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ABSTRACT

The error behavior of finite difference discretization schemes has been researched. Starting from the one-
dimensional case, where two particles of a fluidized bed were taken, the diffusion equation was numerically
solved on a single grid as reference. Then the diffusion equation, a model equation for the real problem, was
solved on a separated grids setup, where the grid spacing of the grid adjacent to the particles is relatively fine
and the other grid relatively coarse. The main problem is the communication/coupling between these two
grids. The research question of this report is: Is it possible to couple the two grids in a way that the numerical
solution on the coupled grids has the same order of error behavior as the numerical solution on a single grid? If
this is possible what are the minimal conditions for the coupling strategy? Different strategies of this coupling
are proposed. The order of the error of the numerical solution was first estimated by Richarson error estima-
tion and then computed by the means of the L2-norm, where the numerical solution is compared with the
analytical solution. Coupling by using an interpolation polynomial of at least second order in both directions
resulted in an error behavior of second order of the numerical solution, which is the same error behavior as the
numerical solution on a single grid. Hereafter the problem is extended to two dimensions where also a con-
vective term is taken into account. The results of the coupling from the one-dimensional problem were used
for the two dimensional problem. For the two-dimensional problem the L2-error could also be determined.
The conclusion is the same as for the one dimensional case: At least a second order interpolation polynomial
is required to get second order error behavior.

W.H.C. Janssen
Delft, June 2015
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1. INTRODUCTION
A fluidized bed is an arrangement in which lots of the processes, fluid catalytic cracking as an example, of

the process industry take place. The concept of a fluidized bed is a lot of tiny solid particles flowing in a stream
of some gas or liquid. These beds are very useful in many cases where it is important to create a large surface
area between the solid and liquid(/gas).

This report will start from a research to fluidized beds. The main goal of that research is to solve a con-
centration profile, that depends on time, in the fluidized bed with computer simulations. With the results of
those simulations the behavior and the properties of a fluidezed bed should be better understood. In an earlier
research[1] the concentration profile around a single particle (of the fluidized bed) was considered for laminar
and turbulent flows. In another paper[2] the research is extended to at first two identical particles, treated as
perfect spheres, and after that multiple particle systems.

The solution of the problems above involve a technique called COD (Coupled Overlapping Domains). The
COD technique means that a fine spherical grid is surrounding the particles and a Cartesian, relatively coarse
grid, is more at distance. The relatively fine grid will solve for distances close to the particles and a coarse grid
will solve for the rest of the bed. The usage of two separated grids is explained by the fact the problem involves
high Schmidt numbers, kinematic viscosity ν over mass diffusivity D . High Schmidt numbers in combination
with a Dirichlet boundary condition means strong gradients, which asks for a fine grid to be accurately solved.
The use of only the fine grid would cause excessive computation time. A local grid refinement would not work;
the flow dynamics can be fully dealt with on a Cartesian grid, but the particles are spherical.

In [1] simulations are done for the passive scalar transfer from spherical particle to the liquid the particle
is immersed in. The COD technique, with linear interpolation in both directions, is used and has correct con-
vergence behavior; higher levels of accuracy on finer grids. The performance of the method does not depend
on whether the sphere is moving or if it is fixed. Actually there are some imperfections between the two grids.
It is suggested that in a future research the accuracy could be improved by using other interpolation schemes.

The primary aim of [2] is to extend the COD technique so it properly works when the spherical grids of two
particles overlap. This means the technique is not to cumbersome to code and a problem using COD is still
computational solvable. This is done by a simple mixing the concentrations of the overlapping spherical grids
and the Cartesian background grid. Furthermore the introduced error by using the COD technique, even in
the case when spherical grids do not overlap each other, must still be mathematically validated.

This report will not deal with the overlapping spherical grids, but will investigate the error introduced by
the COD technique. The research question in this report is: Is it possible to couple the two grids in a way that
the numerical solution on the coupled grids has the same order of error behavior as the numerical solution on
a single grid? If it is possible what are the minimal conditions for the coupling strategy?

To answer this question three coupling strategies will be suggested: A separated grids scheme where ex-
trapolation is used to couple both grids, an overlapping grid scheme where simple linear interpolation is used
to couple the grids and an overlapping grid scheme where higher order interpolation polynomials are used to
couple the grids. To investigate these coupling strategies, first a one-dimensional problem will be discussed.
With the results of the coupling strategies more complicated problems in two dimensions are researched.
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2. THE UNDERLYING PHYSICS
Mass is a conserved quantity. So inside a specified volume, the control volume, the change of the con-

centration of a certain substance is equal to the inflow of that substance minus the outflow of that substance
plus the production of that substance. The Reynolds transport equation[5, p.21] describes this change of mass
inside a control volume, see figure 1.

∂

∂t

Ñ
R

c ∂V =−
Ó

φ• n̂ ∂S +
Ñ

R

Q ∂V (1)

Here c is the concentration of a certain substance,φ a vector with the mass flux, n̂ the outward pointing normal
vector and Q the production term.

φ

φ• n̂
θ

R

Figure 1: Control volume

Assume that no mass of the substance is created inside the control volume, so the production term Q = 0.
Equation (1) then reduces to:

∂

∂t

Ñ
R

c ∂V =−
Ó

φ• n̂ ∂S (2)

Now the divergence theorem[5, p.22] can be used. The divergence theorem states that the volume integral of
the divergence of any continuously differentiable vector is the closed surface integral of the outward pointing
normal component of that vector. For our case this means:Ó

φ• n̂ ∂S =
Ñ

R

∇•φ ∂V (3)

And equation (2) can be written as:

∂

∂t

Ñ
R

c ∂V =−
Ñ

R

∇•φ ∂V (4)

Note that the time derivative can be put inside the integral since the R is fixed. If then the right side of equation
(4) is taken to the left side: Ñ

R

[
∂c

∂t
+∇•φ

]
∂V = 0 (5)

It follows that:

∂c

∂t
=−∇•φ (6)

Mass transfer can happen by convective transport (convection) and diffusive transport (diffusion). In the case
of convective transport the motion of the molecules is driven by the fluid or gas they are in. In the case of
diffusive transport the motion of the molecules is driven by concentration differences. According to Fick’s
law[4, p.72] and the Fourier’s law in 3 dimensions[5, p.30] it can be concluded that Fick’s law in 3 dimensions
is given by:

φdiff =−D∇c (7)

Where D is the diffusion coefficient, which depends on the solute and on the solvent. For convective transport
it applies that:

φconv = vc (8)

2



Where v is the velocity vector. Assume that convective and diffusive transport take place. Thenφ=φdiff+φconv
can be substituted in equation (6) and the following equation is obtained:

∂c

∂t
=−∇• (−D∇c +vc) = D∇2c −v∇c (9)

The second equals sign only holds if D does not depend on location and ∇• v = 0 (which means that the flow
is incompressible). Equation (9) is called the convection-diffusion equation for three dimensions. For one
dimension it looks like:

∂c

∂t
= D

∂2c

∂x2 − vx
∂c

∂x
(10)

It is possible to make this equation dimensionless. First define the scale for length as L and the scale for time
as D

L2 . Now the dimensionless variables x̃ and t̃ can be defined as:

x̃ = x

L
, t̃ = Dt

L2 (11)

⇒x = x̃L, t = t̃L2

D
(12)

Substitution of (12) in equation (10) gives:

D

L2

∂c

∂t̃
= D

L2

∂2c

∂x̃2 − vx

L

∂c

∂x̃
(13)

If both sides are divided by D
L2 the result is:

∂c

∂t̃
= ∂2c

∂x̃2 − vx L

D

∂c

∂x̃
= ∂2c

∂x̃2 −Pe
∂c

∂x̃
(14)

Here Pe is another dimensionless number, called the Péclet number, defined as:

Pe = vx L

D
(15)

The Péclet number represents the relationship between convective and diffusive transport. The nondimen-
sionalization process reduces the amount of variables. Equation (14) is more general than equation (10), if the
Péclet number is given the whole system is specified.
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3. THE 1D PROBLEM

3.1. SETUP AND DISCRETIZATION

a

c = c0

c = c0

2s

Figure 2: Two particles of the fluidized bed

In [2] two particles are taken from a fluidized
bed, see figure 2. These particles are considered to
be perfect spheres with radius a, on a fixed loca-
tion, a distance of 2s apart and the particles are on
a concentration c = c0. This problem can be reduced
even further to one dimension if the assumption
a À 2s is made, so the particles can be considered as
flat plates. In this one-dimensional problem it will
be easier to investigate the mathematical problems
that arise for solving the convection-diffusion equa-
tion than directly test them on the two-dimensional
setup.

∂c
∂x = 0 c = c0

0 s
x

Figure 3: The setup

Now two opposing points are taken one the plates. These
points are a distance 2s apart both hold a concentration of c0

while the liquid between the ’plates’ is everywhere equal to c = 0
at t0 = 0. Because this placing is completely symmetrical it is
possible to simplify even further by placing one point at x = s
and keep the derivative at x = 0 equal to zero: ∂c(0,t )

∂t = 0 (see
figure 3). For the moment the fluid does not move, so there is
only diffusive transport between the points. Combining the diffusion equation in one dimension, equation
(10) with vx = 0, with the boundary conditions from figure 3 the whole problem can be formulated as:

∂c(x, t )

∂t
= D

∂2c(x, t )

∂x2 , 0 < x < s, ∀ 0 < t

c(s, t ) = c0 and
∂c(0, t )

∂x
= 0, ∀ 0 < t

c(x,0) = 0, ∀ x 6= s

(16)

D will be a constant in this report. The analytical solution of (16) is given by:

c(x, t ) = c0 +
∞∑

n=1
Bn sin

(nπ

2s
(x + s)

)
e
−D

( nπ

2s

)2

t
(17)

Where the Bn are given by:

Bn =
{

−4c0

nπ
if n is odd

0 else
(18)

The derivation of this solution is given in the appendix. Although we now got an exact solution of (16) it still
will be very useful to solve (16) numerically. The problems in two dimensions, let alone the whole fluidized
bed, will not be analytically solvable. Numerical mathematics has the machinery to approximate (16) and the
other problems of this report numerically, which means an approximation of the exact solution will be found.
The numerical solutions can be compared with the exact solution in order to find the error between them and
thus the accuracy of the numerical solution.

Where the analytical approach results in a continuous solution, the numerical solution will only be defined
in a discrete number of points, namely 0,h,2h, . . . , s −h. The discrete points 0,h,2h, . . . , s −h are called a grid.
Here 0 < h is called the grid spacing, on every multiple of h the concentration is approximated. The solution
will not be calculated in s, because in s the solution is prescribed: c = c0. By using a technique called semi-
discretization[3, p.118] (16) can be rewritten as:

∂c

∂t
= Ac +b, ∀ 0 < t (19)

Here c is a vector that holds the concentrations in the points of the grid. In the rest of this report all the vectors
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and matrices are represented by bold symbols. A in equation (19) is a matrix and b a vector given by:

A = D

h2


−2 2
1 −2 1 ;

. . .
. . .

. . .
; 1 −2 1

1 −2

 , b = D

h2


0
0
...
0
c0

 (20)

The vector b accounts for the boundary value in s. The entries of A were found by so called second order
central difference of

∂2c(x, t )

∂x2

∣∣∣∣
x=i h

= c i−1 −2c i +c i+1

h2 +O (h2) (21)

Where i is an integer and c i is the concentration in i h. The actual error made in this approximation, O (h2),
can be determined by expanding c i−1 and c i+1 into their Taylor series.

c i−1 = c i −hc ′
i +

h2

2
c ′′

i −
h3

6
c ′′′

i +O (h4) (22)

c i+1 = c i +hc ′
i +

h2

2
c ′′

i +
h3

6
c ′′′

i +O (h4) (23)

Substituting these expressions in the difference formula gives:

c i −hc ′
i +

h2

2
c ′′

i −
h3

6
c ′′′

i +O (h4)−2c i +c i +hc ′
i +

h2

2
c ′′

i +
h3

6
c ′′′

i +O (h4)

h2 = h2c ′′
i +O (h4)

h2 = c ′′
i +O (h2) (24)

In a similar way it can be proved that the first derivative can be approximated with an error of O (h2) by the
following difference formula:

∂c(x, t )

∂x

∣∣∣∣
x=i h

= c i+1 −c i−1

2h
=

c i +hc ′
i +

h2

2
c ′′

i +O (h3)−c i +hc ′
i −

h2

2
c ′′

i +O (h3)

2h
= 2hc ′

i +O (h3)

2h
= c ′

i +O (h2)

(25)

With the aid of this difference formula it can be explained how the first row of A deals with the Neumann
boundary condition at x = 0. A second order approximation for the boundary condition is given by:

∂c(0, t )

∂x
≈ c i+1 −c i−1

2h
∂c(0, t )

∂x
= 0

⇔ c i−1 = c i+1

(26)

Substitution of this result in (21) for x = 0 explains the entries of the first row of A.

3.2. METHODS OF NUMERICAL INTEGRATION
Reconsider equation (19). The left side of this equation could also be discretized, but now in time:

c m+1 −c m

δt
= Ac m +b (27)

c m+1 = c m +δt
(

Ac m +b
)

(28)

So with the concentration vector at time m, c m , the concentration vector at time m+1, c m+1, can be calculated.
δt is called the integration time step. Equation (28) is also called the method of Euler Forward, which is a
numerical integration method. Two other methods of integration are Modified Euler and the classical 4th order
Runge-Kutta. The method of Modified Euler for matrices is given by[3, p.68]

c m+1 = c m +δt
(

A ·c m +b
)

(29)

c m+1 = c m + δt

2

[(
A ·c m +b

)+ (
A ·c m+1 +b

)]
(30)
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The classical 4th order Runge-Kutta method for matrices is given by[3, p.76]:

k1 = δt
(

A ·c m +b
)

(31)

k2 = δt
(

A · (c m +0.5 ·k1
)+b

)
(32)

k3 = δt
(

A · (c m +0.5 ·k2
)+b

)
(33)

k4 = δt
(

A · (c m +k3
)+b

)
(34)

c m+1 = c m + 1

6
(k1 +2 ·k2 +2 ·k3 +k4) (35)

Like earlier stated the numerical solutions are approximations of analytical solutions, so there is a certain
error between the exact analytical solution and the numerical solution . For the method of Euler Forward this
error is O (δt ), the method of Modified Euler has an error of O (δt 2) and like it suggests 4th order Runge-Kutta
has an error of O (δt 4)[3, p.76].

When only real eigenvalues, λi , of A are considered, which is the case in this article, the stability condition
for Euler Forward and Modified Euler is the same: δt < 2

λ . Where λ is defined by λ = max
i

{|λi |}. For 4th order

Runge-Kutta the stability condition is given by: δt < 2.8
λ . See [3, p.70] for the derivation. If the stability condi-

tion is obeyed a round-off error is not magnified. Such methods are called numerically stable. Table 1 gives an
overview of the properties of the three integration methods[3, p.78].

In this report Modified Euler is used, because of its error of O (δt 2) and the only 2 function evaluations per
cycle.

Method Stability condition Function evaluations per cycle Error

Euler Forward δt < 2
λ 1 O (δt )

Modified Euler δt < 2
λ 2 O (δt 2)

4th order Runge-Kutta δt < 2.8
λ 4 O (δt 4)

Table 1: The stability condition, number of function evaluations per cycle and the order of the error of the three integration methods.

3.3. INTEGRATION WITH A SINGLE GRID

The initial condition is c(x,0) = 0, ∀ x 6= s, so c 0 is a vector with all its entries equal to zero. s is set to a value
of 1.5 (from [2]) and D to a value of 0.01 (arbitrary, but small so the stability condition is easier satisfied). These
values of s and D apply for the rest of the report. Then the method of Modified Euler was used to integrate with
h = 0.01 and δt = 0.005. These values satisfy the stability condition of Modified Euler: λ < 400 for h = 0.01 so
δt = 0.005 = 2

400 < 2
λ . Figure 4a shows the numerical solution at various intermediate times.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/s

c/
c 0

 

 

t =0.25t
e

t =0.5t
e

t =0.75t
e

t = t
e

(a) Concentration plot at various times with h = 0.01,

δt = 0.005, s = 1.5, D = 0.01 and te ≈ 0.6598 s2

D

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/s

c/
c 0

 

 

t =0.25t
e

t =0.25t
e

t =0.5t
e

t =0.5t
e

t =0.75t
e

t =0.75t
e

t = t
e

t = t
e

(b) Concentration plots with separated grids (dots):

hχ = 0.1, hr = 0.01. δt = 0.005, and te ≈ 0.6598 s2

D

Figure 4: 4a shows the numerical on a single grid, 4b shows the numerical solution for the two separated grids.
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3.4. INTEGRATION WITH SEPARATED GRIDS

∂c
∂χ = 0 c = c0

0 s
x

r0χe

Figure 5: The setup

In section 3.3 the integration is done on a single
grid. As mentioned in the introduction, the problem
involves high Schmidt numbers, which is the moti-
vation to apply a fine grid close to the particles. Like
in section 3.1 this problem can be simplified to one
dimension. In this section the first suggestion is to
solve the problem with completely separated grids.
So there will be two grids both with two boundary conditions, see figure (5). Notice that χe < r0. The coarse
grid is defined as the χ-grid and the fine grid as the r -grid. The continuous problem description on the χ-grid
is then given by:

∂cχ(χ, t )

∂t
= D

∂2cχ(χ, t )

∂χ2 , 0 <χ<χe , ∀ 0 < t

c(χe , t ) = f (r ) and
∂c(0, t )

∂χ
= 0, ∀ 0 < t

c(χ,0) = 0, 0 <χ<χe

(36)

Here f (r ) is a function of the r -grid and the concentrations in the r -grid. The continuous problem description
of the r -grid is given by:

∂cr (r, t )

∂t
= D

∂2cr (r, t )

∂r 2 , r0 < r < s, ∀ 0 < t

c(r0, t ) = g (χ) and c(s, t ) = c0, ∀ 0 < t

c(r,0) = 0, ∀ r 6= s

(37)

Here g (χ) is a function of the χ-grid and the concentrations in the χ-grid. The functions f (r ) and g (χ) couple
the concentrations from one grid to the other.

To make (36) and (37) suitable to be solved by numerical integration the problem needs to be discretized
again. First the two grid at which the problem is solved on are further specified. The χ grid is defined by[
0,hχ, . . . ,χe −hχ,χe

]
and the r -grid by [r0,r0 +hr , . . . , s −2hr , s −hr ] where hχ and hr are the grid spacings.

The discretization won’t be any different than in section 3.1 and the discretized versions of (36) and (37) are
similar to (19):

∂cχ
∂t

= Aχcχ+bχ, ∀ 0 < t (38)

∂cr

∂t
= Ar c r +br , ∀ 0 < t (39)

Here cχ is the vector that holds the concentrations on the χ-grid and c r the vector that hold the concentrations
on the r -grid. Furthermore extra notation is required for convenience: c m

χ j
represent the j th element of the

vector c m
χ where the m stands for the number of time steps that has been done creating the vector. The vectors

cχ and c r can only be solved if the boundary values of the χ-grid and the r -grid are known and thus they need
to be solved together. For now assume that the hχ = r0 −χe and thus the point r0 holds the boundary value for
the χ-grid. The boundary value for the r -grid is in x = r0 −hr . The problem is that this point is not a point in
the χ-grid. Extrapolation is needed to find an approximation of the concentration in x = r0 −hr . A Lagrange
polynomial[3, p.14] over some of the entries of the vector cχ is used to extrapolate the concentration value at
the x = r0 −hr . The nth order Lagrange polynomial for extrapolation to x = r0 −hr is given by:

Ln(r0 −hr ) =
n∑

j=1
cχ j

 ∏
j≤l≤n

l 6= j

(r0 −hr )−χl

χ j −χl

 (40)

The start value of j in the summation of equation (40) can be chosen 1 ≤ j ≤ n; when the start value is chosen
to be j = 1 the summation is over all entries of cχ and when 1 < j ≤ n some entries, the entries belonging to
points closest to χ= 0, are left out. In this case the start value is chosen to be j = n−3, so only 4 points are taken
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into account. This choice is explained by the fact that a nth order polynomial can possibly have n−2 inflection
points, points where the second derivative is equal to zero. An high order Lagrange polynomial could results
in a large number of inflection points, which means a bad approximation away from the points used for the
Lagrange polynomial.

At t = 0 the entries of c 0
χ and c 0

r are all zero due to the initial conditions. The first integration cycle goes

as follows. At first c 0
r is integrated to get c 1

r . The entry of the vector that represents the concentration at r0 is
added to the boundary vector bχ. Then c 0

χ can be integrated to get c 1
χ. Then L4(r0−hr ) is used to extrapolated

a concentration in x = r0 −hr . This concentration is added to the boundary vector br . In the next integration
cycle this new boundary vector is used to integrate c 1

r .
Now the problem is solved on the coupled separated grid setup as described above with r0 = 1.4 (this value

applies for the rest of this report unless stated otherwise), hχ = 0.1 and hr = 0.01. Now it is possible to compare
the solution of the coupled separated grids with the solution of the single grid with h = 0.01. Figure 4b shows
the solution for the separated grids method compared to the single grid integration.

Although it looks like the dots exactly match the continuous line curves (the same curves as in figure 4a),
there is some offset which is probably caused by an error in the Lagrange extrapolation and the fact that bound-
ary conditions are coupled at the end of the integration steps. That actually means the boundary values used
for the coupling are a certain fraction of an integration step ahead in time. In the next sections some mathe-
matics will quantify this error exactly.

3.5. RICHARDSON ERROR ESTIMATION
One technique that is often used for error estimation for numerical problems is based on the Richardson

extrapolation formulas[3, p.34,35]. Suppose N (h,δt ) is used to estimate an unknown value M . The difference
between M and N (h,δt ) can be written as:

M −N (h,δt ) = K1hα1 +K2δtβ1 +K3hα2 +K4δtβ2 + ... (41)

Where Ki ∈R\ {0} and for αi ,βi ∈Nwhere 0 <α1 <α2 < ... and 0 <β1 <β2 < ...
Under the assumption that h and δt are small the higher order terms in equation (41) can be ignored and

thus equation (41) reduces to:
M −N (h,δt ) ≈ K1hα1 +K2δtβ1 (42)

The basic idea is to determine N (h,δt ),N (2h,δt ) and N (4h,δt ) for a certain value of h.

M −N (h,δt ) ≈ K1hα1 +K2δtβ1 (43)

M −N (2h,δt ) ≈ K1(2h)α1 +K2δtβ1 (44)

M −N (4h,δt ) ≈ K1(4h)α1 +K2δtβ1 (45)

Subtracting (44) from (45) gives (46) and subtraction of (43) from (44) gives (47):

N (2h,δt )−N (4h,δt ) ≈ K1(4h)α1

(
1−

(
1

2

)α1
)

(46)

N (h,δt )−N (2h,δt ) ≈ K1(2h)α1

(
1−

(
1

2

)α1
)

(47)

Division of equation (46) by equation (47) gives:

N (2h,δt )−N (4h,δt )

N (h,δt )−N (2h,δt )
≈ 2α1 (48)

Following a same reasoning for δt results in:

N (h,2δt )−N (h,4δt )

N (h,δt )−N (h,2δt )
≈ 2β1 (49)

Equations (48) and (49) can now be used to determineα1 andβ1, the order of the error in h and δt respectively.
With this technique it is possible to check that the orders stated for Modified Euler in Section 3.2 are cor-

rect. N (h,δt ), N (2h,δt ) and N (4h,δt ) in equation (48) are chosen to be the numerical solutions of the con-
centrations at x = 0 for t = 100. For h = 0.025 and δt = 0.005 equation (48) gives 3.95, so it can be concluded
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that α1 ≈ 2. This is something you could expect, because a second order central difference formula was used.
N (h,δt ), N (h,2δt ) and N (h,4δt ) in equation (49) are chosen to be the concentrations at x = 0 for t = 100. For
h = 0.01 and δt = 0.001 equation (49) gives 4.00, so it can be concluded that β1 ≈ 2. This is also something that
was to be expected based on the theory, while it was stated that the method of Modified Euler is O (δt 2)

Now it should be possible to do the same thing for the separated grid integration done in section 3.4. Let
hχ = 0.05, hr = 0.005 andδt = 1·10−4. N (hχ,hr ,δt ), N (2hχ,2hr ,δt ) and N (4hχ,4hr ,δt ) are again the numerical
solutions of the concentrations at x = 0 for t = 100. Equation (48) now results 3.87, from which can be con-
cluded that α1 ≈ 2. For hχ = 0.1, hr = 0.01 and δt = 1 ·10−4 equation(49) with N (hχ,hr ,δt ), N (hχ,hr ,2δt ) and
N (hχ,hr ,4δt ) results in 1.01, which means β1 ≈ 0. This last result means that the value of δt does not matter
when the stability condition is satisfied. Actually this is not true, N (hχ,hr ,δt ), N (hχ,hr ,2δt ) and N (hχ,hr ,4δt )
contain a more or less constant hχ,hr -error that dominates the δt-error. Later in this report this constant term
will be ’filtered’ out.

An other way of verifying the numerical solution is by comparing it with the exact analytical solution, equa-
tion (17). In the next section this is done to find the error between them.

3.6. THE L2-ERROR

With the exact solution found, a good expression for the error between the numerical solutions and the
exact solution is given by the L2-error defined by:

L2 =
√∑N

i=1 (c(xi , t )−c i )2

N
(50)

Here c(xi , t ) is the exact solution in xi at time t and c i is the numerical solution in xi at time t . The L2-error
actually represents the average squared difference between the points where the numerical solution is known
and the exact solution in those points.

At first the single grid numerical solution is compared with the exact solution. The L2-errors determined
in the rest of this report only depend on the points on the positive x-axis, because, like earlier stated, the
problem is symmetrical. With δt = 5 ·10−5 and for various values of h the L2-errors at t = 0.01, t = 1, t = 10
are compared, see figure 6. For t large enough, so the problem is in the asymptotic region, the L2-error shows
a quadratic, or second order, behavior; the dots lay on a straight line approximately parallel to y = x2. This
proves once again that Modified Euler is O (h2). The strange behavior of the L2-error at t = 0.01 in figure 6a can
be clarified. For t small and h relatively large the effect of the discontinuity at t = 0 plays a role in the error
behavior. The discontinuity at t = 0 results in large values of the derivatives for t close to zero. Small values of
h are needed to be in the asymptotic region.
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Figure 6: The L2-error behavior for the single grid case at various
times.

This is also done for the separated grid integration. With δt = 5 · 10−6 and again the t values of 0.01, 1, 10
the grid size in both grids is repeatedly doubled. This result can be seen in figure 7. The entries of the leg-
end are every time the values of hr for the smallest values of hχ on every curve. So for example (hr ,hχ) =
(0.001,0.005), (0.002,0.01), (0.004,0.02) are the three dots that lie nearly on the red line in figure 7a.
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Figure 7: The L2-error behavior for the separated grid case where
the smallest values of hχ on every curve are 0.005, 0.05, 0.07 re-
spectively.
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Figure 7a shows that for t = 0.01 the L2-error behavior is still quadratic, as hardly any coupling of concentra-
tion, other than zero, between the grids took place. For t larger there is definitely something else going on.
The error behavior is not quadratic anymore and in figure 7b and figure 7c the curves for hr = 0.001 lay above
the curves for hr = 0.005. The latter is caused by the fact that for hr = 0.005 and hχ = 0.005 every time the
boundary points of the r -grid and the last point of the χ-grid coincide, so the extrapolation is exact.

The L2-error behavior in Figure 7b and Figure 7c is not the behavior sought-after. Besides it is not possible
to extend this method to higher dimensions, because the end point of the fine grid, r0, will not always be a
boundary point for the coarse grid. Another possibility for coupling two grids is to use overlapping grids with
interpolation for the coupling instead of separated grids with extrapolation.

3.7. OVERLAPPING GRIDS
Where in the separated grids case the two grids where completely separated, in the overlapping grids case

there is at least one point of the χ-grids that lies inside r -grid and at least one point of the r -grid that lies inside
the χ-grid. For now the only thing that changes is that χe = r0 and instead of extrapolation, with a Lagrange
polynomial to find a boundary value for the r -grid in x = r0 −hr , linear interpolation between χe −hχ and χe

will be used to determine the concentration in x = r0 −hr . Figure 8 shows the results for the same grid sizes as
in the separated grids case.
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Figure 8: The L2-error behavior for the overlapping grids case
where the smallest values of hχ on every curve are 0.005, 0.05, 0.07
respectively.

The curves in figure 8b and figure 8c are still straight lines, but the order is in most cases less than 2, which is
what is sought-after. From comparison with figure 7b and figure 7c it can be concluded that in most cases the
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error is less with linear interpolation than with extrapolation and the error behavior nicer with linear interpo-
lation than with extrapolation. The only curves that do not meet this conclusion are those with hr = 0.001 and
hχ = 0.005 as start values, but this is of minor importance since hχ will be relatively large in the actual problem.

To check if this method if still usable in higher dimensions the values 0.051, 0.059, 0.091. 0.092 for hχ were
picked. These values result in linear interpolation from the r -grid to the χ-grid and linear interpolation from
the coarse χ-grid to the r -grid. Where on the curves of hr = 0.001 the linear interpolation from the r -grid to
the χ-grid is in all cases exact, for hr = 0.005 the linear interpolation is not exact anymore. Figure 9 shows the
results.
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Figure 9: The L2-error behavior for the overlapping grids
case where the smallest values of hχ on every curve are
0.051, 0.059, 0.091, 0.092 respectively.

Only for t = 0.01 and start values hχ = 0.051 and hχ = 0.059 in figure 9a there is error behavior of a certain
order. All other curves are no straight lines in figure 9. Although it is hard to say something about the graphs, it
can be concluded that in comparison with figure 7 the errors are small. So also in this case linear interpolation
seems better than extrapolation.

For further investigation of the coupling, it might also be useful to have a look at the L2-error relative to the
time step size. From section 3.5 the order of the error for the single grid case is 2. Now for the overlapping grids
case with hχ = 0.07 and hr = 0.01 the L2-error is determined for various values of δt , of course all obeying the
stability conditions. For te = 15 the following result is obtained:

12



10
−8

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

δt

L 2−
er

ro
r

 

 
L

2
−error

y=x2

(a) L2-error vs. δt

10
−4

10
−3

10
−2.555

10
−2.552

10
−2.549

10
−2.546

δt

L 2−
er

ro
r

 

 

L
2
−error

(b) Zoomed version of figure 10a

Figure 10: L2-error as a function of δt on a double logaritmic scale;
hχ = 0.07, hr = 0.01 and te = 15

In figure 10a it seems that the L2-error is independent of δt , but a the zoomed window in figure 10b, at what
seemed to be a straight line, shows that there is clearly some dependence of δt . However the striking result
is that for larger values of δt the L2-error gets smaller. This behavior is opposite the behavior sought-after.
There must be a more or less constant term in the L2-error that is dominating the δt-dependent error. This is
the hχ,hr -dependent error that is encapsulated in every numerical solution. In the previous figures where the
L2-error depended on h, hχ and hr there was also a constant δt-error encapsulated in the numerical solution,
but this error was that small that it was not noticeable in the figures. The opposite error behavior in figure 10b
is possibly caused by the coupling. When δt is large the coupling in total takes place less often, so less times
an extra error is introduced.

In order to find the error dependence of δt , the constant hχ and hr dependent error must be filtered out.
Therefore the numerical solution is compared, by means of the L2-error, with a numerical solution with δt very
small instead of the exact solution. These numerical solutions both have the same constant hχ,hr -dependent
error, so it drops out of the L2-error. In figure 11 the numerical solution for various values of δt is compared
with the numerical solution with δt = 5 ·10−7.
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Figure 11: L2-error, compared to a numerical solution with δt = 5 ·10−7,
as a function of δt on a double logaritmic scale;

hχ = 0.07, hr = 0.01 and te = 15

The Richardson error estimation formula gives approximately 2.02 or an order of 1 which is in accordance
with figure 11. Maybe a change of location of the last point of the χ-grid in the r -grid will improve the results;
so now hχ = 0.08 and hr = 0.01 in which case χe = 1.44 instead of 1.4 which was the case for hχ = 0.07.
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Figure 12: hχ = 0.08, hr = 0.01 and te = 15; 12a represents the L2-
error as an function of δt on a logaritmic scale; 12b is a zoomed
version of 12a; 12c shows the L2-error, compared to a numerical
solution with δt = 5·10−7, as a function of δt on a double logaritmic
scale.

Again there is first order error behavior, but this time the L2-error gets smaller if δt is smaller. The Richardson
error estimation formula now gives approximately 2.00 which is again 1st order. It seems that there are two
cases: for some grid sizes the bigger δt , the smaller the L2-error and for some grid sizes the smaller δt the
smaller the L2-error. The first case is probably caused by the fact that every time step the coupling introduces
an error. For δt bigger there are less time steps and so less errors introduced. In the latter case the coupling is
still that good that it does not dominate the normal error behavior. It could be concluded that with this cou-
pling mechanism one order for the δt-dependent L2-error behavior is lost, because Modified Euler normally
gives second order behavior.

3.8. DIRECT COUPLING AND HIGHER ORDER INTERPOLATION

Although the results from section 3.7 are better than those from 3.6 it should be possible to improve the
coupling. At first we might look for higher order Lagrange interpolation polynomials instead of using linear
interpolation for the coupling mechanism. Furthermore the coupling only takes place after a full cycle of the
Modified Euler method, i.e. there is only coupling after the corrector step, equation (30). If the coupling would
also take place after the predictor step, equation (29), the coupling should improve.

To implement the coupling after every stage (not cycle) of the Modified Euler method it would be easier to
implement and quicker to compute if one matrix A would contain the entries for the r -grid, the entries for the
χ-grid and the coupling mechanism between the grids. In that case there again will be one vector c , instead of
the vectors cχ and c r , that contains the concentrations of both grids. There will again also be one boundary
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vector b. The matrix A will have the following structure:

A =

 Aχ
;

L (r ) . . . L (r ) 0 . . . 0
0 . . . 0 L (χ) . . . L (χ)

; Ar

 (51)

Here Aχ and Ar are the matrices that solve the problem on the χ-grid respectively the r -grid. The entries L (r )
are the weights of the Lagrange interpolation polynomial in the boundary point of χ-grid multiplied by D

h2
χ

.

These entries couple the concentration values of the r -grid to the boundary of the χ-grid. The entries L (χ)
represent the weights of the Lagrange interpolation polynomial in the boundary point of the r -grid multiplied
by D

h2
r

. The total problem, including the coupling, can now be solved by just using equation (29) and (30).

It might be possible that the new coupling method will work that good that linear interpolation, in both
directions, will do the job. For that reason figures that compare to the figures in Figure 8, again withδt = 5·10−6,
are generated. Note that the coupling from the r -grid to the χ-grid is exact in all case below, which means as
much as that the order of the interpolation polynomial used in that direction does not effect the accuracy.
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Figure 13: The L2-error behavior for direct coupling with lin-
ear interpolation. The smallest values of hχ on every curve are
0.005, 0.05, 0.07 respectively.

These figures resemble the figures in figure 8, so there can be concluded that the coupling after every step
instead of every cycle does not make much difference for the hχ,hr -dependent L2-error. A look at the δt-
dependent behavior instead gives improved results:
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Figure 14: hχ = 0.07, hr = 0.01 and te = 15; 14a represents the L2-
error as an function of δt on a logaritmic scale; 14b is a zoomed
version of 14a; 14c shows the L2-error, compared to a numerical
solution with δt = 5 ·10−7, as a function of δt .

The Richardson extrapolation formula now gives approximately 4.00 and thus 2nd order behavior, which is as
good as it can possibly be with the method of Modified Euler.

The second improvement suggested is to use higher order Lagrange interpolation polynomials. With a
second order interpolation polynomial, in both directions, these are the results:
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Figure 15: The L2-error behavior for direct coupling with a second
order Lagrange interpolation polynomial. The smallest values of hχ
on every curve are 0.005, 0.05, 0.07 respectively.

The results in figure 15 are already much better than those in figure 13 and the error behavior tends to second
order. Maybe it can get even be better when using a third order Lagrange interpolation polynomial, in both
directions, these are the results:
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Figure 16: The L2-error behavior for direct coupling with a third
order Lagrange interpolation polynomial. The smallest values of
hχ on every curve are 0.005, 0.05, 0.07 respectively.
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In figure 16b and 16c still not all the points lie on a straight lines of second order. Just like in the single grid case,
figure 6, the solution is asymptotically stable. So maybe the straight lines will indeed appear for larger values
of t . For t = 100 the cases of linear interpolation, interpolation with a second order Lagrange interpolation
polynomial an interpolation with a third order Lagrange interpolation polynomial are displayed in figure 17.
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(a) 1st order polynomial
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Figure 17: The L2-error behavior at t = 100 for direct coupling with
different orders of an interpolation polynomial. The smallest values
of hχ on every curve are 0.005, 0.05, 0.07 respectively.

Most lines in Figure 17a still show an error behavior that is not of second order, but the lines in figure 17b and
17c both seem to be of second order. The method of Richardson error estimation could now possibly deter-
mine the true order of these lines.

It nice to see that the coupling with higher order interpolation polynomials results in a better error behav-
ior, but what is the theory behind it. Consider the first point, the point r = 1.4 in the example of this report, in
the r -grid. The difference formula for the second derivative is according to (21) given by:

c i−1 −2c i +c i+1

h2
r

(52)

Normally the error in the difference formula relative to the continuous case would be O (h2
r ), but the Taylor

expansion from (22) does not hold anymore for this case of coupling. Where c i and c i+1 are just known con-
centrations in the r -grid, c i−1 is determined by interpolation from theχ-grid. To start with linear interpolation,
we investigate the influence of the interpolation on the error. The expression for the linear interpolation poly-
nomial is given by:

p(χi−1) = c j +
χi−1 −χ j

χ j−1 −χ j

(
c j−1 −c j

)
(53)

18



Where c j is the concentration in χ j , c j−1 the concentration in χ j−1 and p(χi−1) the interpolated concentration
c i−1. A theorem on [3, p.13] states:

c i−1 −p(χi−1) = 1

2
(χi−1 −χ j )(χi−1 −χ j−1)c ′′(µ) (54)

Here χ j−1 <µ<χ j , so c(µ) is the concentration somewhere between χ j−1 and χ j . If χi−1 =χ j or χi−1 =χ j−1 it
follows that c i−1−p(χi−1) = 0 and there is no additional error made in the difference formula due to the linear
interpolation. If χi−1 6=χ j and χi−1 6=χ j−1 it can be stated without the loss of generality that

∣∣µ−χ j
∣∣≤ ∣∣χ j −χ j−1

∣∣
2

and
∣∣(µ−χ j )(µ−χ j−1)

∣∣≤ (
χ j −χ j−1

)2

4
(55)

And from this it can be concluded that in the worst case scenario the error is bounded by

∣∣c i−1 −p(χi−1)
∣∣≤ ∣∣∣∣1

2
(µ−χ j )(µ−χ j−1)c ′′(µ)

∣∣∣∣≤ ∣∣∣∣1

8

(
χ j −χ j−1

)2 c ′′(µ)

∣∣∣∣= K h2
χ (56)

Where K = c ′′(µ)
8 . The error introduced by linear interpolation is thus O (h2

χ). In a similar way it can be shown

that the error introduced by a second order interpolation polynomial is O (h3
χ) and for a third order interpola-

tion polynomial O (h4
χ).

From the preceding discussion the overall error in the difference formula can be derived in the case of lin-
ear interpolation as follows. It was already proved that the numerator of (52) leads to an error of O (h4

r ). Now
the extra error of O (h2

χ) caused by c i−1 leads upon a total error of

h2
r c ′′

i +O (h2
χ)+O (h4

r )

h2
r

= c ′′
i +O

(
h2
χ

h2
r

)
+O (h2

r ) (57)

While O

(
h2
χ

h2
r

)
ÀO (h2

r ) the total result will be that second order error behavior will theoretically not be reached.

Furthermore O

(
h2
χ

h2
r

)
9 0 as hχ → 0 and hr → 0. There will always be a constant term in the error. So for hr

relatively large the error behavior could look like second order, but for hr small the constant term will dominate

the second order behavior. It follows that at least interpolation with O (h3
χ) is required to get O

(
h3
χ

h2
r

)
→ 0 as

hχ→ 0 and hr → 0.
It would be nice if from the above results something could be said about the error of the total problem,

the global error. The discussion above was about the local error. The discretizaton of the diffusion equation is
given by:

c m+1
i −c m

i

δt
+O (δt ) = c m

i−1 −2c m
i +c m

i+1

h2 +O (h2) (58)

Note that Euler Forward is used, since it is much more complicated to explain this concept for Modified Euler.
The Lax equivalence theorem[10] says something about the relation between the local and the global error:
If a numerical scheme is consistent and zero-stable, then the numerical solution will converge to the exact
solution. Consistent means that the local error goes to zero when h → 0 and δt → 0. This is for 58 certainly
the case. Zero-stable means that the if a perturbation in the starting value of ε causes the numerical solution
over that time interval to change by no more than K ε for some constant K ∈R. This is even the case for linear
interpolation, see (56). But for linear interpolation the local error is not consistent and thus the conditions
of Lax equivalence theorem are not fulfilled. For a second order interpolation polynomial these conditions
are fulfilled and the theorem says that the numerical solution will converge to the exact solution when h →
0 and δt → 0.

As a conclusion it might be interesting to look at some of those cases where the coupling in both directions
is not exact, so in both directions there really is interpolation. For smallest values of hχ = 0.059,0.088 and
smallest value of hr = 0.005 the following figures are generated:
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Figure 18: The L2-error behavior at t = 100 for direct coupling with
different orders of interpolation polynomials. The smallest values
of hχ on every curve are 0.059 and 0.088, the smallest value for hr =
0.005.

The conclusion is that interpolation with a second order or a third order polynomial in both directions results
in a second order error behavior. This result will be used in the two-dimensional problem of the next section.
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4. THE 2D PROBLEM WITH FLAT PLATES

With the knowledge that at least a second order interpolation polynomial is needed to get second order
error behavior for the 1D problem from section 3, the problem is extended again to two dimensions. From the
two points on the ’plates’, the problem is now extended to two infinite parallel ’plates’ that hold a concentration
c = c0, so a 2D problem is created. Between the plates the fluid will move in the direction parallel to the plates.
So besides diffusive transport also convective transport takes place in this problem. As before the problem
is symmetric and thus half the problem can be left out, see figure 22 (for now ignore the fine grid). The 2D
problem is formally defined:

∂c(x, y, t )

∂t
= D

(
∂2c(x, y, t )

∂x2 + ∂2c(x, y, t )

∂y2

)
− vy

∂c(x, y, t )

∂y
, 0 < x < s, ye < y < 0, ∀ 0 < t

c(s, y, t ) = c0, c(x,0, t ) = 0,
∂c(0, y, t )

∂x
= 0 and

∂c(x, ye , t )

∂y
= 0, ∀ 0 < t

c(x, y,0) = 0, ∀ x 6= s

(59)

Where ye is large enough not to cause any influence for the plates not being infinite, the boundary condition
that the first derivative of the concentration at ye is zero must hold. vy is the fluid velocity along the y-axis. To
get familiar with the concept of numerically solving a 2D problem, the convective term is ignored for now. So
we are left with:

∂c(x, y, t )

∂t
= D

(
∂2c(x, y, t )

∂x2 + ∂2c(x, y, t )

∂y2

)
(60)

4.1. SPATIAL DISCRETISATION OF THE DIFFUSION EQUATION

1 2 3

4 5 6

7 8 9

Figure 19: Simple 2D grid

Like in the 1D problem the diffusion equation in 2D, equation (60), could
be rewritten when semi-discretization is used to approximate the second order
derivatives. So we strive for a matrix A2D and a vector b2D such that equation
(19), with c still a vector, holds for the 2D problem. Figure 19 shows a 2D grid by
which the principle of the 2D numerical scheme will be explained; it is not the
actual problem. The black dots are points that are included in the problem and
the blue dots are boundary points. Assume the blue dots hold a concentration
c0. For a typical black point (i , j ) the 2D version of equation (21) looks like:

∂2c

∂x2

∣∣∣∣
x=i hx

+ ∂2c

∂y2

∣∣∣∣
y= j hy

= c i−1, j −2c i , j +c i+1, j

h2
x

+O (h2
x )

+ c i , j−1 −2c i , j +c i , j+1

h2
y

+O (h2
y )

(61)

Where hx is the grid size in the horizontal direction and hy the grid size in the
vertical direction. A closer look at one specific point, point 5 for example, will
make things more clear:

∂2c

∂x2

∣∣∣∣
x=2hx

+ ∂2c

∂y2

∣∣∣∣
x=2hy

≈ c 4 −2c 5 +c 6

h2
x

+ c 2 −2c 5 +c 8

h2
y

(62)

The fifth row, the row that belongs to point 5, of matrix A2D will look like:

D
[

0 1
h2

y
0 1

h2
x

−2
h2

x
+ −2

h2
y

1
h2

y
0 1

h2
y

0
]

(63)
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This can be done for every black dot in Figure 19 to get the matrix A2D :

A2D = D



−2
h2

x
+ −2

h2
y

1
h2

x
0 1

h2
y

0 0 0 0 0
1

h2
x

−2
h2

x
+ −2

h2
y

1
h2

x
0 1

h2
y

0 0 0 0

0 1
h2

x

−2
h2

x
+ −2

h2
y

0 0 1
h2

y
0 0 0

1
h2

y
0 0 −2

h2
x
+ −2

h2
y

1
h2

x
0 1

h2
y

0 0

0 1
h2

y
0 1

h2
x

−2
h2

x
+ −2

h2
y

1
h2

x
0 1

h2
y

0

0 0 1
h2

y
0 1

h2
x

−2
h2

x
+ −2

h2
y

0 0 1
h2

y

0 0 0 1
h2

y
0 0 −2

h2
x
+ −2

h2
y

1
h2

x
0

0 0 0 0 1
h2

y
0 1

h2
x

−2
h2

x
+ −2

h2
y

1
h2

x

0 0 0 0 0 1
h2

y
0 1

h2
x

−2
h2

x
+ −2

h2
y



(64)

The points in which the discretization of the second derivative needs one or two boundary values, in fact all
points except point 5, are not completely dealt with in A2D . These boundary values are entries of the boundary
vector b2D , witch will be discussed later.

Taking a closer look at the representation of A2D will show that A2D can also be written as:

A2D =
 A1Dx 0 0

0 A1Dx 0
0 0 A1Dx

+ D

h2
y

 −2I x I x 0
I x −2I x I x

0 I x −2I x

 (65)

With

A1Dx =
D

h2
x

 −2 1 0
1 −2 1
0 1 −2

 and implicit A1D y =
D

h2
y

 −2 1 0
1 −2 1
0 1 −2

 (66)

and I x the identity matrix of size Nx ×Nx where Nx the number of points along the x-direction, 3 in this case.
The notation of A2D as in (65) is particularly useful for MATLAB®. MATLAB® has a build-in function called
’kron(X ,Y )’, which calculates the Kronecker product of X and Y . This means as much as that A2D can be

written as ’kron
(

I y , A1Dx

)+kron
(

A1D y , I x

)
’, which makes it particularly easy to construct A2D . In general the

matrix A2D with size Nx Ny ×Nx Ny , where Ny is the number of points along the y-direction, will look like:

A2D =


A1Dx

A1Dx ;
. . .

; A1Dx

A1Dx

+ D

h2
y


−2I x I x ;

I x −2I x I x

. . .
. . .

. . .
I x −2I x I x

; I x −2I x

 (67)

At this point we take a closer look at the boundary vector b2D . Point 1 in Figure 19 has one boundary point
in the x-direction, which results in Dc0

h2
x

, and one boundary point in the y-direction, which results in Dc0

h2
y

. So

the first entry of b2D will be Dc0

(
1

h2
x
+ 1

h2
y

)
. The whole vector will, by the same reasoning, look like:

b2D = Dc0



1
h2

x
+ 1

h2
y

1
h2

y
1

h2
x
+ 1

h2
y

1
h2

x

0
1

h2
x

1
h2

x
+ 1

h2
y

1
h2

y
1

h2
x
+ 1

h2
y



(68)
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The length of b2D is Nx Ny . Now define bx as the vector of length Nx that holds the boundary values in the
x-direction and define b y of length Ny that holds the boundary values in the y-direction. In general the vector
b2D can be written as:

b2D =


bx

bx
...

bx

bx

+


b y

0
...
0

b y

 (69)

4.2. DISCRETISATION OF THE CONVECTION OPERATOR

From now on the convective term in (59) will also be considered. This means vy needs to be known and
therefore the system needs to be specified further. The 1D problem is extended just a little bit: a downward
flow, due to gravity, with initial condition c = 0 will flow between the two infinite plates that will be on a con-
centration c0. So for this setup the flow profile has to be calculated. Consider a small control volume like in
figure 20a. At x y-impulse, py , is moving into the control volume at a rate φpy x |x=x and at x +δx py is moving
out at a rate φpy x |x=x+δx . In the stationary state the y-impulse balance equation looks like:

0 =φpy x |x=x −φpy x |x=x+δx +
∑

Fy (70)

These φpy x values can be thought of as a force acting on the control volume, namely the shear stress, τx y ,
multiplied by the surface area τx y is acting on. Using this concept and the fact

∑
Fy =−ρgδxδy , equation (70)

can be rewritten as:

0 = τx y |x=xδy −τx y |x=x+δxδy −ρgδxδy (71)

Equation (71) leads to the following differential equation:

dτx y

d x
=−ρg (72)

Assumed dealing with an Newtonian fluid, the law of Newton[4, p.72] is used:

τx y =−µd vy

d x
dτx y

d x =−ρg

}
µ

d 2vy

d x2 = ρg (73)

⇒ d vy

d x
= ρg

µ
x +C1 (74)

⇒ vy = ρg

2µ
x2 +C1x +C2 (75)

C1 and C2 can be determined with the aid of the boundary conditions that the flow speed at the plates is zero:
x =±s → vy = 0. That gives C1 = 0 and C2 =−ρg s2/2µ, which results in:

vy =−ρg

2µ
(s2 −x2) (76)

This flow profile can be seen in Figure 20b. The whole derivation above is also mentioned on[4, p.241-242].
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τx yδy

ρgδxδy

τx yδy

−s s

y +δy

y
x

y

x

x +δx

(a) Control volume

−s s

0

−ρg
2µ s2

vy

(b) Flow profile

Figure 20: At y = 0 a fluid at concentration c = 0 enters the system.

The numerical scheme from section 4.1 could now be adjusted for the convective term of equation (59). A
discretization of this first order derivative with O (h2

y ) is given by:

∂c

∂y

∣∣∣∣
y= j hy

≈ c j+1 −c j−1

2hy
(77)

For the case of point 5 in Figure 19 this gives:

∂c

∂y

∣∣∣∣
y=2hy

≈ c 8 −c 2

2hy
(78)

These differences equations multiplied by −vy can now be added to A2D in order to complete the matrix with
the convective entries:

A2D =
 A1Dx 0 0

0 A1Dx 0
0 0 A1Dx

+ D

h2
y

 −2I x I x 0
I x −2I x I x

0 I x −2I x

+ 1

2hy

 0 −V y 0
V y 0 −V y

0 V y 0

 (79)

V y is a Nx ×Nx matrix that contains the discretized values of parabolic flow profile, as calculated in section
4.2, on its diagonal. According to the boundary conditions of the problem the matrices A1Dx and A1Dx can be
adjusted:

A1Dx =
D

h2
x


−2 2 ;
1 −2 1

. . .
. . .

. . .
1 −2 1

; 1 −2

 , A1D y =
D

h2
y


−2 1 ;
1 −2 1

. . .
. . .

. . .
1 −2 1

; 2 −2

 (80)
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Resulting:

A2D =


A1Dx

A1Dx ;
. . .

; A1Dx

A1Dx

+ D

h2
y


−2I x I x ;

I x −2I x I x

. . .
. . .

. . .
I x −2I x I x

; 2I x −2I x



+ 1

2hy


0 −V y ;

V y 0 −V y

. . .
. . .

. . .
V y 0 −V y

; 0 0



(81)

In the matrix with the convective terms, the 0 entry in the last row and the penultimate column is due to the
Neumann boundary condition at ye . The representation of the boundary vector b2D is like equation (69).
By making matrix A2D sparse, see appendix, the problem can quickly be solved. Problem (59) is solved with
δt = 0.01, te = 200, s = 1.5, hx = 0.1, hy =−2, ye =−300s. The results of the simulations are visible in figure 21
for various times and two different flow profiles.
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Figure 21: Concentration plots with δt = 0.01, s = 1.5, hx = 0.1, hy =−3, ye =−300s

These results seem quite probable. Something that immediately strikes is the sharp concentration gradient
near the plates at t = 50. This asks for a grid refinement near the plates. In figure 21d this gradient is even a
bit larger than in figure 21a, concluding that higher velocity results in larger gradients as was theoretically
predicted.

4.3. RICHARDSON ERROR ESTIMATION
As in the one-dimensional case Richardson error estimation could be used to test the accuracy of the inte-

gration process. Equation (42) from section 3.5 can be rewritten for the two-dimensional case into:

M −N (hx ,hy ,δt ) ≈ K1hα1
x +K2hβ1

y +K3δtγ1 (82)
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And analog to equations (48) and (49):

N (2hx ,hy ,δt )−N (4hx ,hy ,δt )

N (hx ,hy ,δt )−N (2hx ,hy ,δt )
≈ 2α1 (83)

N (hx ,2hy ,δt )−N (hx ,4hy ,δt )

N (hx ,hy ,δt )−N (hx ,2hy ,δt )
≈ 2β1 (84)

N (hx ,hy ,2δt )−N (hx ,hy ,4δt )

N (hx ,hy ,δt )−N (hx ,hy ,2δt )
≈ 2γ1 (85)

Remember that for equation (82) to hold the assumption that hx , hy and δt are small has been made. For
that reason s = 1.5, ye = −4, hx = 0.0125, hy = −0.05 and δt = 0.001 are chosen. Further −ρg

2µ = −0.01. At
t = 10 the values of N are determined at a random, but every time the same, point in the grid. With those
values equation (83) gives approximately 4.01 or α1 ≈ 2, equation (84) gives approximately 4.03 or β1 ≈ 2 and
equation (85) gives approximately 4.00 or γ1 ≈ 2. From these values it can be concluded that the integration
process works correctly.

4.4. OVERLAPPING GRIDS
Now the correct way of handling the two-dimensional problem for a single grid has been found, we can

move on to the case of overlapping grids. The formal definition of the problemis given by:

∂cχ(χ, y, t )

∂t
= D

(
∂2cχ(χ, y, t )

∂χ2 + ∂2cχ(χ, y, t )

∂y2

)
− vy

∂cχ(χ, y, t )

∂y
, 0 <χ<χe , ye < y < 0, ∀ 0 < t

cχ(χ, y, t ) = f (r ), cχ(χ,0, t ) = 0,
∂cχ(0, y, t )

∂χ
= 0 and

∂cχ(χ, ye , t )

∂y
= 0, ∀ 0 < t

cχ(χ, y,0) = 0, ∀ x

(86)

∂cr (r, y, t )

∂t
= D

(
∂2cr (r, y, t )

∂r 2 + ∂2cr (r, y, t )

∂y2

)
− vy

∂cr (r, y, t )

∂y
, r0 < r < s, ye < y < 0, ∀ 0 < t

cr (r, y, t ) = g (χ), cr (r,0, t ) = 0,
∂cr (0, y, t )

∂r
= 0 and

∂cr (r, ye , t )

∂y
= 0, ∀ 0 < t

cr (r, y,0) = 0, ∀ r 6= s

(87)

c = c0
∂c
∂χ = 0
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y
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ye

0
0 s

Figure 22: The overlapping grids in 2D

Where r0 ≤ χe . Next to the plates the fine r -grid is
laid. This grid will only be fine in the x-direction
for the reason that the diffusive process will espe-
cially take place in that direction and the convec-
tive process dominates the diffusive process in the
y-direction. Figure 22 shows the grid for the over-
lapping grid case. Remember the symmetry of the
problem in x = 0, the red line. Every intersection of
horizontal and vertical lines is a grid point. Define
hχ and hr as the distance between two grid points in
the x-direction of the χ-grid respectively the r -grid
and hy the distance between two grid points in the
y-direction. Just as in the one-dimensional case for
the overlapping grids there is one vector c which can
be integrated with the matrix A2D from (81).

4.5. THE L2-ERROR
The problem could now be solved, but that

would be useless, because the problem is not ana-
lytically solvable and thus there would not be an ex-
act solution to compare the numerical solution with.
Although it is not possible to test the accuracy of the
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numerical solution of 86, there actually is a technique to test the accuracy of the code according to [6, p.41-58].
This technique is based on a verified guess of a solution of the convection-diffusion equation with a source
term, Q(x, y, t ):

∂c(x, y, t )

∂t
= D

(
∂2c(x, y, t )

∂x2 + ∂2c(x, y, t )

∂y2

)
− vy

∂c(x, y, t )

∂y
+Q(x, y, t ) (88)

If the guessed solution is of certain shape, obeying to the rules in [6], the source term is used to hold the
equality of the equation. The following prescribed solution obeys these rules:

c(x, y, t ) = c0 − c0 sin2
(πx

s

)
sin2

(
πy

ye

)
e−t (89)

If we substitute (89) in equation (88) and assume, for ease, vy is independent of x, so a constant, we get:

c0 sin2
(πx

s

)
sin2

(
πy

ye

)
e−t =−D2c0π

2

cos
( 2πx

s

)
sin2

(
πy
ye

)
s2 +

sin2
(
πx
s

)
cos

(
2πy
ye

)
y2

e

e−t

+ vy c0π

sin2
(
πx
s

)
sin

(
2πy
ye

)
ye

e−t +Q(x, y, t )

(90)

Rearranging:

Q(x, y, t ) =
c0 sin2

(πx

s

)
sin2

(
πy

ye

)
+D2c0π

2

cos
( 2πx

s

)
sin2

(
πy
ye

)
s2 +

sin2
(
πx
s

)
cos

(
2πy
ye

)
y2

e


−vy c0π

sin2
(
πx
s

)
sin

(
2πy
ye

)
ye

e−t

(91)

A discrete version of the source term Q(x, y, t ) in (91) could now be used in the numerical problem. Notice
that c(x, y, t ) from the guessed solution (89) is equal to c0 when x = 0, x = s, y = 0 and y = ye and furthermore
∂c(x,y,t )

∂x = 0 in x = 0, x = s and ∂c(x,y,t )
∂y = 0 in y = 0 and y = ye . To stick as close as possible to the original

problem the boundary conditions c(s, y, t ) = c0, c(x,0, t ) = c0, ∂c(0,y,t )
∂x = 0 and ∂c(x,ye ,t )

∂y = 0 are implemented.
The solution of the numerical problem with the given source term and boundary conditions should be an
approximation of the guessed solution from (89). Now it is possible for this solution to compare the exact
solution and the numerical solution and determine the orders of the error of this numerical scheme.

The definition of the L2-error in (50) can be extended to two dimensions.

L2 =

√√√√∑Nx
i=1

∑Ny

i=1

(
c(xi , y j , t )−c i j

)2

Nx Ny
(92)

For the completeness of the story, the L2-error is computed for the single grid case at first. For the values
s = 1.5, ye =−300s, −ρg

2µ =−0.5, t = 100 and δt = 1 ·10−4 figure 24 is generated as a reference to the single grid
case.
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Figure 23: The L2-error for t = 100; the smallest value of hx = 0.0125,
the smallest value of hy =−7.5 and δt = 1 ·10−4

From figure 23 it can be concluded for the overlapping grids that in case of perfect coupling at maximum
second order behavior of the L2-error can be expected. With the values s = 1.5, ye = −300s, r0 = 1.4 (the
starting point of the r -grid), −ρg

2µ = −0.5, t = 100 and δt = 1 · 10−4 the L2-error behavior is determined for
different orders of interpolation polynomials (the same order in both directions). Figure 24 shows the results
of the simulations.
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(a) 1st order polynomials
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(b) 2nd order polynomials
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(c) 3rd order polynomials

Figure 24: The L2-error for t = 100; the smallest value of hr =
0.0025, the smallest value of hy =−15 and δt = 1 ·10−4
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From figure 24 it can be concluded that at least a polynomial of second order is required to get second order
L2-error behavior. This is the same conclusion as for the one-dimensional problem. In the points the most on
the right in figures 24b and 24c the Richardson error estimation formula does not hold anymore. The values
for hx , hr and/or hy are too large to make the assumption that the higher order terms in the Richardson error
estimation formula may be ignored.

29



5. THE 2D PROBLEM WITH CIRCULAR PARTICLES

c = c0 c = c0

∂c
∂y = 0

∂c
∂y = 0

∂c
∂x = 0

∂c
∂x = 0

∂c
∂θ = 0

∂c
∂θ = 0

∂c
∂x = 0

∂c
∂x = 0

∂c
∂θ = 0

∂c
∂θ = 0

y

x

θ

r

Figure 25: The setup for the 2D problem with circular particles

With everything done above it should
now be possible to solve the convection-
diffusion equation for two stationary par-
ticles. The basic idea is to wrap around
the plates from the problem above, as il-
lustrated in figure 22, so they form two
particles on a concentration c = c0. The
r -grid will stick to the plates and thus
wrap around those two particles. The ba-
sic setup of the problem, including the
boundary conditions, is illustrated in fig-
ure 25. Note the problem is again sym-
metrical in the red line.

Now the r -grid is circular it is not the
easiest way to describe it with Cartesian
coordinates anymore. It is much easier
to describe the grid in polar coordinates.
However the drawback of using polar co-
ordinates is that the convection-diffusion
equation also must be rewritten in polar coordinates.

Another new problem that must be dealt with is the coupling. In all the problems above, it was needed to
have only two Lagrange interpolation polynomials (one in every direction), because the x-coordinate of the
coupling points was the same for every value of y . In this problem it will be a much more difficult task to
localize the coupling points and to develop a proper coupling method for them.

5.1. THE CONVECTION-DIFFUSION EQUATION IN POLAR COORDINATES

As stated above, the convection-diffusion equation must be developed in polar coordinates. The expres-
sions for x and y in polar coordinates are given by:

x(r,θ) = r cosθ y(r,θ) = r sinθ (93)

c(x, y) = c(r cosθ,r sinθ) (94)

Then from the chain rule of differentiation is follows:
∂c

∂r
= ∂c

∂x

∂x

∂r
+ ∂c

∂y

∂y

∂r

∂c

∂θ
= ∂c

∂x

∂x

∂θ
+ ∂c

∂y

∂y

∂θ

(95)

Further from (93):
∂x

∂r
= cosθ

∂y

∂r
= sinθ

∂x

∂θ
=−r sinθ

∂y

∂θ
= r cosθ (96)

Substitution leads to: 
∂c

∂r
= cosθ

∂c

∂x
+ sinθ

∂c

∂y

∂c

∂θ
=−r sinθ

∂c

∂x
+ r cosθ

∂c

∂y

(97)

And in matrix notation: 
∂c

∂r
∂c

∂θ

=
[

cosθ sinθ
−r sinθ r cosθ

]
∂c

∂x
∂c

∂y

 (98)
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Multiplication with the inverse of the matrix of both left and right sides lead to:
∂c

∂x
∂c

∂y

= 1

r

[
r cosθ −sinθ
r sinθ cosθ

]
∂c

∂r
∂c

∂θ

 (99)

Or: 
∂c

∂x
= cosθ

∂c

∂r
− sinθ

r

∂c

∂θ
∂c

∂y
= sinθ

∂c

∂r
+ cosθ

r

∂c

∂θ

(100)

Now ∂c
∂x and ∂c

∂y can be treated the same as c, so be differentiated with respect to r and θ, to find the expressions

for ∂2c
∂x2 and ∂2c

∂y2 in polar coordinates. This will lead to:

∂2c

∂x2 = cosθ
∂

∂r

(
cosθ

∂c

∂r
− sinθ

r

∂c

∂θ

)
− sinθ

r

∂

∂θ

(
cosθ

∂c

∂r
− sinθ

r

∂c

∂θ

)
(101)

= cos2θ
∂2c

∂r 2 + sin2θ

r 2

∂2c

∂θ2 + sin2θ

r

∂c

∂r
+ 2cosθ sinθ

r 2

∂c

∂θ
− 2cosθ sinθ

r 2

∂2c

∂r∂θ
(102)

and

∂2c

∂y2 = sin2θ
∂2c

∂r 2 + cos2θ

r 2

∂2c

∂θ2 + cos2θ

r

∂c

∂r
− 2cosθ sinθ

r 2

∂c

∂θ
+ 2cosθ sinθ

r 2

∂2c

∂r∂θ
(103)

So that

∂2c

∂x2 + ∂2c

∂y2 = ∂2c

∂r 2 + 1

r 2

∂2c

∂θ2 + 1

r

∂c

∂r
(104)

And the convection-diffusion equation can be written in polar coordinates as

∂c

∂t
= D

(
∂2c

∂r 2 + 1

r 2

∂2c

∂θ2 + 1

r

∂c

∂r

)
− vx

(
cosθ

∂c

∂r
− sinθ

r

∂c

∂θ

)
− vy

(
sinθ

∂c

∂r
+ cosθ

r

∂c

∂θ

)
(105)

The only remaining issue is to find expressions for vx and vy . It does not matter if these expressions are in the
basis of x and y of r and θ, because (93) can transform to the other basis.

5.2. THE STREAM FUNCTION
In equation (105) the terms vx and vy still have to be specified. Define V = (vx , vy ). Assuming conservation

of mass along with the assumption of a constant mass density, i.e. the fluid is incompressible, yields ∇·V = 0.
The steam function ψ is introduced that satisfies:

vx = ∂ψ

∂y
and vy =−∂ψ

∂x
(106)

Further assuming that the fluid is inviscid, the flow can said to be irrotational: ∇×V = 0. This means that the
stream function ψ satisfies Laplace’s equation:

∇2ψ= 0 (107)

The easiest way to solve this equation is to work with polar coordinates so vx and vy are expressed in polar
coordinates suitable for equation (105). The first step is to rewrite the Laplace equation in polar coordinates
and to find out how vx and vy can be derived from ψ. From (104) it can be concluded directly that

∇2ψ= ∂2ψ

∂x2 + ∂2ψ

∂y2 = ∂2ψ

∂r 2 + 1

r 2

∂2ψ

∂θ2 + 1

r

∂ψ

∂r
= 0 (108)
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is the expression of the Laplace equation in polar coordinates. From (93), the definition of x and y in polar co-
ordinates, the relation between the components of the velocity in Cartesian coordinates and the components
of the velocity in polar coordinates can be found.

∂ψ

∂y
= vx = ∂x

∂t
= ∂r (t )cosθ(t )

∂t
= cosθ

∂r

∂t
− r sinθ

∂θ

∂t
= cosθur − sinθuθ (109)

−∂ψ
∂x

= vy = ∂y

∂t
= ∂r (t )sinθ(t )

∂t
= sinθ

∂r

∂t
+ r cosθ

∂θ

∂t
= sinθur +cosθuθ (110)

Where

ur = ∂r

∂t
and uθ = r

∂θ

∂t
(111)

ur is the velocity in the r -direction, the radial velocity, and uθ the velocity in the θ-direction, also called the
tangential velocity. The gradient of ψ is defined

∇ψ= ∂ψ

∂x
ı̂ + ∂ψ

∂y
̂ =−vy ı̂ + vx ̂ (112)

From the results of equation (100) we have our expressions for ∂ψ
∂x and ∂ψ

∂y . These expressions can be substi-
tuted in the expression for the gradient as from (109) and (110) the results can be substituted for vx and vy .

∇ψ=
(
cosθ

∂ψ

∂r
− sinθ

r

∂ψ

∂θ

)
ı̂ +

(
sinθ

∂ψ

∂r
+ cosθ

r

∂ψ

∂θ

)
̂ =− (sinθur +cosθuθ) ı̂ + (cosθur − sinθuθ) ̂ (113)

⇒ (
cosθ ı̂ + sinθ ̂

) ∂ψ
∂r

+ 1

r

(
cosθ ̂− sinθ ı̂

) ∂ψ
∂θ

= (cosθ ̂− sinθ ı̂)ur −
(
sinθ ̂+cosθ ı̂

)
uθ (114)

⇒ ∂ψ

∂r
r̂ + 1

r

∂ψ

∂θ
θ̂ = ur θ̂−uθ r̂ (115)

So there may be concluded that

ur = 1

r

∂ψ

∂θ
and uθ =−∂ψ

∂r
(116)

∂c
∂θ = 0

∂c
∂θ = 0

c = c0

r

θ

Figure 26: A sketch of the θ,r -grid

Unfortunately it is not possible to solve the stream function. The rea-
son for this is that the domain has both circular and Cartesian boundaries.
The conclusion is that it is not possible to obtain an analytical solution for
the flow profile. An option would be to solve the Laplace equation numer-
ically and from there calculate the flow profile. This would require some
additional time, which is not available for this research. Another option
would now be to just choose a random flow profile to test the numerical
scheme. The flow profile that is everywhere equal to zero is chosen and
just the diffusion equation for the setup in figure 25 is solved.

5.3. SOLVING THE DIFFUSION EQUATION ON A CIRCULAR GRID
Now we return to the setup in figure 25. It is our goal to solve the dif-

fusion equation, while the convective term is chosen to be zero, on the cir-
cular grid as on the Cartesian grid. For the Cartesian grid the convection-
diffusion equation was solved in section 4. On the circular grid the diffu-
sion equation is given by:

∂c

∂t
= D

(
∂2c

∂r 2 + 1

r 2

∂2c

∂θ2 + 1

r

∂c

∂r

)
(117)

After this transformation the circular grid is transformed in a Cartesian
grid, see figure 26. Second order cental discretization of the terms on the
right side of the diffusion equation leads upon:

∂c

∂t
≈ D

(
c i+1 −2c i−1 +c i

h2
r

+ 1

r 2
j

c j+1 −2c j +c j−1

h2
θ

+ 1

r i

c i+1 −c i−1

2hr

)
(118)
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The first and the third term solely depend on r and thus can be converted in a matrix representation as was
done in section 4.1 for the Cartesian grid case; call this matrix Ar . The second term depends on θ and on
r , but if the factor 1

r 2
i

is ignored for the moment the remainder of the second term depends only on θ and

can be converted to a matrix; call this matrix Aθ . The total matrix for the circular grid is then given by Aθ,r =
kron

(
I
′
r , Aθ

)
+kron(Ar , Iθ). Here Iθ is just the identity matrix, but I

′
r contains the values of 1

r 2
j

on its diagonal

so A is the matrix representation of equation (118). Call Nθ the number of grid points in the θ-direction. It
should be clear that the first Nθ rows of A account for the same values of r ; in this case the r 1 value closest to
the particle. While there are only Neumann boundary conditions in the θ-direction, the boundary vector b,
with only the first Nθ unequal to zero, is given by:

b2D = Dc0



1
h2

r
+ 1

r 12hr

...
1

h2
r
+ 1

r 12hr

0
...
0


(119)

As it can be seen it is assumed that the particle is on a concentration c0 and that the boundary condition in re ,
which is the red region of figure 26 and the biggest value of the r -grid, is zero.

For a = 0.3, re = 0.58 the problem is solved with the Modified Euler method for r = a, ...,re and θ = −π
2 , ..., π2 .

Here hr = 0.01, hθ = π
40 and δt = 1 ·10−4. With zero concentration everywhere at t = 0 the following results are

obtained at various times:
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Figure 27: The concentration plot on the circular grid for various times; hr = 0.01, hθ = π
40 and δt = 1 ·10−4

The next step is to check if just as on the Cartesian grid the L2-error behavior is of second order. While
all the discretizations are of second order there is no reason to expect the error behavior anything else than
second order. As in section 4.5 an arbitrary function could be chosen to be plugged in the diffusion equation
with source term. The resulting source term could then be used in the numerical problem. The code can then
be verified by comparing the numerical solution with the chosen function. There are only two things that
work slightly different than in section 4.5. In the first place the boundaries in section 4.5 where all Cartesian
boundaries, which meant a Cartesian function with time independent boundary conditions could be chosen,
equation (89). For this problem there are no Cartesian boundaries, so if the function in (89) is chosen that
leads upon time dependent boundary conditions for the θ,r -grid. The consequence of the these time depen-
dent boundary conditions is that the boundary condition vector b must be updated for every time step. For
the reason that hereafter the order of the total problem is examined, equation (89) with the time dependent
boundary conditions is used. The second thing that changes is that the definition of the L2-error in polar
coordinates is slightly different. The definition of the L2-error in polar coordinates is given by:

L2 =

√√√√∑Nθ

j=1

∑Nr
i=1

(
c(ri ,θ j , t )−c i j

)2 ri

NθNr
(120)

33



c(ri ,θ j , t ) is the exact solution, c i j the interpolated value, Nθ and Nr the number of points in the θ- respectively
r -direction. The main difference is the factor ri in the sum. This factor is caused by the Jacobian for the
transformation from Cartesian coordinates to polar coordinates.

So with the time dependent boundary conditions at a and re and the source term in equation (91) with
vy = 0, of course all after substitution of the definitions from (93), the numerical problem is solved for a = 0.3,
re = 0.5, hr = 0.0025;0.005;0.01;0.02, hθ = π

80 ; π40 ; π20 ; π10 and δt = 1 · 10−4. This result is compared with the
prescribed function according to the definition of the L2-error in (120). Figure 28 shows the second order
behavior that was expected from the theory.
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Figure 28: The L2-error at t = 0.1 for a = 0.3, re = 0.5; hr = 0.0025;0.005;0.01;0.02,
hθ = π

80 ; π40 ; π20 ; π10 and δt = 1 ·10−4

Now the diffusion equation has been solved on the Cartesian grid and on the circular grid separated both
with second order error behavior. What rests is the coupled problem where the diffusion equation is solved on
the Cartesian and circular grid in one go. In the next section the coupling mechanism is initiated.

5.4. BILINEAR INTERPOLATION

θ1 θ2

r1

r2

c11

c22c12

c21L1

L2

L

θL

rL

Figure 29: Bilinear interpolation

Where there are two grids, the x, y-grid and the
θ,r -grid, some communication between those grids
is needed. Consider figure 29. The red dots represent
grid points of the θ,r -grid. The green dot is a point
of the x, y-grid that is overlapped by the θ,r -grid. As-
sume the concentrations in the θ,r -grid, thus the red
dots, are all known. The concentration in the x, y-
grid, the green dot, can now be interpolated from
the concentrations in the θ,r -grid in the following
manner. The first step is linear interpolation in the
θ-direction:

L1 = θ2 −θL

θ2 −θ1
c11 + θL −θ1

θ2 −θ1
c21 (121)

L2 = θ2 −θL

θ2 −θ1
c12 + θL −θ1

θ2 −θ1
c22 (122)

After that linear interpolation in the r -direction be-
tween L1 and L2 will result in the concentration in
L :

L = r2 − rL

r2 − r1
L1 + rL − r1

r2 − r1
L2 (123)

It will be clear that the total interpolation is the product of two linear functions. From the derivation of the
linear interpolation error in section 3.8 it follows that the the product of the two linear functions has error
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O
(
min

{
h2
θ

,h2
r

})
. As seen before at least interpolation with a polynomial of second order (O (h3)) can result in a

second order error behavior. So it seems somewhat counter-intuitive to continue with bilinear interpolation.
So in advance it is already possible to say that the L2-error will not have second order behavior, but as earlier
mentioned the time span for this research is limited. Interpolation with 9, second order polynomials, or even
16, third order polynomials, is certainly preferable to use, but would simply cost too much time to implement.
Bilinear interpolation will be used to interpolate the concentrations from the θ,r -grid to the x, y-grid as well
as to interpolate the concentrations from the x, y-grid to the θ,r -grid.
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Figure 30: The boundary points of the x, y-grid that lie inside the θ,r -grid,
a = 0.4,re = 0.5,hx = hy = 0.1,hr = 0.02 & hθ = π
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To check if the bilinear interpolation is well implemented in the program that solves equation (117), the
bilinear interpolation can be checked separately. Consider in figure 30 an arbitrary case of the setup in figure
25. The yellow dots are points of the x, y-grid that lie inside the θ,r -grid. The bilinear interpolation works as
follows. Consider one particular point of the x, y-grid that is marked with a yellow dot. The coordinates of this
point will be transformed to polar coordinates. Then the bilinear interpolation from the θ,r -grid to this point
is in terms of θ and r . The four points of the θ,r -grid that surround the considered point will then be used for
the interpolation. A function that is linear in θ and r should interpolate exactly, so with error equal to zero,
from the θ,r -grid to the points marked with yellow dots in the x, y-grid. Any non-linear function in θ and/or r
should be interpolated with an error behavior of second order.

The preceding idea is implemented for a = 0.3, re = 0.58, s = 1.5 y0 =−s and ye = s and with grid spacings
hx = hy = 0.05, hθ = π

80 ; π40 ; π20 ; π10 and hr = 0.005;0.01;0.02;0.04. For figure 31a the function r +θ is interpolated
from the θ,r -grid to the x, y-grid. The exact values of the function in the grid points of the x, y-gird is pre-
scribed to those points. With the definition of the L2-error from equation (92) the interpolated values in all the
boundary points of the x, y-grid are compared with the exact values. As predicted for linear functions figure
31a gives (ignoring the MATLAB® machine epsilon) zero error. For figure 31b the function r cos(θ)+ r sin(θ) is
interpolated from the θ,r -grid to the x, y-grid. This time the function is not linear and the interpolation gives
second order error as predicted.

The same thing can be done in the opposite direction. The function x + y is interpolated from the x, y-
grid to boundary points of the θ,r -grid. The grid spacings are now hθ = π

100 , hr = 0.005 and hx = hy =
0.0375;0.0625;0.125;0.25. With the definition of the L2-error in polar coordinates, equation (120), the inter-
polated values are compared with the exact values in all the boundary points of the θ,r -grid. The result can
be seen in figure 32a. Again the linear function gives zero error. For the result in figure 32b the function√

x2 + y2+atan
( y

x

)
is interpolated. This non-linear function leads again to second order error behavior. It can

be concluded that the interpolation in both directions works as it should.
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(a) The linear function r +θ is interpolated

10
−1

10
−6

10
−4

10
−2

10
0

hθ

L 2−
er

ro
r

 

 
L

2
−error

y=x2

(b) The non-linear function r cos(θ)+ r sin(θ) is interpolated

Figure 31: The L2-error for the interpolation from the θ,r -grid to the x, y-grid for a linear and a non-linear function; hx = hy = 0.05,
hθ = π

80 ; π40 ; π20 ; π10 and hr = 0.005;0.01;0.02;0.04
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(a) The linear function x + y is interpolated
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(b) The non-linear function
√

x2 + y2 +atan
(

y
x

)
is

interpolated

Figure 32: The L2-error for the interpolation from the x, y-grid to the θ,r -grid for a linear and a non-linear function; hθ = π
100 , hr = 0.005

and hx = hy = 0.0375;0.0625;0.125;0.25

5.5. FINDING BOUNDARY POINTS AND THE CORRESPONDING INTERPOLATION POINTS

Like in all earlier cases the problem is symmetrical, so only half of figure 25 can be used. Figure 33 shows the
actual setup, where the origin lies in the center of the particle. As earlier mentioned the θ,r -grid can be treated
in the same way as the x, y-grid. The only difference is that on the θ,r -grid equation (117) has to be solved
where on the x, y-grid it is equation (62) that has to be solved. The (Neumann) boundary conditions for θ are
directly obtained from the boundary conditions for x, the one Dirichlet boundary condition for r is obtained
from the particle and the other, the one in the red region of figure 26, is obtained by bilinear interpolation from
the x, y-grid. In the preceding section about bilinear interpolation there was already a little comment on the
coupling, but the full mechanism will be explained below.

For the coupling there arise two problems: which points of the x, y-grid are considered boundary points
and which points from the θ,r -grid are needed to interpolate to those boundary points? The first problem is
tackled by an algorithm that selects all the points where it applies that

√
x2 + y2 ≤ re . Then from this selection

it selects for every y the points where x is maximal and for every x the points where |y | is maximal. This
algorithm ensures that every point of the x, y-grid for which

√
x2 + y2 > re , has four surrounding points, so the
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numerical integration works. For a = 0.4, re = 0.5, hx = hy = 0.1, hr = 0.02 and hθ = π
10 an example was shown

in figure 30. As earlier mentioned the yellow dots are the boundary points of the x, y-grid. Some of the yellow
dots lie outside the red region of the θ,r -grid, but those dots are actually on r = 0.5. So they may be considered
as points that overlap the θ,r -grid.

c = c0

∂c
∂x = 0

∂c
∂x = 0

∂c
∂θ = 0

∂c
∂θ = 0

∂c
∂x = 0

∂c
∂y = 0

∂c
∂y = 0

y

x

Figure 33: The grid of the whole problem

The next step is to select four points, for every boundary
point of the x, y-grid, in the θ,r -grid that can interpolate their
concentration to that boundary point. This is again done by an
algorithm. This algorithm works as follows. From the matrix
of all the θ-coordinates of the points in the θ,r -grid it subtracts
the θ-coordinate of the boundary point. The same thing is done
for the r -coordinates. Then the absolute value of both results is
summed to one big matrix. Now this new matrix can be sorted
by MATLAB® along both directions. After sorting the values at
(1,1), (1,2), (2,1) and (2,2) belong to the original points that sur-
round the boundary point. A similar treatment is done by cou-
pling from the x, y-grid to the θ,r -grid. It will be determined
where the boundary points of the θ,r -grid lie inside the x, y-grid
and which are the four points, that are used for interpolation, of
the x, y-grid surround this boundary point.

As seen in section 3.8 it is preferable to solve the whole nu-
merical integration problem, including the coupling, with one
matrix A. Although the idea is the same the representation of A
is slightly different:

A =
[

Aθ,r Lx,y

Lθ,r Ax,y

]
(124)

Here Aθ,r is the matrix from section 5.3 that solves the diffusion equation on the θ,r -grid, i.e. the matrix
that contains the discretization of equation (117) and the boundary conditions for θ. Ax,y is the matrix that
holds the discretization for all the points in the x, y-grid. Lx,y contains the interpolation coefficients from the
x, y-grid to the θ,r -grid and Lθ,r contains the interpolation coefficients from the θ,r -grid to the x, y-grid. In
practice Lx,y is mixed up with Aθ,r while some of the interpolation points (points used for interpolation) of the
x, y-grid are boundary points to which is interpolated from the θ,r -grid. All entries of the rows and columns
of Ax,y for the points that lie inside the θ,r -grid are equal to zero. Most of these points are not considered
in the problem and the boundary points are represented by Lθ,r . The exact construction of A is quite an
administrative task. One minimal condition to check if A is properly constructed is to add the entries along
every row of matrix A plus the boundary vector b. If the sum of the entries on each row is not equal to zero,
there may be concluded that the representation of matrix A is incorrect.

If matrix A is constructed properly and boundary vector b contains the boundary concentrations c = c0

for the concentration on the particle, again the method of Modified Euler can be used directly to solve the
problem. Figure 34a, 34b and 34c are created with a = 0.4, re = 0.5, s = y0 = ye = 1.5, hθ = π

10 , hr = 0.01,
hx = hy = 0.1 and δt = 1 ·10−4
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(c) t = 100

Figure 34: Concentration profile of coupled circular and Cartesian grids with a = 0.4, re = 0.5, s = y0 = ye = 1.5, hθ = π
10 , hr = 0.01,

hx = hy = 0.1 and δt = 1 ·10−4. The white region represents the points of the x, y-grid where the problem is not defined.
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Another simple check for whether the code is correct is to start with an initial concentration of c0 every-
where. As time progresses the solutions should not change. This is indeed the case to machine accuracy. For a
final check of the code we need to look at the L2-error of the coupled system.

5.6. THE L2-ERROR
As before the results can be verified by comparing a numerical solution with an exact solution of the prob-

lem. As mentioned in section 5.3 equation (89) is used as the exact solution. This results in time dependent
boundary conditions on the particle and time independent boundary conditions on the other boundaries. The
actual L2-error of the total problem is a combination of the definitions from equation (92), for the Cartesian
grid, and (120), for the circular grid:

L2 =

√√√√∑Nθ

j=1

∑Nr
i=1

(
c(ri ,θ j , t )−c i j

)2 ri +∑Nx
k=1

∑Ny

l=1

(
c(xk , yl , t )−c kl

)2

NθNr +Nx y
(125)

Where c(ri ,θ j , t ) and c(xk , yl , t ) are the exact solutions and c i j and c kl are the numerical solutions. Nx y are
the number of grid points of the x, y-grid without the boundary points and the points of the x, y-grid that are
excluded from the problem. Of course the boundary points and the points of the x, y-grid that are excluded
from the problem do not contribute in the L2-error, c i j and c kl are set zero for these points. Figure 35 shows
four overlap situations, where the grid spacing are repeatedly doubled. These four cases are used to determine
the L2-error for various times.
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40 , hr = 0.01 and hx = hy = 0.125
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20 , hr = 0.02 and hx = hy = 0.25
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(d) hθ = π
10 , hr = 0.04 and hx = hy = 0.5

Figure 35: The yellow points are again the boundary points of the x, y-grid in the θ,r -grid. Figure 35a is generated with a = 0.3, re = 0.58,
hθ = π

80 , hr = 0.005 and hx = hy = 0.0625. In figure 35b the values of hθ , hr , hx and hy are doubled according to the values in 35a, in
figure 35c those values are doubled according to the values in 35b and so on.
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In section 3.8 it was derived that linear interpolation, i.e. interpolation with an error of O (h2), will not lead
to second order error behavior of the numerical problem and at least a second order interpolation polynomial,
i.e. with an error of O (h3), is needed for second order error behavior of the numerical problem. Bilinear inter-
polation has an error of order O (h2). It can thus be predicted that the L2-error behavior of the total problem is
of first order to the utmost. For t = 20 and δt = 1 ·10−4 the L2-error is determined for the cases from figure 35.
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(a) x, y-grid with definition (92)
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(b) θ,r -grid with definition (120)
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(c) both grids with definition (125)

Figure 36: The L2-error for the x, y-grid (figure 36a), for the θ,r -grid
(figure 36b) and for both grids (36c; all for t = 20)

All figures show the first order L2-error behavior that was theoretically predicted. As earlier stated it is due
to the lack of time that it is not shown that by using nine points (3× 3 points), which means second order
interpolation polynomials, second order error behavior will be reached for the total problem.
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6. CONCLUSION AND DISCUSSION
The main topic of this report was to find and verify a method to couple two grids without introducing an

extra error caused by the coupling, i.e. the error behavior for the coupled grid must be the same as the error
behavior for the single grid case. It was seen that for a second and a third order interpolation polynomial the
error behavior for the coupled grid was second order as for the single grid. Linear interpolation led upon one
order less in the error behavior, so it is not recommended to use linear interpolation or bilinear interpolation
when all the terms of the convection-diffusion equation are discretized to second order.

Although not researched due to the lack of time, it will be sufficient to use nine points, 3×3 points, instead
of the four points in the case of bilinear interpolation. The point that is interpolated to must lie somewhere in
this 3×3 point region. The interpolation polynomials will then be of second order, which means an error of
O (h3), in both directions and from the results of this research it may be concluded that the total interpolation
has also an error of O (h3). So the use of this second order interpolation polynomial would lead to second order
behavior in figure 36.

In the problem with the circular particles the flow profile was chosen to be zero everywhere, no flow. From
the two-dimensional problem with the flat plates it can be concluded that a flow profile and thus a convective
term does not change the error behavior as long as the discretization of the convective term is of second order.
The inclusion of a convective term in the problem with the circular particles would cost some time to imple-
ment, but would not cause an error behavior different from second order. It should even be possible for the
particles to move as long as for every discrete value of x and for every discrete value of y there is one grid point
overlapping the circular grid. The boundary points of the x, y-grid should then be determined each integration
step and thus every integration step a new matrix should be created.

Like the extension from the one-dimensional problem to the two-dimensional problem it should be pos-
sible to extend the conclusions from the two-dimensional problem to a three-dimensional problem. In that
case 27 points, 3×3×3, are needed to interpolate from to a single point in order to obtain second order er-
ror behavior. This would be quite cumbersome to program, but the biggest problem is the memory required
for the storage of the matrices, although the use of sparse matrices would extremely decreases the amount of
memory required.

Further research could still be done for the case that the spherical/circular grids of two particles overlap
each other, which was the main topic of [2]. If the particles are at fixed positions and re − a < 2s < (re − a)
(the circular grids overlap, but do not overlap the particles), the coupling is still relatively simple. The con-
centrations of the circular grid can be coupled to the boundary points of the Cartesian grid that overlap the
circular grid(s). The concentration should be averaged in the boundary points that overlap both grids. To the
boundary points of a circular grid that lie inside the other circular grid is interpolated from that circular grid
and to the other boundary points of the circular grid is interpolated from the Cartesian grid. This is a bit more
complicated, but still solvable. When 2s < re −a, the circular grid overlaps the other particle, the problem gets
really complicated. The boundary points of the circular grids are no more on the same circle. If the particles
are now also allowed to move and multiple particles are introduced the problem gets soon too complicated to
implement and too big to solve.
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APPENDIX

A. THE ANALYTICAL SOLUTION OF THE ONE-DIMENSIONAL PROBLEM
Using [5, p.35-50] as a guideline (16) can also be solved analytically. To start with the coordinate transform

y = x + s in order to reduce the math:

∂c(y, t )

∂t
= D

∂2c(y, t )

∂y2 , 0 < y < 2s, ∀ 0 < t

c(2s, t ) = c(0, t ) = c0, ∀ 0 < t

c(y,0) = 0, ∀ y 6= 0,2s

(126)

Actually it is easier to first solve the problem for u(y, t ) = c(y, t )− c0:

∂u(y, t )

∂t
= D

∂2u(y, t )

∂y2 , 0 < y < 2s, ∀ 0 < t

u(2s, t ) = u(0, t ) = 0, ∀ 0 < t

u(y,0) =−c0, ∀ y 6= 0,2s

(127)

A method called separation of variables is used to solve for u(y, t ). This method assumes that the solution can
be written as a product of a solely time-dependent part and a solely spacial-dependent part: u(y, t ) =φ(y)h(t ).
Now equation (127) can be rewritten as:

∂φ(y)h(t )

∂t
= D

∂2φ(y)h(t )

∂y2 (128)

⇔ 1

Dh(t )

∂h(t )

∂t
= 1

φ(y)

∂2φ(y)

∂y2 =−λ (129)

λ> 0 is called the separation constant and the minus sign is chosen for convenience as well as for the problem
being physical. Solving for h(t ) gives:

h(t ) =C1e−Dλt (130)

With C1 an integration constant. Solving for φ(y) gives:

φ(y) =C2 cos(
p
λy)+C3 sin(

p
λy) (131)

With C2 and C3 arbitrary constants. Now the boundary conditions from (127) are used to determine the value
of λ:

φ(0) =C2 cos(
p
λ0)+C3 sin(

p
λ0) = 0 (132)

⇒C2 = 0 (133)

φ(2s) =C3 sin(
p
λ2s) = 0 (134)

⇒
p
λ2s = nπ ⇔λ=

(nπ

2s

)2
with n ∈N (135)

From the principle of superposition now it can be concluded that the solution of (127) for u(y, t ) can be written
as:

u(y, t ) =
∞∑

n=1
Bn sin

(nπ

2s
y
)

e
−D

( nπ

2s

)2

t
(136)
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The constants Bn can be determined with the aid of the initial condition:

u(y,0) =
∞∑

n=1
Bn sin

(nπ

2s
y
)

(137)

u(y,0)sin
(mπ

2s
y
)
=

∞∑
n=1

Bn sin
(nπ

2s
y
)

sin
(mπ

2s
y
)

(138)∫ 2s

0
u(y,0)sin

(mπ

2s
y
)

d y =
∞∑

n=1
Bn

∫ 2s

0
sin

(nπ

2s
y
)

sin
(mπ

2s
y
)

d y (139)

Considering the integral on the right hand side in the equation above, assume n = m:

∫ 2s

0
sin

(nπ

2s
y
)

sin
(mπ

2s
y
)

d y =
∫ 2s

0
sin2

(nπ

2s
y
)

d y (140)

=
∫ 2s

0

(
1

2
− 1

2
cos

(nπ

s
y
))

d y (141)

=
[ y

2
− s

2nπ
sin

(nπ

s
y
)]2s

0
(142)

= s (143)

Now assume n 6= m:∫ 2s

0
sin

(nπ

2s
y
)

sin
(mπ

2s
y
)

d y = 1

2

∫ 2s

0

[
cos

(
(n −m)π

s
y

)
−cos

(
(n +m)π

s
y

)]
d y (144)

= 1

2

[
s

(n −m)π
sin

(
(n −m)π

s
y

)
− s

(n +m)π
sin

(
(n +m)π

s
y

)]2s

0
(145)

= 0 (146)

Computation of the left hand side of (139):

∫ 2s

0
u(y,0)sin

(mπ

2s
y
)

d y =−c0

∫ 2s

0
sin

(mπ

2s
y
)

d y

= c0

[
2s

mπ
cos

(mπ

2s
y
)]2s

0

= c02s

mπ
[cos(mπ)−1]

=
{

−4c0s

mπ
if m is odd

0 else

Now it can be concluded that the Bn in (136) can be written as:

Bn =
{

−4c0

nπ
if n is odd

0 else
(147)

c0 is added to u(y, t ) to solve for c(y, t ). After the inverse of the coordinate transform earlier done the result for
c(x, t ) is:

c(x, t ) = c0 +
∞∑

n=1
Bn sin

(nπ

2s
(x + s)

)
e
−D

( nπ

2s

)2

t
(148)

Where the Bn are given by (147). There is no problem this exact solution being an infinite series, because the
terms for n very large approximate zero. The term for n = 10000 is that small that MATLAB® returns 0, so ter-
minating the summation after 10000 terms does not cause any extra error.

44



B. SPARSE MATRICES
An important property of a numerical system is the amount of time it costs to evaluate the problem. With

the numerical scheme from section 4.2 equation (19) is integrated with Modified Euler. The input values that
affect the computation time are as follows: δt = 0.01, te = 200, s = 1.5, hx = 0.1, hy =−2, ye =−300s. The time
it takes MATLAB® to solve the problem including initialization, i.e. specifying variables and building matrices,
is about 617 seconds on my computer.

In the first attempt to tackle the 2D problem a direct approach with for-loops instead of matrices was used.
Every time step the concentration in every grid point was calculated explicitly with the difference equations
and recalculated with a Modified Euler correction step. Although this seems a rather lazy manner of solving
the problem, it took my computer approximately 120 seconds, which is much less than the 617 seconds the
numerical scheme from section 4.2 took. The striking difference in computation time can be explained by the
fact that the matrix A2D holds especially zeros. Every matrix multiplication all these zeros are also multiplied.
In other words, for the computation of the concentration in a specific grid point every other gird point is taken
into account. In the ’lazy’ direct approach with for-loops only the direct neighbors and the grid point itself were
taken into account. To rule out all those multiplications with 0 when A2D is multiplied with the concentration
vector c , the theory of sparse matrices could be used.

A sparse matrix is a matrix in which most of its elements are zero. When such a matrix is stored on the
memory of a computer it is useful not to save all elements but only the non-zero elements. The non-zero
elements are stored in such a way that the row and column numbers of the elements are known. To store a
matrix in this way saves a lot of memory that can be used for the computation and omits the multiplications
with 0. In MATLAB® the command ’sparse(A2D )’ makes A2D sparse. With this adaption the problem with the
numerical scheme of section 4.2 is solved in about 5 and a halve seconds.
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