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G R A P H I C A L  A B S T R A C T

H I G H L I G H T S

Normal behavior models trained with scarce data can result in unreliable monitoring.
Our presented domain mapping approach can make two WTs resemble each other.
Mapped SCADA data from a data-scarce WT to a data-rich WT enables use of its NBM.
A CycleGAN-based model preserves the WT states during mapping, including anomalies.
Earlier and improved fault detection due to more accurate anomaly scores.
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 A B S T R A C T

Intelligent condition monitoring of wind turbines is essential for reducing downtimes. Machine learning models 
trained on wind turbine operation data are commonly used to detect anomalies and, eventually, operation 
faults. However, data-driven normal behavior models (NBMs) require a substantial amount of training data, as 
NBMs trained with scarce data may result in unreliable fault detection. To overcome this limitation, we present 
a novel generative deep transfer learning approach to make SCADA samples from one wind turbine lacking 
training data resemble SCADA data from wind turbines with representative training data. Through CycleGAN-
based domain mapping, our method enables the application of an NBM trained on an existing wind turbine to 
a new one with severely limited data. We demonstrate our approach on field data mapping SCADA samples 
across 7 substantially different WTs. Our findings show significantly improved fault detection in wind turbines 
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with scarce data. Our method achieves the most similar anomaly scores to an NBM trained with abundant 
data, outperforming NBMs trained on scarce training data with improvements of +10.3% in F1-score when 1 
month of training data is available and +16.8% when 2 weeks are available. The domain mapping approach 
outperforms conventional fine-tuning at all considered degrees of data scarcity, ranging from 1 to 8 weeks of 
training data. The proposed technique enables earlier and more reliable fault detection in newly installed wind 
farms, demonstrating a novel and promising research direction to improve anomaly detection when faced with 
training data scarcity.
1. Introduction

Wind energy plays an essential role in the global shift towards 
renewable energy. With the increasing role of wind energy, improving 
the reliability of wind turbines (WTs) is of crucial importance [1]. Su-
pervisory control and data acquisition (SCADA) data has facilitated the 
application of deep learning methods for data-driven condition moni-
toring tasks in WTs [2,3]. Classification models represent a major share 
of these models [4]. However, these supervised classification meth-
ods require thoroughly labeled WT maintenance records and a fault 
database containing SCADA data for a wide variety of fault types, which 
is often unavailable in practice. Normal behavior models (NBMs) [2,5] 
can overcome this limitation. NBMs are based on anomaly detection 
and model the fault-free operation behavior of WT components. As 
opposed to classification models, NBMs only require a training dataset 
comprising historical, fault-free operation measurements. Deviations 
from the expected value obtained from the NBM at test time, i.e., when 
the trained model is used in an operational context, can be viewed 
as an anomaly score, with continuous deviations indicating possible 
incipient faults. This setting of training data from only assumed normal 
operation falls under unsupervised anomaly detection, a category that 
is in literature also sometimes referred to as semi-supervised [6].

A major limitation of NBMs is that they require a large training set 
that is representative of the various WT operation and environmental 
conditions. Training NBMs with scarce or non-representative data (for 
instance, only records at low wind speeds) may lead to unreliable mod-
els [7,8]. Large training sets are sometimes unavailable as scarcity of 
representative training data can occur, for instance, in newly installed 
WTs, after maintenance, part replacements, or as a result of aging, 
rendering previously collected data unrepresentative of the future WT 
operational states. Data scarcity is further exacerbated by the lack of 
data sharing in the wind industry, which is inhibiting research and 
development [9]. A scarcity in training data poses a serious challenge 
for WT fault detection tasks.

Transfer learning and, in particular, domain adaptation, aims to 
overcome the limitations caused by data scarcity by transferring knowl-
edge and adapting models from data of a different but related do-
main [10,11]. In our fault detection context, domains are represented 
by a WT and its associated data, knowledge, and NBMs. The goal is to 
use a source domain where data is abundantly available, represented 
by a WT with abundant data, to improve a task on a target domain, 
represented by a WT with scarce training data. Domain adaptation 
has shown success in numerous WT-related fault classification tasks for 
classifying unlabeled data (e.g., [12–14]). However, domain adaptation 
for unsupervised anomaly detection has hardly been investigated [15]. 
This is likely a result of multiple challenges faced in applying domain 
adaptation to unsupervised anomaly detection. First, it usually involves 
time series data as opposed to the emphasis on image data. Further, by 
definition, only normal data is available for training anomaly detection 
models, excluding supervision-based methods. Moreover, unlike the 
typical setting with abundant but unlabeled target domain data, we are 
faced with data scarcity in the target domain. Available studies using 
transfer learning or domain adaptation for improving unsupervised 
anomaly detection through NBMs are limited to fine-tuning [16] or 
simple corrections of the NBM [17].

Adapting and transferring knowledge across WTs is essential. De-
tecting faults in a data-scarce WT by employing an NBM trained on 
2 
another data-rich WT is generally not feasible. Since the WTs vary 
in, for instance, power generation and drive train characteristics, the 
NBM trained on a different WT will predict an incorrect expected state 
due to the varying characteristics. However, an NBM from another 
WT exhibiting a minimal domain shift [18] might possibly be used 
to detect faults in the WT with scarce training data. That is, if the 
2 WT’s test data distributions would match. This would be the case 
if the two WTs shared the same specifications, operational behavior, 
and weather conditions. To this end, our work demonstrates how to 
make the WTs resemble each other by transforming their SCADA data 
into one another. We employ domain mapping [11] to map SCADA 
samples from one WT to resemble the corresponding SCADA data of 
another WT. Through this mapping, we can enable fault detection using 
another WT’s NBM. A critical component herein is that the mapping 
should preserve the sample’s content when translating it to another 
domain. For example, a SCADA measurement capturing a WT running 
idly should remain in an idle state, and critically, anomalous behavior 
should be mapped to anomalous behavior across WT domains.

Jin et al. [19] proposed a generative neural network that synthesizes 
SCADA data resembling another WT but did not employ or consider 
any content preservation. Without explicitly enforcing a preservation 
of WT operational states, as employed in our study, anomalies may 
be mapped to healthy states, ultimately leading to unreliable fault 
detection. Pattnaik et al. [20] presented a content-preserving Cycle-
GAN [21]-based domain mapping approach for mapping industrial time 
series data across motors for bearing fault classification. While their 
work demonstrated the promising potential of mapping data between 
different but related machines, it followed the usual domain adaptation 
workflow of abundant but unlabeled data for classification, whereas 
our study investigates domain mapping for an unsupervised anomaly 
detection task using limited training data.

We propose a novel fault detection approach based on WT domain 
mapping with CycleGAN that learns to map SCADA data between the 
source and the target WT domain in a content-preserving manner. At 
test time, the target data is mapped to the source domain, thereby 
enabling fault detection using the source WT’s NBM. To our knowledge, 
this study is the first to demonstrate a CycleGAN-based framework for 
unsupervised anomaly detection with time series as well as in wind 
energy. Our contributions are as follows:

(i) Our study is the first to investigate and demonstrate domain 
mapping for unsupervised anomaly detection with time series 
for WT fault detection.

(ii) We show how our domain mapping technique can be used for 
data scarce WTs to improve NBM performance in fault detection 
applications.

(iii) We outline future research directions for domain mapping-based 
anomaly detection in wind energy.

2. Related work

2.1. Domain adaptation

A promising approach to overcome data scarcity limitations is trans-
fer learning, particularly domain adaptation [10,11]. The goal is to 
adapt data, models, or knowledge from one domain with abundant 
data, the source domain, to a domain affected by some data or label 
scarcity, the target domain.
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Formally, a domain 𝐷 = { , 𝑃 (𝑋)} consists of a feature space 
and a marginal probability distribution 𝑃 (𝑋), where 𝑋 = {𝑥1,… , 𝑥𝑛} ∈
 [10]. We aim to learn a task 𝑇 = { , 𝑃 (𝑌 |𝑋)}, where  is 
the label space and 𝑃 (𝑌 |𝑋) is the conditional probability. We dif-
ferentiate between the source domain  with its dataset 𝐷𝑠 =
(

𝑥1𝑠, 𝑦1𝑠
)

,… ,
(

𝑥𝑛𝑠, 𝑦𝑛𝑠
) and the target domain 𝑇  with its correspond-

ing dataset 𝐷𝑇 =
(

𝑥1𝑡, 𝑦1𝑡
)

,… ,
(

𝑥𝑛𝑡, 𝑦𝑛𝑡
)

, where usually 0 < 𝑛𝑡 ≪ 𝑛𝑠. In 
our context, the source domain is represented by a source WT with 
representative SCADA data (𝑛𝑠 ≫ 0) and the target domain by a 
target WT with scarce data (𝑛𝑡 ≪ 𝑛𝑠). Transfer learning aspires to use 
knowledge extracted from 𝐷𝑆 and by 𝑇𝑆 to improve learning 𝑇𝑇  in 
the target domain 𝑇 ≠  . Domain adaptation is a particular type of 
transductive transfer learning, a setting in which the task remains the 
same but across different domains [10,11].

Much attention has been devoted to unsupervised domain adapta-
tion, a setting with a labeled source domain but an unlabeled target 
domain, since this is common for vision datasets where acquiring labels 
is a time intensive and expensive task [11]. Initial approaches were 
focused on learning domain-invariant representations of source and 
target features to enable classification of the unlabeled target domain 
(e.g., [22,23]).

More recently, generative methods were able to improve perfor-
mance in unsupervised domain adaptation [18,24]. These methods 
extend domain adaptation with a generative component. A main ap-
proach is domain mapping, which aims to map (translate) samples from 
one domain to another. Domain mapping can allow the use of a source 
domain classifier for unlabeled mapped target data. As an example, we 
consider datasets of digits. Given unlabeled handwritten digits, no clas-
sifier can be trained. But with domain mapping, they can be mapped 
even without defined pairs to resemble another domain, e.g., computer-
generated numbers, for which labels and a classifier are available. An 
essential challenge is to retain important characteristics of the input, 
such as its class, to ensure a correct classification. That is, a handwritten 
digit 7 must remain a 7 when mapped. The underlying unpaired image-
to-image translation methods (e.g., [21,25]) are fundamental to achieve 
this. CycleGAN [21] enables the translation of unpaired samples into 
another domain with generative adversarial networks through a cycle-
consistency loss enforcing the preservation of content. Domain mapping 
with CycleGAN has been used in various applications, e.g. in medical 
settings [26], voice conversion [27], machine fault diagnosis [20], or 
also for synthetic data augmentation in WT icing detection [28]. For 
a more comprehensive review of unsupervised domain adaptation we 
refer to [18,24].

2.2. Domain adaptation for wind turbine fault detection

The potential of domain adaptation has been demonstrated with 
time series data from sensors across multiple applications, including 
non-WT industrial fault detection [20,29,30]. These applications how-
ever primarily rely on classification through domain alignment with 
abundant target domain data lacking fault labels. For WTs specifi-
cally, discrepancy-based domain adaptation for fault classification is 
presented in [12–14,31]. Results show significant gains in accuracy on 
the unlabeled target domain, even when target data is scarce [13]. An 
alternative approach to improve fault diagnosis performance, namely 
by generative data augmentation, is proposed in [32] to generate 
missing working conditions for vibration data.

Yet, the available literature for our relevant anomaly detection task 
using NBMs is scarce. In our unsupervised anomaly detection setting, 
there is a target data scarcity, coupled with no available supervision 
(e.g., no fault labels), thereby rendering many previously presented do-
main adaptation techniques unsuitable for this task. Few conventional 
transfer learning approaches have been proposed: In [16], fine-tuning 
is successfully applied to an NBM pretrained on physics-informed simu-
lation data. While the results show significantly improved performance 
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for when only one month of SCADA data is available, the physics-
informed simulation restricts the models to active power NBMs. A 
simple correction based on linear regression of the source domain’s 
regression-based NBM output is proposed in [17]. The proposed correc-
tion achieves slightly improved results over fine-tuning but is primarily 
implemented to avoid overfitting an NBM on a specific season, repre-
sented by a target training set comprising considerable 3 months of 
data.

The first generative domain adaptation work for WT NBMs is pre-
sented by Jin et al. [19]. Specifically, a generative adversarial network 
(GAN) is proposed to map samples from a data-scarce WT, comprising 
two weeks of SCADA data, to a data-rich WT. Like in domain mapping 
approaches, the GAN is conditioned on target data, that is, the input 
to the generator are SCADA samples from the scarce target domain, 
rather than random noise. In doing so, the target domain input is 
mapped to samples matching the marginal probability distribution of 
the source domain. Finally, the mapped target data is used with an 
autoencoder-based NBM pretrained on the source domain for anomaly 
detection. Presented results demonstrate more reliable anomaly detec-
tion despite target data scarcity. While this approach resembles domain 
mapping, it substantially deviates from its approaches. For one, it 
consists of only one-directional target-to-source mappings. Crucially, 
the mapping network is also unconstrained, i.e., there is no constraint 
to preserve specific WT states (e.g., maximal power generation or 
anomalous behavior) to their corresponding state in the other domain. 
This may result in anomalous data being mapped to arbitrary healthy 
operation states. This lack of content preservation can therefore lead 
to unreliable fault detection. Our study overcomes such deficiencies by 
employing domain mapping based on CycleGAN with consistency losses 
to preserve the SCADA content during domain translation. Additionally, 
our work incorporates multi-hour long SCADA time series, as opposed 
to features from only a single time point.

2.3. Domain mapping for unsupervised anomaly detection

Few studies exist on domain mapping applications for unsupervised 
anomaly detection, even beyond the wind energy research field. Hardly 
any domain adaptation studies exist for anomaly detection tasks in 
which there are only normal training samples available combined with 
limited data in the target domain [15]. To our knowledge, our study 
is the first to propose a CycleGAN-based approach to unsupervised 
anomaly detection for WT fault detection using domain mapping.

Moreover, only few works have even performed the underlying 
domain translation with time series data, i.e., mapping time series, 
regardless of the task and outside the scope of wind turbine SCADA 
data. CycleGAN is proposed for data augmentation by generating arti-
ficial damaged states of acceleration data in [33] through a mapping 
of undamaged-to-damaged conditions. Pattnaik et al. [20] translates 
time series across machines for bearing fault diagnosis using a Cy-
cleGAN framework. Unlike our anomaly detection study with scarce 
target data, their model maps abundant but unlabeled target domain 
data to the source domain where it is subsequently used in a fault 
classifier pretrained on the source domain. Results showed a significant 
outperformance compared to conventional domain adaptation methods 
when the domain shift is large, i.e., when mapping from substantially 
different but related machines.

3. Dataset

Our available raw data comprises 10-minute averaged SCADA data 
of 7 wind turbines, each from a distinct wind farm. While the turbines 
share the same manufacturer to ensure a matching SCADA variable 
system, they exhibit significantly different characteristics, model types, 
power rating, maintenance and fault history, and geographical location. 
An incident log is further provided for each WT. These logs contain a 
binary flag for each 10-minute measurement, describing time frames 
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Fig. 1. On the left, a source WT’s dataset is split into a training/validation and test set. On the right, a selected target WT is also split into a preliminary 
training/validation and test set. A data scarcity scenario is then applied for the target WT, in which only 1–8 weeks immediately preceding the test set (which 
remains the same) are considered as the new training/validation set. For both WTs, we apply a sliding window approach to extract 12-hour SCADA samples from 
the sets, consisting of 11 channels in total. The blue shaded areas represent the maximum and minimum feature values.
during which unknown and unspecified incidents occurred in the WT 
operation. These incidents do not necessarily represent anomalous 
behavior or faults. Thus, we do not use incidents for evaluation or 
classification but only for additional filtering, as we consider no mea-
surements during these marked time frames as coming from normal 
operation. A more detailed overview and an illustration of the 7 WTs 
is provided in Appendix  D.

Our study considers source-target pairs of WTs for domain adapta-
tion, with one data-rich WT defining the source domain and the pair’s 
second data-scarce WT defining the target domain. Our goal is to map 
SCADA samples between the source domain, consisting of a randomly 
selected WT, and the target domain, represented by another WT of 
a different WT type from a different wind farm. The data from the 
source domain WT is split into a training set (first 70% of the data), 
a validation set (30% of the training data), and a test set (the last 30% 
of data). For the target domain WT, starting with its full dataset, we 
first apply the same 70-30-30 split as with the source WT. As a next step 
we apply a data scarcity scenario, by artificially shortening the training 
and validation set. Specifically, we shorten the training/validation set 
to consecutive time frames of 1 to 8 weeks immediately preceding 
the test set, which remains the same across all scarcity scenarios. To 
ensure dataset size consistency when comparing across different WTs, 
we always refer to one week of data to comprise 1008 (6 10-minute 
samples per hour * 24 * 7 days) SCADA samples instead of selecting 
by calendar week, as maintenance, data gaps, or incidents could cause 
strongly changing dataset sizes across turbines.
4 
These datasets are further normalized according to statistics cal-
culated over the training set of the source domain such that each 
SCADA variable falls into a value range of [−1, 1]. The target domain 
data is normalized using the same min–max normalization formula but 
using source domain statistics and therefore not confined within this 
range. From each set, we apply a sliding window approach to extract 
a sample dataset consisting of 12-hour samples of consecutive SCADA 
measurements with 11 variables. Selected were the mean, maximum, 
and minimum wind speed, rotor speed, power output values, as well 
as two temperatures from internal components, namely the mean sta-
tor and rotor temperature. Due to the one-to-one mapping inherent 
with CycleGAN [34], we refrained from using variables with a larger 
stochastic component such as the ambient temperature. For instance, 
an idle WT operational state, represented through our highly correlated 
11 input features, could exist with numerous possible ambient temper-
ature variations, which may necessitate probabilistic domain mapping 
(many-to-many mappings, e.g. [34]). The chosen 12-hours time frame 
allows us to better capture temporal dynamics within a sample, for 
instance thermal processes. An illustration of our dataset splits and 
resulting SCADA samples is shown in Fig.  1.

Normal behavior models assume that only normal samples, i.e., only 
healthy WT operation states, are used for training. We apply WT-
specific filtering to exclude possibly abnormal samples from the train-
ing and validation sets. First, we exclude all measurements that fall 
into a time frame marked in the incident logs. Moreover, we apply a 
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Fig. 2. Workflow of the proposed approach. A source domain, represented by a WT with abundant data, and a target domain, represented by a WT with scarce 
data, are available. In step (1), a source NBM is trained for the data-rich WT. This NBM can detect anomalies for the source WT but cannot be used for the target 
WT due to the domain shift. In (2), our proposed domain mapping technique using a CycleGAN is applied. The network learns to map source data to match 
target data and vice versa. In the final step (3), the test set data of the target WT is first mapped to the source domain using the trained target-to-source network 
component (𝐺𝑇𝑆 ). As it now resembles source data, the pretrained NBM can be applied to obtain anomaly scores on the mapped data.
rated power filter rule and Mahalanobis distance-based filtering based 
on [35] to remove outliers and measurements from curtailment. No 
filtering is performed on the test sets.

4. Methodology

Our study aims to improve the reliability of fault detection models 
for WTs with unrepresentative training data by leveraging models and 
data from similar, but not identical, WTs for which representative train-
ing data is available. To achieve this, we employ a generative domain 
adaptation approach, namely domain mapping. This section outlines 
our machine learning models, domain mapping losses, and evaluation 
metrics used. Our proposed framework consists of a domain mapping 
network that can translate source domain samples (consecutive 12-
hour SCADA samples) into the target domain and vice versa. Despite 
the translation being learned cyclically and in both directions during 
training, we are ultimately interested in mapping data from the data-
scarce target WT to the data-rich source WT for subsequent anomaly 
detection. Once the data is mapped, the anomaly detection is achieved 
through evaluations with an autoencoder-based NBM pretrained on the 
source domain. The proposed workflow is shown in Fig.  2.
5 
4.1. Autoencoder-based NBM

We employ an NBM based on autoencoders [36] for fault detec-
tion. Autoencoders are unsupervised neural networks trained to encode 
input data into a lower dimensional representation (encoder) and to 
subsequently reconstruct the input data from the compressed repre-
sentation (decoder). To reconstruct the input as exactly as possible, 
an autoencoder learns to encode the most important features, thereby 
learning critical variable and feature relationships. An input sample 
that significantly deviates from the training set (i.e., an anomaly) will 
thus result at test time in an elevated reconstruction error, representing 
an anomaly score. Autoencoders have been employed as WT-specific 
NBMs (e.g., [37–39]). Our autoencoder takes as input 12-hour SCADA 
samples with 11 channels (792 data points) and learns to reconstruct 
them based on an encoding size (bottleneck dimension) of 72 units. A 
model is trained on only normal source domain training samples for 
each WT domain pair. At test time, we categorize all samples with 
a reconstruction error (mean absolute error between the autoencoder 
reconstruction output and its original input) above the defined WT-
specific threshold as anomalous. The threshold is set to detect far out 
outliers [40] for all models as 𝑇 = 𝑞3 + 3

(

𝑞3 − 𝑞1
)

, where 𝑞3 and 
𝑞1 represent the 75th and 25th percentile of the normal validation 
data reconstruction errors, respectively. Further information about the 
autoencoder model is outlined in Appendix  A.
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Fig. 3. Illustration of the proposed domain mapping network. Visualized here is only the translation of a SCADA sample from the source domain (𝑠) to the 
target domain and back, while our model maps in both directions. A source sample (𝑠) is mapped by the generator for the respective domain direction (𝐺𝑆𝑇 ) 
to resemble data from the target domain under additional content-preservation constraints. The mapped sample (𝑡∗) is mapped back to the source domain using 
𝐺𝑇𝑆 , completing the cycle. The cycle-consistency forces the cycled sample (𝑠∗∗) to closely resemble the original input.
4.2. Domain mapping model

Our domain mapping network is based on the CycleGAN formu-
lation [21]. The network consists of two one-directional generative 
adversarial networks (Section 4.3) taking as input SCADA samples of 
one WT to transform them into data resembling the other WT. The 
generators are trained to synthesize realistic samples in an adversarial 
way by trying to outperform the WT-specific critics, which try to dis-
tinguish between fake (generated) and real samples of their particular 
WT. Unconstrained generators, as in the case of [19], can however 
potentially transform an input SCADA sample in any way and disregard 
the inherent content within the sample, which represents a particular 
state of the WT, e.g., idle power, maximal power production, or anoma-
lous behavior. We propose and demonstrate that adding consistency 
losses (Section 4.4) to the network enforces the content-preservation for 
anomaly detection. Most importantly, a cycle-consistency loss enforces 
that a sample first mapped to the other domain and then back to its 
original domain should remain similar. Fig.  3 illustrates the concept of 
our domain mapping network.

In the following, we outline the specifications of the generators, 
discriminators, and content-preserving losses. Formally, we define a 
source domain  representing the source WT and a target domain 
  representing the target domain WT with domain datasets 𝐷𝑆 , 𝐷𝑇
containing respective SCADA samples here labeled as 𝑠 and 𝑡.

4.3. Generators and critics

The framework consists of two generators 𝐺𝑆𝑇 , 𝐺𝑇𝑆 and two dis-
criminators 𝐷𝑖𝑠𝑐𝑇 , 𝐷𝑖𝑠𝑐𝑆 . The generators are tasked to map a sample 
from one domain, which is their input, to resemble a sample from 
the other domain. There is one generator for each domain direction, 
i.e., 𝐺𝑆𝑇 ∶  →  , 𝐺𝑇𝑆 ∶  →  . The generator 𝐺𝑆𝑇  maps an in-
put SCADA sample from  to resemble a sample belonging to domain 
 . As opposed to the standard GAN formulation, the generators take 
as inputs real samples of a domain to translate, instead of synthesizing 
samples from random noise. The discriminators generally act as critics, 
assessing whether a sample belongs to the underlying probability distri-
bution or not. 𝐷𝑖𝑠𝑐𝑇 (𝑥) is generally a score reflecting whether a sample 
candidate 𝑥 belongs to the corresponding domain distribution 𝑃  or 
𝑇

6 
not. In our work, we use the GAN-QP framework [41,42] as in [19] to 
train the generators and critics to generate realistic samples. Further 
details about model architectures, hyperparameter optimization, and 
complete training procedure are presented in Appendix  B.

4.4. Content preservation losses

As the goal is to ultimately perform fault detection with mapped 
data, it is critical to ensure that the generator mapping preserves the 
SCADA sample content, i.e., the operational state represented by the 
sample such as constant maximum power output and in particular 
anomalous behavior. The proposed cycle-consistency loss in Cycle-
GAN [21] constrains the domain mapping to encourage that a mapped 
sample mapped back to its original domain resembles the original 
sample. This constraint aims to ensure that during the translations there 
were no changes or features added or removed. As an example, a zebra 
mapped to a horse and then back should remain the same animal in the 
same position and field, as otherwise content alterations may have been 
performed by the models. Formally, it encourages 𝐺𝑆𝑇

(

𝐺𝑇𝑆 (𝑡)
)

≈ 𝑡 and 
vice versa. This is achieved by adding an L1 loss to the generator loss 
punishing deviations between original and cycled samples: 
𝑐𝑦𝑐 = 𝜆𝑐𝑦𝑐 (𝑀𝐴𝐸 (𝑡, 𝐺𝑆𝑇

(

𝐺𝑇𝑆 (𝑡)
)

) + 𝑀𝐴𝐸 (𝑠, 𝐺𝑇𝑆
(

𝐺𝑆𝑇 (𝑠)
)

)) (1)

However, the cycle-consistency loss can be in our case insufficient 
to ensure a consistent content mapping across domains. To illustrate 
this, let us consider adding a hypothetical flipping operation to the 
generators. Typically, with image data, flipping an input will cause 
discriminators to reject the mapping. For instance, flipping a horse 
image upside down before translating it into a zebra will never generate 
a realistic zebra, whereas ‘‘flipping’’ a SCADA input (e.g., maximum 
power mapped to zero power) before translation can still generate 
realistic domain samples. If the same flipping operation is performed 
in the opposite domain direction, the cycled output will resemble the 
original input, thereby still enforcing the cycle-consistency but without 
actually preserving content. To account for this, we further restrict the 
mapping space with additional consistency losses.

We add two physics-informed loss functions to construct our 
content-consistency loss. The first loss encourages the generators to 
map idle states in the original domain, for instance, zero active power 
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Fig. 4. A sketch illustrating our content-consistency losses. An illustrative 12h-sample containing only the WT power output and wind speed is shown on the 
left, with its mapping to the other domain in the middle and mapped back to the original domain on the right. The zero-loss enforces that zero states (e.g., zero 
power) should be mapped to zero states in the other domain, shown by the boxed dashed regions marked by 0. The rated power loss (𝑅) enforces that when 
a WT is running at maximum capacity (in the figure: 3 MW) it should also run at the rated capacity in the other domain (in the figure: 1 MW). Finally, the 
cycle-consistency loss 𝑐𝑦𝑐 ensures that the cycled sample (mapping a mapped sample back to its original domain) remains similar to its original sample.
output or no rotor rotation, to idle states in the other domain. Formally, 
we define all positions of selected channels (in our study: minimum, 
mean, maximum power and rotor rotation) within a SCADA sample 𝑥
as a zero state if they are zero valued: 𝑍 ∶= 𝑥𝑐,𝑖 = 0; 𝑖 = 1,… , 72, where 
𝑐 denotes the channel. The zero loss discourages deviations from the 
zero state when mapping to a domain: 

0 = 𝜆0 (𝑀𝐴𝐸(𝐺𝑆𝑇 (𝑠1𝑍 ), 0) +𝑀𝐴𝐸(𝐺𝑇𝑆 (𝑡1𝑍 ), 0)) (2)

The rated power loss encourages that power outputs at a rated WT 
value remain at a rated value for the corresponding other WT. Let 𝐶𝑆
and 𝐶𝑇  represent the rated power of the source and target domain WT, 
respectively. All positions within a SCADA sample 𝑥 are defined to be 
at a rated power if they match the WT capacity: 𝑅 ∶= 𝑥𝑐,𝑖 = 𝐶𝐷;𝐷 =
domain (S, T), 𝑖 = 1,… , 72, where 𝑐 denotes the channel (in our study: 
the mean power). The rated power loss is then defined as: 
 = 𝜆(𝑀𝐴𝐸(𝐺𝑆𝑇 (𝑠1𝑅), 𝐶𝑇 ) +𝑀𝐴𝐸(𝐺𝑇𝑆 (𝑡1𝑅), 𝐶𝑆 )) (3)

The consistency losses are added to the generator loss with relative 
weights 𝜆𝑐𝑦𝑐 , 𝜆0, 𝜆𝑅, determined using a hyperparameter search. More 
details are outlined in Appendix  B. The effects of employing content 
preservation on model performance are further shown in Appendix  E. 
We illustrate our consistency losses in Fig.  4.

4.5. Evaluation and benchmarks

Due to the lack of ground truth fault labels in our dataset, we per-
form the evaluation in our study by comparing resulting anomaly scores 
on fixed test sets across our proposed and compared models. Ultimately, 
we are interested in obtaining similar anomaly scores with scarce target 
training data as if we had abundant target training data available. Based 
on previous work in literature successfully demonstrating autoencoder-
based NBMs, we assume that models trained with representative data 
will output anomaly scores capable of indicating faults. Therefore, we 
consider the test set anomaly scores from an NBM trained on abundant 
target training data (i.e., without any data scarcity scenario applied) as 
our ground truth in this study. More specifically for anomaly detection, 
we are interested in whether compared anomaly scores both exceed 
their (model-specific) threshold or not (anomalous or normal). We 
introduce a similarity measure in the following to compare data scarce 
models to the representative NBM.
7 
Let 𝑎∗ = (𝑎∗1 ,… , 𝑎∗𝑛) be the ground truth test set anomaly scores 
of the NBM trained on the full target domain training data (i.e., no 
data scarcity scenario applied), consisting of 𝑛 test set samples with a 
model-specific threshold 𝑇 ∗. Let 𝑎 = (𝑎1,… , 𝑎𝑛) be the anomaly scores 
of the same test set data of a compared NBM (e.g., trained with scarce 
data only or evaluated mapped data) with its threshold 𝑇 . Anomaly 
scores are converted into a binary value expressing whether the score 
exceeds the threshold (positive, 1) or not (negative, 0), i.e., 𝑦∗ = 𝑎∗1 ≥
𝑇 ∗,… , 𝑎∗𝑛 ≥ 𝑇 ∗ and 𝑦 = 𝑎1 ≥ 𝑇 ,… , 𝑎𝑛 ≥ 𝑇 . We compare the binary 
values using classification metrics to obtain the performance as the 
F1-score, defined as: 

F1-Score = 2TP
2TP + FP + FN (4)

We compare the performance of our domain mapping technique 
with two benchmarks: The first one is an NBM trained on scarce 
target data only, providing a baseline without domain adaptation and 
SCADA data from other wind farms. The second one is a fine-tuning 
benchmark. Fine-tuning is a previously successfully employed domain 
adaptation technique for this task, representing an essential benchmark 
to compare the effectiveness of our proposed method. Starting with a 
pretrained NBM trained on SCADA samples of the source domain WT, 
we fine-tune the model on the available scarce target training data. Our 
benchmark models and the evaluation are illustrated in Fig.  5.

5. Results and discussion

5.1. Fault detection performance

We assess the fault detection performance of our proposed domain 
mapping network in terms of producing similar anomaly scores as a 
target WT NBM trained on abundant data, as outlined in Fig.  5. In total, 
we evaluated 28 source-target WT domain pairs using 6 distinct target 
domain WTs with varying degrees of target training data scarcity of 1–8 
weeks. One of the seven WTs (WT07) was used during model selection 
and hyper-parameter optimization (see Appendix  B). All domain pairs 
consist of a source and target WT differing in turbine specifications 
in terms of model and having a unique rated power capacity (see 
Appendix  D), farm, and geographical location. For each source-target 
domain pair, we compared the performance to an NBM trained on 
scarce data only and a fine-tuning benchmark.



S. Jonas and A. Meyer Energy and AI 22 (2025) 100626 
Fig. 5. All approaches for comparison are illustrated at the top. In the upper left, we consider an NBM trained on abundant target WT training data (no data 
scarcity) producing anomaly scores on a fixed test set, representing our ground truth. We compare these anomaly scores with an NBM trained on scarce target 
training data only (upper right), a fine-tuning approach (lower left) and our domain mapping network (lower right). These obtained anomaly scores, sharing the 
same test set, are compared in terms of a threshold similarity (F1-score) to the ground truth (illustrated at the bottom).
Table 1
F1-scores (in %) across all 6 target wind turbines evaluating the threshold similarity of NBMs trained on various degrees of limited training 
data to the ground truth of the respective NBMs trained on a full training dataset.
 Target WT 2 months 6 weeks 1 month 3 weeks 2 weeks 1 week
 WT01 89.0 84.6 77.4 74.4 77.1 66.4  
 WT02 77.8 62.6 65.3 60.3 73.6 35.2  
 WT03 84.7 73.8 64.8 38.4 52.6 34.5  
 WT04 92.6 94.0 88.3 89.8 42.8 34.4  
 WT05 67.6 55.3 63.9 56.5 31.5 24.3  
 WT06 94.5 42.4 24.7 31.1 30.3 7.0  
Training NBMs on scarce data. For all 6 target WTs considered in 
our study, we first trained NBMs using only scarce target training data 
under varying scarcity scenarios. That is, we trained an NBM using 
1–8 weeks of training data and evaluated the resulting anomaly scores 
on the fixed test set in comparison to the ground truth. Our findings 
in Table  1 show that NBMs trained on limited training sets achieved 
comparably poor fault detection performance, with the mean F1-score 
generally decreasing as less training data becomes available. While a 
training set comprising 2 months of data achieved on average an F1-
score of 84.3% across all 6 target WTs, the mean score substantially 
decreased to 51.3% when only 2 weeks are considered, showing a 
strong drop in similarity of anomaly scores compared to the corre-
sponding NBM trained on a full training dataset. Limited data can 
lead to unrepresentative training sets with an insufficient coverage 
of samples from normal operational behavior. An example of repre-
sentative and unrepresentative training data is shown in Appendix  F. 
Thus, the autoencoder-based NBM becomes incapable of reconstructing 
8 
normal data at test time that was missing from the training set. Our 
results indicating that training NBMs under data scarcity can result in 
unreliable fault detection support the findings of e.g., [7,8].
Improving fault detection with domain adaptation. We employed 
domain adaptation techniques to overcome these limitations. We 
trained and evaluated our proposed domain mapping technique as well 
as fine-tuning as comparison benchmark to overcome these limitations. 
The achieved improvements in F1-score compared to training an NBM 
on scarce data only (i.e., baseline without domain adaptation) for each 
domain pair are presented in Table  2, further averaged by data scarcity 
degree. The absolute F1-scores are available in Table  A.4 in Appendix 
C. Both fine-tuning and our domain mapping network achieved an 
improvement in fault detection performance in scenarios with strong 
data scarcity, i.e., particularly in situations where the scarce NBM fails 
to achieve reliable fault detection.

As shown in Table  2, both domain adaptation methods yielded more 
similar anomaly scores, i.e., improved fault detection performance over 
training on scarce data alone in most domain pairs and across almost all 
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Table 2
Change in F1-score value compared to the respective NBM trained on scarce data only for all 28 domain pairs and data scarcity degrees.

2 months 6 weeks 1 month 3 weeks 2 weeks 1 week
Target Source FT Ours FT Ours FT Ours FT Ours FT Ours FT Ours

WT07 +0.1 −1.1 +3.9 +2.1 +0.0 +8.6 −1.3 −17.1 −3.1 +2.3 +8.3 +12.4
WT02 −32.2 −24.6 −7.2 +1.7 −5.3 +12.1 −4.1 +5.2 −4.2 +6.0 +6.0 +10.3
WT05 −5.8 −6.7 −3.7 +3.7 −3.8 +6.6 +0.7 +13.6 +1.8 +6.4 +8.9 +9.2WT01

WT04 −3.8 +1.7 −3.9 +5.8 +0.9 +6.6 −2.9 +16.4 −4.4 +11.8 +0.3 +12.1

WT01 +2.8 −27.7 +21.1 +2.0 +19.0 −9.0 +13.6 −3.7 −40.9 −31.1 −33.3 +6.7
WT06 −15.6 −6.1 +18.3 +6.4 +18.6 +14.6 +14.6 +16.8 −32.9 −8.9 −26.1 +26.9
WT05 +4.4 −14.3 +18.2 +1.8 +9.2 −0.2 +17.4 +5.2 +9.0 −12.4 +36.1 +26.3WT02

WT04 +7.0 −13.0 +21.3 +4.4 +7.3 +1.8 +18.3 +10.4 +7.0 −10.2 +30.9 +19.9

WT01 −48.6 +1.8 +2.8 +13.0 −7.9 +19.9 +38.4 +34.9 +14.5 +20.9 −17.4 +6.2
WT06 −41.5 −5.5 +4.6 +5.8 +2.2 +7.2 +36.8 +2.1 +10.1 +32.7 −16.7 +7.2
WT07 −31.4 +2.1 −2.1 +11.8 +14.4 −16.2 +45.7 +7.6 +23.6 +36.6 +20.3 +15.7
WT02 −31.4 −6.2 +5.1 +9.6 +21.6 −16.1 +35.3 +37.8 +13.8 +26.0 +6.5 +17.9
WT05 +4.2 −12.2 +16.1 +11.7 +12.0 +17.6 +40.5 +47.2 +36.1 +20.6 +56.3 +27.0

WT03

WT04 −3.0 −6.9 +16.0 +5.5 +9.9 +1.0 +43.3 +46.2 +33.2 +17.3 +30.6 +14.2

WT01 −12.7 −17.2 −23.1 −15.1 −9.5 −3.3 −22.5 −7.6 −0.5 +11.7 +2.4 +9.0
WT06 −6.2 −10.2 −8.3 −21.7 −7.3 −7.8 −25.6 −3.1 +2.5 +6.9 +7.9 +12.6
WT07 −4.0 −8.3 −1.7 −9.1 +1.6 −5.8 −6.5 −10.9 +17.6 +23.5 +22.9 +26.8
WT02 −4.1 −0.3 −12.9 −4.4 −0.5 +3.2 −7.1 −4.5 +20.5 +27.1 +18.0 +27.1

WT04

WT05 −0.9 +0.9 −2.2 −0.4 +4.5 +6.4 +2.3 +3.7 +44.5 +18.2 +59.2 +29.0

WT01 −2.5 −5.7 +9.6 −3.7 −10.1 −1.5 −10.1 −11.3 −5.5 +1.7 +7.6 −4.8
WT06 −1.8 +10.7 +8.2 +21.3 −9.1 +6.8 −6.5 +24.3 +2.6 +47.2 −11.2 +23.1
WT07 +19.8 +8.1 +28.2 +20.8 +4.9 +12.6 +12.6 +22.3 +32.9 +16.4 +36.5 +27.8
WT02 +19.8 +14.2 +31.2 +25.4 +19.3 +22.2 +20.1 +32.4 +40.2 +31.3 +25.1 +28.8

WT05

WT04 +6.1 +25.6 +10.2 +32.8 +6.9 +9.5 +11.8 +27.0 +51.0 +48.0 +26.9 +33.3

WT07 −27.2 −28.3 +16.8 +18.4 +16.1 +64.9 +5.2 +18.6 +7.7 +20.8 −0.7 +3.8
WT02 −30.8 −17.8 +18.2 +31.3 +17.8 +49.7 +8.2 +16.0 +2.3 +9.8 −1.0 −0.1
WT05 −19.6 +0.4 +0.5 +15.4 −4.0 +29.3 −12.8 +44.6 −10.8 +39.7 −0.9 −1.3WT06

WT04 −15.2 +0.4 +17.3 +34.1 +3.4 +47.5 −15.1 +44.8 −8.7 +48.6 −1.1 +0.0

−9.8 −5.2 +7.2 +8.2 +4.7 +10.3 +8.9 +15.0 +9.3 +16.8 +10.8 +15.2Average
[+−std.] [17.4] [12.2] [12.9] [13.6] [9.9] [18.9] [20.3] [19.1] [21.4] [19.2] [22.3] [11.0]
data scarcity degrees. Fine-tuning was able to improve the performance 
by increasing the F1-score on average by +4.7% points when 1 month 
of target training data was available and +9.3% with 2 weeks of data, 
showing improvements across all scarcity scenarios except 2 months. 
These results further suggest that fine-tuning can be employed to adapt 
knowledge embedded in the source domain NBM to a data-scarce target 
domain.

Notably, our proposed domain mapping approach outperformed 
fine-tuning across all considered training set sizes, especially in scenar-
ios with severe data scarcity. In the scenarios ranging from 1 week to 
1 month of data, our domain mapping approach achieved a substantial 
performance gain over not only the NBM trained on scarce data but 
consistently over fine-tuning, with an increase in mean F1 score by 
+10.3% points for 1 month and +16.8% for 2 weeks. Our domain 
mapping approach makes use of the entire source WT’s dataset to 
learn mappings and uses its reliable model for anomaly detection. Fine-
tuning, on the other hand, exclusively relies on only the trained source 
NBM parameters being adjusted by a scarce target training set, limiting 
its acquired knowledge of the domain shift. Our findings highlight the 
effectiveness and potential of our domain mapping method as an alter-
native approach to conventional fine-tuning. Our proposed technique 
can enable more reliable and earlier fault detection, for instance for 
newly installed wind turbines.
Performance decreases with abundant data. Conversely however, 
in scenarios with abundant data (e.g., 2 months), both fine-tuning 
and domain mapping showed limited improvements or even significant 
performance drops. A large decrease can particularly be observed when 
the scarce NBM already achieved comparably high F1-scores, indicating 
representative training data (e.g., target WT04 in Table  1). This sug-
gests that when enough data is available to train a reliable NBM, the 
benefits of these domain adaptation techniques may diminish. A drop 
in performance can likely be attributed to a loss of information through 
the fine-tuning and domain mapping operation, coupled with our hy-
perparameter optimization for both methods having been performed for 
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1 month of available data, which may result in suboptimal training with 
abundant data. That is, our domain adaptation methods were optimized 
to be more constrained. In principle, fine-tuning should be able to 
overfit on the target data (disregarding any source knowledge), thereby 
achieving the same performance as if it were a new model exclusively 
trained on target data. Equivalently, the content-consistency loss con-
straints of our domain mapping could be more relaxed, allowing our 
model to generate samples more freely when enough diverse samples 
are available. Such adjustments would require a priori information 
about the representativeness of the training set compared to the test 
set, which is however by definition unavailable at training time. More 
research is needed to identify and counteract the loss of information as 
well as to improve hyperparameter optimization to preemptively detect 
or mitigate performance decreases in these scenarios.
WT-specific differences in performance changes. Lastly, we note 
strong differences in performance across target WTs. These could 
be attributed to the randomness of the selected training set weeks 
(e.g., weather conditions, variety of operational states), test set char-
acteristics (e.g., number of faults), or general turbine behavior. Further 
research is needed to investigate these variations and to possibly adjust 
the network and hyperparameters to the specific characteristics of WTs. 
Furthermore, our findings show significant variations across WT pairs. 
A possible cause of performance differences may be, among other, 
that WT pairs can exhibit varying domain shifts. Thus, selecting suit-
able source-target pairs can be important. However, the fundamental 
unavailability of representative validation data impedes an informed 
pair selection. An exploration is needed to investigate and assess 
the suitability of WT pairs for domain mapping, which may involve 
e.g., a quantification of the domain shift. For certain domain pairs, 
fine-tuning may also retrospectively turn out to be a better solution 
compared to domain mapping. In some few other cases, both domain 
adaptation methods may even lead to a substantial drop in performance 
even with limited training data. Further investigations are required to 
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Fig. 6. Anomaly scores, i.e., reconstruction errors, of the target WT test set 
obtained from the representative NBM. The model-specific threshold is shown 
as a red dotted line, while time frames with logged incidents are marked by 
red shaded areas.

clearly identify these causes and for finding mitigation strategies. These 
variations may cause uncertainties regarding an appropriate method 
selection, as due to the inherent lack of knowledge about the test set, 
it remains unclear which approach to choose at training time.

5.2. Detailed analysis of a domain pair example

We present a detailed comparison of the fault detection performance 
across all methods. Results are shown for one specific domain pair with 
the source domain WT ‘‘WT07’’ and target WT ‘‘WT05’’ with 1 month 
of available training data. The performance gains for this domain pair 
represent approximately the average for this scarcity scenario.

5.2.1. NBM trained on representative data
To obtain our ground truth anomaly scores for the target WT test 

set, we trained an NBM on the full target training data, which contains 
measurements recorded over a span of more than 2 years (Appendix  D). 
We visualize the resulting anomaly scores, i.e., the NBM reconstruction 
errors, for the target WT test set in Fig.  6. As our dataset contains 
no fault labels, we cannot evaluate the model’s fault classification 
accuracy. However, we notice that the scores generally exceed the 
threshold during time frames when incidents were logged, yet not for 
all incidents. During normal operation, the scores tend to remain below 
the threshold, although certain short periods exhibit elevated scores 
(e.g., January 2024), which we cannot determine as false positives or 
identified but unlogged abnormal states. Thus, we focus our following 
comparisons instead on the similarity of the scores.

5.2.2. NBM trained on scarce data
An NBM was then trained on only 1 month of target training data 

preceding the identical test set. The anomaly scores of this model are vi-
sualized in Fig.  7. When comparing the threshold similarity, this model 
achieved an F1-score of 63.9% (Table  A.4). Notably, numerous anomaly 
scores falsely exceed the threshold compared to their counterpart in the 
ground truth NBM (e.g., January 2024), while scores during incidents 
largely match. As autoencoders learn normal behavior from the training 
set, this could indicate that normal operational states were missing in 
the limited training set, causing high reconstruction errors at test time 
and therefore falsely elevated anomaly scores. Overall, a significant 
decrease in similarity can be observed when only scarce training data 
is available.

5.2.3. Fine-tuning the source domain NBM
As a domain adaptation benchmark, an NBM was first trained on 

the abundant source training data (WT07), and then fine-tuned using 1 
month of target domain training data (WT05). Results are shown in 
Fig.  8. This model achieved an increase in F1-score to 68.8% (+4.9 
percentage points) compared to the scarce NBM. In particular, we 
notice a decrease in falsely elevated scores (for instance, October 2023) 
while anomaly scores generally remain elevated when they also are 
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Fig. 7. Anomaly scores of the always identical target WT test set obtained 
from the NBM trained on scarce training data.

Fig. 8. Anomaly scores of the target WT test set from the fine-tuned source 
NBM using scarce target training data.

Fig. 9. Anomaly scores of the target WT test set. The reconstruction errors are 
obtained from the pretrained source WT NBM using the mapped target test set 
data.

in the ground truth. Our results suggest that fine-tuning is capable 
of adjusting information embedded in the source domain NBM to the 
target domain, resulting in unseen normal data missing in the target 
WT to be still considered normal, enabling more reliable models when 
training data is lacking.

5.2.4. Domain mapping
Our mapping network was trained to map samples from the source 

WT to the scarce target WT and vice versa. After training was finished, 
the target-to-source model (𝐺𝑇𝑆 ) was used to map the target WT test set 
samples to the source domain. The mapped samples were subsequently 
evaluated with the source domain NBM to obtain anomaly scores, 
which are shown in Fig.  9. Our proposed technique achieved further 
performance gains over fine-tuning. The F1-score was significantly 
increased to 76.5% (+12.6), achieving the most similar anomaly scores 
compared to the ground truth.

This strong correspondence in anomaly scores first indicates that our 
mapping network generates mappings closely resembling the source 
WT, as reconstruction errors for normal samples remain below the 
threshold. Additionally, our results suggest that the network is success-
fully preserving the content, as anomalies are mapped to anomalous 
states (elevated scores). An example of a mapping using a target WT 
test set sample is illustrated in Fig.  10, showing preserved operational 
behavior, i.e., high and low power was mapped to a correspond-
ingly scaled high and low power output with consistent component 
temperature behavior.
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Fig. 10. Example of the domain mapping result. A sample from the target 
WT’s test set (left) is mapped by the trained network 𝐺𝑇𝑆 to the source domain, 
shown on the right.

6. Conclusion

This study investigated the application of generative domain adap-
tation, specifically domain mapping, to address the challenge of limited 
training data when using normal behavior models in wind turbine 
fault detection. NBMs require substantial normal operation data, which 
when missing can result in unreliable models. To address this challenge, 
we proposed a novel domain adaptation approach that leverages data 
from a data-rich source domain WT of a different wind farm. Our 
domain mapping technique transforms SCADA data from a data-scarce 
target domain WT to resemble data from a different WT with repre-
sentative training data. This mapping allows for the use of the source 
WT’s NBM for fault detection in the target WT despite limited data. 
We validated our method by conducting experiments using 28 different 
WT pairs across varying degrees of data scarcity (1 to 8 weeks). Our 
findings demonstrate the superior performance of generative domain 
adaptation compared to training models on limited data and conven-
tional fine-tuning, particularly when faced with severe data scarcity. 
Our results highlight the significant potential of domain mapping in 
achieving earlier and more reliable WT fault detection models when 
only scarce training data is available, for instance in newly installed 
wind farms.

Our study has several limitations which provide opportunities for 
future research. First, further exploration of time-series-based model 
architectures and frameworks, consistency losses, and generalizable 
hyperparameter optimization would be useful to further investigate 
the potential of domain mapping for WT fault detection. In our study, 
hyperparameter tuning was evaluated on the test set of one selected 
domain pair using 1 month of target training data. It is possible that 
certain types of WT pairs exhibiting varying domain shifts may re-
quire differently weighted loss constraints and models, for which more 
generalizable optimization techniques could be investigated. Moreover, 
performance differences between WT pairs indicate a potential benefit 
in appropriately selecting suitable source-target WTs, which suggests 
needed future investigations into e.g., a quantification of the domain 
shift to find appropriate criteria or methodologies. Our domain map-
ping network furthermore exhibits a significantly higher complexity 
and a computationally heavier and longer training procedure compared 
to fine-tuning, which should be considered for practical applications. 
While we validated our approach on a very comprehensive dataset com-
prising real operational data from numerous WTs from different wind 
farms, our experiments were limited to WTs of the same manufacturer 
and a selection of SCADA features. Further large-scale experiments with 
more versatile wind farms and WT types, as well as different SCADA 
f
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Table A.1
Architecture of the autoencoder-based NBMs used in our study.

Autoencoder model architecture
Input 11 channels x 72 datapoints
Block 1 Conv1d (32 filters, kernel size 7, stride 1, Mish [44]) x 2

MaxPool (kernel size 2)
GroupNorm [45] (1 group, 32 channels)

Block 2 Conv1d (32 filters, kernel size 5, stride 1, Mish) x 2
MaxPool (kernel size 2)
GroupNorm (1 group, 32 channels)

Bottleneck Flatten, FC (32 x 18, 72), FC (72, 8 x 18)
Block 3 Upsample (factor 2)

Conv1d (32 filters, kernel size 3, stride 1, Mish) x 2
GroupNorm (1 group, 32 channels)

Block 4 Upsample (factor 2)
Conv1d (32 filters, kernel size 3, stride 1, Mish) x 2
GroupNorm (1 group, 32 channels)

Block Out Conv1d (11 filters, kernel size 1, stride 1, linear)
Output 11 channels x 72 datapoints

ariables and systems, will be valuable to assess the generalizability of 
ur results to other manufacturers. Lastly, evaluating our method when 
ogs are available of various types of faults could provide insights into 
he limitations of mapping specific types of faults and lead to further 
mprovements.
Our exploratory work suggests a promising potential for further 

omain mapping applications. For WT fault detection, this includes 
nvestigating the use of different architectures and adjusted techniques 
o establish domain mapping as a novel and effective alternative to 
ine-tuning. The proposed technique moreover highlights a potential 
or applications beyond WT systems. Exploring its applicability to un-
upervised anomaly detection-based tasks under data scarcity of other 
reas, such as for photovoltaic systems, is an interesting area of future 
esearch to explore domain mapping for more accurate and reliable 
odels when faced with limited training data.
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ppendix A. Autoencoder-based NBM

All our autoencoder-based NBMs follow the model specifications 
utlined in Table  A.1, based on a model architecture search on a 
andomly chosen WT. Each NBM was trained using the RAdam [43] 
ptimizer with a learning rate of 0.003, minimizing the mean squared 
econstruction error between model input and autoencoder reconstruc-
ion. The models were trained using a batch size of 128 SCADA samples. 
raining was stopped once the reconstruction error on the validation 
et stopped improved for several data scarcity-dependent epochs (250 
or 2 weeks, 25 for full target data).

http://www.aventron.com
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Table A.2
Description of our discriminator model architecture.

Discriminator architecture
Input 11 channels x 72 datapoints
Block 1 Conv1d (128 filters, kernel size 5, stride 2, Mish)

GroupNorm (1 group, 128 channels)
Block 2 Conv1d (128 filters, kernel size 3, stride 2, Mish)

GroupNorm (1 group, 128 channels)
Block 3 Conv1d (256 filters, kernel size 3, stride 2, Mish)

GroupNorm (1 group, 256 channels)
Flatten

MLP FC (9 * 256, 1, linear)
Output 1 value

Table A.3
Description of our generator architecture using TCN-ResBlocks.
Generator Architecture
Input: 11 channels x 72 datapoints
TCN-ResBlock(64, 3, 1, False)
TCN-ResBlock(64, 3, 2, True)
TCN-ResBlock(64, 3, 4, True)
TCN-ResBlock(64, 3, 8, True)
TCN-ResBlock(32, 3, 16, True)
TCN-ResBlock(16, 3, 32, False)
1D Convolution (c = 11, k=1, d=1, stride=1, bias=True, linear)
Output: 11 channels x 72 datapoints

Appendix B. Domain mapping network

The used architecture for the domain mapping discriminators is 
outlined in Table  A.2. For the generators, we used a residual temporal 
convolutional network (TCN) approach [46]. Our non-causal architec-
ture consists of several residual TCN blocks, kernel size, dilation, and 
normalization, depicted in Fig.  A.1. The full generator is outlined in 
Table  A.3.

GAN-QP. We follow the GAN-QP formulation to train our generators 
and discriminators. Let 𝐺 be a generator, 𝑇  a discriminator, 𝑥𝑟 a real 
sample and 𝑥𝑓  a fake sample (in our case, a mapped sample). The 
GAN-QP loss is defined as [41]: 

𝑇 = argmax
𝑇

E(𝑥𝑟 ,𝑥𝑓 )∼𝑝(𝑥𝑟)𝑞(𝑥𝑓 )

[

𝑇 (𝑥𝑟) − 𝑇 (𝑥𝑓 ) −
(𝑇 (𝑥𝑟) − 𝑇 (𝑥𝑓 ))2

2𝜆𝑄𝑃 𝑑(𝑥𝑟, 𝑥𝑓 )

]

𝐺 = argmin
𝐺

E(𝑥𝑟 ,𝑥𝑓 )∼𝑝(𝑥𝑟)𝑞(𝑥𝑓 )
[

𝑇 (𝑥𝑟) − 𝑇 (𝑥𝑓 )
]

(5)

where in our study we use the Euclidean distance as 𝑑 and set 𝜆𝑄𝑃 = 1.

Training. Our domain mapping network was trained with a batch size 
of 128 using an Adam optimizer (𝛽1 = 0.5, 𝛽2 = 0.999, learning rate 
= 0.0002) for the generators and discriminators each. Early stopping 
was implemented to stop training at an optimal state and to prevent 
overfitting. We use a reconstruction error obtained from the source 
NBM, by mapping the target validation data to the source domain. 
As only normal data is used for training and validation, we expect 
the reconstruction error of mapped target-to-source data to be low, 
representing realistic source WT data familiar to the source NBM. A 
rising reconstruction error could indicate overfitting on training data 
and unrealistic sample generation, as the mapped validation data starts 
to resemble the source domain less. It should be noted that this value 
cannot be used for model selection and tuning, as it contains no 
information regarding the content preservation (e.g., mapping all target 
samples to the same normal source domain sample would result in 
a very low score). Training was stopped after 1000 batch iterations 
with no improvement of the early stopping score. Moreover, at eval-
uation time, we used an Exponential Moving Average (EMA) of the 
training weights for the generators, which improved training stability 
and performance (as investigated in [47]).
Anomaly Augmentation. The domain mapping network is trained 
to translate normal SCADA data resulting in the model inherently 
learning only the mapping relationships of normal data. During test 
time, when anomalous samples can be introduced, it may therefore lead 
12 
Fig. A.1. Structure of our TCN residual block, performing non-causal 1D 
convolutions with kernel size 𝑘, dilation 𝑑, and with 𝑐 channels. The final 
group normalization is optional when Norm is set. Based on [46].

to unwanted behavior in the sense that the mapping might ‘‘repair’’ 
anomalies or cause inconsistent mappings. We therefore add artificially 
anomalous data to the training set by duplicating each sample from 
the training batches with a random modification, namely by setting 
a random part of the 12 h (40%–100%) and channels of a random 
feature group (e.g., power) to zero. Further investigations are needed 
to determine more augmentation techniques. While we found this 
step to be critical for performance, adding a further random scaling 
augmentation did not improve results.
Hyperparameters. A source-target WT domain pair was randomly 
selected to search for a model architecture and optimal hyperparam-
eters. The target WT used for optimization (WT07) was subsequently 
excluded as possible target domain from the evaluation. We considered 
multiple candidates using a target domain scarcity of 1 month and 
evaluated the F1-score of the resulting threshold scores with ones from 
an NBM trained on the full representative target domain training data. 
The same architecture and hyperparameters were used for all other 
domain pairs, although it is questionable whether these remain optimal 
across different data scarcity degrees and domain shifts, i.e., different 
deviations between the source and target WT. Setting hyperparameters 
based on the domain distance is subject to future research.

The resulting full training procedure is described in Algorithm 1. For 
more detailed specifications we refer to our provided implementation.
Implementation. This work was implemented in PyTorch and trained 
using an NVIDIA GPU. Our code implementation is publicly available 
on GitHub https://github.com/EnergyWeatherAI/WT_Generative_Dom
ain_Adaptation.

Appendix C. Detailed results

See Table  A.4.

Appendix D. WT overview

See Fig.  A.2 and Table  A.5.
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Fig. A.2. Scatter plots of the mean power, wind speed, and rotor temperature of a subset from filtered training samples illustrating the differences across all 7 
WTs used in our experiments.

Fig. A.3. Density 2D-histograms with SCADA data of WT01. The top row shows the relationship between the rotor temperature and the rotor speed for the full 
training data (left column), for a scarcity scenario of 2 weeks of training data (middle column), and the filtered test set without incidents (right column). The 
bottom row visualizes the respective relationships between the wind speed and the stator temperature. We observe a visually very high similarity between the 
histograms of the full training data and the test set, i.e., the full training data appears to be representative of the WT’s operational states. On the other hand, the 
histograms based on scarce training data show noticeable deviations to the test set data. For instance, a narrower range and less variability for low temperatures 
and low rotor and wind speeds.

Energy and AI 22 (2025) 100626 
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Table A.4
Detailed F1-scores (in %) for all 28 domain pairs.
  Target Source 2 months 6 weeks 1 month 3 weeks 2 weeks 1 week
 Scarce FT Ours Scarce FT Ours Scarce FT Ours Scarce FT Ours Scarce FT Ours Scarce FT Ours

 
WT01

WT07

89.0

89.0 87.9

84.6

88.5 86.7

77.4

77.5 86.1

74.4

73.1 57.3

77.1

74.0 79.4

66.4

74.7 78.8 
 WT02 56.8 64.4 77.4 86.3 72.2 89.5 70.2 79.6 72.9 83.2 72.3 76.7 
 WT05 83.1 82.2 80.9 88.3 73.7 84.0 75.1 87.9 79.0 83.6 75.2 75.5 
 WT04 85.1 90.6 80.6 90.3 78.3 84.0 71.5 90.8 72.7 88.9 66.6 78.4 
 
WT02

WT01

77.8

80.6 50.0

62.6

83.7 64.6

65.3

84.3 56.3

60.3

73.9 56.6

73.6

32.7 42.5

35.2

1.9 41.8 
 WT06 62.2 71.7 80.9 69.0 84.0 80.0 74.9 77.1 40.7 64.7 9.1 62.1 
 WT05 82.1 63.5 80.8 64.3 74.5 65.2 77.7 65.5 82.6 61.2 71.3 61.4 
 WT04 84.7 64.8 83.9 67.0 72.7 67.1 78.6 70.7 80.7 63.4 66.0 55.1 
 

WT03

WT01

84.7

36.1 86.5

73.8

76.6 86.7

64.8

56.9 84.8

38.4

76.8 73.3

52.6

67.1 73.5

34.5

17.1 40.7 
 WT06 43.2 79.1 78.4 79.6 67.0 72.1 75.2 40.5 62.8 85.4 17.8 41.7 
 WT07 53.2 86.8 71.7 85.6 79.3 48.7 84.1 46.0 76.3 89.3 54.8 50.2 
 WT02 53.3 78.4 78.9 83.4 86.5 48.7 73.7 76.2 66.5 78.6 41.0 52.5 
 WT05 88.8 72.4 89.9 85.5 76.9 82.4 78.9 85.6 88.7 73.2 90.8 61.6 
 WT04 81.7 77.8 89.8 79.3 74.8 65.9 81.7 84.6 85.9 70.0 65.1 48.7 
 
WT04

WT01

92.6

79.8 75.4

94.0

70.9 78.8

88.3

78.8 85.0

89.8

67.4 82.3

42.8

42.3 54.5

34.4

36.8 43.4 
 WT06 86.3 82.3 85.7 72.3 81.0 80.5 64.3 86.7 45.3 49.7 42.3 47.0 
 WT07 88.6 84.3 92.3 84.9 89.9 82.5 83.3 78.9 60.4 66.3 57.3 61.3 
 WT02 88.5 92.3 81.1 89.6 87.8 91.5 82.8 85.4 63.3 69.9 52.4 61.5 
 WT05 91.7 93.4 91.8 93.5 92.8 94.7 92.1 93.5 87.3 61.1 93.6 63.4 
 
WT05

WT01

67.6

65.1 61.9

55.3

64.9 51.6

63.9

53.8 62.4

56.5

46.4 45.2

31.5

26.0 33.2

24.3

31.9 19.5 
 WT06 65.8 78.3 63.5 76.6 54.8 70.7 50.0 80.8 34.1 78.7 13.1 47.4 
 WT07 87.4 75.7 83.5 76.1 68.8 76.5 69.0 78.8 64.5 47.9 60.8 52.1 
 WT02 87.4 81.8 86.5 80.7 83.2 86.1 76.5 88.9 71.8 62.9 49.4 53.1 
 WT04 73.7 93.2 65.5 88.1 70.7 73.4 68.2 83.5 82.5 79.5 51.2 57.6 
 
WT06

WT07

94.5

67.3 66.2

42.4

59.1 60.8

24.7

40.8 89.7

31.1

36.3 49.6

30.3

38.0 51.0

7.0

6.4 10.9 
 WT02 63.7 76.7 60.5 73.6 42.5 74.5 39.3 47.0 32.5 40.1 6.1 6.9  
 WT05 74.9 94.9 42.9 57.8 20.7 54.0 18.3 75.7 19.5 70.0 6.2 5.7  
 WT04 79.4 94.9 59.7 76.5 28.1 72.3 15.9 75.8 21.5 78.9 6.0 7.1  
Table A.5
Data specifications of the 7 WTs used in our work. The number of days refers to the range between the day of the first sample and the day of the last sample, 
therefore including days where no (valid) measurements were taken.
 WT_ID Location Rated power [KW] Training & Validation 

Set 
(filtered, without 
scarcity)

Test Set
(unfiltered, fixed)

 # days # 12h-samples # days # 12h-samples .. of which contain incidents
 WT01 Onshore 800 899 50574 387 48736 9049 (18.6%)  
 WT02 Onshore 3000 877 58403 387 45593 19630 (43.1%)  
 WT03 Onshore 2350 706 66407 323 43309 10102 (23.3%)  
 WT04 Onshore 2050 831 70191 355 35573 3275 (9.2%)  
 WT05 Onshore 2300 827 70922 354 37308 788 (2.1%)  
 WT06 Onshore 800 798 70197 341 21187 121 (0.6%)  
 WT07 Onshore 3050 830 66117 355 43107 7775 (18.0%)  
Table A.6
Performance in similarity (F1-score) of mapped target test set data evaluated on the source WT’s NBM. A source WT was randomly 
selected for each target WT. 2 weeks of target training data were available during training.
Ours: Proposed model performance. 0 =  = 0: Without physics-informed content preservation. +𝑐𝑦𝑐 = 0: Additionally no 
cycle-consistency loss. only 𝐺𝑇𝑆 : One-sided target-to-source mapping without any content preservation losses, following [19].
 Source WT Target WT Ours 0 =  = 0 +𝑐𝑦𝑐 = 0 + only target → source (𝐺𝑇𝑆 ). 
 WT05 WT01 83.6 74.7 66.7 49.6  
 WT04 WT02 63.4 60.4 50.2 49.2  
 WT06 WT03 85.4 73.6 48.3 40.1  
 WT07 WT04 66.3 67.5 49.3 60.8  
 WT04 WT05 79.5 39.8 21.4 16.4  
 WT05 WT06 70.0 51.8 17.5 6.6  
Appendix E. Ablation studies

We investigated the effects of our content preservation losses and 
our model framework. Our experiments were restricted to the scarcity 
setting of 2 weeks of available target training data and to one randomly 
chosen source WT for each target WT. Results presented in Table 
A.6 first show that without our two physics-informed loss functions 
(0,), the models perform up to significantly worse or at best 
roughly equal (minimal improvement in one pair). Additionally setting 
the cycle-consistency loss also to zero (i.e., training without a Cycle-
GAN framework) deteriorates the performance further, with noticeable 
14 
drops in performance for all pairs. Finally, we show that our model 
outperforms in all cases a setting in which we furthermore only learn a 
mapping from target to source WT, i.e., we only train the generator 𝐺𝑇𝑆
and corresponding discriminator. This setting in principle resembles 
the proposed model by Jin et al. [19], which employs a one-sided 
mapping approach without content preservation losses. However, it 
should be noted that there were substantial differences in our tasks 
that make a direct replication and comparison limited. Nonetheless, in 
summary, our results suggest a strong benefit of employing a (bidirec-
tional) CycleGAN-based approach with our proposed additional content 
preservation losses for our presented task.
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Algorithm 1 Domain mapping network training algorithm.
Require: Batch size 𝑚, generators 𝐺𝑆𝑇 , 𝐺𝑇𝑆 and discriminators 

𝐷𝑖𝑠𝑐𝑆 , 𝐷𝑖𝑠𝑐𝑇 , loss weight hyperparameters 𝜆𝑐𝑦𝑐 , 𝜆0, 𝜆𝑅. In our 
experiments we set 𝜆𝑐𝑦𝑐 = 30, 𝜆0 = 0.5, 𝜆𝑅 = 0.1.

1: while Training not interrupted by early stopping do
2:  for source domain batch 𝑏𝑠 and target domain batch 𝑏𝑡 do

Generator updates
3:  Map batches to corresponding other domain: 𝑏𝑠𝑡 =

𝐺𝑆𝑇 (𝑏𝑠), 𝑏𝑡𝑠 = 𝐺𝑇𝑆 (𝑏𝑡)
4:  Map batches back to original domain: 𝑏𝑠𝑡𝑠 = 𝐺𝑇𝑆 (𝑏𝑠𝑡), 𝑏𝑡𝑠𝑡 =

𝐺𝑆𝑇 (𝑏𝑡𝑠)
5:  𝐺𝐴𝑁𝑆𝑇

← 𝐺𝐴𝑁𝑄𝑃
(𝑏𝑡, 𝑏𝑠𝑡)

6:  𝐺𝐴𝑁𝑇𝑆
← 𝐺𝐴𝑁𝑄𝑃

(𝑏𝑠, 𝑏𝑡𝑠)
7:  𝐺𝐴𝑁 ← 𝐺𝐴𝑁𝑆𝑇

+ 𝐺𝐴𝑁𝑇𝑆
+ 𝜆𝑐𝑦𝑐𝑐𝑦𝑐 + 𝜆00 + 𝜆𝑅𝑅

8:  Artificially corrupt batches 𝑏𝑡 and 𝑏𝑠; calculate and add 
𝜆𝑐𝑦𝑐𝑐𝑦𝑐 to 𝐺𝐴𝑁

9:  Update weights 𝐰𝑆𝑇 ,𝐰𝑇𝑆 of 𝐺𝑆𝑇 , 𝐺𝑇𝑆 by descending: 
𝐰𝑇𝑆 ,𝐰𝑆𝑇 ← Adam(∇𝐰𝑇𝑆 ,𝐰𝑆𝑇

𝐺𝐴𝑁 )
Discriminator updates

10:  Sample new batches 𝑏𝑠 and 𝑏𝑡
11:  Map batches to corresponding other domain: 𝑏𝑠𝑡 =

𝐺𝑆𝑇 (𝑏𝑠), 𝑏𝑡𝑠 = 𝐺𝑇𝑆 (𝑏𝑡)
12:  𝐷𝑖𝑠𝑐𝑆 ← 𝐷𝑖𝑠𝑐𝑄𝑃

(𝑏𝑠, 𝑏𝑡𝑠)
13:  𝐷𝑖𝑠𝑐𝑇 ← 𝐷𝑖𝑠𝑐𝑄𝑃

(𝑏𝑡, 𝑏𝑠𝑡)
14:  𝐷𝑖𝑠𝑐 ← 𝐷𝑖𝑠𝑐𝑆 + 𝐷𝑖𝑠𝑐𝑇
15:  Update weights 𝐰𝑆 ,𝐰𝑇  of 𝐷𝑖𝑠𝑐𝑆 , 𝐷𝑖𝑠𝑐𝑇  by descending: 

𝐰𝑆 ,𝐰𝑇 ← Adam(∇𝐰𝑆 ,𝐰𝑇
𝐷𝑖𝑠𝑐 )

16:  end for
17: end while

Appendix F. Representative training data

See Fig.  A.3.

Data availability

The authors do not have permission to share data. Our code imple-
mentation is publicly available.
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