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geboren te Dej, Roemenië.
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2009 január, Delft

v



vi



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis focus and contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Fuzzy observers 7

2 TS fuzzy systems and observers 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dynamic TS fuzzy models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Stability conditions for TS fuzzy systems . . . . . . . . . . . . . . . . . . . 11

2.4 Fuzzy observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Case 1: State-independent scheduling vector . . . . . . . . . . . . . 17

2.4.2 Case 2: State-dependent scheduling vector . . . . . . . . . . . . . . 18

2.4.3 Design using LMI regions . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 21

3 Cascaded observers 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Stability of cascaded dynamic systems . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Partitioning a nonlinear system . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Stability of cascaded systems . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Cascaded TS fuzzy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Stability of cascaded fuzzy systems . . . . . . . . . . . . . . . . . . 30

3.3.2 Cascaded fuzzy observers . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Example for cascaded observer design . . . . . . . . . . . . . . . . . 39

3.4 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 42

4 Distributed observers 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Decentralized stability analysis of fuzzy systems . . . . . . . . . . . . . . . 46

4.3 Distributed observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



4.3.2 State-independent scheduling vector . . . . . . . . . . . . . . . . . . 53

4.3.3 State-dependent scheduling vector . . . . . . . . . . . . . . . . . . . 57

4.4 Example of decentralized observer design . . . . . . . . . . . . . . . . . . . 61

4.5 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 65

5 Adaptive observers 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Polynomial unknown inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Bound on errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Estimation of unmodeled dynamics . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 85

II Observers for stochastic systems 87

6 Stochastic systems and observers 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Kalman filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Linear Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.4 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.5 Properties and convergence issues . . . . . . . . . . . . . . . . . . . 96

6.3 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 100

7 Cascaded Kalman filters 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Distributed Kalman filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Cascaded KFs in open-loop . . . . . . . . . . . . . . . . . . . . . . 105

7.3.2 Cascaded KFs in closed-loop . . . . . . . . . . . . . . . . . . . . . . 110

7.4 A multi-robot setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 116

8 Case studies 119

8.1 Estimation of the overflow losses in a hopper dredger . . . . . . . . . . . . . 119

8.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1.2 Dynamic sedimentation model . . . . . . . . . . . . . . . . . . . . . 120

8.1.3 The estimation problem . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1.4 Results for simulated data . . . . . . . . . . . . . . . . . . . . . . . 124

8.1.5 Results for measured data . . . . . . . . . . . . . . . . . . . . . . . 128

8.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 State estimation for a water treatment plant . . . . . . . . . . . . . . . . . . 131

8.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



8.2.2 The water treatment plant . . . . . . . . . . . . . . . . . . . . . . . 132

8.2.3 The estimation problem . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.4 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 139

9 Conclusions and future research directions 141

9.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Open issues and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3.1 Open issues and future research directions . . . . . . . . . . . . . . . 143

9.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendices 147

A Stability criteria 147

B Obtaining Takagi-Sugeno models by linearization 149

C Schur complements 151

Bibliography 153

Glossary 163

Summary 167

Samenvatting 171

Curriculum vitae 175

ix



x



Chapter 1

Introduction

This chapter motivates the need for designing observers and introduces the type of nonlinear

dynamic systems used in this thesis. Next, the contributions of the thesis are described. The

chapter closes with an outline of the thesis.

1.1 Motivation

In order to understand how a system works, one needs to have information on certain impor-

tant quantities associated with the system. Many problems in decision making, monitoring,

and control require the knowledge of the variables, i.e., states and parameters of the process

involved. In practical situations, measuring all these quantities may not be possible due to

technical or economical reasons. Therefore, estimation of states and parameters in dynamic

systems is an important prerequisite for safe and economical process operations. Estimation

is an integral part in applications such as process monitoring, fault detection, and process

optimization. Moreover, any state feedback control design requires the knowledge of state

variables. Therefore, it is necessary to estimate the state variables using an observer from the

information available.

Observers use the plant input and output signals to generate an estimate of the plants

state, which may be then further employed, for instance in control. Observers can also be

used to augment or to replace sensors in a control system. Observers were first proposed and

developed by Luenberger in the sixties (Luenberger, 1966). Since the early developments,

observers for linear and nonlinear plants with both known and unknown inputs have been

developed (Saif and Guan, 1992; Ruiz Vargas and Hemerly, 2001; Bergsten et al., 2001;

Welch and Bishop, 2002; Huang and Dey, 2005; Hyun et al., 2006; Besançon, 2006; Priscoli

et al., 2006).

In general, the estimation of states and possibly parameters is based on a dynamic system

model and a sequence of measurements. For such a purpose, dynamic systems are usually

modeled in the state space framework, using a state transition model, which describes the

evolution of the states over time, and a measurement model, which relates the measurement

to the states. In general, the model of the system is not accurate. Moreover, due to tech-

nical limitations, the actuators and sensors, and therefore the measurements are not precise.

Therefore, the models are uncertain, or “corrupted by noise”.
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CHAPTER 1. INTRODUCTION

In most cases, the noise affecting the actuators, states and/or measurements is not consid-

ered significant and is not taken into consideration when analyzing the system or designing

an observer. In such cases, it is considered that the system is deterministic and the following

description1 of the system is used:

ẋ(t) = f(x(t),u(t),θ(t))

y(t) = h(x(t),u(t),µ(t))
(1.1)

in continuous time, and
xk = f(xk−1,uk−1,θk−1)

yk = h(xk,uk,µk)
(1.2)

in discrete-time, where: k denotes the time step, f is the state transition function, describing

the evolution of the states over time, h is the measurement function, relating the measure-

ments to the states, x is the vector of the state variables, u is the vector of the input or control

variables, θ and µ are unknown/uncertain parameters, and y denotes the measurement vector.

If the uncertainty is significant, it may be included in the description of the system evolu-

tion:
ẋ(t) = f(x(t),u(t),θ(t),v(t))

y(t) = h(x(t),u(t),µ(t),η(t))
(1.3)

in continuous time2 and

xk = f(xk−1,uk−1,θk−1, vk−1)

yk = h(xk,uk,µk,ηk)
(1.4)

in discrete time, where vk−1 represents the state transition noise and ηk represents the mea-

surement noise.

A probabilistic formulation of the above model may also be used, that is characterized by

the probability distribution functions (PDFs)

p(xk|xk−1,uk−1,θk−1)

p(yk|xk,uk−1,µk)
(1.5)

where p(xk|xk−1,uk−1,θk−1) represents the probability of the system to transition to the

state xk, given that at the previous time step k − 1 the state vector was xk−1, the input

uk−1 was applied and the parameters were θk−1. Similarly, p(yk|xk,uk−1,µk) represents

the probability of receiving the measurement yk given that the current state is xk, the input

applied was uk−1 and the parameters are µk.

Given a state space model, the problem of state estimation arises as soon as the measured

output does not coincide with the whole state. The first step in designing an observer is to

determine whether the system is observable, i.e., whether the variables of interest can be

uniquely determined based on the available model. Unlike for linear systems, there is no

1In the sequel, for the ease of notation, the explicit time dependence in case of continuous-time systems is

omitted.
2A formally correct way of writing the state equation would be

dx = f(x(t), u(t), θ(t), dv, dt)

2



1.2 THESIS FOCUS AND CONTRIBUTIONS

systematic procedure to design a state observer for a given nonlinear model. Solutions exist

for various cases (Mohler and Bugnon, 1989; Baz, 1992; Julier and Uhlmann, 1997; Aldeen

et al., 1998; Bergsten, 2001; Vadigepalli and Doyle, 2003b; Besançon, 2006). The problem

becomes more difficult when some parameters in the model are not known exactly either.

In this thesis, in order to design observers for deterministic nonlinear systems, systems

represented by Takagi-Sugeno3 (TS) fuzzy models are used, i.e., systems of the form:

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =

m∑

i=1

wi(z)(Cix + di)

(1.6)

where m is the number of local models, Ai, Bi, Ci, are the matrices and ai and di are the

biases of the ith local model, z is the vector of the scheduling variables, which may depend on

the states, inputs, measurements, or other exogenous variables, and wi(z), i = 1, 2, . . . , m
are normalized membership functions, i.e., wi(z) ≥ 0 and

∑m
i=1 wi(z) = 1.

Such a model presents several advantages. The TS model is a universal approximator

(Fantuzzi and Rovatti, 1996), and many nonlinear systems can be exactly represented in a

compact set of state variables as such (Ohtake et al., 2001). Moreover, (1.6) is the convex

combination of local affine models. In addition, many already available stability and de-

sign conditions are formulated as linear matrix inequalities (Tanaka and Wang, 1997; Tanaka

et al., 1998a), for which efficient algorithms exist that test their feasibility. However, the di-

mension of the LMI problem may be exponential in the number of the rules. For distributed,

large-scale systems such an approach may be computationally unfeasible. Also most existing

conditions pertain only the case when the structure and the local models of the fuzzy sys-

tem are fixed. If the local models change in time, or if external variables other than those

represented in the scheduling vector influence the system, different conditions need to be

developed.

1.2 Thesis focus and contributions

The objective of this thesis was to develop efficient observer design methods for nonlinear

systems. Two types of systems are considered: deterministic nonlinear systems, represented

by continuous time Takagi-Sugeno (TS) fuzzy models, and discrete time stochastic systems.

For a large-scale or time-varying system, the design and tuning of an observer may be com-

plicated and involve large computational costs. Therefore, before designing an observer, we

consider the structure of the system analyzed. For TS systems, three structures are investi-

gated: when the system is in cascaded form, when the system is distributed, and when the

system is affected by unknown disturbances. For stochastic systems, the case when the sys-

tem is in cascaded form is considered. The design of cascaded Kalman filters is investigated

from a theoretical point of view and the combination of different estimation methods is stud-

ied on application examples. This section motivates and describes our approaches, together

with our main contributions.

3Note, that the equations are only a compact mathematical representation corresponding to a set of rules.
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CHAPTER 1. INTRODUCTION

Cascaded TS observers

Many physical systems, such as power system, material processing systems, communi-

cation and transportation networks are composed of interconnected lower-dimensional sub-

systems. An important class of these systems can be represented as a cascade of subsys-

tems. If these subsystems are linear, then their stability implies the stability of the whole

system. However, this property does not hold in general for nonlinear systems. Therefore, we

study the cascade of nonlinear systems represented by TS fuzzy models. We prove that also

for cascaded TS systems, the stability of the subsystems imply the stability of the cascade.

Therefore, the stability analysis of a cascaded TS system may be performed by analyzing the

individual subsystems. We also extend this approach to observer design. A stable observer

can be obtained by designing independently observers for the subsystems. We also prove

that such a design does not lead to loss of performance in the terms of the estimation error

decay-rate.

Distributed TS observers

In many cases, large-scale systems are not cascaded, but distributed, i.e., the influence

among the subsystems is not in one way only. In addition, the structure is often not fixed, i.e.,

subsystems may be added or removed. For such systems, decentralized analysis and design

presents several advantages, such as flexibility and easier analysis. Therefore, we consider

the stability analysis and observer design for distributed systems, where each subsystem is

represented by a TS fuzzy model. We analyze the stability of the overall TS system based on

the stability of the subsystems, allowing that new subsystems may be added online. When

the structure of the system is not fixed, the influence of the interconnection terms due to the

addition of a new subsystem is not known before the subsystem is actually added. Therefore,

the newly added subsystem should not influence the stability of the overall system. Also, if a

subsytem that was added is removed, the stability of the remaining system is maintained. The

approach is extended to observer design. We assume that a fuzzy observer is already designed

for an existing subsystem. When a new subsystem, together with the interconnection terms is

added, a new observer is designed only for this subsystem. Therefore, the observers are

designed sequentially for the subsystems. If a subsystem is removed, the corresponding

observer is removed with it. The advantage of this approach is that the observers that have

already been designed do not need to be altered.

Adaptive observers

Adaptive observers are observers that simultaneously estimate the states and unknown

inputs or parameters of a system. The design of observers in the presence of unknown inputs

is an important problem, since in many cases not all inputs are known, and the unknown

inputs may represent effects of actuator or plant component failures. Therefore, we consider

TS systems that are affected by unknown inputs. Two types of inputs are considered: model

mismatch and time-varying disturbances, which can be represented as or approximated by

polynomial functions of time. We design observers that simultaneously estimate both the

states and unknown inputs. The observer is designed based on the known part of the fuzzy

model. Conditions for the asymptotic convergence of the observer are presented and the

design guarantees an ultimate bound on the error signal.

4



1.3 THESIS OUTLINE

Cascaded Kalman filters

In many applications, in order to efficiently analyze the process or to efficiently design

observers, one also has to consider the noise that is affecting the states and/or measurements.

In such cases, probabilistic estimation methods have to be used. The most well-known and

frequently used of these are the Kalman filter (KF), its nonlinear variants, and particle filters

(PFs). However, for large-scale system, in particular when subsystems are added online,

the application of these methods is time-consuming. We consider combinations of these

estimators for stochastic systems that are cascades of subsystems. We compare cascaded and

centralized KFs both from a theoretical point of view and on simulation examples.

Cascaded stochastic state estimation

We compare cascaded and centralized stochastic observers on two real-world applica-

tions. First, we study the performance of the combination of Unscented KF and PF in a cas-

caded setting, in order to obtain a better estimate of the overflow losses in a hopper-dredger.

In the second application, we use cascaded PFs to estimate the model parameters in a wa-

ter treatment plant. In both cases, the cascaded filters are easier to tune and obtain better

estimation results than a centralized filter, with reduced computational costs.

1.3 Thesis outline

Figure 1.1: A roadmap of the thesis.

Figure 1.1 presents a graphical roadmap depicting the organization of this thesis. The

thesis consists of two main parts: Part 1: Fuzzy observers and Part 2: Observers for stochastic

5



CHAPTER 1. INTRODUCTION

systems. The first part consists of Chapters 2–5 and the second part of Chapters 6–8. In each

part, the first chapter, i.e., Chapter 2 and Chapter 6, respectively, is used to introduce the

necessary notations and background. In particular, Chapter 2 introduces the Takagi-Sugeno

fuzzy system that is used throughout the first part of the thesis, presents classical stability and

observer design conditions, and illustrates these conditions on examples. Chapter 6 presents

the stochastic state estimation methods used in the second part of the thesis, namely the

Kalman filter, its nonlinear variants, and particle filters.

The subsequent chapters of each part detail the contributions of this thesis. Chapter 3

presents stability analysis and observer design methods for cascaded TS systems. Chapter 4

extends the conditions obtained for cascaded systems to the analysis and observer design of

distributed TS systems. The last chapter of Part 1, Chapter 5 considers observer design for

TS systems that are influenced by unknown inputs.

The second part of the thesis considers stochastic state estimation in the cascaded set-

ting. Chapter 7 compares cascaded and centralized Kalman filters. Chapter 8 presents two

applications in which cascaded stochastic estimators are used.

Chapter 9 contains the conclusions and ideas for future research.

Three appendices are included at the end of this thesis. Appendix A presents stability

conditions for nonlinear systems, and is useful to be read before Chapter 2. Appendix B

describes how the TS models are obtained from nonlinear models through linearization in the

examples of Chapters 3–5. Appendix C introduces the Schur complement that is frequently

used in Chapter 4.

6



Part I

Fuzzy observers
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Chapter 2

TS fuzzy systems and observers

This chapter presents the continuous-time dynamic Takagi-Sugeno (TS) fuzzy system that

will be employed throughout the first part of the thesis. Conditions for the stability analysis,

derived from the direct Lyapunov approach are presented and the design of Thau-Luenberger

type fuzzy observers is discussed.

2.1 Introduction

Traditionally, the class of linear, time-invariant systems have dominated the systems and

control field. The linearity and time-invariance make these types of systems easy to analyze

and design controllers or observers for them. The disadvantage is that such systems fail to

describe nonlinear systems globally. An accurate approximation of a nonlinear system can

only be expected in the vicinity of an equilibrium point. A large class of nonlinear systems

can be well approximated by TS fuzzy models (Takagi and Sugeno, 1985).

The TS fuzzy model consists of a fuzzy rule base. The rule antecedents partition a given

subset of the model variables into fuzzy regions. The consequent of each rule is usually a

linear or affine model, valid locally in the corresponding region.

Although the local models are often chosen linear or affine, the stability of these local

models does not ensure the stability of the overall fuzzy model. Therefore, several stability

conditions have been developed for TS fuzzy systems, most of them relying on the feasibility

of an associated system of linear matrix inequalities (LMIs) (Tanaka et al., 1998a; Johansson

et al., 1999; Bergsten et al., 2001).

In most cases, not all the states of interest of a dynamic system can be measured and

therefore, observers need to be designed. A generic method for the design of an observer valid

for all types of nonlinear systems has not been found yet. However, several types of observers

have been developed for TS fuzzy systems, among which: fuzzy Thau-Luenberger observers

(Tanaka and Wang, 1997; Tanaka et al., 1998a,c), reduced-order observers (Bergsten et al.,

2001, 2002), and sliding-mode observers (Palm and Bergsten, 2000). In general, the design

methods for observers also lead to the feasibility of the associated LMIs.

9



CHAPTER 2. TS FUZZY SYSTEMS AND OBSERVERS

2.2 Dynamic TS fuzzy models

The TS fuzzy model, originally proposed by Takagi and Sugeno (1985) is composed of an

if-then rule base that partitions a space into fuzzy regions called antecedents. The consequent

of each rule is a simple functional expression. A rule can be described as follows:

If z1 is F i
1 and ... and zr is F i

r then yi = Fi(x)

where the vector z stands for the premise variables and F j
i are the antecedent fuzzy sets.

The premise variable zi belongs to a fuzzy set j with a truth value given by the membership

function ηij : R → [0, 1]. Note that the vector of the premise variables z may depend on

the variables x, y, or on other exogenous variables. The truth value for the entire rule is

determined based on the individual premise variables. Frequently used conjunction operators

are min and the algebraic product (Kruse et al., 1994):

hi(z) =
r∏

j=1

ηij(zi)

This truth value is usually normalized, i.e.,

wi(z) =
hi(z)∑m

j=1 hj(z)

assuming that
∑m

j=1 hj(z) 6= 0 and m is the number of the rules. In the remainder of this

thesis, wi(z) is referred to as the normalized membership function. Using wi(z), the output

of the model, y is expressed as a function of the variables x and z as follows

y =

m∑

i=1

wi(z)Fi(x) (2.1)

In this thesis, only TS models in the context of dynamic systems are considered. There-

fore let a dynamical system be given as:

ẋ = f(t,x,u,θ)

y = g(t,x,u,µ)

where f and g are functions, x ∈ Rnx is the state vector, u ∈ Rnu is the input vector,

y ∈ Rny is the measurement vector, t denotes the time, and θ and µ are parameter vectors.

A fuzzy system that approximates the above nonlinear system can be expressed as a set of

fuzzy rules of the following form:

If z1 is F i
1 and ... and zr is F i

r then

ẋi = f̂ i(t,x,u,θ)

yi = ĝi(t,x,u,µ)

Using (2.1), this leads to

ẋ =
m∑

i=1

wi(z)f̂ i(t,x,u,θ)

y =

m∑

i=1

wi(z)ĝi(t,x,u,µ)

10



2.3 STABILITY CONDITIONS FOR TS FUZZY SYSTEMS

where the consequents f̂ i and ĝi are less complex than the initial nonlinear functions f and g.

In the general case, f̂ i(t,x,u,θ) and ĝi(t,x,u,µ) can be non-linear, time varying func-

tions. However, in this thesis only linear or affine dynamic consequents are considered, i.e.,

TS systems of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu)

y =

m∑

i=1

wi(z)Cix

or

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =

m∑

i=1

wi(z)(Cix + di)

where m is the number of rules, Ai, Bi, Ci, ai, di are the matrices and biases of the ith local

model. The vector z represents the scheduling variables, which may depend on the states,

inputs, measurements, or other exogenous variables. In this thesis, for observer design, two

cases are considered: 1) the vector z depends only on measured variables (including input,

outputs and exogenous measured variables) and 2) z is a function of the state variables and

possibly also other, measured variables. The membership functions wi(z), i = 1, 2, . . . , m
are normalized, i.e., wi(z) ≥ 0 and

∑m
i=1 wi(z) = 1. Note that due to the normalized

membership functions, the linear (affine) dynamic TS model is in fact a convex combination

of local linear (affine) models, which facilitates the stability analysis.

Such models have been proven to be able to approximate on a compact set of variables

any nonlinear function to an arbitrary degree of accuracy (Fantuzzi and Rovatti, 1996).

2.3 Stability conditions for TS fuzzy systems

This section presents stability conditions for autonomous TS fuzzy systems:

ẋ =

m∑

i=1

wi(z)Aix (2.2)

where Ai, i = 1, 2, . . . , m represents the ith local linear model, wi(z) is the corresponding

normalized membership function and z the vector of the scheduling parameters. System (2.2)

can also be regarded as a linear parameter varying (LPV) system:

ẋ = A(z)x (2.3)

with A(z) =
∑m

i=1 wi(z)Ai.

Note that due to the nonlinearity in the membership functions, the stability of the local

models Ai, i = 1, 2, . . . , m does not imply the stability of the system (2.2).

Example 2.1 Consider the following two-rule fuzzy system:

If z is low then ẋ1 = A1x

11
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If z is high then ẋ1 = A2x

with A1 =

(
−3 1
0 −2

)
, A2 =

(
−2 0
16 −1

)
, z an exogenous measured scalar variable,

w1(z), w2(z) : [−1, 1] → [0, 1], w1(z) = −0.5z + 0.5 and w2(z) = 1 − w1(z).

Although both local models are stable, the fuzzy system is not stable. It can be easily seen

that for instance for z = 0, the system becomes ẋ = Ax, with A =

(
−2.5 0.5

8 −1.5

)
, which

has a positive eigenvalue 0.12.

Several conditions to verify the stability of a fuzzy system have been derived based on

Lyapunov’s direct method. These conditions in general rely on the feasibility of an associated

system of linear matrix inequalities (LMIs). Since these LMIs in general involve symmetric

matrices, in the sequence, H(·) denotes the symmetric part of a matrix, i.e., H(A) = A+AT .

Also, I denotes the identity matrix of appropriate dimensions. All computations in this thesis

have been performed using Matlab. For solving LMIs, yalmip’s Löfberg (2004) sedumi solver

has been used.

A well-known and frequently used stability condition for TS systems is formulated below

(Tanaka et al., 1998a).

Theorem 2.1 System (2.2) is exponentially stable if there exist P = PT > 0 so that

H(PAi) < 0, for i = 1, 2, . . . , m. �

The proof follows immediately using a common quadratic Lyapunov function of the form

V = xT Px and imposing a negative definite derivative.

Example 2.2 Consider the same fuzzy system as in Example 2.1, but with the second local

model changed to A2 =

(
−2 0
5 −1

)
and the same membership functions.

Although both local models are stable, in order to prove the stability of the fuzzy system,

one has to find P = PT > 0 so that the LMIs

H(PA1) < 0

H(PA2) < 0

are satisfied. The Lyapunov function is V = xT Px. A solution of the LMIs is P =(
12.5 2.26
2.26 3.46

)
, and therefore the system is stable.

Conditions on the convergence rate of system (2.2) were also derived (Tanaka et al.,

1998a) from Theorem 2.1:

Theorem 2.2 The convergence rate of system (2.2) is at least α, if there exists P = PT > 0,

so that

H(PAi) + 2αP < 0 i = 1, 2, . . . , m
�

12
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Example 2.3 Consider the fuzzy system in Example 2.2. An approximation of the decay

rate for this system can be obtained by solving the generalized eigenvalue problem: find

P = PT > 0, maximize α so that

H(PA1 + αP ) < 0

H(PA2 + αP ) < 0

The solution yields α = 0.65.

Stability conditions similar to those of Theorem 2.1 can be used used if the system is sub-

jected to disturbances bounded by the state. Consider the following perturbed fuzzy system:

ẋ =

m∑

i=1

wi(z)Aix + Df(t,x) (2.4)

where D is a perturbation distribution matrix and f is Lipschitz, i.e., there exists µ > 0 so

that ‖D‖‖f(t,x)‖ ≤ µ‖x‖, for all t and x. With these assumptions, a sufficient stability

condition can be formalized by the following theorem (Bergsten, 2001).

Theorem 2.3 System (2.4) is exponentially stable if there exist matrices P = PT , Q = QT ,

so that
P > 0 Q > 0
(

Q − µ2 P
P I

)
> 0 H(PAi) < −2Q i = 1, 2, . . . , m

(2.5)

where ‖ · ‖ denotes the spectral norm for matrices. �

Several variants of the above theorem exist, together with algorithms to compute robustness

measures (Bergsten, 2001).

Example 2.4 Consider the fuzzy system in Example 2.2, subjected to the disturbance

D = I , f(x) =

(
1 2
0 1

)(
x1

x2

)
, µ = 2.41. The stability of the system can be verified by

solving the following LMI problem: find P = PT > 0, Q = QT > 0, so that

H(PA1) < −2Q

H(PA2) < −2Q
(

Q − µ2 P
P I

)
> 0

This LMI problem is feasible and therefore the system is stable.

The above approaches are conservative as they disregard the fact that the fuzzy rules may

be valid only in a region of the state-space. Therefore, if the membership functions are func-

tions of the states, and they have bounded support, it is sufficient that xTH(PAi)x < 0 only

where wi(x) > 0. Stability conditions for the case when the support of each membership

function can be bounded, i.e., there exist Si so that xT Six ≥ 0 where wi(x) > 0, were

derived by Johansson et al. (1999).

13
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The so far presented stability conditions are based on a single quadratic Lyapunov func-

tion. Stability conditions can also be derived using other types of Lyapunov functions. For

example, a piecewise quadratic Lyapunov function has the form:

V (x) = max{xT P1x, xT P2x, . . . , xT PMx} (2.6)

Using such a Lyapunov function, one can show that its derivative along the trajectories is neg-

ative, and therefore the fuzzy system is stable if the following Proposition holds (Johansson

et al., 1999):

Proposition 2.1 The system (2.2) is stable, if there exists a matrices Pj = PT
j > 0 and

scalars τijk > 0 such that

H(PjAi) +

m∑

k=1

τijk(Pj − Pk) < 0

Pj > 0 τijk ≥ 0

(2.7)

for i = 1, 2, . . . , m and j = 1, 2, . . . , m.

Example 2.5 Consider the fuzzy system of Example 2.2. The stability of the system may be

verified using the Proposition 2.1 by solving the bilinear matrix inequality (BMI) problem:

find P1 = PT
1 > 0, P2 = PT

2 > 0, τ1, τ2 > 0 so that

H(P1A1) < 0

H(P2A2) < 0

H(P1A2) + τ1(P1 − P2) < 0

H(P2A1) + τ2(P2 − P1) < 0

Note however, that BMIs are much more difficult to solve than LMIs.

Another approach, based on the partitioning the state-space is described by Rantzer and

Johansson (2000). This method has been originally developed for piecewise affine systems.

Its application to TS systems involves the partitioning of the state-space according to simul-

taneously activated membership functions. If only one rule is active in some region, i.e., for

some values of the scheduling vector, then the corresponding system is linear and the region

is called “operating region”. If more than one rule is active, then the corresponding system

is the interpolation of the active rules, and the region is denoted as “interpolation region”.

Denote the number of regions with r. Then, in each region k = 1, 2, . . . , r, the system can

be expressed as:

ẋ =
∑

i∈Kk

wi(z)Aix x ∈ Xk (2.8)

where Kk denotes the index set of the linear subsystems active in the region Xk, i.e., the

fuzzy system (2.2) is reformulated as a continuous, switching system.

Then, using a Lyapunov function of the form V (x) = xT Pkx whenever x ∈ Xk, the

system (2.2) is stable, under the conditions expressed by the following theorem (Rantzer and

Johansson, 2000). Note that if such a Lyapunov functions is used, it is also needed that the

function is piecewise continuously differentiable. The Lyapunov matrices are constructed

such that the continuity is satisfied.
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Theorem 2.4 System (2.8) is stable, if there exist matrices Pk = PT
k , H = HT > 0, Fk,

i = 1, 2, . . . , r so that

Pk = FT
k HFk

Pk > 0

Fkx = Fjx ∀x ∈ Xk ∩ Xj

H(PkAi) < 0 ∀i ∈ Kk

(2.9)

�

For more relaxed conditions, and the computations of the corresponding matrices see

(Johansson and Rantzer, 1998; Johansson, 1999). Similar conditions for the discrete-time

case are described by Wang and Sun (2005).

Example 2.6 Consider the following switching system (Johansson and Rantzer, 1998)

if (x1 > −x2 and x1 < x2) or (x1 > x2 and x1 < −x2) then ẋ = A1x

if (x2 > −x1 and x2 < x1) or (x2 > x1 and x2 < −x1) then ẋ = A2x

By analyzing for which values of the state vector the antecedents are satisfied, four regions

can be defined:

x1 > −x2 and x1 < x2 with ẋ = A1x;

x1 > x2 and x1 < −x2 with ẋ = A1x;

x2 > −x1 and x2 < x1 with ẋ = A2x and

x2 > x1 and x2 < −x1 with ẋ = A1x.

These regions can be characterized by the vector inequalities Fix � 0, where � denotes

that each entry of the vector is non-negative, with

F4 = −F2 =

(
−1 1
−1 −1

)
and F1 = −F3 =

(
−1 1
1 1

)
.

To verify the stability of the system, one has to solve the LMIs: find H = HT > 0 so that

H(FT
i HFiAi) < 0, i = 1, 2, 3, 4. Note that there are only four LMIs thanks to the fact that

all the regions are operating regions.

In some cases, this method can easily become computationally involved. Consider for

instance a fuzzy system with two state variables, where the membership function is computed

as the normalized algebraic product of the individual memberships of the states, with the

individual membership functions presented in Figure 2.1.

1

x
1

w(x
1

)

Figure 2.1: Example of membership functions.

The combination of the individual membership functions yields 4 rules, but 9 regions, of

which 5 are interpolation regions. The number of LMIs to be solved is 4(for the regions where

only one rule is active)+2 · 4(in the interpolation regions where two rules are active)+4(the
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interpolation region where all rules are active)= 16. This number is much larger than the

number of LMIs to be solved when using a common quadratic Lyapunov functions (4 for this

example).

If bounds on the variation of the scheduling vector are known, then Lyapunov functions

that depend on the scheduling vector may also be used (Bergsten, 2001). Note that most of

the existing stability conditions rely on the feasibility of an LMI problem, for which efficient

algorithms exist. However, two shortcomings of the above theorems have to be mentioned:

1) the conditions are conservative and can often lead to infeasible LMIs and 2) the number

of LMIs associated in particular to the conditions of Theorem 2.4, can be exponential in the

number of local models.

2.4 Fuzzy observers

This section discusses an approach to observer design for TS fuzzy systems. Note that the

observability (and similarly controllability) of TS systems is rarely discussed in the literature.

TS systems are nonlinear systems, therefore it does seem straightforward to use the observ-

ability criteria for nonlinear systems. However, since the observers are in general designed

such that each rule has a local gain, it is usually required that the local models are observable

instead of the full nonlinear system. Note that in general this requirement is neither sufficient

nor necessary for the global system to be observable.

Throughout the first part of this thesis, we consider the affine fuzzy system

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =

m∑

i=1

wi(z)(Cix + di)

(2.10)

and Thau-Luenberger observer of the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =

m∑

i=1

wi(ẑ)(Cix̂ + di).

(2.11)

Due to the form of the observer (2.11), throughout this thesis it is required and for the

design it is implicitly assumed that the local models, i.e., (Ai, Ci) are observable.

Note that when designing an observer, our goal is that the estimated states converge to the

real ones, i.e., the error dynamics is asymptotically stable. Depending on the explicit form of

the error system given by ė = ẋ − ˙̂x, the theorems presented in Section 2.3 can be directly

applied, or similar conditions may be derived to ensure the stability of the observer. For the

analysis, two cases have to be distinguished: 1) the scheduling vector does not depend on

the estimated states, in which case ẑ = z and 2) z depends also on states to be estimated,

in which case the observer uses as part of the scheduling variables the estimated value of the

states. The conditions obtained by appropriately modifying Theorem 2.1 are presented here

for both cases.
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2.4.1 Case 1: State-independent scheduling vector

If the scheduling vector does not depend on the states to be estimated, the observer becomes

˙̂x =

m∑

i=1

wi(z)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =

m∑

i=1

wi(z)(Cix̂ + di).

(2.12)

and the error system can be written as:

ė =

m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e. (2.13)

Basic sufficient stability conditions for this system were derived by Tanaka et al. (1998a),

using a Lyapunov function of the form V (t) = eT Pe, with P = PT > 0. According to

these conditions:

Theorem 2.5 The system (2.13) is stable, if there exists P = PT > 0, Li, i = 1, 2, . . . , m
so that:

H(P (Ai − LiCi)) < 0

H(P (Gij + Gji)) ≤ 0

Gij = Ai − LiCj

(2.14)

for any two rules that are simultaneously active1, i.e., ∀ i, j ∈ 1, 2, . . . , m for which there

exists z ∈ Dz such that wi(z)wj(z) 6= 0. �

Example 2.7 Consider the following two-rule fuzzy system:

if z is small then

ẋ1 =

(
2 2
0 −3

)
x +

(
1
2

)

y1 =
(
1 0

)
x

if z is big then

ẋ2 =

(
−2 1
1 −2

)
x +

(
3
4

)

y2 =
(
1 0

)
x

Note that this system is unstable. An exponentially stable observer can be computed by

solving the LMI problem: find P = PT > 0, M1, M2 so that

H(PA1 − M1C) < 0

H(PA2 − M2C) < 0

The observer gains are computed as L1 = P−1M1, and L2 = P−1M2, obtaining the

values L1 =

(
1.55
3.94

)
and L2 =

(
−1.82
2.36

)
.

1In what follows, for the ease of the notation, this condition will be denoted as ∀i, j : ∃z : wi(z)wj(z) 6= 0.

17



CHAPTER 2. TS FUZZY SYSTEMS AND OBSERVERS

Note that the above conditions can be relaxed by manipulating the convex sum obtained

when imposing the negativeness of the Lyapunov function (Tanaka et al., 1998a; Johansson

et al., 1999; Tuan et al., 2001). A well-known condition on the design of the observer for the

system (2.2), so that a desired convergence rate or decay rate α of the error is guaranteed, is

also presented below (Tanaka et al., 1998a).

Theorem 2.6 The decay rate of the error system (2.13) is at least α, if there exists P =
PT > 0, so that

H(P (Ai − LiCi) + 2αP < 0 i = 1, 2, . . . , m

H(P (Ai − LiCj)) + 2αP < 0 i, j = 1, 2, . . . , m

∀i, j : ∃z : wi(z)wj(z) 6= 0

(2.15)

�

Example 2.8 Consider the fuzzy system from Example 2.7. The observer may be designed

so that the error system has a desired decay rate α by solving the LMIs: find P = PT > 0,

M1, M2 so that

H(PA1 − M1C + αP ) < 0

H(PA2 − M2C + αP ) < 0

The observer gains are recovered as in Example 2.7. For instance, solving the above LMI

for a desired decay rate α = 5 yields the observer gains L1 =

(
−3.9
15.8

)
and L2 =

(
−6.87
5.21

)
.

2.4.2 Case 2: State-dependent scheduling vector

The second case is when the scheduling vector depends on the states to be estimated. For

the simplicity of the notation, only the case with common measurement matrices, i.e., Ci =
C, i = 1, 2, . . . , m will be considered. Note however, that if the measurement matrix is

different for each rule, the observer gains may be designed similarly.

For common measurement matrices, the observer (2.11) becomes:

˙̂x =

m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ = Cx̂

(2.16)

and the error system can be expressed as:

ė =

m∑

i=1

wi(ẑ)(Ai − LiC)e +

m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai) (2.17)

Clearly, there is a time-varying difference between the true and estimated states. In order for

the estimated states to converge to the real ones, the observer has to be robust enough to deal

with this difference. For such a system, sufficient stability conditions were given by Bergsten

(2001).
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Theorem 2.7 The error system (2.17) is exponentially stable, if there exist µ > 0, P =
PT > 0, Q = QT > 0 so that for i = 1, . . . , m

H(P (Ai − LiC)) ≤ Q
(

Q − µ2 P
P I

)
> 0

‖(wi(z) − wi(ẑ))(Aix + Biu + ai)‖ ≤ µ‖e‖

(2.18)

i.e., (wi(z) − wi(ẑ))(Aix + Biu + ai) is bounded2 by a linear growth3 of e. �

Remark: The conditions of Theorem 2.7 are conservative, due to the worst-case assumption

of an unstructured, bounded disturbance. In many cases, an observer will work even though

the second condition of the theorem is not satisfied by the computed bound.

Example 2.9 Consider the fuzzy system

ẋ =w1(x)(A1x + B1u) + w2(x)(A2x + B2u)

y =
(
1 0

)
x

with A1 =

(
−2 0
2 −3

)
, A2 =

(
−1 3
2 −5

)
, B1 =

(
3
2

)
, B2 =

(
1
0

)
, w1(x) = 0.125(x1 +

x2 + 4), w2(x) = 1 − w1(x), x1, x2 ∈ [−2, 2], u ∈ [−0.5, 0.5]. Our goal is to design a

observer for this system.

By substituting the values, one gets ‖(w1(x)−w1(x̂))(A1x+B1u)‖ ≤ 0.125‖e‖(3.81 ·
4 + 3.6 · 0.5) ≤ 2.2‖e‖. Similarly, ‖(w2(x) − w2(x̂))(A2x + B2u)‖ ≤ 3.2‖e‖. Therefore,

‖(wi(z) − wi(ẑ))(Aix + Biu + ai)‖ ≤ µ‖e‖, with µ = 3.2. To design the observer, one

needs to solve the LMI: find P = PT > 0, Q = QT > 0, M1, M2 so that

H(PA1 − M1C − Q) ≤ 0

H(PA2 − M2C − Q) ≤ 0
(

Q − µ2 P
P I

)
> 0

The solution yields L1 = P−1M1 =

(
−8.09
0.47

)
and L2 = P−1M2 =

(
−7.04
8.36

)
.

Although this thesis is not concerned with controllability issues or controller design, it

has to be mentioned that TS fuzzy systems are extensively used for state-feedback or output-

feedback controller design.

Several authors consider the case of the observer and linear state-feedback controller

together and develop relaxed stability conditions for the augmented system. The condi-

tions usually lead to (generalized) eigenvalue problems, possible to be solved using LMIs

(Taniguchi et al., 1999b; Tanaka et al., 1998a; Taniguchi et al., 1999a). For the case when the

weights depend on the estimated states, the observer and the controller cannot be designed

separately (Tanaka and Sano, 1994).

2In this thesis we use ‖f‖ ≤ ‖g‖ as a shorthand notation for ‖f(t)‖ ≤ ‖g(t)‖, ∀t
3The bounding constant µ can be found by solving the optimization problem (Khalil, 2002)

µ = maxx,u,bx,bz ‖
∂(wi(z)−wi(bz))(Aix+Biu+ai)

∂e
‖ = maxx,u,bx ‖

∂(wi(x)−wi(bx))(Aix+Biu+ai)
∂(x−bx)

‖.
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Fuzzy observers are usually employed together with a parallel distributed compensation

(PDC) controller. A general framework for PDC controllers is given by Wang et al. (2000),

while a systematic procedure for fuzzy model construction, rule reduction and robust com-

pensation is presented by Taniguchi et al. (2001). An overview of stability analysis and

controller design for discrete time TS systems can be found in (Feng, 2006).

Applications include state estimation for translational oscillations (Tanaka et al., 1998c),

backing of a mobile robot with multiple trailers (Tanaka et al., 1998b), and visual servoing

(Kadmiry and Bergsten, 2004).

2.4.3 Design using LMI regions

Designing observers based on the conditions presented in Section 2.4 may not give an ac-

ceptable performance, since the poles of the observer may be placed at arbitrary locations in

the left half-plane. This problem can be avoided by using LMI regions, i.e., constraining the

poles of each local model to a specific region. LMI regions can be defined as follows (Chilali

and Gahinet, 1996):

Definition 2.1 A subset D of the complex plane is called an LMI region if there exists a

symmetric matrix α ∈ Rm×m and a matrix β ∈ Rm×m such that:

D = {z ∈ C : fD(z) < 0}

where

fD(z) = α + zβ + z̄βT

is the characteristic function of the LMI region.

One can easily see that, because of the form of the function fD(z), LMI regions are

convex and symmetric with respect to the real axis. Useful LMI regions include a vertical

strip [dl, du] and a conic sector centered in the origin with inner angle θ (Figure 2.2). If all

the eigenvalues of a matrix A are located in a region D, then the matrix A is called D-stable.

Figure 2.2: LMI regions.

A theorem to ensure D-stability of a matrix A was given by Chilali and Gahinet (1996):

Theorem 2.8 The matrix A is D-stable if and only if there exists P = PT > 0 so that

α ⊗ P + β ⊗ AP + βT ⊗ (AP )T < 0

where ⊗ is the Kronecker product.
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In the context of observer design, using LMI regions to ensure the specific D-stability

of the observer effectively means adding constraints to the presented LMI problems, more

specifically:

[αj,kP + βj,kP (Ai − LiCi) + βk,j(Ai − LiCi)
T P ] < 0

j, k = 1, 2, . . . , m

Here, αj,k and βj,k denote the (j, k)th element of the corresponding matrices.

Remark: Note that the upper limit of the vertical strip, du, corresponds to the decay rate of

Theorem 2.6.

2.5 Summary and concluding remarks

In this chapter, continuous-time dynamic TS fuzzy systems were introduced. A large class of

nonlinear systems can be represented or well approximated by TS fuzzy systems. TS fuzzy

systems can also be considered as convex combinations of local linear models. Since the

stability of these local models does not imply the stability of the whole fuzzy system, several

sufficient stability criteria have been developed using Lyapunov’s direct method. A general

tendency is to obtain LMIs for which mathematical algorithms that test their feasibility exist.

Some of the stability conditions have been presented in this chapter.

For TS systems, several types of observers have been developed. In this chapter, a Thau-

Luenberger type fuzzy observer has been discussed, together with the design conditions used

in this thesis. Regarding the observer design, two cases need to be distinguished, depending

on whether or not the scheduling vector is a function of the states to be estimated. When

the scheduling vector depends on the states to be estimated, an observer that can handle the

mismatch between the true and estimated membership function, has to be designed. Also in

this case, the conditions may be formulated as LMIs.

Note that the presented stability and design conditions are only sufficient conditions. A

major advantage of these conditions is that they are cast into an LMI form, which is easily

solvable. However, this can also be considered a shortcoming of the approaches, since:

• the LMIs may be infeasible, and therefore no conclusive result is obtained;

• the dimension of the LMI problem may be exponential in the number of the rules,

and computationally involved, in particular when piecewise Lyapunov functions are

considered;

• by obtaining LMIs, conservativeness is introduced;

• most conditions can only be satisfied if all the local models are stable, which in general

is not a necessary condition. Depending on the scheduling vector, it is possible, that

although a local model is unstable, the equilibrium point is stable.

Note also that both the stability and design conditions (except Theorem 2.3) pertain only

the case when the structure and the local models of the fuzzy system are fixed. However, for

distributed, large-scale systems such an approach may be computationally unfeasible. More-

over, if the local models change in time, or if external variables other than those represented in

the scheduling vector influence the system, the conditions presented here may not be applica-

ble. By analyzing the form of the system considered, it may be possible to relax the stability
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CHAPTER 2. TS FUZZY SYSTEMS AND OBSERVERS

and/or design conditions. Such cases are treated to some extent in the following chapters.

Approaches to relax the conditions for decentralized TS systems and adaptive observers, to

estimate the states of a TS system that changes in time, are presented in the sequel.
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Chapter 3

Cascaded observers

This chapter presents an approach to designing observers for cascaded systems. Many sys-

tems can be represented as a cascade of several subsystems. In such a case, the observers

may also be designed in a cascaded fashion. The first part of the chapter presents stability

conditions for cascaded nonlinear systems. The second part derives stability conditions for

TS fuzzy systems and extends these for observer design. It is proven that the conventional

stability and design conditions can be relaxed while still obtaining the same performance.

Parts of this chapter have been published in (Lendek et al., 2007c,b).

3.1 Introduction

Many physical systems, such as power systems, communication networks, economic sys-

tems, and traffic networks are interconnections of lower-dimensional subsystems. An impor-

tant class of these systems, such as material processing systems, chemical processes, can be

represented as cascaded subsystems (Seibert and Suarez, 1990; Jankovic et al., 1996; Arcak

et al., 2002). Under certain conditions, conclusions referring to the overall cascaded system

can be drawn based on the study of the individual subsystems. For instance, for linear sys-

tems, the stability of the subsystems implies the stability of the cascaded system. However

this property, in general, does not hold for nonlinear or time-varying systems. Even global

asymptotic stability of the individual subsystems does not imply the stability of the cascade.

In the literature, the stability of several types of cascaded systems has been studied. Con-

ditions to ensure the overall stability of more general cascades, in which both subsystems

are nonlinear, were derived in (Sontag, 1989b; Seibert and Suarez, 1990; Loria and Panteley,

2005). Some of these conditions are presented in the next section.

Stability analysis and observer design in a centralized form is often not feasible for large-

scale systems. Therefore, in the context of large-scale processes and distributed systems,

decentralized state estimation has been largely studied. The decentralized architecture gen-

erally has the form of a network of sensor nodes, each with its own computing capability.

Each node computes a local estimate and shares information with other nodes. Computation

and communication is distributed over the network and the global estimate is computed by

fusing the local results. Several topologies have been proposed, depending on the particular

application. In case of large-scale processes (Vadigepalli and Doyle, 2003a,b), the network is
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generally in a hierarchical form, with several intermediate nodes and one final fusion node.

This chapter presents the stability analysis of Takagi-Sugeno fuzzy systems, which can

be decomposed into cascaded subsystems. It is proven that, in such cases, the stability of

the whole system may be analyzed based on the stability of the subsystems. The cascaded

approach is extended also to observer design, i.e., observers are designed for TS systems in a

cascaded form.

3.2 Stability of cascaded dynamic systems

The first motivation to consider cascaded dynamical systems came from the analysis of the

models obtained after input-output linearization (Arcak et al., 2002; Loria and Panteley,

2005). Following this, several stability conditions were derived for different types of sub-

systems. In this section, the cascaded setting for general nonlinear systems and observers is

presented, together with the relevant stability conditions.

3.2.1 Preliminaries

Consider the following general, observable1 nonlinear system:

ẋ1 = f1(x,u) y1 = h1(x,u)

ẋ2 = f2(x,u) y2 = h2(x,u)

...
...

ẋn = fn(x,u) ym = hm(x,u)

(3.1)

where x = [x1, ..., xn]T and u = [u1, ..., ul]
T and assume that this system can be partitioned

into subsystems. For the ease of notation, only two subsystems are considered, without a loss

of generality:

ẋ1 = f1(x1,u)

y1 = h1(x1,u)
(3.2)

and
ẋ2 = f2(x1,x2,u)

y2 = h2(x1,x2,u)
(3.3)

where x = [xT
1 xT

2 ]T , y = [yT
1 yT

2 ]T and (3.2) is observable. Note that, since both system

(3.1) and (3.2) are observable, subsystem (3.3) is also observable. In fact, for subsystem (3.3),

x1 is an input. In general, such a partition of the model does not necessarily exist. Moreover,

if a partition exists, it might not be unique.

Given a particular nonlinear system of the form (3.1), with at least two measurements, if

a partitioning into several subsystems is possible, it can be constructed. For two subsystems,

the cascaded structure is depicted in Figure 3.1.

If such a partition can be determined, observers may be designed for the subsystems

separately, with some observers using the estimates obtained by other observers. For two

subsystems, the cascaded observer structure is depicted in Figure 3.2.

1In this chapter, we consider that the system and the subsystems are uniformly observable, see Definition 2.9

from (Besançon, 2006).
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3.2 STABILITY OF CASCADED DYNAMIC SYSTEMS

Figure 3.1: Cascaded subsystems.

Figure 3.2: Cascaded observers.

3.2.2 Partitioning a nonlinear system

Before designing cascaded observers, one has to determine whether the system considered

is the cascade of at least two subsystems. Note that since the given state variables need to

be estimated, no coordinate change should be performed. In what follows, an algorithm that

determines whether a system is the cascade of two subsystems is presented. This algorithm

is based on the observability rank condition. Given the nonlinear system (3.1), for each mea-

surement function, one can determine the variables observable from the respective measure-

ment, thereby constructing sets of observable variables. After these sets are determined,the

problem of determining whether the system is cascaded is reduced to that of partitioning the

variable sets. The algorithm can be given as follows:

Algorithm 3.1

1. Construct the table presented in Figure 3.1, where v1,i, i = 1, 2, . . . , m is the set of

state variables that appear in the expression of hi, v2,i, i = 1, 2, . . . , m is the set of

state variables that appear in the expression of hi and Lfhi, etc, and Lfh denotes the

Lie derivative2 of h with respect to f .

Table 3.1: Variable table

h1 h2 . . . hm

h v1,1 v1,2 . . . v1,m

Lfh v2,1 v2,2 . . . v2,m

L2
fh v3,1 v3,2 . . . v3,m

. . .

2The Lie derivative of a function h with respect to a vector function f is defined as: Lf h = ∂h
∂x

f . The second

order derivative is L2
f
h = Lf (Lf h), etc.
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After a maximum of n steps, these sets cannot expand anymore, vn,i = vn+1,i. The

“worst” case is an nth order integrator, in which case at each step a new variable

appears and the expansion stops at exactly the nth step.

2. Denote with φi the set of state variables obtained from the derivatives of hi, i =
1, 2, . . . , m. It can be easily seen that, since the system (3.1) observable, ∪m

i=1φi = Φ,

where Φ corresponds to the set of all state variables, Φ = {x1, x2, . . . , xn}.

3. Group together those measurement equations, which have the same set of variables:

hi = {hk|φk = φi} and delete the doubles. If only one pair (hi, φi) remains, the

system cannot be partitioned using this algorithm.

4. For each pair (hi, φi) for which φi 6= Φ construct the subsystem

ẋi = f i(xi,u)

yi = hi(xi,u)
(3.4)

where xi is the vector of the variables in φi, f
i

is the set of the corresponding functions,

hi
is obtained at step 3. and yi are the measurements given by hi

.

If the system (3.4) is observable, then it can be considered one of the subsystems, and

the remaining variables and functions form a second subsystem.

Example 3.1 Consider the following nonlinear system:

ẋ1 = f1(x1, x2, x3)

ẋ2 = f2(x2, x3)

ẋ3 = f3(x3, x4)

ẋ4 = f4(x3)

y1 = h1(x3, x4)

y2 = h2(x1, x3)

y3 = h3(x4)

(3.5)

with the assumption that the system (3.5) is observable and the subsystem

ẋ3 = f3(x3, x4)

ẋ4 = f4(x3)
(3.6)

is observable from y1.

By looking at this system, one can easily decide that the subsystem (3.6) together with h1

and h3 should be the first subsystem and the remaining equations form the second one.

Applying the above algorithm, the following results are obtained.

1. The table for system (3.5) is:

2. We obtain φ1 = {x3, x4}, φ2 = {x1, x2, x3, x4} and φ3 = {x3, x4}.
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Table 3.2: Variable table for system (3.5)

h1 h2 h3

h {x4, x3} {x1, x3} {x4}
Lfh {x4, x3} {x1, x2, x4, x3} {x4, x3}
L2

fh {x4, x3} {x1, x2, x4, x3} {x4, x3}

3. Since φ1 = φ3, group together the measurement equations: h1 = {h1, h3} with the

corresponding φ1 and h2 = {h2} with the corresponding φ2.

4. Only one partition is possible, namely that the first subsystem should be formed by the

state equations corresponding to the variables in φ1 and the measurement equations

in h1. Since the original assumption was that this subsystem is observable, the system

can be partitioned.

Remark: For the above example, due to the assumption that (3.6) is observable from h1,

one could use only the measurement equation h1 for the subsystem (3.6), i.e, a partitioning

of h1 = {h1}, h2 = {h2, h3} is also possible. However, that would mean not using all

available information, since h3 would not be used to correct x4. For the general case, this is

why the h’s corresponding to the same set of equations are grouped together.

Remark: Note that the partitioning of a system, even without loss of information is in

general not unique, as illustrated in the following example.

Example 3.2 Consider the system

ẋ1 = x1 + x3

ẋ2 = x2 + x3

ẋ3 = u

y1 = x1

y1 = x2

This system is observable, and there are two possible ways to divide it: by using as first

subsystem

ẋ1 = x1 + x3

ẋ3 = u

y1 = x1

or, by using as first subsystem

ẋ2 = x2 + x3

ẋ3 = u

y1 = x2

both being observable. The corresponding variable sets are φ1 = {x1, x3} and φ2 =
{x2, x3}.
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3.2.3 Stability of cascaded systems

It is well-known that the cascade of stable linear systems is stable, since the eigenvalues of the

joint system are determined only by the eigenvalues of the individual subsystems. Therefore,

the stability of the joint system is determined by the stability of the subsystems. However,

the same reasoning does not necessarily hold for nonlinear or time-varying systems. Even

global asymptotic stability (GAS) of the decoupled subsystems does not necessarily imply

the stability of the cascade.

More general cascades, in which both subsystems are nonlinear, were studied and con-

ditions to ensure overall stability were derived in (Loria and Panteley, 2005). A selection of

relevant results is presented below.

Definition 3.1 A continuous function α : R+ → R+ belongs to class K if it is strictly

increasing and α(0) = 0. If, in addition α(s) → ∞ when s → ∞ then α is said to be of

class K∞. �

Definition 3.2 A system ẋ = f(x,u) is input-to-state stable (ISS) if and only if there exists

a positive definite proper function V (x) and two class K functions α1 and α2 such that

(‖x‖ ≥ α1(‖u‖)) ⇒
(

∂V (x)

∂x
f(x,u) ≤ −α2(‖x‖)

)
(3.7)

where ‖ · ‖ represents the Euclidian norm. �

Consider the nonlinear, cascaded, autonomous system

ẋ1 = f1(x1) (3.8)

ẋ2 = f2(x1,x2). (3.9)

It has been shown in (Sontag, 1989a) that if

• the functions f1 and f2 are sufficiently smooth in their arguments,

• system (3.9) is input-to-state-stable with regard to the input x1, and

• system (3.8) and the system

ẋ2 = f2(0,x2) (3.10)

are globally asymptotically stable (GAS),

then the cascade (3.8)-(3.9) is GAS. An equivalent sufficient stability condition is presented

by Seibert and Suarez (1990): the cascaded system is GAS, if both subsystems (3.8) and

(3.10) are GAS and all trajectories are bounded. The main difficulty with this approach is

that in general, boundedness of all the solutions is not easy to determine and the conditions

to ensure boundedness may be very conservative.

More relaxed sufficient stability conditions have been derived for systems of the form:

ẋ1 = f1(x1)

ẋ2 = f2(x2) + g(x1,x2)
(3.11)
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assuming that the individual subsystems are GAS and, additionally, certain restrictions related

to the continuity and/or slope, apply for the interconnection term g (Jankovic et al., 1996;

Arcak et al., 2002; Chaillet and Loria, 2006). A theorem for ensuring that the cascaded

system (3.11) is uniformly GAS (UGAS) (Loria and Panteley, 2005) is presented below.

Assumption 3.1 System (3.10) is UGAS.

Assumption 3.2 There exist constants c1, c2, µ ≥ 0 and a Lyapunov function V (t,x2) for

(3.10) such that V is positive definite, radially unbounded, V̇ (t,x2) ≤ 0 and

∥∥∥∥
∂V

∂x2

∥∥∥∥ ‖x2‖ ≤ c1V (t,x2) ∀x2 : ‖x2‖ > µ

∥∥∥∥
∂V

∂x2

∥∥∥∥ ≤ c2 ∀x2 : ‖x2‖ ≤ µ

(3.12)

Assumption 3.3 There exist two continuous functions θ1, θ2 : R+ → R+ such that g(x)
satisfies:

‖g(x)‖ ≤ θ1(‖x1‖) + θ2(‖x1‖)‖x2‖ (3.13)

Assumption 3.4 There exists a class K function α(·) so that for all t0 ≥ 0, the trajectories

of the system (3.8) satisfy

∫ ∞

t0

‖x1(t; t0,x1(t0))‖dt ≤ α(‖x1(t0)‖) (3.14)

Theorem 3.1 Let Assumption 3.1 hold and suppose that the trajectories of (3.8) are uni-

formly globally bounded. If, in addition, Assumptions 3.2–3.4 are satisfied, then the solutions

of system (3.11) are uniformly globally bounded. If furthermore, system (3.8) is UGAS, then

so is the cascaded system (3.11). �

Proof: see (Arcak et al., 2002; Loria and Panteley, 2005).

Proposition 3.1 If in addition to the above assumptions systems (3.8) and (3.10) are expo-

nentially stable, then the cascaded system (3.11) is also exponentially stable. �

Proof: see (Arcak et al., 2002; Loria and Panteley, 2005).

The study of different cases of interconnection terms can be found in (Loria and Panteley,

2005; Arcak et al., 2002), stabilizability conditions were derived in (Bacciotti et al., 1993;

Chaillet and Loria, 2006). For observer design for a special type of cascaded SISO system

see (Roebenack and Lynch, 2006).
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3.3 Cascaded TS fuzzy systems

In this section, cascaded TS fuzzy systems are studied. First, we analyze the stability of a

cascaded TS fuzzy system and derive relaxed stability conditions based on the stability of the

subsystems. The idea behind this type of stability analysis is that many systems are cascaded

(e.g., hierarchical large-scale systems, flow processes), while others may be represented as

cascaded subsystems, which are less complex than the original system. Afterwards, the de-

sign of cascaded observers is discussed.

The main benefit of this approach is, that it relaxes the conditions imposed by analyzing

the system globally. Global analysis may lead to infeasible LMI conditions, even if the system

is stable. We propose less conservative stability conditions, which are likely to render the

associated LMI problem feasible. Moreover, the dimension of the associated LMI problem is

generally reduced.

The results are extended to observer design. We analyze the joint performance of fuzzy

observers individually designed for the subsystems. The benefit of this type of estimation

is that separate observers can be designed for the individual subsystems, which makes their

tuning easier. Moreover, different types of observers can be combined, depending on the

subsystem considered. We present a theoretical comparison of the centralized and cascaded

fuzzy observers and also compare their performance on an example.

Consider the case when the system matrices of the model (2.2),

ẋ =

m∑

i=1

wi(z)Aix (3.15)

for each rule i = 1, 2, . . . ,m can be written as:

Ai =

(
A1i 0
A21i A2i

)

i.e., system (2.2) can be expressed as the cascade of two fuzzy systems:

ẋ1 =

m∑

i=1

w1i(z1)A1ix1

ẋ2 =

m∑

i=1

w2i(z1,z2)(A21ix1 + A2ix2)

(3.16)

or, equivalently:

ẋ1 =A1(z1)x1

ẋ2 =A21(z1,z2)x1 + A2(z1,z2)x2

(3.17)

with normalized membership functions w1i and w2i, x = [xT
1 , xT

2 ]T , z = [zT
1 , zT

2 ]T ,

A1(z1) =
∑m

i=1 wi(z1)A1i, A2(z1,z2) =
∑m

i=1 w2i(z1,z2)A2i, and A21(z1,z2) =∑m
i=1 w2i(z)A21i.

3.3.1 Stability of cascaded fuzzy systems

In this section, we analyze the stability of system (3.16), assuming that the subsystems

ẋ1 =

m∑

i=1

w1i(z1)A1ix1 (3.18)
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and

ẋ2 =
m∑

i=1

w2i(z1,z2)A2ix2 (3.19)

are uniformly globally asymptotically stable (UGAS). For such a case, the following basic

result can be formulated.

Theorem 3.2 If there exist two Lyapunov functions of the form V1(x1) = xT
1 P1x1 and

V2(x2) = xT
2 P2x2 that prove the stability of the subsystems (3.18) and (3.19), respectively,

then the cascaded system (3.16) is also UGAS.

Proof: Note that the Lyapunov functions V1(x1) = xT
1 P1x1 and V2(x2) = xT

2 P2x2 for

the subsystems (3.18) and (3.19) satisfy Assumption 3.1 also ensure exponential stability of

the individual subsystems, therefore satisfying Assumption 3.4. Moreover, equations (3.16)

and (3.17) are special cases of (3.11), where the individual subsystems f1(x1) and f2(x2)
are represented by fuzzy models. The interconnection term g is a nonlinear combination of

local linear models.

Moreover, Assumption 3.2 is satisfied as: ∀x2 : ‖x2‖ > µ,

∥∥∥∥
∂V2

∂x2

∥∥∥∥ ‖x2‖ = 2‖xT
2 ‖‖P2‖‖x2‖ ≤ 2λmax(P2)‖x2‖2 ≤ c1V2(x2)

for any c1 ≥ 2λmax(P2)
λmin(P2)

. For the second condition of Assumption 3.2, we have ∀x2 : ‖x2‖ ≤
µ ∥∥∥∥

∂V2

∂x2

∥∥∥∥ = ‖2xT
2 P2‖ ≤ 2‖x2‖‖P2‖ ≤ 2µλmax(P2) = c2

Consider continuous, positive functions θ1(‖x1‖) = max
z

‖A21(z)‖‖x1‖ and θ2(‖x1‖) =

0. By selecting these functions, it is ensured that ‖g(x)‖ = ‖∑m
i=1 wi(z)A21ix1‖ ≤

θ1(‖x1‖) + θ2(‖x1‖)‖x2‖ and therefore Assumption 3.3 is satisfied.

Since the conditions of Theorem 3.1 are satisfied, the cascaded system is UGAS. Further-

more, since these Lyapunov functions ensure exponential stability of the subsystems, based

on Proposition 3.1, the cascaded system is also exponentially stable. �

While it is true that the cascaded system is stable under the above conditions, finding a

Lyapunov function valid for the cascaded system is not trivial. A global Lyapunov function

of the form:

V0(x1,x2) = V1(x1) + V2(x2) + Ψ(x1,x2) (3.20)

has been proposed by Jankovic et al. (1996), with V1 and V2 being Lyapunov functions for

the systems (3.18) and (3.19), respectively. The cross-term Ψ(x1,x2) has been constructed,

under the condition that the cascaded system satisfies Assumptions 3.2 and 3.3.

For the case when the first subsystem is linear, time invariant, Jankovic et al. (1996)

proved that the cross-term exists and is continuous, and V0 is positive definite and radially

unbounded. Moreover, if (3.18) is globally exponentially stable, the result can be extended

to the system (3.17). The cross-term Ψ is then given by:

Ψ(x1,x2) =

∫ ∞

0

∂V2

∂x2
(x̃2(s))A21(z(s))x̃1(s)ds
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where x̃1 and x̃2 are the trajectories of systems (3.18) and (3.19), respectively.

In the same way, for Theorems 2.3 and 2.4, the stability conditions presented in Sec-

tion 2.3 can be relaxed. The new conditions are presented below.

The conditions of Theorem 2.3 can be replaced as follows.

Theorem 3.3 Consider system (3.17) expressed as:

ẋ =

(
A1(z1) 0

0 A2(z1,z2)

)
x +

(
0

A21(z1,z2)

)
x1

This system is UGAS, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, so that:

H(P1A1i) < 0

H(P2A2i) < 0

for i = 1, 2, . . . , m. �

The proof is similar to that of Theorem 3.2.

In order to relax the conditions of Theorem 2.4, let K1 and K2 be the number of operating

and interpolation regions (see Section 2.3) for the individual subsystems, with Ki
1 and Kj

2

the index sets corresponding to the local models of the subsystems active in the matching

region. Note that in general, the number of regions generated in such a way is smaller than

the number of regions for the global system, i.e., K1 + K2 ≤ K and therefore, the number

of LMIs to be solved is smaller. Then, the conditions can be expressed as:

Proposition 3.2 The system (3.17) is UGAS, if there exist matrices P i
1 = (P i

1)
T > 0,

P j
2 = (P j

2 )T > 0, H1 = HT
1 > 0, H2 = HT

2 > 0, F i
1, and F j

2 , i = 1, 2, . . . , K1,

j = 1, 2, . . . , K2, so that:

P i
1 = (F i

1)
T H1F

i
1

P j
2 = (F j

2 )T H2F
j
2

F i
1x1 = F t

1x1 ∀x1 ∈ Xi
1 ∩ Xt

1

F j
2 x2 = F l

2x2 ∀x2 ∈ Xj
2 ∩ X l

2

H(P i
1A1k) < 0 ∀k ∈ Ki

1

H(P j
2 A2k) < 0 ∀k ∈ Kj

2

(3.21)

�

The proof is similar to that of Theorem 3.2.

Note that the proposed conditions are still only sufficient conditions for the stability of

cascaded fuzzy systems. However, by taking advantage of the special form of the system,

i.e., by considering the subsystems instead of the overall fuzzy system, the dimension of the

associated LMI problem is reduced with respect to Theorems 2.1 and 2.3–2.4, as illustrated

by the following example.
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Example 3.3 Consider the nonlinear system:

ẋ1 = −2x1

ẋ2 = −x2 + x1z cos2 z

where z ∈ [−π, π] is a measured variable. It can be proven that this system is globally

asymptotically stable, e.g., by using the Lyapunov function V = π2x2
1/2 + x2

2.

A fuzzy approximation of this system can be obtained by linearizing the system around all

z ∈ {−π, −π/2, −π/4, 0, π/4, π/2, π}. The obtained matrices are:

A(−π) =

(
−2 0
−π −1

)

A(−π/2) = A(0) = A(π/2)

(
−2 0
0 −1

)

A(−π/4) =

(
−2 0

−π/8 −1

)

A(π/4) =

(
−2 0
π/8 −1

)

A(π) =

(
−2 0
π −1

)

i.e., there are 5 distinct local linear models. Using Theorem 2.1, this means that 5 LMIs have

to be solved, while in case of Theorem 2.4, this number is even larger (11 LMIs). However,

using the cascaded approach, the problem is reduced to two one-dimensional LMIs:

−2P1 + P1(−2) < 0

−1P2 + P2(−1) < 0

As can be seen, by analyzing the subsystems instead of the global fuzzy system, both the

number of LMIs and their size can be reduced.

However, the main benefit of the proposed stability conditions is, that while the conditions

imposed by conventional methods may lead to an infeasible LMI system, it is still possible

to prove stability of the system under study, using the stability conditions presented in this

chapter. An example that illustrates this case is presented in what follows.

Example 3.4 Consider the fuzzy system:

ẋ =

2∑

i=1

wi(z)Aix (3.22)

with w1(z) ≥ 0, w2(z) ≥ 0, w1(z) + w2(z) = 1, ∀z, and where the state matrices of the

local linear models are given as:

A1 =

0

B

B

B

B

@

−0.7 −1.0 0 0 0
−1.0 −2.8 0 0 0
−0.1 −1.8 −1.4 0.6 0.0
0.1 −0.7 0.6 −3.1 0.4
−1.8 1.3 0.0 0.4 −1.9

1

C

C

C

C

A
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and

A2 =

0

B

B

B

B

@

−3.3 −1.3 0 0 0
−1.3 −2.6 0 0 0

0 0 −1.1 0.6 −0.7
0 0 0.6 −5.2 1.7
0 0 −0.7 1.7 −2.0

1

C

C

C

C

A

.

The LMI problem

P > 0

AT
1 P + PA1 < 0

AT
2 P + PA2 < 0

is infeasible, so Theorems 2.1 and 2.3 cannot be applied. The stability of this system can be

investigated using Theorem 2.4.

By examining the form of the system matrices, one can easily see that the system can be

cascaded, with x1 = [x1 x2]
T and x2 = [x3 x4 x5]

T .

Based on Theorem 3.2, the system (3.22) is stable if the individual subsystems are stable.

As such, in order to prove the stability of the system (3.22), it is sufficient that the LMI

problems

P1 > 0

AT
11P1 + P1A11 < 0

AT
12P1 + P1A12 < 0

and
P2 > 0

AT
12P2 + P2A12 < 0

AT
22P2 + P2A22 < 0

are feasible. Using Yalmip’s (Löfberg, 2004) sedumi solver one can easily see that it is so.

In the remainder of this section, we study the convergence rate of the system (3.17) with

respect to the convergence rate of the individual subsystems (3.18) and (3.19).

Consider the case, when both subsystems are exponentially stable, i.e., there exist β1, β2,
α1, α2 > 0 so that

‖x1‖ ≤ β1‖x10‖e−α1t (3.23)

‖x2‖ ≤ β2‖x20‖e−α2t (3.24)

Up to now, it has been an open question whether this also meant that the convergence

rate of the system (3.17) is min{α1, α2}: it is valid for linear systems; however, it cannot be

proven with a Lyapunov function of the form V (x) = V1(x1) + V2(x2), where V1 and V2

are Lyapunov functions for the individual subsystems. Therefore, other approaches need to

be considered.

Consider the joint system (3.17), and assume that there exists a Lyapunov function, V =
xT Px, P = PT > 0, and γ > 0, so that:

α‖x‖2 ≤ V ≤ β‖x‖2

V̇ = xT (A(z)T P + PA(z))x = −xT Q(z)x ≤ −γ‖x‖2
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3.3 CASCADED TS FUZZY SYSTEMS

Then the convergence rate γ/β is guaranteed. To have the same convergence rate for the

subsystems, it is necessary (in terms of the above conditions) that P1 = PT
1 > 0, P2 =

PT
2 > 0 exist so that

• α ≤ min(λmin(P1), λmin(P2)),

• β ≥ max(λmax(P1), λmax(P2)), and

• λmax(diag[A1(z1)
T P1 + P1A1(z1), A2(z2)

T P2 + P2A2(z2)]) ≤ −γ

Now it will be proven that, if the subsystems are exponentially stable, the convergence rate

of the system (3.17) is also determined by the convergence rate of the individual subsystems

(3.18) and (3.19).

Theorem 3.4 The convergence rate of the system (3.17) is equal to max{−α1,−α2} − ǫ,

for an arbitrary ǫ > 0 if

1. system (3.18) is exponentially stable, with convergence rate −α1,

2. system (3.19) is exponentially stable, with convergence rate −α2, and

3. the matrix A21(z) is bounded, i.e., there exists M ∈ R, so that ∀z, ‖A21(z)‖ ≤ M .

Proof: Condition 1 can be written as ‖x1(t)‖ ≤ k1‖x10‖e−α1t, for some k1 > 0. The

solution of the system (3.19) is the homogeneous solution x2h(t) of the system

ẋ2 = A21(z)x1 + A2(z)x2 (3.25)

and therefore it satisfies ‖x2h(t)‖ ≤ k2‖x20‖e−α2t, for some k2 > 0. The particular solution

of equation (3.25) can be expressed as:

x2p =

∫ t

t0

x2h(t − s)A21(z(s))x1(s)ds.

Hence,

‖x2p‖ = ‖
∫ t

t0

x2h(t − s)A21(z(s))x1(s)ds‖

≤
∫ t

t0

‖x2h(t − s)‖‖A21(z(s))‖‖x1(s)‖ds

≤
∫ t

t0

k2‖x20‖e−α2(t−s)Mk1‖x10‖e−α1sds

≤ k1k2M‖x10‖‖x20‖e−α2t

∫ t

t0

e(α2−α1)sds

If α2 6= α1, we have

‖x2p‖ ≤ k1k2M‖x10‖‖x20‖|α2 − α1|−1 · e−α2t|e(α2−α1)t − e(α2−α1)t0 |
≤ k1k2M‖x10‖‖x20‖|α2 − α1|−1|e−α1t − c1e

−α2t|.
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CHAPTER 3. CASCADED OBSERVERS

where c1 = e(α2−α1)t0 .

A bound on the general solution of (3.25) is:

‖x2‖ ≤ ‖x2h‖ + ‖x2p‖
≤ k2‖x20‖e−α2t + k1k2M‖x10‖‖x20‖ · |α2 − α1|−1|e−α1t − c1e

−α2t|
≤ c2e

max{−α1,−α2}t

where c2 = max{k2‖x20‖(1+k1M‖x10‖|α2−α1|−1c1), k1k2‖x10‖‖x20‖M |α2−α1|−1}.

For α1 = α2 = α, we have

‖x2p‖ ≤ k1k2M‖x10‖‖x20‖e−αt(t − t0)

‖x2‖ ≤ ‖x2h‖ + ‖x2p‖
≤ k2‖x20‖e−αt + k1k2M‖x10‖‖x20‖e−αt(t − t0)

≤ c3e
−αt + c4te

−αt

(3.26)

with c3 = k2‖x20‖ and c4 = k1k2‖x10‖‖x20‖M . For the bound c3e
−αt +c4te

−αt on (3.26)

it has been shown that the convergence rate is α − ǫ, for an arbitrary ǫ > 0 (Baddou et al.,

2006).

This means that the convergence rate of the system (3.25), and, therefore, of the system

(3.17) is determined by the convergence rate of the individual subsystems. �

3.3.2 Cascaded fuzzy observers

This section presents the cascaded approach applied to observer design for TS fuzzy systems.

As before, consider the fuzzy system with normalized membership functions:

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + di)

(3.27)

and a fuzzy observer of the form:

˙̂x =

m∑

i=1

wi(z)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(z)(Cix̂ + di)

(3.28)

Assuming that the system matrices for each rule i = 1, 2, . . . ,m can be written as:

Ai =

(
A1i 0
A21i A2i

)

Ci =

(
C1i 0
C21i C2i

)

observers can be designed individually for each subsystem and each rule, with the overall

observer gain having the form Li =

(
L1i 0
0 L2i

)
, where i denotes the rule number.

Similarly to Section 2.4, two cases are distinguished.
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Case 1: State-independent scheduling vector

If the weights do not depend on the states to be estimated, the cascaded error system can be

written as:

ė =

m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e

=
m∑

i=1

m∑

j=1

wi(z)wj(z)

(
A1i − L1iC1j 0

A21i − L2iC21j A2i − L2iC2j

)
e.

(3.29)

This system is of the form (3.16) for which the stability conditions from Section 3.3.1 can

be used. If the C matrix is common for all the rules, the presented theorems can be directly

applied.

In the case when the scheduling vector does not depend on the states to be estimated,

Theorem 3.4 can also be applied to the design of observers with guaranteed convergence rate.

Using the results on the convergence rate, Theorem 2.6 can be reformulated as follows:

Theorem 3.5 The decay rate of the error system (3.29) is at least α, if there exist P1 =
PT

1 > 0 and P2 = PT
2 > 0, so that for i = 1, 2, . . . , m

H(P1(A1i − L1iC1i)) + 2αP1 < 0

H(P2(A2i − L2iC2i)) + 2αP2 < 0

H(P1(A1i − L1iC1j)) + 2αP1 < 0

j = 1, 2, . . . , m ∀i, j : ∃z : wi(z)wj(z) 6= 0

H(P2(A2i − L2iC2j)) + 2αP2 < 0

j = 1, 2, . . . , m ∀i, j : ∃z : wi(z)wj(z) 6= 0

�

The proof follows directly. The above conditions explicitly state, that in order to design a

global observer with a desired convergence rate, it is sufficient to design observers for the

subsystems with the same convergence rate.

Case 2: State dependent scheduling vector

Now, consider the case when the parameters z depend on the states to be estimated, i.e.,

z = ẑ. For simplicity, only the case with common measurement matrix is considered. Then,

the fuzzy system is expressed as

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y = Cx,

(3.30)

and the error system can be written as:

ė =
m∑

i=1

(
w(ẑ1)(A1i − L1iC1i) 0
wi(ẑ)(A21i − L2iC21i) wi(ẑ)(A2i − L2iC2i)

)
e

+

m∑

i=1

(
w1i(z1) − w1i(ẑ1)
w2i(z) − w2i(ẑ)

)
(Aix + Biu + ai)

(3.31)
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To ensure the stability of the observer in such a case, Theorem 2.7 can be applied. How-

ever, using the results for cascaded systems, relaxed stability conditions are derived. These

conditions can be expressed as follows.

Theorem 3.6 The cascaded error system (3.31) is UGAS, if there exist a Lyapunov function

V1(x1), P2 = PT
2 > 0 and two continuous functions θ1, θ2 : R+ → R+ such that:

1. The Lyapunov function V1 ensures exponential stability of the error system

ė1 =

m∑

i=1

w1i(ẑ1)(A1i − L1iC1i)e1+

+ (w1i(z1) − w1i(ẑ1))(A1ix1 + B1iu + a1i),

(3.32)

2. P2 satisfies H(P2A2i) < 0, i = 1, 2, . . . , m and

3. ‖∑m
i=1(w2i(z1,z2) − w2i(ẑ1, ẑ2))(A21ix1 + A2ix2 + B2iu + a2i)‖ ≤ θ1(‖e1‖) +

θ2(‖e1‖)‖e2‖.

Proof: Since H(P2A2i) < 0, i = 1, 2, . . . , m, V2 is a Lyapunov function for

ė2 =

m∑

i=1

w2i(ẑ1, ẑ2)(A2i − L2iC2i)e2 (3.33)

and this system is UGAS (Assumption 3.1). Let c1 = 2λmax(P2)
λmin(P2)

, c2 = 2ηλmax(P2). With

these constants, Assumption 3.2 is satisfied. The Lyapunov function V1 satisfies Assumption

3.4.

Now, the interconnection term in the second subsystem can be written as:

g(e1,e2) =

m∑

i=1

w2i(ẑ1, ẑ2)(A21i − L2iC2i)e1+

+

m∑

i=1

(w2i(z1,z2) − w2i(ẑ1, ẑ2))(A21ix1 + A2ix2 + B2iu + a2i)

‖g(e1,e2)‖ ≤
m∑

i=1

‖w2i(ẑ1, ẑ2)‖‖A21i − L2iC2i‖‖e1‖ + θ1(‖e1‖) + θ2(‖e1‖)‖e2‖

‖g(e1,e2)‖ ≤ τ‖e1‖ + θ1(‖e1‖) + θ2(‖e1‖)‖e2‖
‖g(e1,e2)‖ ≤ θ

′

1(‖e1‖) + θ2(‖e1‖)‖e2‖

where θ
′

1(‖e1‖) = τ‖e1‖+θ1(‖e1‖). With this, Assumption 3.3 (see (3.13)) is satisfied, and

based on Theorem 3.1, the cascaded system is UGAS. Moreover, since the first subsystem is

exponentially stable, the cascaded system is also exponentially stable (see Proposition 3.1).

�
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3.3.3 Example for cascaded observer design

This example of a real-world system (Waurajitti et al., 2000) illustrates the benefits of using

the cascaded approach instead of centralized observer design.

Consider the three tanks connected in a cascade as shown in Figure 3.3. Water is pumped

from a reservoir into the upper tank (3). From this tank, the water flows to the middle tank

(2) and the lower tank (1) and from the lower tank back to the reservoir. The system has

one control input u, which is the voltage applied to the motor of the pump and two measured

outputs: the water levels h3 in the upper tank and h1 in the lowest tank. The flow rate Fin,

provided by the pump, and the water level h2 in the middle tank need to be estimated, and

therefore, an observer has to be designed. The differential equations describing the dynamics

of this system are the following:

τḞin = −Fin + Qs · u

ḣ3 =
Fin

A3
− s3

√
2gh3

A3

ḣ2 =
s3

√
2gh3

A2
− s2

√
2gh2

A2

ḣ1 =
s2

√
2gh2

A1
− s1

√
2gh1

A1

(3.34)

The parameter values are listed in Table 3.3.

Figure 3.3: Cascaded tanks system.

It is assumed that the tanks have the same height, hmax = 2 m, and if a tank is full the

overflowing water does not affect the level of the water in the other tanks. Therefore, we have

the constraint ḣi,max = 0, and all levels are bounded, hi ∈ [0, hmax].
In order to use the proposed design, a TS fuzzy model of the system (3.34) is con-

structed. To obtain a good coverage of the levels, for each level hi, four points hi ∈
{0.1, 0.55, 1.05, 1.6} are chosen, together with appropriate membership functions, as de-

picted in Figure 5.2. Note that the scheduling vector consists of the levels h1, h2 and h3

which are the states to be estimated.

39



CHAPTER 3. CASCADED OBSERVERS

Table 3.3: Parameter values used.
Parameter Symbol Value Units

Acceleration due to gravity g 9.81 m/s
2

Cross-sectional area tank 1 A1 10 m2

Cross-sectional area tank 2 A2 8 m2

Cross-sectional area tank 3 A3 9 m2

Outlet area of tank 1 s1 0.25 m2

Outlet area of tank 2 s2 0.2 m2

Outlet area of tank 3 s3 0.3 m2

Input to flow gain Qs 0.336 m3/s/V
Motor time constant τ 3 s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h

µ
(h

)

Figure 3.4: Membership functions for the heights.

The system (3.34) is linearized for each combination of the chosen points. Since the lin-

earization is not done in equilibria, the consequents are affine. For instance, the rule obtained

by linearizing in h1 = 0.55, h2 = 0.1 and h3 = 0.55 is:

If h1 is approximately 0.55 and h2 is approximately 0.1 and h3 is approximately 0.55,

then ẋ = Ax + Bu + a, with

A =




−0.3333 0 0 0
0.1111 −0.0995 0 0

0 0.1120 −0.1751 0
0 0 0.1401 −0.0747


 B =




0.1120
0
0
0




a = (0 − 0.0547 0.0441 − 0.0271)T

where x = [Fin h3 h2 h1]
T . To compute the membership degree of the scheduling vector,

the conjunction operator is used.

By examining the form of system (3.34) and the matrices of the fuzzy system, one can

easily see that the system can be cascaded, with x1 = [Fin h3]
T and x2 = [h2 h1]

T . There-

fore, observers can be designed separately for the individual subsystems. The observers

are designed both for the whole system and the individual subsystems using the same pole-
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placement method and conditions. Both observers have the form (2.11), i.e.,

˙̂x =

m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =

m∑

i=1

wi(ẑ)(Cix̂ + di).

To simulate the system, the differential equations of the fuzzy models were discretized

with the Euler method, using a sampling period T = 0.1s. The estimated values given by the

fuzzy model were saturated at 0 and hmax. The input was randomly generated, and so were

the “true” and “estimated” initial states. For the presented cases, the true initial conditions

were [1.7 0.4 0.1 0.4]T , while the estimated ones were [1.5 0.2 1.3 0.8]T . The observers

were designed using LMI regions (see Section 2.4.3). The regions and the CPU time needed

to solve the LMIs for these regions using the sedumi solver of the Yalmip toolbox (Löfberg,

2004) are presented in Table 3.4, for the centralized and cascaded observers. As can be seen,

the time needed to solve the LMIs for the centralized observer is, in most cases more than

10 times larger than the time needed for the cascaded observer, due to the larger number of

LMI variables that have to be determined: for the centralized system 64 4-by-4 LMIs need

to be solved, while for the cascaded approach this number is reduced to 2 times 4 LMIs of

dimension 2-by-2.

Table 3.4: LMI regions and the CPU time.

Case dl du θ Centralized [s] Cascaded [s]

1 – – – 2.73 0.17

2 -10 -2 – 103.00 0.23

3 – – π/4 1.59 0.22

4 -10 -2 π/4 30.05 0.53

5 – – π/36 1.75 0.31

6 -10 -2 π/36 33.89 0.53

The estimation errors of Fin and h2, when using centralized and cascaded observers, for

the six cases are presented in Figures 3.5 and 3.6, respectively.

If the LMI region is the entire left half-plane, the cascaded observer converges much

faster than the centralized observer (Figures 3.5(a) and 3.6(a)). If the closed-loop poles are

restricted to the interval [−10, −2], but there is no restriction on θ (case 2), the imaginary

parts of the closed-loop poles of the centralized observer are of the order 106 – the observer

effectively becomes unusable. Therefore, only the results obtained by the cascaded setting

are presented (Figures 3.5(b) and 3.6(b)). If θ is constrained, the performance of the ob-

servers is comparable. For no constraints on the real part of the poles (i.e., no vertical strip

in Figure 2.2), the estimation error on h2 of the cascaded observer converges faster (Figures

3.6(c) and 3.6(e)). When both the real part and the damping are constrained, the overshoot

of the cascaded observer is slightly larger than that of the centralized one (Figures 3.5(d) and

3.5(f)).
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Figure 3.5: Estimation errors for Fin centralized and cascaded observers.
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(c) Estimation error for h2, case 3
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(d) Estimation error for h2, case 4
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(e) Estimation error for h2, case 5
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(f) Estimation error for h2, case 6

Figure 3.6: Estimation errors for h2 using centralized and cascaded observers.

3.4 Summary and concluding remarks

In many real-life applications, a complex process model can be decomposed into simpler, cas-

caded subsystems. This partitioning of a process leads to increased modularity and reduced
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complexity of the problem, while also making the analysis easier.

In this chapter, a cascaded approach has been presented for nonlinear systems. In the first

part of the chapter, an algorithm for partitioning a nonlinear system and stability conditions

for cascaded nonlinear systems have been presented. In the second part, cascaded TS fuzzy

systems were considered. Based on the stability conditions for general nonlinear system,

more relaxed conditions were derived for TS systems. It has been proven that, similar to

linear systems, the exponential stability of the individual subsystems implies the stability of

the cascaded system. Moreover, the convergence rate of the cascaded TS system is given by

the convergence rate of the individual subsystems. In addition, the cascaded stability analysis

relaxes the conventional stability conditions and reduces the dimension of the LMI problems

to be solved.

The cascaded setting has also been extended to state estimation. If the system under con-

sideration can be represented as a cascaded of TS fuzzy systems, observers can be designed in

a cascaded fashion. This partitioning of a process and observer leads to increased modularity

and reduced complexity of the problem, with reduced computational costs. The benefits of

studying stability and designing observers based on subsystems have been demonstrated on

simulation examples.

Note that although the cascaded stability analysis and observer design have the above

enumerated benefits, the Lyapunov functions used are still conservative. Moreover, it is hard

to find a Lyapunov function for the whole system, and therefore, the analysis of other perfor-

mance indices cannot be based on the Lyapunov function of the whole system.
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Chapter 4

Distributed observers

The previous chapter has presented stability analysis and observer design for a special case

of distributed systems, that may be represented as a cascade of subsystems. In this chapter, a

more general case is considered, namely when the subsystems influence each other. Building

on the results of the previous chapter, here we consider the distributed stability analysis and

observer design for TS fuzzy systems. For large-scale or distributed systems, such an ap-

proach presents several advantages compared to the centralized aproach, among which easier

analysis and design or reduced computational costs. The analysis and design are performed

sequentially for the subsystems, allowing for the online addition of new subsystems. LMI

conditions are derived, which are easy to solve.

Parts of this chapter have been published in (Lendek et al., 2008a).

4.1 Introduction

In many cases, large-scale or distributed systems are composed of a number of subsystems

that influence and are being influenced by each other. For such systems, recently, decentral-

ized analysis and control design has received much attention (Haijun et al., 2006; Liu and

Zhang, 2005; Krishnamurthy and Khorrami, 2003; Bavafa-Toosi et al., 2006; Zhang et al.,

2006; Liu et al., 2007). For control purposes, the decentralized design presents several ad-

vantages: flexibility, fault tolerance, simplified design and tuning. In addition, in many cases,

the structure of the overall system is not fixed, i.e., subsystems may be added online, and

therefore a centralized analysis and/or design becomes computationally intractable.

Although decentralized control has received much attention (Sandell et al., 1978; Akar

and Özgüner, 2000; Jiang, 2000; Krishnamurthy and Khorrami, 2003; Wang and Chai, 2005;

Zhang et al., 2006; Bavafa-Toosi et al., 2006) in this context, decentralized state estimation

has not been addressed as much as the control problem. For decentralized state estimation,

in general an architecture of several sensor nodes is assumed, usually a network of nodes

for distributed systems (López-Orozco et al., 2000; Roumeliotis and Bekey, 2002; Schmitt

et al., 2002), such that each node shares information with other nodes and computes a local

estimate. Observers used include, but are not limited to linear observers (Sundareshan and

Elbanna, 1990; Saif and Guan, 1992; Hou and Müller, 1994), Kalman filter variants (Durrant-

Whyte et al., 1990; Benigni et al., 2008), and particle filters (Bolic et al., 2004; Coates, 2004).
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In this chapter we consider the distributed stability analysis and observer design for a

system composed of subsystems. Each subsystem is represented by a TS fuzzy model (Takagi

and Sugeno, 1985). The coupling between the subsystems is realized through their states, i.e.,

the states of a subsystem may influence the dynamics of another subsystem. First, we analyze

the stability of the overall TS system based on the stability of the subsystems, allowing that

new subsystems may be added online. In such a case, i.e., when the structure of the system is

not fixed, the influence of the interconnection terms due to the addition of a new subsystem

is not known before the subsystem is actually added. Therefore, the newly added subsystem

should be sufficiently robustly stable so that the stability of the overall system is maintained.

Second, the distributed approach is extended to observer design. We assume that a fuzzy

observer is already designed for an existing subsystem. When a new subsystem, together

with the interconnection terms, which may affect the states and/or measurements is added,

a new observer is designed only for this subsystem. Therefore, the observers are designed

sequentially for the subsystems. The advantage of this approach is that already designed

observers do not need to be altered.

4.2 Decentralized stability analysis of fuzzy systems

Consider a distributed system, with each subsystem being represented by a TS fuzzy model,

where the influence of the subsystems is in both directions, i.e., a subsystem influences other

subsystems and symmetrically it is influenced by other subsystems. The subsystems are

coupled through their states. Assume that the structure of the system is not fixed, i.e., new

subsystems may be added online, but the newly added subsystem does not change the local

models of the existing subsystems. Note, however, that this assumption allows for the change

of the membership functions. In such a case, a centralized re-analysis of the stability of the

whole system each time a new subsystem is added or removed may easily become intractable.

Therefore, we consider decentralized analysis, based on the stability of the already existing

system, the newly added subsystem and the interconnection terms introduced by the new

subsystem. Although such an analysis is more restrictive then a centralized one, it has the

benefit of reduced computational complexity. For the ease of notation and without loss of

generality, only two subsystems are considered. Note, however, that the procedure directly

applies for more subsystems if they are added sequentially to the system. The subsystem

added (with states x1) and the existing system (with states x2) are expressed together as:

ẋ1 =

m∑

i=1

wi(z)(A1ix1 + A12ix2)

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + A21ix1)

(4.1)

The structure of such a system is presented in Figure 4.1, where S1 and S2 denote the corre-

sponding subsystems.

For such a system, we have formulated the following stability conditions (Lendek et al.,

2008a):
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x2

S1

u

S2

x1

x2

x1

Figure 4.1: Two subsystems (S1 and S2) coupled through their states.

Theorem 4.1 The system (4.1) is asymptotically stable, if there exist P1 = PT
1 > 0, P2 =

PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(H(P1A1i) + 2Q1)

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i) + 2Q2)

where λmin(.) is the eigenvalue with the smallest absolute magnitude.

Proof: Consider first the following part of the system (4.1):

ẋ1 =

m∑

i=1

wi(z)(A1ix1)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 + A21ix1)

(4.2)

This is a cascaded system and it is exponentially stable, if there exist P1 = PT
1 > 0, P2 =

PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0 so that

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m

Then, there exists α ∈ R+ so that Vc = xT diag(αP1, P2)x is a Lyapunov function for the

cascaded system (4.2) and V̇c < −2xT Qx, with Q = diag(αQ1, Q2):

V̇c =
m∑

i=1

wi(z)xT

(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
x

For V̇c < −2xT Qx, it is needed that
(

αH(P1A1i) A21
T
i P2

P2A21i H(P2A2i)

)
< −2

(
αQ1 0

0 Q2

)
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or (
αH(P1A1i + Q1) A21

T
i P2

P2A21i H(P2A2i + Q2)

)
< 0

Using the Schur complement, we have

αH(P1A1i + Q1) − (AT
21iP2)(H(P2A2i + Q2))

−1P2A21i < 0

which is true if α is chosen such that

α >
1

λmin(H(P1A1i + Q1))
· maxi ‖AT

21iP2‖2

λmin(H(P2A2i + Q2))
(4.3)

Now, consider the full system (4.1). By using the above constructed Vc as a candidate Lya-

punov function for (4.1), we obtain:

V̇c =

m∑

i=1

wi(z)xT

[(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
+

(
0 αP1A12i

αAT
12iP1 0

)]
x

< −2xT

(
αQ1 0

0 Q2

)
x + 2xT α max

i
‖IP1A12i‖x

< −2xT

(
α(Q1 − maxi ‖P1A12i‖I) 0

0 Q2 − α maxi ‖P1A12i‖I

)
x

which leads to the conditions

λmin(Q1) > maxi ‖P1A12i‖ (4.4)

λmin(Q2) > α maxi ‖P1A12i‖ (4.5)

Combining (4.3) and (4.5), we get that such an α exists and therefore Vc is a Lyapunov

function for the whole system if

λmin(Q2)

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(H(P1A1i + Q1))λmin(H(P2A2i + Q2))

or
λmin(H(P1A1i + Q1))

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))
�

Remark: If A12i, i = 1, 2, . . . , m or A21i, i = 1, 2, . . . , m are zero, then based on

Theorem 3.2, the system (4.1) is stable if the individual subsystems are stable, and the last

two conditions are not needed.

If one analyzes the stability of the two subsystems at the same time, the conditions of

Theorem 4.1 are necessarily nonlinear. However, in the scenario considered in this chapter,

i.e., the stability analysis of a TS fuzzy system when a new subsystem is added to system that

is already known to be stable, the conditions can be verified using the following algorithm:
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Algorithm 4.1

1. We assume that the existing system,

ẋ2 =

m∑

i=1

A2ix

is already proven to be stable using a quadratic Lyapunov function and therefore P2

and Q2 such that H(P2A2i) < −2Q2 have been computed. Thanks to this, when

adding the new subsystem, with the interconnection terms, the value of

γ =
maxi ‖AT

21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))

can be computed.

2. Now, for the added subsystem and the corresponding interconnection terms we have

the conditions:
H(P1A1i) < −2Q1 i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(H(P1A1i + Q1)) > γmax
i

‖P1A12i‖

which are satisfied if the LMIs:

H(P1A1i + Q1) ≤ −t1I i = 1, 2, . . . , m

Q1 ≥ t2I(
t2I maxi ‖A12i‖P1

maxi ‖A12i‖P1 t2I

)
> 0

(
t1I γ maxi ‖A12i‖P1

γ maxi ‖A12i‖P1 t1I

)
> 0

(4.6)

are feasible. Moreover, if one takes into consideration that new subsystems may be

added to the whole system (4.1), the analysis of the new subsystem is made easier by

minimizing the expression:

‖P1‖
λmin(Q1)λmin(H(P1A1i + Q1))

This can be achieved by solving the LMI problem: find P1 = PT
1 > 0, Q1 = QT

1 > 0,

and maximize α1, α2, α3 subject to (4.6) and

− P1 > α1I

Q1 > α2I

H(P1A1i + Q1) > α3I

The above-presented sequential method is only needed if a bound on the interconnection

terms is not known before adding a new subsystem. However, if ck = maxij ‖Akij‖, i.e., a
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bound on the interconnection terms is known beforehand, the analysis of the subsystems can

be decoupled by analyzing the last condition of Theorem 4.1:

λmin(H(P1A1i + Q1))

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i + Q2))

λmin(H(P1A1i + Q1))λmin(Q2)λmin(H(P2A2i + Q2)) > max
i

‖P1A12i‖max
i

‖AT
21iP2‖2

The third condition of Theorem 4.1 already states that

λmin(Q1) ≥ max
i

‖P1A12i‖

If Q2 is similarly restricted, i.e., the condition

λmin(Q2) ≥ max
i

‖P2A21i‖

is imposed, then the last condition of Theorem 4.1 becomes

λmin(H(P1A1i + Q1))λmin(Q2)λmin(H(P2A2i + Q2)) > λmin(Q1)λ
2
min(Q2)

λmin(H(P1A1i + Q1))λmin(H(P2A2i + Q2)) > λmin(Q1)λmin(Q2)

which is satisfied if
λmin(H(P1A1i + Q1)) > λmin(Q1)

λmin(H(P2A2i + Q2)) > λmin(Q2)

The condition can be summarized as:

Theorem 4.2 The distributed system (4.1) is exponentially stable, if there exist P1 = PT
1 >

0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

λmin(H(P1A1i + Q1)) > λmin(Q1)

λmin(H(P2A2i + Q2)) > λmin(Q2)

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(Q2) ≥ max
i

‖P2A21i‖

where λmin(.) is the eigenvalue with the smallest absolute magnitude. �

Note that these conditions are more conservative than those of Theorem 4.1. By imposing

for both subsystems that λmin(Qi) ≥ maxj ‖PiAikj‖, i, j = 1, 2, it is required that each sub-

system “dominates” the influence from the other subsystem. As stated in Theorem 4.1, if the

newly added subsystem “dominates” both interconnection terms, while the second subsystem

is stable, it is enough to ensure the stability of the whole system.

Theorem 4.2, similarly to current results for stability analysis and stabilization of fuzzy

large scale systems (Uang and Chen, 2000; Hsiao and Hwang, 2002; Wang and Luoh, 2004;

Wang and Chai, 2005; Tseng, 2008) is comparable to perturbation methods with weak cou-

pling (see (Sandell et al., 1978) and the references therein). In fact, the assumption that

the coupling is “weak enough”, compared to the dynamics of the individual subsystems is

necessary for the controller (or the analysis) to be decoupled.
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In contrast, Theorem 4.1 and the resulting Algorithm 4.1, is comparable to methods de-

veloped for strong coupling, i.e., only one of the subsystems has to converge quickly enough

so that stability is preserved. This approach can also be thought of as an asymmetrical weak

coupling, i.e., only one of the influences has to be weak enough for stability to be preserved.

4.3 Distributed observer design

This section presents the decentralized approach applied to observer design for TS fuzzy

systems.

4.3.1 Preliminaries

Consider a distributed system where each subsystem is represented by a TS fuzzy model, to

which new subsystems may be added online, and an asymptotically stable observer needs

to be designed for the whole system. We consider distributed design, where an observer is

designed for each newly added subsystem, without modifying the already existing observers,

so that the overall observer is stable.

Note that we only consider observer design and do not assume that the subsystems are sta-

bilized or controlled at a known value (i.e., the states are not at some known constant value).

However, we assume that the estimated states are communicated among the subsystems that

influence each other. This means that the communication graph of the subsystems should be

the same as the interconnection graph, i.e., if a subsystem A influences another subsystem B,

then subsystem A should also communicate its estimated states to the subsystem B.

For the ease of notation and without loss of generality, only two subsystems are consid-

ered. The observer structure is depicted in Figure 4.2.

y2

O1

u

O2

y1 x1

x̂2

^

Figure 4.2: Decentralized observer for two subsystems.
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Consider a fuzzy system that consists of two subsystems:

ẋ1 =

m∑

i=1

wi(z)(A1ix1 + B1iu + A12ix2)

y1 =

m∑

i=1

wi(z)(C11ix1 + C12ix2)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 + B2iu + A21ix1)

y2 =

m∑

i=1

wi(z)(C22ix2 + C21ix1)

(4.7)

and the observer is of the form:

˙̂x1 =
m∑

i=1

wi(ẑ)(A1ix̂1 + B1iu + A12ix̂2 + L1i(y1 − ŷ1))

ŷ1 =

m∑

i=1

wi(ẑ)(C11ix̂1 + C12ix̂2)

˙̂x2 =
m∑

i=1

wi(ẑ)(A2ix̂2 + B2iu + A21ix̂1 + L2i(y2 − ŷ2))

ŷ2 =

m∑

i=1

wi(ẑ)(C22ix̂2 + C21ix̂1)

(4.8)

The goal is to design the observer gains L1i, i = 1, 2, . . . , m for each rule of the subsys-

tem with states x1 so that (4.8) is a stable observer, given that the gains L2i, i = 1, 2, . . . , m
have already been designed such that the observer

˙̂x2 =
m∑

i=1

wi(ẑ)(A2ix̂2 + B2iu + L2i(y2 − ŷ2))

ŷ2 =

m∑

i=1

wi(ẑ)C22ix̂2

is stable for the second subsystem without the interconnection terms:

ẋ2 =

m∑

i=1

wi(z)(A2ix2 + B2iu)

y2 =
m∑

i=1

wi(z)C22ix2

The system structure considered is characterized by coupling both in states and measure-

ments. Such a system is presented in Figure 4.3. Two cases are distinguished, according to

whether or not the scheduling vector depends on some of the states to be estimated.
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x2
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C2
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y2

Figure 4.3: Two subsystems coupled through their states and measurements.

4.3.2 State-independent scheduling vector

Distributed observer design

If the scheduling vector does not depend on the states to be estimated, the error systems can

be expressed as:

ė1 =

m∑

i=1

m∑

j=1

wi(z)wj(z)[A1ie1 + A12ie2 − L1iC1je]

ey1 =

m∑

i=1

wi(z)C1ie

ė2 =

m∑

i=1

m∑

j=1

wi(z)wj(z)[A2ie2 + A21ie1 − L2iC2je]

ey2 =
m∑

i=1

wi(z)C2ie

(4.9)

where C1i = [C11i C12i] and C2i = [C21i C22i], or

ė =

m∑

i=1

m∑

j=1

wi(z)wj(z)

(
A1i − L1iC11j A12i − L1iC12j

A21i − L2iC21j A2i − L2iC22j

)
e (4.10)

Note that since L1i, i = 1, 2, . . . , m need to be designed, a simple special case is when

there exist P1 = PT
1 > 0 and L1i, so that H(P1(A1i−L1iC11j)) < 0 and A12i−L1iC12j =

0 ∀i, j : ∃z : wi(z)wj(z) 6= 0. In this case the error system (4.10) is cascaded,

further restrictions are not necessary, and the stability conditions can be summarized as the

consequence of Theorem 3.2:

Corollary 4.1 The error system (4.10) is asymptotically stable if there exist P1 = PT
1 > 0,

P2 = PT
2 > 0, L1i, L2i, i = 1, 2, . . . , m so that ∀i, j : ∃z : wi(z)wj(z) 6= 0

H(P1(A1i − L1iC11j)) < 0

H(P2(A2i − L2iC22j)) < 0

A12i − L1iC12j = 0
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�

Note that the third condition of Corollary 4.1 is more likely to be satisfied if the mea-

surement matrix is common for the rules of a subsystem and the coupling is present only in

measurements. However, in general this is not the case and it is not possible to find such L1i.

Therefore, the results from Section 4.2 can be appropriately modified:

Corollary 4.2 The error system (4.10) is exponentially stable, if there exist L1i, L2i, i =
1, 2, . . . , m, P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

H(P1G1ij) < −2Q1 ∀i, j : ∃z : wi(z)wj(z) 6= 0

H(P2G2ij) < −2Q2 ∀i, j : ∃z : wi(z)wj(z) 6= 0

λmin(Q1) ≥ max
ij

‖P1G12ij‖

λmin(H(P1G1ij + Q1))

maxij ‖P1G12ij‖
>

maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

where G1ij = A1i − L1iC11j , G2ij = A2i − L2iC22j , G12ij = A12i − L1iC12j , G21ij =
A21i − L2iC21j , and λmin denotes the eigenvalue with the smallest absolute magnitude. �

LMI conditions

Note that Corollary 4.2 leads to a sequential implementation, similar to Algorithm 4.1. Once

a stable observer is designed for the subsystem

ẋ2 =
m∑

i=1

wi(z)(A2ix2 + B2iu)

y2 =

m∑

i=1

wi(z)C22ix2

the matrices P2, Q2, and the gains L2i, i = 1, 2, . . . , m are known, and therefore, G2ij

can be computed. After adding the interconnection terms, G21ij , i = 1, 2, . . . , m, j =
1, 2, . . . , m also the ratio

γ =
maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

can be computed. The conditions of Corollary 4.2 are then reduced to finding L2i, i =
1, 2, . . . , m, P1 = PT

1 > 0, Q1 = QT
1 > 0, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1G1ij) < −2Q1

λmin(Q1) ≥ max
ij

‖P1G12ij‖

λmin(H(P1G1ij + Q1)) > γmax
ij

‖P1G12ij‖

which are satisfied if

H(P1G1ij + Q1) < 0

Q1 ≥ max
ij

‖P1G12ij‖I

H(P1G1ij + Q1) < −γmax
ij

‖P1G12ij‖I
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These conditions, in turn are satisfied if the following LMI is feasible, with the change of

variables Mi = P1L1i: find L2i, i = 1, 2, . . . , m, P1 = PT
1 > 0, Q1 = QT

1 > 0, t1 > 0,

t2 > 0 Mi, i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1A1i − MiC1i + Q1) < −t1I

Q1 > t2I(
t2I P1A12i − MiC21j

(P1A12i − MiC21j)
T t2I

)
> 0

(
t1I P1γA12i − MiγC21j

(P1γA12i − MiγC21j)
T t1I

)
> 0

The steps can be summarized as:

Algorithm 4.2

1. For the existing observer of the subsystem

ẋ2 =

m∑

i=1

wi(z)(A2ix2 + B2iu)

y2 =

m∑

i=1

wi(z)C22ix2

compute

γ̄ =
‖P2‖2

λmin(Q2)λmin(H(P2G2ij + Q2))

2. When the new subsystem and corresponding interconnection terms are added, compute

γ = γ̄ maxij ‖G21ij‖2. To design the observer for this subsystem, solve the LMI

problem: find L2i, i = 1, 2, . . . , m, P1 = PT
1 > 0, Q1 = QT

1 > 0, t1 > 0, t2 > 0
Mi, i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1A1i − MiC1i + Q1) < −t1I

Q1 > t2I(
t2I P1A12i − MiC21j

(P1A12i − MiC21j)
T t2I

)
> 0

(
t1I P1γA12i − MiγC21j

(P1γA12i − MiγC21j)
T t1I

)
> 0

Decoupled observer design

Note that Algorithm 4.2 is useful if no bound on the interconnection terms is known before

the subsystem is added. If a bound on A12i, A21i, C21i, C12i, i = 1, 2, . . . , m is known

beforehand, the design can be decoupled starting with the first subsystem, by analyzing the

last condition of Corollary 4.2. Although the following manipulations introduce conserva-

tiveness, the design is decoupled, and LMI conditions are obtained.
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Let us impose a condition similar to that of the third condition of Corollary 4.2 to the

second subsystem, i.e.,

λmin(Q2) ≥ max
ij

‖P2G21ij‖

Then, we obtain

maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij + Q2))
≤ maxij ‖P2G21ij‖

λmin(H(P2G2ij + Q2))

an expression that is similar to that of the reciprocal of the first part of the fourth condition of

Corollary 4.2, i.e.,
λmin(H(P1G1ij + Q1))

maxij ‖P1G12ij‖
By imposing for both subsystems

λmin(H(PkGkij + Qk))

maxij ‖PkTkij‖
> 1

where Tkij is the interconnection term influencing the subsystem k, Tkij = Akpi −LkiCkpj ,

k = 1, 2, the conditions are decoupled. This result can be summarized as:

Corollary 4.3 The error system (4.10) is exponentially stable, if there exist Lkij ,

i = 1, 2, . . . , m, j = 1, 2, . . . , m, Pk = PT
k > 0, Qk = QT

k > 0 so that ∀i, j : ∃z :
wi(z)wj(z) 6= 0

H(PkGkij) < −2Qk

λmin(Qk) ≥ max
i

‖PkTkij‖

λmin(H(PkGkij + Qk)) > max
ij

‖PkTkij‖
(4.11)

where Gkij = Aki − LkiCkj , Tkij = Akpi − LkiCkpj is the interconnection term that

influences the subsystem k, Lki, i = 1, 2, . . . , m are the observer gains of the kth subsystem,

and λmin denotes the eigenvalue with the smallest absolute magnitude. �

Note that the above conditions are not LMIs. By imposing that

λmin(H(PkGkij + Qk)) > λmin(Qk)

and that tkmI ≤ Qk ≤ tkMI , the conditions (4.11) are satisfied if

tkmI ≤ Qk ≤ tkMI

H(PkGkij + Qk) < −tkMI tkmI ≥ max
ij

‖PkTkij‖ (4.12)

Recall, that the interconnection term Tkij is in fact Tkij = Akpi − LkiCkpj , i.e., the

interconnection term in the error dynamics. However, only the bounds on the interconnection

terms in the subsystems are known, i.e., µAk = maxpi ‖Akpi‖ and µCk = maxpi ‖Ckpi‖,

where k is the number of the current subsystem, k = 1, 2. Therefore, let Qk be the sum of

two positive definite matrices, Qk = QkA + QkC , which satisfy

QkA ≥ µAk‖Pk‖I
QkC ≥ µCk max

i
‖PkLki‖I
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The conditions above may be expressed as LMIs:

QkA ≥ t1I

QkC ≥ t2I(
t1I µAkPk

µAkPk t1I

)
≥ 0

(
t2I µCkMki

µCkMT
ki t2I

)
≥ 0

where Mki = PkLki.

Now, the conditions are not only decoupled, but also expressed as LMIs. The result is

summarized as:

Theorem 4.3 The error system (4.10) is exponentially stable, if there exist Mki,

i = 1, 2, . . . , m, Pk = PT
k > 0, Qk = QT

k , t1 > 0, t2 > 0 , tkM > 0, tkm > 0, so that

∀i, j : ∃z : wi(z)wj(z) 6= 0

tkmI ≤ Qk ≤ tkMI

H(PkGkij + Qk) < −tkMI

tkmI ≥ QkA + QkC

QkA ≥ t1I

QkC ≥ t2I(
t1I µAkPk

µAkPk t1I

)
≥ 0

(
t2I µCkMki

µCkMT
ki t2I

)
≥ 0

(4.13)

�

Note however, that this result can only be used if a bound on the possible interconnection

term is known. Also, the same remark is valid, as for Theorem 4.1, i.e., the conditions of

Theorem 4.3 are more conservative than those of Corollary 4.2.

4.3.3 State-dependent scheduling vector

Consider now the case when the scheduling vector depends on the states to be estimated. For

the simplicity of notation, only the case when the measurement matrices are common for all

the rules of a subsystem is presented. Note, however, that if the measurement matrices are

different for each rule, the observers can be designed in a similar fashion.
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The error system (similarly to Section 4.3.2) can be expressed as:

ė1 =

m∑

i=1

wi(ẑ)[A1ie1 + A12ie2 − L1iC1e]

+

m∑

i=1

(wi(z) − wi(ẑ))(A1ix1 + B1iu + A12ix2)

ey1 = C1e

ė2 =

m∑

i=1

wi(ẑ)[A2ie2 + A21ie1 − L2iC2e]

+

m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1)

ey2 = C2e

(4.14)

or

ė =
m∑

i=1

wi(ẑ)

(
A1i − L1iC11 A12i − L1iC12

A21i − L2iC21 A2i − L2iC22

)
e

+

m∑

i=1

(wi(z) − wi(ẑ))

(
A1ix1 + B1iu + A12ix2

A2ix2 + B2iu + A21ix1

) (4.15)

In case of a centralized observer design in general it is assumed that

∆ =

m∑

i=1

(wi(z) − wi(ẑ))

(
A1ix1 + B1iu + A12ix2

A2ix2 + B2iu + A21ix1

)

is Lipschitz in e, i.e., ‖∆‖ ≤ µ‖e‖. This condition can also be formulated as ∆ = Fe, with

F an uncertainty, ‖F‖ ≤ µ. Consider now the distributed observer design. For the already

existing subsystem the error is

ė2 =

m∑

i=1

wi(ˆ̄z)[A2ie2 − L2iC22e2] +

m∑

i=1

(wi(z̄) − wi(ˆ̄z))(A2ix2 + B2iu)

ey2 = C22e2

(4.16)

where z̄ depends only on the states of this subsystem. For this subsystem, there already exists

a condition on the model-observer mismatch, i.e., ‖∆̄‖ = ‖∑m
i=1(wi(z̄)−wi(ˆ̄z))(A2ix2 +

B2iu)‖ ≤ µ2‖e2‖. When a new subsystem is introduced, both z and ∆ change. In order to

keep the symmetry and have condition similar to that of centralized observer design, in this

chapter we require that ∆ is expressed as

m∑

i=1

(wi(z) − wi(ẑ))

(
A1ix1 + B1iu + A12ix1

A2ix2 + B2iu + A21ix1

)
=

(
F1 F12

F21 F2

)
e (4.17)
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and the uncertainties are bounded:
‖F12‖ ≤ µ12

‖F1‖ ≤ µ1

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

(4.18)

Considering a distributed observer design for such a system, the following stability con-

ditions can be formulated:

Corollary 4.4 The error system (4.15) is asymptotically stable, if there exist P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, L1i, L2i, i = 1, 2, . . . , m so that (4.17) and

(4.18) are satisfied and

H(P2(G2i + F2)) < −2Q2 i = 1, 2, . . . , m

H(P1G1i) < −2Q1 i = 1, 2, . . . , m

λmin(H(Q1 + P1F1)) > max
i

‖P1(G12i + F12)‖

λmin(H(P1G1i + Q1))

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2

λmin(Q2)λmin(H(P2(G2i + F2) + Q2))

where G1i = A1i − L1iC11, G2i = A2i − L2iC21, G12i = A12i − L1iC12, G21i = A21i −
L2iC21, and λmin denotes the eigenvalue with the smallest absolute magnitude.

Proof: Consider first the following part of the system (4.15):

ėc =
m∑

i=1

wi(ẑ)

(
(A1i − L1iC11)e1c

A2ie2c + A21ie1c − L2iC2ec

)

+

m∑

i=1

(wi(z) − wi(ẑ))

(
0

A2ix2 + B2iu + A21ix1

) (4.19)

This is a cascaded system and it is asymptotically stable, if the conditions of Theorem 3.6

are satisfied. First, we prove, that for this cascaded system, exponential stability can be

achieved by using somewhat more conservative conditions: if there exist P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, µ2 ≥ 0, µ21 ≥ 0, F2, F21 so that

H(P1G1i) < −2Q1 i = 1, 2, . . . , m
m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

H(P2(G2i + F2)) < −2Q2 i = 1, 2, . . . , m

with G1i = A1i − L1iC11 and G2i = A2i − L2iC21.

Note that the condition H(P2(G2i + F2)) < −2Q2 ensures that the already existing

error system is exponentially stable. Moreover, when the new (error) subsystem is “plugged
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in”, the bound on F2 should not change, i.e., although the new subsystem influences the

membership functions, it should not influence the model-observer mismatch of the second

subsystem.

The above conditions also ensure that there exists α ∈ R+ so that

Vc = eT
c diag(αP1, P2)ec is a Lyapunov function for (4.19) and V̇c < −2eT

c Qec, with

Q = diag(αQ1, Q2) and G21i = A21i − L2iC21. To prove this, consider the Lyapunov

function

Vc = eT
c

(
αP1 0
0 P2

)
ec

The derivative can be computed as:

V̇c =

m∑

i=1

wi(ẑ)eT
c H

(
αP1G1i 0

P2(G21i + F21) P2(G2i + F2)

)
ec

For V̇c < −2eT
c Qec, it is needed that

(
αH(P1G1i) (G21i + F21)

T P2

P2(G21i + F21) H(P2(G2i + F2))

)
< −2

(
αQ1 0

0 Q2

)

which amounts to
(

αH(P1G1i + Q1) (G21i + F21)
T P2

P2(G21i + F21) H(P2(G2i + F2) + Q2)

)
< 0

Using the Schur complement, we obtain

αH(P1G1i + Q1) − (G21i + F21)
T P2(H(P2(G2i + F2) + Q2))

−1P2(G21i + F21) < 0

which is satisfied by any α chosen such that

α >
1

λmin(H(P1G1i + Q1))
· maxi ‖P2(G21i + F21)‖2

λmin(H(P2(G2i + F2) + Q2))
(4.20)

Now, consider the full error system (4.15), together with the assumptions

m∑

i=1

(wi(z) − wi(ẑ))(A1ix1 + B1iu + A12ix1) =
(
F1 F12

)
e

‖F12‖ ≤ µ12

‖F1‖ ≤ µ1

(4.21)

Note that these assumptions, together with

m∑

i=1

(wi(z) − wi(ẑ))(A2ix2 + B2iu + A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

(4.22)

are effectively equivalent to those that would be used in the centralized design (see Theo-

rem 2.3).
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By using the above constructed V = Vc as a candidate Lyapunov function for (4.15), we

obtain:

V̇ =

m∑

i=1

wi(ẑ)eT

((
αH(P1G1i) GT

21iP2

P2G21i H(P2G2i)

)
+

(
0 αP1G12i

αGT
12iP1 0

))
e

+ eT

(
αH(P1F1) αP1F12

α(P1F12)
T 0

)
e

< −eTH
(

α(Q1 + P1F1) 0
0 Q2

)
e + 2eT [α max

i
‖P1(G12i + F12)‖]Ie

< −eT

(
αH(Q1 + P1F1 − α maxi ‖P1(G12i + F12)‖I) 0

0 H(Q2 − α maxi ‖P1(G12i + F12)‖I)

)
e

which leads to the conditions

λmin(H(Q1 + P1F1)) > maxi ‖P1(G12i + F12)‖ (4.23)

λmin(Q2) > α maxi ‖P1(G12i + F12)‖ (4.24)

Combining (4.20) and (4.24), we get that such an α exists, and V = Vc is a Lyapunov function

if

λmin(Q2)

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2

λmin(H(P1G1i + Q1))λmin(H(P2(G2i + F2) + Q2))

or
λmin(H(P1G1i + Q1))

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2

λmin(Q2)λmin(H(P2(G2i + F2) + Q2))

�

Note that for this case (i.e., the scheduling vector depending on states to be estimated), a

cascaded error system can only be obtained in special cases. As in Section 4.3.2, the condi-

tions of Corollary 4.4 can be implemented in a two-step algorithm, similarly to Algorithm 4.2.

If a bound on the interconnection terms is known in advance, a decomposed design is also

possible, similar to that given in Theorem 4.3.

4.4 Example of decentralized observer design

Here we give a numerical example to illustrate the decentralized observer design. Consider a

decentralized system, composed of four subsystems, as presented in Figure 4.4.

Part of the states of each subsystem is measured, and the interconnections are realized

among the state functions. The individual subsystems and the interconnections are described

as follows:

1. Subsystem 1: The scheduling variable z1 is an exogenous measured variable, with the

membership functions presented in Figure 4.5.
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Figure 4.4: Four subsystems with their interconnections.

0 0.5 1 1.5 2
0

0.2

0.4
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z
1

µ
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Figure 4.5: Membership function of z1.

Rule 1: If z1 is small then

ẋ1 =

(
−1 1
2 3

)
x1 +

(
1
2

)
u

y1 = (1 0)x1

Rule 2: If z1 is big then

ẋ1 =

(
2 3
0 −4

)
x1 +

(
1
2

)
u

y1 = (1 0)x1

2. Subsystem 2: The scheduling variable z2 is x22, a state to be estimated, with member-

ship functions presented in Figure 4.6. The states are also assumed bounded, x21, x22 ∈
[−2, 2].

Rule 1: If z2 is not zero then

ẋ2 =

(
−0.5 1.5

0 −1

)
x2 +

(
0.1
0.1

)

y2 =

(
1 10

0.1 0

)
x2
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Figure 4.6: Membership function of z2.

Rule 2: If z2 is around zero then

ẋ2 =

(
0.5 3
0 1

)
x2 +

(
0

0.1

)

y2 =

(
1 10

0.1 0

)
x2

The interconnection terms are as follows:

If z1 is small and x22 is around zero then: A1
12 =

(
0.1 0.8
0.5 0

)
, A1

21 =

(
0.2 0.3
0.1 0

)
.

If z1 is big and x22 is around zero then: A2
12 =

(
−0.3 0.1
0.2 0.3

)
, A1

21 =

(
−0.2 −0.3
0.1 0

)
.

Otherwise there is no direct influence among the subsystems 1 and 2.

3. Subsystem 3: The scheduling variable z3 is an exogenous measured variable, with the

same type of membership function as z1.

Rule 1: If z3 is small then

ẋ3 =

(
1 2
3 −3

)
x3 +

(
3
4

)
u

y3 = (1 2)x3

Rule 2: If z3 is big then

ẋ3 =

(
−2 0
2 2

)
x3 +

(
3
4

)
u

y3 = (1 2)x3

The interconnection terms are as follows:

If z3 is big then: A1
13 =

(
0.4 0.3
0.8 0

)
.

If z1 is big and z3 is small then: A1
31 =

(
0.2 −0.3
0.1 0

)
.
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if z2 is around zero then: A1
32 =

(
−0.2 0.1

0 −0.1

)
.

Otherwise, there is no direct influence among the subsystems 1 and 3 and 2 and 3,

respectively.

4. Subsystem 4: The scheduling variable z4 depends on x4, z4 = x41 + x42 + 4, and the

membership functions are w1(z4) = 0.125(x41 + x42 + 4) (corresponding to “z4 is

small”), and w2(z4) = 1 − w1(z4) (“z4 is big”). The states are bounded, x41, x41 ∈
[−2, 2] and the input is bounded u ∈ [−0.5, 0.5].

Rule 1: If z4 is small then

ẋ4 =

(
−2 0
2 −3

)
x4 +

(
3
2

)
u

y4 = (1 0)x4

Rule 2: If z4 is big then

ẋ4 =

(
−1 3
2 −1

)
x4 +

(
1
0

)
u

y4 = (1 0)x4

The interconnection terms are as follows:

If rule 1 is active then: A1
42 =

(
0.1 0.5
0.8 1

)
.

If rule 2 is active then: A1
43 =

(
0.2 0.5
−0.5 0

)
.

Otherwise, there is no direct influence among the subsystems 1 and 4, 2 and 4, and 3

and 4.

The observers are designed sequentially, based on the conditions of Corollaries 4.2 and

4.4. First, an observer is designed for Subsystem 1, without further conditions. Second,

an observer is designed for Subsystem 2, taking into account the interconnection terms with

Subsystem 1. Third, an observer is designed for Subsystem 3, considering the interconnection

terms with Subsystems 1 and 2. Finally, an observer is designed for Subsystem 4. These steps

are illustrated in Figure 4.7. Note that subsystems 2’ and 4 are cascaded, and therefore, based

on stability conditions for cascaded systems, it is sufficient that the independent observers are

stable.

1 2 3 4
1’ 2’

Figure 4.7: Ordering of subsystems for observer design.

A typical error trajectory can be seen in Figure 4.8. The system was simulated using

the “ode23tb” method (trapezoidal rule with second order backward difference formula) for
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solving ordinary differential equations of Matlab. This particular trajectory was computed for

a randomly generated input and (where applicable) a random scheduling vector, with the true

initial state being [1 2 − 1 3 − 1 1 1 − 1]T and the estimated initial state being zero.

As expected, the error converges asymptotically to zero. Note that the error for the second

subsystem converges very fast. This is due to two reasons: 1) the scheduling variable of this

subsystem is a state to be estimated, and the observer has to be robust enough to handle the

model mismatch and 2) at the same time the observer has to comply with the restrictions

imposed by the interconnections to the first subsystem.
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Figure 4.8: Error for the subsystems with decentralized design.

If the subsystems are added sequentially, and a bound on the interconnection terms is

not known before the subsystem is added, one has to redesign a centralized observer each

time a subsystem is added. A model of the centralized system can be obtained by taking all

possible combinations of the interconnected subsystems and an observer can be designed for

this system. This means that both the number of rules and the dimension of the LMI problem

to be solved increase in every step: for the first subsystem, 2 LMIs of dimension 2 has to be

solved, when the second subsystem is added, 4 LMIs of dimension 4, for the third subsystem

8 LMIs of dimension 6, and finally, when the fourth is added, 16 LMIs of dimension 8 need

to be solved.

4.5 Summary and concluding remarks

Many physical systems, such as power systems, communication and distribution networks,

economic systems, and traffic networks are composed of lower-dimensional subsystems that

are interconnected. In this chapter, the stability of such decentralized systems has been stud-

ied for the case when the subsystems are represented as TS fuzzy systems. We proposed a

method to sequentially analyze the stability of and design observers for TS fuzzy subsystems.
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The proposed approach reduces the dimension of the problem to be solved, by analyzing the

stability of the overall system based on the individual subsystems and the strength of the in-

terconnection terms. We have also extended this setting to state estimation. Observers can be

designed for the individual subsystems sequentially. Such a design has the advantage that the

observer does not need to be redesigned every time a subsystem is added/removed.

A shortcoming of the method as it is presented is that it relies on the existence of a

common quadratic Lyapunov function. Moreover, the derivation of LMI conditions, although

facilitating the easier design, introduce conservativeness. Note however, that similar, less

conservative, although notably more complex conditions may be derived by using piecewise

quadratic Lyapunov functions.
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Chapter 5

Adaptive observers

Many processes change slowly enough in time so that this change does not need to be con-

sidered when designing observers or controllers. However, in some cases, the change is

considerable and may be due to the degradation of parts of the system, actuator failures, or

unknown inputs or disturbances that should be detected as soon as possible. Therefore, in

this chapter we propose a method to design observers for systems represented by TS fuzzy

models, that are affected by unknown inputs. The observer designed is able to simultaneously

estimate both the states and the unknown inputs affecting the system. We consider two types

of inputs: 1) polynomials in time, such as a bias in the model or an unknown ramp input

acting on the model and 2) unmodeled dynamics. The observer is designed based on the

known part of the fuzzy model. Conditions for the asymptotic convergence of the observer

are presented and the design guarantees an ultimate bound on the error signal.

5.1 Introduction

Adaptive observers are observers that simultaneously estimate the states and unknown param-

eters, by processing the measurements online. For SISO LTI systems, the adaptive observer

design has been largely investigated, see (Narendra and Annaswamy, 1989) and the refer-

ences therein.

For nonlinear systems, a general aproach, both in adaptive controller and observer de-

sign (Park and Park, 2003; Tong et al., 2004; Park et al., 2005; Ho et al., 2005; Wang and

Chai, 2005) is to assume that the system is SISO and in observer canonical form. By us-

ing a quadratic Lyapunov function, ensuring strictly positive real conditions, the Kalman-

Yakubovic-Popov lemma is applied and the adaptive laws are deduced from the Lyapunov

synthesis. A shortcoming of these observers is that they do not incorporate prior information

(such as an approximate model) and cannot be used when physical states have to be estimated,

or when a model is not in a canonical form. Robust versions of these adaptive observers have

also been derived for systems affected by a bounded disturbance, by adding a robustness

term (Park et al., 2001; Park and Park, 2003; Park et al., 2005; Wang and Chai, 2005; Labiod

and Guerra, 2007). In many cases, when using both an observer and a controller, the robust-

ness term is incorporated in the controller instead, to deal with the approximation error and

disturbances (Tong et al., 2004; Ho et al., 2005). Results for MIMO systems include high
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gain observers (Zhang and Xu, 2001), special observer canonical forms of the system (Zhu

and Pagilla, 2003; Wang and Luoh, 2004), linearly parameterized neural networks (Ruiz Var-

gas and Hemerly, 2001; Hovakimyan et al., 2002) and observers based on a known linear

part of the model (Ha and Trinh, 2004). A linear observers used for a nonlinear system in

general can be used only in a small neighborhood of the linearization point. Moreover, such

an observer can only deal with constant or slowly varying inputs (Xiong and Saif, 2003).

The design of observers in the presence of unknown inputs is an important problem, since

in many cases not all the inputs are known (Xiong and Saif, 2003; Pertew et al., 2005, 2006).

For instance, in machine tool and manipulator applications, the cutting force exerted by the

tool or the exerting force/torque of the robot is needed, but it is very difficult or expensive to

measure (Corless and Tu, 1998; Ha and Trinh, 2004). Load estimation in e.g., electricity dis-

tribution networks (Sheldrake, 2005), or wind turbines (Li and Chen, 2005) is necessary for

proper planning and operation. In biomechanics, the myoskeletal system can be regarded as

a dynamic system, where segment positions and trajectories are the system outputs and joint

torques are the non-measurable inputs (Guelton et al., 2008). In traffic control, time-varying

parameters have to be tracked, which can be regarded as unknown inputs (Wang and Papa-

georgiou, 2005). In chaotic systems, for chaos synchronization and secure communication,

one has to estimate not only the state, but also the input signal(Liao and Huang, 1999). The

class of adaptive observers has received considerable interest in fault detection and identifica-

tion, where the unknown inputs represent the effect of actuator failures or plant components

and its presence has to be detected as soon as possible. However, many of these methods

only detect the fault, but do not estimate it (Marx et al., 2007). However, in most cases, the

system considered in these approaches is LTI. In this chapter, polynomial unknown inputs,

such as biases in the model or an unknown ramp input acting on the model and uncertainty

in the model dynamics are considered for TS fuzzy systems. The objective is to estimate the

state and the unknown input from the available input and output information.

The idea behind this type of design is that, in practice, a TS representation of a nonlinear

system may be obtained by identifying LTI models in different operation points. However,

such models are often inaccurate. We develop a method to design observers for TS fuzzy sys-

tems with unknown polynomial inputs or unmodeled dynamics. By estimating the unknown

inputs or unmodeled dynamics, the accuracy of the available models can be improved. The

observers are designed based on the already identified model, such that, together with an

appropriate update law estimating the unknown inputs, they ensure the convergence of the

estimation error.

The fuzzy system considered is of the form

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai + Mid)

y =
m∑

i=1

wi(z)Cix

(5.1)

where Ai, Bi, Mi, ai, Ci, i = 1, 2, . . . , m are known and the vector d is an unknown input.

This input can represent disturbances acting on the process, effects of uncertain dynamics

or actuator failures. The matrices Mi, i = 1, 2, . . . , m may be considered selection ma-

trices, i.e., some disturbance may affect only some of the states. We consider two types of

unknown inputs: 1) polynomials in time and 2) unmodelled dynamics. Our goal is to design
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a stable observer to simultaneously estimate both the state vector x and the unknown input

d. Throughout this section, it is assumed that

Assumption 5.1 The matrices Mi, i = 1, 2, . . . , m have full column rank, and

rank(CMi) = rank(Mi), i = 1, 2, . . . , m.

While this assumption is somewhat restrictive, it is necessary for the estimation of the

unknown input with the proposed observer. The observer considered is of the form:

˙̂x =

m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Mid̂ + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)Cix̂

˙̂
d = f(d̂,w(ẑ), x̂,y)

(5.2)

where Li, i = 1, 2, . . . , m, are the gain matrices to be designed for each rule, and f , the

update law for d, should be determined so that (5.2) is a stable observer.

Two main cases can be distinguished, depending on whether or not the scheduling vector

depends on the states to be estimated. The observer design is considered in both cases.

5.2 Polynomial unknown inputs

In this section, we consider the case when the unknown input is or can be approximated by

a polynomial function in time. Such inputs may represent biases in the model, time-varying

disturbances acting on the process, or the degradation in time or even failure of actuators.

Conditions to design a fuzzy observer and a bound on the estimation error are derived.

5.2.1 Observer design

Consider the TS fuzzy system of the form

ẋ =

m∑

i=1

wi(z)(Aix + Biu + Mid + ai)

y =
m∑

i=1

wi(z)Cix

(5.3)

where there exists p ∈ N so that d(p) = 0, where d(p) denotes the pth order derivative of d,

i.e., the unknown input is a p−1-th order polynomial in time. It is assumed that the states, the

unknown input d, and the derivatives of d are observable from y. Two cases are considered,

depending on whether or not the scheduling vector z depends on the states to be estimated.

Case 1: State-independent scheduling vector

If z does not depend on x̂, then the following result can be formulated:
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Theorem 5.1 The estimation error using the observer

˙̂x =

m∑

i=1

wi(z)[Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai]

ŷ =

m∑

i=1

wi(z)Cix̂

˙̂
d(p−1) =

m∑

i=1

wi(z)Λi,p(y − ŷ)

˙̂
d(k) =

m∑

i=1

wi(z)(Λi,k(y − ŷ) +
̂
d(k+1))

for k = 0, . . . , p − 2

(5.4)

is exponentially stable if there exist P = PT > 0, Li, Λi,k, i = 1, 2, . . . , m, j =
1, 2, . . . , m, k = 1, 2, . . . , p so that

H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0





 < 0

∀i, j : ∃z : wi(z)wj(z) 6= 0

(5.5)

Proof: An extended error system, containing both state error, the input error d = d − d̂,

and the derivatives of the input error,
˙

d(i) = d(i)−
˙̂

d(i), i = 0, 2, . . . , p−1 can be expressed

as:

ėa =




ė

ḋ
˙

d(1)

...
˙

d(p−1)




=
m∑

i=1

wi(z)
m∑

j=1

wj(z)




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0







e

d
...

d(p−1)




(5.6)

Using a quadratic Lyapunov function for the extended error vector V = eT
a Pea, the

derivative is

V̇ =

m∑

i=1

wi(z)

m∑

j=1

wj(z)eT
a H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0





 ea

which is negative definite if the condition (5.5) is satisfied. �

Note that the design is equivalent with design an observer for the extended error vector,

as illustrated in the following example.
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Example 5.1 Consider a two-rule fuzzy system, with state matrices A1 =

(
−3 1
2 2

)
and

A2 =

(
2 1
1 −2

)
and a common measurement matrix C =

(
1 3
0 2

)
, with the scheduling

vector being an exogenous measured variable. The system is affected by a linear input d =(
d1

d2

)
, i.e., M1 = I and M2 = I . In order to design an observer that estimates both the

states and the input, the following LMI problem needs to be solved: find P = PT > 0, G1,

G2 so that

H


P




A1 I 0
0 0 I
0 0 0


 − G1

(
I 0 0

)

 < 0

H


P




A2 I 0
0 0 I
0 0 0


 − G2

(
I 0 0

)

 < 0

The observer gains are computed as




L1

Λ1
1

Λ2
1


 = P−1G1 and




L2

Λ1
2

Λ2
2


 = P−1G2. A solution of

the above LMI gives




L1

Λ1
1

Λ2
1


 =




−0.5884 205.6828
−406.6004 612.1064

3.2036 140.3529
−290.3166 437.0766

1.1431 80.0786
−163.5865 245.9513




and




L2

Λ1
2

Λ2
2


 =




4.4116 −13.8436
16.4525 −24.4729
3.2036 −10.2950

10.9792 −14.8670
1.1431 −4.8079
6.1865 −8.7082




In order to design observers with a desired convergence rate α, Theorem 2.2 can be ap-

plied.

Corollary 5.1 The estimation error of the observer (5.4) converges with a rate at least α if

there exists P = PT > 0, Li, Λi,k, i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, . . . , p so

that

H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0





 + 2αP < 0

∀i, j : ∃z : wi(z)wj(z) 6= 0

(5.7)

The proof follows directly. �

Example 5.2 Consider the fuzzy system from Example 5.1 for which an observer has to be

designed so that the decay rate of the error is at least α = 1. For this, the following LMI
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problem needs to be solved: find P = PT > 0, G1, G2 so that

H(P




A1 I 0
0 0 I
0 0 0


 − G1

(
I 0 0

)
+ P ) < 0

H(P




A2 I 0
0 0 I
0 0 0


 − G2

(
I 0 0

)
+ P ) < 0

The observer gains are computed as in Example 5.1 and the solution yields




L1

Λ1
1

Λ2
1


 =




4.9462 −56.3686
100.8986 −146.3747
27.3107 −198.7996

315.6670 −459.8452
26.5414 −195.5050

311.3856 −453.8077







L2

Λ1
2

Λ2
2


 =




9.9462 −11.3877
−5.0634 10.5681
27.3107 −31.2895

−19.3532 42.6851
26.5414 −30.2668

−19.0907 41.9068




Case 2: State-dependent scheduling vector

A similar observer can also be designed if z depends on x̂. For the simplicity of the notation,

only the case when the measurement matrix is common for all rules is presented. Note,

however, that if the measurement matrices are different for the rules, the observer can be

designed in a similar way.

The observer considered is of the form

˙̂x =

m∑

i=1

wi(ẑ)[Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai]

ŷ = Cx̂

˙̂
d(p−1) =

m∑

i=1

wi(ẑ)Λi,p(y − ŷ)

˙̂
d(j−1) =

m∑

i=1

wi(ẑ)(Λi,j(y − ŷ) +
̂
d(j+1))

for j = 1, . . . , p − 1

(5.8)

The extended error system may be expressed as:

ėa =

m∑

i=1

wi(ẑ)




Ai − LiC Mi 0 · · · 0
−Λi,1C 0 I · · · 0

...
...

...
. . .

...

−Λi,pC 0 0 · · · 0







e

d
...

d(p−1)




+

m∑

i=1

((wi(z) − wi(ẑ)))(I 0 . . . 0)T · (Aix + Biu + Mid + ai)

(5.9)

Assuming that ‖∆‖ = ‖(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ µ‖e‖, and therefore

‖∆‖ is also Lipschitz in ea, with the same Lipschitz constant µ, the stability conditions

become:
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Corollary 5.2 The error system (5.9) is asymptotically stable, if there exist P , Li, Λj
i , i =

1, 2, . . . , m, j = 1, 2, . . . , p so that

H


P




Ai − LiC Mi 0 · · · 0
−Λi,1C 0 I · · · 0

...
...

...
. . .

...

−Λi,pC 0 0 · · · 0





 < Q

‖(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ µ‖e‖
(

Q − µ2 P
P I

)
> 0

(5.10)

The proof follows directly. �

Example 5.3 Consider the fuzzy system from Example 2.9, i.e.,

ẋ =w1(x)(A1x + B1u) + w2(x)(A2x + B2u)

y =
(
1 0

)
x

with A1 =

(
−2 0
2 −3

)
, A2 =

(
−1 3
2 −5

)
, B1 =

(
3
2

)
, B2 =

(
1
0

)
, w1(x) = 0.125(x1 +

x2 + 4), w2(x) = 1 − w1(x), x1, x2 ∈ [−2, 2], u ∈ [−0.5, 0.5]. Our goal is to design a

observer for this system, assuming that there is a bias in the model, i.e, d = [d1 d2]
T , with

d1, d2 constants and M1 = M2 = 1.

As presented in Example 2.9, ‖(w1(x)−w1(x̂))(A1x+B1u)‖ ≤ 2.2‖e‖, and ‖(w2(x)−
w2(x̂))(A2x + B2u)‖ ≤ 3.2‖e‖, therefore, ‖(wi(z) − wi(ẑ))(Aix + Biu + ai)‖ ≤ µ‖e‖,

with µ = 3.2. To design the observer, one needs to solve the LMI problem: find P = PT > 0,

Q = QT > 0, G1, G2 so that

H
(

P

(
A1 I
0 0

)
− G1

(
C 0

)
− Q

)
≤ 0

H
(

P

(
A2 I
0 0

)
− G2

(
C 0

)
− Q

)
≤ 0

(
Q − µ2 P

P I

)
> 0

The observer gains are computed as in Example 5.1 and the solution yields

(
L1

Λ1
1

)
=




−6.8552
1.0315
2.3726
0.3719




(
L2

Λ1
2

)
=




−7.2546
12.1031
2.2011

−0.1839




5.2.2 Bound on errors

In most cases, the unknown input is not polynomial, but it is often possible to determine a

bound on some derivative of it. Therefore, consider the case when there exists p ∈ N so
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that d(p) is bounded by a known constant, i.e., ‖d(p)‖ < µd, and d(j), j = 1, 2, . . . , p are

observable from y. In this case, only the input-to-state stability (see Chapter 3) of the observer

can be guaranteed, but it is possible to compute a bound on the estimation error. Again, two

cases are distinguished, depending on whether or not the scheduling vector depends on the

states to be estimated.

Case 1: State-independent scheduling vector

If the scheduling vector does not depend on x̂, the error system can be written as:

ėa =

m∑

i=1

wi(z)

m∑

j=1

wj(z)




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0


 ea +




0
0
0
...

d(p)




(5.11)

Note that in the previous section, the disturbance was assumed to be a p − 1th order polyno-

mial and therefore d(p) = 0.

Theorem 5.2 The error described by (5.11) is ultimately bounded by a ball with radius

γ =

√
λmax(P )

λmin(P )

λmax(P )µd

σλmin(Q)
(5.12)

if there exist P = PT > 0, Q = QT > 0, Li, Λi,k, i = 1, 2, . . . , m, k = 1, 2, . . . , p,

j = 1, 2, . . . , m so that

‖d(p)‖ < µd

H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0





 < −2Q

∀i, j : ∃z : wi(z)wj(z) 6= 0

(5.13)

for i = 1, 2, . . . , m, where σ ∈ (0, 1) and λmin and λmax denote the smallest and largest

eigenvalues, respectively.

Proof: Consider a quadratic Lyapunov function for the extended error vector, V =
eT

a Pea. Then,

V̇ =
m∑

i=1

wi(z)
m∑

j=1

wj(z)eT
a H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0





 ea

+

m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)

)T

≤− 2λmin(Q)‖ea‖2 + 2λmax(P )‖ea‖µd

≤− 2(1 − σ)λmin(Q)‖ea‖2 − 2(σλmin(Q)‖ea‖2 − λmax(P )‖ea‖µd)
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where σ ∈ (0, 1) is arbitrarily chosen and Q = QT is a positive definite matrix such that

(5.17) is satisfied. Then, V̇ is negative definite if

σλmin(Q)‖ea‖2 − λmax(P )‖ea‖µd > 0

‖ea‖ >
λmax(P )µd

σλmin(Q)

Since it is also true, that λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, it can be concluded that

‖ea‖ converges exponentially to a ball with radius

γ =

√
λmax(P )

λmin(P )

λmax(P )µd

σλmin(Q)
(5.14)

which is a global uniform ultimate bound on the estimation error (Khalil, 2002). �

Remark: This bound can be minimized by using the relaxation given by Tuan et al. (2001)

and solving the following LMI problem:

Find P , Li, Λk
i , i = 1, 2, . . . , m, j = 1, 2, . . . ,m, k = 1, 2, . . . , p and maximize α1,

α2, α3 subject to:

Γij = H


P




Ai − LiCj Mi 0 · · · 0
−Λi,1Cj 0 I · · · 0

...
...

...
. . .

...

−Λi,pCj 0 0 · · · 0







P = PT > 0

Γii > 0

2

m − 1
Γii + Γij + Γji < −α3I

∀i, j : ∃z : wi(z)wj(z) 6= 0

− P > −α2I

P > α1I

(5.15)

for all i = 1, 2, . . . , m.

Example 5.4 Consider the fuzzy system from Example 5.1. By solving the LMI problem

above, the bound obtained is γ = 3.84µd/σ, where µd is a bound on ḋ and σ ∈ (0, 1).

Case 2: State dependent scheduling vector

A similar, though notably more conservative bound can be found in the case when z is a

function of x̂. For the simplicity of the notation, the computation is presented for the case

when the measurement matrices are common for all the rules. The following results can be

formulated.

Theorem 5.3 The error described by (5.9) is ultimately bounded by a ball with radius

γ =

√
λmax(P )

λmin(P )

λmax(P )µd

σ(λmin(Q) − µλmax(P ))
(5.16)
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if there exist P = PT > 0, Q = QT > 0, Li, Λi,k, i = 1, 2, . . . , m, k = 1, 2, . . . , p, so

that

‖d(p)‖ < µd

H


P




Ai − LiC Mi 0 · · · 0
−Λi,1C 0 I · · · 0

...
...

...
. . .

...

−Λi,pC 0 0 · · · 0





 < −2Q

(5.17)

for i = 1, 2, . . . , m, where σ ∈ (0, 1) and λmin and λmax denote the smallest and largest

eigenvalues, respectively.

Proof: Using a quadratic Lyapunov function for the extended error vector, V = eT
a Pea.

We obtain

V̇ =
m∑

i=1

wi(z)eT
a H


P




Ai − LiC Mi 0 · · · 0
−Λi,1C 0 I · · · 0

...
...

...
. . .

...

−Λi,pC 0 0 · · · 0





 ea

+

m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)

)T

+
m∑

i=1

(wi(z) − wi(ẑ))(I 0 · · · 0)T (Aix + Biu + Mid)

≤ −2λmin(Q)‖ea‖2 + 2λmax(P )µ‖ea‖2 + λmax(P )‖ea‖µd

≤ −2(1 − σ)(λmin(Q) − µλmax(P ))‖ea‖2

− 2(σ(λmin(Q) − µλmax(P ))‖ea‖2 − λmax(P )‖ea‖µd)

where σ ∈ (0, 1) is arbitrarily chosen and Q = QT is a positive definite matrix such that

(5.17) is satisfied. Then, V̇ is negative definite if

σ(λmin(Q) − µλmax(P ))‖ea‖2 − λmax(P )‖ea‖µd > 0

‖ea‖ >
λmax(P )µd

σ(λmin(Q) − µλmax(P ))

Since λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, it can be concluded that ‖ea‖ converges expo-

nentially to a ball with radius

γ =

√
λmax(P )

λmin(P )

λmax(P )µd

σ(λmin(Q) − µλmax(P ))
(5.18)

�

This bound can also be minimized using the conditions (5.15), together with the condition

λmin(Q) > µλmax(P ).
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5.3 Estimation of unmodeled dynamics

Consider now the problem of estimating the states of a fuzzy system in the presence of un-

modeled dynamics, i.e., the the fuzzy system is of the form

ẋ =

m∑

i=1

wi(z)(Aix + Biu + Mi(Aδix + Bδiu + θi))

y = Cx

(5.19)

where Ai, Bi, Mi, i = 1, 2, . . . , m are known and Assumption 5.1 holds. The matrices Aδi,

Bδi and the vectors θi, i = 1, 2, . . . , m are unknown, but Aδi, i = 1, 2, . . . , m are bounded

by a known bound µmax, max ‖Aδi‖ ≤ µmax. This corresponds to the situation when part of

the true dynamics is unmodeled. The goal is to determine sufficient conditions and to design

an asymptotically stable observer to estimate x and also the constant matrices Aδi, Bδi and

the vector θi, i = 1, 2, . . . , m. Therefore, our goal is to estimate the unknown dynamics.

For the simplicity of the computations, we present only the case when the measurement

matrix is common for all rules of the model. Note however, that if the measurement matrices

differ for each rule, the observer can be designed in a similar way. Two cases are considered,

depending on whether or not the scheduling vector z depends on the states to be estimated.

Case 1: State-independent scheduling vector

Consider first the case when the scheduling vector does not depend on states to be estimated.

An observer of the following form is considered:

˙̂x =

m∑

i=1

wi(z)(Aix̂ + Biu + Li(y − ŷ) + Mi(Âδix̂ + B̂δiu + θ̂i))

ŷ = Cx̂

˙̂
Aδi = fi(Âδi,w(z), x̂,y)

˙̂
Bδi = gi(B̂δi,w(z), x̂,y,u)

˙̂
θi = hi(θ̂i,w(z), x̂,y)

(5.20)

where Li, i = 1, 2, . . . , m are the gain matrices for each rule, and the update laws fi, gi, hi,

i = 1, 2, . . . , m will be determined so that the (5.20) is a stable observer.

The error system when using the observer (5.20) can be expressed as:

ė =
m∑

i=1

wi(z)[(Ai − LiC + Aδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

ey = Ce

(5.21)

with Āδi = Aδi − Âδi, B̄δi = Bδi − B̂δi, θ̄i = θi − θ̂i.

Consider first the following part of the error expressed in (5.21):

˙̃e =

m∑

i=1

wi(z)(Ai − LiC + Aδi)ẽ (5.22)
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Since a bound on Aδi, i = 1, 2, . . . , m is known, i.e., max ‖Aδi‖ ≤ µmax, stability

conditions for perturbed fuzzy systems can be used to render (5.22) stable and to design the

gain matrices Li (Bergsten, 2001): find P = PT > 0, Q = QT > 0, Li, i = 1, 2, . . . , m so

that

µmax ≤ λmin(Q)

λmax(P )

H(P (Ai − LiC)) ≤ −2Q

(5.23)

Consider now a Lyapunov function of the form

V =eT Pe +

m∑

i=1

tr(ĀT
δiĀδi) +

m∑

i=1

tr(B̄T
δiB̄δi) +

m∑

i=1

(θ̄T
i θ̄i)

for the error system (5.21), so that P satisfies (5.23). Then,

V̇ =

n∑

i=1

wi(z)eT [(Ai − LiC + Aδi)
T P + P (Ai − LiC + Aδi)]e

+ 2eT P

m∑

i=1

wi(z)MiĀδix̂ + 2eT P

m∑

i=1

wi(z)MiB̄δiu

+ 2eT P
m∑

i=1

wi(z)Miθ̄i − 2
m∑

i=1

tr(
˙̂
A

T

δiĀδi) − 2
m∑

i=1

tr(
˙̂
B

T

δiB̄δi) − 2
m∑

i=1

(
˙̂
θ

T

i θ̄i)

=

n∑

i=1

wi(z)eT Gie + 2

m∑

i=1

(tr(x̂eT PMiwi(z)Āδi) − tr(
˙̂
A

T

δiĀδi))

+ 2
m∑

i=1

(tr(ueT PMiwi(z)B̄δi) − tr(
˙̂
B

T

δiB̄δi)) + 2
m∑

i=1

(eT PMiwi(z)θ̄i − ˙̂
θ

T

i θ̄i)

=

n∑

i=1

wi(z)eT Gie + 2

m∑

i=1

tr((x̂eT PMiwi(z) − ˙̂
A

T

δi)Āδi)

+ 2

m∑

i=1

tr((ueT PMiwi(z) − ˙̂
B

T

δi)B̄δi) + 2

m∑

i=1

(eT Pwi(z) − ˙̂
θ

T

i )θ̄i

with Gi = H(P (Ai − LiC + Aδi)).
Since V > 0 and from (5.23) Gi < 0, for i = 1, 2, . . . , m, V̇ is rendered nega-

tive definite if tr((x̂eT PMiwi(z) − ˙̂
A

T

δi)Āδi) = 0, tr((ueT PMiwi(z) − ˙̂
B

T

δi)B̄δi) and

eT PMiwi(z) − ˙̂
θ

T

i = 0, for i = 1, 2, . . . , m. These equations lead to the update laws:

˙̂
Aδi = wi(z)MT

i Pex̂
T

˙̂
Bδi = wi(z)MT

i PeuT

˙̂
θi = wi(z)MT

i Pe

(5.24)

Note, that in general e is not directly available. However, due to Assumption 5.1, i.e., that

rank(CMi) = rank(Mi), i = 1, 2, . . . , m, there exist matrices Λi, i = 1, 2, . . . , m so that
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ΛiC = MT
i P : Λi = MT

i PC†, where C† denotes the Moore-Penrose pseudoinverse of C.

Hence, MT
i Pe = ΛiCe = MT

i PC†ey .

Therefore, the update laws can be expressed as:

˙̂
Aδi = wi(z)MT

i PC†eyx̂
T

˙̂
Bδi = wi(z)MT

i PC†eyuT

˙̂
θi = wi(z)MT

i PC†ey

(5.25)

If every rule is active for a sufficient amount of time, both the error system and the esti-

mates of the unknown matrices are asymptotically stable. It can easily be seen that, assuming

nonzero and varying x, u, the only invariant set of the error system (5.21) is e = 0, Āδi = 0,

B̄δi = 0, and θ̄i = 0. If wi(z), i = 1, 2, . . . , m are sufficiently smooth, and the fuzzy model

is defined on a compact set of variables, then, based on Barbalat’s lemma and LaSalle’s in-

variance principle (Khalil, 2002), the dynamics (5.21), together with the update laws above

are asymptotically stable.

The results can be summarized as follows:

Theorem 5.4 The observer (5.20), together with the update laws (5.25) is asymptotically

stable, if there exist P , Li, i = 1, 2, . . . , m so that

P > 0

H(P (Ai − LiC)) < −2Q i = 1, 2, . . . , m

µmax ≤ λmin(Q)

λmax(P )

(5.26)

�

Case 2: State-dependent scheduling vector

Consider now the case when z depends on x̂. The error system (5.21) becomes

ė =

m∑

i=1

wi(ẑ)[(Ai − LiC + Aδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

+

m∑

i=1

(wi(z) − wi(ẑ)) · (Aix + Biu + Mi(Aδix + Bδiu + θi))

ey =Ce

(5.27)

Under the assumption that ‖(wi(z)−wi(ẑ))(Aix+Biu+Mi(Aδix+Bδiu+θi))‖ ≤ µ‖e‖,

combining the conditions in Theorems 2.7 and 5.4, we get:

Corollary 5.3 The error system (5.27), together with the update laws

˙̂
Aδi = wi(ẑ)MT

i PC†eyx̂
T

˙̂
Bδi = wi(ẑ)MT

i PC†eyuT

˙̂
θi = wi(ẑ)MT

i PC†ey

(5.28)
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is asymptotically stable, if there exist P , Li, i = 1, 2, . . . , m so that

P > 0

H(P (Ai − LiC)) < −Q i = 1, 2, . . . , m

‖(wi(z) − wi(ẑ)) · (Aix + Biu + Mi(Aδix + Bδiu + θi))‖ ≤ µ‖e‖
(

Q − µ2 P
P I

)
> 0

(5.29)

�

The proof follows directly.

Remark: Note that if the measurement matrix is different for each rule of the fuzzy model,

the update laws for the matrices of the unknown dynamics can still be expressed as (5.24).

Update laws similar to (5.25) can be derived if there exist (
∑m

i=1 wi(z)Ci)
†, ∀z (Case 1),

and (
∑m

i=1 wi(ẑ)Ci)
†, ∀ẑ (Case 2), i = 1, 2, . . . , m. Then, the update laws are

˙̂
Aδi = wi(z)MT

i P (

m∑

i=1

wi(z)Ci)
†eyx̂

T

˙̂
Bδi = wi(z)MT

i P (

m∑

i=1

wi(z)Ci)
†eyuT

˙̂
θi = wi(z)MT

i P (
m∑

i=1

wi(z)Ci)
†ey

(5.30)

if the scheduling vector does not depend on the states to be estimated (Case 1) and

˙̂
Aδi = wi(ẑ)MT

i P (

m∑

i=1

wi(ẑ)Ci)
†eyx̂

T

˙̂
Bδi = wi(ẑ)MT

i P (

m∑

i=1

wi(ẑ)Ci)
†eyuT

˙̂
θi = wi(ẑ)MT

i P (

m∑

i=1

wi(ẑ)Ci)
†ey

(5.31)

if the scheduling vector depends on x̂ (Case 2) and the observer gains are given by (5.26) and

(5.29), respectively.

Remark: The results can also be applied if the unknown matrices are piecewise constant.

5.4 Example

We illustrate the proposed design method on a simulation example. The plant under consid-

eration is the dynamic model of a missile, adopted from Nichols et al. (1993), illustrated in

Figure 5.1. The nonlinear state-space equations are:

α̇ = KαMCn(α, δ,M) cos(α) + q

q̇ = KqM
2Cm(α, δ,M)

(5.32)
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Figure 5.1: Schematic representation of a missile.

Table 5.1: Plant variables.

α Angle of attack [deg]

q Pitch rate [deg/s]

M Mach number

δc Commanded tail fin deflection [deg]

δ Actual tail fin deflection [deg]

Table 5.2: Plant parameters.

P0 = 973.3 Static pressure at 20000 feet [lbs/ft2]

S = 0.44 Surface area [ft2]

m = 13.98 Mass[slugs]

vs = 1036.4 Speed of sound at 20000 feet [ft/s]

d = 0.75 Diameter [ft]

Iy = 182.5 Pitch moment of inertia [slug ft2]

ωa = 225
Kα = (π/180)0.7P0S/(mvs)
Kq = (π/180)0.7P0Sd/Iy

an = 0.000103 [deg−3] am = 0.000215 [deg−3]

bn = −0.00945 [deg−2] bm = −0.0195 [deg−2]

cn = −0.1696 [deg−1] cm = −0.051 [deg−1]

dn = −0.034 [deg−1] dm = −0.206 [deg−1]

The plant variables are given in Table 5.1, and the parameters in Table 5.2.

The Mach number M is an exogenous scheduling variable. The angle of attack α and the

81



CHAPTER 5. ADAPTIVE OBSERVERS

pitch rate q = θ̇ are measured. The aerodynamic coefficients are expressed as:

Cn(α, δ,M) = sgn(α)[an|α|3 + bn|α|2 + cn(2 − M/3)|α|] + dnδ

Cm(α, δ,M) = sgn(α)[am|α|3 + bm|α|2 + cm(−7 + 8M/3)|α|] + dmδ

The dynamics of the tail fin actuator are described by a first-order linear model:

δ̇ = ωaδ + ωaδc

In order to use the proposed design, a TS fuzzy model of the system (5.32) is constructed.

For the Mach number M , five points M ∈ {2, 2.5, 3, 3.5, 4} and for the angle of attack

seven points α ∈ {−15, −10, −5, 0, 5, 10, 15} are chosen as centers of the membership

functions. The membership functions for M are depicted in Figure 5.2. The scheduling

vector consists of the Mach number M and the angle of attack α, which is also a state to be

estimated. An example of a rule is:

If M is approximately 3 and α is approximately 5 then ẋi = Ax + Bu + a, with

A =



−0.0012 1.0 0.0
−0.0445 0 −0.0399

0 0 −225.0




B =
(
0 0 225.0

)T

a = (0.0056 0.0839 0)T

where x = [α q δ]T .

2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

M

µ
(M

)

Figure 5.2: Membership functions for the Mach number M.

The consequent models in the fuzzy rules are obtained by linearizing the system for each

combination of the chosen M and α. Since the linearization is not done in equilibria, the

consequents are affine. To compute the membership degree of the scheduling vector, the

algebraic product operator is used.

To simulate the system, the input was randomly generated. For the considered estima-

tions (unmodeled dynamics and unknown input, respectively), the initial conditions for the

nonlinear system were [15 2.3 3]T , while the initial conditions used for the states and param-

eters to be estimated were zero. The LMIs were solved using the Yalmip toolbox (Löfberg,
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2004). The unknown input/unmodelled dynamics is assumed to affect α and q, therefore

Mi =




1 0
0 1
0 0


, i = 1, 2, . . . , m.

First, the TS model obtained by linearization is adapted, so that it better approximates the

nonlinear model. Afterwards, it is assumed that an unknown input, that has to be estimated,

is acting on the states.

1) Improving the accuracy of the TS model: Since the consequents in the fuzzy rules were

obtained by linearizing the nonlinear model, the local models represent the nonlinear system

exactly only in the linearization points, i.e., in the centers of the membership functions. When

more than one membership function is activated, the accuracy of the TS model decreases. In

order to obtain a better approximation of the nonlinear system, first an observer to estimate

the unmodeled dynamics was designed, according to Theorem 5.4. This observer estimates

the states and updates the system matrices according to equation (5.25). The estimation error

for the states is presented in Figure 5.3. As can be seen, the estimated states converge to the

states of the nonlinear system. As a result of using this observer, the rule corresponding to

the approximation in M = 3 and α = 5 has been changed to:

If M is approximately 3 and α is approximately 5 then ẋi = Ax + Bu + a, with

A =




0.0496 1.1488 0.0062
−0.0164 −0.0179 −0.0402

0 0 −225.0




B =
(

−0.0032 −0.0003 225.0
)T

a = (0.00475 − 0.0031 0)T
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Figure 5.3: Estimation of unmodeled dynamics: state estimation error.

2) Unknown input estimation: Now assume that an unknown input d is acting on α and

q. Three cases are considered, as follows.

In the first case, d is constant, d = [5 10]T . The observer is designed based on the

conditions of Theorem 5.1, with the first derivative of the unknown input being already zero,

i.e., correctly assuming a bias in the model. The state estimation error is presented in Figure

5.4(a). The unknown input and its estimate is presented in Figure 5.4(b). Both the estimated

states and input converge to the correct ones, as expected.
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(a) Estimation error for the states.
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(b) The unknown input (thin line) and its estimate

(thick line).

Figure 5.4: Estimation results for constant input.

In the second case, d is a second-order polynomial in time, d = [5 10]T t2 + [3 1]T t +
[2 4]T . The observer is designed in the same manner as for the d in constant case, but using

three derivatives. The estimation error for the states is presented in Figure 5.5(a) and the

unknown inputs and their estimate in Figure 5.5(b). The estimated states and inputs converge

to the correct states and inputs as expected.
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(a) Estimation error for the states.
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(b) The unknown input (thin line) and its estimate

(thick line).

Figure 5.5: Estimation results for second order input.

The last case considered is with the true unknown input d acting on the system being

non-polynomial, given by d = [1 3]T sin(t) + [4 2]T cos(t), but the observer is computed

by (incorrectly) assuming a linear input, i.e., a ramp. The estimation error for the states is

presented in Figure 5.6(a) and the unknown inputs and their estimate in Figure 5.6(b). The

estimated input does not converge exponentially to the exact value of the true input (see

Figure 5.7), but only to a ball around it. The ultimate upper bound on the error (state and

input), computed for this observer is 38.6 · ‖d‖/σ with ‖d‖ ≤ 8 the norm of the input

and σ arbitrarily chosen in (0, 1). However, based on the estimation errors presented in

Figures 5.6(a) and 5.7, one can conclude that for this example the computed bound is very

conservative.

84



5.5 SUMMARY AND CONCLUDING REMARKS

0 0.2 0.4 0.6 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

S
ta

te
 e

s
ti
m

a
ti
o

n
 e

rr
o

r

 

 
α

q

δ

(a) Estimation error for the states.
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(b) The unknown input (thin line) and its estimate

(thick line).

Figure 5.6: Estimation results for non-polynomial input.
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Figure 5.7: Input estimation error.

5.5 Summary and concluding remarks

In this chapter a method for designing observers that estimate the state and unknown inputs

of TS fuzzy systems has been proposed. Design of unknown input observers is important

in practice, since in many cases not all the inputs are known. These unknown inputs can

represent disturbances acting on the process, effects of unmodeled dynamics, or actuator

failures. The observer presented in this chapter is designed based on the known part of the

fuzzy model. Sufficient conditions have been given for the stability of the observer and the

computation of the observer gains was based on solving a system of LMIs. For the case

when the unknown inputs are represented or approximated by polynomial functions of time,

we derived sufficient conditions that guarantee the exponential convergence of the error and

also an ultimate bound on the error signal. In the case of estimating unmodeled dynamics,

sufficient conditions have been given for the asymptotic convergence of the observer. The

design methods have been illustrated on an example of a missile. The simulation results

show that the proposed observer is able to estimate both the states and inputs simultaneously.

Two shortcomings of the presented approach have to be noted. First, for the estimation

of unmodelled dynamics, prerequisites are that an upper bound on the state matrix of the un-
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modelled dynamics is known, that Assumption 5.1 is satisfied, and that a robust observer can

be designed. Moreover, the presented method only guarantees asymptotic stability. The sec-

ond shortcoming is that the methods rely on the existence of a common quadratic Lyapunov

function, which introduces conservativeness in itself. Note however, that similar, less conser-

vative, although more complex conditions may similarly be derived for piecewise quadratic

Lyapunov functions.

86



Part II

Observers for stochastic systems
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Chapter 6

Stochastic systems and observers

In the first part of the thesis, we dealt with deterministic nonlinear systems, represented by

TS fuzzy models. In this second part we consider cascaded state estimation in discrete time

stochastic systems. This chapter reviews the Kalman filter (KF), two of its nonlinear variants,

and particle filters (PFs) for state estimation in discrete-time stochastic systems. The linear

KF, Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and PFs are briefly

described, and based on the available literature, their advantages and shortcomings are pre-

sented.

6.1 Stochastic state estimation

In the first part of the thesis, we assumed that the model under study is deterministic, i.e., no

noise is affecting the system or the noise is not significant enough to be taken into consider-

ation when analyzing the system or designing observers for it. However, depending on the

application considered, this is not always the case. The noise influencing the process may

be relevant, and in order to obtain a useful estimate, probabilistic methods need to be used.

In this part of the thesis, we consider such systems. In contrast with the first part, we also

assume that the system evolves in discrete time. It is considered that both the states and the

measurements may be corrupted by noise. In what follows, for applications, the explicit form

of the system evolution1 is used, with the noise explicitly represented:

xk = f(xk−1,uk−1,θk−1, vk−1)

yk = h(xk,uk,µk,ηk)
(6.1)

where k denotes the current time step, f is the state transition model, describing the evolution

of the states, h is the measurement model, relating the measurement to the states, x is the

vector of the state variables, u is the vector of the input and/or control variables, θ and µ

are unknown/uncertain parameters, y denotes the measurements, vk−1 represents the state

transition noise and ηk represents the measurement noise.

1Note that the state and measurement models may also depend explicitly on the time (step). For the ease of

notation, however, this is not denoted explicitly in Chapters 6–8.
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A probabilistic formulation in the following form may also be used:

p(xk|xk−1,uk−1,θk−1)

p(yk|xk,uk−1,µk)

where p(xk|xk−1,uk−1,θk−1) represents the conditional probability distribution function

(PDF) of the current state xk, given the state xk−1, input uk−1 and parameters θk−1 at the

previous time step k − 1 and p(yk|xk,uk−1,µk) represents the PDF of the current mea-

surement yk given the current state, input and parameters. For the ease of notation, in the

remainder of the thesis, we denote these PDFs only as p(xk|xk−1) and p(yk|xk).
Filtering or estimation can be defined as the problem of estimating the states of a system,

given its model and a set of noisy measurements of some quantities related to the states.

Model inaccuracy can also be considered as noise.

The most well-known and widely used probabilistic estimation methods are the KF and

its basic extension to nonlinear systems, the EKF (Kalman, 1960; Welch and Bishop, 2002).

However, these filters have severe limitations and may become unstable even for linear pro-

cesses. Over the last years, PFs (Doucet et al., 2000; Arulampalam et al., 2002) have been

extensively studied. These filters have been successfully applied to state estimation prob-

lems (Nait-Charif and McKenna, 2004) and allow the handling of nonlinear, non-Gaussian

systems. In this chapter, these estimation methods ar briefly presented.

In many cases, model (6.1) is not exact and contains uncertain parameters. In this part of

the thesis, parameter estimation is not handled separately, but it is assumed that the parameter

variation can be represented as a stochastic process (e.g., can be well approximated by a

random walk model), and that the estimation can be performed on the states augmented with

the parameter.

6.2 Kalman filters

For a linear process, the KF provides an efficient means to estimate the states so that the

filter also minimizes the mean of the squared error. KFs may be used to estimate current

states, predict future states or smooth an already estimated trajectory. These filters in gen-

eral assume Gaussian noise and approximate the posterior with a Gaussian distribution, by

computing its mean and covariance. A Gaussian (or normal) distribution is usually assumed

because it remains linear under linear transformations and its mean, mode, and median have

the same value. Moreover, an arbitrary distribution can be approximated as an (infinite) sum

of Gaussian distributions. In addition, for any distribution for which only the mean and the

variance are known, there exists a normal distribution with the same parameters. KFs are

essentially deterministic, in the sense that, given the state transition model, the measurement

model and a Gaussian distribution of the corrupting noise, the estimates are determined using

a deterministic procedure.

6.2.1 General description

In the case of linear systems, corrupted by white Gaussian noise, the KF is proved to be an

optimal filter in the least mean square sense (Kalman, 1960), i.e., the filter minimizes the

covariance of the error. The KF is a recursive algorithm that incorporates all the provided
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information (model and observations) and processes the available measurements to estimate

the current state of the system. The filter works in two steps: prediction and update. The

prediction step uses the system model and the information available so far in order to predict

the states of the process. This step is also known as the time update step, as it projects the

current state forward in time. The update step uses the latest (noisy) measurement to correct

the projected state. This step is also known as measurement update, since it incorporates the

information brought by the new measurement.

The KF works under the assumption that both the state transition noise and measurement

noise are white and Gaussian. If this assumption is removed, i.e., the noises are considered

arbitrary, the KF can be shown to be the best (minimum error variance) filter from the class

of linear unbiased filters (Welch and Bishop, 2002).

While the KF is optimal only in the case of linear systems corrupted by white Gaussian

noise, several extensions to nonlinear systems exist: the EKF, which is based on linearizing

the models around the current states, or the family of sigma-point KFs, which approximate

the distribution of the states.

The recursive algorithms for the KF, EKF and UKF are presented below (Welch and

Bishop, 2002; Julier and Uhlmann, 1997). For the computational derivation of the filters, see

(Kalman, 1960; Julier and Uhlmann, 1997; Welch and Bishop, 2002).

6.2.2 Linear Kalman filter

The KF addresses the problem of estimating the state xk ∈ Rn of a linear discrete-time

process:

xk = Axk−1 + Buk−1 + vk−1

yk = Cxk + ηk

(6.2)

with x0 (initial state) and P0 (initial covariance of the states) known or previously estimated.

The inputs v and η are random variables, representing the process and measurement noise,

respectively. These random variables are assumed to be independent, white, and normally

distributed vk−1 ∼ N (0, Q) and ηk ∼ N (0, R). In general, the process and measurement

noise covariance matrices (Q and R), the state transition matrix A, the input matrix B, and

the measurement matrix C can change at every time step; however, here, they are assumed

constant to simplify the notation. The objective is to recursively estimate or filter the state xk

based on the available measurement yk.

The KF works in two steps, prediction:

xk|k−1 = Ax̂k−1 + Buk−1

Pk|k−1 = APk−1A
T + Q

(6.3)

and update or correction:

x̂k = xk|k−1 + Kk(yk − Cxk|k−1)

Pk = (I − KkC)Pk|k−1(I − KkC)T + KkRKT
k

(6.4)

where x̂k (Pk) refers to the estimate of the states (covariance) obtained by using all the

measurements up to k. The Kalman gain Kk is computed at each step k so that it minimizes
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the error covariance Pk. This is obtained by minimizing the trace2 of Pk at every step:

∂(tr(Pk))

∂Kk

= −2CPk|k−1 + 2(CPk|k−1C
T + R)KT

k = 0

=⇒ Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1

(6.5)

Then, assuming that at step k − 1 the error covariance is Pk−1, the covariance and the

Kalman gain at step k can be expressed as:

Pk = (I − KkC)(APk−1A
T + Q)(I − KkC)T + KkRKT

k

Kk = (APk−1A
T + Q)CT (C(APk−1A

T + Q)CT + R)−1
(6.6)

A generic KF algorithm is summarized in Algorithm 6.1.

Algorithm 6.1 Kalman filter

Input: u, y, Q, R, A, B, C, x0, P0

Output: x̂, P
for k = 1, 2, . . . do

Prediction:

xk|k−1 = Ax̂k−1 + Buk−1 {predict states}
Pk|k−1 = APk−1A

T + Q {predict covariance}
Update:

Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1 {compute Kalman gain}
x̂k = xk|k−1 + Kk(yk − Cxk|k−1) {correct states}
Pk = (I − KkC)Pk|k−1(I − KkC)T + KkRKT

k {correct covariance}
end for

Note that if the state matrices, state-transition noise covariance, and measurement noise

covariance are constant, both the estimation error covariance and the Kalman gain eventually

converges to a final value and remains constant. If this is the case, they may be computed off-

line and the final value can be used as the Kalman gain. However, in this case, the estimation

is no longer optimal.

6.2.3 Extended Kalman filter

The KF is optimal only when dealing with linear processes and white Gaussian noise. How-

ever, since the publication of the Kalman’s seminal paper (Kalman, 1960), the filter has been

the subject of extensive research and applications, particularly in the area of autonomous

robots, assisted navigation, and sensor data fusion (Lee et al., 1995; Dorfmüller-Ulhaas, 2003;

Caron et al., 2006). In order to cope with nonlinear systems, many variants of Kalman’s orig-

inal formulation have been developed: the EKF, the information filter, and the family of

sigma-point Kalman filters (van der Merwe and Wan, 2003b). Of these, probably still the

most widely used is the EKF, which assumes the following nonlinear model:

xk = f(xk−1, vk−1)

yk = h(xk,ηk)
(6.7)

2For derivatives of matrices with respect to matrices, see (Jan R. Magnus, 1999) and the references therein.
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with x0 and P0 known or estimated, and vk−1 and ηk zero mean Gaussian noises with known

covariances Qk and Rk, respectively.

The EKF linearizes the model at every step around the current estimate. In practice, one

cannot know the value of the corrupting noise vk−1 and ηk, but it is possible to approximate

the state and measurement vector without the noise. Thus, the following matrices are defined:

Fk =
∂f

∂x
(xk−1, 0)

Gk =
∂f

∂v
(xk−1, 0)

Hk =
∂h

∂x
(xk, 0)

Dk =
∂h

∂η
(xk, 0)

(6.8)

Note that using these approximations, the distributions of the state variables are no longer

normal. Therefore, the EKF is simply a heuristic estimator. Moreover, in order to obtain a

good approximation, these matrices have to be recomputed at every step. After that, the linear

KF is applied to this linearized model.

The prediction stage becomes:

xk|k−1 = f(x̂k−1, 0)

Pk|k−1 = FkPk−1F
T
k + GkQk−1G

T
k

(6.9)

The update equations are:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + DkRkDT

k )−1

xk = xk|k−1 + Kk(yk − h(xk|k−1, 0))

Pk = (I − KkHk)Pk|k−1

(6.10)

Although the EKF is the most used KF (Maybeck, 1979; Lee et al., 1995; Caron et al., 2006),

especially in tracking, navigation, and localization problems, when the nonlinearity is not

smooth, the filter easily diverges.

6.2.4 Unscented Kalman filter

The fundamental problem of the EKF is that the distributions of the random variables will

no longer be normal after undergoing a nonlinear transformation. A variant of the KF that

preserves the normal distribution up to the second order of the Taylor expansion while prop-

agated through a nonlinear function was developed by Julier and Uhlmann (1997).

The UKF belongs to the family of the sigma-point KFs (van der Merwe et al., 2001),

and it is based on the unscented transformation. The unscented transformation computes the

statistics of a random variable that undergoes a nonlinear transformation. To compute the

statistics, a number of weighted samples called “sigma points” are chosen deterministically,

so that they completely capture the mean and covariance of the random variable, i.e., their

mean is x0 and their variance is P0, respectively.
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Assume that an nx-dimensional random variable x has to be propagated through the

nonlinear function g in order to generate y:

y = g(x)

Assume also that x has a known mean x0 and a known covariance Px. In this case, a number

of 2nx +1 sigma points can be generated deterministically, so that they capture the mean and

variance. One method to generate the sigma points is the following:

X0 = x0 w0 = κ/(nx + κ)

Xi = x0 + [
√

(nx + κ)Px]i wi = 1/[2(nx + κ)] i = 1, 2, ...nx

Xi = x0 − [
√

(nx + κ)Px]i wi = 1/[2(nx + κ)] i = nx + 1, ...2nx

(6.11)

where κ is a scaling parameter, [
√

(nx + κ)Px]i is the ith row of the matrix square root of

(nx + κ)Px, and wi is the weight associated to the ith sample.

The sigma points are now propagated though the nonlinear function g: Yi = g(Xi),
i = 0, 1, . . . , 2nx. The mean and covariance are estimated as:

y0 =

2nx∑

i=0

wiYi

Py =

2nx∑

i=0

wi(Yi − y0)(Yi − y0)
T

(6.12)

The unscented transformation is illustrated in Figure 6.1.

Figure 6.1: Unscented transformation.

In order to apply the KF using the unscented transformation, the state variables are aug-

mented with the state transition and measurement noise, and the state covariance with the

state transition and measurement covariance:

xa
k = [xT

k vT
k ηT

k ]T

P a = diag([Pk Qk Rk])

The sigma points are generated from the augmented state and covariance.

The prediction is extended, since the sigma points have to be computed and propagated

through the state transition model to predict the new states. The predicted states also have

to be propagated though the measurement model in order to predict the measurement. The

equations are the following:
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First the sigma points are computed

X a
k−1 = [xa

k−1 xa
k−1 +

√
(na + κ)P a

k−1 xa
k−1 −

√
(na + κ)P a

k−1]

based on the augmented state vector:

X a
k−1 = [X x

k−1 X v
k−1 X η

k−1]

These sigma points are propagated through the state transition model:

Xk|k−1 = f(X x
k−1, X v

k−1)

to obtain the sigma points corresponding to the predicted state, which is computed as:

xk|k−1 =

2na∑

i=0

wiXi,k|k−1

The covariance of the predicted state is also computed from the transformed sigma points:

Pk|k−1 =

2na∑

i=0

wi(Xk|k−1 − xk|k−1)(Xk|k−1 − xk|k−1)
T

In order to have an accurate prediction of the measurement, the sigma points corresponding

to the predicted state are propagated through the measurement model:

Yk|k−1 = h(Xk|k−1, X η
k−1)

From these, twice propagated points, the predicted measurement

yk|k−1 =

2na∑

i=0

wiYi,k|k−1

and the covariance of the predicted measurements

Pyy =

2na∑

i=0

wi(Yk|k−1 − yk|k−1)(Yk|k−1 − yk|k−1)
T

are computed. Combining the sigma points corresponding to the predicted state with those

corresponding to the predicted measurement, the cross-correlation matrix is determined:

Pxy =

2na∑

i=0

wi(Xk|k−1 − xk|k−1)(Yk|k−1 − yk|k−1)
T

The procedure of updating the predicted state remains the same as for the KF. The Kalman

gain is computed as:

Kk = PxyP−1
yy

The predicted state is corrected as follows

x̂k = xk|k−1 + Kk(yk − yk|k−1)
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Algorithm 6.2 Unscented Kalman filter

Input: u, y, Q, R, f, h
Output: x, P

for k = 1, 2, . . . do

Prediction:

xa
k−1 = [xT

k−1 vT
k−1 ηT

k−1]
T {augment states}

P a
k−1 = diag[Pk−1 Qk−1 Rk−1] {augment covariance}

X a
k−1 = [xa

k−1 xa
k−1 +

√
(na + κ)P a

k−1 xa
k−1 −

√
(na + κ)P a

k−1] {compute

sigma points}

Xk|k−1 = f(X x
k−1, X v

k−1) {propagate sigma points}
xk|k−1 =

∑2na

i=0 wiXi,k|k−1 {predicted next state}
Pk|k−1 =

∑2na

i=0 wi(Xk|k−1 − xk|k−1)(Xk|k−1 − xk|k−1)
T {predict covariance}

Yk|k−1 = h(Xk|k−1, X η
k−1) {propagate transformed sigma points}

yk|k−1 =
∑2na

i=0 wiYi,k|k−1 {predicted measurement}
Pyy =

∑2na

i=0 wi(Yk|k−1 − yk|k−1)(Yk|k−1 − yk|k−1)
T {predicted measurement co-

variance}

Pxy =
∑2na

i=0 wi(Xk|k−1−xk|k−1)(Yk|k−1−yk|k−1)
T {cross-correlation matrix}

Update:

Kk = PxyP−1
yy {Kalman gain}

x̂k = xk|k−1 + Kk(y − yk|k−1) {correct the state}
Pk = Pk|k−1 + KkPyyKT

k {correct the covariance}
end for

and the covariance is corrected by

Pk = Pk|k−1 + KkPyyKT
k

A generic UKF algorithm is given in Algorithm 6.2.

The presented procedure is a general form of the UKF. For special cases, such as additive

state transition and/or measurement noise, the computational complexity may be reduced,

since, in such cases it is not necessary to include the additive noise in the augmented vector

and matrix (Julier and Uhlmann, 1997).

The UKF is a rather general solution for nonlinear state estimation, but it cannot be used

successfully in all situations. The filter may collapse due to the lack of robustness: the

estimated posterior covariance can increase in an unbounded fashion in case of model-plant

mismatch.

6.2.5 Properties and convergence issues

In order to implement a KF, first the state transition and measurement noise covariance need to

be determined. In general these noise covariances are considered constant. However, in some
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cases (e.g., actuator or sensor degradation or fault) they might vary in time, and have to be

tuned online. In an actual implementation, the measurement noise covariance is determined

before filtering.

The state transition noise covariance is more difficult to determine. Sometimes even a

poor model can produce acceptable results, if enough uncertainty is considered, i.e., the state

transition noise covariance is large enough to account for the model mismatch. In either case,

the covariances may be tuned. This is usually performed offline.

Note that since the EKF is essentially a heuristic method, there is no guarantee that the

estimate will converge. The EKF generally diverges due to two causes:

1. the random variables are no longer normal after the nonlinear transformation and this

effect is increased at every step.

2. due to the linearization, the correction is performed wrongly, in particular if the non-

linearity is not mild.

In some cases, these collapses may be prevented by the UKF. Since the UKF uses the

nonlinear model equations, it is more accurate than the EKF. Note that the UKF is not re-

stricted to Gaussian noises. Depending on the particular application considered, the fact that

a matrix square root has to be computed instead of having to linearize the model at each step

might be an advantage, in particular for non-smooth models. Its superior performance has

been reported in many publications, such as (van der Merwe et al., 2001; van der Merwe and

Wan, 2003a; Li et al., 2004).

However, not in all cases the UKF can be used successfully. While theoretically it can

handle non-Gaussian noise, this is not always the case in practice, in particular with multi-

modal distributions.

6.3 Particle filters

KFs represent the distribution of random variables by their mean and covariance. However,

for arbitrary distributions or nonlinear processes, this representation is not sufficient for a

reliable estimation and there is no general method to compute the resulting distribution an-

alytically. Therefore, these methods may become unstable for highly nonlinear processes.

This is why the PFs approximate the distributions by samples, which can be easily computed

with, rather than by a compact parametric form.

The PF uses probabilistic models for the state transition function and the measurement

function (Doucet et al., 2000; Arulampalam et al., 2002):

p(xk|xk−1), p(yk|xk) .

The objective is to recursively construct the posterior PDF p(xk|yk) of the state, given the

measured output yk and assuming conditional independence of the measurements in consec-

utive time steps. The PF works in two stages:

1. The prediction stage uses the state-transition model to predict the state PDF one step

ahead. The PDF obtained is called the prior.

2. The update stage uses the current measurement to correct the prior via the Bayes rule.

The PDF obtained after the update is called the posterior.
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PFs represent the PDF by N random samples (particles) xi
k with their associated weights wi

k,

i = 1, 2, . . . , N , normalized so that
∑N

i=1 wi
k = 1. At time instant k, the posterior obtained

in the previous step, p(xk−1|yk−1), is represented by N samples xi
k−1 and the corresponding

weights wi
k−1, i = 1, 2, . . . , N . To approximate the posterior p(xk|yk), N new samples xi

k

and weights wi
k, i = 1, 2, . . . , N are generated. Samples xi

k are drawn from a (chosen)

importance density function q(xi
k|xi

k−1,yk), and the weights are updated, using the current

measurement yk

w̃i
k = wi

k−1

p(yk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1,yk)
(6.13)

and normalized

wi
k =

w̃i
k∑N

j=1 w̃j
k

.

If the importance density q(xk|xk−1,yk) is chosen equal to the state-transition PDF,

p(xk|xk−1), the weight update equation (6.13) becomes:

w̃i
k = wi

k−1p(yk|xi
k) .

The use of the transition prior as the importance density is a common choice (Arulampalam

et al., 2002) and it has the advantage that it can be easily sampled and the weights are easily

evaluated.

The posterior PDF is represented by the set of weighted samples, conventionally denoted

by:

p(xk|yk) =

N∑

i=1

wi
kδ(xk − xi

k)

where δ is the Dirac delta measure.

The PF algorithm is summarized in Algorithm 6.3 and illustrated in Figure 6.2. A com-

mon problem of PF is the particle degeneracy: after several iterations, all but one particle will

have negligible weights. Therefore, particles must be resampled. A standard measure of the

degeneracy is the effective sample size:

Neff =
1

∑N
i=1(w

i
k)2

If Neff drops below a specified threshold NT ∈ [1, N ], particles are resampled (Fearnhead,

1998) by using Algorithm 6.4.

The state estimate is in general computed as the weighted mean of the particles:

x̂k =

N∑

i=1

wi
kxi

k .

In some cases, however, the weighted mean cannot be considered a correct estimate of the

state, since no guarantees exist that the posterior is unimodal. Due to the approximation

of the posterior with weighted samples, a large number of samples are necessary for good

performance. Hence, the algorithm is computationally involved, and not suitable for fast

processes.

For more details on particle filters, refer to (Doucet et al., 2000; Arulampalam et al.,

2002).
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Algorithm 6.3 Particle filter

Input: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:

for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign weight: wi
1 = 1

N

end for

At every time step k = 2, 3, . . .

for i = 1, 2, . . . , N do

Draw a particle from importance distribution: xi
k ∼ p(xi

k|x
i
k−1)

Use the measured yk to update the weight: w̃i
k = wi

k−1p(yk|x
i
k)

end for

Normalize weights: wi
k =

w̃i
kP

N
j=1

w̃
j
k

if 1P
N
i=1

(wi
k
)2

< NT then

Resample using Algorithm 6.4.

end if

Algorithm 6.4 Resampling

Input: {(xi, wi)}N
i=1

Output: {(xi
new, wi

new)}N
i=1

for i = 1, 2, . . . , N do

Compute cumulative sum of weights: wi
c =

Pi

j=1 w
j
k

end for

Draw u1 from U(0, 1
N

)
for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui + 1
N

end for
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Figure 6.2: Propagation of particles.

6.4 Summary and concluding remarks

In this chapter, the KF, two of its nonlinear variants, the EKF and the UKF, and PFs have been

presented for state estimation for stochastic processes. These methods use a state transition

model that describe the evolution of states over time, and a measurement model that relates

the measurements to the states.

The most well-known variant of the KF is the linear KF. Although it has severe limitations

and becomes unstable for nonlinear or non-Gaussian processes, it provides an efficient means

to estimate the states of a linear stochastic process, so that it also minimizes the covariance

of the estimation error.

Its most used extension for nonlinear systems, the EKF, is based on the linearization of

the system at each moment around the current estimate. However, when dealing with highly

nonlinear systems, where the linearization is valid only in a very restricted space, this filter is

likely to diverge.

A more accurate extension of the Kalman filter to nonlinear systems, is the Unscented

Kalman filter, which uses the true nonlinear model. The performance of the UKF may be far

superior or similar to that of the EKF, depending on the application considered.

Particle filters have an important advantage over KFs: they can handle highly nonlinear

processes, as well as arbitrary distributions. Note, however, that PFs are computationally

involved.

Recently, several new methods have been developed to make PFs more efficient by solv-

ing the problem of particle degeneration and obtaining a better importance density: density

assisted PFs (Djurić et al., 2004), resampling after obtaining the observation (Wu et al., 2006),

and combination with other approaches (Shi and Han, 2007; Cheng and Bondon, 2008; Wu

et al., 2008). Although methods for a more time-efficient implementation (Hong et al., 2007)

have also been investigated, due to the large number of particles in general needed, online

estimation using PFs still represent a challenge.
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Chapter 7

Cascaded Kalman filters

In this chapter, the cascaded design of linear Kalman filters is discussed. If (at least) the

deterministic part of a linear system, that is observable, but corrupted by zero-mean Gaussian

noise, is a cascade of subsystems, then cascaded KFs may be designed. Although theoret-

ically these observers do not achieve the same performance as a centralized KF, examples

indicate that in practical applications the cascaded design has several advantages. The per-

formance of the KF designed for the system as a whole and the cascaded KFs are compared

theoretically and on several examples.

Parts of this chapter have been published in (Lendek et al., 2007a, 2008c).

7.1 Introduction

For large-scale systems, in particular when subsystems may be added or removed online,

the design and re-design of a centralized observer may not be computationally feasible. In

Chapter 3, we have investigated whether a sequential stability analysis and observer design

is possible for cascaded system represented by TS fuzzy models. As demonstrated, such a

design is not only possible, but it does not lead to performance loss in terms of the estimation

error decay-rate.

In this chapter, we study whether such an observer design is also possible for cascaded,

discrete time stochastic systems. Since for linear Gaussian systems the KF is optimal, we

analyze whether this optimality is preserved if KFs are designed in a cascaded manner.

Note that many nonlinear systems may be expressed as or approximated by the cascade

of linear (time-varying) subsystems. If the measurements are such that these subsystems are

observable, for these linear systems KFs may be used, instead of a complex and possibly

hard to design observer that has to be found for the centralized system. Naturally, such an

approximation may introduce performance loss. To obtain a fair comparison, in this chapter

we assume that a linear system is the cascade of linear subsystems. Therefore, consider the

following observable linear MIMO system:

xk = Axk−1 + Buk−1

yk = Cxk

(7.1)
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and assume that this system can be partitioned into subsystems. For the ease of notation, only

two subsystems are considered, x = [x1
T x2

T ]T and y = [y1
T y2

T ]T :

x1k = A1x1k−1 + B1uk−1

y1k = C1x1k

(7.2)

and
x2k = A2x2k−1 + B2uk−1 + A21x1k−1

y1k = C2x2k + C21x1k

(7.3)

so that (7.2) is observable. Similarly to Section 3.2.1, since both systems (7.1) and (7.2) are

observable, this also means that the subsystem (7.3) is observable for given x1k and x1k−1.

The necessary and sufficient condition for the existence of a partition is that the A and C
matrices can be transformed into block triangular forms. Note that, if the partition exists, it

might not be unique, as illustrated in the following example.

Example 7.1 Consider the system

x1k = x1k−1 + x3k−1 y1k = x1k

x2k = x2k−1 + x3k−1 y2k = x2k

x3k = uk−1

This system is observable, and there are two possible ways to partition it: by using as the first

subsystem

x1k = x1k−1 + x3k−1 y1k = x1k

x3k = uk−1

or, by using as the first subsystem

x2k = x2k−1 + x3k−1 y2k = x2k

x3k = uk−1

Both subsystems are observable.

In this section, we study the conditions under which Kalman-type filters can be designed

for the two subsystems so that the performance of the cascaded filters is the same as that of a

single KF for system (7.1).

7.2 Distributed Kalman filters

Consider the linear system (6.2), corrupted with zero-mean Gaussian noise and assume that

the system can be written in the form

(
x1k

x2k

)
=

(
A1 0
A21 A2

)(
x1k−1

x2k−1

)
+

(
B1

B2

)
uk−1 +

(
v1k−1

v2k−1

)

(
y1k

y1k

)
=

(
C1 0
C21 C2

)(
x1k

x2k

)
+

(
η1k

η2k

) (7.4)
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i.e., as two cascaded subsystems. Our goal is to design separate observers for the two subsys-

tems, so that the cascaded observers have the same error covariance as the KF designed for

the joint system. In order to have a truly cascaded system, here we assume that the covari-

ance matrices are block-diagonal, i.e., Q =

(
Q1 0
0 Q2

)
and R =

(
R1 0
0 R2

)
. While this

condition appears restrictive, in practice one rarely knows the true cross-covariances and it is

often assumed that the covariance matrix is diagonal (Hue et al., 2002; Aja-Fernandez et al.,

2003).

Since our goal is to design separate observers for the two subsystems, while still mini-

mizing the error covariance, we use separate KFs for each subsystem. The first subsystem

can be expressed as:

x1k = A1x1k−1 + B1uk−1 + v1k−1

y1k = C1x1k + η1k

(7.5)

which is a linear system, with v1k−1 ∼ N (0, Q1) and η1k ∼ N (0, R1) and the deterministic

input u. In order to minimize the error covariance for the first subsystem, the Kalman filter

presented in Section 6.2.2 is used. Then, for the first subsystem (with the deterministic input

u), the covariance and the gain at each time step can be written as

P1k = (I − K1kC1)(A1P1k−1A
T
1 + Q1)(I − K1kC1)

T + K1kR1K
T
1k

K1k = (A1P1k−1A
T
1 + Q1)C

T
1 (C1(A1P1k−1A

T
1 + Q1)C

T
1 + R1)

−1
(7.6)

The second subsystem can be expressed as:

x2k =A2x2k−1 + B2uk−1 + A21x1k−1 + v2k−1

y1k =C2x2k + C21x1k + η2k

(7.7)

with vk−1 ∼ N (0, Q2) and η2k ∼ N (0, R2), the deterministic input u and the stochastic

variable x1. Depending on the type of estimate required, two cases can be distinguished.

Case 1: Use x1 as another deterministic input besides u for the second subsystem.

This amounts to approximating the random variable x1 with its mean value when using it

in the second subsystem. If the estimation is done for control purposes, usually the mean

value, not the distribution of the estimate is needed. Therefore, it is plausible that only the

estimated value (without the covariance) is transmitted to the second subsystem. In this case,

the Kalman filter can be used also for this subsystem, and the expression for the covariance

and the gain are given by

P2k = (I − K2kC2)(A2P2k−1A
T
2 + Q2)(I − K2kC2)

T + K2kR2K
T
2k

K2k = (A2P2k−1A
T
2 + Q2)C

T
2 (C2(A2P2k−1A

T
2 + Q2)C

T
2 + R2)

−1
(7.8)

Note that the computed error covariance is not equal to the true error covariance for the

second subsystem.

Case 2: If the covariance of the estimates is also available, then x1 can be considered as

a stochastic input, with estimated covariance P1k, for the second subsystem. For this case,

a Kalman-type gain can be computed by minimizing the trace of the error covariance for the
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second subsystem, given that x1 is a stochastic variable with a known covariance matrix P1

0 = − 2C2(A2P2k−1A
T
2 + A21P1k−1A

T
21 + Q2) + 2(C2(A2P2k−1A

T
2 +

A21P1k−1A
T
21 + Q2)C

T
2 + R2)K

T
2k + 2C21P1k−1C

T
21K

T
2k

K2k =(C2(A2P2k−1A
T
2 + A21P1k−1A

T
21 + Q2))

T · ((C2(A2P2k−1A
T
2 +

A21P1k−1A
T
21 + Q2)C

T
2 + R2 + C21P1k−1C

T
21)

−1)T

(7.9)

The covariance for x2 is calculated as

P2k =(I − K2kC2)(A2P2k−1A
T
2 + A21P1k−1A

T
21 + Q2)(I − K2kC2)

T +

K2kR2K
T
2k + K2kC21P1k−1(K2kC21)

T
(7.10)

where P2k is the true covariance obtained for the states of the second subsystem.

In both cases, the observer gain and the covariance matrix for the whole system are ex-

pressed as:

K =

(
K1 0
0 K2

)
P =

(
P1 0
0 P2

)
(7.11)

However, only in the second case (if x1 is considered a stochastic input), the covariance

matrix for the joint system equals the true covariance obtained by the observers.

Proposition 7.1 The cascaded setting achieves the same error covariance as the centralized

Kalman filter if and only if the subsystems are decoupled, i.e., in (7.4), A21 = 0, C21 = 0,

R12 = 0 and Q12 = 0.

Proof: It is straightforward to see that if the subsystems are independent, then the cas-

caded KF is equivalent to the centralized KF.

For the “only if” part, the error covariance has to be minimized by a block-diagonal

Kalman gain at every step, i.e., (6.5) has to be satisfied by a block-diagonal Kk. For the ease

of notation and calculus, assume first that Pk|k−1 and R are block-diagonal, i.e., Pk|k−1 =(
P1 0
0 P2

)
and R =

(
R1 0
0 R2

)
.

For such Pk|k−1 and R we get that the trace is minimized if:

(
C1P1 − (C1P1C

T
1 + R1)K

T
1k C1P1C

T
21K

T
2k

C21P1 − C21P1C
T
1 KT

1 C2P2 − C21P1C
T
21K

T
1k + (C2P2C

T
2 + R2)K

T
2k)

)
= 0

i.e.,

C1P1 − (C1P1C
T
1 + R1)K

T
1k = 0 (7.12)

C2P2 − C21P1C
T
21K

T
1k + (C2P2C

T
2 + R2)K

T
2k = 0 (7.13)

C1P1C
T
21K

T
2k = 0 (7.14)

C21P1 − C21P1C
T
1 KT

1 = 0 (7.15)

Note that (7.12) and (7.13) are satisfied by the Kalman gains given by (7.6) and (7.9). How-

ever, (7.14) and (7.15) for any P1 and K1k are satisfied only if C21 = 0.
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Now, recall that if the prediction step is realized for the whole system, Pk|k−1 is not

block-diagonal, but obtained as

Pk|k−1 =

(
P11 P12

PT
12 P21

)

=




A1P11k−1A
T
1 + Q11 A1P11k−1A

T
21 + A1P12k−1A

T
2 + Q12(

A1P11k−1A
T
21+

+A1P12k−1A
T
2 + Q12)

T

) (
A21(P11k−1A

T
21 + P12k−1A

T
2 )

+A2(P21k−1A
T
21 + P22k−1A

T
2 ) + Q2

)



(7.16)

The block-diagonal form is obtained only if A1P11k−1A
T
21 + A1P12k−1A

T
2 + Q12 = 0,

which is satisfied for any A1, A2 only if A21 = 0, P12k−1 = 0 and Q12 = 0.

Summarizing, the error covariance of the whole system can be minimized for any system

and any covariance matrices by a block-diagonal Kalman gain if and only if the subsystems

are decoupled, i.e., A21 = 0, C21 = 0, R12 = 0, and Q12 = 0. �

Since the distributed filters obtain the same performance as the centralized KF if and only

if the subsystems are decoupled, in general, the distributed observers will not minimize the

joint covariance. However, in practice, the performance of the centralized and distributed

observers is comparable, as illustrated in the following section.

7.3 Examples

In this section, three examples are presented to compare the performance of the cascaded and

centralized KFs, both in open-loop and closed-loop control.

7.3.1 Cascaded KFs in open-loop

Here an example is presented to compare the performance of the cascaded and centralized

observers, in open-loop control. The first observer (O1) uses the available input, u and the

output of the first subsystem, y1, to estimate the states of the subsystem, x̂1. The second

observer (O2) uses the input u, the output of the second subsystem, y2, and the estimated

states of the first subsystem, x̂1, to estimate the states of the second subsystem, x̂2. Such a

setting is depicted in Figure 7.1.

Figure 7.1: Cascaded observers in open-loop.

Consider the following, randomly generated discrete-time system:

xk = Axk−1 + Buk−1 + vk−1

yk = Cxk + ηk
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with

A =



−0.2034 0 0
−0.8520 −0.3182 −1.2951
0.0218 0.5776 0.9522




B =




1
0
0


 C =

(
1 0 0
0 1 0

)

vk−1 ∼ N (0, Q) Q =




0.6818 0.2244 0.0577
0.2244 0.2796 0.1039
0.0577 0.1039 0.2263




ηk ∼ N (0, R) R =

(
0.1679 0.0616
0.0616 0.1204

) (7.17)

It can be easily seen that the deterministic part of the system is the cascaded of two subsys-

tems. However, the noise covariance matrices are not. Therefore, two cases are considered.

a) Since the cascaded filters do not take into account the cross-covariance between the

subsystems, in order to ensure the exact same conditions, consider for both the KF and

the cascaded filters the following block diagonal part of the noise covariances:

Q̄ =




0.6818 0 0
0 0.2796 0.1039
0 0.1039 0.2263




R̄ =

(
0.1679 0

0 0.1204

) (7.18)

The input signal is presented in Figure 7.2. Using the centralized Kalman filter, after

300 steps, we obtain:

P =




0.1349 0.0004 0.0015
0.0004 0.1091 −0.0438
0.0015 −0.0438 0.4804




K =




0.8036 0.0036
0.0026 0.9060
0.0090 −0.3640




while for the cascaded subsystems:

Pc =




0.1350 0 0
0 0.1078 −0.0461
0 −0.0461 0.4646




Kc =




0.8037 0
0 0.8982
0 −0.3921
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if x1 is considered to be a deterministic input (Case 1) and

Pc =




0.1350 0 0
0 0.1091 −0.0438
0 −0.0438 0.4812




Kc =




0.8037 0
0 0.9059
0 −0.3921




if x1 is considered to be a stochastic input (Case 2).

0 50 100 150 200 250 300
−5

0

5

10

Discrete time steps

u

Figure 7.2: Input used for the distributed filters in open-loop.

Histograms of the residuals obtained for x3 (the state which is not measured) with the

centralized Kalman filter, and for both cases of the distributed filters are presented in

Figure 7.3. The statistics of the distributions of the residuals for all states and observers

are given in Table 7.1. It can be seen that the performance of the cascaded observers is

comparable with that of the centralized observer.

Table 7.1: Statistics of the residuals when the centralized and distributed observers use the

same covariance matrix.

State Method Mean Standard deviation

x1 centralized −0.0032 0.1890
cascaded −0.0033 0.1889

x2 centralized −0.0105 0.1246
cascaded deterministic −0.0103 0.1262

cascaded stochastic −0.0113 0.1318

x3 centralized 0.0420 0.4022
cascaded deterministic 0.0397 0.4035

cascaded stochastic 0.0420 0.4024

b) The Kalman filter uses the true noise covariances (7.17), while the cascaded filters

neglect the cross-covariance between the subsystems and consider only (7.18). The

same input is used as that in the previous case.
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(a) Residuals for x3 with the centralized Kalman fil-

ter.
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(b) Residuals for x3 with the cascaded Kalman filter

and deterministic input (case 1).
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(c) Residuals for x3 with the cascaded Kalman filter

and stochastic input (case 2).

Figure 7.3: Results when the centralized and cascaded filters use the same covariance matrix.

The histogram of the residuals obtained for x3 is presented in Figure 7.4. The statistics

of the distributions of the residuals for all states and observers are given in Table 7.2.

Table 7.2: Statistics of residuals with the cascaded Kalman filter discarding the cross-

covariance.

State Method Mean Standard deviation

x1 centralized −0.0077 0.2058
cascaded −0.0076 0.2058

x2 centralized −0.0074 0.1406
deterministic −0.0106 0.1444

stochastic −0.0106 0.1522

x3 centralized −0.0070 0.3757
deterministic 0.0072 0.4393

stochastic 0.0077 0.4365
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(a) Residuals for x3 with centralized Kalman filter.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

#
 s

a
m

p
le

s

x
3

(b) Residuals for x3 with cascaded Kalman filter and

deterministic input.
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(c) Residuals for x3 with cascaded Kalman filter and

stochastic input.

Figure 7.4: Results with discarded cross-covariances.

For this case, the final covariance and the Kalman gain obtained after 300 steps by the

centralized Kalman filter are

P =




0.1350 0.0496 0.0098
0.0496 0.1074 −0.0359
0.0098 −0.0359 0.4214




K =




0.8036 0.0002
−0.0399 0.9126
0.2064 −0.4036




while those obtained by the cascaded observers are the same as in the previous case.

The statistics of the residuals confirm that the centralized filter performs slightly better

and hence, the cascaded filters are suboptimal. However, the difference between the residuals

is minimal, even if x1 obtained from the first subsystem is considered as a deterministic input,

and the computed covariance is not the correct one.
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7.3.2 Cascaded KFs in closed-loop

Here two examples are presented to compare the performance of the cascaded and centralized

observers, in closed-loop control. For this purpose, a stabilizing state-feedback control law

L is designed based on the system model. Since not all the states are measured, and the

control input is computed based on the states estimated by KFs. Such a setting is depicted in

Figure 7.5.

y2

O1

u

O2

y1

x1

x̂2

^

P L u

Figure 7.5: Cascaded observers in closed-loop.

Example 1: Consider the following, randomly generated discrete-time system:

xk = Axk−1 + Buk−1 + vk−1

yk = Cxk + ηk

A =




1.1274 0 0
0.0639 0.9091 0.0391
0.1381 −0.2306 1.0020




B =




0.1
0
0


 C =

(
1 0 0
0 1 0

)

vk−1 ∼ N (0, Q) Q =




0.0097 0.0026 0.0032
0.0026 0.0066 0.0002
0.0032 0.0002 0.0128




ηk ∼ N (0, R) R =

(
0.0035 0.0078
0.0078 0.0118

)

for which a stabilizing state feedback control with constant gain L=[9.3853 16.2397 3.2858]
has been computed.

The deterministic part of the system is decomposed. The cascaded filters do not take into

account the noise covariances between the subsystems. Now the control is applied for four

different cases:

1. the states are known, and the controller is applied directly;

2. the first two states are measured, and the control input is computed based on the esti-

mate given by a centralized KF;

3. the first two states are measured, and the control input is computed based on the esti-

mate given by a cascaded Kalman-type filter, with the second subsystem considering

the estimates of the first subsystem as stochastic inputs;
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Figure 7.6: Example 1 state estimates in closed-loop with different observers (state feedback

without observer, Kalman, stochastic cascaded, deterministic cascaded).

4. the first two states are measured, and the control is computed based on the estimate

given by a cascaded Kalman-type filter, with the second subsystem considering the

estimates of the first subsystem as deterministic inputs.

The results obtained can be seen in Figure 7.6. The estimation error for the first two

states, which are measured, is very small. However, for the third state the estimate of the

cascaded observers converges more slowly than the estimate of the centralized one.

Example 2: Consider the following, randomly generated discrete-time system:

xk = Axk−1 + Buk−1 + vk−1

yk = Cxk + ηk

A =




1.1137 0 0
0.0087 1.0829 0.0117
0.0170 −0.0009 1.0909




B =




0.1
0
0


 C =

(
1 0 0
0 1 0

)
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(b) x2
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(c) x3
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Figure 7.7: Example 2 state estimates in closed-loop with different observers (state feed-

back without observer, stochastic cascaded, deterministic cascaded). The system using the

centralized Kalman filter is unstable in this case.

for which a stabilizing state feedback control with constant gain L = [5.1743 298.9764 −
106.2475] has been computed. The state and measurement noises have the same covariance

as in the previous example. Note that this system with this control law, when the centralized

KF is applied, becomes unstable.

The estimates of the states using the distributed observers can be seen in Figure 7.7. While

the estimate is noisy, and this noise also affects the control law, the system does not become

unstable.

7.4 A multi-robot setting

Robotic teams or multi-robot systems are one of the most popular application domains for

multi-agent systems. In such a system, the agents are robots, that have to perform some task,

while moving in general in a two-dimensional space. Several types of tasks have been con-

sidered in the literature (Simmons and Koenig, 1995; Jetto et al., 1999), among which: navi-

gation, area sweeping, multi-target observation, object transportation, robotic soccer, pursuit,

etc. In this section, we consider robot navigation. In navigation, the goal of each robot is to

find its way from a starting position to a final goal position.
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We consider the following simple scenario: three robots navigate in a two-dimensional

spatial domain, being able to move in the x and y directions. One of the robots is the “leader”.

Its task is to navigate into a predefined position. The other two robots have to maintain a

certain configuration with respect to the leader’s position. Robot 2 follows Robot 1, while

maintaining a safe distance both in terms of position and velocity. Robot 3 has to maintain

its relative position to both Robot 1 and 2. Moreover, only limited information of the robots’

states is available. Therefore, the robots need to estimate their own states. The robots are

able to communicate their own estimated states.

Each robot’s dynamic is modeled as a two-dimensional double-integrator with damping

dynamics. The control input is an acceleration vector. Each robot measures its own position,

but not the velocity. Moreover, the velocity of the robots is limited so that they avoid collision.

Individual state-feedback control laws were designed for each robot for desired navigation,

without taking into account that the states and measurements are corrupted by noise.

The system can be described by the following equations, where xi denotes the position

on the x coordinate of the robot i, yi the position on the y coordinate of the robot i, vxi the

velocity in direction x, vyi the velocity in the y direction, and zi the measurement vector.

• Robot 1 is independent of the other two, and it measures its own position:

(
x1,k+1

vx1,k+1

)
=

(
1 T
0 1

)(
x1,k

vx1,k

)
+

(
0
1

)
ux1,k

(
y1,k+1

vy1,k+1

)
=

(
1 T
0 1

)(
y1,k

vy1,k

)
+

(
0
1

)
uy1,k

z1,k+1 =

(
x1,k+1

y1,k+1

)

• Robot 2 moves relative to Robot 1 and also measures its position relative to Robot 1.

(
x2,k+1

vx2,k+1

)
=

(
1 T

c1T 1

)(
x2,k

vx2,k

)
+

(
0
1

)
ux2,k +

(
0 −T

−c1T 0

) (
x1,k

vx1,k

)

(
y2,k+1

vy2,k+1

)
=

(
1 T

c2T 1

)(
y2,k

vy2,k

)
+

(
0
1

)
uy2,k +

(
0 −T

−c2T 0

)(
y1,k

vy1,k

)

z2,k+1 =

(
x2,k+1 − x1,k+1

y2,k+1 − y1,k+1

)

• Robot 3 uses information from both the first and second robot:
(

x3,k+1

vx3,k+1

)
=

(
1 T

c3T 1

)(
x3,k

vx3,k

)
+

(
0
1

)
ux3,k +

(
0 −T

−c3T 0

) (
x1,k

vx1,k

)

(
y3,k+1

vy3,k+1

)
=

(
1 T

c4T 1

)(
y3,k

vy3,k

)
+

(
0
1

)
uy3,k +

(
0 −T

−c4T 0

)(
y2,k

vy2,k

)

z3,k+1 =

(
x3,k+1 − x1,k+1

y3,k+1 − y2,k+1

)

A schematic representation of the robots’ problem is depicted in Figure 7.8, where black

denotes measured variables and grey denotes variables to be estimated.
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Figure 7.8: Measured (black) and estimated (grey) variables in the robot problem.

The joint system can be expressed as a linear, discrete-time system, with 12 states, 6
inputs and 6 measurements. In order to use a Kalman filter, it is assumed that both the states

and measurements are corrupted by a zero-mean, Gaussian noise, with covariance Q and R,

respectively, with Q = 0.1I and R = 0.1I known. For each robot i, a state-feedback control

law has been designed, with gain L =

[
15.8384 1.7799 0.0292 0.0017
0.0292 0.0017 15.3136 1.7501

]
, the control

input depending only on their own states. The results obtained for three cases are compared:

the feedback is applied to known states, a centralized Kalman filter is used to estimate the

states, and distributed Kalman filters are used, with each robot relying on the estimates of the

others.

The true initial states are: [x1 vx1 y1 vy1]
T = [5 1 − 2 0]T , [x2 vx2 y2 vy2]

T =
[1 0 3 − 1]T , and [x3 vx3 y3 vy3]

T = [10 − 2 0 1]T , while the estimated initial

states are: [x1 vx1 y1 vy1]
T = [−3 0 1 0]T , [x2 vx2 y2 vy2]

T = [5 0 6 0]T , and

[x3 vx3 y3 vy3]
T = [−8 0 − 2 0]T . The parameters used are: T = 0.05, c1 = 0.1,

c2 = 0.02, c3 = 3, and c4 = 0.5.

The estimates of the velocities, which are not measured, are presented in Figure 7.9. It can

be seen that the results obtained with the centralized and distributed filters are comparable.

This is also proven by the statistics of the residuals (see Table 7.3). The estimates of the

positions are not shown, since the (relative) positions are measured.

The motion of the three robots in the space is presented in Figure 7.10. A major advantage

of this cascaded observer setting is that if another robot is introduced in the system, as long

as the robots that are already in the system do not depend on it, the current observers do not

need further tuning.
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Figure 7.9: Estimates of the robots’ velocities with different observers (state feedback without

observer, centralized KF, distributed KF).
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Table 7.3: Statistics of residuals of the robots’ states.

State
Mean of residual

(centr.)

Mean of residual

(distr.)

Std. of residual

(centr.)

Std. of residual

(distr.)

x1 0.0719 0.0857 0.8048 0.8067

vx1 0.0604 -0.0679 1.2227 1.7737

y1 -0.0305 -0.0390 0.3092 0.3124

vy1 -0.0070 0.0746 1.3144 1.4192

x2 -0.0294 -0.0417 0.4155 0.4286

vx2 -0.0815 0.0265 1.7042 2.2757

y2 -0.0322 -0.0294 0.3184 0.3222

vy2 -0.0281 0.0087 1.6413 1.8272

x3 0.2001 0.1876 1.8103 1.8041

vx3 -0.2039 -0.1037 3.5789 2.6460

y3 0.0221 0.0213 0.2316 0.2289

vy3 -0.0106 -0.0067 1.6806 1.6695
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Figure 7.10: Robots’ motion in space.

7.5 Summary and concluding remarks

For cascaded linear systems, distributed, Kalman-like filters can be designed. In such a case,

the observers are optimal for the individual subsystems, and the joint estimation error con-

verges to a zero-mean Gaussian. However, the joint estimate of the state is in theory subopti-

mal. Theoretical results show that the cascaded KFs can be jointly optimal, if and only if the

subsystems are independent.

Based on the examples, however, the performance of the centralized KF and cascaded

filters are comparable. Moreover, our simulations show that for certain cases, in closed-loop

the cascaded observers perform better than the KF. This is because when using a cascaded ob-
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server, the estimation error of the second subsystem does not affect the first one. In addition,

by using the cascaded approach, a modular implementation is possible and the computational

costs are reduced.

In many cases, a nonlinear system may be decomposed into a cascade of linear and non-

linear subsystems. If such a decomposition is feasible, then it is also possible to combine

different observers, depending on the complexity of the subsystem under consideration. Such

applications are presented in the next chapter.
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Chapter 8

Case studies

In this chapter, two applications are presented for which cascaded observers are used. While

the previous chapter addressed cascaded linear systems, here nonlinear models are consid-

ered, which are, in addition, corrupted by non-Gaussian noise. The first application de-

scribed is the estimation of overflow losses in a hopper dredger. The system is uncertain

and highly nonlinear, and the information on the amount of overflow losses is needed for

both the decision support system and automatic control. The second application concerns a

water treatment plant. In order to implement quality control of such a plant, an accurate dy-

namic model should be available. However, the reaction dynamics and model characteristics

depend nonlinearly on the temperature, which is reflected in uncertain model characteristics.

Therefore, we propose the online estimation of the uncertain parameters in order to improve

model characteristics.

Parts of this chapter have been published in (Lendek et al., 2008b,c,d).

8.1 Estimation of the overflow losses in a hopper dredger

The estimation of overflow losses is an essential step toward the optimization of the sepa-

ration process in the hopper, which is of vital importance for the improvement of dredging

efficiency and accuracy. In the considered process, the measured variables are heavily cor-

rupted by noise. The system is highly nonlinear, and for global state estimation a particle

filter would be required, which implies high computational costs. However, the model can be

represented as two cascaded subsystems, which allows the use of two observers. For these

observers the combinations of UKF and PF are considered and the four possible combina-

tions in the distributed setting are compared with the performance of a centralized PF for the

whole system, both on simulated and experimental data.

8.1.1 Problem description

Information on the amount of overflow losses is essential both for decision support and auto-

matic control. Unfortunately, these losses cannot be reliably measured, due to the presence

of air in the overflow pipe. However, as shown in this chapter, they can be estimated by using

mathematical models and the available on-line measurements.
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Before stating the estimation problem, the principle of the dredging process is briefly

explained. The dredger uses a drag head to excavate soil from the sea bottom. A mixture of

soil and water is transported through a pipe to the hopper, which is a large cargo hold inside

the ship (see Figure 8.1).

Pump

Overflow pipe

Drag head

Hopper

Figure 8.1: Schematic drawing of a hopper dredger.

The soil gradually settles at the bottom of the hopper, while excess water (in fact low-

density mixture) is discharged through an overflow pipe the level of which can be adjusted.

As the height of the settled sand layer rises, so does the concentration of the overflow mixture

and eventually the overflow losses become so high that it is no longer economical to continue

dredging. The ship then sails back to deliver the load. After the sand is discharged, the ship

sails again to the dredging location and the whole cycle repeats.

The efficiency of the sedimentation process heavily depends on the type of soil and is

influenced by the flow-rate and density of the incoming mixture and the manner the overflow

pipe is controlled. An important factor in the optimization of the dredging performance is the

minimization of the overflow losses. In the literature, a number of sedimentation models have

been proposed (Camp, 1946; van Rhee, 2002). However, these models cannot be used as a

basis for control or optimization of the dredging process. The reason is that they are based on

detailed (often partial differential equations) modeling of the physical phenomena and often

contain too many uncertain parameters. Therefore, simplified models have to be used, along

with advanced signal processing and estimation techniques.

8.1.2 Dynamic sedimentation model

The sedimentation process in a hopper dredger can be described by a model with three state

variables: the total mass in the hopper mt, the total volume Vt of the mixture in the hopper

and the mass of the sand bed ms (see Figure 8.2).

While the first two variables can be derived from on-line measurements (the ship draught

and the total level in the tank ht, respectively), the mass of the sand bed is not measurable.

The flow rate Qi of the incoming mixture and the overflow height ho are the manipulated

inputs and the incoming mixture density ρi is in this context regarded as a measured distur-
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w

Overflow
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Sand bed
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Figure 8.2: The sedimentation process in the hopper.

bance. The volume and mass balance equations are given by:

V̇t = Qi − Qo (8.1)

ṁt = Qiρi − Qoρo . (8.2)

The rate of material sedimentation is a function of the settling velocity (fs) and the scouring

(erosion) effects (fe)

ṁs = fs (ρm) fe (Qo, hm) . (8.3)

The overflow rate Qo, the density ρo and the functions in (8.3) are in general modeled using

static relationships as detailed below.

If the outgoing mixture flows freely through the overflow pipe, the overflow rate Qo is

given by

Qo = ko max(ht − ho, 0)
3

2 (8.4)

where ko is an uncertain parameter depending on shape and circumference of the overflow

pipe. However, if the overflow pipe is full (e.g., because the valve inside the pipe is engaged),

the following model must be used:

Qo = k′
o

√
2g max(ht − ho, 0) . (8.5)

Since it is difficult to determine when the models switch, there is some uncertainty in the

modeling of the overflow rate. Moreover, due to the model’s switching nature, it is not

straightforward to estimate its parameters.

To model the overflow density ρo, the density profile in the mixture above the sand bed

must be described. Generally, this profile can be approximated as a decreasing function of

the height above the sand, but the exact form of this function is highly uncertain and time

varying. In this chapter, the following saturated affine approximation is used:

ρo = max
(
ρs − kρ(ho − hs), ρw

)
. (8.6)

The slope kρ must be determined at every time instant such that the average mixture density

ρm, computed from the mass-balance relations, equals to the average of the density profile:

ρm =
1

hm

∫ ht

hs

max
(
ρs − kρ(h − hs), ρw

)
dh
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with hm = ht − hs. Solving this constraint for the model (8.6) yields the following equation

for the slope:

kρ =

{
2(ρs−ρm)

hm

for ρm > 1
2 (ρw + ρs)

(ρs−ρw)2

2hm(ρm−ρw) otherwise

where the average mixture density is given by:

ρm =
mt − ms

Vt − ms

ρs

=
ρs(mt − ms)

Vtρs − ms
.

Validation based on measured data has shown that this model is not very accurate, but it

suffices for the tuning and first evaluation of the particle filter.

The settling function fs describes how the rate of sedimentation depends on the undis-

turbed settling velocity vs and the mixture density:

fs(ρm) = Aρsvs

ρm − ρw

ρs − ρm

(
ρq − ρm

ρq − ρw

)β

. (8.7)

The scouring function fe describes the effect of erosion on the sand bed due to the flow in the

mixture (which is considered to be equal to the overflow rate in steady state):

fe (Qo, hm) = max

(
1 − Qo

2

kchm
2 , 0

)
. (8.8)

The parameters of the entire model may be determined by fitting the outputs of the simulation

model to real data from a ship, by using non-linear least-squares optimization (Braaksma

et al., 2007).

8.1.3 The estimation problem

In order to estimate at each time step the overflow density and flow-rate, the volume and mass

balance equations were discretized by using the Euler method:

Vt,k = Vt,k−1 + T (Qi,k−1 − Qo,k−1) (8.9)

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 − Qo,k−1ρo,k−1) (8.10)

where the sampling period is T = 5 s, which is also the sampling period of the on-board data

acquisition system. These state equations are augmented with a random-walk model for Qo

and ρo:

Qo,k = Qo,k−1 + ǫQ,k−1 (8.11)

ρo,k = ρo,k−1 + ǫρ,k−1 (8.12)

The corrupting noises ǫQ,k−1 and ǫρ,k−1 are considered zero-mean Gaussians ( ǫxi,k ∼
N (0, νxi

)), and their standard deviations νxi
are determined experimentally. The motiva-

tion for this choice results from the process description in Section 8.1.2. The sedimentation

models are based on empirical modeling of the physical phenomena and contain too many un-

certain parameters. By using a random walk model, the use of the uncertain overflow model
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(8.4)-(8.5), the settling and scouring functions (8.7)-(8.8), and the uncertain parameters is

circumvented. The augmented state, input and output vectors are defined as:

x =




Vt

mt

Qo

ρo


 , u =

(
Qi

ρi

)
, y =

(
Vt

mt

)

Measurements are available for the inputs Qi and ρi and the outputs Vt and mt. The objective

is to estimate Qo and ρo on-line.

Note, that in this particular case, the estimation model is described as:

xk = f(xk−1) + vk−1

yk = h(xk−1) + ηk

where vk and ηk are zero mean Gaussian noises, with covariances Q and R, respectively.

The equivalent probabilistic model is expressed as:

p(xk|xk−1) = N (xk;f(xk−1);Q)

p(yk|xk) = N (yk;h(xk);R)

Using the above estimation model, a centralized PF has already been successfully imple-

mented in the data acquisition and monitoring system of a hopper dredger (Babuška et al.,

2006). In this thesis, different observers are compared in terms of their performance. The

following cases are considered:

1. A centralized observer to simultaneously estimate the values of both Qo and ρo, see

Figure 8.3.

Observer

Vt

Qi

ρi

mt

ρo

Qo

Figure 8.3: Centralized observer.

2. Cascaded observers: the first observer estimates Qo based on the volume balance (8.9),

and the second estimates ρo based on the mass balance (8.10) and on the values ob-

tained for Qo by the first observer, see Figure 8.4.

Observer 1

Observer 2

Vt

Qi

ρi

mt

ρo

Qo

Figure 8.4: Cascaded observers.
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Note that the models (8.9)-(8.12) only approximate the underlying true process. If the

data were generated based on these models, a Kalman filter could be used. For the data

generated from the sedimentation model, however, the results obtained by the Kalman filter

are too noisy and the Kalman filter becomes unstable for the experimental data.

It was found that the UKF cannot simultaneously estimate both Qo and ρo. Therefore,

for the centralized observer, only the PF is considered, while in the cascaded setting both the

PF and the UKF are used. The observers are first applied to the simulated data and then, with

the same parameters, to real measured data.

Remark: There is one more setting of observers that was considered for this specific appli-

cation: independent observers. In this setting, one uses two observers: the first estimates Qo

based on the volume balance (8.9). The second estimates Qoρo based on the mass balance

(8.10). The value of ρo can be computed afterwards by dividing the estimate of Qoρo by

the estimate of Qo obtained by the first observer. However, when working with experimen-

tal data, the computation of ρo means dividing noisy variables and leads to large errors and

therefore the results are not presented here.

8.1.4 Results for simulated data

Recall that the model used for simulation is the one presented in Section 8.1.2, while the one

used for estimation is:

Vt,k = Vt,k−1 + T (Qi,k−1 − Qo,k−1) + ǫV,k−1

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 − Qo,k−1ρo,k−1) + ǫm,k−1

Qo,k = Qo,k−1 + ǫQ,k−1

ρo,k = ρo,k−1 + ǫρ,k−1

(8.13)

with ǫV,k ∼ N (0, νV ), ǫm,k ∼ N (0, νm), ǫQ,k ∼ N (0, νQ), ǫρ,k ∼ N (0, νρ) and N (0, ν)
being a zero-mean, ν2 covariance Gaussian random noise.

For this simulation, only the inputs Qi and ρi are fed with experimental data, corrupted

by noise. The remaining variables are computed in simulation without adding noise.

The results obtained with the different configurations of observers are compared to the

simulated values of ρo and Qo. The standard deviations of the state transition and measure-

ment noise are given in Table 8.1. The particle filter used 1000 samples, with resampling at a

threshold of NT = 900. The presented results are the average of 30 simulations.

Table 8.1: Standard deviations used in the estimation model (8.13).

Variable State transition Measurement

Vt [m3] 0 10
mt [kg] 3000 12000

Qo [m3/s] 0.25 –

ρo [kg/m3] 5 –
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Centralized particle filter

The results obtained with a particle filter, based on the model (8.13) are presented in Figure

8.5. The maximum standard deviation computed point-wise for 30 trajectories of the state

estimated by the particle filter, is 0.1 for Qo and 5.1 for ρo.
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Figure 8.5: Centralized observer: results for Qo (a) and ρo (b) using the particle filter (solid

line – simulated data, dotted line – estimate).

The residuals are computed as the difference between the simulated and estimated values

of Qo and ρo, respectively. The distribution of the residuals is presented in Figure 8.6, while

their statistics are given in Table 8.2.

Table 8.2: Statistics of residuals for the centralized PF.

Mean Standard deviation

Qo [m3/s] −0.0135 0.5863
ρo [kg/m3] 11.6858 22.6426
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Figure 8.6: Centralized observer: residuals for Qo (a) and ρo (b).
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Cascaded observers

This setting involves two observers in a cascade. The first one estimates Qo using the volume

balance (8.9) and a random walk model for Qo. The second observer estimates ρo based on

the mass balance (8.10), a random walk model for ρo, and the result obtained for Qo by the

first observer (see also Figure 8.4). Two types of filters are compared: the Unscented Kalman

Filter and the Particle Filter.

The dynamic model is decomposed into two subsystems. The first observer uses the

model
Vt,k = Vt,k−1 + T (Qi,k−1 − Qo,k−1) + ǫV,k−1

Qo,k = Qo,k−1 + ǫQ,k−1

(8.14)

where Vt is the measured output. The second observer uses the model

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 − Qo,k−1ρi,k−1) + ǫm,k−1

ρo,k = ρo,k−1 + ǫρ,k−1

(8.15)

where mt is the measured output.

The results obtained for Qo are presented in Figure 8.7. As one can see, the results

obtained by the UKF and PF are comparable.
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Figure 8.7: Cascaded observers: results for Qo using PF (a) and UKF (b) (solid line – simu-

lated data, dotted line – estimate).

The maximum standard deviation computed point-wise for the 30 Monte Carlo simula-

tions, is 0.095. The statistics of the residuals’ distributions are given in Table 8.3. These

statistics are comparable with those obtained with the centralized observer.

Table 8.3: Statistics of residuals of Qo [m3/s].

Mean Standard deviation

PF 0.0094 0.5953
UKF 0.0222 0.5582

For the cascaded observer the following combinations are considered: UKF for both Qo

and ρo, PF for both Qo and ρo, UKF for Qo and PF for ρo, and PF for Qo and UKF for ρo. In
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what follows, the observer setting is denoted as observer 1 - observer 2, i.e. PF-PF denotes

that PF is used for both Qo and ρo, UKF-PF means that UKF is used for Qo and PF for ρo,

etc.

The results obtained for ρo using Qo estimated by PF and UKF are presented in Fig-

ure 8.8. The maximum point-wise standard deviation of 30 Monte Carlo simulations for ρo,

based on the results of Qo given also by PF is 5.8, while for ρo based on based on the results

of Qo given by UKF is 2.96. The distribution of the residuals is given in Figure 8.9. The

statistics of the residuals can be found in Table 8.4.
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(a) PF – PF.
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(b) PF – UKF.
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(c) UKF –PF.
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(d) UKF – UKF.

Figure 8.8: Estimates of ρo with the four possible filter combinations (solid line – simulated

data, dotted line – estimate).

Table 8.4: Statistics of residuals of ρo [kg/m3].

Qo ρo Mean Standard deviation

PF PF 12.1986 25.1174
PF UKF 0.3354 54.3970

UKF PF 10.6790 21.5436
UKF UKF −1.2536 54.2936
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(b) PF – UKF.
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(c) UKF – PF.
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(d) UKF – UKF.

Figure 8.9: Cascaded observers: residuals for the estimates of ρo.

Discussion

For simulated data, a good estimate is obtained with the centralized observer (particle filter)

for Qo, but the estimate of ρo is delayed relative to the one simulated (Figure 8.5).

For the cascaded observers, considering only the mean of the residuals (Table 8.4), one

can conclude that the UKF performs the best for the estimation of ρo, much better than the

centralized observer or the PF. However, considering the standard deviations (Table 8.4 and

Figure 8.9), one can see that the estimates of ρo obtained by UKF are much noisier than those

obtained by the PF, both centralized and cascaded. Comparing the results obtained by PF for

ρo with the centralized observer (Table 8.2), it can be seen that using a combination of two

particle filters leads to approximately the same results as the centralized filter. However, the

best result, based on the statistics presented in Tables 8.3 and 8.4 is obtained with cascaded

observers, the combination UKF for Qo and PF for ρo.

8.1.5 Results for measured data

For the experimental data, the same model and parameter values are considered as for the

simulated data and the same combinations of observers. The presented results for the particle

filter are the average of 30 simulations.
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Since no measurements of Qo and ρo are available, the results are compared to the values

of ρo and Qo computed directly from the volume and mass balance, i.e., equations (8.9)-

(8.10). The overflow rate and the density are computed as:

Qo,k = Qi,k − 1

T
(Vt,k − Vt,k−1)

ρo,k =
Qi,kρi,k − 1

T
(mt,k − mt,k−1)

Qo,k

.

(8.16)

As the result of this computation is very noisy, a first-order anti-causal low-pass filter was

applied to the measured data before computing Qo and ρo, with an experimentally chosen

cut-off frequency of 0.05 Hz.

Centralized observer

The results obtained with the centralized observer (particle filter) are presented in Figure 8.10.

A reasonably good estimate is obtained for ρo, but the estimate of Qo is noisy. The maximum

standard deviation computed point-wise over the 30 Monte Carlo simulations is 1.76 for Qo

and 42.87 for ρo.
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Figure 8.10: Centralized observer: results for Qo (a) and ρo (b) using the particle filter (solid

line – computed by (8.16), dotted line – estimate).

Cascaded observers

The results obtained by the UKF and PF for Qo are presented in Figure 8.11. The estimate of

Qo obtained by the UKF is noisier than that obtained by the PF, but comparable to the result

obtained by the centralized observer. The maximum sample-wise standard deviation of the

Monte Carlo simulations for Qo is 0.55.

For the cascaded setting, the previous four combinations, i.e., PF–PF, PF–UKF, UKF–

UKF, and UKF–PF are considered. The results obtained for ρo with the four combinations

are presented in Figure 8.12. The sample-wise maximum standard deviation of the 30 Monte

Carlo simulations for ρo, based on the results of Qo given also by PF is 36.91, while for ρo

based on the results of Qo given by UKF is 36.05.
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Figure 8.11: Cascaded observers: results for Qo using PF (a) and UKF (b) (solid line –

computed by (8.16), dotted line – estimate).
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(a) PF – PF.
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(b) PF – UKF.
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(c) UKF – PF.
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Figure 8.12: Cascaded observers: estimates of ρo using the four possible combinations (solid

line – computed by (8.16), dotted line – estimate).

Discussion

For measured data, a centralized observer (Figure 8.10) obtains a reasonably good estimate

for ρo, but the estimate of Qo is noisier than the one computed by using (8.16).
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From Figure 8.12 it can be seen that the UKF cannot handle the estimation of ρo, probably

due to the high noise level of the measured variables. By using the combinations of PF–PF

and UKF–PF, approximately the same results are obtained for ρo. These results are also

comparable to those obtained by a PF as the centralized observer.

8.1.6 Conclusions

A distributed observer setting has been applied to the estimation of overflow losses in a hopper

dredger. The results were compared with those obtained by the centralized observer. The

overflow losses, represented by the overflow mixture density, are estimated on the basis of

the measured total hopper volume, hopper mass, incoming mixture density, and flow rate.

The proposed approach uses straightforward nonlinear mass balance equations and does

not rely on complex overflow and sedimentation models that contain uncertain parameters

and empirical functional relationships.

The performance was evaluated in simulations and with real measurements. The simu-

lation results for this application clearly indicate the best combination: cascaded observers,

using UKF or PF for the simpler subsystem (flow rate) and PF for the more complex one

(density).

8.2 State estimation for a water treatment plant

Advanced online quality control of drinking water treatment plants requires reliable models.

The available models in general involve temperature-dependent, uncertain parameters, which

can only be measured in laboratory conditions. The available measurement is that of the pH,

which is a highly nonlinear combination of the system states. We propose to estimate the

uncertain model parameters using this measurement. Since the model is nonlinear, a PF is

used, and thanks to the model properties, the estimation is performed in a cascaded manner.

The performance is evaluated both for simulated and real-world data.

8.2.1 Introduction

In drinking water production and distribution, there is an increased interest in advanced con-

trol using online flow and level measurements. However, in the current practice advanced

control methods are mainly used for water quantity control. The increased use of these mea-

surements has led to the optimization of the produced and distributed water quantity (Bakker

et al., 2003; Hill et al., 2005).

Advanced semi-online water quality measurements have also become more common, al-

though, currently they are predominantly used for monitoring. Such measurements include

for instance pH and UV spectra measurements.

Previous research (van Schagen et al., 2006) has shown that before implementing ad-

vanced control strategies in drinking water production, it is recommended to investigate the

trade-off between the number of necessary measurements, the accuracy of the measurements,

and the effort for maintaining the measurement devices. The sensors must be able to perform

under industrial circumstances, and ensure very small variations in water quality. If new mea-

surements that do not meet these conditions are used in online control, they can worsen the

performance of the process.
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A measure to describe the super-saturation of calcium carbonate in water is the Satura-

tion Index (SI), which is defined as the pH offset at which the actual calcium concentration

is in equilibrium with the carbonate concentration (see van Schagen et al. (2007) and the

references therein). An SI below zero will cause the concrete of the installation to dissolve.

An SI above 0.3 will cause scaling on the equipment of the installation, which may result

in malfunction of the valves and dosing units. The difference between a high and low SI

is therefore about 0.3. The accuracy of the pH measurement is restricted and the process

conditions change in time.

The research reported here involves one of the water treatment plants (WTPs) of Ams-

terdam, WTP Weesperkarspel. Together with the WTP Leiduin it produces all the drinking

water for the city of Amsterdam (400 Ml/day). The Weesperkarspel plant treats seepage water

from a polder with eight process steps (stages) in cascade: coagulation, 100 days retention in

a lake water reservoir, acid dosage (HCl), rapid sand filtration (RSF), ozone, pellet softening,

biologically activated carbon, and slow sand filtration.

In the current situation, the SI is controlled using only pH measurements. Due to the setup

of the treatment plant (with a long retention time in the lake), the water quality parameters

change slowly. However, the reaction dynamics and model characteristics in each process

step depend nonlinearly on the temperature, which is reflected in uncertain model parameters.

To improve SI control a reliable dynamic model should be constructed. This research aims to

improve the model characteristics based on the pH measurements available in the process. In

order to improve the model, we consider the online estimation of these uncertain parameters

for two stages: acid dosage and RSF.

We propose a method for the online estimation of the uncertain reaction constants of the

acid dosage and the RSF stages, in order to improve the model characteristics. Due to the

nonlinear and uncertain nature of the process, we use PFs. Since the process steps are in a

cascade, the parameter estimation is performed in a cascaded manner.

8.2.2 The water treatment plant

Most models developed for water treatment plants are steady-state models, and they are used

for the design od the installation. In this chapter we consider a dynamic model that describes

the effect of chemical dosing and reactions through the m-alkalinity (M ) and p-alkalinity (P ).

Neither these alkalinities, nor the reaction rates or disturbances can be measured directly. The

available measurement is that of the pH, which is a nonlinear function of M and P .

In the current situation, the pH at different stages is kept at fixed values to achieve a de-

sired SI. The desired pH is based on laboratory measurements of M and P and the current

temperature. Therefore, the true SI is only controlled at the sampling rate of the labora-

tory measurements, with a delay of several days. In reality, the process parameters vary

with the temperature and other, non-measured disturbances. Moreover, the concentrations of

interests cannot be directly measured. This effectively means that changes in process perfor-

mance/process input can only be detected with a delay of several days. In order to determine

the current state of the process, online estimation is needed. This will also give direct feed-

back to the operators, instead of a delayed evaluation.

Therefore, the goal is to determine M and P online, based on the measured pH and the

reactant added at different steps in the treatment process together with the reaction rates at

the treatment steps.
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In drinking water production, the pH is mainly determined by the carbonic equilib-

rium (Wiechers et al., 1975):

CO2 + 2H2O
K1

⇆ H3O
+ + HCO−

3

HCO−
3 + H2O

K2

⇆ H3O
+ + CO2−

3

H3O
+ + OH−

Kw

⇆ 2H2O

(8.17)

where K1, K2 and Kw are temperature-dependent reaction constants.

The reaction rates of these equilibria are high, and it is therefore assumed that the carbonic

fractions are always in equilibrium. The pH (H3O
+ activity) changes when one of the other

concentrations changes due to a reaction. To model the equilibrium, the alkalinities M and

P are used. The actual concentrations can be found by solving the following system of

equations (van Schagen et al., 2007):

M = 2[CO2−
3 ] + [HCO−

3 ] + [OH−] − [H3O
+]

P = [CO2−
3 ] − [CO2] + [OH−] − [H3O

+]

K1 = f2[HCO−
3 ][H3O

+][CO2]
−1

K2 = f4[CO2−
3 ][H3O

+][HCO−
3 ]−1

Kw = f2[H3O
+][OH−]

(8.18)

where f is a parameter depending on the ionic strength of the water and [.] denotes concen-

tration. This system of five equations can be solved as soon as two variables are known. It

can also be used to make a simple model of the treatment plant with respect to the pH, by de-

scribing the effect of dosage and reactions on M and P and deducing the (nonlinear) relation

to the pH. For the relevant range between 7 and 11 the relation is plotted in Figure 8.13. The

measured pH values are normally between 7.6 and 8.6.
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Figure 8.13: Dependence of the pH on M and P at 15◦C.
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The dynamic model for M and P can be expressed as:

Ṁ =
F

V
(Mprev − M) +

F

V
fM (rin) − RM (M,P, r, τ)

Ṗ =
F

V
(Pprev − P ) +

F

V
fP (rin) − RP (M,P, r, τ)

ṙ =
F

V
(rin − r) − Rr(M,P, r, τ)

where F is the flow, V is the water volume in the corresponding process step, r is the con-

centration of the reactant in the water, rin is the concentration of the reactant added to the

water, RM , RP and Rr describe the influence of the temperature on the reactions in the treat-

ment step and depend on the temperature τ . The functions fM and fP are the instantaneous

changes in M and P due to the dosage of chemicals, and Mprev and Pprev are the M and P
values from the previous treatment stage (van Schagen et al., 2006).

8.2.3 The estimation problem

We consider the estimation of the parameters for the HCl dosage stage and the RSF stage, for

which the functions fM , fP , RM , RP and Rr for the treatment stages of interest are presented

in Table 8.5. In the HCl dosage stage, reactions take place due to the added HCl, with the

reaction “constant” k12 depending heavily on the temperature. During the RSF stage, NH4

is biologically degraded. The biology uses PO4 already in the water. The reaction constants

again depend on the temperature.

Table 8.5: Functions used in the estimation model.
Stage fM fP RM RP Rr

HCl dosage −rin −rin 0 k12(P + 0.05) 0

RSF 0 0 k3r k3r r
Transportation 0 0 0 0 —

The functions fM and fP are considered to be linear in rin, and RM , RP and Rr are

approximated by linear combinations of M , P and r. The parameters ki change in each

treatment step, and in general they depend on the temperature. The measurements are the pH

values after each stage.

For each treatment stage, the initial states are the M and P values from the previous stage

and the dosing rin. The concentration in each stage refers to the different chemical added.

The change during the stage in the M and P numbers depends on the dosing, the reactant

already in the water, and the temperature. The measurement is the pH after the treatment

stage.

Figure 8.14: Stages of interest.
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Since measurements are only available after the water resulting from RSF has been trans-

ported, as illustrated in Figure 8.14, we need to consider the RSF and transportation models

as one stage. This is why Table 8.5 also contains a “Transportation” stage. It is assumed that

the reactions due to the reactant added in a stage are restricted to the corresponding stage.

Due to the nonlinear nature of both the state transition and the measurement model, a

nonlinear estimator is needed. Trials have shown that neither the EKF, nor the UKF are able

to handle the estimation when measured data is used. Therefore, PFs have been applied.

Thanks to the cascaded form of the system, the filters have been also applied in cascades.

8.2.4 Estimation results

The particle filter was first tested for simulated data and afterwards applied to measured data.

In all cases, the estimation is cascaded and particle filters are used.

Results using simulation data

The model was simulated using noisy measured flow (F ) and reactant (r) data, and both the

states and the measurements were corrupted by zero-mean, Gaussian noise.

The initial values were randomly generated. For each process step, both the states and

measurements are assumed to be corrupted by a zero-mean Gaussian noise, with known noise

covariances. The state transition noise covariance in each stage is 0.005 for M , P , and r
and 0.01 for the unknown parameter. The measurement noise covariance is 0.05, which

is approximately the measurement error. To simulate the continuous model, a fourth-order

Runge-Kutta numerical integration method was used.

Since the water quality parameters in the lake are practically constant, the Mprev and

Pprev for the first HCl dosage are known and constant. The models for each stage and

the corresponding results are presented below. For each stage, 50 particles were used, with

resampling at NT = 45. To estimate the unknown parameters, a random walk model is used.

HCl dosage stage

The model used for both simulation and estimation purposes is:

Ṁ =
F

V
(Mprev − M) − F

V
rin

Ṗ =
F

V
(Pprev − P ) − F

V
rin − k12(P + 0.05)

ṙ =
F

V
(rin − r)

(8.19)

When generating the data, k12 = 0.1 was used. The estimation result for the unknown pa-

rameter is presented in Figure 8.15(a). As can be seen, the estimate, albeit slowly, converges

to the true value.
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Rapid Sand Filtration stage

The model used for both simulation and estimation purposes is:

Ṁ =
F

V
(Mprev − M) − k3r

Ṗ =
F

V
(Pprev − P ) − k3r

ṙ =
F

V
(rin − r) − r

(8.20)

When generating the data, k3 = 3 was used. The estimation result for the unknown

parameter is presented in Figure 8.15(b). As one can see from the presented results, the

estimates converge to the true values. The maximum standard deviation computed point-

wise over the 30 simulations is below 0.01 for all the estimated states and below 0.001 for

the estimated reaction constants.
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Figure 8.15: HCl and RSF estimation results.

Results using measured data

The simulation results give confidence that using a particle filter the process parameters can

be identified based on the measured pH and the measured dosing.

To verify this assumption unfiltered real-world data from the full-scale plant are used.

The reactant dosage in the HCl dosage stage, the pH after the dosage stage, the incoming

NH4 concentration in the RSF stage, the pH after transportation, and the temperature are

measured every minute. The results are obtained for a situation where the reactant and flow

through the treatment plant are changed, due to operational changes.

HCl dosage stage

Since before the HCl dosage, the water is in equilibrium with the CO2 in the air, the

M and P numbers stabilize at M = 3.7 and P = −0.05, respectively. These are the inputs
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Mprev and Pprev for the HCl dosage stage. The added reactant is measured, and so is the pH

at the end of the stage. The states M , P , r and the reaction constant k12 need to be estimated.

The particle filter uses 100 particles, with resampling at NT = 90. The state transition noise

covariance for M , P and r was 0.00005, while for the random walk model of k12 it was 0.002.

The measurement noise covariance used was 0.05. The results are presented in Figure 8.16.

With these tuning parameters the prediction of the pH after dosing is very accurate, but the

reaction rate varies too quickly. This variation cannot be explained by physical phenomena

and therefore it is concluded that the error in the pH measurement must be larger.
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Figure 8.16: Estimation results for the first acid dosage - experimental data (solid line -

measured, dashed - predicted).

In a second run the accuracy of the pH measurement was changed to 0.2 and the covari-

ance of the random walk model of k12 was changed to 0.0001. The results of this run are

shown in Figure 8.17. The pH is within the expected deviation from the measured pH, and

the process parameters stabilize at a constant value. However, in simulation, the pH varies

more rapidly than in the real-world measurements. An explanation is a possible extra mixing

in the HCl dosage stage that is not modeled in the current model.

RSF stage and transportation.

Since a measurement of the pH is only available after transportation of the water obtained

in the RSF stage, the two stages have to be taken together. Reactant is added only in the RSF

stage, where the inputs are the M and P numbers at the end of the HCl dosage stage. The

transportation only delays the M and P s obtained at the end of the RSF stage. The model is
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Figure 8.17: Estimation results for the first acid dosage - experimental data (solid line -

measured, dashed - predicted).

given by:

Ṁ2 =
F

V2
(M1 − M2)

Ṗ2 =
F

V2
(P1 − P2)

Ṁ1 =
F

V1
(Mprev − M1) − k3r

Ṗ1 =
F

V1
(Pprev − P1) − k3r

ṙ =
F

V1
(rin − r) − r

(8.21)

The measured pH is a nonlinear combination of M2 and P2. Besides the states, the parameter

k3 also has to be estimated. The values used for Mprev and Pprev are those estimated in the

previous stage. The particle filter uses 100 particles, with resampling at NT = 90. The

state transition noise covariances are 0.00005 for M1, M2, P1, P2, and r, and 0.0002 for the

random walk model of k3. The measurement noise covariance is again increased to 0.2.

Part of the estimated results is presented in Figure 8.18. The estimation results for this

case (Figure 8.18) show that the convergence to the correct pH value is slower than in the

simulated case, but again the process parameter converges to a constant parameter. The dif-

ference between the estimated and measured pH however is not explained by the model.

8.2.5 Conclusions

In drinking water production and distribution there is an increased interest in advanced con-

trol using online data. However, in the current situation only the pH at different stages is
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Figure 8.18: Estimation results for RSF and transportation - experimental data (solid line -

measured, dash-dotted - predicted).

measured. Based on these measurements, a particle filter was applied to the estimation of

reaction constants for two stages of a water treatment plant.

Estimation was performed both on simulated data and using data from the full-scale in-

stallation. It has been shown that the theoretical accuracy of the pH measurements does not

hold in practice, and that an accuracy of 0.2 for the pH measurement must be used. If that

accuracy is taken into account, “constant” process parameters are changing gradually and the

pH is within the defined range.

The results are encouraging, but, at the same time, they show that SI cannot be controlled

solely by one pH measurement. To guarantee that the desired SI is kept, it is necessary

to implement redundant pH measurements (to increase accuracy) or to use a model-based

approach to identify erroneous measurement data.

8.3 Summary and concluding remarks

This chapter has presented the application of cascaded state estimation for two real-world

processes. In both cases, the model is nonlinear and non-Gaussian, and the variables of

interest, although needed for advanced control, cannot be measured online. Therefore, they

have to be estimated. Due to the nonlinearity and the uncertainty of the models and the

noise affecting the measurements, a centralized estimation involves the use of a particle filter

with a large number of samples, which implies high computational costs. By employing the

cascaded approach, different observers can be combined. With the increased modularity, the

complexity of the problem is reduced, which leads to reduced computational costs. Moreover,

since the design and tuning of the observers becomes easy, the overall performance is also

increased.
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Chapter 9

Conclusions and future research

directions

In this thesis we have proposed and studied techniques to design observers for nonlinear

systems. Two types of systems have been considered: deterministic nonlinear systems repre-

sented by Takagi-Sugeno (TS) fuzzy models, and cascaded stochastic systems. For TS fuzzy

models, we have discussed both stability analysis and observer design, for cascaded, dis-

tributed and adaptive systems. For cascaded stochastic processes, the performance of Kalman

filters has been discussed from a theoretical point of view and the combination of different

stochastic observers has been evaluated on two real-world applications.

This chapter summarizes our findings and discusses future research directions in observer

design for nonlinear systems.

9.1 Summary and conclusions

In the first part of the thesis, we have studied TS fuzzy systems and propose observer design

methods for such systems. First, we have discussed TS fuzzy systems that are the cascade

of several subsystems. We have given an algorithm for partitioning a nonlinear observable

system into cascaded observable subsystems to determine whether a system is a cascade of

subsystems. For cascaded fuzzy systems, we have proven that under mild conditions, the

stability of the whole system is implied by the stability of the subsystems. Therefore, if a

TS fuzzy system is the cascade of TS subsystems, the stability of the whole system can be

analyzed based on the stability of the subsystems. The cascaded analysis relaxes the stability

conditions and it also reduces the computational costs. We have also extended the cascaded

approach to observer design. By designing observers independently, a decentralized observer

for the whole system is obtained. Such a decentralized observer has the same error decay rate

as an observer designed for the whole system, i.e., the same performance can be obtained

with reduced computational costs.

While many processes are cascaded (e.g., material processing, flow processes), most sys-

tems are not cascaded, but distributed, i.e., the subsystems influence one another. When

considering cascaded systems, we exploit the property that the influence among the subsys-

tems is in one direction only. Since in general this is not the case, we have also studied the
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possibility of analyzing the stability and designing observers for distributed TS systems in

a fashion similar to cascaded systems, i.e., sequentially for the subsystems. We have con-

sidered distributed TS systems with a structure that changes in time, i.e., subsystems can be

added to or removed from the system online. Given such a system, its stability can be de-

termined by sequentially analyzing the subsystems and the strength of the interconnection

terms. Assuming that the already analyzed part of the system is proven to be exponentially

stable, we have derived conditions for the stability of the newly added subsystems and the

interconnection terms, so that the whole system maintains stability. The approach has been

extended to observer design. Given that a stable observer has already been designed for a part

of the system, when a new subsystem, together with the interconnection terms, is added, an

observer is designed only for the new subsystem. We have developed conditions to design the

new observer in such a manner that the already existing observers do not need to be modified,

and the global observer is stable.

In the last chapter of the first part of the thesis, we have considered adaptive TS systems.

Two kinds of uncertainties are considered: changes in the local linear models and distur-

bances that are polynomial functions of time. In the case when the local models change

slowly in time, we have designed an observer that asymptotically estimates the true local

models. For the case of time-varying disturbances, we have assumed that these disturbances

can be represented as or approximated by polynomial functions of time, that have a known

order. When the disturbance is represented by a polynomial, an observer can be designed

that estimates the disturbance with an exponential convergence to the true signal value. If the

disturbance is only approximated by a polynomial function of time, the estimate converges

exponentially to a region that lies within a bound of the true value.

In the second part of the thesis we have presented combinations of stochastic observers

for cascaded stochastic systems. First, we have given a theoretical comparison of Kalman

filters (KFs) designed for cascaded subsystems, and KFs designed for the cascaded system

as a whole. We have proven that the cascaded KFs are jointly optimal and therefore have the

same performance as a centralized KF, if and only if the subsystems are independent. Next,

we have studied the performance of cascaded observers on simulation examples and real-

world applications. The examples indicate that although the cascaded KFs are theoretically

not optimal, their performance is comparable to that of a centralized KF. Moreover, when

the system is controlled, simulations indicate that the cascaded filters perform better than the

centralized filters. An explanation for this is that by using cascaded observers, the estimation

error on one subsystem does not influence the other subsystem. We have also considered

two real-world applications, the estimation of the overflow losses in a hopper dredger and

the estimation of model parameters of a water treatment plant. Note that our goal in these

applications is to obtain the best estimate of the current state, and not a distribution of the

estimate of the current state, as was the case for the KFs. The models describing these

applications are nonlinear and and the noise affecting the processes are non-Gaussian. By

employing the cascaded approach, an unscented Kalman filter (UKF) and a particle filter

(PF) are combined to obtain a better estimate of the overflow losses in a hopper-dredger.

In the second application, PFs are used in cascade to estimate the model parameters in a

water treatment plant. By using the cascaded approach approach and combining different

observers, the complexity of the estimation problem and therefore the computational costs

are significantly reduced.

We conclude that by determining the structure of the model available, that is, cascaded,
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distributed, or time-varying, and incorporating this information in the observer design leads

to easier analysis and design, better performance, and reduced computational costs.

9.2 Main contributions

The main contributions of this thesis can be summarized as follows:

• We have proven that under mild conditions, the stability of a cascaded TS fuzzy system

is implied by the stability of the individual subsystems. Based on this property, we have

also derived an observer design method for cascaded TS systems.

• We have proposed a method to design observers for a distributed TS fuzzy system to

which subsystems are added online sequentially, by considering each subsystem as it

is added.

• We have designed observers that can simultaneously estimate both the states of a TS

system and unknown inputs that are represented as or approximated by polynomial

functions of time. Conditions for the convergence of the observer have been presented

and the design guarantees an ultimate bound on the estimation error.

9.3 Open issues and outlook

This section presents some important open issues concerning the techniques presented in this

thesis, as well as more fundamental open problems in the field of state estimation.

9.3.1 Open issues and future research directions

Several open issues regarding the approaches presented in this thesis were mentioned in the

previous chapters. This section summarizes these issues.

The first part of the thesis concerned the stability analysis and observer design for TS

fuzzy systems. Among the issues that remain to be investigated we mention the following.

• We have investigated the performance of the designed cascaded observers for TS fuzzy

systems in the terms of the decay rate of the estimation error. However, other perfor-

mance indices, (e.g., overshoot, integral error) can also be defined, and the cascaded

and centralized approaches could also be compared based on these indices.

• We have also considered decentralized stability analysis and observer design for TS

systems. The decentralized approach has several benefits, such as modularity or eas-

ier design. However, similarly to the cascaded approach, an issue that remains to be

investigated is how the centralized and distributed approaches compare in terms of

performance indicators.

• When considering time-varying TS fuzzy systems, we have assumed that the member-

ship functions are known, that their structure is fixed, and that only the parameters of

the local models change in time. The design of an adaptive observer for the case when
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the membership functions change as well, or when there is a model mismatch in the

membership functions, remains to be investigated. In such a case, not only the model

parameters, but also the membership functions have to be adapted. Moreover, the use

of adaptive observers for decentralized (cascaded, distributed) systems could also be

investigated.

• Our results have been illustrated on numerical examples. They should also be applied

on real-world processes.

The second part of the thesis has investigated the possibility and benefits of cascaded

state estimation for cascaded stochastic systems. Some directions that may be explored in the

future are the following.

• The performance of cascaded and centralized KFs has been compared. The perfor-

mance gain or loss using other types of stochastic filters could also be investigated.

• Since the extended KF is essentially a heuristic method, it does not have any conver-

gence guarantees. However, the UKF is accurate up to the second-order Taylor series

expansion. A possible issue to be investigated is whether this property also holds for

cascaded UKFs.

• For PFs, bounds exist on the approximation error between the true and the estimated

distribution, given the number of particles used. It could also be investigated whether

similar bounds hold for the cascade of PFs.

• The presented applications have demonstrated the benefits of cascaded state estimation

in two real-life stochastic processes. They also indicate that the approach may be suc-

cessfully used for other real-world applications. Therefore, other applications should

be explored in the future.

9.3.2 Outlook

Next to the open issues mentioned in the previous section, we identify several more general

research questions and some promising directions that may help to solve these. Some of these

directions are discussed in this section.

• In this thesis it is assumed that the observer gains have the same membership functions

as the TS model. It could be investigated whether a different choice of membership

functions for the observer can result in less conservative conditions and how the mem-

bership functions have to be chosen. A promising direction is the use of membership

function dependent Lyapunov functions.

• Most of the results for TS systems in this thesis rely on the existence of a common

quadratic Lyapunov function. Such a requirement is conservative and may not be appli-

cable for certain models (e.g., when one of the local models is unstable). Investigation

of the use of piecewise quadratic or piecewise linear Lyapunov functions for observer

design is a promising direction.
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• For the approaches in this thesis, we have required that every local model of the TS

fuzzy system is stable (in case of stability analysis) or observable (in case of observer

design). However, in general such a requirement is neither a sufficient, nor a necessary

condition for the whole system to be stable or observable. When more than one rule

is active, depending on the current value of the membership function, the system may

be stable, even though one of the active local models is unstable. In such a case, a

quadratic Lyapunov function cannot be used to determine stability, as the most existing

conditions become unfeasible. However, membership function or scheduling vector

dependent Lyapunov functions may help to derive less conservative conditions.

• To test stability and to design observers, usually LMIs are derived from nonlinear con-

ditions. However, in order to arrive to these LMIs, in general conservativeness is in-

troduced. In order to introduce less conservativeness, bilinear matrix inequalities may

be derived instead of LMIs. Algorithms and methods for solving efficiently nonlinear

matrix inequalities and eigenvalue problems are also needed.

• The results for TS systems in this thesis concern only the observer design for continuous-

time systems. How similar conditions may be derived for the purpose of state-feedback

or output-feedback control and for discrete-time TS systems still needs to be investi-

gated. Methods similar to those employed in this thesis could be the first step in solving

this issue.

• We have considered in the first part of the thesis only deterministic TS systems. The

case when (part of) the states or measurements are corrupted by noise should also be

investigated. For instance, when the local models are corrupted by noise, the observer

gains may be determined in a fashion similar to KFs, while ensuring the stability of the

observer.

• State estimation for general nonlinear systems should also be explored. Since TS sys-

tems are able to approximate a nonlinear system to an arbitrary degree of accuracy, they

could represent the first step into this direction. If a bound is known on the approxi-

mation error, robust observers could be derived that are also valid for the nonlinear

system, or a bound on the estimation error may be deduced.
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Appendix A

Stability criteria

The following theorems can be found in Khalil (2002), Chapters 4.1 and 4.5.

Consider the autonomous nonlinear system

ẋ = f(x) x ∈ D (A.1)

with an equilibrium point in x0.

Theorem A.1 Lyapunov stability: If there exists a continuously differentiable function V :
D → R such that

V (x0) = 0

V (x) > 0 ∀x ∈ D \ {x0}
V̇ (x) ≤ 0

(A.2)

then the equilibrium point x0 is stable.

Theorem A.2 Asymptotic stability: If there exists a continuously differentiable function V :
D → R such that

V (x0) = 0

V (x) > 0 ∀x ∈ D \ {x0}
V̇ (x0) = 0

V̇ (x) < 0 ∀x ∈ D \ {x0}

(A.3)

then the equilibrium point x0 is asymptotically stable. Furthermore, if V is radially un-

bounded, then x0 is globally asymptotically stable.

Theorem A.3 Exponential stability: If there exists a function V that proves asymptotic sta-

bility and in addition there exists α > 0 so that

V̇ (x) ≤ −αV (x) (A.4)

for some neighborhood of x0 then x0 is exponentially stable. If (A.4) holds globally, then

x0 is globally exponentially stable.

147



CHAPTER A. STABILITY CRITERIA

In what follows, consider the nonlinear system

ẋ = f(t,x) x ∈ D (A.5)

that is piecewise continuous in t, locally Lipschitz in x, and has an equilibrium point in x0.

Theorem A.4 Uniform stability: If there exists a continuously differentiable function V :
[0,∞)×D → R and two continuous positive definite functions W1(x) and W2(x), such that

W1(x) ≤ V (t,x) ≤ W2(x)

∂V

∂t
+

∂V

∂x
f(t,x) ≤ 0 ∀ t,x

(A.6)

then the equilibrium point x0 is uniformly stable.

Theorem A.5 Uniform asymptotic stability: If there exists a continuously differentiable

function V : [0,∞) × D → R and three continuous positive definite functions W1(x),
W2(x) and W3(x), such that

W1(x) ≤ V (t,x) ≤ W2(x)

∂V

∂t
+

∂V

∂x
f(t,x) ≤ −W3(x) ∀ t,x

(A.7)

then the equilibrium point x0 is uniformly asymptotically stable (UAS). If moreover, W1(x)
is radially unbounded, then x0 is globally uniformly asymptotically stable (GUAS).

Remark: The above theorems present only sufficient conditions. If a function V that satisfies

the conditions cannot be found, it only means that no conclusion can be drawn regarding the

stability of the equilibrium point on the basis of these theorems.
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Obtaining Takagi-Sugeno models

by linearization

In this thesis we assume that for the purpose of observer design, a fuzzy model or a nonlinear

model of the process considered is directly available. Given a nonlinear model, a fuzzy

approximation is obtained by linearizing the nonlinear model. This is in fact a Taylor series

expansion in different representative points, which may or may not be equilibria.

Consider a dynamic nonlinear system expressed as

ẋ =f(x,u,θ)

y =h(x,u,θ)
(B.1)

where x ∈ X is the vector of state variables, y ∈ Y is the vector of measurements, u ∈ U is

the input vector, and θ ∈ D represents parameters.

Our goal is to obtain an approximation of the nonlinear system (B.1) as a set of m rules:

Ri: If z is around zi then
ẋ = Aix + Biu + ai

y = Cix + Diu + di

or of the form

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =

m∑

i=1

wi(z)(Cix + Diu + di)

(B.2)

where Ai, Bi, ai, Ci, Di, di are the matrices and biases of the local linear models, z is

the scheduling vector that determines which of the rules are active at a certain moment, and

wi(z), i = 1, 2, . . . , m are the normalized membership functions.

First, one has to decide which variables describe the nonlinearities, i.e., which variables

should be the scheduling variables (z is a selection of inputs, states, and parameters). Second,

a sufficient amount m of linearization points zi, i = 1, 2, . . . , m has to be chosen, together

with a partition of the space X × U × D and the corresponding membership functions ϕi,

i = 1, 2, . . . , m. Note that by increasing the number of well-chosen approximation points,
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the approximation accuracy of the fuzzy model increases. However, the choices above are

highly application dependent (Kruse et al., 1994). The consequent matrices are obtained as:

Ai =
∂f

∂x

∣∣∣∣
zi,0

Bi =
∂f

∂u

∣∣∣∣
zi,0

Ci =
∂h

∂x

∣∣∣∣
zi,0

Di =
∂h

∂u

∣∣∣∣
zi,0

(B.3)

where |zi,0 denotes the evaluation of the expression on the left in the value corresponding to

zi for x, u and θ that are scheduling variables and 0 for those states and inputs that are not in

z.

If the linearization is not done in equilibria, affine terms also need to be added:

ai = f(x,u, θ)|zi,0 − Aix|zi,0 − Biu|zi,0

di = h(x,u, θ)|zi,0 − Cix|zi,0 − Diu|zi,0

(B.4)

In order to obtain the TS system of the form (B.2), the membership functions are normal-

ized as follows

wi(z) =
ϕi(z)∑m

j=1 ϕi(z)
(B.5)

Then, the TS fuzzy model can be expressed as

ẋ =

m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + Diu + di)

(B.6)

A convenient advantage of the fuzzy approximation obtained by linearization is that the

local models retain the properties of the nonlinear system in the linearization points, i.e., if zi

is locally observable and/or accessible in the nonlinear system, then the affine model obtained

by linearization in the respective point is also observable and/or accessible.
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Schur complements

Consider a symmetric, positive definite matrix A, partitioned as:

A =

(
A11 A12

AT
12 A22

)

The Schur complement of the submatrix A11 is

A22 − AT
12A

−1
11 A12

and the Schur complement of the submatrix A22 is

A11 − A12A
−1
22 AT

12

These complements have the properties (Zhang, 2005)

A11 − A12A
−1
22 AT

12 > 0

A22 − AT
12A

−1
11 A12 > 0

Using the Schur complement it is possible to rewrite quadratic matrix inequalities of the

form Q(x) − R(x)S(x)−1R(x) > 0, where Q(x) = Q(x)T > 0 and S(x) = S(x)T > 0
as he following linear matrix inequality:

(
Q(x) R(x)
R(x)T S(x)

)
> 0
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Glossary

Conventions

The following conventions are used:

• The standard control-theoretic conventions are used. For instance, the state is denoted

by x, the control action by u, the process dynamics by f , the measurements by y, and

the measurement function by h.

• All the vectors used in this thesis are column vectors. The transpose of a vector is

denoted by the superscript T . For instance, the transpose of x is xT .

• Boldface notation is used for vector or matrix functions, e.g., f is a vector function.

• For all the examples in this thesis, the measurement units of variables are mentioned

only once in the text, when the variables are introduced, after which they are omitted.

Time measurements are always accompanied by units, however.

List of symbols and notations

Below, a list is given containing the mathematical symbols and notations that are used most

frequently in this thesis.

General notations

I identity matrix

0 zero matrix

H Hermitian of a matrix H(A) = A + AT

A > 0 A is positive definite (matrix)

a � 0 each entry of the vector a is non-negative

ŝ estimated value

ṡ derivative of the signal

‖ · ‖ norm of a vector/ induced norm of a matrix

N Gaussian distribution

p(·) probability density
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Dynamic systems

x state vector

u input vector

y output vector

θ, ν unknown parameter vectors

f state transition function

h measurement function

v state transition noise

η measurement noise

A state transition matrix

B input matrix

C measurement matrix

t time

k time step

Takagi-Sugeno fuzzy systems

i, j indices for local linear models

m number of local linear models

z vector of scheduling variables

w normalized membership function

e error vector

ai bias in the ith local model

di measurement bias of the ith local model

P Lyapunov matrix

V Lyapunov function

Li observer gain of the ith local model

Kalman and particle filters

Q state transition covariance

R measurement covariance

P error covariance

K Kalman gain

sk|k−1 predicted value at step k
X , Y sigma point

N number of particles

NT resampling threshold

xi
k ith particle at time step k

wi
k weight of the ith particle at time step k

xi
k ∼ p(·) particle i is drawn from a probability density p at step k

List of abbreviations

This list below collects the abbreviations used most frequently in this thesis.
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TS Takagi-Sugeno

LMI linear matrix inequality

KF linear Kalman filter

EKF extended Kalman filter

UKF unscented Kalman filter

PF particle filter

PDF probability density function
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Summary

Many problems in decision making, control, and monitoring require that all variables of inter-

est, usually states and parameters of the system, are known at all times. However, in practical

situations, not all variables are measurable or they are not measured due to technical or eco-

nomical reasons. Therefore, these variables need to be estimated using an observer, based on

a model of the system and measured data. For such a purpose, dynamic systems are often

modeled in the state space framework, using a state transition model, which describes the

evolution of the states over time; and a measurement model, which relates the measurements

to the states. In some cases, these models also consider random external disturbances in-

fluencing the process. While for linear systems several solutions to estimate the unknown

variables exist, state estimation for general nonlinear systems still represents a challenge.

This thesis develops efficient observer design methods for nonlinear systems. Two types

of systems are considered: deterministic nonlinear systems, represented by Takagi-Sugeno

(TS) fuzzy models, and stochastic systems. For a large-scale or time-varying system, the

design and tuning of an observer may be complicated and may involve large computational

costs. By taking into account the specific properties of the system (such as cascaded, dis-

tributed, or time-varying), the observer design becomes easier and the computational costs

are reduced.

In the first part of the thesis, we consider nonlinear systems represented by TS fuzzy

models, and investigate three system structures: cascaded systems, distributed systems, and

systems affected by unknown disturbances.

The motivation for investigating the cascaded and distributed structures comes from large-

scale systems. Many large-scale systems, such as power networks, material processing sys-

tems, communication and transportation networks are composed of interconnected lower-

dimensional subsystems. An important class of these systems can be represented as a cascade

of subsystems. We study the cascade of nonlinear systems represented by TS fuzzy models.

For cascaded TS systems with normalized membership functions we prove that the stability

of the subsystems implies the stability of the cascade. Therefore, the stability analysis of

a cascaded TS system may be performed by analyzing the individual subsystems. This ap-

proach is also extended to observer design. In order to design observers for the cascaded TS

system it is sufficient to design observers for the subsystems. We also show that a cascaded

design does not lead to the loss of performance in the terms of the estimation error decay

rate. Therefore, the cascaded approach reduces the computational costs, while preserving

the performance of the observer. In order to determine whether a nonlinear system is a cas-

cade of subsystems, we give an algorithm that partitions a nonlinear system into cascaded

subsystems.
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However, large-scale systems are in general not cascaded, but distributed, i.e., the influ-

ence among the subsystems is not unidirectional. In addition, the structure is often not fixed,

i.e., subsystems may be added or removed on-line. For such systems, decentralized analysis

and design present several advantages, such as flexibility and easier analysis. Therefore, we

consider the stability analysis and observer design for distributed systems where each sub-

system is represented by a TS fuzzy model. The conditions previously obtained for cascaded

TS systems are extended to distributed TS systems. We analyze the stability of the overall TS

system based on the stability of the subsystems, allowing that new subsystems may be added

on-line. When the structure of the system is not fixed, the influence of the interconnection

terms due to the addition of a new subsystem is not known before the subsystem is actually

added. Moreover, even though the new subsystem is stable, the interconnection terms may

have a destabilizing effect. Therefore, we derive conditions on the strength of the intercon-

nection terms so that the stability of the overall system is maintained. Next, the approach

is extended to observer design. We assume that a fuzzy observer is already designed for an

existing subsystem or a collection of subsystems. When a new subsystem, together with the

interconnection terms is added, a new observer is designed only for this subsystem. Since

the already analyzed parts of the system or designed observers do not need to be analyzed or

designed again, the computational costs are reduced.

We also study TS systems that are influenced by unknown inputs (disturbances) or that

change over time. The design of observers in the presence of unknown inputs is an important

problem, since in many cases not all the inputs are known. The unknown inputs may also

represent effects of actuator or plant component failures. Two types of inputs are considered

in this thesis: model-plant mismatch and time-varying disturbances that can be represented

as or approximated by polynomial functions of time. Based on the known part of the fuzzy

model, we design observers that simultaneously estimate both the states and the unknown

inputs. In case of a polynomial input, the observer guarantees an exponential convergence of

the error to zero. When the input is only approximated by a polynomial function of time, a

bound on the estimation error is derived. If the disturbance is due to a model mismatch, the

true model is estimated, with an asymptotic convergence of the error to zero.

In the second part of the thesis, we consider stochastic systems, and investigate the com-

bination of different observers for cascaded stochastic systems.

In many applications, in order to efficiently analyze the process or to efficiently design

observers, one also has to consider the noise that is affecting the states or the measurements.

In such cases, probabilistic estimation methods have to be used. The most well-known of

these are the Kalman filter (KF), its nonlinear variants, the extended and unscented KF, and

particle filters (PFs). We consider combinations of KFs for stochastic systems that are cas-

cades of subsystems. We compare cascaded and centralized KFs both from a theoretical point

of view and on simulation examples. If the KFs are designed independently for the subsys-

tems, the individual KFs are optimal for the subsystems. Our theoretical results show that the

cascaded KFs are jointly optimal and therefore have the same performance as a centralized

KF for all possible inputs and outputs if and only if the subsystems are decoupled. However,

simulation results indicate that for practical purposes, the performance of the centralized and

cascaded KFs is comparable.

We also compare cascaded and centralized stochastic observers on two real-world appli-

cations, namely the estimation of the overflow losses in a hopper dredger and the estimation

of the model parameters in a water treatment plant. In both cases, the models are nonlinear
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and non-Gaussian, and the states of interest are not measurable. By employing the cascaded

approach, an unscented KF and a PF are combined to obtain a better estimate of the overflow

losses in a hopper dredger. In the second application, PFs are used in cascade to estimate the

model parameters in a water treatment plant. In both cases, the cascaded filters are easier to

tune and yield better estimation results than a centralized filter, with reduced computational

costs.

The thesis closes with some concluding remarks and a discussion on important open

issues regarding the approaches studied. Additionally, some fundamental unsolved issues in

state estimation are discussed, and promising research directions to address these issues are

suggested.
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Samenvatting

Een groot aantal problemen op het gebied van de besliskunde, regeling en monitoring vereisen

dat alle relevante variabelen — in het algemeen zijn dit de toestanden en de parameters van

het systeem — op elk moment bekend zijn. In de praktijk zijn echter niet alle variabelen meet-

baar of kunnen ze niet gemeten worden omwille van technische of economische beperkingen.

Daarom moeten deze variabelen geschat worden met een schatter (observer) op basis van een

model van het systeem en gemeten data. Hiertoe worden dynamische systemen vaak gemo-

delleerd in toestandsruimte-vorm, met een toestandsovergangsmodel, dat de evolutie van de

toestand in de tijd beschrijft, en een meetmodel, dat de metingen relateert aan de toestanden.

Soms bevatten de modellen ook willekeurige externe verstoringen die het proces beı̈nvloeden.

Terwijl er voor lineaire systemen verscheidene oplossingen bestaan om de onbekende vari-

abelen te schatten, is toestandsschatting voor algemene niet-lineaire systemen nog steeds een

grote uitdaging.

In dit proefschrift worden methoden ontwikkeld voor het ontwerpen van schatters voor

niet-lineaire systemen. Hierbij worden twee types van systemen beschouwd: determinis-

tische niet-lineaire systemen beschreven door middel van Takagi-Sugeno (TS) fuzzy mo-

dellen, en stochastische systemen. Voor een grootschalig of tijdsvariërend systeem kan het

ontwerpen en instellen van een schatter zeer ingewikkeld zijn en gepaard gaan met hoge

rekenkosten. Door gebruik te maken van specifieke eigenschappen van het systeem (zoals

cascade-, gedistribueerde of tijdsvariërende structuur) wordt het ontwerpen van een schatter

eenvoudiger en worden de vereiste rekenkosten gereduceerd.

In het eerste deel van het proefschrift beschouwen we niet-lineaire systemen beschreven

door middel van TS fuzzy modellen en onderzoeken we drie systeemstructuren: cascade-

systemen, gedistribueerde systemen en systemen onderworpen aan onbekende verstoringen.

De motivatie voor het onderzoeken van cascade- en gedistribueerde structuren komt voort

uit grootschalige systemen. Vele grootschalige systemen, zoals elektriciteitsnetwerken, mate-

riaalverwerkingssystemen, communicatienetwerken en transportnetwerken bestaan uit lager-

dimensionale deelsystemen die met elkaar verbonden zijn. Een belangrijke klasse van dergeli-

jke systemen kan beschreven worden als een cascade van deelsystemen. Wij bestuderen cas-

cades van niet-lineaire systemen die beschreven kunnen worden door TS fuzzy modellen.

Voor cascade TS systemen met genormaliseerde lidmaatschapsfuncties bewijzen wij dat sta-

biliteit van de deelsystemen de stabiliteit van de cascade impliceert. De stabiliteitsanalyse

van een cascade TS systeem kan dus uitgevoerd worden door de individuele deelsystemen

te analyseren. Wij breiden deze methode ook uit naar het ontwerpen van schatters. Om een

schatter voor een cascade TS systeem te ontwerpen, volstaat het dan om schatters te ontwer-

pen voor de deelsystemen. Wij tonen ook aan dat een cascade-ontwerp niet resulteert in een
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vermindering van de prestatie in termen van de afnamesnelheid van de schattingsfout. Dit

betekent dat de cascade-aanpak leidt tot een vermindering van de rekenkosten met behoud

van de prestatie van de schatter. Om te kunnen bepalen of een gegeven niet-lineair systeem

al dan niet een cascade is van deelsystemen, geven wij ook een algoritme dat een niet-lineair

systeem partitioneert in een cascade van deelsystemen.

In het algemeen zijn grootschalige systemen echter geen cascade-systemen maar wel

gedistribueerd, d.w.z. dat de beı̈nvloeding tussen deelsystemen niet unidirectioneel is maar

in twee richtingen werkt. Bovendien ligt de structuur vaak niet vast, d.w.z. dat deelsystemen

on-line verwijderd of toegevoegd kunnen worden. Voor dergelijke systemen bieden gedecen-

traliseerde analyse en gedecentraliseerd ontwerp verscheidene voordelen zoals grotere flex-

ibiliteit en eenvoudigere analyse. Daarom beschouwen wij de stabiliteitsanalyse en het ont-

werp van schatters voor gedistribueerde systemen waarbij elk deelsysteem beschreven wordt

door een TS fuzzy model. De voorwaarden die eerder verkregen werden voor cascade TS sys-

temen worden uitgebreid naar gedistribueerde TS systemen. Wij analyseren de stabiliteit van

het volledige TS systeem gebaseerd op de stabiliteit van de deelsystemen, waarbij nieuwe

deelsystemen on-line mogen worden toegevoegd. Als de structuur van het systeem niet

vastligt, dan is de invloed van de verbindingstermen ten gevolge van de toevoeging van een

nieuw deelsysteem niet bekend voordat het deelsysteem effectief toegevoegd wordt. Boven-

dien kunnen de verbindingstermen een destabiliserend effect hebben, zelfs indien het nieuwe

deelsysteem op zichzelf wel stabiel is. Daarom leiden wij voorwaarden af voor de sterkte van

de verbindingstermen zodanig dat de stabiliteit van het volledige systeem behouden blijft.

Vervolgens wordt de methode uitgebreid naar het ontwerp van schatters. Wij veronderstellen

dat er reeds een TS fuzzy schatter ontwikkeld is voor een bestaand deelsysteem of een verza-

meling van deelsystemen. Wanneer een nieuw deelsysteem wordt toegevoegd, samen met de

verbindingstermen, dan wordt er enkel voor dit deelsysteem een nieuwe schatter ontworpen.

Aangezien de reeds eerder geanalyseerde delen van het systeem niet meer opnieuw geanaly-

seerd hoeven te worden en aangezien de reeds eerder ontworpen schatters niet meer opnieuw

ontworpen hoeven te worden, worden de rekenkosten gereduceerd.

Wij bestuderen ook TS systemen die beı̈nvloed worden door onbekende ingangssignalen

(verstoringen) of die veranderen in de tijd. Het ontwerpen van schatters in de aanwezigheid

van onbekende ingangssignalen is een belangrijk probleem aangezien in vele gevallen niet

alle ingangssignalen bekend zijn. De onbekende ingangssignalen kunnen ook de effecten van

storingen in de actuatoren of in onderdelen van het systeem beschrijven. In dit proefschrift

worden twee types van ingangssignalen beschouwd: (1) afwijkingen tussen het model en

het systeem en (2) tijdsvariërende verstoringen die beschreven of benaderd kunnen worden

door polynomiale functies van de tijd. Op basis van het bekende deel van het fuzzy model

ontwerpen wij schatters die tegelijkertijd de toestanden en de onbekende ingangen schatten.

In het geval van een polynomiaal ingangssignaal garandeert de schatter een exponentiële

convergentie van de schattingsfout naar nul. Voor het geval dat de ingang enkel benaderd kan

worden door een polynomiale functie van de tijd, wordt een bovengrens op de schattingsfout

afgeleid. Als de verstoring het gevolg is van een modelafwijking, dan kan het echte model

geschat worden met een asymptotische convergentie van de schattingsfout naar nul.

In het tweede deel van het proefschrift worden stochastische systemen beschouwd en on-

derzoeken wij de combinatie van verschillende schatters voor een cascade van stochastische

systemen.

Om op een efficiënte manier een proces te analyseren en op een efficiënte manier schatters
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te ontwerpen, moet bij vele toepassingen ook rekening gehouden worden met de ruis op de

toestanden en de metingen. In dergelijke gevallen moeten probabilistische schattingsmetho-

den gebruikt worden. De bekendste onder deze methoden zijn het Kalman filter (KF) en zijn

niet-lineaire varianten: het uitgebreide en het unscented KF, alsmede particle filters (PF’s).

Wij beschouwen combinaties van KF’s voor stochastische systemen die een cascade zijn

van deelsystemen en wij vergelijken cascade-KF’s en gecentraliseerde KF’s zowel vanuit

theoretisch oogpunt als door middel van simulatie-voorbeelden. Als de KF’s onafhankelijk

van elkaar ontworpen worden voor de deelsystemen, dan zijn de individuele KF’s optimaal

voor de deelsystemen. Onze theoretische resultaten tonen aan dat de cascade-KF’s gezamen-

lijk optimaal zijn en dus voor alle mogelijke ingangs- en uitgangssignalen dezelfde prestatie

opleveren als het gecentraliseerde KF als en slechts als de deelsystemen ontkoppeld zijn.

Simulatieresultaten tonen echter aan dat vanuit een praktisch oogpunt de prestaties van het

gecentraliseerde KF en de cascade-KF’s vergelijkbaar zijn.

Wij vergelijken ook cascade- en gecentraliseerde stochastische schatters voor twee fysieke

voorbeelden, met name de schatting van overvloeiverliezen in een hopperzuiger en de schat-

ting van modelparameters voor een waterzuiveringsinstallatie. In beide gevallen zijn de mod-

ellen niet-lineair en niet-Gaussisch en zijn de relevante toestanden niet meetbaar. Met behulp

van de cascade-aanpak combineren we een unscented KF en een PF om een betere schatting

van de overvloeiverliezen in een hopperzuiger te verkrijgen. In de tweede toepassing worden

PF’s in cascade gebruikt om de modelparameters voor een waterzuiveringsinstallatie te schat-

ten. In beide gevallen zijn de cascade-filters gemakkelijker in te stellen en leveren ze betere

schattingen op dan een gecentraliseerd filter en vergen ze bovendien minder rekenkosten.

Het proefschrift eindigt met een aantal afsluitende opmerkingen en een discussie over

belangrijke open problemen in verband met de bestudeerde methoden. Daarnaast worden ook

nog een aantal fundamentele onopgeloste problemen op het gebied van de toestandsschatting

bediscussieerd en worden enkele veelbelovende onderzoeksrichtingen aangegeven om deze

problemen aan te pakken.
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