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Notations 

Roman [unit] 

a element of state matrix 

a speed of sound mis 
A state or system matrix 

b element of control matrix 

bref aerodynamic reference length m 

B control input matrix 

eref aerodynamic reference length m 

C output matrix 

Co drag-force coefficient 

Cl roll-moment coefficient 

CL lift-force coefficient 

Cm pitch-moment coefficient 

Cn yaw-moment coefficient 

Cs side-force coefficient 

0 drag N 

D direct transmission matrix 

gr acceleration due to gravity in radial direction m/s2 

go acceleration due to gravity in meridional direction m/s2 

h height m 

identity matrix 

I moment (product) of inertia kg m2 

J cost crite rion 

K control gain 1/rad 

K control-gain matrix 

L lift N 

L' roll moment Nm 

m mass kg 

M Mach number 

M' pitch moment Nm 
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NI yaw moment Nm 
p roll rate rad/s 
p period s 
P solution of matrix Lyapunov equation 
q pitch rate rad/s 

Qdyn dynamic pressure N/m2 

Q control deviation weight matrix 
r yaw rate rad/s 
R modulus of position vector m 
R control ettort weight matrix 

Re equatorial radius m 
S side force N 
S square root of R 

Sref aerodynamic reference area m2 

t time s 
T 1 half or doubling time s 

"2 

Tx roll-thruster moment Nm 
Ty pitch-thruster moment Nm 
Tz yaw-thruster moment Nm 
u control vector 

UI independent control vector 

V modulus of velocity vector mis 
V Lyapunov function 
x state vector 
y output vector 
z modulus of a complex number 
X, Y, Z axes 

Greek 

a angle of atlack rad 
p angle of sideslip rad 
y flight-path angle rad 

° geocentric latitude rad 

°a aileron deflection angle rad 
Ob body-flap deflection angle rad 
oe elevator deflection angle rad 
or rudder deflection angle rad 
Ow wing-flap deflection angle rad 
d perturbation 
ç damping ratio 
e argument of complex number rad 
À. eigenvalue 



I.l. gravitation parameter m3/s2 

~ eigenvector 

p (atmospheric) density kg/m3 

cr bank angle rad 

't geocentric longitude rad 

X heading rad 

web rotational rate of the central body rad/s 

wn eigenfrequency rad/s 

w rotation vector rad/s 

Indices 

0 nominal state 

a aileron 

b body flap 

B body frame 

c commanded value 

cb central body 

e elevator 

f final , finite 

p in direction of roll rate 

q in direction of pitch rate 

r in direction of yaw rate 

r rudder 

r, R in direction of position vector 

V in direction of velocity 

w elevon 

x, y, z along X-, Y- and Z-axis 

cr in direction of angle of attack 

~ in direction of angle of sideslip 

y in direction of flight-path angle 

0 in direction of latitude 

cr in direction of bank angle 

X in direction of heading 

Abbreviations 

ACS Aerodynamic Control System 

c.o.m. centre of mass 

CPU Central Processing Unit 

d.o.f. degree of freedom 

FCS Flight Control System 

GNC Guidance, Navigation and Control 



LOG 

LOR 

MIMO 

MRAC 

PID 

RCS 

START 

STR 

Linear Ouadratic Gaussian 

Linear Ouadratic Regulator 

Multiple Input, Multiple Output 

Model Reference Adaptive Control 

Proportional, Integral and Derivative 

Reaction Control System 

Simulation Tooi for Atmospheric Re-entry Trajectories 

Self-Tuning Regulator 



Chapter 1 

Introduction 

During all phases in the design and operations of space vehicles, computer simulation of the 

flight performance plays an important role. Models of the vehicle and the environment can be 

simpie, to get a first impression of the feasibility of a vehicle design or a particular mission, or 

can be very detailed when, for instance, the influence of aeroelasticity on the performance of 

an attitude-control system has to be studied. Within the framework of an ongoing research at 
the Faculty of Aerospace Engineering, Delft University of Technology, the development of a 
flight-simulation tooi has been initiated (Mooij, 1994) with which, amongst others, the guided 

and controlled ascent of air-breathing space planes subjected to disturbances and model 

uncertainties can be analysed. 

The Simulation Tooi for Atmospheric Re-entry Trajectories (START) has been selected to 

serve as a basis for further development. The original version of START did not include any 

guidance and control modeis, nor propulsion systems and the related variabie mass properties. 

For a gradual development of START to a tooi , capable of.analysing the ascent missions that 

we mentioned before, several phases have been defined (Mooij, 1994). Current research 

focuses on the guided and contraIled flight of unpowered, winged re-entry vehicles. A major 

step herein is the development of an attitude-control system. 

In th is report we describe the design of such an attitude-control system for a selected 
unpowered, winged re-entry vehicle . Before we come to a discussion of attitude-contral systems 

in th is chapter, we begin by giving some background information on re-entry missions and how 

to increase mission success by incorporating guidance, navigation and contral (Section 1.1). 

In the succeeding Section 1.2, we will present the attitude contral of winged re-entry vehicles. 

Section 1.3 intraduces several attitude-contral concepts and one wil! be selected to employ as 
our design (Iinear state feedback with gain scheduling) . In Section 1.4, finally, the design 

process of the selected control system is detailed and an overview of the chapters of this report 

is given. 



1.1. Background. 

Two important aspects of the entry and descent of space vehicles are the tactical aspect of 

having control over the time and location of landing and the severe mechanical and thermal 

loading on the vehicle. For manned missions, for instance, the maximum deceleration is usually 

limited by an upper bound of 3 9 to save the occupants from discomfort or worse. Also in case 

of unmanned (scientific) missions a too strong deceleration might be harmful to the on-board 

instruments. The thermalload, e.g., the maximum heat flux, the wall temperature in the stag

nation point and the integrated heat load, define to a large extent the design and therefore also 

the mass of the thermal protection system, so obviously we want to have the most favourable 

load on the vehicle. However, first of all a winged re-entry vehicle like the American Space 

Shuttle is supposed to land on an air strip, so its trajectory should be targeted to the landing 

location right on from entry. And, in case of the parachute descent of the Apollo capsules, it 

was important that it would splash down in the ocean near the recovery ships. 

During the process of mission analysis and miss ion design, an optimal trajectory is 
computed which usually satisfies trajectory constraints (e.g., a maximum allowable thermalload) 
and end conditions (e.g., the landing place in case of a re-entry mission). Once th is so-called 

nominal trajectory has been defined it must be verified that the vehicle can actually fly this 

trajectory, or, in other words, whether the vehicle can execute the required manoeuvres without 

violating any constraints. Furthermore, it must be guaranteed that the vehicle will still be able 

to fulfil its mission when it encounters (unforeseen) disturbances which make it deviate from its 

nominal path. To ensure mission success, the space vehicle is equipped with a so-called Guid

ance, Navigation and Control system (GNC system). 

The task of the guidance system is to generate stee ring commands, e.g., a commanded 

attitude or thrust level, taking a reference state, trajectory constraints and/or a final state into 

account. For th is task, the system needs input from the outside world, for instance the current 

actual state. These data have to be provided by the navigation system, using sensor informa

tion and predefined theoretical modeis. The control system has to take care that the stee ring 

commands are carried out, such that, for example, the actual attitude equals the commanded 

attitude in a reasonably short time and that th is attitude is dynamically stabie (trim stability) . To 

achieve this, the control system may drive aerodynamic control surfaces, reaction-control 

wheels and thrusters, etc. 

The design of a GNC system is usually cent red around a nominal mission that is free from 

disturbances. The environment is modelled at a certain level of complexity only and also the 

description of the vehicie is of course not infinitely accurate. An important question is whether 

the GNC system wil! be able to steer and control the vehicle in the presence of all kinds of 

uncertainties that it is bound to encounter during the actual mission. One way to assure this is 

to design a very robust system 1. But the next question th at arises then is: how robust should 

1 Robustness is delined as the particular property that a control system must possess lor it to operate 
properly in realistic situations (Shahian and Hassul, 1993). Mathematically, it means that the controller must not 
only work lor the system that it has been designed lor, but lor a whole lamily ol (similar) systems. 1I the controller 
is stabie lor a set ol systems whose parameters deviate substantially Irom the nominal system, then the controller 
is said to have robust stability. 
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our system be? A too robust system might negatively influence the flying qualities and 
manoeuvrability and if the system is not robust enough, we can still end up with a severe 
control problem. It is therefore very important that al ready during the design process we study 

as many uncertainties as possible to see how our guidance and control system will deal with 

them. Usually what one does is, once the GNC system has been developed for the nominal 

mission, simulating a number of test cases with different error sources included, and with all 

dynamic, vehicle and environment models as accurate as possible. 

In Mooij (TO BE PUBLISHED) such a sensitivity analysis of a GNC system is described. That 
analysis is centred around the HORUS-2B, an unpowered, winged re-entry vehicle that re

sembles the Space Shuttle (see also Fig. 1.1). Initially the HORUS was designed as an upper 

stage of the Ariane launcher. Later on, the concept was changed and it became the rocket

powered second stage of the German Sänger Two-Stage-To-Orbit space plane. A brief descrip

tion of the mission will follow below. 

& oa 

Fig. 1.1 - The HORUS-2B (MBB, 1988a). 

After launch and orbital operations, it re-enters the atmosphere at an altitude of 120 km and 

the vehicle will begin its voyage back to its landing site, the European launch base in Kourou, 

French Guyana. The re-entry phase ends wh en HORUS is at a distance of about 80 km from 

the runway. It is said that the vehicle has reached the Terminal Area, which marks the begin

ning of the next mission phase in case of a winged re-entry vehicle. We will not study that 

phase, however. 
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The re-entry guidance system should track the prescribed trajectory as weil as possible, 

while responding to disturbances and model errors by performing the appropriate manoeuvres. 
But the prescribed trajectory should not be followed at any cost because reaching the landing 

. area without violating the constraints is the major mission objective. So another design goal is 

to limit the demands on the flight control system while being applicable to any reasonable ref

erence trajectory. Since HOR US is basically an unpowered vehicle, only two steering variables 

are available, i.e., the angle of attack a and the bank angle (j (the angle of sideslip ~ is 

considered to be a disturbance, and will always be commanded to zero) . For an efficient guid

ance, the nominal trajectory must provide sufficient margins for varying a and (j. This is also 

true for the path constraints, of course, and especially the thermal loads should remain weil 

below the critical limits. 

A fundamental functional separation in the HORUS guidance is the subdivision of the hor

izontal and vertical entry guidance, corresponding with the symmetric and asymmetric motion 

of the vehicle. The vertical flight path is controlled by adjusting the angle of attack and the 
absolute value of the bank angle, while the sign of the bank angle is provided by the horizontal 
guidance (MBS, 1988b). 

To begin with the latter, this guidance controller steers the HORUS towards a targeting 

point at some 80 km from the runway. As aresuit from vertical guidance by means of the 

absolute bank angle, a lateral (or asymmetric) motion is introduced that needs to be compensat

ed for, such that the ave rage bank angle is zero and the vehicle will keep on heading towards 

the target. The reference parameters for the horizontal guidance logic are the actual heading 
of the vehicle and the heading of a direct trajectory towards the targeting point. The difference 
between the two is the so-called heading error, which has to be kept sufficiently smal!. The 

controller uses a predefined heading-error de ad band to change the sign of the bank angle the 

moment the heading error exceeds the dead-band value. The corresponding manoeuvre is 

known as a bank reversal, and results in so-called 8-turns as is also the case with the Space 

Shuttle. 

The objectives of the vertical guidance are to: 

arrive at the Terminal-Area interface with a prescribed total energy and altitude (or velocity), 

• meet the flight-path constraints during the flight. 

To meet these objectives, the vertical guidance is divided into a separate energy and altitude 

control. The total energy, the sum of altitude-dependent potential and velocity-dependent kinetic 

energy, wiJl be controlled such that only the final value at the Terminal-Area interface wiJl be 
met with no direct effect on the constraints during the flight. The internal sharing of potential and 

kinetic energy, on the other hand, wiJl affect the constraints through the altitude-velocity relation. 

The decrease of total energy is due to the working of the atmosphere on the vehicle, in the 

form of the drag force. So to influence the difference between actual and reference energy, the 

dissipated energy due to drag can be changed. Since one of the control parameters to change 

the drag of the vehicle is the angle of attack, energy control is accomplished by varying this 

parameter. Altitude control is realised by variation of the vertical component of the lift force . 
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Whereas the angle of attack influences the lift force in absolute sense, by changing the bank 
angle th is force can be rotated about the velocity vector, thus resulting in two components per
pendicular to the trajeetory, i.e., one vertical and one lateral. The vertical component defines 

the descent rate, so by changing the (absolute value of the) bank angle we can control the 

variation in altitude. Note that the lateral component ot the lift resulls in a motion in the 

horizontal plane and thus a variation in heading. For Ihis reason, bank reversals are required 

10 keep the vehicle headed at the target withoul affecling the allitude conlrol. 

1.2. Attitude control of winged re-entry vehicles. 

Until today, there has only been one winged re-entry vehicle Ihat has aclually returned trom 

orbil to Earth: the American Space Shuttle. lis Russian counterpart, the Buran, only made one 

unmanned (atmospheric) lesl tlight betore the project was cancelled due to budget problems. 

Also in Europe budgel culs were Ihe reason Ihal Hermes, a smaller version of Ihe Space 
Shuttle, did not leave Ihe drawing board and was cancelled. But whether the vehicle has 
actually been built or not, also the many publications on space vehicles can usually teach us 

about applied subsystems, such as the attitude-control system. Unfortunately, we could not lay 

hands on any literature concerning either the Buran control system, or the proposed Hermes 

attitude controller. 

Publicly-available documentation on the Space-Shuttle attitude controller was only sparsely 

available to us, and then in principle only for the ascent phase. McHenry et al. (1979) and 

Schleich (1982) give quite a detailed discussion on the Space-Shuttle ascent guidance, naviga

tion and control. McDermott et al. (1982) do a linearised stability analysis for th is control sys

tem, and Schletz (1982) discusses the use ot quaternions in the GNC system. The attitude con

troller for the entry and descent phase is only marginally mentioned in those publications. 

The Space Shuttle enters the atmosphere with a large angle of attack of about 40°, in order 

to mini mise the heat load. Further down the trajectory, the angle of attack is reduced to meet 

with the cross- and downrange requirements. Range control throughout the entry is accomp
lished by control of the bank angle. The Flight Control System (FCS) must guarantee a safe 

and stabie flighl and thereby take into account wide variations in flight conditions and large 

model-data tolerances, next to the large attitude changes. To perform ils tasks, the FCS can 

use aReaction Control System (RCS) and aerodynamic conlrol surfaces. Hamilton (1982) 

states five features of the Space Shuttle that present unique stability problems in combination 

with the large velocity range: i) the Shuttle is an unpowered vehicle, ii) the control of the aileron, 

rudder and the RCS jets is blended, iii) the gains of the FCS are scheduled, iv) the rigid-body 

stability margins are smalI, with strong bending modes within an octave of the cross-over 

frequency, and v) the control system is multi-rate digital. 

Klinar et al. (1975) give a general overview of the Space Shuttle Flight Control System. 

However, this overview cannot give the final details of the FCS, since the first Space-Shuttle 

flight was in 1981 and the FCS design was continuously updated when new data became avail

able. Since the general idea did not change, we will use this paper (and others) to give the 

reader agiobal impression of the FCS design. The system design goal was to maximise the 
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use of the aerodynamic control surfaces, of course within their power limitations, and to 

minimise the RCS propellant consumption while satisfying the handling qualities required for 

manual operation. 

The longitudinal and lateral controllers of the Space Shuttle are described as follows. The 

longitudinal automatic and manual FCS designs are conventional pitch-rate feedback control

lers, with outer loop closure accomplished by surface-position feedback or by the pilot. Actua

tors for both trim and control are the symmetric elevons, the body flap and for the low dynamic

pressure region the pitch jets. Also in case of the lateral automatic and manual FCS, the design 

exists of conventional rate-feedback controllers. Operations are depending on the angle of 

attack. For the higher angle-of-attack operation, the rudder is ineffective leaving only differential 

elevons (ailerons) and the RCS thrusters for control. The rudder is only activated below Mach 

numbers of 3.5. The yaw thrusters are used to control banking whereas the ailerons are used 

to damp sideslip. At lower angles of attack, there is a conventional aileron/rudder crossfeed for 

turn coordination. 

A major concern during the design of the FCS was the flexible body interaction. As we can 
see in Fig. 1.2, which shows us the simplified entry FCS configuration in the all-aerodynamic 

phase, there are several bending filters included in the design. These filters were added 

because due to the high loads the Shuttle cannot be treated as a rigid body. The bending mode 

stabilisation was considered to be a problem that drove the design of the controller. What we 

can also see from this figure, is that the longitudinal and lateral motion are not completely 
decoupled, since the longitudinal controller has a feedback compensation of the yaw rate, which 

is a lateral-motion component. Note that the commanded attitude that is computed by the guid
ance logic, is translated into commanded angular rates which are fed to the attitude controller 

(attitude-rate control instead of attitude control). 
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Hamilton (1982) discusses the flexible body stabilisation for the aerosurface controlloops. 

In Fig. 1.3, we have included the simplified block diagram that Hamilton used for the discussion 
on the lateral FCS. We see that the basic idea is based on rate feedback, with several filters 

added to account for elasticity and to improve the response of the system. Furthermore, we find 

scheduled gains. The forward-loop gains are inversely proportional to the dynamic pressure, 

which raises the gains where aerosurface effeetiveness is low. The aileron loop contains a yaw

rate feedback that is scheduled with the angle of attack. This gain is proportional to COT a . 

Analysis of the entry FCS has been described by a number of authors. Stone and Powell 

(1976) do an analysis of the entry guidance and control system to determine the sensitivity of 

the Shuttle to off-nominal stability and control aerodynamic parameters. Besides, they identified 

the boundary values for each of these parameters. The Space Shuttle entry flight control off

nominal design considerations are also the topic of a paper by Bayle (1984). He presents the 

sensitivity of the flight control stability margins to aerodynamics, discusses the flight control 

verification process and compares the predicted performance with the flight-test results of the 
first Space Shuttle flight, STS-1. 

Nguyen et al. (1990) describe the testing methodology that was used for verification of the 
Shuttle FCS, using simulation (software: linear stability analysis and off-line non-linear 

simulation programs; hardware: MIL engineering and verification simulators) and flight tests (the 

first four orbiter missions). Epple and Altenbach (1983) describe the dynamic stability testing 

of the Space Shuttle Columbia FCS and flexible-body interaction. Input stimuli were applied to 

the Shuttle vehicle controllers to excite bending while the FCS is powered-up, and the measur

ed responses from the operating FCS were compared with the predicted responses from the 
flex FCS flight model suitably modified to represent the ground-test configuration. Myers et al. 

(1982), finally, assess the FCS and the flying qualities of the Space Shuttle during approach 
and landing. . 

1.3. Attitude-control concepts. 

A control-system design can be based on a number of underlying theories. The oldest and most 

widely used concept is the one of feedback, of either the output or state of a process. A 

technique which is being used more and more in industrial control systems is adaptive control. 

Modern, robust control techniques that are subject of many studies are based on H~ or 11-

synthesis. Of course, there are many variations on the different concepts. Since we do not want 

to do an extensive survey of different control techniques, we shall limit ourselves to the three 

mentioned concepts that have known flight applications, and then only briefly. 

Our selection criteria of a particular technique for the control of an unpowered, winged re

entry vehicle are quite simple and straightforward. 

• We have a need for acontrol system in order to develop an analysis technique for testing 

guided and controlled flight of atmospheric space vehicles. This means, that we should be 

able to control the vehicle but that it does not have to be the best possible controller which 

guarantees mission success under all circumstances. In fact, it is no problem if the 
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sensitivity analysis will show the limitations of the controller. To put it in other words, not 
the performance of the controller is the study objective, but the analysis technique. 
The design should be as simple and transparent as possible, so that we can gain insight 

in the related flight dynamics. 

• The controller has to be implemented in an existing flight-simulation software package, so 

its implementation should not be the cause of great difficulties. 

• Preferably, but th is does not have to be a necessity, we want to apply to HORUS a control 

technique that has not been applied before. 
Last but not least, for an actual flight application the algorithm should be easy to be 
embedded in an on-board computer. This is an aspect that we do not consider here, 

however. 

Feedback control systems have found widespread use in, amongst others, aeronautical 

engineering (Bryson, 1985). Simple forms of feedback are (a combination of) Proportional, 

Integral and Oerivative (PlO) feedback of the output of the system or plant that has to be 

regulated. Classical control theory of linear systems was based on frequency response and 
root-locus techniques, see, for instance the books by Kuo (1987) and O'Souza (1988). A set 
of general performance requirements, that were not optimal in a mathematical sense but rather 

aimed at a reasonable performance, were commonly used. 

Initially, the older concepts were not easy to apply to multi-variable plants. State feedback 

systems, however, are particularly suitable for systems with Multiple Inputs and Multiple Out

puts, so-called MIMO systems. The parameters that define the control-system performance, the 
gains, can be obtained by pole placement or, alternatively, based on mathematically defined 
optimisation criteria. The Linear Ouadratic cost criterion is weil known in this respect, resulting 

in the so-called Linear Ouadratic Regulator (LOR), see, for example, the books by Bryson and 
Ho (1975), Lewis (1986) and Gopal (1989). More recent trends in feedback design are given 

by Kokotovic (1984), who gives an overview dealing with non-linear feedback, i.e., adaptive and 

composite control, and with extern al linearisation. A recent application of the LOR using the 

method of extended linearisation is given by Wang and Sundarajan (1995), who describe a non

linear longitudinal tlight controller tor the F-8 aircraft. 

An advantage of LOR is that it is a systematic method tor designing MIMO systems. 

Furthermore, the implementation ot the controllaws in tlight-simulation software is fairly simpie, 

and the computationalload tor on-line simulation is low. The problems dealing with pole assign

ment linked with MIMO systems have been replaced by an optimisation problem, and pole se
lection is now changed to the selection of the optimisation parameters (weighting matrices). 
However, when not all the states of the controlled system are available, then most of the 

attractive properties of the LOR methodology are lost. In that case an estimator is introduced 

to estimate the unavailable states, see Shahian and Hassul (1993), which then results in a 

Linear Ouadratic Gaussian (LOG) controller. However, the LOR seems to be a very appealing 

concept tor our purposes, i.e., designing- and implementation-wise, so we keep th is method in 

mind for selection. 

When a process is dynamic, i.e., the system parameters vary strongly with time, or in case 

there are many disturbances, a controller with constant parameters is not likely to perform weil 
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over the entire operational range. In that case we want in some way to adapt our controller 

parameters to the changing circumstances. Adaptive control, a special type of non-linear feed

back control, found its way into use in the early fifties, as an autopilot for high performance 

aircraft (Áström and Wittenmark, 1989), later on followed by applications in the F-94, F-101 and 

X-15 research aircraft (Boskovich and Kaufmann, 1966). Throughout the succeeding years, 

several different adaptive techniques were developed, of which three are more common: Gain 

Scheduling, Self-Tuning Regulation and Model Reference Adaptive Control. These forms of 

adaptive control are discussed by many authors. We have al ready mentioned the boak by 

Áström and Wittenmark, which gives an excellent treatment with many examples and 

applications. We will add here the survey of adaptive feedback control, given by Áström (1987). 

It focuses on the three mentioned concepts of adaptive control, but gives also a list with more 

than 350 references. 

In case of gain scheduling, auxiliary variables, that relate weil to the characteristics of the 

process dynamics, are used to change the controller parameters. However, since there is no 

feedback from the performance of the closed-Ioop system, which compensates for an incorrect 
schedule, Àström and Wittenmark (1989) do not regard this scheme as truly adaptive. With 8elf
Tuning Regulation, the system to be contraIled is described by a model with (partially) unknown 
parameters. During operation, these parameters are estimated with a recursive estimation 

method. The estimated parameters are treated as the best 'guess' of the system and used to 

calculate new controller parameters. 

The problem of self adjusting the parameters of a controller in order to stabilise the dy
namic characteristics of a feedback contral system when drift variations in the plant parameters 
occur, was the origin of Model Reference Adaptive Control or MRAC (Landau, 1974). With this 

technique, a reference model serves as the basis to generate the steering commands for the 

(unknown) plant. The parameters of the controller are adjusted in such a way that the difference 

between the model output and the plant output are minimised. The performance of the controller 

is in this way less sensitive to environmental changes, modelling errors and non-linearities 

within the system. A drawback might be, however, th at a large control effort is required to make 

the plant follow the model (Messer et al, 1994). Furthermore, the mathematical foundation of 
the original MRAC is quite large and may withstand a quick design and implementation. 

A survey of model reference adaptive techniques, both in theory and applications, is given 

by Landau (1974). This survey includes over 250 references. A recent work on direct adaptive 

control algorithms, and especially a simplified form of Model Reference Adaptive Control, is 

given by Kaufman et al. (1994). This latter methodology seems to be promising with respect 

to ease of use and computational requirements, so in principle we will keep th is method in 

mind. However, due to time constraints and lack of practical applications we will not apply this 

concept here, but keep it as a focus point for further research. 

ACRI/LAN (1992) discusses guidance and adaptive-control techniques of moderate lift-to

drag vehicles, and applies them to the problem of atmospheric transfer. The attitude of the 

Apollo-like vehicle can be regulated by a pulsating reaction-control system. Three possible 

attitude-contral concepts are discussed, Le., gain scheduling, STR and MRAC, in order of 

mathematical complexity. Each of the controllers was based on a PID-type of controllaw and 
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gave satisfactory results, although the STR and MRAC increased the fuel consumption because 
the required extra signals generated oscillations in the angles of attack and sideslip. 

The last of the three control concepts that we discuss here is robust control, or, to be more 

specific, application of H~ , i.e., the minimisation of the oo-norm2 of some transfer function, and 

Jl controller synthesis and analysis. These types of controller designs were developed for multi
variabie feedback systems in the face of uncertainties (Doyle and Stein, 1981), since the per

formance of feedback systems is then ultimately limited. The name H~ refers to the space of 

stabie and proper transfer functions. The objective in H~ control is to minimise the oo-norm of 
some transfer function, which will increase the robust stability margin of the system (Shahian 

and Hassul, 1993). 

As is the case with LOG problems, also H~ uses a state estimator and feeds back the 

estimated states. The controller and estimator gains are computed from two Riccati equations. 

Differences can be found in the coefficients of the Riccati equations, the weights. In principle, 

transfer-function weights are used to shape the various measures of performance in the 

frequency domain. In H~-control problems, they are also used to satisfy the so-called rank 

conditions, that are frequently violated in case of inappropriate weights. Proper selection of the 

weights depends primarily on the experience of the user, and his understanding of the physics 

of the problem and other engineering constraints. Because of this, H~ control is a complex 

method to apply. 

The capturing of both the performance of feedback and uncertainty aspects has been 

presented by Doyle et al. (1982) . It involves a generalisation of the ordinary Singular Value 

Decomposition, and it provides areliabie, non-conservative measure to determine whether both 

the performance and robustness requirements of a feedback loop are satisfied. This measure 

is called the Structured Singular Value, denoted by the symbol Jl. Necessary and sufficient 

conditions to handle bounded structured uncertainty, that result from unmodelled system dy

namics, are given by Doyle (1985) . Since the theory is far too complicated to describe in a 
nutshell, we suffice by giving the above references and the book by Doyle et al. (1992) , that 

gives an excellent introductory treatment of the robust performance problem. 

Two applications of H~ -control and Jl-synthesis are of interest. Doyle et al. (1987) apply Jl

synthesis to the Space Shuttle lateral axis FCS during re-entry. Their conclusion was that the 

use of Jl is a very promising and powerful tooi, if only for analysis. The produced results were 

very encouraging, and they yielded important information about the performance and robustness 
of the controllers. The second application concerns attitude control of hypersonic space planes. 

Since the mid eighties there was an ever-growing interest in guidance and control of space 

planes. Because of the large flight regime and the uncertainties in the dynamics, the application 

of robust control to this class of vehicles has been studied by several authors. As an example 

2 The - norm of a transfer function G(s) is defined by 

IGI. = sup I GU"') I .. 
where sis the Laplace variabie and C1l the radial frequency (rad/s). Graphically, the ~-norm is simply the peak 
in the Bode magnitude plot of the transfer function. 
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we mention the work of Gregory et al. (1994). They applied the concepts of H~ and 11 to a 

longitudinal model of a winged cone configuration at Mach 8. Their conclusion was that the 

addition of using 11 provides robust performance, much more than H~ in itself. Although they 

restricted to linear analysis, the results are very promising to stimulate further research. 

With respect to robust control, we found several references that give comparisons of dif

ferent control techniques. Grocott et al. (1994) make a comparison between 5 different robust

control techniques for uncertain structural systems, i.e., Sensitivity Weighted Linear Ouadratic 

Gaussian, Maximum Entropy, Multiple Model, H~ and Il-synthesis. The techniques were evaluat

ed on computational requirements, the degree to which performance suffers from achieving 

robustness, and the maximum performance th at can be experimentally achieved. For their low

order benchmark problem, they found that because of the (very conservative) guarantees of 

robustness (H~), a large performance penalty can result. Compensators based on Il-synthesis 

are much less conservative than H~ designs, but are computationally infeasible for large-order 

plants, because the order of the control system increases drastically. 

Vincent et al. (1994) compared the Linear Quadratic Regulator with H~, applied to a lateral
directional control-system design for a Mach = 0.9 flight condition. Both controller designs 

demonstrated excellent model-following performance, although each of the controllers had some 

individual strong points. The LOR controllaw was simpier than the H~ one, and could easily be 

implemented with in-line computer code. For the H~ design, some numerical points of concern 

were identified, i.e., a possible need for increased precision numerical representation (more 

memory required and a higher CPU load), and the fact that model-order reduction proved to be 
a delicate numerical problem. 

In conclusion, we can state that H~ and Il-synthesis have promising features, although 

there are stil! practical problems with respect to performance and computational load. Further

more, the mathematical foundation of both methods is complex and quite some experience is 

required to develop controllers. For th is reason, we wil! not pursue these methods. 

Summarised, we have introduced three different control techniques, in order of increasing 

complexity: 

1) Output or state feedback, with the controller parameters (gains) obtained by 

pole placement, or 

optimal control theory (LOR). 

2) Adaptive control, with three of the more common techniques given by 

• Gain scheduling, 
Self-Tuning Regulation, and 

Model Reference Adaptive Control. 

3) Robust control, with two different schemes: 

H~-control, and 

Il-synthesis. 

Of these three techniques, for reasons of simplicity while still having a reasonable performance, 
we will select state feedback where we wil! compute the gains by means of the optimal control 
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theory. Furthermore, to cope with the large flight regime we will apply gain scheduling. In short, 
we will apply the Linear Ouadratic Regulator with gain scheduling. Despite its old (but also 
proven) concept, and the introduction of many new control theories and techniques, the LOR 

is still widely in use, of which many examples can be found in literature (although they do not 

always focus on aircraft and space vehicles) . 

Gawronski (1994), for instanee, proposes a linear quadratic design procedure for NASA's 

deep space network antennas, thereby dividing the antenna model into tracking and flexible 

subsystems and designing controllers for each of these parts separately. (Because of the 
separation the controller design showed a significant performance improvement.) Furthermore, 

Collins and Richter (1995) applied a Linear Ouadratic Gaussian design as a possibility for the 

Hubble Space Telescope. The use of this control concept showed that it met all specifications, 

and that the precise attitude control required for Hubble was possible. Last but not least, we 

al ready mentioned the application to the F-8 aircraft. One of the disadvantages of linear state 

feedback control is its limited robustness in the presence of model uncertainties and non

linearities. Wang and Sundarajan (1995) used the extended linearisation approach together with 

the LOR, thus removing some of the difficulties of gain scheduling, namely, that the scheduling 
variabie should vary slowly and also that the scheduling variabie should captLire the plant non

linearity. Their (preliminary) conclusion was that the non-linear controller performed much better 

than the conventional gain-scheduled controller. 

The choice of this control scheme is based on the motivations given at the beginning of this 

section. Furthermore, to our knowledge this scheme has not been applied to a vehicle like 
HORUS, although the controller is based on similar control laws provided by MBB (1988b). 
However, they used pole placement to compute the gains instead of aquadratic cost criterion. 

Furthermore, the documentation of their controller was not complete (and not published in open 

literature), and there were no numerical values of the gains available. Last but not least, the 

design methodology for the LOR will be set up in a general way so that it can also be used for 

other vehicles and missions, and possibly also for a refinement of the controller design as to 

increase robustness and performance. In this respect we mention that the design methodology 

has been applied to a re-entry test vehicle with a triangular cross section, that is controlled only 

aerodynamically by three aerodynamic surfaces (Mooij et al., 1995). 

1.4. Control-system design cycle. 

While studying the flight behaviour of conventional aircraft and designing autopilots for this class 

of vehicles, it is common practice, depending on the type of trajeetory, to separate the longitu

dinal and lateral motion. This is usually allowed, because the two motions are decoupled, Le., 

a symmetrie manoeuvre only has a marginal effect on the asymmetrie motion and vice versa. 

This decoupling implies a simplification of the autopilot design, and moreover, it gives an 

increased understanding of the natural aircraft motions. 

For similar reasons, it would be useful to do the same for hypersonic vehicles. However, 

for air-breathing space planes the coupling between engine and aerodynamic effects results in 

violation of the separability conditions, although aerodynamic effe cts basically satisfy these 
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conditions (Sinai, 1990)3. Since the control-system design in this report is focused on an 

unpowered re-entry vehicle, one might expect that separation of the longitudinal and lateral 

motion is possible. But, HORUS will fly with a large angle of attack and bank angle, indicating 
astrong lateral motion, so the question: Is separation still possible? is worth asking. 

The design cycle can be divided into a number of successive steps, which wil! be briefly 

described below. In Fig. 1.4, we have schematically depicted the design process. On ce more, 

it should be noted that we do not aim at designing the optimal control system for this vehicle 

and mission. Therefore, some iteration loops which are indicated in Fig. 1.4 wil! not be exe

cuted, although they should be considered when starting from scratch and aiming at the best 

possible controller. In order to verify the controller and to set up a more general methodology 
of controller design, we take the following steps: 

1) We will analyze the full six-degrees-of-freedom (6-d.o.f.) motion of the re-entry vehicle (both 

symmetric and asymmetric flight) . The state of the vehicle is defined by three position 
variables (modulus of the position vector R, longitude 't and latitude 0), th ree variables for 
the velocity (groundspeed V, flight-path angle yand heading X) , three angular rates (roll 
rate p, the pitch rate q and the yaw rate I) and three aerodynamic angles for the attitude 
(the angle of attack a, the angle of sideslip ~ and the bank angle cr). The corresponding 

flight-dynamics model consists of 12 first-order differential equations. The related equations 

are given in Section 2.1 . 

2) The 12 coupled differential equations are non-linear and time varying, which makes it im
possible to design the linear state-feedback control system with classical control theory. To 
apply this theory, the equations of motion have to be linearised and to be made time in
variant. To make this process as easy as possible, some assumptions wil! be made to sim
plify the starting equations. The linearisation is discussed in Section 2.2. 

3) To study the open-loop behaviour of the vehicle flying its nominal trajectory, or in other 

words, the stability of steady flight, the linearised equations of motion have to be written 

in a special form, the so-called state-space form. This matrix equation wil! be presented in 
the final section (2.3) of Chapter 2. The nominal trajectory is divided into a number of 
discrete points, the so-called time points in which the vehicle is considered to be 

equilibrium. Per time point, a so-called Linear Time Invariant (L TI) system can be obtained. 
To address the time-varying character of the re-entry mission, each of the L TI systems wil! 

be combined in a series, that serves as the basis for the next step. 

4) To study the open-loop behaviour of the vehicle it is sufficient to look at the eigenvalues 
of the system. More complete information about the characteristics modes is provided by 

3 The performance of the propulsion system is depending on the angle of attack, in the form of pre-com
pression of the air with increasing angle of attack. This shows as an increment in the net installed thrust. In a 
similar manner, flying with a non-zero angle of sideslip will have its effect on the performance, but now in a 
negative sense. The in-coming airflow in the inlel of the propulsion system can decrease and shock waves can 
originate. Both phenomena decrease the available thrust. Since Ihe Ihrusl force is one of the major external 
forces in symmetrie motion. Ihe asymmetrie angle of sideslip has eslablished a coupling between the symmetrie 
and asymmetrie molion. 
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the corresponding eigenvectors. This so-called eigenmotion is studied in Chapter 3. 

5) Chapter 4 describes the actual controller design. From the study of the eigenmotion around 

the nominal trajectory, it appeared that the symmetric and asymmetric motion are de

coupled. For this reason, the controller is divided into two parts, i.e., a pitch controller 

(Section 4.3) and a lateral controller (Section 4.4). For each controller, the corresponding 

reduced system of equations of motion is discussed, as weil as the eigenvalues of this 

system. Furthermore, the selected controllaws and the computation of the feedback gains 

are presented. The underlying theory for gain computation, Le., the application of optimal 

control theory, is given in Section 4.2. 

6) The verification of the designed controller(s), consisting of three parts, is discussed in 

Chapter 5. For both the pitch and lateral controller, the response of the closed-Ioop system 

to both a step and a ramp input will be considered. Also, the flight along the nominal trajec

tory with the integrated controller is presented. Nota bene: at th is place (before testing the 

controller in the non-linear flight environment), it would be possible to do a sensitivity 
analysis of the linear model. When the conclusion is that the linear model is not robust 
enough, aredesign has to be done. This sensitivity analysis is skipped in this report, 
because we are not doing an optimal design of an attitude controller. 

Step 6 marks the end of the design process, as discussed in th is report. Since we know 

from MBB (1988b), that a similarly developed controller gives a fair performance, not further 

improving the performance of the attitude controller seems areasonabie thing to do. However, 

the design of a controller is usually not th at straightforward. After the feedback-gain computation 

and some response tests, one might have to go back one or two steps in the design process, 

as can be seen in Fig. 1.4. It is possible that the time points, which have been selected, are 

not sufficient to cover the whole trajectory. In that case, more time points need to be seJected. 

On the other hand, it is quite weil possible that for none of the time points the required 

behaviour can be achieved. Then, one has to reconsider the choice of the control laws. 

When the two separately developed controllers prove to have done what they are supposed 

to do, they have to be integrated and cooperate 50 that the nominal mission for which the 

controllers were designed, can be simulated. At th is stage, we can check whether the sim

plifying assumptions, which we made during the design process, were justified. Only after suc

cessfully completing this test, we can proceed with the next step: a sensitivity analysis, which 

should give us insight in the behaviour of the vehicle and the controller under other than the 

nomina I conditions. Again, it is possible that we have to redesign the controller. The outcome 

of the analysis might even imply that a linear state-feedback controller with gain scheduling is 

not suitable at all. Whether that is the case, remains an open question within the framework of 

this research. 
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Fig. 1.4 - The design process of the linear state-feedback controller. 
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Chapter 2 

The Motion of a Vehicle 
. 
In a 

Planetary Atmosphere 

To study the motion of a vehicle in a planetary atmosphere, it is necessary to derive a math

ematical model of th is motion. Starting with the Laws of Newton, the translational and rotational 
motion of a vehicle can be described by a system of 12 coupled, first-order differential equa
tions. These (non-linear) differential equations can be numerically integrated to gives us the 
variation of position, velocity, attitude and angular rate with time. The general form of these 
equations is introduced in Section 2.1. However, to design a state-feedback control system 
while applying classical control theory, it is necessary that the system of differential equations 
is linear in all its state variables. This process of linearisation is discussed in Section 2.2. The 
matrix form of th is linearised system, also called the state-space form, is described in Section 

2.3. This form enables us in the first place to study the characteristic motion (or open-loop 
behaviour) , and in the second place to design our control system. These topics wil! be 

described in Chapters 3 and 4, respectively. 

2.1. The general form of the equations of motion. 

The control-system design is centred around an unpowered, winged re-entry vehicle. Detailed 

discussions on the equations of motion of such a vehicle can be found in Mooij (1994a). We 
wil! summarise these equations in this section. First, however, we will state the underlying 
assumptions. 

The Earth is represented as a sphere and is rotating with a constant rotational rate web' 

• The vehicle has a plane of mass symmetry (XBYB-plane) , which means that 

'xy= 'yz = o. 

In Appendix A, the definition of the state variables can be found . 

The dynamic equations of translational motion: 
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with 

v = Fv + W~bRcosB(sinycosB-COsYSinBCOSX) 
m 

F. V2 
...:!.. + 2wcbVcosBsinx + _cosy + 
m R 

+ W~bRcosB(cosBcosy+sinysinBcosx) 

F. 
VcosYX = --.!. + 2Wcb v(sinBcosy-cosBsinycosx) + 

m 

Fv = -0 - mg,siny - mgl5cosycosX 

Fr = -Ssincr + Lcoscr - mg posy + mgösinycosX 

The corresponding kinematic equations: 

R = Vsiny 

1: = VsinX cosy 
RcosB 

B = Vcosxcosy 
R 

The dynamic equations of rotational motion: 
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(2.1.1a) 

(2.1.2a) 

(2.1.3a) 

(2.1 .1 b) 

(2.1.2b) 

(2.1.3b) 

(2.1.4) 

(2.1.5) 

(2.1.6) 

(2.1.7) 

(2.1.8) 



(2 .1.9) 

with 

The corresponding kinematic equations: 

àcos~ = -pcosasin~ + qcos~ - rsinasin~ + 

+ sina[xcosy-8sinxsiny+ (1:+Web) (COSOcosxsiny-sin&:osy)] + 

- cos~y-8cosX -(1: +Web)COSOsinx] 

~ = psina - rcosa + 

+ sina[y-8cosX -(1:+Web)COSOsinx] + 

+ cosa[xcosy-8SinXSinY+(1:+Web) (COS&:osXSiny -SinOCOSY)] 

cr = -pcosacos~ - qsin~ - rsinacos~ + 

+ àsin~ -xsiny -8sinxcosy+ (1:+web) (cos8cosxcosy +sinosiny) 

(2 .1.10) 

(2.1.11 ) 

(2.1 .12) 

In these equations, y, X, 8 and 1: are given by Eqs. (2.1.2) through (2.1.6). Note that the 

external moment components are expressed in the body-fixed reference frame. 

2.2. Linearisation of the equations of motion. 

The characteristic motion, or the open-loop behaviour, of a vehicle, is can be described by the 

eigenvalues and eigenvectors of the equations of motion. However, the eigenvalues and eigen
vectors can only be obtained when the time derivatives of the states are given as a linear com

bination of the states. In other words: the equations of motion have to be linearised. As aresuit, 

the motion given by th is linearised system should be regarded as an equilibrium trajectory, so 

that the characteristic motions are small deviations from this nominal path. To simplify the pro

cess of linearisation, we will make some assumptions: 

We will consider a non-rotating Earth (web = 0 rad/sj , which is allowed since the rotation 

of the vehicle is of a much higher frequency than the rotation of the Earth. As aresuit, 

the Coriolis and centripetal accelerations are zero as weil, 

19 



The gravity field of the Earth is assumed to be spherical (go = 0 m/s2). Nota bene: 

since there is only one component of the gravitational acceleration left, we will omit the 

subscript 'r' 

The vehicle is assumed to be rotationally symmetrie (w.r.t. mass) around the X-axis of 

the body-fixed reference frame, which means that 'xz = o. 

With the above assumptions, we can neglect the smaller terms. The resulting equations of 

motion become: 

. 0 
V = -_ - gsiny 

m 

i' = (V -2.. Îr.osy + (Lcoscr-Ssincr) 
R Vr mV 

. = ~cosytanösinx _ (Lsincr + Scoscr) 
X R mVcosy 

R = Vsiny 

t = VcosysinX 
Rcoso 

. V 
o = _ cosycosX 

R 

(2.2.1 ) 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2 .6) 

(2.2.7) 

(2.2 .8) 

(2.2.9) 

Since the kinematic attitude equations are very complex, we will introduce another simplifi

cation. We assume that the vehicle's attitude is only marginally influenced by an asymmetrie 

translational motion, or in other words: we assume that the vehicle's trajeetory is parallel to the 

equator (0 = 0° and X = 90°), and remains that way (Ö = 0 rad/sj, see also MBB (1988b). 
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á = q - (pcosa + rsina)tan~ _ L-mgcosycoscr 
mVcos~ 

(2.2.10) 



~ = psina - rcosa _ S+mgcosysina 
mV 

cr = pcosa + rsina _ tan~ L - mgcosycosa + tany Lsina + Scosa 
cos~ mV mV 

(2.2.11 ) 

(2.2.12) 

As we can see, the equations for X, tand ó are not coupled to the rest of the equations, so a 

9-d.oJ. linearised model for the state space formed by V, y, R, p, q, r, a, ~ and a can be 
derived. 

The linearisation is performed as follows. We assume an equilibrium value of each of the 

state variables (index 0), and we will look at small deviations from th is equilibrium state. Note 

th at the vehicle is not powered (no fuel consumption), so the mass properties are constant. So: 

V = Vo+tiV 

Y = Yo + tiy 
R = Ro + tiR 

P = Po+ tip 
q = qo + tiq 

r = ro + tir 
a = ao + tia 

~ = ~o + ti~ = ti~ 
a = a o + tia 

(2.2.13) 

The nominal position, velocity and corresponding control history follow from the nominal 

trajectory, which leaves us with three unknowns PO' qo and r()" However, since we want no 

perturbation of the nominal control (ao and aJ when we are flying the vehicle, we can compute 

the equilibrium angular rates from the condition 

à=~=cr=O 

or, using Eqs. (2.2.10-12) , 

(2.2.14) 

(2.2.15) 

(2.2.16) 

Solving for PO' qo and ro gives us 
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(2.2.17) 

(2.2.18) 

ra = -Cl COSaa + C:! sinaa (2.2.19) 

with 

La t . C:! = -- anYa sJncra 
mVa 

Note that since (30 = 0, also Sa = o. 

Substituting expressions Eq. (2.2.13) in Eqs. (2.2.1-12), neglecting higher-order terms such 

as ~ V~y, prfla4
, etc., and subtracting the nominal state (i.e., Vo = ... , etc.) results in the 

following 9 first-order differential equations: 

(2.2.20) 

. ( . 2 Vo ~V [2 90 V~ ~OSYO [V~ Rinyo ~Y = -'Yo+-_cosyo + ---- ~R - --go ~Y + 
Ra Vo Ra R2 Vo Ro Vo o (2.2.21) 

La . coscro sincro 
- --sJncro~cr + __ ~L - __ ~S 

mVo mVo mVo 

(2 .2.22) 

(2.2.23) 

4 The nominal rotational rates Po> % and '0 are smal!, and can therefore be treated as perturbations 
themselves. 
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óM 
/),.(1 = --y 

'w 

óà = óq - _1_ÓL - gOcOsYoSinaoóa + [~-~COSYOCOsao}v + 
mVo Vo mV.2 V.2 

o 0 

MJ = -cosuoóp - sinaoM - [~- go cosYocosao tj3 + ~sinaOÓy + 
mVo Vo r mVo 

+ tanYo(sinaoóL + cosaoLoóa + cosaoóS - ~sinaOl1vl 
m~l ~ 

(2.2.24) 

(2.2.25) 

(2.2.26) 

(2.2 .27) 

(2.2.28) 

In deriving the above equations, we have used the definition of the gravitational acceleration 

which gives us 

or 

l1R l1g = -2go-
Ro 
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Now that we have linearised the equations of motion, we can write them in matrix form, 

also called the state-space form. This will be described in the following section. 

2.3. The state-spa ce form of the equations of motion. 

When equations of motion are written in state-space form, they have the foliowing form in matrix 

notation: 

x = Ax + Su (2.3.1 a) 

with x an n x 1 state vector, u a q x 1 control vector, and A and S the n x n state (or system) 

and n x q control coefficient matrices, respectively. Eq. (2.3.1 a) is called the dynamics equation; 

to complete the description of the state of the vehicle we also need a so-called output equation: 

y = Cx + Du (2.3.1b) 

In the above equation, y is the m x 1 output vector, and C and D are the m x n output and 

m x q direct transmission matrices, respectively. For the time being, we wili restrict ourselves 

to the use of Eq. (2.3.1 a). 

To write Eqs. (2.2.20-28) in state-space form, we must distinguish between state variables 
and control variables. The choice of state variables is obvious, if we look at the original 
equations of motion with their state variables. We write 

The selection of control variables is less clear. The principle of control is obvious: by 

changing the magnitude and direction of external forces (and therefore in principle also the 

external moments), the trajectory of the vehicle can be changed. As we mentioned in Chapter 

1, the guidance system makes sure that the vehicle will follow its nominal trajectory by adjusting 

the angle of attack and bank angle, the control variables of the guidance system. These control 

variables determine the size and direction of the aerodynamic force vector, the only controlIabie 

external force acting on the unpowered vehicle. (The other external force is of gravitational 

origin; this force is depending on the position of the vehicle and cannot be controlied actively.) 

The attitude controller has to guarantee that the commanded attitude is obtained (and main

tained) with a certain accuracy in a finite time, which means that eventually there should be 

moment equilibrium. Note that the actual angle of attack and bank angle are given by the 

kinematic equations, which means that they have defined values depending on the rotation of 

the vehicle and th us the size and direction of the external moments. So whereas the forces 

acting on the centre of mass (c.o.m.) of the vehicle are the guidance control variables, the 

moments around the c.o.m. are the attitude control variables. 

Inspecting the equations of motion, we find beside the three force components ó.D, ó.S and 

24 



tJ.L, three moment components, Le., tJ.M)(' tJ.My and tJ.Mr Part of the moment components is 
determined by the vehicle, depending on its actual attitude. However, the remaining part is 

given (and can be changed) by, for instance, aerodynamic control surfaces, reaction control 

thrusters and momentum wheels, depending on the vehicle configuration and sub-systems. So 

for the selection of the attitude-contral effectors, we must have a closer look at the vehicle, the 

HORUS-2B. MBB (1988a) presents th is vehicle as winged, without a major prapulsion system, 

but with 5 aerodynamic contra I surfaces (two rudders, two wing flaps5 and a body flap) and 

a number of reaction control thrusters. The body flap is only used for trim, and does not have 

to be considered as a contral. The two wing flaps, or elevons, can be deflected symmetrically 

(elevator function) and asymmetrically (aileron function). The rudders are outward movable only, 

and only one at a time. 

It should be noted that by deflecting the control surfaces, an aerodynamic force is 

generated that gives a moment around the vehicle's c.o.m. depending on the moment arm, the 

distance to the c.o.m .. The deflection of a surface is in principle an analogous process, of 
course with a limited accuracy, which means that the generated moments are a continuous 
function of the deflection angle, as weil as of flight and similarity parameters, such as the Mach 
number. 

The reaction contral system is only being used when the aeradynamic contral surfaces are 

not sufficiently effective, e.g., in the upper layers of the atmosphere. The aerodynamic control 

surfaces are activated when their effectiveness is more than 10% of that of the corresponding 

thrusters and the thrusters are inhibited when their effectiveness is less than 10% of the 

corresponding aerodynamic surface6. Whereas the aerodynamic contra I moments are con

tinuous functions, this is not the case with the reaction control moments. The principle of a 

thruster is that it is either ON or OFF. When it is on, it will generate a constant th rust force that 

will also result in a constant moment7. By switching the thrusters on and off repeatedly (so

called pulsing), the required moment éan be appraximated. Furthermore, in case there are more 
thrusters for gene rating moments about one particular axis, the magnitude of the moment can 

be varied by smartly combining the required thrusters. In this study, however, we will assume 

continuous reaction control moments, for reasons of simplicity. Besides, we will directly use the 

moments as contral variables, instead of the thrust forces. 

So, summarised we can write for the contral vector u: 

5 To be more in line with other literature, we will not use the term wing flaps, but elevons since this control 
surface combines the elevator and aileron function. 

6 For the defined configuration of HORUS-2B, the maximaltorque of the pitch thrusters is 10,400 Nm, the 
one of the roll thrusters is 1,600 Nm and the one ol the yaw thrusters is 7,600 Nm. This results in activating the 
aerodynamic control surfaces at approximately 100 km and switching off the roll thrusters at about 75 km, while 
the yaw thrusters remain activated until the end ol the descent. 

7 The thrust lorce is in principle depending on the atmospheric conditions, which change signilicantly during 
the flight. Since we do not have extended thruster models at our disposal, we will assume constant thrust forces. 
However, it is known from the experienee with the Space Shuttle that the operation of the reaction control 
thrusters can be signilicantly inlluenced by atmospheric conditions. Future models should take th is effect into 
account so thatthe inlluence on attitude control can be studied. 

25 



u = (LlÖe,LlÖa,LlÖr,Ll Tx,Ll Ty ,Ll Tz ) T 

with 

öe = elevator deflection angle (rad) 

öa = aileron detlection angle (rad) 

ör = rudder deflection angle (rad) 

Tx = roll-thruster moment (Nm) 

Ty = pitch-thruster moment (Nm) 

Tz = yaw-thruster moment (Nm) 

These definitions of x and u results in the following state-space matrix equation: 

LlV 
avv aVy aVR avp aVq aVr aVa a VIl avo 

LlV 

Lly Byv Byy ByR Byp Byq Byr Bya ~ Bycr 
Lly 

LlR aRV aRy aRR aRp aRq aRr aRa aR(} aRo LlR 

Llp apv apy apR app apq apr apa apj3 apa Llp 

Llq aqv aqy aqR aqp aqq aqr aqa aq13 aqcr Llq + 

M arv ary arR arp arq arr ara atj3 aIO M 

Llfx aaV aay aaR aap aaq aar aaa aaj3 aao 
Lla 

Ll~ aj3V aj3y aj3R aj3p aj3q aj3r aj3a aj3j3 aj30 
Llj3 

MJ LlO" 
aov aoy aoR aop aoq aor aoa aoj3 aoo 

(2.3.2) 

b Ve b Va b Vr b Vx b vy b Vz 

bye bya byr byx byy byz 
Llöe 

bRe bRa bRr b Rx bRy b Rz 
Llöa 

bpe bpa bpr bpx bpy bpz 
LlÖr 

+ b qe bqa b qr b qx b qy bqz 
LlTx 

bre bra brr b rx bry brz 
LlTy 

bae baa bar bax bay baz 
Ll Tz 

bj3e b13a bj3r b13x bj3y b13z 

boe boa bor box bOY boz 

Betore we derive the 135 matrix elements aijand bij' one more task remains to be done as 

we already indicated above: the evaluation of the force and moment variations in Eqs. (2.2.17-

25), i.e., LlD, LlS, LlL, LlM)(' LlMy LlMZ' as a function of state and control variables. Starting with 

LlD, we must first study the aerodynamic database of the HORUS-2B to find the dependency 

of drag D on flight parameters and deflection angles. We find: 
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with 

M = Mach number (-) 

a = angle of attack (rad) 

h = height (m) 

Ow = elevon deflection angle (rad) 

or = rudder deflection angle (rad) 
Ob = body-flap deflection angle (rad) 

Note that, as we mentioned before, the elevons perform the function of elevator and aileron, 

so for our derivations we need to replace Ow by oe and Ba' 

t:.O can be written as 

To evaluate the partial derivatives, we write 0 as 

with 

= drag coefficient = f(M,a,h,o"0W'0b) 

= ~p v2 = dynamic pressure (N/m2) = f(h, V) 
2 

= reference area (m2) 

(2.3.3) 

(2.3.4) 

The height dependency of the drag coefficient is only apparent for Mach numbers smaller 

than 1.5, and is small compared with the dependencies on Mach number and angle of attack. 

The body flap is only used for trim, so it has a nominal deflection angle only (t:.0b = 0). What 

remains are the contributions due to the elevators, ailerons and rudder. Since we are looking 

at corrective control only (the deflection angles are in principal in the order of a few degrees) , 
and the contribution to the drag is small compared with the nominal drag, we will neglect these 

termsB. Eq. (2.3.3) simplifies to 

t:.O = aD t:.M + aD t:.a 
aM aa (2.3.5) 

Evaluating the first term on the right-hand side of Eq. (2.3.5) yields 

B Due 10 a similar reasoning Ihe conlribulion of Ihe elevons 10 Ihe lift force, as compared 10 Ihe nominallift 
force, can be neglecled as weil. 
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(2 .3.6) 

Applying the definition of the Mach number, 

M=}!. (2.3.7) 
a 

with 

a = speed of sound (mis) 

we obtain 

(2.3.8) 

Furthermore, 

ó'M = ó,(V) = ~ó'V = Mo ó'V 
a ao Vo 

(2.3.9) 

In the above derivation, we have assumed that the variation of the speed of sound, which is a 

function of temperature (and th us altitude), is smal! and can be neglected with respect to other 

terms. 

The second term on the right-hand side of Eq. (2.3.5) is easily derived as 

êJD êJe o 
- = qdyn Sref--êJa 0 êJa 

Summarising, we get for ó'D: 

(2.3.10) 

The side force S is a function of M, a, ~ , oe' 0a and Or Again, we neglect the contribution 
due to the control surfaces, which results in 

(2.3.11) 

28 



Evaluating all the terms in a similar way as above, we get for !!.S: 

(2.3.12) 

Note that Cs = 0 for ~ = ~o = 0°, which is also true for the derivatives w.r.t. Mand a evaluated 

at ~o-

with 

For !!.L we find 

(2.3.13) 

The variation of the moments consist of an aerodynamic and a propulsive component, i.e., 

L I = aerodynamic roll moment (Nm) 

MI = aerodynamic pitch moment (Nm) 

NI = aerodynamic yaw moment (Nm) 

(2.3.14a) 

(2.3.14b) 

(2.3.14c) 

Only the aerodynamic contributions have to be expanded to a state-variable and control-variable 

contribution, because the thruster moments are already control variables. 

We will apply the same way of derivation as for the aerodynamic forces, with one dif

ference. In this case, the contributions of the control surfaces cannot be neglected, because 

of their relative magnitude. Besides, if we did, it would reduce the means of control to reaction 

control only. After inspecting the aerodynamic database, we find that the ailerons contribute to 

both the roll and yaw moment, the elevators to the pitch moment and the rudder to the yaw 

moment. Furthermore, we found that there are no dynamic damping terms included in the defin

ition of the moments as is usual the case, i.e., 

In case of HORUS, it was mentioned that they had not been computed, but that does not mean 

that they are zero, as we know from a similar vehicle, the Space Shuttle (Trujillo, 1986). How-
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ever, if we want to take the damping terms into account in the derivation, so that the model 

does not have to be expanded once these terms become available, or when we want to apply 

the model to another vehicle, we will see that in this case the related terms will vanish. In the 

previous section it was stated that the rotational rates are smalI, and can be treated in a similar 

manner as the variations tJ. V, tJ.~, etc. This means that when we derive the small variation 

around a nominal damping term like 

the result is a second-order term and can be neglected. Therefore, the damping terms do not 

have to included in our derivation. However, when the rotational rates PO' qa and ra are not 

small and can consequently not be neglected, the dam ping terms will appear in the model. 

As aresuit, with the aerodynamic moments given by 

L / = C,qdynSrefbref 

MI = CmqdynSrefCref 

NI = CnqdynSrefbref 

we get 

(2.3.15) 

(2.3.16) 

(2.3.17) 

Note that the nominal pitch coefficient Cm = 0 tor trimmed flight. We will assume that trim is 

always guaranteed. This can be verified in the next chapter, when we introduce the nominal 

trajectory . 

Finally, after substituting Eqs. (2.3.10), (2.3.12-13) and (2.3.15-17) in Eqs. (2.2.20-28) and 

rearranging terms, we find expressions tor each ot the coefficients aij and bik These express

ions are given in Appendix B. The obtained stability model, which has the desired form of Eq. 

(2.3.1 ), 
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x = Ax + Bu 

or, fully written out: 

avv a Vy aVR 0 0 0 aVa 0 0 
L\ V L\V 

élyv élyy élyR 0 0 0 élya ayp a,.o. L\y L\y 

L\R aRV aRy 0 0 0 0 0 0 0 L\R 

/).p 0 0 0 0 0 0 0 ap~ 0 L\p 

/).q aqv 0 0 0 0 0 a qa 0 0 /).q 

M 0 0 0 0 0 0 0 a tjl 0 M 

L\ä. aaV aay aaR 0 aaq 0 aaa 0 aaa 
L\a 

L\~ 
a~ v a~y a~R a~p 0 a~r 0 a~~ a~a 

L\13 

L\cr L\cr 
aaV acry 0 aap 0 aar aaa aa~ aaa (2 .3.18) 

0 0 0 0 0 0 

0 0 0 0 0 0 L\Oe 
0 0 0 0 0 0 

/).°a 
0 bpa 0 bpx 0 0 

+ bqe 0 0 0 bqy 0 
/).°r 

0 bra brr 0 0 brz 
/). Tx 

0 0 0 0 0 0 
L\ Ty 

0 0 0 0 0 0 
L\ Tz 

0 0 0 0 0 0 

can now be used to study the open-loop behaviour of the vehicle. This will be described in the 

next chapter. 
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Chapter 3 

Open-loop 8ehaviour 
of the 

Re-entry Vehicle 

3.1. Introduction. 

The system of equations, Eq. (2.3.18), is a time·varying system. In order to apply classical 

control theory, we will discretise the nominal trajectory into a number of time intervals. During 

each of the intervals, the state of the vehicle and other system parameters are assumed to be 

constant. For each of the time points, the system can be investigated. By linearising the 

equations of motion and discretising the trajectory, the overall system has been divided into a 

sequence of Linear Time-Invariant systems (L TI systems). 

The part 

x = Ax (3 .1.1 ) 

is known as the homogeneous part of the state equation, with which we can study the free 

response (also called open·loop behaviour, characteristic motion or eigenmotion) of the system. 

The eigenvalues À of state matrix A and the corresponding eigenvectors IJ can be computed 

from the following equation: 

This equation can be solved by 

AIJ - ÀIJ = (A-À/)IJ = 0 

The condition for a non-trivial solution is 

IA-ui = 0 

(3.1.2) 

(3.1.3) 

(3.1.4) 
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Standard algorithms are available to calculate the eigenvalues and corresponding eigenvectors 

of a given matrix A (Press et al., 1990). The mathematical foundation of these algorithms is 

considered to be beyond the scope of th is report. 

With A. and 1.1, the eigenmotion x,,(t) of the re-entry vehicle follows from (Kuo, 1987): 

(3.1.5) 

Since we are dealing with a linear system of 9 coup led equations, Eq. (3.1.5) gives only one 

solution. The general form is, because of the linearity of the system, written as 

(3.1 .6) 

The constants ei can be computed from specified initial conditions x(0), for instance an initial 
perturbation in the nominal angle of attack. 

The eigenmotion given by Eq. (3.1.6) will be discussed in Section 3.3. First, in the next 

Section 3.2, the nominal trajectory is introduced. 

3.2. Nominal trajeetory. 

The design of the control system is centred around a nominal reference trajectory. Such a refer

ence trajectory is usually the result of an optimisation process, taking mission requirements, 

performance criteria and trajectory constraints into account. Unfortunately, we neither have a 

reference trajectory nor an optimisation program at hand, so we must generate one ourselves. 

MBB (1988b) gives a nominal control history of ex and cr as a function of time. With th is control 

history as guidance output and applying ideal control, we can generate the corresponding re

entry trajectory using the Simulation Tooi for Atmospheric Re-entry Trajectories START (Mooij, 
TO BE PUBLISHED) . 

The vehicle data which have been used for the simulation can be found in either MBB 

(1988a) or Mooij (1995). The mass of the vehicle is m = 26,029 kg, whereas the (principal) 

moments of inertia are 

- 2 
lxx = 119,000 kg m 

Îw = 769,000 kg m2 

Îzz = 806,000 kg m2 

The reference geometry is given by: 
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eref = 23.0 m 

bref = 12.0 m 

The initial conditions for the simulation were: 

v = 7435.5 mIs 
y = -1.43° 

X = 70.75° 
h = 122 km 
1: = -106.58° 

Ö = -22.3° 

The vehicle is assumed to be heading towards a runway in Kourou (French Guyana). 

The simulation has been executed for a trimmed condition (pitch equilibrium only), see also 
MBB (1988b). For the Mach range between 1 and 209 , trim is realised with the body flap as 

much as possible, and the rest with the elevons (elevator function). (For 0 < M 5 1, although 
this flight regime is not of interest here, the HORUS-2B is trimmed with the elevators, while 

having the body flap maximum up). 

The nominal controls are shown in Fig. 3.1 and 3.2, for reasons of convenience at the end 

of th is section. In Fig. 3.1, the nominal angle of attack is given as a function of flight time. As 

can be seen, HORUS enters the atmosphere with the high angle of attack of 40°. Because of 

this high angle, the maximum occurring heat flux can be kept sufficiently small. Further down 

the trajectory, the angle of attack is decreased in order to meet with the cross- and downrange 

requirements. The bank-angle profile is plotted in Fig. 3.2. The nominal history provided by MBB 

consists of absolute values only, guaranteeing a certain descent rate. The corresponding sign 

is determined by flying towards the targeting point near Kourou, while keeping the heading error 

within dead-band limits. Whenever the heading error exceeds the dead band, the sign of the 

bank angle is inverted. This manoeuvre, a so-called bank reversal, usually takes between 10 
and 20 s. Since ideal control is applied, i.e., the actual attitude is equated to the commanded 

attitude, the reversals show as verticallines. We see four reversals at t", 724 s, t", 1 076 s, t", 

1184 s and t", 1240 s. The simulation is finished when the Terminal Area, 0.75° ('" 83 km) from 

the runway, has been reached. This is about 1250 s after re-entry. 

Studying the coefficients of A and B, we find that we need the following parameters of the 

nominal trajectory as a function of time: 

The control history provides 0.0 and (Jo (~o = 0°), which we already discussed. The other 

relevant parameters are given in Figs. 3.3-10. For a detailed discussion of the trajeetory we 

9 The upper Mach boundary was in our case changed 10 a dynamic pressure boundary qdyn ;" 100 N/m2, 

10 prevenl pilch inslability and 10 be more in line wilh Ihe body-flap aclivalion of Ihe Space Shuttle. 
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refer to Mooij (TC BE PUBLISHEO) . It should be noted that in the curves for the drag and the lift, 

the trim drag and lift are included. In Figs. 3.11 and 3.12, finally, the nominal body-flap and 

elevator deflection for trim stability are shown. We see that only at the end of the flight the 

body-flap deflection is saturated, and the elevons are required to provide the remaining trim 

moment. The deflections of the aerosurfaces take place with an infinite rate (zero time). 

From coefficient Byv' we see that we need the value of 1'0 ' This variabie can be easily 

computed by substituting the related nominal values in Eq. (2.2.2) , 

. [Vo go} Lacos<Jo 
Yo = - - - oSYo + --:-;-

Ro Vo mVa 

Finally, we need the values of some aerodynamic coefficients and derivatives, 

(3.2.1) 

aeo aeo a~ a~ a~ a0 a~ 
aM ' au' ap' aM' aa' ajf ' ""'äif' with contributions of the base vehicle only 

ae ae 
~, ~ with contributions of the base vehicle, the body flap and the elevons 
aM aa 

ae ae ae _' , ---.!!2 , __ n with contributions of the elevons only 
aOa aOe aOa 

ae 
__ n with contributions of the rudder only ao, 

With MD' aO and the trimmed deflection angles of body flap and elevator at hand, these deriv

atives can be computed off-line. The aerodynamic properties are given in tabular form, for which 
linear interpolation is used to extract the information for a particular flight situation. A derivative 

is computed by simply taking the derivative of the connecting line, when the flight situation is 

located in between two tabular values. At a boundary tabu lar value, either the left or right deriv

ative is used; in case the flight condition is located at a tabular value somewhere in the tab Ie, 

the connecting line of the two neighbouring values is used. 
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3.3. Eigenvalues and eigenmotion. 

Before we start the discussion on the eigenvalues and eigenmotions of HORUS, we must note 

that it is not our intention to give a complete analysis of the open-loop behaviour of HORUS. 

We will restrict ourselves to a more general discussion, starting with a brief introduction on the 

relation between eigenvalues and eigenmotion. Then, we wil! introduce the characteristic 

motions which we find with subsonic, conventional aircraft. As we will see, the HORUS has 

similar motions in certain speed regimes. These characteristic motions will be discussed for a 

number of time points. To iIIustrate the eigenmotion, we will conclude this section by showing 

the results of a 6-dof open-loop re-entry simulation . 

Having computed the eigenvalues and corresponding eigenvectors, how can we relate them 

to the actual motion of a vehicle? Based on the eigenvalues, we can see whether a component 

of the motion is (un)stable and (a)periodic, see also Fig. 3.13. An eigenvalue can be realor 

complex. Complex eigenvalues appear in (conjugated) pairs and indicate a periodic eigen

motion, whereas real eigenvalues imply an aperiodic eigenmotion. The sign of the real part of 
the eigenvalue shows whether the eigenmotion will be converging (negative real part) or 

diverging (positive real part) . When the real part is zero, the oscillations have a constant 

amplitude. A more detailed discussion can, amongst others, be found in the books by Kuo 

(1987) and D'Souza (1988). 

Imp .. ) 

M!-x x 

kift ~ fffif" ~ - - - -" 

, 
x x x 

Wb, ~ ~ ~" fYf ---

Re('A) 

L ~ 0 L L L 
Fig. 3.13 " Impulse responses tor various eigenvalue localions in Ihe complex plane (based 

on D'Souza, 1988), where Ihe conjugale eigenvalues are omitled. 

To characterise the eigenmotion we compute some specific coefticients, i.e., the period P, 

when a pair of complex conjugate eigenvalues represents a periodic motion, defined as 

P=~ 
Ime).) 

(3.3.1) 
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An aperiodic motion does not have a period, which also follows from the fact that the imaginary 

part of the eigenvalue is zero. 

Next, we define the ha/ving time T 1 , indicating the time interval when the amplitude of the 
"2 

motion has become half its original value, 

In2-
2 

Re ('A.) 
(3.3.2) 

However, when the real part of the eigenvalue is positive, the halving time becomes negative. 

In that case it is better to speak of the doubling time of the (diverging) eigenmotion: 

T. = In2 
2 Re ('A.) 

The damping ratio ç for periodic eigenmotion (complex eigenvalues) can be computed with 

ç = 

J Re ('A.)2 + /m('A.)2 

Re ('A.) 
(3.3.3) 

In the case of damped eigenmotion, ç is positive (a negative damping ratio is in principle an 

amplification ratio) . For aperiodic motion, ç is not defined. 

Finally, the natura/ frequency wn for periodic eigenmotion is defined to be 

(3.3.4) 

The natural frequency is the theoretical frequency of the eigenmotion when the energy of the 

system is constant during that motion, which means that the amplitude is constant. Again, for 

aperiodic motion wn is not defined. It should be noted that the natural frequency is more a 

mathematical notion rather than a physical one. 

Using the above definitions, we can write arelation between the period on the one hand, 

and the damping ratio and the natural frequency on the other: 

27t 
P = _-=== 
Wn~ 

(3.3.5) 

Sofar, we have only discussed the stability characteristics of the eigenmotion, but we do 

not know yet in which of the state variables we can trace this motion. Studying the eigenvectors 
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will help us to answer this question. Suppose we compute the modulus of each of the (complex) 

components of an eigenvector IJ p th en we can easily spot the components which are involved. 
Furthermore, computing the argument of the complex component, we get an impression of the 
phase difference between the related components. 

In mathematical terms, see also Fig. 3.14, the modulus z of a complex number À is defined 

to be 

and the argument e is 

e = arctan( Im(À) ) 
Re (À) 

Note that the argument of a real number is always 0 or 7t (À < 0) . 

Im(À) 

Re(À) 

Fig. 3.14 - The modulus zand argument ij of a complex number. 

(3.3.6) 

(3.3.7) 

Each component of the eigenvector can in principle be plotted as a time vector using zand 

e, which will give us a visual aid to inspeet the eigenmotion in the sense that the relative 
magnitude and phase difference of the related components can be distinguished, e.g., see Etkin 

(1972). Here, we will not do that but restriet to a numerical inspection of the more important 

components of the state vector. 

Before we look at the eigenmotion of HORUS, we will briefly discuss the eigenmotion of 

conventional subsonic aircraft in steady flight, because we expect at least partly similar modes 

(a component of the eigenmotion) for HORUS. Etkin (1972) and Brandt and Van den Broek 

(1984) distinguish 5 different modes, two longitudinal and three lateral modes. The longitudinal 

modes are called the short-period and the phugoid mode, whereas the lateral modes are called 

the lateral oscillation (or Dutch rOll), the rolling divergence and the spiral mode. Furthermore, 

the longitudinal and lateral modes are decoupled, which means that a symmetrie motion (e.g., 

a disturbance) will not affect the asymmetrie motion and vice versa. 
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The short-period oscillation is a fast, periodic aircraft motion, which is usually weil damped. 

Because of the fast pitch rate, the aerodynamic forces acting on the vehicle are large. The flight 

path is nearly a straight line, and there is a negligible speed variation. The phugoid is a very 

slow oscillation which is poorly damped. The slowly oscillating speed results in small variations 

in the dynamic pressure and therefore the aerodynamic forces. Basically, the motion consists 

of translations in the aircraft plane of symmetry, while the rotation about the pitch axis is 

negligible. Since only the height and velocity are changing, the phugoid can be interpreted as 
a continuous exchange of potential and kinetic energy. 

The lateral oscillation resembles the short-period oscillation, in that sense that it is usually 

a fast, well-damped aircraft motion (sometimes moderately damped). The large aerodynamic 

forces are in principal due to a rotation about the top axis (yaw). There is also astrong roll rate, 

but this does not influence the lateral oscillation that much. The flight path and the velocity 

almost have constant values. The roll divergence is a strongly damped, aperiodic eigenmotion, 

during which the aircraft rotates purely about the X-axis (rolI). The roll divergence is aperiodic, 

because the roll angle does not have any influence on the external moments and thus the 
motion. The spiral mode, finally, is seen to consist mainly of yawing at nearly zero sideslip with 
some roll. The aerodynamic forces are very smalI, resulting in a large time constant. The spi ral 
mode can be either a stabie or unstable, aperiodic eigenmotion. 

We will now have a look at the eigenmotion of HORUS. As we saw in Section 2.3, the sys

tem matrix A is a 9x9 matrix, which means that there are 9 eigenvalues and corresponding 

eigenvectors. Inspecting A will also teil us that there are some cross couplings between 50-

called symmetric (V, y, R, q, a) and asymmetric variables (p, r, ~, cr), indicating th at the 

symmetric and asymmetric motion will not be completely decoupled. However, when these 
coupling terms are sufficiently smalI, decoupling will be possible. But th is we will see later. 

In Fig. 3.15 through 3.18, the 9 eigenvalues of HORUS along the nominal trajectory are 

plotted. The first two figures show the eigenvalues in the complex plane, whereas the latter two 

give the imaginary and real parts of the eigenvalues as a function of f1ight time. Since it is not 

easy to see which modes the curves represent, we will only draw some general conclusions 

from these figures. 

Fig. 3.15 shows a mixture of complex and real eigenvalues, indicating that we can expect 

both periodic and aperiodic eigenmotions. The maximum imaginary parts of about 1.5 mean 

quite short periods. The real parts are between -1 and 1, which means that the modes can be 

either converging or diverging. Looking at Fig. 3.17, we see in principle twO major periodic 

eigenmotions emerge, which are, as we will find out later, the lateral oscillation (the two outer 

curves) and the short-period oscillation (the two inner curves). The discontinuous jumps in the 

inner curves are due to the linearisation of the aerodynamic coefficients and the linear table 

interpolation: when we go from one table range to another, the aerodynamic derivatives 

sometimes change discontinuously. Fig. 3.18, finally, indicates that most of the time the 

eigenmotions are very Iightly damped or undamped. Only towards the end of the flight strong 

divergencies and convergencies appear. 

To study the eigenmotion of HOR US in more detail, we have selected several time points 
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for which we wil! compute the characteristic values (according to Eqs. (3.3.1) through (3.3.4», 
and for which we wil! try to identify the modes by studying the eigenvectors. The selected time 

points are 1 (t= 0 sj, 50 (t= 196 s), 100 (t= 396 s), 150 (t= 596 s), 200 (t= 796 s), 250 

(t = 996 sj, 300 (t = 1196 s) and 314 (t = 1252 sJ. The numerical results are presented in Table 

3.1 through 3.8 at the end of this section. 

In principle, we can trace the 5 motions which we discussed before for conventional aircraft. 

However, due to the larger speed regime and due to the distinct nature of the nominal trajectory 
(large bank angles as compared with the steady cruise flight of subsonic aircraft), we find some 
differences. Starting with time point 1, we find six eigenmodes. The first mode we have desig

nated the short-period oscillation, because of the large-amplitude oscillations found in the angle 

of attack and pitch rate (note that the most important components of the eigenmotion have been 

printed bold). 

Whereas in the aircraft case the height and velocity remained constant, it seems that here 

this is not the case, basically because of the much slower character of the re-entry short-period 
mode. However, it should be noted that despite the fact that the height component is the 
largest, only the relative difference is important. An amplitude of 0.0226 rad for the angle of 
attack means a 1-m amplitude for the height (or: ~a = 10° gives ~R = 6.7 m). Besides, we do 

not have such a rapid oscillation here: the period is about 850 s, whereas for conventional 

aircraft th is is in the order of seconds. Also the motion is hardly damped, because of the 

absence of aerodynamic forces in the upper layers of the atmosphere. If it had not been for the 

angle of attack, we might also call this a phugoid-kind of motion. However, we have reserved 

that name for the second mode 10. 

The dominating components of the phugoid mode are the height and velocity, with the 

angle of attack more or less constant. Furthermore, looking at the period, we find that this 

eigenmotion is indeed much slower than the short-period oscillation (P = 5,183 sJ. A difference 
with the aircraft phugoid is that th is mode is unstable, although the doubling time is more than 

17,000 s. The next mode, the lateral oscillation, compares weil with its aircraft counterpart. Main 
components are the angle of sideslip and the bank angle, together with the corresponding angu

lar rates. Initially, this mode is unstable, but as we will see later the oscillation changes into a 

damped one. The three remaining modes are all aperiodic. The first two have been given the 

common name aperiodic roll mode for obvious reasons: the bank angle is by far the largest 

component. Surprising is to see that in one mode the influence of the angle of sideslip is many 

orders largerll . This means that the first aperiodic roll mode can be compared with the roll 

divergence of conventional aircraft. Both modes are stabie. The last aperiodic mode has been 
given the name height mode. This mode represents a lightly damped aperiodic motion, which 

has also been found by Sachs (1993), while studying the stability and control problems in 

hypersonic flight. 

10 As we already lind out, at this allitude it is not altogelher uselul to compare the characteristic modes ol 
re-entry vehicles with those ol aircraft, because ol the completely different flighl regime. However, we will stick 
10 it because it is our only comparison method. 

11 In principle, the eigenvalue ol the second aperiodic roll mode is so small that lor practical reasons it can 
be considered to be zero. 
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Now that we have established the basic modes of the eigenrnotion, we can focus on the 

time history of these modes. The short period oscillation changes its nature and comes closer 

to the aircraft mode. Because at lower altitudes the aerodynamic forces are higher, the damping 

of th is mode increases (although the damping remains low). The period decreases from P ~ 

850 5 at t = 0 5, down to P ~ 40 5 at t = 96 5 down to P ~ 9 5 at t = 996 s. Then, at time point 

300 the periodic mode breaks into two aperiodic modes, of which one is strongly damped (Tl 
"2 

= 1.4 5) and the other one is strongly diverging (T2 = 1.9 5) . The half and doubling time 

decrease further for the last time point. Last but not least, the influence of the bank angle 
be co mes stronger towards the end of the f1ight, a phenomenon which we will also see with the 
next mode, the phugoid (for the re-entry flight; not for conventional aircraft) . 

The phugoid damping ratio increases in time (apart from a small decrement at time point 

150). It becomes a very weil damped motion, with, for instance, a half time of 254 5 at time 

point 200. The period of the phugoid decreases from over 5000 5 (t = 0 5) to 430 5 (t = 1252 5) . 
One remark remains to be made and that is that at time point 100 the influence of the bank 
angle has changed a couple of orders of magnitude. This can be explained by the fact that 
initially the nominal trajectory is f10wn with zero bank angle, whereas later large bank angles 

are applied for lateral direction contro!. Because of this the influence of the bank angle in the 

phugoid becomes apparent, and a coupling (although smalI) exists between the symmetrical 

and asymmetrical motion). 

As we mentioned before, the late ral oscillation is an unstable, periodic motion and th is 
continues to be during the whole trajectory. But, some characteristics of the motion change. 
Towards time point 150, the negative damping coefficient gets smaller, which means that the 

motion becomes less unstable. From that point, the damping coefficient becomes more negative 

again. The period changes drastically during the first 100 5 of flight (P changes from 373 5 

down to 19.35). It continues to decrease till time point 250 (P = 4.25), after which it varies only 

slightly. At t = 396 5, we see that the contribution of t>a. has changed many orders of 

magnitude, indicating that due to a large bank angle a small coupling exists between the sym

metrical and asymmetrical motion. Besides, the ratio between t>cr and t>13 changes from 1.39 
to 1.36 indicating a slightly weaker coupling between the bank angle and the angle of sideslip 
at higher bank angles. t>h becomes the major component, although when we see this in propor

tion to the attitude angles it does not seem that major (for time point 100, an amplitude of 17.3° 

in the bank angle corresponds with an amplitude of 1 m in the height). The relative difterence 

between the height and the attitude angles, however, becomes larger towards the end of the 

flight. 

The aperiodic roll modes changes into a single unstable periodic roll mode with a small 

coupling to the angle of attack (an amplitude of t>cr = 10° gives t>a. = 0.33°) at time point 100. 

Besides, the height becomes the major component. Again, th is begins at the moment the 

vehicle starts banking. It should be noted that a small oscillation in the bank angle will result 

in a large amplitude in the height (t>cr = 0.1 ° gives t>h ~ 3,300 m). However, at the next time 

point this mode changes again into two aperiodic modes, which are similar to the aperiodic 

height mode. For time points 200 and 250, a (very) stabie periodic roll mode is back, while at 

time point 300 we have again two aperiodic modes. In this case, the stabie mode is similar to 
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the height mode, whereas the unstable one shows a coupling between the bank angle and the 
angle of attack, with the angle of attack the larger one. 

The height mode already entered the discussion when we were focusing on the several roll 

modes. We will briefly finalise the discussion on characteristic modes. Initially, the height mode 

is stabie. For time point 50, it has become unstable with an amplification ratio which is as large 

as the prior damping ratio. When the banking beg ins (time point 100), the eigenvalue related 

to the height mode modes very smalI, and stays very small during the rest of the flight , being 

alternately positive and negative. For this reason, the height mode is not interesting to discuss 

any further, because for the short time of the flight this mode is practically indifferent. However, 

as we discussed before, for some time points the height mode consists of more than one 

aperiodic component. These additional modes have much larger eigenvalues and become the 

dominating modes for the height mode, although the dam ping and/or amplification remains very 

smalI. 

The free response according to Eq. (3.1.6) is in itself not that interesting. It will confirm what 
we have al ready seen in the tab les with numerical results. Basically, the graphs will show us 
both periodic and aperiodic motions, either diverging or converging. Due to the sometimes long 

periods, the curves will not give us real insight in the eigenmotion at one particular moment in 

time. Only when the motion is, for instance, reasonably damped (or unstable, for that matter) 

and has a sufficiently short period, the resulting eigencurve can be quite informative. As an 

example, the curves for the angle of sideslip and the bank angle (the major variables for the 

lateral oscillation) have been plotted as a function of time for time point 300, see also Fig. 3.19. 

There is another more important reason for not looking into more detail at the curves repre

senting the eigenmotion. The eigenvalues are computed for a certain point in time. When we 

compute the eigenmotion for a certain time interval (100 s in Fig. 3.19), we assume that the 

dynamics of the vehicle are not changing (given by a constant system matrix and therefore 

constant eigenvalues) . For a subsonic aircraft in steady (cruise) flight th is can be areasonabie 

approximation, but for a re-entry vehicle this is most of the time not the case. 

However, we thought it to be illustrative of the eigenmotion to simulate the descent of the 

HORUS-2B in the so-called open-loop 6-d.o.f. mode, i.e., a free-fall re-entry including attitude 

dynamics but without attitude control. For the same initial conditions as given in Section 3.212, 

the results (plots of the angle of attack, the angle of sideslip, the bank angle and the height as 

a function of flight time) are shown in Figs. 3.20 through 3.23. 

We see that right from the beginning the angle of attack is rapidly diverging, reaching a 

kind of stabie oscillation after t = 500 s, however with an initial amplitude of ±5°. After t = 
1,400 s, the vehicle is in a state of severe unstable oscillations (with a pitch rate of a few 

hundred degrees per second). The angle of sideslip and the bank angle show only small oscilla

tions, mainly induced by the angle-of-attack oscillations. Also these angles reach large values 

12 Next to initial conditions tor position and velocily, we need initial values tor the attitude and angular 
rotation ot the vehicle. The nominal attitude angles at t = 0 are Cl = 40°, P = 0° and cr = 0°, whereas the nominal 
pitch rate is 0.072663 o/s (the nominal roll and yaw rate are considered to be zero) . 
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when t> 1,400 s. In Fig. 3.23, we see that the vehicle is in fact doing a damped skipping flight , 

because of the strong variation in the aerodynamic forces. Finally, after more than 1,600 s the 

vehicle crashes on the Earth's surface. 

A second simulation, now with zero initial attitude and angular rates, shows even worse 

results (Figs. 3.24 through 3.26). Beside large-amplitude oscillations in all th ree attitude angles, 

very unstable oscillations are reached after only 500 s (not plotted). It might not come as a 

surprise that also this time the vehicle crashes, even further off from the target. 

The conclusion from the above discussion is, that it is necessary to control the vehicle if 

we want it to have a stabie flight and reach the landing area safely. In the next chapter, we 

discuss the design of an attitude control system which must be able to execute these tasks. As 

is the case for conventional ai rcraft , we can decouple the symmetrie and asymmetrie motion. 

By doing so, we will introduce a small error since there exist a small coupling, as mentioned 

in the above discussion. However, we expect that this coupling effect wil! not influence the 

performance of the controller. 
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Fig. 3.26 - The bank angle as a lunetion ol time (open-loop simulation, zero initial attitude). 
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Àj Re 

Im 

PIs) 

Ty, (s) 

ç (-) 

(J)n (rad/s) 

11, 

DoV 
Do""( 

DoR 
Dop 
Doq 
6r 

Doa 
Dop 
Doa 

short-period phugoid lateral aperiodic roll mode height 
oscillation oscillation mode 

-0.7302 '10.7 0.4025.10.4 0.8677.10.3 -0.1735.10.2 -0.7925.10.18 -0.8402'10.4 

±0.7415·1O·2 ±0.1212·1O·2 ±0.0168 -
847.3 5,183.0 373.8 ~ ~ ~ 

0.949'107 -17,220.6 -798.9 399.4 0.875 '1018 8,250.0 

0.985 '10.5 -0.033 -0.052 -
0.742.10.2 0.121.10.2 0.017 -

z ij z ij z ij z z z 
(0) (0) (0) 

0.0129 10.7 0.1271-10.2 288.9 0.1134 .10.15 6.2 0.1678.10.16 0.2112.10.15 0.6573.10-3 

0.9637'10.6 331.7 0.1632'10.6 18.1 0.4382 '10.20 325.8 0.3441.10.20 0.6882.10.21 0.1351 '10.7 

1.0000 63.3 1.0000 287.7 0.2211.10.14 51.1 0.1475'10.13 0.3129.10.12 1.0000 
0.8551 '10.19 277.7 0.2260 .10.23 291.9 0.0206 287.8 0.2144 .10.2 0.8153.10.3 0.1007 '10·22 
0.1678'10-3 6.1 0.1804.10.9 300.2 0.3156 .10.17 318.3 0.4950 '10.19 0.4129.10.19 0.2798.10.9 

0.9334 '10.20 291.6 0.7187 '10.24 0.4 0.1542 '10-2 287.8 0.1606.10.3 0.9716 '10.3 0.8683 '10·23 
0.0226 276.1 0.3150.10.7 281 .9 0.3891.10.16 345.0 0.3712 .10.16 0.1735.10.16 0.1527 '10-7 

0.1940.10-17 21 .6 0.2444.10.22 272.3 0.7277 20.8 0.7814 .10.2 0.1235.10.15 0.2045'10-22 
0.2609.10-17 11 .3 0.5346 .10.21 52.2 1.0000 11.7 1.0000 1.0000 0.9654 '10·20 

Table 3.1 - Eigenvalues and corresponding characteristic values tor time point 1 (t = 0 sj . 
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Im 

P(s) 

Tv. (s) 

ç (-) 

(1ln (rad/s) 

1'/ 

aV 
ar 

aR 
ap 
aq 
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au 
a~ 
aer 

short-period phugoid lateral aperiodic roll mode height 
oscillation oscillation mode 

-0.2342'10-4 -0.1144'10-3 0.8723'10-3 -0.1769'10-2 0.1535 '10-16 0.7921'10-4 

±O.1583 ±0.1256·1O·2 ±O.3257 -
39.7 5,002.9 19.3 ~ ~ ~ 

2,959.1 6,058.3 -794.6 392.0 -0.452.1017 -8,750.8 

0.148'10-3 0.091 -0.268,10.2 -

0.158 0.126.10-2 0.326 -
Z ij Z ij Z ij Z Z Z 

(0) (0) (0) 

0.3191 273.8 0.1277'10-2 76.0 0.3534.10-15 87.0 0.1 622 '10-15 0.2273 .10-13 0.6449 ,10.3 

0.2031 '10-4 271.7 0.1690'10-6 345.2 0.1466 '10-18 358.1 0.1344'10-18 0.8117 '10-20 0.8793'10-8 

1.0000 1.8 1.0000 81.7 0.1821 '10-11 358.9 0.8659 '10-12 0.3518'10-10 1.0000 
0.1769,10-16 271.7 0.8803 '10-21 34.9 0.4007 1.3 0.2175'10-2 0.8197'10-3 0.4764'10-21 

0.5316'10-2 273.6 0.1936'10-9 285.7 0.6885 '10-18 0.4 0.1162'10-19 0.1423 '10-19 0.2771'10-9 

0.1096'10-17 272.4 0.1699'10-21 85.4 0.0291 1.3 0.1579'10-13 0.9790'10-3 0.8749'10.21 

0.0336 3.6 0.4148.10-7 75.9 0.4179 ,10-17 81.3 0.2817,10-20 0.7400,10-18 0.2094.10-7 

0.1322'10-16 2.3 0.1650'10-22 350.2 0.7225 271.4 0.2129 '10-4 0.5070'10-17 0.5994 '10.22 

0.5658.10-16 1.1 0.1 953.10-18 12.7 1.0000 271 .0 1.0000 1.0000 0.6410,10-18 

Table 3.2 - Eigenvalues and corresponding characteristic values lor time point 50 (t = 96 sj. 
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Im 

P(s) 

Ty, (s) 

ç (-) 

Oln (rad/s) 

111 

óV 
óy 

óR 
óp 
óq 
M 
óa 
ó~ 
ócr 

short-period phugoid lateral periodic ron spiral 
oscillation oscillation mode mode 

-0.2032.10-3 -0.9924.10-3 0.2225·10"3 0.1022.10-3 -0.1053.10-14 

±0.4292 ±0.1359·1O-2 ±O.8844 ±O.5608·10-3 -
14.6 4,625.1 7.1 11,203.9 ~ 

3,410.4 698.4 -3,115.4 -6,784.2 0.658.1015 

0.474.10-3 0.590 -0.252.10-3 -0.179 -

0.429 0.168.10-2 0.884 0.570.10-3 -

z e z e z e z e z 
(0) (0) (0) (0) 

1_0000 270.6 0.1666.10-2 339.2 0.8536.10-2 270.1 0.5610.10-3 0.4 0.6115-10-5 

0.2231 .10-4 88.5 0.2385-10-6 76.0 0.1254-10-3 0.3 0.8066.10-7 335.9 0.2074-10-11 

0_3721 358.5 1_0000 22.3 1.0000 270.3 1.0000 55.6 1_0000 
0.4047.10-6 270.4 0.5151 .10-9 56.3 0_3287 0.2 0.3382-10-9 29.0 0.1072-10-9 

0.0166 270_7 0.3228 -10-9 321.3 0.1192.10-3 270.2 0.7965-10-9 280.7 0.7928.10-9 

0.2939-10-7 270.4 0.3740-10-10 56.3 0_0239 0.2 0.2456-10-10 29.0 0.1274.10-9 

0.0387 0.6 0.5117.10-7 339.2 0.5723.10-3 0.1 0.1724.10-7 0.4 0.1878-10-9 

0.1304 -10-6 0.4 0.6505-10-12 290.2 0_2182 270.2 0.1447.10-12 309.3 0.2645-10-23 

0.7566 .10-6 348.9 0.1853 -1 0-6 355.2 0_3020 270.2 0_5266.10-6 282.6 0.5107-10-6 

Table 3.3 - Eigenvalues and corresponding characteristic values lor time point 100 (/ = 396 sj. 
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}., Re 

Im 

P(s) 

Ty, (5) 

ç (-) 

wn (rad/s) 

11, 

6V 
6y 

6R 
6p 
6q 
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6a 
6~ 
60 

short-period phugoid lateral spiral mode 
oscillation oscillation 

-0.2537 '10-3 -0.1090'10-2 0 .4583'10-3 0.2865 '10.3 -0.5696·10,3 0.3040·10,14 

±0.4361 ±O.1546·lO,2 ±O.9001 -
14.4 4.063.6 7.0 ~ ~ ~ 

2,732.4 636.2 -1,512.4 -2,419.2 1,216.9 -0.228.1015 

0.582'10,3 0.576 -0.509'10.3 

0.436 0 .189.10.2 0 .900 -

z ij z ij z ij z z z 
(0) (0) (0) 

1.0000 274.0 0.1815'10-2 82.2 0.9170 '10-2 270.4 0.2713.10-3 0.1094 .10-2 0.8003.10-5 

0.4013'10-4 272.7 0.2974 '10,6 1.2 0.1416'10.3 0.7 0.4491'10-7 0.8897'10-7 0.4561 '10-11 

0.5933 2.7 1.0000 306.6 1.0000 270.6 1.0000 1.0000 1.0000 
0.4450'10,6 273.7 0.5502 '10,9 344.9 0.3603 0.6 0.9548 '10-10 0.9607'10-9 0 .6063'10.10 

0.0166 274.1 0.4104 '10,9 54.0 0.1268'10,3 270.5 0.6327·10,9 0.2328 .10-8 0.1015 '10-8 

0.3231'10-7 273.7 0.3995'10-10 344.9 0.0262 0.6 0.6933'10-11 0.6976'10-10 0 .7337 '10-10 

0.0380 4.0 0.5548'10-7 82.2 0.6003.10-3 0.5 0.8293.10.8 0 .3343·10,7 0.2446.10-9 

0.1406 '10-6 3.7 0.7542'10-12 39.8 0.2350 270.6 0.1982'10-13 0.3966'10,12 0 .1012'10-22 

0.8149'10-6 347.6 0,1603'10-6 281 .8 0.3253 270.6 0.3505'10-6 0.1455'10-5 0.6027'10-6 

Table 3.4 - Eigenvalues and corresponding characteristic values lor time point 150 (t = 596 5). 



short-period phugoid lateral roll divergence spiral 
oscillation oscillation mode 

À; Re -0.9485 '10-3 -0.2730'10.2 0.3817'10-3 -0.6806'10-4 -0.8865 '10-15 

Im iO.6923 iO.2006 ·1O-2 il.432 ±0.1084·1O·2 -
P(s) 9.1 3,132.0 4.4 5,794.7 ~ 

Tl'> (s) 730.8 253.9 -1,815.7 10,183.9 0.782.1015 

ç (-) 0.137'10-2 0.806 -0.267'10-3 0.063 

wn (rad/s) 0.692 0.339'10-2 1.432 0.109'10.2 

lil z ij z ij z ij z ij z 
(0) (0) (0) (0) 

t.V 1.0000 276.0 0.0025 319.8 0.1063 '10.1 270.1 0.4720'10-3 72.2 0.4763 '10-5 

t.r 0.4694 '10-4 275.1 0.6628 '10.6 87.0 0.2809 '10-3 0.5 0.2126 '10.6 57.1 0.6368'10-11 

t.R 0.3553 5.2 1.0000 50.9 1.0000 270.5 1.0000 330.7 1.0000 
t.p 0.7156 '10.6 275.8 0.1981 '10-8 288.2 0.5030 0.4 0.2391 '10-9 323.5 0.1658.10-9 

t.q 0.0163 276.3 0.1057.10-8 304.4 0.1427 '10-3 270.3 0.1008'10-8 4.8 0.7193'10-9 

M 0.5546E-07 275.8 0.1535'10-9 288.2 0.0390 0.4 0.1853'10-10 323.5 0.1947'10-9 

1'.0. 0.0236 6.2 0.7242.10-7 319.8 0.4260 '10-3 0.3 0.1356.10-7 72.2 0.1368 '10-9 

t.~ 0.1410'10-6 5.8 0.1911'10-11 324.5 0.2050 270.4 0.7395 '10-13 49.9 0.2217'10-23 

t.cr 0.9087 .10-6 328.9 0.1993.10-6 290.1 0.2867 270.4 0.3978.10-6 357.1 0.2623-10-6 

Table 3.5 - Eigenvalues and corresponding characteristic values lor time point 200 (t = 796 sj . 
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short-period phugoid lateral roll divergence spiral 
oscillation oscillation mode 

-0.3245'10-2 -0.4386 '10-2 0.1665'10-2 -0.1949'10-2 0.2946 '10-14 

±O.6936 iO.2865·10·2 ±1.496 ±O.4996·10-4 -

9.1 2192.8 4.2 12,577.2 ~ 

213.6 158.0 -416.2 355.7 -0.235.1015 

0.468 '10-2 0.837 -0.111'10-2 1.000 -
0.694 0.524.10.2 1.500 0.195,10-2 -

Z ij Z ij Z ij Z ij Z 
(0) n (0) (0) 

1.0000 283.5 0.2864'10-2 355.8 0.0138 271 .5 0.8188 '10-3 300.5 0.9978'10-5 

0.1143'10.3 282.6 0.1725'10-5 325.9 0.5001 '10-3 2.2 0.6430'10-6 300.1 0.1054'10-9 

0.5387 13.0 1.0000 293.2 1.0000 272.2 1.0000 298.7 1.0000 
0.2483 '10-5 283.1 0.8595'10-8 352.0 0.2990 2.2 0.2238'10-8 300.2 0.2914'10-9 

0.0127 284.2 0.5398'10-8 335.4 0 .1 345.10-3 271.7 0.3456'10-8 299.6 0.1101 '10-8 

0.2959'10-6 283.1 0.1024 '10-8 352.0 0.0356 2.2 0.2667'10-9 300.2 0.3884'10-9 

0.0183 13.8 0.1486 '10-6 355.8 0.4180.10-3 1.7 0.4247'10-7 300.5 0.5174 '10-9 

0.3646'10-6 12.8 0.9533'10-11 25.2 0.0947 272.2 0.9237'10-12 301.6 0.8725 '10-23 

0.6543 '10-5 306.0 0.6393 '10-6 28.3 0.1n6 272.2 0.3700'10-6 298.5 0.2211-10-6 

Table 3.6 - Eigenvalues and corresponding characteristic values lor time point 250 (t = 996 sj. 
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Im 

P(s) 

Ty, (s) 

ç (-) 

CJ)n (rad/s) 

111 

AV 
Ay 

AR 
AP 
Aq 
Ar 

Aa 
AP 
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former short-period periodic pitch/roll lateral pitch/roll Spi ral mode 
oscillation mode oscillation divergence 

-0.5078 0.3695 -0.0157 0.0229 0.0814 -0.2892 '10.3 0.9450 '10-14 

- ±O.7035·1O-2 ±1.113 

~ ~ 893.1 5.6 ~ ~ ~ 

1.4 -1.9 44.3 -30.3 -8.5 2,396.8 -0.734.1014 

- - 0.912 -0.021 

- 0.017 1.113 - ' 
Z Z Z ij Z ij Z Z Z 

(0) (0) 

0.6721 0.5181 0.1758 '10-2 9.3 0.0256 284.8 0.1215 0.3228 '10.4 0.3896 .10-5 

0.4118'10-3 0.2972'10-3 0.1598 '10-4 14.0 0.1027 '10-2 17.9 0.6490 '10-4 0.2695'10.6 0.3286'10-9 

1.0000 1.0000 1.0000 349.9 1.0000 286.9 1.0000 1.0000 1.0000 
0.2036 '10-4 . 0.1595 '10.4 0.4226'10.6 48.5 0.0808 19.2 0.3478 .10-5 0.3717 '10-6 0.5878 '10-9 

0.3447.10-2 0.1822 .10-2 0.1025.10.6 278.8 0.7476.10-4 278.2 0.2963.10.4 0.6599 .10-6 0.2753 '10.6 

0.3419'10-5 0.2680 '10-5 0.7098'10.7 48.5 0.0136 19.2 0.5842.10-6 0.6244 '10-9 0.1219'10-6 

0.7534'10-2 0.4372'10-2 0.3333 '10-5 9.5 0.4170.10-3 16.0 0.2428'10-3 0.6126.10.7 0.7396 '10-6 

0.1604 '10-5 0.9150 '10-6 0.1125'10-6 72.7 0.0140 290.4 0.4397'10-7 0.1669'10-12 0.7179 '10-21 

0.2726'10-4 0.7653.10-4 0.1671-10-4 48.9 0.0722 288.1 0.4241'10-4 0.3279'10-6 0.2092'10-6 

Table 3.7 - Eigenvalues and corresponding characteristic values for time point 300 (I ~ 1196 sj. 



0\ 
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11 former short-period periodic pitch/roll lateral pitch/roll spi ral mode 
11 oscillation mode oscillation divergence 

),. . Re -1.0884 0.9518 -0.0213 0.0392 0.0401 -0.1059'10.3 -0.9138'10-15 

I 

Im - ±0.0146 ±1 .343 - - -

P(s) - - 430.4 4.7 - - -

Tv. (s) 0.6 -0.7 32.6 -17.7 -17.3 6,544.1 0.759.1015 

ç (-) 0.825 -0.029 -

Uln (rad/s) 0.026 1.343 -

IJ, z z z ij z ij z z z 
(0) (0) 

I'. V 0.9895 0.8871 0.6586'10-2 52.8 0.0268 339.8 0.0419 0.3379 '10.4 0.1613 '10.4 

t.y 0.1275'10-2 0.1111'10-2 0.3613 '10-4 68.9 0.1815 '10-2 72.9 0.4591 '10-4 0.1498 '10-6 0.3187 '10-8 

t.R 1.0000 1.0000 1.0000 35.0 1.0000 341 .4 1.0000 1.0000 1.0000 
t.p 0.3547'10-4 0.3566 '10-4 0.1380'10-5 305.5 0.1259 74.5 0.1785'10-5 0.3427'10-8 0.6985 '10-9 

t.q 0.0266 0.0220 0.5895'10-6 343.9 0.3583.10-3 336.1 0.4785.10-5 0.8551.10-8 0.3164'10-8 

M 0.1701 '10-5 0.1710 '10-5 0.6617.10-7 305.5 0.6041-10.2 74.5 0.8561 '10-7 0.1644'10-9 0.1977'10-8 

t.a 0.0267 0.0210 0.7066 '10-5 52.8 0.4624 '10-3 71.3 0.4525 '10-4 0.3632 '10-7 0.1734'10-7 

t.~ 0.5123 '10-5 0.4504'10-5 0.4726'10-8 339.9 0.0225 346.2 0.9498 '10.8 0.4817'10.13 0.1735 '10.22 

t.cr 0.2715'10-3 0.2695 '10-3 0.4661-10-4 298.7 0.0911 342.9 0.3464'10-4 0.3238'10-6 0.2104 '10-6 

Table 3.8 - Eigenvalues and corresponding characteristic values for time point 314 (1= 1252 s) .. 



Chapter 4 

Design of the Controller 

4.1. Introduction. 

The conclusion, which can be drawn from the results obtained in Section 3.3, is that when the 

HORUS-28 will be uncontrolled, it will end up in unstable oscillations after a small perturbation. 

For th is reason, and because of the fact that we need to guide the vehicle along a specified 
(reference) trajeetory, we must have an attitude control system. As we saw in the previous 

chapter, an oscillation in pitch will in principle not result in lateral oscillations. Also the opposite 

is true: lateral oscillations will not induce a pitch oscillation. In other words, the pitch and lateral 

motion are said to be decoupled. 

To simplify the design of the controller, we will use this fact of decoupling by separating the 

controller into two parts: a longitudinal and a lateral controller. The longitudinal controller con

sists of an inner and an outer loop. The inner loop takes care of stability augmentation while 

the outer loop provides the corrective control , i.e., to make the actual attitude approach the 

commanded one in a finite time. The stability augmentation, or longitudinal trim, is executed by 

aerodynamic means only, i.e., in the first instanee the body flap is used, and in case the max
imum deflection has been reached, the elevators (symmetrie deflection of the elevons), are 

used for additional control. For corrective longitudinal control, the elevators and pitch jets will 
be used. Lateral control consists of only the outer, corrective loop, because only small moments 

are required to maintain stability. This control is achieved by using the ailerons (asymmetrie 

deflection of the elevons), the rudders, and the roll and yaw jets. The state of the vehicle is fed 

back into the two controllers. In order to react to the strongly varying dynamics, varying gains 

are used in both corrective control loops. In Fig. 4.1, the layout of the controller has been 

schematically depicted. In this respect, we mention that there are in principle tnree controllers 

discussed in this report: a longitudinal and a lateral controller, that are designed independently 

from each other, and an integrated controller, combining the longitudinal and lateral controllers. 
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Fig. 4.1 - Schematic layout of the HORUS-2B attitude controller. 

In this chapter, we will discuss the linear state-feedback controller with gain scheduling, the 

controllaws of which are based on a design proposed by MBB (1988b). In Chapter 1, we moti

vated the choice for this type of controller, being easy to understand and implement, and not 

yet applied to a winged re-entry vehicle before. Whereas MBB derived the values for the gains 

by means of pole placement, in principle a technique that can easily be applied to Singe-Input 

Single-Output systems, we will apply linear-quadratic optimal control theory, particularly suitable 

for Multiple-Input Multiple-Output systems. 

The layout of the chapter is as follows. First, in Section 4.2, we give a synopsis of the 

derivation of the reduced matrix Riccati equation, which we will use in success,ive sections to 

compute the gains of the pitch and the lateral controller. Then, in Section 4.3, the design of the 

pitch corrective-controller will be discussed. The section begins with a description of the 

reduced state-space model, including the corresponding eigenvalues (the pl<;>t showing the 

eigenvalues is called the root locus). After introducing the state-feedback control law, the 

feedback gains for the longitudinal controller are computed. In Section 4.4, the design of the 

lateral corrective-controller is given, following the same line of thought as for the longitudinal 

controller. 
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4.2. The matrix Riccati equation. 

Suppose, we have a state-space system given by 

i = Ax + Su (4.2.1a) 

y = Cx + Du (4.2.1b) 

In case of state-feedback, the control law is given by 

u = -Kx (4.2.2) 

where K is a time independent feedback or gain matrix. Eq. (4.2.2) substituted into Eq. (4.2.1 a) 

yields 

x = (A-BK)x (4.2.3) 

The characteristic equation of Eq. (4.2.3) , which gives us the eigenvalues and corresponding 

eigenmotion of the closed-Ioop system is given by 

detlA -BK -Hl = 0 (4.2.4) 

As becomes obvious while studying the above equation, we can change the eigenvalues of the 

closed-Ioop system by varying the gain matrix K. Whether the system will be controllabie, 

however, is not only depending on the values of these gains. The system in itself should at 

least be controllabie, and it is not necessarily true that th is is always the case. Controllability 

is in th is case defined as follows (Kuo, 1987): 

Given a linear time-invariant system as described by Eqs. (4.2.1), the state x(t) is said 

to be controlIabie at t = to if there exists a piece-wise continuous (and finite) input u(t) 

that will drive the state to any final state x(t~ for a finite time tt ~ tO' If every state x(toJ 

of the system is controlIabie in a finite time interval, the system is said to be complete

Iy state controlIabie or simply state controllabie. 

The condition of controllability depends on the coefficient matrices A and B. 

To determine whether the system is unstable or not, it is also necessary that (at least the 
unstable) motions of the system are observabie. Observability is defined by Kuo (1987) as: 

Given a linear time-invariant system as described by Eqs. (4.2.1), the state x(t) is said 

to be observabie if given any input u(t), there exist a finite time tt ~ to such that the 

knowledge of i) u(t) for to :;; t < tt ii) the matrices A, B, C and D and iii) the output y(t) 

for to :;; t < t,. are sufficient to determine x(toJ. 11 every state of the system is observabie 

for a finite time t,. we say that the system is completely observabie, or simply observ

abie. 
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To check whether a system is controlIabie and observabie, it is necessary and sufficient that 

the controllability matrix 

(4.2.5) 

and observability matrix 

(4.2.6) 

have a rank n, i.e., the dimension of the state vector x. When not all of the eigenmotions are 

part of the observabie and controlIabie state space, then only those eigenmotions that are part 

of it can be influenced by state feedback13
. 

The feedback matrix can be computed in a mathematically closed form. An indirect method 
is Quadratic Optimal Control , in which a mathematically defined cost criterion is minimised. A 
direct method is the so-called po Ie placement, in which K is solved on basis of the specified 

poles of the closed-Ioop system. In our study we will continue with the indirect method, where 

we will use the following quadratic cost criterion (Gopal , 1989): 

J = f(X TQx+u TRu)dt 
o 

(4.2.7) 

where the term x T Q x represents the control deviation and the term u T Ru the control effort. 

Q is a real positive semi-definite matrix, whereas R is a real symmetrie positive definite matrix, 

so any x, u ~ 0 cannot give a negative contribution to J. By varying Q and R more weight can 

be given to the control deviation, resulting in a faster response, or the control effort, giving 

smaller control signais. By varying each of the elements of Q and R, each of the corresponding 

elements of x and u can be addressed. Brandt and Van den Broek (1984) state that defining 

Q and R is usually done in an iterative manner, and that a good first choice is given by 

'Bryson's Rule': 

"'7) nmax 

(4.2.8) 

with aximax the maximum allowable amplitude of the i-th element of the state vector, and 

13 We assume that our system is fully observabie. The output vector is equated to the state vector, which 
means that C is equal to the identity matrix. 
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R = diaJ U~ 
"'11max 

... -Tl 
mmax 

with Ujmax the maximum allowable value of the j-th contro!. 

(4.2.9) 

Response tests must prove that these weighting matrices have been correctly selected. If 

not, the values of the diagonal elements should be adjusted. Frangos and Yavin (1992) propose 

a synthesis procedure that automatically varies the weighting matrices and computes the gains 

in an iterative manner, based on minimisation of the quadratic cost criterion J. Luo and Lan 

(1995), finally, describe a systematic method to determine the weighting matrices, so as to pro

duce specified closed-Ioop eigenvalues. Implementation of either algorithm, however, is con

sidered to be bevond the scope of the current study. 

To find an expression tor K, we substitute Eq. (4.2.2) into the cost criterion Eq. (4.2.7) , 
yielding 

~ 

J = Jx T(Q+KTRK )xdt 
o 

(4.2.10) 

To solve the optimisation problem, we will use the stability analysis according to Lyapunov. The 

integrand of the above integral equation is considered to be the negative time derivative of the 

Lyapunov function V(x): 

V(x) = X Tpx (4.2.11) 

which attaches a mathematically formulated fictitious energy to the system as a function ot the 

state vector (Gopal, 1989). This makes the minimisation of J to be a minimisation of the inte

grated fictitious power. P is a positive definite matrix, so every deviation of the state trom the 

equilibrium state is treated as a positive energy. Based on the above, we may write 

(4.2.12) 

Differentiating results in 

(4.2.13) 

Since the above expression should be valid for all x, the following expression holds: 
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or 

with 

(A-BK)Tp + P(A-BK) = -(Q+KTRK) 

Á Tp + PÁ = -0 

Á = A - BK 

0= Q + KTRK 

(4.2.14) 

(4.2.15) 

Eq. (4.2.15) is called the Lyapunov Equation. Gopal (1989) states that the linear system 

i = Áx 

is globally asymptotically stabie 14 at the origin if and only if for any symmetrie positive definite 

matrix 0, there exists a symmetrie positive definite matrix P that satisfies the Lyapunov 

Equation. This gives us the possibility to check whether our system can be stabilised or not. 

Continuing with Eqs. (4.2.10) and (4.2.12), the cost criterion can be written as: 

assuming that our system is asymptotically stabie, or in mathematical terms 

lim x(t) = 0 
1-+>0 

(4.2.16) 

Minimising J is now the same as minimising the right-hand term of Eq. (4.2.16) by means of 
K. Because R is positive definite, we may decompose it as 

R = STS (4.2.17) 

Substituting th is into the Lyapunov Equation Eq. (4.2.14) yields 

(4.2.18) 

which can be further expanded to 

14 Kuo (1987) delines asymptotic stability as lollows: '11 the zero-input response x{I), subject to the linite 
initial state X{loJ, returns to the equilibrium state x{l) = 0 as I approaches inlinity, the system is said to be stabie; 
otherwise, the system is unstable. This type ol stability is also known as the asymptotic stability.' 
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The last term on the left-hand side can be treated as a function of K, so J is minimised when 

(4.2.20) 

is minimised w.r.t. K. Since Eq. (4.2.20) is either zero or greater than zero, the minimum is 
found when Eq. (4.2.20) is zero, or 

(4.2.21) 

so that the optimal feedback matrix K can be expressed as a function of P: 

(4.2.22) 

Substituting Eq. (4.2.22) into Eq. (4.2.19) gives us P as a function of the system matrices A and 

8, and the weight matrices Q and R: 

A Tp + PA - P8R-1 8P + Q = 0 (4.2.23) 

Eq. (4.2.23) is also known as the matrix Riccati equation. 

4.3. Longitudinal controller. 

4.3.1. Redueed system tor symmetrie motion. 

In order to decouple the pitch mot ion from the lateral motion, we put öll and öcr to zero. 

Furthermore, we will only consider rotational dynamics, so we neglect any contribution due to 

ö V, öyand öR. We can do this since the dynamics of the translational motion have much lower 

frequencies than the high-frequency rotational dynamics. As an approximation, the following 

system follows from Eqs. (2.2.17) through (2.2.25): 

(4.3.1) 
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In state-space form, the above system can be written as 

so the matrices A and Bare equal to 

A = 

1 aC
m 1 o ---qdynSrefCref 

tyy au 
1 aCL 

-----qdynSref 
mVo au 

---qdynSrefCref -

[
1 aCm 1l 

B = tyy a8e tyy 

o 0 

4.3.2. Root locus of the reduced system. 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

Looking back at Chapter 3, where we computed the eigenvalues of the homogeneous part of 

the state equation, we will do the same here for the simplified equation, Eq. (4.3.)3), flying along 

the same nominal trajectory as discussed in Section 3.2. The results are shQwn in Fig. 4.2 

through 4.5. Comparing the results with the corresponding graphs in Section 3.3 shows a sim

ilar behaviour of the related eigenvalues, which indicates that the choice of decoupling the two 

types of motion was justified. Note that the eigenmotion shown in Fig. 4.2 corresponds with the 

short-period oscillation. Neglecting the translational motion has indeed not influenced this 

motion, so our assumption of frequency separation has been correct. 
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Fig. 4.2 - Variation ol the eigenvalues ol symmetrie motion along the nominal trajectory. 
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Fig. 4.3 - Detail ol the eigenvalue plot eentred around the origin lor the symmetrie motion. 

73 



74 

-0.6 

-0.8 

\ 
+ 
+ 
+ 
+ 

.. ..-. .. 
+ 
+ 
+ 

i 

_IL-____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~~ __ ~ 

o 200 400 600 800 1000 1200 1400 

time (sec) 

Fig. 4.4 - The imaginary parts of the eigenvalues as a function of flight time lor the symmetrie motion. 

0.5 

7 , 
t 
+ 
+ 
+ 
+ 
+ 

Ol~------------------------______ _ 

-0.5 

-I 

+ 
+ 
+ 
+ 
+ 
+ 
t 

\ 
\ 

-1.5 L-__ ~ __ ---'-__ ---'-___ "'--__ -,-__ ---,-__ ----1 

o 200 400 600 800 1000 1200 1400 

time (sec) 

Fig. 4.5 - The real parts of the eigenvalues as a function of flight time for the symmetrie motion. 



4.3.3. Selection of pitch controls. 

The aerodynamic control surfaces can only be efficiently used when the dynamic pressure is 

sufficiently high, otherwise large deflections will result in only small control moments. This 

means that tor the upper layers ot the atmosphere only the Reaction Control System will be 

used, whereas at low altitudes tuil control can be achieved with the control surfaces. The 

tollowing criterion have been used by MBB (1988) . 

As long as 

(4.3.6a) 

then the aerodynamic gains (K1 and K2' as we will see later) are put to zero. If 

(4.3.6b) 

then the reaction-control gains (K, = K2 ) are equal to zero. When both actuators are operating 

then 1 K, 1 = 1 K, 1 and 1 K2 1 = 1 K2 I · The maximum elevator deflection angle and the maximum 

thrust of the pitch jet are 

Tymax = 10,400 Nm 

The basic idea behind this is to select one of the two controls when its effectiveness is more 

than 10% of the other. 

In case the above switch criterion is used, there are some points of interest. In the first 

place, the assumption that the contribution of the elevator to the pitch moment is linear over the 

full range of elevator deflection is (of course) not correct. This fact can be overlooked if the 

difference in the resulting pitch moment is not that large. In our case, for the larger part of the 

trajectory we compute the derivative for a nominal deflection of 0°. Because the maximum 

deflection is 40°, we found an overestimate of the maximum pitch control moment of more than 
200 percent. Of course, this is only of importance when the control system actually commands 

such large deflections. In the second place, the absolute pitch moment for a deflection of -40° 

differs significantly from its positive counterpart (between -50 and +50%), see MBB (1988a). 

To avoid any possible problems, we will just base the selection of the controls on a scheme 

used for the Space Shuttle (Cooke, 1982). In Fig. 4.7, th is scheme is plotted. For pitch control, 

we see that the elevators are activated at a dynamic pressure of 100 N/m2 ('= 2 psf) . The pitch 

jets will start working at the entry interface (in principle a dynamic pressure of 0 N/m2) and will 
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continue to do so until a dynamic pressure of 1000 N/m2 (= 20 psf) has been reached. 

ENlRY 
INTERFACE 

ROLL .ETS I q = 10 PSF 

PITCH JETS I q=20PSF 

YAW .ETS IMACH=l 

MACH = 3.5 I RUDDER 

q = 2 PSF I ELEVATORS 

q = 2 PSF I AILERONS 

MACH = 10 I SPEED BRAKE 

q = 2 PSF I BODY FLAP 

END OF 
MISSION 

Fig. 4.7 . Enlry conlrol modes lor Ihe Space Shuttle (based on Cook (1982». 

Since we compute the gain matrix by solving the reduced matrix Riccati equation, we will 

not predefine that the gains for reaction and aerodynamic control are equal when both control 

modes are operational, as is the case with MBB. If one of the control modes is not active, then 

the corresponding gains are put to zero. 

4.3.4. Control laws. 

The state feedback law is chosen to be a simple P·law (MBB, 1988b), see also Fig. 4.6 for a 

schematic representation: 

(4.3.7) 

(4.3.8) 

where 

~a = a-aa = a-ac 
ac = commanded angle of attack from the guidance system (rad) 

Two assumptions were made: in the first place, the rate of change of the angle of attack is 
equal to the pitch rate, which seems logical when we look at our simplified system of equations, 

Eq. (4.3.2), and in the second place we approximate the nominal angle of attack with the 

commanded one. The latter seems logical too, since we want to fly a nominal profile. 
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Fig. 4.6 - The longitudinal controller. 

The above equations can be written in matrix form: 

or, in symbolic notation, 

u = -Kx 

Substituting Eq. (4.3.10) into Eq. (4.2.1 a) gives us 

x = Ax + Su = Ax - SKx = (A-SK!x 

S\\1TCHING 
CONOITION 

S\\1TCHING 
CONOITION 

(4.3.9) 

(4.3.10) 

(4.3.11) 

which enables us to study the behaviour (i.e., eigenvalues) of the feedback system, once the 

gains have been selected. Or, as we mentioned before, we can influence the behaviour of the 

system by intelligently choosing the gains. 

4.3.5. Computation of the feedback gains. 

MBB computed the gains by pole placement, with as a starting point that the short period 

oscillation is weil damped (Ç = 0.7) and that a good tracking behaviour in pitch control is 

achieved. However, we will use an indirect method to find the proper gains of Eq. (4.3.9), with 

the fOllowing quadratic cost criterion: 
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~ 

J = J(X TQX+U TRu)dt 
o 

(4.3.12) 

where the term x T Qx represents the control deviation and the term uT Ru the control effort. 

The optimal gain matrix for th is cost criterion is discussed in Section 4.2, Eq. (4.2.22), 

K = R-1 S Tp 

with the positive matrix P following from the reduced matrix Riccati equation: 

A Tp + PA - PSR-1 SP + Q = 0 

The matrices Q and R are in this case given by 

--2-

L1Qmax 
Q= 

o 

R= 

-;;;;-
emax 

0 

o 

0 

L1T
2 
Ymax 

Numerical values, which we will use, are: 

L1Qmax = 00 (which means that the pitch rate is not used as a weighting factor) 

L1amax = 2° 

L1Tymax = 10,400 Nm 

(4.3.13) 

(4.3.14) 

(4.3.15) 

(4.3.16) 

The value of L1amax has been chosen such, that, since the nominal angle of attack is close to 

the limit value, there is a small margin left. After calculating the gains, we will check in Chapter 

5 what the damping factor and the tracking behaviour will beo 

Basically, defining the weighting matrices is an iterative procedure, as we al ready 

mentioned in Section 4.2. An important aspect in this respect is, that we apply constant Q and 
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R. However, it is quite weil possible that in some flight phases we must change the weighting 
matrices 50 that the response of the vehicle wil! improve. As an example we refer to the paper 

by Hamilton (1982), who describes how the gains of the lateral aerosurface controlloops had 

to be adjusted to give the correct performance. In th is study, we wil! work with only one set of 

weighting matrices, but recognising the fact that this is not final. The references mentioned in 

Section 4.2 serve as a good basis, to improve the response of the controller if further study is 

going to be conducted. 

The resulting gains can be found in Figs. 4.8 and 4.9. The three operational regimes, i.e., 

only reaction control, only aerodynamic control and the transition region where both reaction 

and aerodynamic control are used, can clearly be distinguished. Switching from one region to 

the other shows as discrete jumps in the gain values. The gains have been computed every 

four seconds (a total of 314 points) . It is not necessary, however, to use all these gains since 

along some parts of the trajectory the gains do not vary that abruptly. 
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Fig, 4,8 - Pitch·jet gains K, and ~ along the nominal trajeetory, 
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Fig. 4.9 - Elevator gains Kt and K2 along the nominal trajeetory. 

The gains, whieh have been seleeted to be used for flying along the trajeetory, ean be 
found in Tables C.1 and C.2 of Appendix C. They are given as a funetion of both the nominal 
flight time (for whieh they have been eomputed) and the dynamie pressure, whieh will be used 

to eompute the gains for aetual flight eonditions. The aetual implementation in the flight

dynamies software is as follows. The seleeted gains are stored in referenee tables, as a 

funetion of the dynamie pressure. Taking the aetual dynamie pressure, provided by the naviga

tion system, as input, a seheduler extraets the appropriate gain from the table using simple 
linear interpolation. 

4.4. Lateral controller. 

4.4.1. Redueed system for asymmetrie motion. 

If we want to study the lateral rotational dynamies, Le., the variation of ~ and cr with time, then 

it is possible to exelude the symmetrie motion (a as a funetion of time) by putting ~a to zero 

and negleeting the translational motion. The result is 

(4.4.1 ) 
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(4.4.2) 

(4.4.3) 

. . [ 90 4J} tanyo LlO" = -COSaoLlp - smaoM + -cosYOCOSO"O--- P + --COSO"o4Jt.O" 
Vo mVo mVo 

(4.4.4) 

In state-space form, the above equations are written as 

(4.4.5) 

with 

0 0 
1 oe, 

0 -- qdyn Srefbref 'xx op 

0 0 
1 oen 

0 -- qdynSrefbref 
Izz op 

A = (4.4.6) 

sinao -cosao 0 
90 

- - cosYo cosO"o 
Vo 

-sinao 90 4J tanyo 
- cosao -cosyocosO"o --- -_cosO"o4J 

Vo mVo mVo 

1 oe, 
0 0 -,-asqdynSrefbref 

'xx xx a 

B= 
1 oen 1 oen 

0 (4.4.7) ---q dyn S refb ref - -- qdyn S refb ref 
Izz Izz oOa Izz oOr 

0 0 0 0 

0 0 0 0 
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4.4.2. Root locus of the reduced system. 

Sinee we have deeoupled the equations, it would be interesting to see whether we reeognise 

the time history of the eigenvalues, as we did in Section 4.3.2 for the longitudinal controller. The 

eigenvalues of the redueed system for late ral motion are plotted in Figs. 4.10 through 4.13. 

Comparing these root loci with the ones depieted in Figs. 3.15-3.18 shows astrong resemb

lanee, whieh eonfirms the ehoiee that we eould deeouple the symmetrie and asymmetrie motion. 

The differenees between the eorresponding eigenplots should be found in an absence of the 

symmetrie motion and the negleeted terms of the translational motion. 
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4.4.3. Selection of the controis. 

For lateral control, HOR US is equipped with ailerons, rudders, and rail and yaw jets. Ta select 

the different contra I modes, we refer again to Fig. 4.7, the contra I modes for the Space Shuttle. 

In this figure, we find that the rail jets operate from the entry interface up to a dynamic pressure 

of about 500 N/m2 (10 psf) . The ailerons are activated at the same dynamic pressure as the 

elevators (qdyn = 100 N/m2
), since in bath cases the elevons are concerned. 

The yaw jets are working from the entry interface down to a Mach number of M = 1, which 

is also mentioned by MBB. However, different is the activation of the rudder (M = 3.5 in case 

of the Space Shuttle, and qdyn = 140 N/m2 in case of HORUS). We wil! deviate from the Shuttle 

scheme to come closer to the original HORUS design. Although rudder control is quite weak, 

the rudder wil! be switched on at a dy nam ic pressure of qdyn = 150 N/m2. 

4.4.4. Control laws. 

The control laws are chosen in the farm of 

(4.4.8) 
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(4.4.9) 

The lateral controller, which is represented by these equations, is schematically shown in Fig. 
4.14. 
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Fig. 4.14 - The lateral controller. 
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In order to determine the gains, we bring the control laws in the form 

u = -Kx 

In the on-coming derivation, we wiU assume that 

.i~ = ~ - ~o ,;, ~ - ~e = ~ 

.icr = cr - cro = cr - cre 

.ip = P - Po = P - Pc 

.i, = ,- '0 = ,- 'e 

(4.4.10) 

which wil! give a small error in the bank angle only. The commanded rotational rates are equal 

to the nominalones, controlling the vehicle towards a zero rate of change of the angle of 
sideslip and the bank angle, see Section 2.2. 

Starting with the first controllaw, by linearising and neglecting the smaller .i~- and .icr-terms 
we can write the K3-terrn in Eq. (4.4.8) as: 

(4.4.11) 

Note that since .ia is assumed to be zero, a is equal to acr The Ks-term in Eq. (4.4.8) is ap

proximated by 

K50+ ~sincr }ina = Ks[sinao.ip-cosaoM+ ~: sin(cro+.icr) }inao 

= Ks[sin2ao.ip-cosaosinaoM+ ~ coscrosinao.icr 1 
(4.4.12) 

In the above equation, the constant term 

has been neglected, because otherwise we will not be able to bring the controllaws in the form 
of Eq. (4.4.10). Neglecting this term wil! introduce a constant control error. Although the bank 

angle is large, the velocity is much larger, 50 the control error is not expected to be that large. 

Furtherrnore, it is assumed that the error can be kept small by the control system 15. 

Compensation of this constant term can be interpreted as a part of the lateral trim. 

Substituting the derived expressions for K3 and Ks into Eq. (4.4.8), the controllaw changes 

15 In Chapter 5, Fig. 5.23, we will see that the control error is indeed sufficiently smal I. 
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into 

with 

K; = -cos2ao K3 + sin2ao K5 

K; = -sinaocosaoK3 - sinaocosaaK5 

K; = sinaa K6 

K * K go . 1/ 
6 = COSUo 4 + -cosO'OSInUo "5 

Vo 

In matrix notation th is can be written as 

with 

K* = HK 

-cos2Uo 0 

-sinaocosaa 0 

H= o o 

sin2aa 

-sinaacosuo 

o 

o 
o 

sinuo 

O go. 0 
cosao - cosO'o Slnao 

Vo 

The gains Kj (i=3,6) can be computed trom Eq. (4.4.15) with 

For the second control law we can derive in a similar manner: 

with 

(4.4.13) 

(4.4.14) 

(4.4.15) 

(4.4.16) 

(4.4.17) 

(4.4.18) 
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K - -sinaocosao 0 sinao cosao 0 
7 K7 

K - - sin2ao 0 -cos2aO 0 
Ka a 

0 0 0 cosao Kg 
(4.4.19) 

K -g 

go cos(jocosao 
K;o 

0 sinao 0 K1Q 
Vo 

Returning to Eq. (4.4.10), the matrix expression for the controllaws, we can now write 

.Ma 
-oa K; -oa K; -oa K5- -oa K; 

max max max max 

AP] ~o, -o~ K; - o~ K; - o~ K; -0 K -
~r _ max max max 'max 10 

U = = -K x (4.4.20) 
~Tx Tx K; Tx K4" Tx K; Tx K6-

~13 
max max max max 

~(j ~Tz 
Tz K; Tz Ka- T R. - Tzmax K;o max max Zmax 9 

In the above equation, Kj (i=3,10) are the gains for reaction control. In the original design of 

MSS, each of the reaction-control gains is equal to its aerodynamic counterpart. As we 
discussed in Section 4.2, we will not determine the gains independently by pole placement but 

simultaneously by solving the Riccati equation. For this reason, we have defined the gains for 

reaction control to be different from the ones for aerodynamic control. 

4.4.5. Computation of the feedback gains. 

The idea behind computing the controller gains for control law Eq. (4.4.8) is, that the bank 

reversals must be performed with an angular bank velocity , demanded by the guidance system. 

This prescribed angular bank velocity is an increasing, piece-wise linear function of the dynamic 

pressure. MSS ensures th is by choosing a damping factor of about 0.7-0.8 and such a natural 

frequency of the closed-Ioop system that the control error is limited to I (j -(je I "" 10°. For the 

second controllaw Eq. (4.4.9) , the demands cannot be that stringent, since the yaw effectors 

are weak and it is therefore not possible to exert much influence on the dynamics of the lateral 

oscillation. As aresuit, the damping factor is chosen to be 0.3-0.4 to provide minimal damping. 

Sased on these specifications, pole placement is used to find the values of the gains. 

As was the case for the design of the longitudinal controller, we compute the gains by 

solving the reduced matrix Riccati equation. The weight matrices Q and R are in this case given 

by 
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--2- 0 0 0 

!l.Pmax 

0 -2- 0 0 
!l.rmax 

Q= (4.4.21 ) 

0 0 -2- 0 

ó~max 

0 0 0 -2-
ÓO"max 

-;;r 0 0 0 

8max 

0 0 0 
!l.S2 

R= 
rmax 

(4.4.22) 
0 0 0 

óT2 
Xmax 

0 0 0 
óT2 

Zmax 

Numerical values, which we will use, are: 

ÓPmax 

órmax 

!l.~max = 2° 

óO"max = 5° 

ÓOa = 40° 
max 

ÓÖ
rmax = 40° 

!l. Txmax = 1,600 Nm 

!l. Tzmax = 7,600 Nm 

The maximum nominal bank angle is 80°, so a maximum control error of 10° is thought to be 

too large (in fact , as specified by the guidance system, the maximum allowable bank angle is 

87°). For th is reason, we have decided on a maximum overshoot of 5°, so that the verticallift 

component will never be completely zero. 
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The computed reaction-control gains can be found in Figs. 4.15 and 4.16', whereas the 

aerodynamic-control gains are plotted in Figs. 4.17 and 4.18. The selected gains for implement

ation in the actual controller can be found in Tables C.3 through C.10 of Appendix C. Again, 

they are given as a function of both the nominal flight time (for which they have been computed) , 
and the dynamic pressure, which will be used to compute the gains for actual flight conditions. 

The th ree control regimes, reaction, aerodynamic and hybrid control, show again as discrete 

jumps in the curves for the gains. 
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5.1. Introduction. 

Chapter 5 

Verification 
of the 

Controller 

The verification of an attitude controller is usually done in several steps, as we al ready 
discussed in the introduction , Chapter 1. A good starting point is to have a look at the location 
of the eigenvalues and the damping ratios of the closed-Ioop system. In that way we al ready 
get an impression whether (and where) we might run into trouble and whether our system 
needs aredesign. This we will do in the next section, Section 5.2. Since we designed two 

separate controllers for both the symmetric and asymmetric motion , we have two check two root 

loci. In Section 5.3, the response of the two controllers will be calculated. For our re-entry flight , 

two type of responses are of importance, i.e. , the step response and the ramp response. 
Besides, we are interested in how the control system deals with deviations from the nominal 
state, for instance, an angle of sideslip which differs from zero. 

The next step, of course only when the previous steps have given satisfying results, can 

be a sensitivity analysis of the linear closed-Ioop systems. This we will not do, since we want 

to develop an analysis technique based on a non-linear flight-dynamics model (Mooij, TO BE 

PUBLISHED) . So in this case we will integrate the pitch and lateral controller, and verify whether 

we can fly the nominal trajectory in a full 6-dof guided and controlled simulation (Section 5.4). 

The final step will be a sensitivity analysis to see whether the control system can cope with all 
kind of disturbances. We already mentioned that the study presented in this report, is part of 
a guidance and control analysis of a winged re-entry vehicle. In the report covering that study, 
the sensitivity analysis will be discussed. 
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5.2. Root loci of the closed-Ioop systems. 

5.2.1. Longitudinal controller. 

In Chapter 4, we discussed the computation of the feedback-gain matrix K. The closed loop 

system is in that case represented by 

(5.2.1) 

where the matrices A and Bare given by the simplified expressions Eq. (4.3.4) and Eq. (4.3.5). 

The eigenvalues of the closed-Ioop system can be computed by determining the eigenvalues 

of the new system matrix A', analogous to Section 3.1. The result of that computation is shown 

. in Figs. 5.1 through 5.3. 

The conclusion which can be drawn from those figures is that all eigenvalues have negative 
real parts, indicating a damped system all along the trajectory. This is confirmed by Fig. 5.4, 
where the damping ratio is plotted as a function of flight time. We see that basically the 

damping ratio is about 0.7. The Reaction Control System (pitch jets) exhibit a somewhat better 

control effeetiveness than the aerodynamic control surfaces when they are just activated. This 

is due to the relatively low dynamic pressure. Going to lower altitudes, the aerodynamic control 

surfaces are getting slightly more effective. Over all , the system is· weil damped which will 

usually give a fair response. These results increase our confidence in a well-behaving control 
system, but more attention will be given in Section 5.3.1 . It should be noted that the discrete 
jumps in the damping ratio is due to the discrete jumps in the aerodynamic derivatives as a 
result of the linearisation process. 

We conclude th is brief discussion by pointing out that towards the end of the flight, the 

eigenvalues show a discrete jump, see, for instanee, Fig. 5.2. This is due to the fact that at the 

end of the flight the body-flap has reached its maximum deflection and the elevators are 

suddenly activated to provide the additional trim moments. Because of the ideal control, the 

system dynamics change discretely resulting in a change of eigenvalues. 

5.2.2. Lateral controller. 

The eigenvalues of the closed-Ioop system for asymmetrie motion, with the matrices A and B 
given by Eq. (4.4.6) and (4.4.7) , are depicted in Figs. 5.5 through 5.7. Two series of complex 

conjugated eigenvalues can be distinguished. Both pairs of eigenvalues have negative real 

parts, so also the lateral system is stabie. These real parts become larger (i.e., more negative) 

at lower altitudes, which means an even better damped system (although one should also con

sider the imaginary parts) . In Fig. 5.7 the damping ratios as a function of time are plotted. In 

the early flight phase, the damping ratio for both asymmetrie motions is about the same (Ç '" 
0.7), but these values depart significantly from one another towards the end of the flight (Ç1 '" 
0.82 and Ç2 '" 0.68). But, both motions are weil damped. 
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--------------------------------- ---------------------------

5.3. Step response. 

5.3.1. Introduction. 

In order to determine the response of the closed·loop system, we have to set up a new system 

of state equations. In principle, the closed-Ioop system is described by 

x = (A - SK)x = A · x (5.3.1) 

However, we want the system to be in the form 

Jé = A · x + S·u· (5.3.2a) 

y=C · x+D·u· (5.3.2b) 

When we define u" to be 

(5.3.3a) 

for the longitudinal controller, and 

(5.3.3b) 

for the lateral controller, then we can simulate a step function in the commanded angles and 

compute the response of the corresponding actual angles by defining S" to be 

S · = -A · (5.3.4) 

C" and D" are the identity and zero matrix, respectively. In the remainder of th is Section, we wil! 

compute the step response of both the pitch and lateral controller using standard libraries of the 

simulation tooi Matlab (Mathworks Inc.). 

5.3.2. Longitudinal controller. 

To simulate the step response of the longitudinal controller, we have selected two time points, 

one for reaction control (pitch jets) and one for aerodynamic control (elevators). These time 

points are 13 (t= 48 s) and 250 (t= 996 sj, respectively. In Fig. 5.9, the two response functions 

are plotted. It can be noticed that reaction control is much slower than aerodynamic contro!. 

However, in both cases the response is fairly quick and the overshoot is smalI, which indicates 

areasonabie good response. 

The question is now: is this an acceptable response? We tried to find comparable data of 
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the Space Shuttle - a vehicle which can serve as a reference for HORUS - but did not succeed. 

The references we did find only discussed the flying qualities during the (piloted) approach and 
landing (Myers et al. , 1987 and McRuer et al., 1992). Both references state, by paraphrasing 
an astronaut/pilot, that the importance of flying qualities in the Shuttle is inversely proportional 

to altitude. Following that reasoning, the response can be considered to be good, although it 

remains an unsatisfactory answer. A further study of the so-called MIL standards (particularly 

'Flying qualities of piloted vehicles', MIL-STD-1797, USAF, March 1987) might be ab Ie to give 

a better answer. For the time being, we leave it at that. 

5.3.3. Lateral controller. 

Next, we will compute the step response of the lateral controller for two time points. In principle, 

there are two variables available on which we can put a step signal, Le., the angle of sideslip 
and the bank angle. The angle of sideslip, however, is supposed to be kept zero throughout the 
f1ight and can better be treated as a disturbance rather then a control variabie. For this reason, 
we will only put a step function on the bank angle and wiJl furthermore check how the system 
wiJl react to an initial value of the angle of sideslip which differs from zero. Since both attitude 

angles are coupled to each other, we will show the time histories of both of them while doing 

the related computations. 

Beginning with the step response, in Figs. 5.10 and 5.11 we have plotted the results for 
time points 13 (t = 48 s) and 250 (t = 996 s). We see a similar kind of behaviour as we did with 
the longitudinal controller. When we have only reaction control, the response is much slower 
(M= 20 s) than which is the case with only aerodynamic control (M = 7 s). However, since the 

overshoot is small in both cases, the response time is much shorter when we consider the time 

needed to cross the 1 o-Ievel for the first time (M = 9 s and M = 3.5 s, respectively). The relative 

difference is still more or less the same, but the absolute response time is more than 50% 

smaller. Furthermore, the induced angle of sideslip is small in both cases, and they both go 

back to 0°. In the denser layers of the atmosphere the angle of sideslip gets larger, because 

of larger aerodynamic moments. 

In case of time point 250, we see something strange happening. The induced P is initially 

positive, and after less than 1 second it changes sign. This sign reversal delays the response 

of the bank angle, which shows as an almost constant value during the first second. This 

phenomenon is related to the aerodynamic properties of the ailerons. They are such that aileron 

deflections initially result in conflicting rotations. Since the gains related to p and ~ are larger 

than the corresponding gains for cr and cr , a rotation about the top axis (yaw) is dominating at 

first, but is damped quite weil so that the rotation about the X-axis (rolI) can become the larger 

one. 

The response to an initial angle of sideslip of 1 ° gives similar results (Figs. 5.12 and 5.13). 

The response is faster when aerodynamic control is used. The induced bank angle is 
significant, for time point 250 the maximum bank angle even exceeds 1 0 . It shows that with a 

combination of a larger pand a large ~, a larger cr is induced. 
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5.4. Ramp response. 

5.4.1. Longitudinal controller. 

The ramp response of a controller must indicate how weil the controller responds to a linearly 

increasing or decreasing input signal, 

u = Uo + du t 
dt 

(5.4.1 ) 

As we know from Section 3.2 (Fig. 3.1), the angle of atlack starts decreasing linearly from t '" 
924 s. To see whether the longitudinal controller can handle this, we have examined the ramp 

response for time point 250 (t = 996 5). To be as complete as in Section 5.3.2, we have also 

looked at time point 13 (reaction control only) . 

The ramp function which we have defined is based on the following, prescribed notions: 

for the nominal trajectory, the initial angle of atlack is a l = 400 at tI = 923.58 5 , 

the final angle of atlack is ~ = 11.50 at i:2 = 1,319.4 s. 

This means that the slope of the ramp is 
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The results of simulating this ramp input are shown in Fig. 5.14. In the upper graph, the 

response with reaction control is shown. After an initial delay (about 2.5 sj, the actual angle of 

attack follows the commanded angle of attack very weil. The difference between the command

ed and actual angle of attack is ~a '" 0.15°, which is weil below the design overshoot of 2°. The 

response with aerodynamic control is much better (Iower graph), because of the higher dynamic 

pressure. The delay time is very short (about 0.15 sj , with hardly any difference between the 

commanded and actual angle of attack. These results indicate that the longitudinal controller 
is not likely to encounter any problems with the nominal angle-of-attack profile. 

5.4.2. Lateral controller. 

In case of the lateral controller we are interested in the fact whether it can handle the bank 
reversals. However, the nominal trajectory assumes an infinite bank rate for these reversals 50 

we do not have information at hand, what the commanded bank angle will be during the 

reversal. What we do know is how fast the first, pre-defined bank manoeuvre is pertormed (see 

also Fig. 3.2). The ramp function can therefore be defined as follows: 

• for the nominal trajectory, the initial bank angle is cr1 = 0° at t1 = 263.88 s, 
the final bank angle is cr2 = 80.0° at ~ = 290.268 s. 

The slope of the ramp function is then 

""'- cr-cr 
_uu_ = _2 _1 = 3.031 o/s 
dt t2 - t1 

We have selected time point 67 (t= 264 sj, where the above mentioned manoeuvre starts, 

and time point 250 (t = 996), where a bank reversal could be executed (assuming a similar 

bank rate, although we can expect a higher one because of the increased dynamic pressure). 

The results are presented in Figs. 5.15 through 5.17. Again, the induced angle of sideslip is 

plotted as weil. 

In Fig. 5.15 we see that the ramp response is similar to the angle-of-attack response as 

discussed in Section 5.4.1. The delay time is about 3.7 s and the difference between the 

commanded and actual bank angle is 10°. The latter value is considered to be too large if we 

take a design overshoot of 5° into account. We have to verify later, when we are flying along 

the nominal trajeetory, whether this is acceptable or not. One way to solve this problem is to 

increase the gains, and thus the response, for the initial part of the trajeetory. For the time being 

we accept the results as they are. In the lower graph we see the induced angle of sideslip. The 

equilibrium value is over _1 °, because of a continuous control action for the bank angle. This 

angle of sideslip should not be a problem to control once the command input for the bank angle 

has disappeared, considering our experience with the response to an initial value (Section 5.3.3). 
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However, to be on the safe side we wiU check this. We take the same ramp function for the 
bank angle as input signal, and in addition we simulate a constant bank angle after 27 s (cr = 

80°). The result of this simulation is shown in Fig. 5.16. We see a well-damped behaviour of 

the angle of sideslip as weil as for the bank angle. 

Fig. 5.17, finally, shows the ramp response for time point 250. A similar behaviour as 

before is found. 
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Fig. 5.14 - The ramp response of the angle of attack for time point 13 (t = 48 s) , upper 

graph, and time point 250 (t =996 s), lower graph. The nominal input signal is 

given by the solid line, and the response by the dashed line. 
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5.5. Flight along nominal trajectory with integrated controller. 

The outcome of the previous section is, that both the pitch and lateral controller show good 

tracking behaviour while simulating the step and ramp responses. However, we have to keep 

in mind that these response tests were done with simplified modeis. It is now the time to 

integrate the two controllers and simulate a 6-dof controlled re-entry flight, with all dynamics as 

introduced in Section 2.1 included. The initial conditions and the reference trajectory are the 

same as for the design of the controller. 

However, betore we start discussing the results ot this simulation we must note that the 

integrated control system is also not a fully realistic model in that sense that we assume control 
surfaces to move instantaneously. In other words, when the attitude control system commands 
an aileron deflection, then the ailerons achieve that setting at that very instant. There are no 
delays due to hydraulic actuators. (On the other hand, the motion of the control surfaces is 

much taster than the fastest eigenmotion, and on this ground control-effector delays can be 

neglected.) Also the measurement system is assumed to be ideal, implying that the measured 

state is the same as the actual state. Last but not least, the applied guidance system is also 

a closed-Ioop system, as is the attitude control system. This means that any deviations from 

the reference trajectory will be compensated for by the guidance system, also those deviations 

resulting from attitude control and finite rigid-body motion. We must realise that our flight along 

the nominal trajectory will prove how weil the attitude control system can execute the 
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commands generated by the guidance system. 

In Fig. 5.18, the height as a function of flight time has been plotted, both for the controlled 

and the nominal trajectory. As we can see, the two curves match weil, apart from two visible 

differences at t", 750 5 and t", 1 ,100 s. The explanation for these two differences can be found 

in the time history of the bank angle (Fig. 5.22). As we already stated in Section 3.2, where we 

introduced the nominal trajectory, the nominal bank reversals are executed in zero time, assum

ing ideal contro!. Of course, in arealistic simulation the inertia of the vehicle will result in a finite 

time required for the reversals. The duration is, amongst others, depending on the control 

effectiveness (for aerodynamic control, this is basically determined by the dynamic pressure). 

The duration of a bank reversal can be in the order of 20 seconds. During that time, the bank 

angle has a smaller value than it should have, implying a larger vertical lift coefficient 

(CL -coso"). A larger verticallift means that the descent rate gets smaller, or in other words, the 

vehicle flies at higher altitudes than it should. The height difference, however, is compensated 

for by the guidance system, since after the deviation the vehicle comes back to the nominal 

height. 

In principle, a similar reasoning applies to the deviation trom the nominal groundtrack 
(shown in Fig. 5.19). A bank reversal is initiated by an overshoot ot the maximum allowable 

heading error. In case of ideal control, the heading error will decrease immediately after 

execution of a bank reversa!. However, when a time delay due to the inertia of the vehicle has 

to be taken into account, it can easily be understood that the maximum allowable heading error 

will be exceeded before it starts decreasing again (see also Fig. 5.25) . Far away from the 

target, th is does not make much of a difference, but the closer the vehicle is to the target, the 
more rapidly it will deviate trom its nominal groundtrack. For this reason, the two curves show 
more ot a difference towards the end of the flight (when also the difference between the 

commanded and nominal bank angle is largest, see again Fig. 5.22). 

Fig. 5.20 shows the first of the three attitude angles which are controlled by the attitude 

control system, i.e., the angle of attack. In th is figure we see more of a difference between the 

controlled value and the nominal value. At the beginning of the trajectory we see a diverging 

angle of attack, caused by the fact that the trim law is not active. As we discussed earlier, trim 

is basically guaranteed by deflecting the body flap which is only activated when the dy nam ic 

pressure is higher than 100 N/m2. The moment the body flap is activated (t", 1945), the angle 

of attack is stabilised at the nominal value. The diverging angle of attack is only partly 

compensated for by the pitch jets (Fig. 5.28) and later on by the elevators (Fig. 5.29), but 

apparently due to the design assumptions and simplifications, this offset is not properly controI

led. On the other hand, it should be noted that the gain computation has been performed 

allowing a 20 overshoot of the angle of attack, 50 the offset is within range (see also the next 

figure, Fig. 5.21 , where the difference between the commanded and the actual angle of attack 

is plotted). A revision of the trim law (trim with pitch jets, when the body flap is not active), a 

gain computation for the first 200 5 with a smaller allowable overshoot can solve this problem. 

Another solution can be the following. When the body flap is set to a fixed deflection angle other 

than 00
, a pitch moment is generated that increases with the dynamic pressure. So when we 

put the body flap in the position that it will more or Ie ss acquire once the control of th is control 

surface is activated, the oscillation in the angle of attack is greatly reduced. 
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Due to an angle of attack which is larger than the nominal one, the slightly higher lift results 
in an altitude error, which the guidance system wants to compensate by banking the vehicle. 
However, any altitude error will not be controlled in the upper layer of the atmosphere but only 

at lower altitudes 16. This means, that the altitude error can grow, but of course only slowly 

due to the small lift force. When altitude control is activated by the guidance system, it is 

suddenly faced by an altitude error of some 250 m, which results in a suddenly commanded 

bank angle of almost 20° (see Fig. 5.22). 

Returning to the time history of the angle of attack, we see that up to t ~ 480 s the 
controlled a is virtually equal to the nominal one. Then, we see noticeable differences. How

ever, we should not panic before we have asked ourselves what the cause of these deviations 

is: the guidance controller or the attitude controller? Fig. 5.21 helps us in finding the answer. 

In this figure, the difference between the commanded and the actual angle of attack is plotted, 

which indicates how weil the attitude controller performs. As we see, the differences are sm all 

at all times, from which we can conclude that the 'problem' is not related to the attitude 

controller but is a result of guiding the vehicle towards the target along the nominal trajectory. 

In the same figure, three peaks in the right half of the graph need more explanation. During 

bank reversals, the guidance system keeps the commanded variation in the angle of attack at 

a constant value, which means that during the reversal no correction other than a change in the 

nominal value takes place. We al ready discussed above, that the bank angle is smaller than 

it should be during areversal, resulting in a higher verticallift. Any resulting errors can only be 

compensated after the reversal has been completed. This appears in an abrupt change in the 

commanded angle of attack, that can be found at t ~ 730 s, t ~ 1,080 s and t ~ 1,200 s. 

Fig. 5.22 shows us the time history of the bank angle, that we have al ready partly explained 

during the course of this Section. We will restrict ourselves to some comments (nota bene: in 

Fig. 5.23, the difference between the commanded and the actual bank angle has been plotted, 

again indicating how weil the attitude controller performs). The first difference between the 

actual and the nominal bank angle shows itself just before t = 200 s. We already explained that 

this is due to a sudden activation of the guidance system. However, we also find that we have 
a peak difference of over 15°, whereas the gains were calculated for an overshoot of 5°. This 

shows c1early the Iimitations of the attitude control system, that it cannot handle changes that 

are sudden and relatively large. The same is true for the second peak, when the first ramp func

tion of the nominal bank angle is executed (t ~ 270 s). Since the altitude guidance is still com

pensating the altitude difference with the bank angle (although cr is getting smaller, so cr < 

o °/s), the attitude control system is suddenly faced with a linearly increasing function of the 

bank angle (cr > 0 °/s). However, before it can fulfil th at demand, it has to change the sign of 

cr, which introduces a certain time delay. Since the nominal bank angle is rapidly increasing 

it takes a while before the control system has made the difference between the commanded 

and actual bank angle equal to zero. 

16 Altitude control has been divided into three regions. In the lirst region, no altitude control is pertormed 
because ol the low dynamic pressure and therelore small aerodynamic lorces. The second region is a transition 
region to the third one, in which lull altitude control is being done. More inlormation on the guidance system can 
be lound in MBB (1988b) and Mooij (TO BE PUBLISHED). 
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The three remaining peaks are all related to the bank reversals. We can suffice by saying 

that the change in the commanded bank angle, generated by the guidance system based on 

a predicted bank rate, is too large for the attitude control system to achieve. As we know, the 

bank reversals are executed in a finite time, during which the verticallift component is too large, 

resulting in a positive height error. For this reason, in order to compensate for this we see each 

time an overshoot of the bank angle. The oscillation, that shows at t"" 1080 s, is probably 

induced because of a sudden change in the commanded (and therefore also the actual) angle 

of attack, right after finishing the bank reversal. Revising the guidance algorithm can solve th is 

problem. 

The last attitude angle to be discussed is the angle of sideslip (Fig. 5.24) . We saw in the 

previous Sections, that there is a coupling between the angle of sideslip and the bank angle. 

Therefore, we might expect a deviation from the nominal 00 wh en we have a sudden change 

in the bank angle or when a bank reversal is being executed. Indeed, we see a number of 

peaks which damp out relatively quick at those moments. At t"" 1,000 s, however, the angle 

of sideslip diverges slowly, without coming back to zero again. We think that th is diversion is 
due to the simplitications made during the control-system design, tor instanee neglecting terms 
due the rotation ot the local horizontal plane and the Earth's rotation. 

Figs. 5.26 through 5.31, finally, show the control variables: the moments due to the roll , 

pitch and yaw jets, and the deflections of the ailerons, elevators and the rudders. A general 

remark, which has to be made before we give some brief comments on these Figures, is that 

these curves show the computed values. We have assumed that the exact reaction-control 
moments can be generated by the thrusters (tor instance, by means of pulse modulation) and 
that the deflections ot the control surfaces take place in zero time and are 100% accurate. 
Since these assumptions are very important for the performance of the attitude control system, 

we will study this in more detail in Mooij (TO BE PUBLISHED). 

Most activity takes place when a bank reversal has to be initiated, or when a sudden 

change in the commanded attitude arises. The sudden change in bank angle for altitude control 

(t "" 200 s) shows as sharp peaks in the roll moment and the aileron deflection, the latter only 

50 away from the maximum allowable deflection. The yaw jets have to produce the maximum 

moment, amongst others to compensate for the induced angle of sideslip (the rudders are not 

yet active). Large control signals can be seen for the yaw jets and rudders when bank reversals 

are being executed. The peaks in the elevator deflection are also due to the bank reversals, 

although only indirectly. As we al ready said, during the bank reversal the commanded variation 

of the angle of attack is kept constant, which results in a sudden change in the commanded 

angle of attack right after completing the reversal. 

It has to be noted that the strong oscillation in the aileron deflection must be studied in 

more detail. We al ready stated that the oscillation might be induced by the sudden change in 

commanded angle of attack. Furthermore, it is possible that the linearisation is another cause. 

The wing-flap deflection is the linear summation of the aileron and elevator deflection. However, 

for a negative deflection the aerodynamic forces and moments are not the same (in absolute 

sen se) as for a positive deflection. Furthermore, the aerodynamics are such that tor some flight 
conditions the commands for bank-angle control and angle-ot-sideslip control are conflicting. 
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Last but not least, it is reasonable to expect that a real-life aileron cannot move so fast, 
therefore some kind of filtering might have to be included in the model. 
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Chapter 6 

Conclusions 
and 

Recommendations 

The HORUS-2B is an unpowered, winged re-entry vehicle, that has to be guided along a 

nominal trajeetory in order to reach the target landing area. To enable a stabie flight and to 

perform manoeuvres, an attitude controller must guarantee th at the nominal control variables 

can be achieved and that perturbations will not force the vehicle too far away from its reference. 

This report describes the design of a linear state feedback controller with gain scheduling. 

The design process has been divided into a number of successive steps. The starting point for 

the design is a system of 12 first-order differential equations, which enables the study of full 6-
d.o.f. motion. After linearisation and introducing some simplifying assumptions, a state-space 

form of 9 state variables was left. Analysis of the eigenvalues and open-loop behaviour of this 

system showed that the vehicle exhibited diverging oscillations, but also that the eigenmotions 

could be decoupled into symmetrie and asymmetrie motions. For this reason, a pitch controller 

could be designed separately from a lateral controller. The gains which appeared in the control 

laws were solved simultaneously using the matrix Riccati equation. 

The verification of the designed controllers has been divided into two steps. In the first step, 

the response of the closed-Ioop system to both a step and a ramp input for both the pitch and 

lateral controller has been considered. Both controllers showed a well-damped behaviour, which 

was sufficient for carrying out the second step. There, the two controllers were integrated and 

for the non-simplified equations of motion, the flight along the nominal trajeetory was simulated. 

The results showed that HORUS can fly its nominal trajeetory without major problems. 

During the first 200 seconds of the trajeetory, the angle of atlack showed a moderately 

diverging behaviour, due to the absence of a trim law. A maximum deviation of about 1° was 

reached, which is within range of the overshoot boundary of 2°, and that can even be made 

smaller by revising the trim law. Other peak deviations of less than 1 ° arose due to the bank 

reversals, during which the commanded variation of the angle of attack was kept constant by 

the guidance system. After ending the reversal this resulted in sudden elevator deflections. 
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These deflections can be avoided by revising the guidance system. 

The known coupling between the angle of sideslip and the bank angle was noticeable 

present during bank manoeuvres, when peak values in the angle of sideslip of about ±4° occur

red. These deviations are weil controlled. Some large differences between the commanded and 

actual bank angle were found , because the guidance system generated commanded bank 

angles by assuming a too large bank rate. A simple redefinition of the theoretical bank rate 

would solve th is problem. 

The only recommendation which can be made here is that a sensitivity analysis must give 

the final answer to whether the designed control system can fly the HORUS along a reference 

trajectory taking all kinds of perturbations into account. With this respect, one can think of, 

amongst others, atmospheric-density variations, uncertainties in the aerodynamic coefficients, 

mass deviations, the influence of wind, errors in the navigation system and delays in activating 

control surfaces. Such a sensitivity analysis, however, will be covered in another study (Mooij , 

TO BE PUBLISHED). 
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Appendix A 

Definition 
of 

State Variables 

The position and velocity of the vehicle are expressed in spherical components w.r.t. the rotat

ing frame with the origin in the centre of mass (c.o.m.) of the Earth (the so-called R-frame), see 

also Fig. A.1. 

Position: di stance R, longitude 't and latitude 8 

Velocity: groundspeed V, flight-path angle yand heading X 

The longitude is measured positively to the east (0° ~ 't < 360°). The latitude is measured 

along the appropriate meridian starting at the equator, positive in north direction (0° ~ 8 ~ 90°) 

and negative to the south. The distance R, finally, is the distance from the CoM of the central 

body to the c.o.m. of the vehicle . The relative velocity V (i.e., the modulus of the velocity vector 

V) is expressed with respect to the rotating planetocentric frame. y is the angle between Vand 

the local horizontal plane; it ranges from -90° to +90° and is negative when V is below the local 

horizon. X defines the direction of the projection of V in the local horizontal plane with respect 

to the local north and ranges from -180° to + 180°. When X = +90°, the vehicle is moving parallel 

to the equator to the east. 
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Fig. A.l-

Fig. A.2-
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Definilion of Ihe six spherical flighl parameIers, Ihe position (R,~, 1i) and velocity 

(V,Y,X)· Here, bolh ~,1i y and X are posilive. The indicaled frame is Ihe rolaling 
planelocenlric frame (index Rl, wilh ils origin in Ihe c.o.m. of Ihe Earth and Ihe 
ZR-axis aligned wilh Ihe Earth's rolalion vector. 
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Definilion of Ihe aerodynamic attilude angles a , pand cr, and Ihe angular rales 

p, q and r. Here, all slales are posilive. The four relaled reference frames are 

Ihe inertial frame (index {J , Ihe body frame (index 8), Ihe aerodynamic frame (i

ndex A) and Ihe Irajeclory frame (index 7). The I-frame has ils origin in Ihe 

c.o.m. of Ihe Earth. The origin of Ihe olher frames is localed in Ihe c.o.m. of Ihe 

vehicle. The B- frame is fixed 10 Ihe body. 



The attitude of a vehicle, or in more mathematical terms, the orientation of a body-fixed 
reference frame with respect to another, is expressed by the so-called aerodynamic angles, i.e ., 
the angle of attack a (-180° ~ a < 180°, for a 'nose-up' attitude a > 0°), the angle of sideslip 

~ (-180° ~ ~ ~ 180°, ~ is positive for a 'nose-Ieft' attitude) and the bank angle 0' (-180° ~ 

0' < 180°, 0' is positive for when banking to the right), see also Fig. A.2. Nota bene: in the 

equations of motion, these angles are related to the groundspeed, but since wind is not 

considered here, the groundspeed equals the airspeed. 

The angular rate of the body is here defined as the rotation of the body frame with respect 

to the inertial frame, expressed in components along the body axes. The rotation vector 0) is 

defined by the roll rate p, the pitch rate q and the yaw rate r (see again Fig. A.2). 
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Appendix B 

Linear Stability Model 
of HORUS-2B 

The local stability model is a linearised model giving the flight dynamics of a vehicle. It 
describes small deviations from an equilibrium state. In th is appendix we will state the 
assumptions under which the local stability model has been derived, and we give the 

mathematical formulation of this model. To start with, the non-linear equations of motion are 
derived for an unpowered vehicle of constant mass, with a plane of mass symmetry (XBYB-
plane). Aerodynamic control effectors are a body flap, two elevons and two rudders; 
furthermore, there are roll, pitch and yaw reaction-control jets. 

The linearisation is done under the assumptions thaI: 

• the Earth is not rotating, 
the gravity field is spherical, 
the vehicle is rotationally symmetrie in mass, 

the asymmetrie translational motion has no effect on the attitude kinematics, i.e. , the 

trajeetory is directed along the equator, 

the rotational rate of the vehicle is treated as a perturbation, 
pitch stability is guaranteed throughout the flight, 
the nominal angle of sideslip is zero, and 
higher-order terms are neglected. 

The outcome, nine coup led, linear differential equations, can be written in matrix form: 

LU = AM + B!:w (B.1) 

with 
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tlx = (tlV,tly , tlR,tlp,tlq,M,tla,tl~,tlcr)T 

tlu = (tloe , tl0a ,tlor, tl Tx,tl Ty,tl Tz ) T 

aVV aVy aVR avp aVq aVr aVa a~ 

.3yv a,y .3yR .3yp .3yq .3yr ~ élyf3 

aRV aRy aRR aRp aRq aRr aRa aAP 

apv apy apR app apq apr apa ap~ 

A = aqv aqy aqR a qp aqq aqr aqa a~ 

arV ary arR arp arq arr alll a~ 

aaV arry aaR aap aaq aar aaa aa~ 

a~v a~y a~R a~p a~q a~r a~a a~~ 

aerV acry aerR aerp aerq aerr aera aer~ 

b Ve b va b Vr b Vx b vy b vz 

bye bya byr byx byy byz 

b Re bRa bRr b Rx bRy b Rz 

bpe bpa bpr bpx b py bpz 

B= b qe b qa b qr b qx b qy b qz 

b re bra brr b rx bry b rz 

bae baa bar bax bay baz 

b~e b~a b~r b~x b~y b~z 

bere bera berr berx bery berz 

The used notations are: 
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v = modulus of relative velocity vector (mIs) 

y = flight-path angle (rad) 

R = modulus of position vector (m) 

p = roll rate (radIs) 

q = pitch rate (radIs) 

r = yaw rate (radIs) 

a = angle of attack (rad) 

~ = angle of sideslip (rad) 

cr = bank angle (rad) 

oe = elevator deflection angle (rad) 

0a = aileron deflection angle (rad) 

or = rudder deflection angle (rad) 

aVer 

a,u 
aRa 

apcr 

aqcr 

a rcr 

aaer 

a~er 

aerer 



Tx = roll-thruster moment (Nm) 

Ty = pitch-thruster moment (Nm) 

Tz = yaw-thruster moment (Nm) 

The elements of matrix A are given by: 

1 [ aco 1 avv = --- Mo--qdyn Sref + 200 
mVo aM 0 

290 . 
aVR = -Slnyo 

Ro 

1 [. 2 Vo 1 cosO"o [ aCL 1 éiyv = - -'Yo+-cosYo + -- Mo-qdyn Sref + 21-0 
~ Ro \1.2 aM 0 m 0 

r
vo 90}. éiyy = - - -- myo 
Ro Vo 

(B.2) 

(B.3) 

(BA) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

(B.13) 
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aqy = aqR = a qp = aqq = a qr = aqp = aqcr = 0 

1 aCn 
alj3 = -,----anqdynoSrefbref 

zz P 

go 1 ( aCL 1 aaV = -_cosYocoscro - -- Mo--qdyn Sref + La 
v.2 v.2 aM 0 
o m 0 
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(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 



a~p = sinao 

La . 
aCT'( = --smcro 

mVo 

aar = -sinao 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

(8.44) 
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The elements of matrix Bare : 
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b Ve = bVa = b Vr = b Vx = b vy = b Vz = 0 

1 
bqy =-

Iyy 

1 aen 
brr = -,-aö"qdynoSrefbref 

zz r 

(8.45) 

(8.46) 

(8.47) 

(8.48) 

(8.49) 

(8.50) 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

(8.55) 

(8.56) 

(8.57) 

(8.58) 

(8.59) 



(8.60) 

(8.61) 

b~e = b~a = b~r = b~x = b~y = b~z = 0 (8.62) 

(8.63) 

When we substitute the zero-coefficients in Eq. (8.1), the matrix equation gets the following 
structure: 

avv aVy aVR 0 0 0 aVa 0 0 
~V ~V 

.3yv ayy .3yR 0 0 0 .3ya él.yp a,.cr 
~y ~y 

~R aRV aRy 0 0 0 0 0 0 0 
~R 

~p 0 0 0 0 0 0 0 ap(3 0 ~p 

~q aqv 0 0 0 0 0 aqa 0 0 ~q 

M 0 0 0 0 0 0 0 arj3 0 M 

óá aaV aay aaR 0 aaq 0 aaa 0 aacr ~a 

~~ a~v a~y a~R a~p 0 a~r 0 a~~ a~cr 
~13 

M ~cr 
acrV acry 0 acrp 0 acrr acra acr~ a crcr (8.64) 

0 0 0 0 0 0 

0 0 0 0 0 0 
~öe 

0 0 0 0 0 0 
~öa 

0 bpa 0 b px 0 0 

+ b qe 0 0 0 bqy 0 
~ör 

0 bra brr 0 0 brz 
~Tx 

0 0 0 0 0 0 
~Ty 

0 0 0 0 0 0 
~Tz 

0 0 0 0 0 0 
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Appendix C 

Selected Controller Gains 

In the attitude-controller design, the controller gains are computed every four seconds of the 
nominal trajectory. This results in 314 values for each of the 20 gains. To limit the number of 

data to be implemented in the flight-dynamics software, a selection of the controller gains has 

been made that is representative for the variation in gains. These gains are stored in the refer

ence tables of the implemented attitude controller. They can be found in Tables C.1 through 

C.1 0, as a function of both flight time and dynamic pressure. Tables C.1 and C.2 give the gains 

for the pitch jets and elevators. Tables C.3 - C.6 present the gains for the roll and yaw jets, 

whereas Tables C.7 - C.1 0 show the gains for the ailerons and rudders. 
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t qdyn Kl t qdyn K2 
(sec) (N/m2) 

(1/rad) 
(sec) (N/m2) 

(1/rad) 

0 .0 0.4 65.1 0 .0 0.4 28.6 
104.0 9.0 65.0 132.0 22.2 28.0 

• 108.0 10.2 64.7 152.0 41.8 26.8 

116.0 13.3 64.4 164.0 60.3 25.3 

124.0 17.3 64.0 168.0 68.1 24.7 
132.0 22.3 63.4 172.0 77.0 23.9 
140.0 28.7 62.3 176.0 86.9 23.0 
148.0 37.0 60.8 180.0 98.0 22.0 
156.0 47.2 58.5 184.0 110.3 0 .0 
164.0 60.3 55.2 1250.0 8681.2 0.0 
172.0 77.0 50.6 
180.0 98.0 44.9 
184.0 110.3 0.0 

1250.0 8681.2 0 .0 

Table C.l - Selected pitch-jet gains K, and ~ as a lunction ol tand qdyn-
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t qdyn K1 t qdyn K2 
I (sec) (N/m2) (1/rad) (sec) (N/m2) (1/rad) 

0.0 0.4 0.0 0.0 0.4 0.0 

104.0 9.0 0.0 104.0 9.0 0.0 

108.0 10.2 -5.3 108.0 10.2 -2 .3 
116.0 13.3 -6.8 128.0 19.6 -4.4 
124.0 17.3 -8.8 148.0 37.0 -8.0 
132.0 22.2 -11.2 164.0 60.3 -12 .2 
144.0 32.6 -16.0 176.0 86.9 -15.9 
168.0 68.1 -28.8 180.0 98.0 -17.2 
180.0 98.0 -35.1 184.0 110.3 -27.2 
184.0 110.3 -67.6 924.0 3408.4 -27.2 
188.0 123.9 -63.8 972.0 3971 .1 -27.0 
236.0 397.6 -35.6 992.0 4289.1 -27.0 
240.0 428.8 -34.3 996.0 4357.7 -27.5 
248.0 492.9 -32.0 1060.0 5457.1 -27.4 
280.0 719.0 -26.5 1064.0 5512.8 -27.8 
320.0 900.9 -23.6 1200.0 7947.7 -28.6 
360.0 1054.3 -21.9 1204.0 8021 .0 -29.2 
400.0 1152.2 -20.9 1236.0 8463.4 -29.5 
440.0 1183.7 -20.6 1240.0 8518.5 -29.5 
480.0 1166.1 -20.8 1244.0 8574.5 -29.3 
544.0 1129.9 -21 .1 1250.0 8681 .2 -29.8 
612.0 1239.6 -20.2 

656.0 1520.0 -18.2 

728.0 2408.1 -14.4 

776.0 2901 .3 -13.0 

876.0 3059.9 -12.5 

944.0 3614.3 -11.5 

1028.0 4927.6 -10.5 

1096.0 5880.4 -10.0 

1200.0 7947.7 -9.7 

1204.0 8021 .0 -9.8 

1224.0 8306.4 -9.9 

1244.0 8574.5 -9.7 

1250.0 8681 .2 -10.8 

Table C.2 • Selected elevator gains K, and K2 as a function of tand qcJyn' 
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t qdyn K3 t qdyn K4 
(sec) (N/m2) 

(1/rad) 
(sec) (N/m2) 

(1/rad) 

0.0 0.4 -41 .2 0.0 0.4 -11 .5 
84.0 5.0 -41 .0 104.0 9.0 -11 .5 

100.0 8.0 -40.8 136.0 25.3 -10.2 
112.0 11 .6 -38.9 148.0 37.0 -9.2 
128.0 19.6 -35.9 160.0 53.4 -7.9 
140.0 28.7 -32.0 172.0 77.0 -6.6 
152.0 41 .8 -27.0 188.0 123.9 -5.1 
168.0 68.1 -20.1 204.0 192.4 -4.1 
188.0 123.9 -13.9 224.0 310.4 -3.5 
192.0 138.9 -13.1 240.0 428.8 -3.2 
196.0 155.3 -12.4 244.0 460.7 0.0 
200.0 173.2 -11 .8 1250.0 8681 .2 0.0 
220.0 283.9 -9.9 
240.0 428.8 -8.6 
244.0 460.7 0.0 

1250.0 8681 .2 0.0 

Table C.3 - Selected roll-jet gains ii.; and ~ as a function of tand qdyn' 
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t qdyn Ks t qdyn Ks 
(sec) (N/m2) 

(1/rad) 
(sec) (N/m2) 

(1/rad) 

0.0 0.4 41.2 0.0 0.4 11.4 
80.0 4.4 40.6 72.0 3.4 11 .0 

104.0 9.0 39.9 104.0 9.0 10.2 
108.0 10.2 37.4 156.0 47.2 3.9 
152.0 41.8 17.3 184.0 110.3 0.3 
160.0 53.4 12.0 212.0 235.2 -1 .7 
164.0 60.3 9.4 228.0 338.2 -2.4 
176.0 86.9 2.9 240.0 428.8 -2.7 

184.0 110.3 -0.4 244.0 460.7 0.0 
188.0 123.9 -1.7 1250.0 8681.2 0.0 
192.0 138.9 -2 .8 
196.0 155.3 -3.8 
212.0 235.2 -6.3 
220.0 283.9 -6.9 
232.0 367.4 -7.4 

240.0 428.8 -7.5 

244.0 460.7 0.0 
1250.0 8681 .2 0.0 

Table C.4 - Selected roU-jet gains Rs and Kj, as a lunction ol tand qdyn. 
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t qdyn K7 t qdyn Ka 
(sec) (N/m2) 

(1/rad) 
(sec) (N/m2) 

(1/rad) 

0.0 0.4 -49.3 0.0 0.4 -11.3 

52.0 1.9 -49.4 116.0 13.3 -11.4 

100.0 8.0 -49.8 144.0 32.6 -11 .7 
128.0 19.6 -51.4 164.0 60.3 -12.3 
184.0 110.3 -58.2 200.0 173.2 -14.0 
216.0 258.9 -60.8 248.0 492.9 -16.5 
248.0 492.9 -57.2 352.0 1027.3 -13.9 
300.0 812.5 -44.1 444.0 1183.6 -12 .9 
324.0 918.0 -40.0 544.0 1129.9 -13.2 
400.0 1152.2 -32.4 600.0 1197.7 -12.8 
440.0 1183.7 -31.5 636.0 1365.8 -11.8 
544.0 1129.9 -33.0 720.0 2297.6 -7.7 
572.0 1143.2 -32.6 760.0 2782.5 -6.3 
600.0 1197.7 -31 .1 800.0 2984.7 -5.7 
720.0 2297.6 -13.6 900.0 3201 .7 -5.0 
740.0 2565.1 -11.5 1000.0 4427.1 -3.7 
760.0 2782.5 -10.1 1100.0 5923.5 -3.5 
780.0 2922.7 -9.2 1200.0 7947.7 -3.2 
800.0 2984.7 -8.8 1250.0 8681.2 -2.7 
860.0 3010.2 -8.2 
900.0 3201.7 -7.2 

1000.0 4427.1 -4.5 

1052.0 5338.0 -3.8 

1100.0 5923.5 -3.7 

1152.0 6808.5 -3.5 

1200.0 7947.7 -3.2 
1250.0 8681.2 -3.0 

Table C.5 - Selected yaw-jet gains ii? and Ka as a lunction ol tand qdyn. 

144 



t qdyn Kg t qdyn KlO 
(sec) (N/m2

) 
(1/rad) 

(sec) (N/m2
) 

(1/rad) 

0 .0 0.4 -49.3 0 .0 0.4 -11 .5 

100.0 8 .0 -49 .2 136.0 25.3 -11 .8 

164.0 60.3 -47.0 164.0 60.3 -12.5 

212.0 235.2 -49.0 184.0 110.3 -13.7 

300.0 812.5 -35.5 252.0 525.1 -19.2 
352.0 1027.3 -29.1 440.0 1183.7 -15.4 
400.0 1152.2 -26.0 544.0 1129.9 -15.8 
440.0 1183.7 -25.3 584.0 1160.0 -15.6 

544.0 1129.9 -26.5 624.0 1295.2 -14.6 

600.0 1197.7 -25.0 744.0 2613.8 -8.1 

700.0 2020.2 -13.2 748.0 2660.1 -8.0 

752.0 2703.8 -8.5 768.0 2848.6 -7.4 
780.0 2922.7 -7.4 788.0 2955.9 -7.0 
800.0 2984.7 -7.0 816.0 2994.8 -6.8 
848.0 2993.8 -6.7 900.0 3201.7 -6.0 

900.0 3201.7 -5.7 1000.0 4427.1 -4.5 

948.0 3659.7 -4.7 1052.0 5338.0 -4.2 

1000.0 4427.1 -3.7 1104.0 5967.7 -4.2 
1048.0 5274.4 -3.2 1120.0 6166.2 -4.2 

1100.0 5923.5 -3.0 1160.0 7013.1 -3.9 

1148.0 6710.1 -2.8 1212.0 8147.7 -3.5 

1200.0 7947.7 -2.4 1250.0 8681 .2 -2.7 

1250.0 8681.2 -2.1 

Table C.6 - Selected yaw-jet gains kg and ;(10 as a function of tand qdyn. 
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t qdyn K3 t qdyn K4 
(sec) (N/m2) (1/rad) (sec) (N/m2) (1/rad) 

0.0 0.4 0.0 0.0 0.4 0.0 
104.0 9.0 0.0 104.0 9.0 0.0 
108.0 10.2 7.5 108.0 10.2 2.3 
148.0 37.0 17.3 168.0 68.1 8.0 
156.0 47.2 17.8 184.0 110.3 8.4 
164.0 60.3 17.4 200.0 173.2 8.0 
268.0 646.2 -25.4 272.0 672.6 -0.2 
308.0 848.4 -30.2 320.0 900.9 -2.9 
328.0 934.7 -31.3 440.0 1183.7 -5.0 
364.0 1067.0 -32.3 544.0 1129.9 -4.7 
440.0 1183.7 -32.7 764.0 2817.2 -8.2 
544.0 1129.9 -32.6 924.0 3408.4 -7.6 
624.0 1295.2 -32.8 996.0 4357.7 -2.5 
648.0 1452.7 -32.6 1244.0 8574.5 6.9 
748.0 2660.1 -27.1 1250.0 8681.2 8.4 
788.0 2955.9 -25.4 

828.0 2992.1 -24.7 

872.0 3044.2 -24.0 

924.0 3408.4 -22.1 
992.0 4289.1 -13.6 

1100.0 5923.5 -7.9 
1244.0 8574.5 -1 .1 
1250.0 8681.2 0.3 

Table C.7 - Selected aileron gains K3 and K4 as a lunetion ol tand qdyn' 

, 
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t qdyn Ks t qdyn K6 
(sec) (N/m2) (1/rad) (sec) (N/m2) (1/rad) 

0.0 0.4 0.0 0.0 0.4 0.0 
104.0 9.0 0.0 104.0 9.0 0.0 

108.0 10.2 -12.2 108.0 10.2 -3.1 

168.0 68.1 -30 .7 200.0 173.2 -11.2 

188.0 123.9 -30.3 244.0 460.7 -20.1 
276.0 696.8 -50.1 284.0 739.2 -27.6 
316.0 883.6 -52.2 312.0 866.1 -30.1 
352.0 1027.3 -52.6 364.0 1067.0 -33.1 

440.0 1183.7 -52.2 400.0 1152.2 -34.1 

544.0 1129.9 -52.4 440.0 1183.7 -34.5 
600.0 1197.7 -52.2 544.0 1129.9 -33.9 
632.0 1340.5 -51.4 600.0 1197.7 -34.6 
660.0 1556.5 -49.9 752.0 2703.8 -40.0 
756.0 2744.7 -40.0 800.0 2984.7 -39.9 
776.0 2901 .3 -38.7 924.0 3408.4 -39.1 

800.0 2984.7 -37.8 960.0 3806.1 -40.1 

860.0 3010.2 -36.6 996.0 4357.7 -40.6 

920.0 3371.2 -33.7 1136.0 6441 .0 -57.3 

924.0 3408.4 -33.5 1212.0 8147.7 -57.2 

992.0 4289.1 -32.2 1220.0 8254.6 -56.7 

1140.0 6525.6 -40.2 1244.0 8574.5 -45.9 
1220.0 8254.6 -40.0 1250.0 8681 .2 -31.5 
1244.0 8574.5 -35.5 

1250.0 8681.2 -28.2 

Table C.S· Selected aileron gains Ks and Ks as a lunetion ol tand qcJyn' 
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t qdyn K7 t qdyn KB 
(sec) (N/m2) (1/rad) (sec) (N/m2) (1/rad) 

0.0 0.4 0.0 0 .0 0.4 0 .0 

180.0 98.0 0.0 180.0 98.0 0.0 
184.0 110.3 -4.5 184.0 110.3 -1.0 

272.0 672.6 -23.3 200.0 173.2 -1.7 

304.0 830.5 -25.0 284.0 739.2 -8 .1 

384.0 1121.0 -25.9 356.0 1041.1 -10.0 

600.0 1197.7 -25.9 400.0 1152.2 -10.5 

632.0 1340.5 -25.6 440.0 1183.7 -10.6 

660.0 1556.5 -25.0 544.0 1129.9 -10.4 

752.0 2703.8 -21.6 600.0 1197.7 -10.7 
780.0 2922.7 -21 .1 700.0 2020.2 -12.5 

800.0 2984.7 -21.0 748.0 2660.1 -13.3 

852.0 2997.6 -21.1 800.0 2984.7 -13.8 
924.0 3408.4 -20.2 924.0 3408.4 -14.6 
996.0 4357.7 -23.7 996.0 4357.7 -19.2 

1036.0 5070.6 -23.9 1228.0 8358.0 -31 .4 
1076.0 5663.0 -25.0 1244.0 8574.5 -31 .2 

1140.0 6525.6 -27.6 1250.0 8681.2 -27.7 

1244.0 8574.5 -32.3 

1250.0 8681 .2 -30.3 

Table C.9 - Selected rudder gains K7 and Ka as a lunetion ol tand qdyn' 
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t qdyn K9 t qdyn KID 
(sec) (N/m2) (1/rad) (sec) (N/m2) (1/rad) 

0 .0 0.4 0 .0 0.0 0.4 0.0 
180.0 98.0 0 .0 180.0 98.0 0.0 

184.0 110.3 -3.6 184.0 110.3 -1.0 

272.0 672.6 -18.7 200.0 173.2 -1 .8 
300.0 812.5 -20.0 236.0 397.6 -5.1 
324.0 918.0 -20.5 272.0 672.6 -8.8 
384.0 1121.0 -20.8 328.0 934.7 -11 .2 
600.0 1197.7 -20.8 400.0 1152.2 -12 .5 
632.0 1340.5 -20.6 440.0 1183.7 -12.7 

664.0 1594.9 -20.0 544.0 1129.9 -12.4 
760.0 2782.5 -17.1 600.0 1197.7 -12 .7 
804.0 2989.7 -16 .8 712.0 2185.6 -15.3 
848.0 2993.8 -16.9 744.0 2613.8 -15.9 
924.0 3408.4 -16.1 800.0 2984.7 -16 .5 
996.0 4357.7 -19.3 924.0 3408.4 -17.5 

1032.0 4999.5 -19 .5 1000.0 4427.1 -23.3 
1068.0 5565.6 -20 .1 1152.0 6808.5 -32.1 
1148.0 6710.1 -22.3 1180.0 7519.8 -32 .9 
1172.0 7322.7 -22.4 1220.0 8254.6 -33 .3 
1200.0 7947.7 -22.4 1244.0 8574.5 -30 .2 
1220.0 8254.6 -22.5 1250.0 8681 .2 -27 .6 
1250.0 8681 .2 -21.9 

Table C.l0 - Selected rudder gains Kg and K w as a function of tand qdyn' 
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