
Delft Center for Systems and Control

Stochastic Model Predictive Con-
trol via Quantisation with Safety
Certification

Veronika Tajgler

M
as

te
ro

fS
cie

nc
e

Th
es

is

Image generated by ChatGPT (OpenAI).





Stochastic Model Predictive Control
via Quantisation with Safety

Certification

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Veronika Tajgler

July 15, 2025

Faculty of Mechanical Engineering · Delft University of Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering for acceptance a thesis entitled

Stochastic Model Predictive Control via Quantisation with Safety
Certification

by
Veronika Tajgler

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: July 15, 2025

Supervisor(s):
Dr. L. Laurenti

Eduardo Figueiredo Mota Diniz Costa

Reader(s):
Dr. Meichen Guo





Abstract

The demand for autonomous systems in safety-critical domains has increased in recent years.
As real-world systems grow in complexity, a key challenge is ensuring robust performance
under uncertainty, which requires the synthesis of controllers that not only operate reliably
in stochastic environments but also support post-hoc validation and certification of safety.
To this end, Stochastic Model Predictive Control (SMPC) is a control framework suitable for
systems subjected to stochastic disturbances and model uncertainties. However, its practical
application is limited by the intractability of exact uncertainty propagation of the state dis-
tribution (i.e. the prediction step), particularly for nonlinear dynamics, incentivising research
to focus on approximation methods such as linearisation or Monte Carlo sampling. In this
literature, however, the approximations do not provide guarantees of correctness.

This work addresses this particular limitation by leveraging quantisation-based uncertainty
propagation, where both the state and disturbance distributions are discretised with for-
mal guarantees in the Wasserstein distance. We formulate a quantised SMPC algorithm for
discrete-time nonlinear systems with Gaussian additive noise, subject to individual chance
constraints. For safety certification of the obtained controller, we introduce a validation
scheme based on Wasserstein ambiguity sets that estimate worst-case constraint violation
probabilities. The proposed approach is evaluated in simulation on benchmark tasks under
both open- and closed-loop policies.
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“Any measurement that you make without the knowledge of its uncertainty is
completely meaningless.”
— Walter Lewin, MIT

“As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality.”
— Albert Einstein





Chapter 1

Introduction

1-1 Motivation

Modern systems are inherently nonlinear and are often subject to uncertainty [55]. Yet, the
interest in automating systems in safety-critical domains such as smart manufacturing [52],
medical devices/robotics [22], air-traffic management [32], and aerospace [39] is increasing.
As a result, safety-critical control and planning for systems affected by uncertainty becomes
one of the fundamental problems in automation.

In particular, as one of the most challenging control technologies, autonomous driving has
advanced from controlled research settings to real-world deployment. From self-driving taxis
to highway assist systems, these technologies promise to reduce road accidents—94% of which
are caused by human error [63]. However, the integration of autonomous systems into the
real world depends on verifiable safety. This is especially evident in traffic scenarios, where
autonomous vehicles must avoid collisions under uncertain and/or dynamic conditions. For
example, Tesla’s Autopilot system — despite incorporating state-of-the-art perception — was
involved in 736 crashes and 17 fatalities between 2019 and 2023 due to failures in obstacle
detection [49]. These incidents underscore a need for safety guarantees. Yet, as of today,
there are no commercially available SAE Level 4 autonomous vehicles [77].

The gap between academic innovation and real-world implementation for safety-critical ap-
plications persists unless uncertainty is explicitly accounted for in the controller design and
a posteriori verification of correctness is provided. Hence, in this thesis, we focus on build-
ing a controller methodology for a stochastic, possibly nonlinear system and providing safety
certification.

1-2 Challenges

Real-world systems often suffer from imperfect models and are affected by both process noise
and sensor noise [59]. As such, control design must account for two types of uncertainty:
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2 Introduction

aleatoric (inherent measurement noise) and epistemic (model or environment). Furthermore,
despite progress in advanced control techniques, safety certification remains an open problem
[10]. The lack of formal safety guarantees and a systematic way to quantify the risk is a
limiting factor between the research and real-world deployment [18].

To this end, Stochastic Model Predictive Control (SMPC) is a powerful framework that, unlike
its deterministic counterpart, integrates the uncertainty model directly into the optimisation
process. This enables the controller to predict future distributions over the system states and
adapt its policy accordingly. However, when dealing with nonlinear stochastic systems, two
major challenges arise:

• First, accurately propagating uncertainty over the prediction horizon becomes non-
trivial [48]. Nonlinear dynamics distort even simple initial distributions like Gaussian,
making exact inference generally intractable. As a result, we must rely on approxi-
mations — such as sampling-based particle methods [83], unscented transform [42], or
polynomial chaos expansions [25] - all of which introduce trade-offs between computa-
tional complexity and approximation error.

• Second, formulating and enforcing probabilistic (chance) constraints in a tractable way
is difficult [16]. These constraints require evaluating whether the system violates safety
conditions, often over high-dimensional uncertainty distributions. Ensuring that such
constraints are computationally feasible and statistically meaningful remains an open
problem, especially when formal guarantees are needed.

1-3 Contribution and Outline

This work proposes a quantisation-based SMPC framework for discrete-time nonlinear sys-
tems with Gaussian additive noise, incorporating individual chance constraints. To manage
uncertainty propagation over the prediction horizon, we discretise both state and disturbance
distributions with formal guarantees in the Wasserstein distance. Furthermore, we propose a
compression method at each step for computational traceability during the multi-step predic-
tion. Obstacle avoidance is handled via a cost penalty. For safety certification, we introduce
a validation scheme based on Wasserstein ambiguity sets that estimate worst-case constraint
violation probabilities. The proposed approach is evaluated in simulation on nonlinear bench-
mark tasks under both open- and closed-loop policies.

The structure of this thesis is as follows. Chapter 2 reviews related work, providing back-
ground on SMPC, with a particular focus on existing methods for uncertainty propagation and
the formulation of chance constraints. In Chapter 3, we present a formal mathematical state-
ment of the control problem under consideration. Chapter 4 introduces the proposed control
framework and formal safety certification. Chapter 5 presents empirical results demonstrat-
ing the effectiveness of the methodology on nonlinear benchmark systems. Finally, Chapter 6
concludes the thesis and provides a discussion of the findings and directions for future work.
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Chapter 2

Background

This Chapter introduces the necessary preliminaries for the remainder of the thesis. Specifi-
cally, we introduce the notion of Model Predictive Control [70, 36, 44], giving emphasis to the
case where the model dynamics is not linear, while also discussing the problem of uncertainty
propagation [26] and chance-constrained optimisation [37].

One assumption that will be used throughout this chapter is that all states can be measured
directly. This is often not the case, but as this can be accounted for using state estimation,
the general theory in this chapter will apply.

2-1 Model Predictive Control

In this section, we introduce the notion of Stochastic Model Predictive Control by building up
from the deterministic case. The general motivation behind Model Predictive Control (MPC)
is the systematic way constraints are handled. Using knowledge of the system dynamics
with MPC, we can handle long dead time in feedback measurements, or even the lack of
measurements using an open-loop MPC.

2-1-1 Nominal Model Predictive Control

Model Predictive Control (MPC) is a model-based control methodology that systematically
uses predictions to compute optimal control decisions in real time [16, 59, 70, 72]. This
subsection investigates the MPC design for the control of constrained nonlinear time-invariant
systems, described by the following difference equation:

xk+1 = f(xk, uk), (2-1)

where xk ∈ X and uk ∈ U are the system state and control input respectively. The state
space X and the control input space U are arbitrary metric spaces, that is, sets in which
the distances between two elements x, y ∈ X or u, v ∈ U are measured by metrics dX (x, y)
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4 Background

or dU (u, v), respectively [36]. Within the scope of this research, sets X ⊆ Rd and U ⊆ Rm

are assumed to be closed, while the Rn set denotes the n-dimensional Euclidean space. The
variable xk+1 is the successor state. The function f(·) is a possibly nonlinear Borel-measurable
function that characterises the system dynamics and maps f : X × U → X . The set of finite
control sequences u(0), . . . , u(N − 1) for i ∈ N , will be denoted as UN .

The cost function J(·) to be used in optimisation should penalise the distance of an arbitrary
state x ∈ X to the desired reference x⋆ ∈ X [70]. As the state approaches the equilibrium
point x⋆, the cost must decrease, so intuitively the only condition for the cost definition is
that it is zero at the equilibrium and positive elsewhere. In practice, the control input u ∈ U
is often also penalised, either for computational or due to modelling reasons [36].

Furthermore, as we compute the prediction over the finite horizon N , the cost accumulates
and is thus a function of the control sequence uk := u0|k, . . . , uN−1|k, and state sequence
xk := x0|k, . . . , xN |k. The final formulation can be found in Definition 1.

Definition 1 (Cumulative cost function). The cumulative cost over the prediction horizon
N is defined as a function of control sequence uk and state sequences xk as:

J(xk,uk) =
N−1∑
i=0

ℓ(xi|k, ui|k) + Vf (xN |k), (2-2)

where xi|k and ui|k are the predicted state and the predicted control input at time k+i based on
information available at time k. The function ℓ(x, u) is the stage cost that penalises deviations
from the desired state and control effort, while Vf (xN |k) is a terminal cost that represents the
cost-to-go beyond the prediction horizon.

Note that in most cases, the state sequence can be expressed in terms of the initial state value
x0|k by the difference equation in Eq. (2-1). Furthermore, the role of Vf (xN |k) is critical in
MPC design and is investigated in further chapters.

The main underlying idea of MPC is to compute a sequence of admissible control inputs
by solving a finite-horizon Optimal Control Problem (OCP) at each time step [36]. OCP
minimises the objective function with respect to the control sequence uk, subject to system
dynamics and constraints, as defined in Eq. (2-3). While the system dynamics and cost are
optimised over the prediction horizon i = 0, . . . , N − 1, only the first input of the resulting
optimal sequence is applied to the system. Naturally, this process is repeated at each sampling
instant, making it a receding horizon control strategy [59].

min
u0|k,...,uN−1|k

N−1∑
i=0

ℓ(xi|k, ui|k) + Vf (xN |k) (2-3a)

subject to xi+1|k = f(xi|k, ui|k), ∀i = 0, . . . , N − 1, (2-3b)
xi|k ∈ X , ui|k ∈ U , ∀i = 0, . . . , N − 1, (2-3c)
xN ∈ Xf (2-3d)
x0|k = xk, (2-3e)
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2-1 Model Predictive Control 5

2-1-2 Stochastic MPC

In the previous section, we assumed full knowledge of the state of the system x. However,
in practical scenarios, the state is often subject to uncertainty arising from process noise
(e.g., wind), measurement noise, or model mismatch during state estimation or learning [59].
Although MPC offers a certain degree of robustness due to its receding-horizon nature, its
deterministic formulation is generally inadequate for systematically addressing such uncer-
tainties [59].

To this end, various extensions of MPC have been developed to handle uncertainty explic-
itly [70]. In the stochastic setting, the uncertainty is typically modelled as a random variable
ωk ∈ W ⊆ Rq, representing process disturbances or model uncertainty, with known probability
distribution ωk ∼ Pω ∈ P(W), where P denote the probability space. It can also be assumed
that the initial state is uncertain and is modelled as a random variable x0 ∼ Px0 ∈ P(X ).
Accordingly, the discrete-time system model in Eq. (2-1) is extended to:

xk+1 = f(xk, uk, ωk), (2-4)

where f(·) defines the dynamics of the (nonlinear) stochastic system.

While deterministic MPC typically employs an open-loop formulation and optimises the con-
trol sequence uk directly, stochastic formulations often require closed-loop policies, as they
attempt to reduce the effect of disturbances [4, 59, 72]. As the uncertainty accumulates over
the prediction horizon, the control policy must account for that, so the open-loop schemes
are seen as conservative [4]. Hence, when uncertainty is present and the state is known or
observations of the state are available, feedback control is superior to open-loop control [71].

Unfortunately, optimising over the policy function space is generally intractable. As a result,
the policy is often parametrised as:

uk = πk(xk, θk), (2-5)

with θ being the parameter vector. Parametrised feedback policies allow the controller to
anticipate and react to uncertainties while keeping the resulting optimisation problem com-
putationally tractable [59].

Different choices of the parameter vector θ lead to various Stochastic Model Predictive Con-
trol (SMPC) formulations [16]. For example, choosing θk := [bk, vec(K)] corresponds to the
affine state-feedback policy in (2-6), which is widely used due to its balance between perfor-
mance and computational efficiency [14, 33, 59, 72]. Another common way to parametrise
the feedback policy is affine disturbance-feedback from Eq. (2-7) [5, 89].

πk(xk, θk) = bk +Kxk, affine state-feedback policy, (2-6)

πk(xk, θk) = bk +
k−1∑
j=0

Ωjwj , affine disturbance-feedback policy, (2-7)

where bk ∈ Rm, potentially time-dependent [59] K ∈ Rm×d, and Ωj ∈ Rm×q are policy
parameters [25].

Furthermore, unlike in the nominal MPC, in the stochastic case, the cost function is commonly
formulated as the expected value cost. In this case, under the sequence of control laws

Master of Science Thesis Veronika Tajgler



6 Background

π : π0|k(·), . . . , πN−1|k(·), the cost can be defined as the expectation of the cumulative stage
cost and the terminal cost:

Jπ
N (x) = E|x (cN (x,π, ω)) = E|x

[
N−1∑
i=0

l(xi|k,ui|k,wi|k) + Vf (xN |k)
]
, (2-8)

where E|x(·) := E(· | x0 = x) denotes the conditional expectation given the initial state with
respect to the probability measure P defined on the underlying probability space 1.

Lastly, the minimisation of the cost function in Eq. (2-8) is performed subject to constraints
on system states and control inputs. In the presence of uncertainty, the constraints must be
reformulated probabilistically:

P|x
[
gj(xi|k) ≤ 0, ∀j = 1, . . . , s

]
≥ 1− ε, ∀i = 1, . . . , N (2-9)

where gj : Rd → R is (nonlinear) Borel-measurable function, s is a total number of inequality
constraints, and ε ∈ (0, 1) specifies the allowable probability of constraint violation [59].
Conditional probability P|x denotes the probability of a future event i conditioned on the
current state at the time step k, that is, x0|k = xk.

An alternative formulation is the joint chance constraint, imposed through the entire pre-
diction horizon N , as originally proposed by [75]. Ono [66] states that in the presence of
unbounded stochastic disturbances, defining chance constraints jointly over the horizon is
critical to ensure resolvability, also known as recursive feasibility, which is essential for main-
taining stability in robust and stochastic model predictive control. The joint chance constraint
takes the form:

P|x
[
gj(xi|k) ≤ 0, ∀j = 1, . . . , s ∀i = 1, . . . , N

]
≥ 1− ε, (2-10)

Input constraints are commonly treated as hard constraints, as they represent the electrical/-
physical limits of the system [70].

ui|k ∈ U (2-11)

Nevertheless, the chance-constrained formulation in Eq. (2-9) is non-convex and computa-
tionally intractable [6, 54]. There are two primary reasons for this intractability. First, the
feasible region defined by a probabilistic constraint W(xk, uk) : {ωk ∈ Rq|g(xk(ωk), uk) ≤ 0}
is generally not convex [54]. Second, evaluating the probability P [g(x, ω) ≤ 0] for a given
x ∈ X requires computing a possibly multidimensional integral:∫

W(xk,uk)
p(ω) dω, (2-12)

where ω denotes the random disturbance and p(ω) is its probability density function. When
g(·) is nonlinear or the distribution of ω is non-Gaussian, the integration domain becomes
complex and does not admit a closed-form solution. As demonstrated in [54, 64], even in
the case of linear systems with Gaussian noise, computing this integral is nontrivial, which
complicates both constraint evaluation and optimisation and, as a result, motivates the use
of tractable approximations further elaborated in Section 2-3.

1Technical discussions on choice of cost function can be found in Appendix A-1
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2-1 Model Predictive Control 7

Hence, the objective of the SMPC problem is to compute the sequence policy π(·) that
minimises the expected cumulative cost over a finite prediction horizon N , as formulated in
the stochastic optimal control problem below:

min
π0|k(·),...,πN−1|k(·)

Exk∼Pxk

N∑
k=0

[
ℓ(xi|k, ui|k) + Vf (xN |k)

]
(2-13a)

subject to xi+1|k = f(xi|k, ui|k, ωi|k), ∀i = 0, . . . , N − 1, (2-13b)

P
[
g(xi|k, ui|k) ≤ 0

]
≥ 1− ε, ∀i = 0, . . . , N − 1, (2-13c)

ui|k = πi|k(xi|k, θ), ∀i = 0, . . . , N − 1, (2-13d)
xi|k ∈ X , ui|k ∈ U ∀i = 0, . . . , N − 1, (2-13e)
ωi|k ∼ Pω, ∀i = 0, . . . , N − 1, (2-13f)
x0|k ∼ Pxk

, (2-13g)

where xi|k and ui|k denote the predicted state and control input at time step i given infor-
mation at time k, and Pxi|k represents the corresponding state distribution given the initial
state x0|k. The probabilistic constraint in Eq. (2-13c) ensures that the constraint function
g(xi|k, ui|k) is satisfied with high confidence, where ε ∈ (0, 1) defines the acceptable violation
probability.

2-1-3 Challenges in Nonlinear Stochastic MPC

Although the SMPC formulation provides a natural framework for uncertainty-aware control,
it introduces several design and computational challenges. These include:

• Policy parametrisation. The control law π(·) can be parametrised in various ways,
leading to different SMPC formulations with varying tractability and performance [9,
16, 72].

• Uncertainty propagation through dynamics. Propagating uncertainty through
nonlinear system dynamics is especially complex, and often computationally inefficient.
This is a central bottleneck in nonlinear SMPC (NSMPC) design [16]. Many approaches
attempt to construct surrogate models or use moment matching, but these approxima-
tions may introduce bias or inaccuracy.

• Probabilistic (chance) constraint formulation. Incorporating chance constraints
into the OCP often makes the problem intractable [16]. Reformulating these con-
straints into tractable approximations—such as convex relaxations or sample-based
methods—remains a central challenge. In particular, random sampling techniques,
commonly used in stochastic programming, offer a practical way to handle the soft
constraints in SMPC by approximating probability distributions of states and parame-
ters with finite discrete samples [16].

• Computational complexity due to uncertainty modelling. Related to the pre-
vious one - SMPC typically requires more computation than robust MPC, primarily
because it must compute and propagate probability distributions of future states [45].
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8 Background

Random sampling techniques (e.g., Monte Carlo) are often used to approximate these
distributions using finite sets of discrete samples, which introduces additional compu-
tational overhead as we need a lot of samples to get a good approximation

• Nonlinearity and nonconvexity. The presence of nonlinear dynamics typically re-
sults in a nonconvex OCP, where global optimality cannot be guaranteed. As a result,
only sub-optimal solutions are generally available, which may limit guarantees related
to closed-loop stability.

• Theoretical limitations for nonlinear SMPC. Establishing closed-loop theoretical
properties such as recursive feasibility, constraint satisfaction, and stability for nonlinear
SMPC schemes remains an open and challenging area of research [16].

Veronika Tajgler Master of Science Thesis



2-2 Uncertainty Propagation for Model Predictive Control 9

2-2 Uncertainty Propagation for Model Predictive Control

Accurate modelling is essential for designing effective model predictive controllers, particularly
for complex systems that require safety guarantees. To account for uncertainty, the evolution
of stochastic dynamics is often described by the Chapman–Kolmogorov equation [48]. While
probabilistic predictions are straightforward for linear systems with Gaussian distributions,
nonlinear dynamics and non-Gaussian probabilistic density functions (PDF) significantly in-
crease the complexity, making the Chapman–Kolmogorov equation intractable. As shown in
Figure 2-1, after one step nonlinear transformation, the distribution is no longer Gaussian
[48]. As a result, research has focused on approximation methods for uncertainty propagation
that aim to balance efficiency and accuracy.

Figure 2-1: The PDF of a Gaussian random variable x and the PDF of y = f(x) =[
2 tanh(x1)+0.2x2
2 tanh(x2)+0.2x1

]
computed by Monte Carlo simulation [48].

Consider a discrete-time stochastic process governed by the following difference equation [27]:

xk+1 = f(xk, ωk), x0 ∼ Px0 , ωk ∼ Pω, (2-14)

where f : Rd×Rq → Rd represents the one-step system dynamics, x0 is a random initial state
with distribution Px0 ∈ P(Rd), and ωk is a stochastic disturbance sampled from Pω ∈ P(Rq).

The probability distribution of the state at the next time step, denoted Pxk+1 , can be described
by its density pxk+1 , which evolves according to the Chapman–Kolmogorov equation [76]:

pxk+1(xk+1) =
∫
Rd
p(xk+1 | xk) pxk

(xk) dxk. (2-15)

This equation expresses the density pxk+1 as the marginal of the one-step transition density
p(xk+1 | xk) with respect to the current state distribution pxk

[27].

However, solving Eq. (2-15) is generally intractable for nonlinear systems, as the transition
kernel is not available in closed form. Therefore, practical implementations rely on approxi-
mate uncertainty propagation methods to evolve the state distribution over time in a compu-
tationally feasible way. One straightforward method is to linearise nonlinear systems and take
advantage of the extensive preliminary work on SMPC for linear systems [48]. However, the
linearisation error increases with the degree of nonlinearity, and the control performance is
expected to significantly degrade for strongly nonlinear systems [48]. Hence, in this research,
we focus on methods that do not require linearisation of the system dynamics.
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2-2-1 Sample-based approximations

While deterministic or moment-based uncertainty propagation techniques often rely on sim-
plifying assumptions (e.g., Gaussianity or linearity), Monte Carlo (MC)-based sample approx-
imation methods provide a flexible and expressive alternative. These approaches approximate
the evolution of the state distribution through direct simulation of trajectories under randomly
sampled disturbances [83].

Monte Carlo Simulation

MC simulation is a widely used method for propagating uncertainty in stochastic MPC,
especially for nonlinear and non-Gaussian systems. Instead of analytically computing the
propagated distribution Pxk

for stochastic dynamics be governed by Eq. (2-14), we draw M

independent samples {ω(m)
k }Mm=1 and simulate the state evolution as:

x
(m)
k+1 = f(x(m)

k , ω
(m)
k ), m = 1, . . . ,M. (2-16)

The expected cost is approximated using:

min
u0,...,uN−1

1
M

M∑
m=1

(
N−1∑
k=0

ℓ(x(m)
k , uk) + Vf (x(m)

N )
)
. (2-17)

Chance constraints such as
P(h(xk) ≤ 0) ≥ 1− α (2-18)

are enforced by requiring at least (1−α)M out of M simulated trajectories to satisfy h(x(m)
k ) ≤

0. While flexible and distribution-free, MC simulation can be computationally expensive,
particularly in high dimensions. Efficiency can be improved using techniques such as variance
reduction or scenario reduction [43, 83].

Unscented Transform Approximation

The Unscented Transform (UT) approximates the transformation of the random variable by
deterministically selecting a set of sigma points that capture the true mean and covariance
of the distribution [41, 42, 82]. These sigma points are then propagated through the non-
linear function directly, and their transformed statistics are used to reconstruct the output
distribution [41, 42, 82].

Let x ∈ Rd be a random variable with mean µx ∈ Rd and covariance Σx ∈ Rd×d. The UT
generates 2d+ 1 sigma points x(i) as:

x(0) = µx, (2-19)

x(i) = µx +
(√

α2(d+ κ)Σx

)
i
, i = 1, . . . , d, (2-20)

x(d+i) = µx −
(√

α2(d+ κ)Σx

)
i
, i = 1, . . . , d, (2-21)
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2-2 Uncertainty Propagation for Model Predictive Control 11

where (·)i denotes the i-th column of the matrix square root (typically Cholesky decomposi-
tion), and α, κ are tuning parameters that determine the spread of the sigma points [48, 65].

Each sigma point is propagated through the nonlinear function f(·):

x̂(i) = f(x(i)), i = 0, . . . , 2d. (2-22)

The weights for computing the mean and covariance are given by:

w(0)
µ = 1− d

α2(d+ κ) , w
(0)
Σ = w(0)

µ + (1− α2 + β), (2-23)

w(i)
µ = w

(i)
Σ = 1

2α2(d+ κ) , i = 1, . . . , 2d, (2-24)

where β is an additional parameter that incorporates prior knowledge of the distribution (e.g.,
β = 2 is optimal for Gaussians [48, 82]).

Finally, the predicted mean and covariance of the transformed variable are estimated as:

µx̂ ≈
2d∑

i=0
w(i)

µ x̂(i), (2-25)

Σx̂ ≈
2d∑

i=0
w

(i)
Σ

(
x̂(i) − µx̂

) (
x̂(i) − µx̂

)⊤
. (2-26)

The UT is an attractive alternative to sampling-based approaches like Monte Carlo, offering a
favorable trade-off between computational efficiency and accuracy in uncertainty propagation,
as shown by [12]. Liu et al. [50] applied UT MPC for the lane keeping assistance control of
a semi-autonomous vehicle.

2-2-2 Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) is a powerful modelling technique for uncertainty prop-
agation. It approximates the evolution of random variables by expanding them into or-
thogonal polynomial basis functions that are tailored to the distribution of the uncertainties
[25, 48, 60, 61, 78, 90].

Let the predicted next state xk+1 = f(xk, ωk) be approximated by a polynomial expansion:

x̂k+1 =
P∑

i=0
aiϕi(xk, ωk), (2-27)

where ϕi(·) are multivariate orthogonal polynomials and ai ∈ R are the associated coefficients.
These basis functions satisfy the orthogonality condition with respect to the joint distribution
of (xk, ωk):

E[ϕi(xk, ωk)ϕj(xk, ωk)] = ⟨ϕi, ϕj⟩ = ⟨ϕ2
i ⟩δij . (2-28)

The coefficients ai can be determined using various computational techniques:

• regularized regression [25],
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• probabilistic collocation [61],

• spectral projection via Gauss–Hermite quadrature [13].

PCE enables efficient computation of the statistical moments (e.g., mean and variance) of the
predicted state from the expansion coefficients. It offers a sample-free alternative to Monte
Carlo methods and is especially effective when uncertainties can be captured by a small
number of polynomial terms. However, the number of expansion terms grows combinatorially
with the input dimension and polynomial order, which may limit scalability. The strength of
PCE lies in its ability to capture higher-order stochastic moments of the probability density
function (PDF), thereby improving the accuracy of uncertainty propagation [48].

2-2-3 Gaussian Mixture Model Approximation

Gaussian Mixture Models (GMMs) offer an approximation of arbitrary probability distribu-
tions by representing them as a weighted sum of Gaussian components [16, 48]. A probability
density function p(xk) can be approximated by a Gaussian mixture as:

p(xk) ≈
M∑

i=1
w(i)N

(
µ(i)

xk
,Σ(i)

xk

)
, (2-29)

where conditions on weight are w(i) ≥ 0 and
∑M

i=1w
(i) = 1, with each component defined

using N (·, ·) as notation for the Gaussian probability density function with mean µ
(i)
xk and

covariance Σ(i)
xk [48].

After applying a nonlinear transformation xk+1 = f(xk, ωk), the output distribution p(xk+1)
can also be approximated using another mixture of Gaussians:

p(xk+1) ≈
M∑

i=1
w̃(i)N

(
µ(i)

xk+1 ,Σ
(i)
xk+1

)
, (2-30)

where the updated weights w̃(i), means µ(i)
xk+1 , and covariances Σ(i)

xk+1 are computed by pushing
each component through the dynamics. Among common technique for that are sampling [27],
moment matching with UT [79].
Despite their expressive power, GMM-based approaches face computational challenges, par-
ticularly in component explosion and numerical stability during propagation. To address this,
[85] propose the use of hybrid mixtures combining Dirac and Gaussian components, allowing
efficient offline computation of the value function via dynamic programming. Applications
of GMM-based MPC have been demonstrated in areas requiring safety-critical planning un-
der uncertainty, such as robotic obstacle avoidance and motion planning for autonomous
systems [84, 85].

2-3 Dealing with Chance constraints

2-3-1 Second-order Cone Constraints

In the special case where the uncertainty ωk is Gaussian and the constraint function g(x, u, ωk)
is affine in ωk, the chance constraint can be exactly reformulated as a second-order cone
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2-3 Dealing with Chance constraints 13

constraint [54, 64, 72]. This formulation is convex and computationally tractable using conic
solvers. However, it is limited to single linear constraints under Gaussian noise.

2-3-2 Chebyshev inequality

A generalisation of this approach is to release the assumption of ωk being Gaussian and
consider only its first two moments. In this case, if single linear chance constraints are
present, Chebyshev’s inequality can be invoked, and the constraints can be reformulated
again as second-order cone constraints. When only the first and second moments of the
uncertainty distribution are known, Chebyshev-type inequalities can be employed to derive
conservative approximations. For example, if the mean and variance of g(x, u, ωk) are known,
the one-sided Chebyshev inequality yields:

P
[
g(x, u, ωk) ≤ E[g] + λ

√
Var[g]

]
≥ 1− 1

λ2 . (2-31)

This allows reformulating the chance constraint into a deterministic bound involving the mean
and standard deviation. While this method is highly general—it applies to any distribution
with finite moments—it is also conservative and only suitable for single constraints. Another
downside of this method is that it relies only on the first two moments of the distribution
[15].

2-3-3 Enforce constraint for all disturbance realisations

Robust MPC enforces constraints for all admissible realisations of uncertainty within a bounded
disturbance set D [57, 34]. In this setting, the constraint violation probability ε is zero, and
the constraints can be reformulated as:

g(xi|k, ui|k) ≤ 0 ∀ω0|k, . . . , ωN−1|k ∈ D. (2-32)

An advantage of this approach is that, by relying solely on a bounded disturbance set D
instead of requiring full distributional knowledge, the formulation becomes simpler and more
tractable. However, this comes at the cost of increased conservatism [72], as the controller
must satisfy constraints under all possible disturbance realisations within D, including poten-
tially unlikely worst-case scenarios. On the other hand, scenario-based methods that sample
the uncertainty and enforce constraint satisfaction over a finite set of realisations [74].

2-3-4 Distributionally Robust Chance Constraints

In many practical control problems, the uncertainty in initial conditions or system distur-
bances is only accessible through empirical data or learned models. Moreover, classical chance
constraints in Equation 2-13c are not directly tractable under nonlinear dynamics or un-
bounded distributions. A robust alternative is to impose a Distributionally Robust Chance
Constraint (DRCC) [68], which guarantees constraint satisfaction across all distributions in
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an ambiguity set B. Then, the distributionally robust chance-constrained programme takes
the following form [17, 47]:

min
x∈X

c⊤x (2-33)

s.t. inf
P∈P

P [ξ : g(ξ, x) ≤ 0] (2-34)

x ∈ X (2-35)

where x is a (vector of) decision variable(s) from a compact polyhedron X ⊂ Rn that min-
imizes a linear cost function and ensures that the exogenous random vector ξ falls within a
decision-dependent safety set S ⊂ Rd with high probability 1− ε under every distribution P
in the ambiguity set B [17].

Due to its desirable statistical properties, an appealing approach is to define B as a Wasserstein
ball centered at an empirical distribution P̂ defined in Definition 3 with the Wasserstein
distance defined in 2. This formulation captures model uncertainty and is particularly suitable
for sample-based MPC [17].

Definition 2 (2-Wasserstein Distance). Let P and P̂ be two probability measures over the space
X , and let P(P, P̂) denote the set of all couplings (i.e., joint distributions) with marginals P
and P̂, respectively. Then, for a chosen norm ∥ · ∥, the 2-Wasserstein distance between P and
P̂ is defined as:

W2(P, P̂) :=
(

inf
π∈P(P,P̂)

E(ξ,ξ′)∼π

[
∥ξ − ξ′∥2

])1/2

. (2-36)

Definition 3 (Wasserstein Ambiguity Set). Given an empirical distribution P̂, the Wasser-
stein ambiguity set of radius ζ > 0 is defined as:

B(ζ) :=
{
P ∈ P(X )

∣∣∣W2(P, P̂) ≤ ζ
}
. (2-37)

This set represents the family of all distributions lying within a Wasserstein distance ζ from
the empirical distribution P̂ and captures plausible deviations from the observed data.

Chen et al. [17, Theorem 3] and Xie [87, Proposition 1] show that the Problem 2-33 can be
reformulated as:

min
s, t, x

c⊤x (2-38)

s.t. εNt− e⊤s ≥ ζN (2-39)
dist(ξ̂i, S̄(x)) ≥ t− si ∀i ∈ [N ] (2-40)
s ≥ 0, x ∈ X (2-41)

This reformulation follows the dual representation of the worst-case probability over a Wasser-
stein ambiguity set of radius ζ. The variable t serves as a threshold representing the minimal
safe distance to the unsafe set S̄(x), while the slack variables si ≥ 0 capture individual
violations for each empirical sample ξ̂i.
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Ji and Lejeune [40] showed that if the stochastic function g(x, ξ) is quasi-convex in ξ and
satisfies a Lipschitz continuity condition, the DRCC problem can be rewritten in a form that
is tractable. Furthermore, under the worst-case distribution in the Wasserstein ball, DRCC
constraint is equivalent to a constraint on a Conditional Value-at-Risk (CVaR), namely:

inf
P∈B

P(g(x, ξ) ≤ 0) ≥ 1− ε ⇐⇒ sup
P∈B

CVaRP
ε (g(x, ξ)) ≤ 0 (2-42)

Note: So instead of requiring the probability of violating constraints to be small, we are
bounding the expected magnitude of violation.

Definition 4. The Conditional Value-at-Risk (CVaR) of a random variable ξ at confidence
level 1− ε is defined as

CVaRε(ξ) := inf
t∈R

{
t+ 1

ε
E [(ξ − t)+]

}
,

where (ξ − t)+ := max{ξ − t, 0} denotes the excess loss above threshold t.

• also Xie and Ahmed show that it is possible to reformulate as a mixed integer con-
vex program under certain conditions [88]. Furthermore, Xie et al. [87] show that a
Distributionally Robust (DR) chance constraint with Wasserstein ambiguity is equiv-
alent to a Conditional Value-at-Risk (CVaR) constraint. This is especially useful in
risk-sensitive applications, where one prefers soft violations to hard constraints:

• An alternative practical approach is to incorporate soft penalties directly into the cost
function. For example:

J =
N−1∑
i=0

Exi∼P̂N
[ℓ(xi, ui)] + λ · Exi

[
max{g(xi, ui), 0}2

]
, (2-43)

where λ is a penalty weight. This avoids hard constraints but encourages safety proba-
bilistically.

These reformulations enable safe control design in the presence of distributional uncertainty,
particularly useful in learning-based control and autonomous systems with limited or noisy
data. They ensure that safety constraints remain valid even when the underlying data is
imprecise or the real-world behaviour deviates slightly from model assumptions [2].

2-3-5 Theoretical Convergence Guarantee

As shown in [48, 83], under mild regularity assumptions, the sample-based approximation
converges to the true stochastic control problem as M →∞, ε, ζ → 0:

lim
M→∞,ε,ζ→0

Ṽ ε,ζ
ᾱ,ε̄ (x0,DM ) = Vᾱ(x0). (2-44)

This guarantees that the smooth sample-based formulation remains a valid approximation of
the original stochastic optimal control problem. Sample-based MPC thus provides a tractable
and highly expressive framework for nonlinear, non-Gaussian systems, enabling direct opti-
misation over trajectories while maintaining rigorous safety guarantees [74].

Master of Science Thesis Veronika Tajgler



16 Background

Veronika Tajgler Master of Science Thesis



Chapter 3

Problem Formulation

Consider the following discrete-time stochastic process described by:

xk+1 = f(xk, uk, ωk), x0 ∼ Px0 , ωk ∼ Pω, (3-1)

where xk ∈ X ⊆ Rd represents the state of the system, uk ∈ U ⊆ Rm a control input,
ωk ∈ W ⊆ Rq a process noise, and f : X × U ×W → X is a possibly non-linear measurable
function representing the (time-invariant) one-step dynamics of the System (3-1). Intuitively,
(3-1) represents a dynamical system with (possible) non-linearities acting on both the state,
control input, and process noise, thus encompassing a large number of systems in the literature
[50, 78, 83]. Further, we assume a random initial state with distribution x0 ∼ Px0 ∈ P(X ),
where P(X ) is the probability space over the set X , and a known process noise distribution
given by ωk ∼ Pω ∈ P(W). This research aims to solve the optimal control problem 1.

Problem 1.

min
θ∈Θ

Jπ(θ) =
N∑

k=0
Exi|k∼Pxi|k

[
ℓ(xi|k, ui|k) + Vf (xN |k)

]
(3-2)

s.t xi+1|k = f(xi|k, ui|k, ωi|k), ∀i = 0, . . . , N − 1, (3-3)
ui|k = πi|k(xi|k, θ), ∀i = 0, . . . , N − 1, (3-4)
xi|k ∈ S, ui|k ∈ U , ωi|k ∼ Pω, ∀i = 0, . . . , N − 1, (3-5)
x0|k ∼ Pxk

, (3-6)

Specifically, we design a deterministic policy π : X×Θ→ U given by π(x, θ), where θ ∈ Θ ⊆ Rp

are the parameters of the policy that minimise the expected trajectory cost in Equation 3-2
where ℓ : X → R+ and Vf : X → R+ represent a stage and terminal cost functions respectively,
and N ∈ N the trajectory time horizon. Note that, although not made explicit in Eq. (3-2),
the random vectors xk depend on θ via the effect of the controller. Further, following [67], to
impose safety guarantees, we define a safe set S ⊆ X (i.e. states where the system operates
safely, such as lane boundaries for self-driving vehicles). The task is then to learn a set of
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18 Problem Formulation

parameters θ ∈ Θ to minimise Jπ(θ) while keeping the system within the safe set S. The set
of admissible control inputs is defined in U .

The main issue with Problem 1 is that the propagation of probability distributions through
non-linear dynamics is commonly intractable [48], so that closed-form expressions for the true
distributions Pxk

are generally unknown. In this case, approximation schemes are required.
Furthermore, since x0 and ω follow unbounded Gaussian distributions, strictly enforcing xi|k ∈
S at all time steps is infeasible. Hence, additional approximations and relaxed constraints are
required. For safety-critical applications, though, it is important to guarantee that constraints
are satisfied not only for the state approximations, but also for the true state distributions.
Therefore, it is fundamental to track the errors introduced when approximating probability
distributions.

Approach: To tackle Problem 1, Chapter 4 outlines the steps taken to obtain a tractable
problem formulation. Specifically, we exploit the quantisation of probability distributions to
approximate the state distribution P̂x0 and the noise distribution P̂ω according to Theorem
[26, Proposition 3.1]. This quantisation yields a finite number of samples that represent the
underlying distributions, allowing us to reformulate the state constraints in a robust form.
This method facilitates the computation of the approximation error using the Wasserstein
distance between the true and quantised distributions. This enables a validation step to
verify that the probability of the state remaining within the safe set constraints is adequately
captured [17, Theorem 1].
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Chapter 4

Stochastic MPC via Quantisation

In this Chapter, we propose a receding horizon control scheme exploiting the discretisation of
the state probability distributions to solve the Stochastic Model Predictive Control (SMPC)
problem 1. Critically, we show how the quantisation of distributions facilitates the uncertainty
propagation in the system, while controlling the error introduced by the discretisation.

The chapter is structured as follows: Section 4-1 presents the quantisation-based uncertainty
propagation method used in this work, as well as how to quantify approximation errors. Then,
in Section 4-1-2, we explain the compression needed to enable optimisation with multi-step
prediction. Section 4-1-3, covers the safety guarantees in our Model Predictive Control (MPC)
program that comprise constraints as well as a posterior verification. Lastly, in Section 4-1-4,
we present the reconstructed Optimal Control Problem (OCP) as a part of this research.

4-1 Uncertainty propagation with quantisation

4-1-1 Quantisation

As mentioned in Section 2-2, propagating uncertainty through nonlinear functions is a gen-
erally intractable problem [27, 48, 72], which makes the prediction step in the MPC problem
infeasible. Following [1, 26], we propose to quantise the probability distributions as shown in
Definition 5 to make forward propagation feasible.

Definition 5 (Quantisation of a Probability Distribution [1]). The quantisation of a probabil-
ity distribution p ∈ P(Rd) with respect to points C = {ci}Ni=1 ⊂ Rd is the discrete distribution
∆C#p =

∑N
i=1 π

(i)δci ∈ DN (Rd), where # is a pushforward operator, π(i) = Px∼p[x ∈ Ri] with

Ri =
{
x ∈ Rd : ∥x− ci∥ ≤ ∥x− cj∥, ∀j ∈ NN , j ̸= i

}
. (4-1)

More specifically, let {Ri}Nx
i=1 as defined in Equation 4-1 be the Voronoi partition of X with

respect to the Euclidean distance and a set of locations C ⊂ X , define the approximation as
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20 Stochastic MPC via Quantisation

the following quantisation:

P̂x := ∆C#Px =
Nx∑
i=1

ρiδci (4-2)

With this quantisation construction, [1, 26] show that the error between the original distri-
bution and its quantisation can be controlled in 2−Wasserstein from Definition 2 as shown in
Proposition 1. This upper bound is particularly useful in practice, as it can be computed in
closed form when P is a Gaussian distribution [1, 26].

Proposition 1 (Quantisation error [26]). Let P ∈ Pρ(X ) and assume a given X -partition
R = {Ri}Ni=1 and set of locations C = {ci}Ni=1. Then, for any ρ ≥ 1,

Wρ(P,∆R,C#P) ≤
(

N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x)
) 1

ρ

(4-3)

Furthermore, if R is chosen to be the Voronoi partition w.r.t. C, then 4-3 holds with equality.

The main advantage of handling discrete approximations is that they can be analytically push-
forwarded by non-linear functions f(x, ·), resulting in the transformed measure f(x, ·)#P̂x,
where # denotes the push-forward operator. More generally, given a quantised distribu-
tion z ∼ P =

∑N
i=1 π

(i)δci and a (possibly) non-linear map f , it holds that f(z) follows the
pushforward distribution f#P:

f#P =
N∑

i=1
π(i)δf(ci)

This is illustrated in Figure 4-1; the temporal evolution of the Dubins dynamical model [24]
under a Gaussian initial condition x0 ∼ N (0, 0.01I) is propagated over time using Quantisa-
tion (Figure 4-1a) and Monte Carlo (Figure 4-1b).
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(a) Quantised distribution propagation.
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(b) Monte Carlo sampling propagation.

Figure 4-1: Comparison between the quantised method and Monte Carlo sampling for temporal
evolution of the Dubins dynamics with uncertainty propagation. Speed v = 1.5 [m/s], constant
turning angle 0.3 [rad/sec], and sampling time 0.1 s. Ellipses indicate 50% and 95% confidence
regions; times are annotated in seconds.
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4-1 Uncertainty propagation with quantisation 21

This distance measures the minimal expected squared cost of transporting mass from P to P̂,
where the cost of moving a unit mass from ξ to ξ′ is given by ∥ξ − ξ′∥2.
Furthermore, using Lipschitz continuity [81], we track the error propagation over time as:

W2(Pk+1P̂k+1) = W2(f#Pk, f#P̂k) ≤ LfW2(Pk, P̂k), (4-4)

with k denoting a discrete time step. This allows us to track the probability measure P̂(S)
over multiple prediction steps.

4-1-2 Compression

When dealing with a system in Equation 3-1, the successor’s distribution can be approximated
by computing the discrete measure supported on the image of f applied to the grid points
{(ci, dj)} as follows:

P̂xk+1 := f#(P̂x × P̂ω) =
Nx∑
i=1

Nω∑
j=1

ρ(i)γ(j)δf(ci,π(θ),dj), (4-5)

where P̂x and P̂ω are the discrete measures of state and noise, respectively, with ρ and c
corresponding to probability and location for the state, while γ and d are the probability
and the location for the noise. The policy π(·, θ) is either open-loop or a feedback policy
parametrised by θ.
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(a) Location prediction after 5 propagation
steps with noise. P̂xk+1 := f#(P̂x × P̂ω) as
in Equation 4-5
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(b) Location prediction after 5 propagation
steps with noise and compression. P̂xk+1 :=
fc#(P̂x×P̂ω) with fc denoting the integrated
compression step.

Figure 4-2: Comparison of the naive state propagation and the on with compression on the
previous Dubins dynamics example. Number of maximum partitions nmax is equal to the initial
state discretisation, namely 100. Eight (8) partition used for noise discretisation. The propagation
is done five (5) steps ahead as computational traceability is a limiting factor.

In this context, it represents the transformation of the joint distribution of discrete states
and disturbances through the system dynamics f , resulting in a combinatorial explosion in
the support points. For example, with 100 state samples and eight (8) noise samples, five
steps yield over 3.28 million points. As shown in Figure 4-2a, the naive pushforward of
discrete uncertainty leads to an exponential growth in particles, which quickly becomes both
computationally expensive and representationally redundant.
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Algorithm 1 Soft Compression of Weighted Samples
Require: Samples c ∈ RNx×d, weights ρ ∈ RNx , number of clusters nmax, sharpness β
Ensure: Compressed centers {c̃n}nmax

n=1 , weights {ρ̃n}nmax
n=1 forming P̃ =

∑nmax
n=1 ρ̃nδc̃n

1: Initialize {c̃n}nmax
n=1 randomly

2: repeat
3: Compute distances: din = ∥ci − c̃n∥2
4: Compute soft assignments: win = exp(−βdin)∑nmax

m=1 exp(−βdim)
5: Apply weights: w̃in = win · ρi

6: Update cluster weights: ρ̃n =
∑Nx

i=1 w̃in

7: Update centers: c̃n = 1
ρ̃n

∑Nx
i=1 w̃in · ci

8: until convergence or max iterations
return {c̃n}nmax

n=1 , {ρ̃n}nmax
n=1

Consequently, a compression is required to find a trade-off between the number of particles
and the constructive information, allowing to preserve the overall geometry/structure of the
distribution while reducing the number of support points. We apply a soft compression
technique described in Algorithm 1, which clusters discrete measures into the fixed number
of samples nmax as depicted in Figure 4-2b. Using this compression layer, we are able to
manage complexity while retaining differentiability.

Now, the Wasserstein error between the true probability P and the compressed approximation
P̃ can be bounded using the triangular inequality:

W2(P, P̃) ≤W2(P, P̂) + W2(P̂, P̃) (4-6)

with W2(P, P̂) known, and W2(P̂, P̃) computed with the Algorithm proposed by [19].

4-1-3 Safety Guarantees

Assumption 1. In Problem 1, we assume the nonlinear programme with polytopic con-
straints, where each obstacle is defined as O ⊂ Rd. The safe set S as the allowable state
space excluding the obstacles:

S =
{
x ∈ Rd

∣∣∣xi ∈ [ai, bi]∀i = 1, . . . , d, (x1, x2, ..., xd) /∈ O
}
. (4-7)

Assumption 2. In Problem 1, the constraints on states are assumed to consist of merely
individual constraints, each of which is a nonlinear function of one state variable.

Similarly to [30, 64, 78], the chance constraints are approximated by enforcing the constraint
deterministically over a finite set of sampled disturbance realisations. In our case, we robustify
the chance constraints by imposing constraints on all locations C, resulting in the following
constraint:

c(i) ∈ S ∀i = 1, . . . , Nx. (4-8)

Meanwhile, for the disjunctive obstacles, we exploit penalty-based relaxation in control opti-
misation. For this, let each obstacle be defined by a bounded region aligned by dimensions
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4-1 Uncertainty propagation with quantisation 23

with lower and upper bounds olo
j , o

hi
j ∈ Rd for obstacle j ∈ {1, . . . , Nobs}, where d is the state

dimension. For a given particle i, let c(i) be its location and ρ(i) its probability mass. For
instance, we can have a square region [2, 4] × [2, 4] in the x1-x2 plane, the constraint can be
expressed logically as:

(x1 ≤ 2 ∨ x1 ≥ 4) ∧ (x2 ≤ 2 ∨ x2 ≥ 4) , (4-9)

which excludes the rectangular obstacle by requiring the state to lie outside it and introduces
nonconvexity into the feasible region.

Hence, we define the violation of box constraints along each dimension via:

v(i,j) = max
{
olo

j − c(i), 0
}

+ max
{
c(i) − ohi

j , 0
}
, (4-10)

where v(i,j) ∈ Rd quantifies how far particle i lies outside obstacle j’s box along each di-
mension. The total violation is then given as a sum of violations over the dimensions
d(i,j) =

∑d
k=1 v

(i,j)
k . Next, we define a soft indicator function that smoothly approximates

whether the particle lies inside the obstacle:

ϕ(i,j) = max
{

0, 1−min
{
d(i,j), 1

}}
, (4-11)

which satisfies ϕ(i,j) = 1 if the particle is fully inside the obstacle, and is between 0 and 1 if
only certain dimensions are inside the unsafe set. The maximum across all obstacles ϕ(i) =
maxj=1,...,Nobs ϕ

(i,j) approximates whether a particle is inside any obstacle. The expected
fraction of the probability mass that lies within obstacles is then:

Φ =
Np∑
i=1

w(i) · ϕ(i). (4-12)

Finally, by tuning the obstacle penalty coefficient λobs > 0, we get the penalty cost:

Jobs = λobs · Φ, (4-13)

Algorithm 2 Obstacle Penalty Computation

Require: Particles {c(i), ρ(i)}Np

i=1, obstacles {olo
j , o

hi
j }

Nobs
j=1 , penalty weight λobs

1: Φ← 0
2: for i = 1 to Np do
3: ϕ(i) ← 0
4: for j = 1 to Nobs do
5: v(i,j) ← max

{
olo

j − c(i), 0
}

+ max
{
c(i) − ohi

j , 0
}

6: d(i,j) ←
∑d

k=1 v
(i,j)
k

7: ϕ(i,j) ← max
{

0, 1−min
{
d(i,j), 1

}}
8: ϕ(i) ← max

{
ϕ(i), ϕ(i,j)

}
9: end for

10: Φ← Φ + ρ(i) · ϕ(i)

11: end for
12: return Jobs = λobs · Φ

Master of Science Thesis Veronika Tajgler



24 Stochastic MPC via Quantisation

We then verify a posteriori an upper bound of the unsafe probability using the Wasserstein
information. Specifically, we adopt a Wasserstein ambiguity set from Definition 3 [1] to assess
the true probability P(x ∈ S) for the random variable xk at each time step k ∈ {0, . . . , N} to
verify the level of risk associated with constraint violation:

sup
P∈B(ζ)

P(x ∈ S̄). (4-14)

This represents the worst-case probability mass that could enter the unsafe set S̄ within trans-
port budget ζ. We sort support points by distance to the unsafe set as shown in Algorithm
3, reassign mass greedily, and verify the constraint using duality (Theorem 2 in [17]):

sup
P∈B(ζ)

P(xk ∈ S̄) ≤ ε ⇐⇒ min
(∑

i

πid[i]; |;
∑

i

πi = ε, ; 0 ≤ πi ≤ p[i]

)
≥ ζ (4-15)

The Algorithm 4 shows computation of the probability of the stochastic state entering the
unsafe set S̄.

Algorithm 3 Compute Distance to Unsafe Region
Require: Point x ∈ RD, constraints list C = [c1, c2, . . . , cD], norm order p

1: Initialize empty list D ← []
2: for i = 1 to D do
3: Extract lower and upper bounds: [li, ui]← ci

4: if xi < li or xi > ui then
5: return 0.0 ▷ Point is outside safe bounds
6: end if
7: di ← min(xi − li, ui − xi)
8: Append di to D
9: end for

10: return Lp norm: (
∑

d∈D d
p)1/p

4-1-4 Optimal Control Problem Redefinition

Now, using the uncertainty propagation framework described in previous sections, we formu-
late the stochastic optimal control problem by evaluating the expected cost of following a
given policy. Recall that in SMPC the expectation of stage cost ℓ(xi|k, ui|k) penalises devi-
ations from the desired state and control effort, while the terminal cost Vf (xN |k) represents
the cost-to-go beyond the prediction horizon.

Within the context of this researcher, we consider both open- and closed-loop strategies:

uol
k = π(θ) = θk open-loop policy (4-16)
ucl

k = π(xk, θ) = K(xk − x̄k) + θk closed-loop policy (4-17)

with x̄k being the nominal trajectory of the system. Then the discrete measure at time step
k is defined as P̃xk

=
∑

i ρ̃iδc̃i with ρ̃ and c̃i representing the compressed support points of
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4-1 Uncertainty propagation with quantisation 25

Algorithm 4 Compute Supremum Violation Probability
Require: Distances {di}Ni=1, probabilities {πi}Ni=1, budget ζ

1: Sort (di, πi) by increasing di

2: Initialize T ← 0, V ← 0 ▷ Transport used, Violation mass
3: for each (d, π) in sorted list do
4: c← d · π ▷ Transport cost
5: if T + c ≤ ζ then
6: T ← T + c
7: V ← V + π
8: else
9: r ← ζ − T ▷ Remaining budget

10: V ← V + r
d ▷ Partial mass

11: break
12: end if
13: end for
14: return V ▷ Upper bound on violation probability

the discrete measure through the (nonlinear) dynamics with disturbance. Given the target
state xref , the stage cost component at prediction step i|k is defined as:

ℓ(xi|k, ui|k, ωi|k) = 1
2
(
(µx − xref )⊤Q (µx − xref ) + tr (QΣx)

)
+ u⊤Ru =

= 1
2
∑
i,j

π̃iπ̃j (c̃i(θ)− xref )⊤Q (c̃j(θ)− xref ) + u⊤Ru.
(4-18)

The terminal cost is given by:

Vf (xN |k) = ||µx − xref ||2Qterm
+ tr (QtermΣx) (4-19)

with µx and Σx being the mean and the covariance of the approximated probability distribu-
tion of the state at N |k, respectively, and Qterm the terminal cost weight matrix.

Under the sequence of the control laws π(θ) : π0|k(·), . . . , πN−1|k(·), the cumulative cost is
defined a:

Jπ
N (x, θ) = E|x

[
N−1∑
i=0

ℓ(xi|k, ui|k, ωi|k) + Vf (xN |k)
]

+ Jobs, (4-20)

Jπ
N (x, θ) =

N−1∑
i=0

E|x
[
ℓ(xi|k, ui|k, ωi|k)

]
+ E|xVf (xN |k) + Jobs, (4-21)

where E|x(·) := E(· | x0 = x) denotes the conditional expectation given the initial state with
respect to the probability measure P̂ defined on the underlying probability space. Jobs denotes
the penalty cost computed according to Equation 4-13. Ultimately, the OCP is reformulated
as Problem 2.
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Problem 2 (Stochastic Optimal Control Problem via Quantisation).

min
θ∈Θ

Jπ
N (x, θ)

s. t. cn
i+1|k = (fc(c(a)

i|k , ui|k) + ω
(b)
i|k ), ∀i ∈ {0, ..., N − 1}, ∀n ∈ {0, . . . , nmax}

∀a ∈ {0, . . . , Nx} ∀b ∈ {0, . . . , Nω}
ci|k ∈ S ∀i ∈ {0, ..., N}
ui|k = πi|k(ci|k, θ), ∀i = 0, . . . , N − 1,
ci|k ∈ X , ui|k ∈ U ∀i = 0, . . . , N − 1,
x0|k ∼ P̂xk

,

(4-22)

Here, fc denotes the dynamics applied to the compressed representation. The sets X and
U represent admissible state and input sets, respectively, and S denotes the safety set (see
Section 4-1-3). The discrete system is evolved forward using the control policy and noise
realisations, and compression is applied after each propagation step. This optimisation prob-
lem is solved with Sequential Quadratic Programming (SQP) 1 and Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) [51]. As the implementation is tailored to each
case study, the details follow in Section 5.

1see Numerical Methods for Stochastic MPC in Appendix C
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Chapter 5

Experimental Results

This chapter evaluates the effectiveness of the proposed framework through empirical studies
across benchmark scenarios. Specifically, we assess controller performance in terms of com-
putational efficiency, predicted bounds, and the ability to reach the target under uncertainty.
To emphasise the benefits of feedback in stochastic environments, we compare open-loop and
closed-loop control strategies.

The chapter is structured as follows: Section 5-1 outlines the simulation setup and evaluation
procedure. Sections 5-2 and 5-3 present two case studies involving Dubins Dynamics (DD)
and Dynamic Bicycle Model (DBM), respectively, where the performance of the proposed
controller is thoroughly analysed.

5-1 Simulation Procedure

Assuming that the states can be measured directly, the simulation is performed according to
Algorithm 5. To account for model uncertainties, we consider two cases: one where the initial
state is modelled as a Gaussian distribution, and another where both the initial state and
additive noise are applied at each time step.

All parameters for the system simulation and MPC setup are tailored/tuned according to the
case study. Given the stochastic nature of the systems, the simulation is terminated once the
vehicle approaches the terminal region defined as x⋆ ± 0.5 [m].

There is a possibility for a user to customise the studied case by investigating open- or closed-
loop, not noisy and noisy case, and an environment with obstacles or without. The repository
1 contains the source code for all the experiments.

Solving Optimal Control Problem (OCP) is done with constrained (SLSQP) and uncon-
strained (L-BFGS) nonlinear gradient-based algorithms. All simulations were run on a 2019
MacBook equipped with an i5 processor and 8GB of RAM.

1https://github.com/RoniTa287/stochastic-mpc
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28 Experimental Results

Algorithm 5 Simulation Procedure
Require: Initial conditions x ∼ Px0 = N (µx,Σx); noise ω ∼ Pω = N (µω,Σω); MPC config-

urations (N,Q,R,Qterm)
1: Sample xs ∼ Px0

2: for k = 0 to Nsim − 1 do
3: Discretize Px to obtain P̂xk

4: find optimal policy π∗(x, θ) with x ∼ P̂xk
▷ Solve OCP with SQP or L-BFGS

5: xs
k+1 ← f(xs, u0) ▷ Apply first optimal control input

6: Compute violation probability P(x ∈ S̄) ▷ Algorithm 4
7: Pxk+1 := N (xs

k+1,Σω)
8: if xs

k+1 is within the terminal region then
9: Terminate the simulation

10: end if
11: xs ∼ Pxk+1

12: end for

5-2 Dubin’s dynamics (DD)

This subsection evaluates the proposed framework on a nonlinear system using the Dubins
model [24], a canonical example of a simple nonholonomic vehicle often used in control and
motion planning. It serves as a simplified dynamics of an automated car [27, 56] or a UAV
[3].
The vehicle moves at a constant velocity v and is steered by controlling its angular velocity.
Let the state of the system be represented by xk = [x, y, ϕ]⊤, where x and y denote the
position coordinates, and ϕ represents its heading angle in rad. The discrete-time dynamics
of the Dubins car with time step T [sec] are given by:

xk+1 = fDD(xk, uk) + ωDD with fDD(xk, uk) =

xk + v cos(ϕk)T,
yk + v sin(ϕk)T,

ϕk + ukT.

 (5-1)

where the control input uk [rad/sec] corresponds to the angular velocity rate of change. Since
the Dubins dynamics are originally continuous, we discretise them using a sampling time of
0.1 seconds, with integration carried out via a fourth-order Runge-Kutta (RK4) method.
Moreover, it is assumed that we have full state observability, so fDD : R3 → R3. ωDD is i.i.d.
Gaussian additive noise with ∼ N (0(3,1), diag([0.01, 0.01, 0.001])) unless otherwise specified.
Full list of parameters can be found in Table B-1.

5-2-1 Safety Constraints

We define a safe region S ⊂ R2 that constrains the vehicle’s position to remain within a
rectangular set. Additionally, we consider environments with static obstacles. These obstacles
are modelled as hyper-rectangular regions in the x1-x2 plane that the system must avoid. Let
obstacle(s) be defined as O ⊂ R2, then the safe set S becomes the allowable state space
excluding the obstacles:

S =
{

x ∈ R3
∣∣∣x1 ∈ [−1, 12], x2 ∈ [−1, 12], (x1, x2) /∈ O

}
. (5-2)
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5-2 Dubin’s dynamics (DD) 29

where [−1, 12] defines the allowable bounds on the horizontal and vertical position coordinates,
respectively. A penalty-based approach, as described in Section 4-1-3, is used to enforce
obstacle avoidance.

5-2-2 Optimisation procedure

To solve this problem, we investigate two numerical strategies: Sequential Least Squares
Programming (SLSQP) [46] and the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method. The SLSQP solver allows direct inclusion of box constraints on posi-
tion and input bounds as inequality constraints. Obstacle avoidance is implemented using a
penalty-based formulation as described in Section 4-1-3 to avoid disjunctive constraints.
In contrast, L-BFGS does not handle constraints and, thus, requires reformulating the control
policy to inherently satisfy input limits. This is achieved by reparametrising the control input
using a smooth, bounded function. Specifically, we introduce mapping via sigmoid function ,
so the control variable is defined as

πk = 2umaxσ(θ)− umax with σ(θ) = 1
1 + e−θ

(5-3)

where θ is the unconstrained optimisation variable, umax represents the maximum allowable
input magnitude. This transformation ensures that the control inputs remain within admis-
sible bounds while enabling the use of unconstrained gradient-based solvers such as L-BFGS.
To accelerate convergence and maintain consistency across time steps, a warm-starting strat-
egy is applied. The first iteration is initialised randomly, whereas subsequent optimisations
use the solution from the previous step as the initial guess. Gradients required by both solvers
are computed via automatic differentiation.
Depending on the solver, the prediction horizon is chosen (for SLSQP, we need a higher
prediction horizon to let the KKT system see when it approaches tricky parts unlike for
Quasi Newton method, we can make it shorter, as it sees the growth in penalty cost faster)
’maxiter’: 100 used for the solvers 100.

5-2-3 Uncertainty prediction analysis

Figure 5-1 illustrates the Kernel Density Estimation (KDE) of the state distribution in the
Dubins dynamic model after five time steps, comparing three scenarios: a high-fidelity Monte
Carlo baseline with 2000 particles (MC-2000), a quantised and compressed representation with
100 particles, and a low-fidelity Monte Carlo approximation with 100 particles (MC-100). The
left subplot 5-1a visualises the spatial distribution on the x− y plane, while the right subplot
5-1b shows the marginal KDE of the orientation angle ϕ. The MC-2000 serves as the reference
distribution due to its high sample resolution.
Visually, both the compressed quantisation approach and MC-100 produce KDE contours that
closely align with the MC-2000 reference. However, the visual observations are quantitatively
supported in Table 5-1, which reports the multivariate Wasserstein-2 distance between the ap-
proximated and the baseline distributions over ten prediction steps. Notably, the quantisation
method consistently achieves lower distances than MC-100. This highlights the effectiveness
of the compression scheme in preserving the essential structure of the probability distribution,
even with significantly fewer representative particles.
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Figure 5-1: Kernel Density Estimation for the probability density function of the Dubins Dynamics
after five (5) time steps. Comparison of the Discretised and MC with 100 samples with MC 2000
samples ("true dist")

Table 5-1: Wasserstein distance W2 to MC-2000 over 10 steps

Prediction Step MC-100 vs MC-2000 Quantisation vs MC-2000
0 0.00688 0.00233
1 0.01027 0.00619
2 0.02308 0.01031
3 0.02394 0.01621
4 0.04091 0.02429
5 0.04543 0.03149
6 0.06080 0.03824
7 0.06177 0.04543
8 0.07279 0.05733
9 0.08266 0.06838

5-2-4 Open-loop vs closed-loop with full noise propagation

We evaluate the effect of the control policies introduced in Equation 4-16. The experimental
setup uses discretisation with 100 locations for both the state and noise distributions, with a
maximum of 100 particles allowed after compression. The control optimisation is performed
using the L-BFGS solver. The system noise is ω ∼ N (0(3,1),diag(0.01, 0.01, 0.001)).

Figure 5-2 illustrates the resulting trajectories and control signals under open- and closed-
loop control. As shown in Figures 5-2a–5-2b, the closed-loop policy yields smoother and more
robust trajectories, albeit at the cost of more aggressive control actions.

Safety guarantees are certified at each time step, as discussed in Section 4-1-3, including the
predicted probability of the state entering the unsafe set (Equation 4-4) and its compressed
approximation (Equation 4-6). The results are presented in Figures 5-2e–5-2f.

Additionally, table 5-2 summarises the quantitative performance of the two approaches. Al-
though both policies successfully reach the target state, the computational cost of solving
the associated optimal control problem remains prohibitively high for real-time applications,
with average solve times ranging from 230 to 325 seconds per OCP instance.
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5-2 Dubin’s dynamics (DD) 31

Table 5-2: Controller performance when the car is performing a turning manoeuvre in a narrow
corridor

Metric Open-loop Closed-loop
Target reached in [s] 12.10 10.90
Optimisation time [s] 2767.23 3548.85
Average optimisation time per time step [s] 230 325
Max P(x ∈ S̄) 0.476 0.172

2 0 2 4 6 8 10 12
X Position [m]

2

0

2

4

6

8

10

Y 
Po

sit
io

n 
[m

]

Comparison of Open-loop vs Closed-loop MPC

Open-loop
Closed-loop
Unsafe Region
Target Region
2-sigma Initial Region

(a) Trajectories

0 2 4 6 8 10
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Co
nt

ro
l i

np
ut

 [r
ad

/s
]

Control Inputs Comparison (Dubins Car)

Open-loop
Closed-loop

(b) Control action

0 2 4 6 8 10 12
Time [s]

0

500

1000

1500

2000

Co
st

Total costs over time  Dubins Car

Open-loop
Closed-loop

(c) Cost

0 2 4 6 8 10 12
Time (s)

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Probability of Being in Unsafe Set

Open-loop
Closed-loop
Open-loop (Predicted)
Closed-loop (Predicted)
Open-loop (Compressed)
Closed-loop (Compressed)

(d) Safety certification

0 2 4 6 8 10 12
Time (s)

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Open-loop: Probability of Being in Unsafe Set

Open-loop
Open-loop (Predicted)
Open-loop (Compressed)

(e) Safety certification open loop

0 2 4 6 8 10
Time (s)

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Closed-loop: Probability of Being in Unsafe Set

Closed-loop
Closed-loop (Predicted)
Closed-loop (Compressed)

(f) Safety certification closed-loop

Figure 5-2: Comparison of simulation results using open- and closed-loop policies for a Dubins
car performing a turning manoeuvre in a constrained environment. N=8, noise ([0.01, 0.01,
0.001])), init cond N (0, 0.01I). The rows show: (a-b) state trajectories and control action, (c-d)
cost over time and probability of state getting into unsafe set P(S̄), (e-f) P(S̄) under open- and
closed-loop strategies.
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5-2-5 Robustness to unseen noise

To assess the robustness of the closed-loop controller under stochastic disturbances, we analyse
a scenario in which process noise is not accounted for during the optimisation, but is instead
injected at each simulation time step.
Figure 5-3 represents the results of this experiment where the noise propagation and compres-
sion layer are omitted during the optimisation. Consequenctly, only the initial distribution
x0 ∼ Px0 is propagated over the prediction horizon. The closed-loop system is still able to
keep the states within the safe set S. However, as shown in Figure 5-3b, the control action is
very aggressive compared to the previous result, where noise propagation was included during
optimisation.
Finally, Table 5-3 confirms that the optimisation is a bottleneck in the proposed framework,
even though is it comparably faster than in the case with noise propagation and compression.

Table 5-3: Runtime analysis of key computational components for open- and closed-loop control

Component Open-loop Closed-loop
Propagation [ms] 0.43 ± 0.09 0.50 ± 0.27
Formal bound computation [ms] 7.15 ± 1.11 8.16 ± 1.71
Compression [s] - -
Optimisation time [s] 0.68 ± 0.35 1.91 ± 0.47

5-2-6 Scalability and Quantisation Analysis

To evaluate the scalability of the designed controller, we assess its performance in a more com-
plex environment, illustrated in Figure 5-4a. In this setting, a longer prediction horizon is
required to prevent the car from becoming trapped near the point (11, 3) on the x-y plane. Ac-
cordingly, the prediction horizon was increased to 15 and 18 for the SL-Sequential Quadratic
Programming (SQP) and Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
solvers, respectively.
We also investigate how the number of locations used in the quantisation process influences
controller performance. Table 5-4 summarises the key metrics — specifically, the optimisation
time and the maximum value of P(x ∈ Ŝ) — across three levels of discretisation: 100, 490,
and 1000 components. As expected, increasing the number of discrete signatures improves
the representation of the underlying probability distribution, resulting in tighter bounds and
more accurate safety guarantees.
Additionally, Figures 5-4g and 5-4h visualise the predicted probability of entering the unsafe
set at the next step if the same policy is applied. It is evident that SL-SQP produces a
more conservative (i.e., safer) policy and consistently respects the imposed constraints, as
these are directly embedded within its optimisation framework. This safety, however, comes
at the expense of higher computation times, as shown in Table 5-4. In contrast, L-BFGS
is generally faster, likely due to its treatment of constraints via soft penalties in the cost
function. While this approach improves runtime, mapping the control inputs through sigmoid
transformations to enforce control limits introduces additional complexity and may degrade
optimisation efficiency.

Veronika Tajgler Master of Science Thesis



5-2 Dubin’s dynamics (DD) 33

2 0 2 4 6 8 10 12
X Position [m]

2

0

2

4

6

8

10

Y 
Po

sit
io

n 
[m

]

Comparison of Open-loop vs Closed-loop MPC

Open-loop
Closed-loop
Unsafe Region
Target Region
2-sigma Initial Region

(a) Trajectories

0 2 4 6 8 10 12
Time [s]

2

1

0

1

2

Co
nt

ro
l i

np
ut

 [r
ad

/s
]

Control Inputs Comparison (Dubins Car)

Open-loop
Closed-loop

(b) Control action

0 2 4 6 8 10 12 14
Time [s]

0

500

1000

1500

2000

2500

Co
st

Total costs over time  Dubins Car

Open-loop
Closed-loop

(c) Cost

0 2 4 6 8 10 12 14
Time (s)

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Probability of Being in Unsafe Set

Open-loop
Closed-loop
Open-loop (Predicted)
Closed-loop (Predicted)
Open-loop (Compressed)
Closed-loop (Compressed)

(d) Safety certification

0 2 4 6 8 10 12 14
Time (s)

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Open-loop: Probability of Being in Unsafe Set

Open-loop
Open-loop (Predicted)
Open-loop (Compressed)

(e) Safety certification open-loop

0 2 4 6 8 10 12
Time (s)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Pr
ob

ab
ilit

y

Closed-loop: Probability of Being in Unsafe Set

Closed-loop
Closed-loop (Predicted)
Closed-loop (Compressed)

(f) Safety certification closed-loop

Figure 5-3: Comparison of simulation results using open- and closed-loop policies for a Dubins
car performing a turning manoeuvre in a constrained environment. N=8, noise ([0.01, 0.01,
0.001])), init cond N (0, 0.01I). The rows show: (a-b) state trajectories and control action, (c-d)
cost over time and probability of state getting into unsafe set P(S̄), (e-f) P(S̄) under open- and
closed-loop strategies.

Table 5-4: Controller performance in environment with static obstacles depicted in Figure 5-4b

SLSQP L-BFGS
Number of Signatures 100 500 1000 100 500 1000

Target reached in [s] 7.5 7.4 7.1 7.3 7.7 8.2
Optimisation time [s] 509.28 730.02 1015.58 149.60 185.83 231.72
Max P(x ∈ S̄) 0.078 0.044 0.032 0.11 0.08 0.04
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(d) Cost over time (L-BFGS)
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Figure 5-4: Comparison of simulation results using SLSQP and L-BFGS for a Dubins car in a
constrained environment. The rows show: (a-b) state trajectories, (c-d) cost over time, (e-f)
control inputs, and (g-h) probabilities of entering unsafe states.
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5-3 Dynamic Bicycle Model

Furthermore, we apply the proposed framework to a vehicle dynamics-based model [29].
The derivatives of such a model are used for the lane keeping [53] and obstacle avoidance
[28] control of a semi-autonomous vehicle. Gao et al. [28] used a simplified bicycle model
and implemented robust NModel Predictive Control (MPC) with tightened input and state
constraints to ensure constraint satisfaction in the presence of unknown bounded disturbances.

The state vector of the vehicle is defined as x =
[
x y ϕ vx vy ω

]⊤
, where x, y are the

global position of the vehicle, ϕ is the yaw angle (heading), vx is the longitudinal velocity
in the vehicle frame, vy is the lateral velocity in the vehicle frame, ω is the yaw rate. The
control input u is:

[
a δ

]⊤
with longitudinal acceleration a and a steering angle of the front

wheel δ.

Under the assumption of small steering angles and a linear tyre model, the discrete-time
dynamics are given by fDBM : R6 → R6 [29]:

xk+1 = fDBM (x, u) + ωDBM with

fDBM =



xk + T (vx,k cosϕk − vy,k sinϕk)
yk + T (vy,k cosϕk + vx,k sinϕk)

ϕk + Tωk

vx,k + Tak
mvx,kvy,k+T (lf kf −lrkr)ωk−T kf δkvx,k−T mv2

x,kωk

mvx,k−T (kf +kr)
Izvx,kωk+T (lf kf −lrkr)vy,k−T lf kf δkvx,k

Izvx,k−T (l2
f

kf +l2rkr)


(5-4)

Here, T is the discretization step, m is the vehicle mass, Iz is the yaw inertia, lf and lr are
distances from the center of gravity to the front and rear axles, and kf , kr are the cornering
stiffness coefficients of the front and rear tyres, respectively.

5-3-1 Safety constraints and optimisation specifications

• input constraints: steering angle δ ∈ [−π/4;π/4] and longitudinal acceleration a ∈
[−5; 2] m/s2

• state constraint: longitudinal velocity vx > 0.5m/s; lateral velocity vy and yaw rate ω
often are no bounded, but can vy ∈ [−4, 4] m/s; ω ∈ [−3, 3] rad/s.

To reflect the mechanical limitations of the vehicle we must implement the constraints on the
control input. The steering angle and acceleration are expressed as

δ = π

4 · tanh(zδ), a = 7
2 · tanh(za)− 3

2 , (5-5)

where zδ, za ∈ R are unconstrained auxiliary variables. This transformation ensures that the
resulting control values always satisfy the imposed bounds, allowing the original constrained
problem to be reformulated as an unconstrained optimization, thereby simplifying solver
implementation while maintaining constraint feasibility.
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One downside of this implementation is that is slows down the solver, hence we preferred to
add a penalty to the cost function, such as:

Jpenalty = ReLU(a− 2.0)2 +ReLU(−5.0− a)2 (5-6)

The main idea is that we add a penalty when the control constraints are outside the desired
bounds. Worth noting that this implementation is not as strict as the direct constraint
elimination, so it must be tuned properly. Yet, this implementation still lets L-BFGS or
Adam converge while learning to avoid invalid accelerations.

5-3-2 The effect of discretisation points

Figure 5-5 illustrates the effect of varying the number of discretisation pointsNx ∈ {96, 486, 972}
on the control performance of the bicycle model tasked with obstacle avoidance. As shown in
Figure 5-5a, increasing Nx leads to safer trajectory planning, particularly in the presence of
obstacles. Similarly to the results on the previously studied system, the finer discretisation
captures the uncertainty propagation more accurately, resulting in trajectories that consis-
tently reach the target region while respecting safety margins. This is further supported by the
predicted probabilities in Figure 5-5e, where higher Nx yields tighter and more conservative
estimates of entering the unsafe set.

Subplots 5-5b and 5-5c show the corresponding control inputs (acceleration and steering an-
gle). These results collectively confirm that increasing the number of discretisation points
improves the controller’s robustness to noise, though at the expense of increased computa-
tional complexity (see Table 5-5).

To further assess the scalability of the framework, we analyse the performance when full
noise propagation and compression are included. The results, shown in Figure 5-6, indicate
that safety guarantees are preserved (as seen in Figure 5-6e). However, the computational
cost rises substantially, with the solver requiring up to 1.3 hours to complete ten 10-second
simulations.

Table 5-5: Performance of L-BFGS under varying number of signatures

Number of Signatures 100 500 1000

Simulation time [s] 9.9 9.9 9.9
Optimisation time [s] 213.57 246.96 311.43
Max P(x ∈ S̄) 0.053 0.046 0.034
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Figure 5-5: Bicycle model with initial x0 ∼ N (0, 0.1I) performing obstacle avoidance. Prediction
horizon N=18; solver L-BFGS.
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Figure 5-6: Bicycle noisy model with compression. Prediction horizon N=18. Optimisation
algorithm L-BFGS; optimisation time 1.3 h.
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Chapter 6

Discussions

6-1 Summary

This thesis introduced a novel quantisation-based Stochastic Model Predictive Control (SMPC)
framework for uncertainty propagation and safety verification in nonlinear systems. By ap-
proximating both the state and noise distributions with discrete measures and applying a
compression mechanism, the proposed method enables tractable multi-step uncertainty prop-
agation and constraint handling, even when the system is affected by unbounded noise.

A key contribution of this work is the reformulation of the optimal control problem to incor-
porate robustified chance constraints, as well as non-convex obstacle avoidance implemented
via a penalty-based approach. This formulation ensures compatibility with both constrained
and unconstrained gradient-based optimisation algorithms. Furthermore, the framework inte-
grates formal safety certification using Wasserstein ambiguity sets. Specifically, by evaluating
the worst-case probability mass through the Wasserstein radius, the true probability of con-
straint violation under unbounded noise can be estimated multiple steps ahead.

Experimental results on nonlinear benchmarks, including the Dubins Dynamics (DD) and
Dynamic Bicycle Model (DBM) models, demonstrate the effectiveness of the proposed frame-
work. In particular, the compressed quantised approximation consistently outperforms low-
fidelity Monte Carlo methods in Wasserstein-2 distance. Unlike sample-based MPC methods,
which require a sufficiently large number of samples Nr to ensure statistical validity [64], the
proposed approach achieves high accuracy with fewer particles due to the availability of formal
bounds on the approximation error. This structural estimation of the underlying probability
distribution enables efficient uncertainty propagation and improved computational scalability.

Furthermore, the use of affine feedback significantly reduces the probability of constraint
violations compared to open-loop policies, even when noise propagation is omitted during
optimisation.

These findings confirm that the proposed quantisation-based SMPC approach offers a theo-
retically sound and practically feasible solution for control under uncertainty. In particular,
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the results demonstrate that it is possible to control stochastic nonlinear systems affected
by Gaussian noise while formally certifying the probability of the system’s state entering an
unsafe set.

6-2 Implications

This framework paves the way for deploying SMPC in safety-critical settings where real-time
tractability and formal safety verification are crucial—e.g., autonomous driving, UAV path
planning, or robotic motion control. The ability to approximate probability distributions
compactly and propagate uncertainty through nonlinear dynamics with controlled error is
especially powerful in high-dimensional or constrained environments. Furthermore, the mod-
ular nature of the implementation allows future integration of learning-based dynamics or
real-time adaptation without compromising the safety layer.

6-3 Limitations and Future work

Despite its strengths, the proposed framework has several limitations that highlight avenues
for practical improvement and further research.

1. Computational burden and real-time applicability. The most significant limi-
tation is the long optimisation time. With average solve times of several minutes per
control step, the framework is not currently suitable for real-time applications. While
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) provides faster conver-
gence than SL-Sequential Quadratic Programming (SQP), both solvers remain sensitive
to initialisation and hyperparameter tuning. Additionally, applying nonlinear transfor-
mations to enforce control input constraints—such as sigmoid mappings—further slows
down the optimisation. Sequential Quadratic Programming (SQP) requires solving a
QP at each iteration, while nonlinear interior-point methods (e.g., IPOPT [86]) are com-
putationally cheaper per iteration. Future work should consider solver improvements
and alternative methods such as structured MPC acceleration techniques [31].

2. Discretisation fidelity and safety guarantees. The quality of the safety guaran-
tees depends on the accuracy of the quantised and compressed distributions. Poorly
selected support points or insufficient particles can lead to under-approximation of risk,
especially near constraint boundaries. Although the use of formal Wasserstein bounds
improves robustness, discretisation remains a delicate balance between computational
cost and precision.

3. Limited generalizability and complexity. Although the framework performs well
on Dubins and dynamic bicycle models, its deployment on other systems is non-trivial.
Designing the controller for a new system requires system-specific tuning of compression
parameters, constraint representations, optimisation and solver parameters.

4. A posteriori safety certification. Currently, safety verification is performed post hoc
using Wasserstein-based bounds. While this provides guarantees after optimisation, it
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does not ensure that the selected control input respects the true chance constraint before
application. A promising extension would be to embed Distributionally Robust Chance
Constraint (DRCC) directly into the optimisation problem. Several approaches exist,
such as CVaR-based DR-MPC using Wasserstein ambiguity sets [62], total-variation
sets [23], and moment-based ambiguity sets with real-time guarantees [73]. However,
their integration in nonlinear systems remains largely unexplored.

5. Lack of smoothness in the quantisation process. Quantisation is done by min-
imising the Wasserstein distance, but the resulting distribution may not be smooth.
This can introduce discontinuities during the optimisation. Recent work on smoothing
sample-based MPC [83] suggests a potential extension to regularise quantised approxi-
mations, improving numerical stability.

6. Lack of stability analysis from the MPC perspective. Stability of the closed-
loop system is not analysed in this work. A rigorous investigation of Lyapunov-based
stability or recursive feasibility under stochastic disturbances is necessary to ensure
robustness over long horizons [58].

7. Absence of noise-dependent control parametrisation. The current formulation
assumes a policy that depends only on the state. However, feedback laws parametrised
directly by past noise values have shown improved performance under unbounded dis-
turbances, especially using saturated noise inputs [38]. This line of work could further
enhance control robustness.

8. Full-state observability assumption. The method assumes full access to the system
state, which is often unrealistic in practical scenarios. An extension toward output-based
SMPC is needed. Additionally, model uncertainty could be addressed via learning-
based system identification techniques, such as Gaussian Processes [69], which provide
uncertainty-aware models that integrate naturally with SMPC frameworks. This would
also enable efficient reinforcement learning of control policies [21, 20].

These limitations underscore the trade-offs between theoretical rigour, computational tractabil-
ity, and practical applicability. While the proposed approach provides a solid foundation for
safe control under uncertainty, future research should address these open challenges to enable
real-time, scalable deployment in complex, partially observed, and high-dimensional systems.
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Appendix A

Nominal Nonlinear MPC

A-1 Cost function

Under appropriate terminal cost Vf and terminal region Xf , this formulation leads to mean-
square stability of the closed-loop system [45]. Specifically, the cost function acts as a stochas-
tic Lyapunov function satisfying [45]:

Ek [Vf (f(x, π(x), ω))] ≤ Vf (x)− ||x||2Q − ||π(x)||2R, ∀x ∈ Xf . (A-1)

In the nonlinear case, provided the system dynamics and cost functions satisfy appropriate
regularity and boundedness conditions, these formulations remain valid [45]. A quadratic
function in Eq. (A-2) is commonly used to determine the cost of the system’s predicted
performance. This definition facilitates maintaining the convexity of the optimisation problem
as long as Q and Qterm are positive semi-definite.

cN (x,π, ω) =
N−1∑
i=0

(
∥xi|k∥2Q + ∥ui|k∥2R

)
+ ∥xN |k∥2Qterm . (A-2)
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Appendix B

Simulation and Optimisation
Parameters for Studied Systems

Table B-1: List of Optimal Control Problem (OCP) Parameters for Dubin’s Dynamics

Parameter Value Units Explanation
Q diag([60.0, 60.0, 1.0]) - State penalty matrix
R 2diag([1.0, 1.0]) - Control input penalty matrix
Qterm diag([60.0, 60.0, 5.0]) - Terminal penalty
T 0.1 s Sampling time
N varies - Prediction horizon
v 1.5 m/s Velocity
x0 N (0, 0.1I) m Initial state
xref [11.0, 9.0, 0.0] m Reference/Desired state
xmin [-1.0, -1.0, None] m State constraints lower bound
xmax [12.0, 12.0, None] m State constraints upper bound
umin -2 rad/s Control input lower bound
umax 2 rad/s Control input upper bound
learning rate 0.02 - for L-BFGS
maximum iterations 100/100 - for L-BFGS/SLSQP
Penalty on box violation 450.0 - Constraint violation cost
Penalty on obstacle violation 400.0 - Obstacle cost (if any)
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Table B-2: Simulation Parameters [29]

Parameter Description Value
Iz yaw inertia of vehicle body 1536.7 kg·m2

kf front axle equivalent sideslip stiffness -128916 N/rad
kr rear axle equivalent sideslip stiffness -85944 N/rad
lf distance between C.G. and front axle 1.06 m
lr distance between C.G. and rear axle 1.85 m
m mass of the vehicle 1412 kg

Table B-3: OCP Parameters for Dynamic Bicycle Model. An explanation of each
variable is provided in the previous section.

Parameter Value Units
Q diag([50., 180., 10.5, 92.5, 0.5, 0.5]) -
R diag([100., 100.*250.]) -
Qterm 1.5diag([61.0, 60.0, 10.5, 87.5, 3.5, 0.5]) -
T 0.1 s
N varies -
x0 N (0, 0.1I) m
xref [11.0, 9.0, 0.0] m
xmin [-1.0, -1.0, None] m
xmax [12.0, 12.0, None] m
umin -2 rad/s
umax 2 rad/s
learning rate 0.02 -
max iterations 100/100 -
Penalty on box violation 550.0 -
Penalty on obstacle violation 550.0 -
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Table B-4: List of OCP Parameters for the Double Integrator

Parameter Value Units Explanation
Q diag([30.0, 5.0]) - State penalty matrix
R 20 - Control input penalty
Qterm diag([40.0, 10.0]) - Terminal state cost
T 0.1 s Sampling time
N varies - Prediction horizon
x0 N (0, 0.05I) - Initial state distribution
xref [2.0, 0.0] - Target state
xmin [-1.0, -2.0] - State lower bound
xmax [3.0, 2.0] - State upper bound
Σω diag([0.001, 0.001]) - Process noise covariance
Penalty on box violation 300.0 - Constraint violation cost
Penalty on obstacle violation 300.0 - Obstacle cost (if any)

Table B-5: List of OCP Parameters for the Inverted Pendulum on a Cart

Parameter Value Units Explanation
Q diag([25.0, 1.0, 120.0, 1.0]) - State penalty matrix
R 15 - Control input penalty
Qterm 1.5×Q - Terminal state cost
T 0.05 s Sampling time
N varies - Prediction horizon
x0 N (0, 0.05I) - Initial state distribution
xref [0.0, 0.0, π, 0.0] - Upright target state
xmin [-2.5, -10.0, −π − 0.5, -5.0] - State lower bound
xmax [2.5, 10.0, π + 0.5, 5.0] - State upper bound
Σω 0.0001× I - Process noise covariance
Penalty on box violation 700.0 - Constraint violation cost
Penalty on obstacle violation 700.0 - Obstacle cost (if any)
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Appendix C

Numerical Methods for Nonlinear and
Stochastic MPC

C-1 Numerical Methods for Nonlinear and Stochastic MPC

Within the Model Predictive Control (MPC) context, the term nonlinear MPC is often as-
sociated with solving an unconvex optimisation problem, as nonlinear dynamics, convexity is
usually lost even if there is an implicit convexity assumption on the objective function and
constraint sets [70]. If the solution to the nonconvex problem is found, one can certify that
it is feasible or locally optimal.

Definition 6. A point z⋆ ∈ Rnz is a local minimiser of the problem (NLP) if there exists a
neighborhood N of z⋆ such that F (z⋆) ≤ F (z) holds for all z ∈ N ∩ Ω

The first-order necessary conditions for optimality in a nonlinear constrained optimisation
problem are Karush-Kuhn-Tucker (KKT) conditions.

Definition 7. [11]: Let z⋆ and (λ⋆, ν⋆) be any primal and dual optimal points with zero
duality gap. Since z⋆ minimizes the Lagrangian L(z, λ⋆, ν⋆) over z, its gradient must vanish
at z⋆, i.e.,

∇f0(z⋆) +
m∑

i=1
λ⋆

i∇gi(z⋆) +
p∑

i=1
ν⋆

i∇hi(z⋆) = 0 (C-1)

Thus, we have the KKT conditions:

gi(z⋆) ≤ 0, i = 1, . . . ,m (C-2)
hi(z⋆) = 0, i = 1, . . . , p (C-3)

λ⋆
i ≥ 0, i = 1, . . . ,m (C-4)

λ⋆
i gi(z⋆) = 0, i = 1, . . . ,m (C-5)

∇f0(z⋆) +
m∑

i=1
λ⋆

i∇gi(z⋆) +
p∑

i=1
ν⋆

i∇hi(z⋆) = 0 (C-6)
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First step in solving a nonconvex problem with inequality constraint is to simplify it by
reformulating the problem and eliminating the constraints [80]. Constraint elimination can
be done if there exists mapping Φ : z̄ −→ z such that

{z | z = Φ(z̄), z̄ ∈ Rm} = {z ∈ Rn | g(z) ≤ 0} (C-7)

The constrained optimization of f(z) over z ∈ Rn for g(z) ≤ 0 now becomes an unconstrained
optimization of f(Φ(z̄)) over z̄ ∈ Rm.

If the inequality constraints are nonlinear, it complicates the problem, as the constraint set
is not a hyperplane, so the gradient projection method cannot be used. A common way to
deal with them is to incorporate the constraint function into the objective function through
a penalty or a barrier function [80]. If the constraints are eliminated, first order and quasi-
Newton optimisers (like BFGS or L-BFGS) can be used to solve the resulting unconstrained
optimisation problem, but like any gradient-based method, it’s local unless convex.

When the inequality constraints cannot be eliminated form the problem definition, the optimi-
sation algorithms for constraint problems are used. Sequential quadratic programming (SQP)
methods [7] solve in each iteration an inequality-constrained quadratic program (QP) that
is obtained by linearising all problem functions, and it handles the constraints [35]. SLSQP
solves Least Squares QPs (special case of SQP).

Algorithm 6 Sequential Quadratic Programming (SQP) Algorithm
Require: Initial guess x0, Lagrange multipliers λ0, tolerance ϵ

1: Set k ← 0
2: while not converged do
3: Compute gradient ∇f(xk) and constraint gradients ∇gi(xk)
4: Approximate the Hessian of the Lagrangian: Hk ≈ ∇2

xxL(xk,λk)
5: Solve the Quadratic Programming (QP) subproblem:

min
d

1
2d⊤Hkd +∇f(xk)⊤d

subject to gi(xk) +∇gi(xk)⊤d ≤ 0, ∀i

6: Let dk be the optimal direction and λ∗
k the optimal multipliers from the QP

7: Compute dual update: ∆k ← λ∗
k − λk

8: Perform line search to find step size sk minimizing the merit function ψ(xk + skdk)
9: Update primal and dual variables:

xk+1 ← xk + skdk, λk+1 ← λk + sk∆k

10: k ← k + 1
11: end while
12: return Optimal solution x∗,λ∗

Even though there are variants of SQP suitable for large-scale problems[8], when the size of
the optimisation problem increases, it is generally preferable to use sparse solvers such as
Interior Point [86].
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Appendix D

Other systems: Double integrator and
Pendulum on cart

The double integrator is a canonical/conventional second-order system, frequently used as a
benchmark in control theory. Its state vector consists of position and velocity, and it evolves
according to Newtonian mechanics:

ẋ1 = x2, (D-1)
ẋ2 = u, (D-2)

where x1 is position, x2 is velocity, and u is the control force. We discretise these dynamics
using the classical Runge-Kutta (RK4) integrator.

For the double integrator, box constraints are imposed on both position and velocity: x1 ∈
[−2, 2], x2 ∈ [−3, 3].

The inverted pendulum is a standard benchmark for underactuated control. Its state consists
of cart position and velocity, and pendulum angle and angular velocity:

x = [x, ẋ, θ, θ̇]⊤. (D-3)

The nonlinear dynamics are derived from Lagrangian mechanics and include gravitational
and coupling terms:

θ̈ =
g sin θ − cos θ

(
u+mLθ̇2 sin θ

M+m

)
L
(

4
3 −

m cos2 θ
M+m

) , (D-4)

ẍ = u+mLθ̇2 sin θ −mLθ̈ cos θ
M +m

. (D-5)

RK4 is used for discretisation to ensure numerical stability. The inverted pendulum uses
constraints such as x ∈ [−2.5, 2.5] and θ ∈ [−π

4 ,
π
4 ] to enforce safety and stabilize around the

upright position.
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Glossary

List of Acronyms

CVaR Conditional Value-at-Risk
DR Distributionally Robust
DRCC Distributionally Robust Chance Constraint
DD Dubins Dynamics
DBM Dynamic Bicycle Model
GMM Gaussian Mixture Model
KDE Kernel Density Estimation
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
MC Monte Carlo
MPC Model Predictive Control
OCP Optimal Control Problem
PDF probabilistic density functions
PCE Polynomial Chaos Expansion
SQP Sequential Quadratic Programming
SMPC Stochastic Model Predictive Control
UT Unscented Transform

List of Symbols

Rn n-dimensional Euclidean space
U Closed set of control inputs
X Closed set of states
f(·) f : X × U → X nonlinear continuous /Borel-measurable function that charac-

terises the system dynamics
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