaporation factor is shown in Fig-
ure 2a; the red line in Figure 2a represents the 1 year moving average of the recharge. The credible and pre-
diction intervals for the standard system are shown in Figure 3 for the four described calibration periods (L;
dark blue, light blue, red, and orange), each with four frequencies (time step Dt; 4 bars per color, with differ-
ent hatch marks). The intervals are averaged over the total period of 30 years. The filled parts of the bars are
the credible intervals and the complete bars are the prediction intervals.

A calibration period of 5 years (dark blue bars) gives a very large parameter and predictive uncertainty, indi-
cated by very large intervals, even with an observation frequency of one observation per day. Increasing
the length of the calibration period to 10 years (light blue bars) gives a major decrease in the intervals. The
intervals further decrease if calibration periods of 20 years (red bars) and 30 years (orange bars) are used,
but the improvement is small, especially going from 20 to 30 years. The observation frequency influences
the intervals for calibration periods of 5 and 10 years, but with calibration periods of 20 and 30 years the

influence of the observation frequency is
small.

Interestingly, the prediction intervals result-
ing from calibration on 5 years of daily head
observations (first dark blue bar) are about 2
times as large as the prediction intervals
obtained with 10 years of monthly observa-
tions (third light blue bar), while the total
number of observations is 15 times as large
for the first dark blue bar as compared to the
third light blue bar. This indicates that the
length of the calibration period is much
more important than the total number of
observations.

Furthermore, it can be seen that mainly the
uncertainty due to parameter uncertainty
(credible intervals) depends on the length of

Figure 1. True block responses for synthetic systems with three different
response times t0:9 (different values of a).

Table 2. True Parameter Values Synthetic Standard System

Parameter Value

f 0.9
d (m) 10.0
A (day) 500.0
a (day) 100.0
n 1.0
a (day) 50.0
rr (m) 0.2

Water Resources Research 10.1002/2016WR019704
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the calibration period and observation frequency. When the parameter uncertainty approaches 0, the 95%
prediction interval approaches 4 times the residual standard deviation (62rr ), which in this case equals
0.8 m.

6.2. Synthetic Data Different Systems
The value of a is adjusted to 20 days and to 500 days to represent systems with a short response time of 46
days and a long response time of 1151 days (Figure 1). The parameter a influences the total fluctuation of
the head as well. The value of A is adjusted to 260 and to 1350 days, respectively, such that the Nash-
Sutcliffe coefficients of the generated h are �0.8, similar to the standard system. In Figure 4, the credible
and prediction intervals are shown for the system with the short response time, the standard system, and
the system with the long response time. The intervals resulting from calibration on 5 years of head observa-
tions are relatively small for the system with a short response time in comparison to the other two systems,
but they are still much larger than the intervals obtained with a calibration period of 10 years. Furthermore,

the difference between the intervals of
calibration periods of 10 and 20 years
are largest for the system with the lon-
gest response time. However, the influ-
ence of the response time is relatively
small considering the large difference
in response times.

The value of a is adjusted to 10 and 250
days to generate fast-decaying noise
(decay time 23 days) and slowly decay-
ing noise (decay time 576 days), respec-
tively. The standard deviation of the
residuals is kept constant. The residuals
are shown in Figure 5. The response
function is the same as for the standard
system. The intervals of the systems
with fast and slowly decaying noise are

Δt = 1 d
Δt = 15 d
Δt = 30 d
Δt = 90 d

Cr
ed

ib
le

 in
te

rv
al

Pr
ed

ic
tio

n 
in

te
rv

al

Figure 3. Average 95% credible intervals (filled parts of bars) and prediction inter-
vals (complete bars) for total period of 30 years for standard system. Calibrated
with periods of 5, 10, 20, and 30 years (colors) and time steps of 1, 15, 30, and 90
days (hatch marks).

Figure 2. Synthetic standard system. Results for calibration period of 30 years with time step of 15 days. (a) Recharge calculated with maxi-
mum likelihood estimate of evaporation factor (blue bars) and 1 year moving average of recharge (red line). (b) Observed heads (red dots),
maximum likelihood estimate of the head (blue line) with 95% prediction intervals (gray area).
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compared to those of the standard system in Figure 6. If noise decays very fast (s0:9523 days), calibration on
5 years of head observations already gives intervals similar to those obtained with longer calibration periods,
unless the observation frequency is very small. For the system with slowly decaying noise (s0:95576 days), the
interval still reduces when the length of the calibration period is increased from 20 to 30 years, while for the
standard system this improvement is much smaller. The influence of the decay rate of the noise on the
required length of the calibration period is significant: The slower the decay of the noise, the longer the cali-
bration period that still gives a reduction in uncertainty.

Besides the response time and the decay rate of the noise, the residual standard deviation rr and response
function parameter n were varied to 0.1 and 0.3 m, and to 0.5 and 1.5, respectively (results not shown). The
residual standard deviation does not affect the required length of the calibration period and observation
frequency, although a larger residual standard deviation results, obviously, in larger intervals. The impact of
the variations of n was very small.

7. Measured Data

Eighteen time series of measured heads were selected from the national database on the subsurface in the
Netherlands [TNO, 2015/2016]. Time series were selected that are at least 20 years long and for which the
Nash-Sutcliffe coefficient of the maximum likelihood estimate obtained by calibration on the complete
series of heads is at least 0.7. Series with a wide range of response times were selected, varying from t0:95

60 days to t0:9 5 1179 days. A map with the locations of the 18 selected piezometers is shown in Figure 7.
The closest weather stations with rainfall and
evaporation data were used for each analy-
sis. Details on the piezometers, mean water
levels, geohydrological settings, and weather
stations are given in Table S1 of Supporting
Information.

For each piezometer, the model is calibrated
to the complete series and to periods of 5,
10, 20, and, if available, 30 years of observed
heads. Results do not only depend on the
length of the calibration period, but also on
which part of a series is used for calibration.
Therefore, the model is calibrated to a range
of periods with starting dates at 5 year inter-
vals. The heads were measured approximate-
ly 2 times per month. Time series with

Figure 4. Average 95% credible intervals (filled parts of bars) and prediction intervals (complete bars) for total period of 30 years for mod-
els with three different response times. Standard system is shown in the middle. Calibrated with periods of 5, 10, 20, and 30 years and
time steps of 1, 15, 30, and 90 days.

Figure 5. Generated residuals for systems with three different noise decay
times s0:9 (different values of a).
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frequencies of one observation per month and one observation per 3 months are approximated by sam-
pling every second and sixth observed head, respectively, to analyze the influence of the observation fre-
quency. In the following, first the results for one piezometer are discussed in detail, followed by the results
for all piezometers.

7.1. Piezometer B32E0031
Piezometer B32E0031 is located in the central part of the Netherlands (number 14 in Figure 7). The piezom-
eter is installed in an unconfined, sandy aquifer with a mean head that is 1.2 m below the surface; the
screen is 19–20 m below the surface. The series of observed heads runs from November 1968 to October
2003. The head is modeled with precipitation and evaporation data from weather stations Putten and De

Bilt, respectively. The observed data
and model results for calibration on
the complete series are shown in Fig-
ure 8. The Nash-Sutcliffe coefficient is
relatively high (0.83), but the mean pre-
diction interval is 0.80 m, which is still
45% of the difference between the 2.5
and 97.5 percentiles of the observed
heads. In the following, the difference
between the 2.5 and 97.5 percentiles of
the observed heads will be referred to
as the ‘‘head range.’’ The estimated
response time t0:9 is 559 days.

Intervals and Nash-Sutcliffe coefficients
obtained with calibration periods of
different lengths and starting times are
given in Figure 9. The intervals are nor-
malized through division by the head
range, to enable comparison to the
results of other piezometers in the next
section. The filled parts of the bars in
Figure 9a represent the credible inter-
vals and the total bars the prediction
intervals. The lengths of the calibration
periods are indicated with colors. The
credible intervals and prediction inter-
vals are summarized on the right-hand

Figure 6. Average 95% credible intervals (filled parts of bars) and prediction intervals (complete bars) for total period of 30 years for mod-
els with three different noise decay times. Standard system is shown in the middle. Calibrated with periods of 5, 10, 20, and 30 years and
time steps of 1, 15, 30, and 90 days.

Figure 7. Locations of piezometers in the Netherlands. See Table S1 in Supporting
Information for details.
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side of the figure. The dots indicate the averages found with calibration periods of a certain length, and the
colored vertical lines range from the smallest to the largest values. Similar to the synthetic data (section 6), the
parameter uncertainty (credible intervals) decreases when the length of the calibration period is increased,

Figure 8. Recharge, observed, and modeled heads for piezometer B32E0031. Results obtained by calibration on all observed heads.
(a) Recharge calculated with maximum likelihood estimate of evaporation factor (blue bars) and 1 year moving average of recharge (red
line). (b) Observed heads (red dots), maximum likelihood estimate of the head (blue line) with 95% prediction intervals (gray area).

Summary

Summary

Figure 9. Results for piezometer B32E0031, obtained with calibration periods of 5, 10, 20, and 30 years starting at seven dates, with fre-
quency of approximately two observations per month. (a) Normalized 95% credible intervals (filled parts of bars) and prediction intervals
(complete bars) averaged over the complete period. (b) Nash-Sutcliffe coefficients for calibration period (empty bars), validation period
(hatched bars), and for complete series (filled bars). Right-hand sides: summaries. Colored vertical lines range from minimum to maximum
values, indicated by horizontal line markers. Dots indicate averages.
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and the prediction interval eventually approaches 4 times the estimated residual standard deviation. Calibra-
tion on 5 years of observed heads results in a large uncertainty, as shown in Figure 9a (dark blue). For six of
the seven calibration periods of 5 years, the 95% prediction intervals are at least 30% larger than the head
range. Calibration on 10 years of observations gives a large improvement for some starting dates, but hardly
any improvement for other starting dates. It is noted that for this specific example the largest intervals are
found for calibration periods at the beginning of the measurements, but this seems to be a coincidence and
varies for the other piezometers considered. Overall, relatively small intervals are obtained with 20 years of
observations. The intervals do not decrease much further when the length of the calibration period is
increased to 30 years. The smallest 95% prediction intervals are �40–50% of the head range.

The Nash-Sutcliffe coefficients do not improve anymore either when extending the calibration period
from 20 to 30 years, as can be seen in Figure 9b. The Nash-Sutcliffe coefficients calculated with the sub-
set of observed heads used for calibration are represented by empty bars, the Nash-Sutcliffe coefficients
calculated with the validation data are represented by hatched bars, and the Nash-Sutcliffe coefficients
calculated with the complete series of observed heads are represented by filled bars. The Nash-Sutcliffe
coefficients are summarized on the right-hand side of the figure. For a calibration period of 5 years, the
Nash-Sutcliffe coefficients calculated for the calibration data are above 0.8 for six of the seven periods,
but the Nash-Sutcliffe coefficients calculated for the validation data and for the complete series are gen-
erally lower. For calibration periods of 10 years, the differences between the Nash-Sutcliffe coefficients
calculated with the calibration data, validation data, and total period are smaller, except for the calibra-
tion period starting in 1968. The Nash-Sutcliffe coefficients of the validation period and those of all the
data are similar to the Nash-Sutcliffe coefficients of the calibration data for calibration periods of 20
years. Further increasing the calibration period to 30 years leads to a decrease in the Nash-Sutcliffe coef-
ficient for the validation data for the calibration period starting in 1973, but it is noted that the calibra-
tion periods of 30 years approach the total period, such that the number of observations left for
validation is very small.

7.2. Analysis of All 18 Piezometers
7.2.1. Influence Length of Calibration Period on Uncertainty Intervals
For each piezometer, the credible and prediction intervals are estimated for different lengths and starting
times of the calibration periods. The intervals are normalized through division by the head range in each
piezometer. The intervals for calibration periods of 10, 20, and, if available, 30 years are plotted against the
maximum likelihood estimates of the response times of the 18 systems, obtained by calibration on the com-
plete series (Figure 10). Three colored lines are plotted for each piezometer, similar to the summaries for
piezometer B32E0031 on the right-hand side of Figure 9a. The intervals for calibration periods of 5 years are
left out of Figure 10, because they vary widely and are often very large.

In general, the credible intervals (Figure 10a), indicating parameter uncertainty, decrease if the length of the
calibration period is increased. However, the prediction intervals (Figure 10b), indicating total predictive
uncertainty, are sometimes a little smaller for shorter calibration periods. This can be seen from the blue
vertical lines in Figure 10b, which extend below the red and orange lines for the majority of the piezome-
ters. The difference between the credible and prediction intervals is determined by the residuals. Results
indicate that on average the standard deviation of the residuals is underestimated for shorter calibration
periods, explaining why the prediction intervals are sometimes smaller. A figure with the maximum likeli-
hood estimates of the standard deviation of the residuals for the different calibration periods is included in
Figure S2 of Supporting Information.

The prediction intervals obtained with a calibration period of 5 years are on average 1.22 times the head
range, and eight of the piezometers even have one or more calibration periods that give prediction inter-
vals larger than 2 times the head range. On average the prediction intervals are reduced to 0.63 times the
head range if the length of the calibration period is increased to 10 years (Figure 10b). However, the blue
vertical lines show that there is a large spread in these intervals for most piezometers, so the uncertainty
depends on which period of 10 years is used. The prediction intervals obtained with calibration periods of
20 years (red lines) and 30 years (orange lines) vary much less and are on average 0.53 and 0.54 times the
head range. Concluding, accurate results cannot be expected with a calibration period of 5 years, relatively
accurate results are generally obtained with calibration periods of 20 years, while further improvement by
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calibration on 30 years of observations is small to negligible. It is noted that for five of the piezometers no
calibration periods of 30 years are available, because the total period of observed heads is too short.

The influence of the length of the calibration period is not clearly related to the response time. The estimat-
ed response times vary between 60 and 1200 days. For the three piezometers with the shortest response
times, the credible intervals obtained with calibration periods of 10 years (blue lines) seem to be relatively
small for all calibration periods, but this also holds for some of the piezometers with larger response times.
In general, the length of the calibration period that results in relatively small intervals is much larger than
the response time.

Although no relation between the response time and the required length of the calibration period was
observed, the required length of the calibration period seems to be related to the decay time of the noise,
similar to the results for the synthetic data (section 6.2). In Figure 11 the credible intervals are plotted
against the maximum likelihood estimates of the decay time of the noise for each specific calibration peri-
od, for all piezometers. The intervals obtained with calibration periods of 10, 20, and 30 years are shown as
blue, red, and orange dots, respectively. The credible intervals generally increase with the decay time of the
noise. This trend is not as clearly seen when the prediction intervals are plotted against the decay time of
the noise (not shown).

It can be expected that the decay time of the noise is related to the response time of the system. Therefore,
it may be surprising that a relationship was observed between the required length of the calibration period
and the decay time of the noise s0:9 and not between the required length of the calibration period and the
response time t0:9. The correlation coefficient of the maximum likelihood estimates of s0:9 and t0:9 is 0.79
when calibrating on the complete time series, but much lower when calibrating on shorter sections of the
time series. Differences in the estimated decay time of the noise for different parts of the series might be
one of the causes for the large variation in the intervals for calibration periods of 5 and 10 years.

Figure 10. Normalized 95% (a) credible intervals and (b) prediction intervals for calibration periods of 10, 20, and, if available, 30 years,
against estimated response time for each location. Colored vertical lines range from minimums to maximums, indicated by horizontal line
markers. Dots indicate averages.
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7.2.2. Influence Length of Calibration Period on Nash-Sutcliffe Coefficients
The Nash-Sutcliffe coefficients are calculated for calibration periods of 5, 10, 20, and 30 years. In this section,
the Nash-Sutcliffe coefficients are reported for the complete series of observed heads ho (equation (11)).
The calibration periods of 20 and, especially, 30 years approach the complete periods of observed heads for
many of the series, such that the number of observations left is too small for an independent validation.
Nash-Sutcliffe coefficients for the validation period are likely smaller (see, e.g., Figure 9b).

The Nash-Sutcliffe coefficients found with calibration periods of 10, 20 and, if available, 30 years are plotted
against the estimated response time for each piezometer in Figure 12, similar to the summary on the right-
hand side of Figure 9b for piezometer B32E0031. Calibration periods of 5 years (not included in the figure)
may result in high or low Nash-Sutcliffe coefficients, depending on which period of 5 years is used for cali-
bration and vary between 20.44 and 0.93, with an average of 0.66. The average values of the Nash-Sutcliffe
coefficient for each piezometer, indicated by the dots in Figure 12, increase if the length of the calibration
period is increased (the red and orange dots are above the blue dots). The average Nash-Sutcliffe coefficient
for all piezometers for a calibration period of 10 years (blue) is 0.72. For a calibration period of 20 years (red)
it is 0.76 and for a calibration period of 30 years (orange) it is 0.77. Furthermore, the vertical lines in the fig-
ure show that the spread for the calibration periods of 10 years (blue) is larger than that for calibration peri-
ods of 20 years (red) and 30 years (orange). Moreover, some very low coefficients are obtained with
calibration periods of 10 years. The smallest Nash-Sutcliffe coefficient for a calibration period of 10 years is

Figure 12. Nash-Sutcliffe coefficients for calibration periods of 10, 20 and, if available, 30 years, against estimated response time for each
location. Nash-Sutcliffe coefficients are calculated using complete series of heads. Colored vertical lines range from minimum to maximum
values, indicated by horizontal line markers. Dots indicate averages.

Figure 11. Normalized 95% credible intervals for calibration periods of 10, 20, and 30 years versus estimated decay time of the noise for
each calibration period.
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0.11. For a calibration period of 20 years the smallest value is 0.59 and for a calibration period of 30 years it
is 0.70.

The influence of the calibration period on the Nash-Sutcliffe coefficients does not seem to be strongly relat-
ed to the response time, although the largest variation in the Nash-Sutcliffe coefficients is found for the two
piezometers with the longest response times. Also, the smallest Nash-Sutcliffe coefficients for calibration
periods of 10 and 20 years are found for these two piezometers. No relationship between the influence of
the calibration period on the Nash-Sutcliffe coefficients and the decay time of the noise was found.
7.2.3. Influence Observation Frequency
The influence of the observation frequency is analyzed by computing the credible and prediction intervals
for frequencies of one observation per month and one observation per 3 months and dividing them by the
intervals obtained with a frequency of two observations per month. Additionally, the differences between
the Nash-Sutcliffe coefficients for the different frequencies are calculated. Results are presented in Table 3.

With a calibration period of 10 years, the credible interval is 1.4 times as large on average if the observation
frequency is decreased from two observations per month to one observation per month, while the predic-
tion interval is only 1.1 times as large on average. However, the maximum differences are large. The maxi-
mum increases in the credible and prediction intervals are 4.1 and 2.3, respectively, when the frequency is
decreased from two observations per month to one observation per month. The average differences in the
Nash-Sutcliffe coefficients found with the different observation frequencies are negligible if the length of
the calibration period is 10 years. The largest decrease in the Nash-Sutcliffe coefficients is 20.29 if the fre-
quency is decreased from two observations per month to one observation per month, and 21.23 if the fre-
quency is decreased from two observations per month to one observation per 3 months.

Changes in the uncertainty intervals and Nash-Sutcliffe coefficients due to changes in the observation fre-
quency are much smaller for longer calibration periods. With a calibration period of 20 years, the prediction
intervals obtained with frequencies of one and two observations per month are on average the same. The
largest increase is 1.2. The credible intervals are 1.1 times as large on average, while the largest increase is
1.5. The differences are larger for a frequency of one observation per 3 months. Surprisingly, on average the
Nash-Sutcliffe coefficients increase slightly if the observation frequency is decreased. For some of the indi-
vidual cases the Nash-Sutcliffe coefficients decrease, but even if the frequency is decreased to one observa-
tion per 3 months the largest decrease is small, with 20.03.

For the series considered, the longer the calibration period, the smaller the influence of the observation fre-
quency. Furthermore, the observation frequency has a larger effect on the parameter uncertainty (the credi-
ble intervals) than on the prediction intervals.

The length of the calibration period seems to be more important than the observation frequency. The aver-
age normalized credible and prediction intervals estimated with a calibration period of 10 years and fre-
quency of two observations per month are 0.28 and 0.63, respectively (Table 4). If the period is doubled to
20 years and the frequency is halved to one observation per month, meaning that the total numbers of

Table 3. Influence Observation Frequencya

Credible Intervals Prediction Intervals Nash-Sutcliffe

1 Month 3 Months 1 Month 3 Months 1 Month 3 Months

5 years avg. 1.5 4.1 1.2 2.2 20.01 20.19
max. 7.1 53.8 3.5 20.3 20.79 210.00

10 years avg. 1.4 2.5 1.1 1.4 0.00 20.01
max. 4.1 8.1 2.3 3.2 20.29 21.23

20 years avg. 1.1 1.7 1.0 1.1 0.01 0.01
max. 1.5 4.5 1.2 1.8 20.02 20.03

30 years avg. 1.1 1.4 1.0 1.0 0.01 0.01
max. 1.3 2.1 1.0 1.2 20.01 20.02

aIntervals obtained by calibration on heads observed with frequencies of 1 per month and 1 per 3 months divided by intervals
obtained by calibration on heads observed with a frequency of 2 per month. Average relative intervals (–) and maximum relative inter-
vals (–) are given. Nash-Sutcliffe coefficients (–) obtained by calibration on heads observed with frequencies of 1 per month and 1 per 3
months minus Nash-Sutcliffe coefficients obtained by calibration on heads observed with a frequency of 2 per month. Nash-Sutcliffe
coefficients were calculated with the complete series of observed heads. Average differences and largest decreases in Nash-Sutcliffe
coefficients are given.
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observations are approximately the same,
the average normalized credible and pre-
diction intervals are reduced to 0.15 and
0.54, respectively. Even with a frequency of
one observation per 3 months for 20 years,
the intervals are still smaller than the inter-
vals obtained with two observations per
month for 10 years (on average 0.21 and
0.59, respectively). Moreover, average Nash-

Sutcliffe coefficients calculated for the complete time series increase from 0.72 to 0.77 if the length of the
calibration period is increased from 10 to 20 years, while the frequency is decreased from two observations
per month to one observation per month.

8. Discussion

This study is limited to time series of head observations that could be simulated well with a linear TFN mod-
el with precipitation and evaporation as the only input series. Other series may require more stresses, for
example pumping [e.g., Obergfell et al., 2013; Shapoori et al., 2015a; Von Asmuth et al., 2008], which may
influence the required length of the calibration period and observation frequency. Changes to a system
may cause heterogeneity in observed series of heads. The longer the series, the more likely it is that this
problem occurs. Series with significant heterogeneity, such as a linear trend or step changes, were not used
for this study.

A good fit was obtained for the series considered in this paper with a linear TFN model. The actual response
is, most likely, at least slightly nonlinear. In deltaic regions with shallow groundwater tables and a temperate
maritime climate, nonlinearity may be caused by, e.g., variations in moisture content of the unsaturated
zone, variations in soil layers, and the presence of drainage systems [e.g., Knotters, 2001]. Nonlinearity was
not included in the synthetic data, resulting in a model fit that was much less dependent on the length of
the calibration period than for the measured data. Inclusion of the nonlinear response in the time series
model may reduce the required length of the calibration period for the measured data, but this was not
studied. Nonlinear behavior may also explain why residual standard deviations are underestimated for short
calibration periods.

In the study area, runoff does not play a major role, as rainfall rarely exceeds infiltration capacity [De Vries,
2007]. However, relatively wet and relatively dry years may be identified in the weather data, resulting in rel-
atively high peaks and low valleys in the head data (e.g., Figure 8). Knotters and Van Walsum [1997] and
Knotters [2001] stated that a proper calibration period should include head variations that reflect the entire
fluctuation range. Calibration on a 5 year period that includes a very wet and a very dry year (i.e., 1993–
1998 in Figure 8) resulted in relatively small credible and prediction intervals (sixth dark blue bar in Figure
9a), but still significantly larger than the credible and prediction intervals using 20 years of calibration data
(red bars in Figure 9a). Climates with long wet and dry periods and significant runoff, e.g., (sub)tropical
monsoon climates, can likely not be simulated accurately with a linear model, but require a nonlinear model
[e.g., Peterson and Western, 2014]. It is expected that longer calibration periods are needed for climates with
long wet and dry periods, but this was not studied.

Sensitivity to the calibration data may depend on the calibration method used [Schoups and Vrugt, 2010;
Sorooshian et al., 1983]. In this research the MCMC method was used and it was assumed that the innova-
tions have a normal distribution. Research is needed to find out how deviations from normality impact the
influence of the length of the calibration period and observation frequency on the uncertainty. Further-
more, wide uniform prior distributions were used to represent uninformative priors and focus on the infor-
mation contained in the data. In practice, if prior knowledge is available, narrower or other distributions
may be used, which may limit the uncertainty of the model results.

Results indicate that the required length of the calibration period is related to the decay time of the noise.
The larger the temporal correlation in the noise, the more difficult it is to distinguish the deterministic and
stochastic parts of the model, and the longer the required calibration period. For long calibration periods,
strong correlation was found between the decay time of the noise and the response time of the system.

Table 4. Average Normalized Credible and Prediction Intervals (–) and
Average Nash-Sutcliffe Coefficients (–), for Calibration Periods of 10 Years
With Two Observations per Month and Calibration Periods of 20 Years
With One Observation per Month and One Observation per 3 Months

c.i. p.i. N.S.

10 years, 2 per month 0.28 0.63 0.72
20 years, 1 per month 0.15 0.54 0.77
20 years, 1 per 3 months 0.21 0.59 0.78
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One of the causes of this correlation may be that an error in observed precipitation or evaporation has a
longer effect on the model results when the response time is longer. A long decay time may also indicate
that the relationship between recharge and heads is not sufficiently described by the (linear) transfer
part of the model. Although only time series were used for which the linear model gives a good fit (Nash-
Sutcliffe coefficients of at least 0.7), it cannot be excluded that a better model may reveal a relationship
between the required calibration period and the response time.

9. Conclusions

The influence of the length of the calibration period and observation frequency on predictive uncertainty in
time series modeling of groundwater dynamics was investigated. Head series were used that could be mod-
eled with a linear Transfer Function-Noise (TFN) model. Input series were precipitation and evaporation in
the Netherlands, a deltaic region with predominantly shallow groundwater tables in a temperate maritime
climate. Uncertainty in model predictions, caused by data uncertainty, model structural uncertainty, and
parameter uncertainty, is inevitable, even if large amounts of calibration data are available. Increasing the
length of the calibration period and observation frequency decreases the uncertainty of the estimated
parameter values. When the parameter uncertainty approaches 0, the 95% prediction intervals approach 4
times the standard deviation of the residuals (62rr ).

Results for both synthetic and observed data indicate that the length of the calibration period is much
more important than the total number of observations. Long calibration periods with a small observation
frequency contain more information than short calibration periods with a high observation frequency, while
the total number of observations is similar. This means that a short calibration period cannot be compensat-
ed by a high observation frequency.

No strong relation between the required length of the calibration period and the response time was
observed, but results indicate that the required length of the calibration period is related to the decay time
of the noise. The decay of the noise is slower when the temporal correlation in the noise is larger. As a
result, it is more difficult to distinguish the deterministic and stochastic parts of the model, and the required
calibration period is longer. The estimated response time of the system and the decay time of the noise are
strongly correlated when calibrating on long series of observed heads, but correlation is much weaker
when calibrating on shorter sections of the series. Further research is needed to study how noise decay is
related to the characteristics of the system.

Relatively long calibration periods are required to minimize the uncertainty, both for systems with
short and long response times. For the 18 piezometers studied, the 95% prediction intervals obtained
with a calibration period of 5 years were on average �20% larger than the head range. Only for cases
with very fast decaying noise, relatively certain results were obtained with a calibration period of 5
years. The results improved significantly for calibration periods of 10 years, but varied widely depend-
ing on the specific period used. For calibration periods of 20 years variation was much smaller. The
credible and prediction intervals for the 18 piezometers could be reduced to �10% and �50% of the
head range, respectively. Further improvement was relatively small when the calibration period was
increased to 30 years.

Appendix A: Innovation Standard Deviation

The time-step-dependent standard deviation of the innovations rvðDtÞ can be written as a function of
the standard deviation of the residuals rr. An equation for the residuals is obtained from equation (7)
as

rðtÞ5e2Dt=arðt2DtÞ1vðtÞ: (A1)

Taking the variance of both sides of equation (A1) gives

r2
r ðtÞ5e22Dt=ar2

r ðt2DtÞ1r2
vðtÞ12e2Dt=aCovðrðt2DtÞ; vðtÞÞ: (A2)

Assuming that the residual standard deviation is time-independent and that the covariance between rðt2DtÞ
and v(t) is zero, the innovation and residual standard deviations are related as
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rvðDtÞ5rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e22Dt=a

p
: (A3)

Appendix B: Reparameterizations

The averages are subtracted from the precipitation P and reference evaporation E to reduce problems with
mixing of the MCMC chains due to correlation between the evaporation factor f and the base elevation d.
Instead of the distribution of d, the distribution of d� [L] is estimated

hðtÞ5d�1
ðt

21

ðPðsÞ2�PÞhðt2sÞds2f
ðt

21

ðEðsÞ2�EÞhðt2sÞds: (B1)

The trace of d� is transformed back to d as

d5d�2Að�P2f �EÞ: (B2)

The parameter r� [L] is introduced to reduce mixing problems due to correlation between the decay factor
of the noise a and the standard deviation of the residuals rr.

r�5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e22Dt=a

p
rr ; (B3)

where Dt is the average time step between the observations. The innovation standard deviation (equation
(8)) may be written as

rvðDtÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e22Dt=a
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e22Dt=a

p r�: (B4)

The trace of r� is transformed back to rr as

rr5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12e22Dt=a
p r�: (B5)
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