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Alice: Would you tell me, please, which way I ought to go from here?

The Cheshire Cat: That depends a good deal on where you want to get to.
Alice: I don’t much care where.

The Cheshire Cat: Then it doesn’t much matter which way you go.

Lewis Carroll, Alice in Wonderland
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SUMMARY

The operation of robotic systems on extraterrestrial missions involves long distance com-
munications, which have large delays and make the control of any agent complicated.
This problem becomes even more dominant if multiple robotic systems are used. One
solution to this problem is to increase the autonomy of each robotic system such that
each robot can decide what to do according to its’ current task and previous measure-
ments. Furthermore, by utilizing cooperation between each robotic system, a task might
even be solved more time efficiently.

Hence, this thesis considers the problem of using a spatially distributed robotic sys-
tem for exploratory tasks such as mapping of an unknown process in the context of space
exploration. This thesis therefore presents an information driven approach for explo-
ration — based on the theory of optimal experiment design — to estimate new measure-
ment locations that increase the accuracy of the used model. As many natural processes
can be represented in a sparse basis, this thesis additionally assumes that the underly-
ing model can be considered as sparse. Furthermore, the influence of a sparse model
on the exploration phase is also examined. In general, this thesis studies how to do the
estimation and exploration cooperatively by information exchange.

This thesis looks at two different estimation frameworks — the frequentist framework
and the Bayesian framework — combined with two conceptually different distribution
paradigms. Multiple distributed versions of a sparse Bayesian learning algorithm are
developed for each distributed paradigm. Then, the estimation results are exploited
to derive an information metric that is suited to estimate new measurement locations.
Here, the D-optimality criterion is utilized and this thesis presents how to estimate the
D-optimality criterion for the considered distributed settings and the different frame-
works. Furthermore, the influence of the sparsity assumption is analyzed. For the fre-
quentist framework, the sparsity inducing cost-function is altered into a ridge-regression
based on the sparse parameter estimates, in order to approximate a Hessian matrix of the
nonzero parameter estimates. For the Bayesian methods the covariance of the posterior
probability density function (PDF) is used for the D-optimality criterion.

Next, the estimation of the model parameters and the estimation of the new mea-
surement locations are formulated into multiple exploration algorithms for all frame-
works and distribution paradigms. The thesis evaluates multiple optimization strategies
of the exploration criteria, in order to figure out which are a better fit for a multi-agent
system.

After the analysis of the building blocks of this work — the distributed parameter
weight estimation and the distributed exploration — experimental validations demon-
strate how the proposed system works in reality. The results show that the exploration
algorithms are able to work in real-time and they indicate that the estimated covariance
based on the Bayesian framework leads to better performances although the Bayesian
methods are computationally more complex.

xi






SAMENVATTING

Robotsystemen voor buitenaardse missies brengen langeafstandscommunicatie met zich
mee, met grote vertragingen en ingewikkelde regeltechnieken als gevolg. Dit probleem

wordt nog dominanter als er meerdere robotsystemen worden gebruikt. Eén oplossing

voor dit probleem is het vergroten van de autonomie van elk robotsysteem, zodat elke

robot kan beslissen wat hij moet doen op basis van zijn huidige taak en eerdere metin-

gen. Bovendien kan een taak, door gebruik te maken van de samenwerking tussen de

robotsystemen, zelfs sneller worden opgelost.

Daarom onderzoekt dit proefschrift het probleem van het gebruik van een ruim-
telijk gedistribueerd robotsysteem voor verkennende taken, zoals het in kaart brengen
van een onbekend proces in de context van ruimteverkenning. Dit proefschrift presen-
teert daarom een informatiegestuurde aanpak voor verkenning, gebaseerd op de theorie
van optimaal experimentontwerp, om nieuwe meetlocaties te schatten die de nauw-
keurigheid van het gebruikte model vergroten. Omdat veel natuurlijke processen op
een schaarse basis kunnen worden weergegeven, wordt er in dit proefschrift bovendien
van uitgegaan dat het onderliggende model als schaars kan worden beschouwd. Verder
wordt ook de invloed van een schaars model op de exploratiefase onderzocht. In het al-
gemeen onderzoekt dit proefschrift hoe de schatting en verkenning gezamenlijk kunnen
worden uitgevoerd door middel van informatie-uitwisseling.

Dit proefschrift onderzoekt twee verschillende schattingsraamwerken — het frequen-
tistische raamwerk en het Bayesiaanse raamwerk — gecombineerd met twee conceptueel
verschillende distributieparadigma’s. Voor elk gedistribueerd paradigma worden meer-
dere gedistribueerde versies van een spaarzaam Bayesiaans leeralgoritme ontwikkeld.
Vervolgens worden de schattingsresultaten benut om een informatiemetriek af te leiden
die geschikt is om nieuwe meetlocaties te schatten. Hier wordt het D-optimaliteitscrite-
rium gebruikt en dit proefschrift presenteert hoe het D-optimaliteitscriterium kan wor-
den geschat voor de beschouwde gedistribueerde omgevingen en de verschillende raam-
werken. Verder wordt de invloed van de spaarzaamheidsaanname geanalyseerd. Voor
het frequentistische raamwerk wordt de spaarzaamheid-inducerende kostenfunctie ver-
anderd in een regressie op basis van de schaarse parameterschattingen, om de Hessiaan
van de niet-nul parameterschattingen te benaderen. Voor de Bayesiaanse methoden
wordt de covariantie van de posterior PDF gebruikt voor het D-optimaliteitscriterium.

Vervolgens worden de schatting van de modelparameters en de schatting van de
nieuwe meetlocaties geformuleerd in meerdere verkenningsalgoritmen voor alle raam-
werken en distributieparadigma’s. Het proefschrift evalueert meerdere optimalisatie-
strategieén van de verkenningscriteria, om erachter te komen welke beter passen bij een
multi-agentsysteem.

Na de analyse van de bouwstenen van dit werk — de gedistribueerde parameterge-
wichtschatting en de gedistribueerde verkenning — tonen experimentele validaties aan
hoe het voorgestelde systeem in werkelijkheid werkt. De resultaten laten zien dat de
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verkenningsalgoritmen in realtime kunnen werken en geven aan dat de geschatte co-
variantie op basis van het Bayesiaanse raamwerk tot betere prestaties leidt, hoewel de
Bayesiaanse methoden computationeel complexer zijn.



NOTATION

n,mk,...

N, M, Ni, My, ...

A,0,p,...

x,w, ...

Xi, Wi,...

X,9,X;,P;...

Xi,j»q)i,j;---

xi, i, wi,...

lowercase Latin letters denote scalars and are usually used as
index

uppercase Latin letters denote scalars that refer to the dimen-
sion of vectors or matrices; if they have a subscript k they are
usually associated with the k-th sub-vector or sub-matrix

lowercase Greek letters usually denote scalars that refer to pa-
rameters for algorithms or simulations

vectors are denoted as bold lowercase letters

elements of vectors are denoted as lowercase letters with sub-
script i, where i is the index of the element

matrices are denoted as bold uppercase Latin letters; a sub-
script indicates that they are sub-matrices

elements of a matrix are denoted as uppercase letters with two
subscripts i, j, where i is the row index and j is the column
index

vectors that belong to a row or column of a matrix and sub-
vectors of vectors are denoted as bold lowercase letters with
a subscript i, where usually i is the row-number, column-
number, or the index of the sub-vector.

positive integers, real numbers, and complex numbers, re-
spectively

are sets

denotes a cost-function; often it also has a subscript with Latin
letters for differentiation

represents the order of magnitude; this is often used to quan-
tify the complexity of an algorithm

a hat denotes an estimate







INTRODUCTION

1.1. MOTIVATION

Since the year 1975, humans are exploring the Martian surface with probes that landed
on Mars. In 1995, the first roving probe, rover for short, ever sent to Mars by NASA was
called Sojourner [1]. Sojourner’s mission started on Mars on the 4™ of July in 1997 and
lasted until the 27" of September in the same year. Then in 2003, NASA sent two rovers
to Mars — Spirit and Opportunity [2, 3] — in two separate missions. Spirit landed on
Mars on the 4" of January 2004, and its mission lasted until the 25™ of May in 2011. The
mission of Opportunity started on Mars on the 25" January, 2004 and was ongoing until
the 10 of June 2018. Today, the rover Curiosity [4] explores the Martian surface since
the 6 August 2012, and more missions are planned [5, 6].

Many of these missions aim at finding evidence for previous life on Mars. Their ap-
proach is that a rover takes measurements, which deliver evidence if there has been pre-
vious life on Mars, or which give insights into the current conditions for life on Mars. The
rover could measure, e.g., radiation, temperature, and humidity.

Yet, a mission on the Martian surface is expensive, and each mission imposes high
risks. For example, NASA’'s Mars Exploration Rover (MER) mission of Spirit and Opportu-
nity was initially planned as a single rover mission, and only the high financial price, the
high risk of this mission, and the demand of a successful mission lead to a two-rover de-
sign choice. During this mission, Spirit got stuck in sand on the Martian surface in 2009.
Spirit was used as a static scientific platform, until the active communication between
Earth and Spirit finally broke down in May 2010. However, because of the two rover de-
sign choice, the overall mission continued with Opportunity until June 2018, and among
other things, brought evidence that there is water on Mars [2].

In the example of Spirit and Opportunity, two rovers were sent to Mars and worked
there on different locations without cooperation. What if more than only two rovers
could be sent to Mars? Also, what if these rovers could work cooperatively with each
other? Indeed, multiple rovers or a swarm of rovers — swarm for short — could bring
potential benefits.
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1. Allrovers in the swarm could take measurements simultaneously and, consequen-
tly, more measurements could be taken in the same amount of time.

2. The distances between the swarm elements could be either large or small. If the
distances between swarm elements are large, the rovers could be placed in a way
such that the swarm achieves a large coverage. If the swarm is densely populated,
it could form a sensing aperture, for instance to take pictures of one object from
different angles, which could create a more profound image. Furthermore, the
swarm could take measurements of an area of interest from different locations
at the same time. Hence, the swarm is capable of taking measurements of time-
varying and spatially distributed processes, which is not always possible for a sin-
gle rover as it requires special assumptions on the observations and data.

3. As already presented in the example of Spirit and Opportunity, multiple rovers
provide more resilience against system failures. Compared to a single rover, a
swarm provides redundancy in hardware. In the considered example, it was the
rover Spirit that got stuck in sand, and it was the rover Opportunity that continued
with the mission. Of course, the swarm has to be designed in a way to deal with a
complete failure of a rover in the swarm. Also, a failure of a sensor device on the
rover could be considered and compensated for by the swarm if other rovers in the
swarm have the same sensor.

4. In a swarm, the computational load can be distributed. Because the computa-
tional power on each rover is limited and because the measurements are collected
distributively, distributed processing seems natural. This way, not all measure-
ments have to be distributed in the swarm, but only intermediate processing steps.
Also, for a large number of rovers in the swarm, the requirements on the commu-
nication connectivity between all rovers can be relaxed, i.e., each rover is able to
communicate with another over a multi-hop connection.

In summary, swarms are fit to explore areas faster than a single rover, especially for
spatially distributed and rapidly changing environments, and a swarm could provide
more robustness compared with a single rover. Although the overall cost of the mission
could increase by using a swarm, the individual price per rover could be reduced. For
example, the cost of the single rover mission with Spirit in 2003 was estimated at 440
million dollar, whereas the mission for two rovers — Spirit and Opportunity — was es-
timated at 665 million dollar [7, Chap 6]. The cost was not doubled, but only increased
by 50%. Thus, considering the cost and the risk of a space mission, the higher cost of a
swarm is reasonable and does not scale equally with the number of rovers.

1.2. CHALLENGES OF SWARM EXPLORATION

Although there are many arguments for an exploration with a swarm, there are also many
challenges that are still unaddressed in the literature. This section provides insights into
the challenges that arise when dealing with swarm exploration.

Beginning with the swarm itself, a swarm is more complex to control and requires
more sophisticated software and protocols [8]. Currently, each rover is controlled by a
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) Measurements

Make measurements Parametrized model
Information
. Measurement ( .
Steerlng the swarm . Exploratlon
locations L

Figure 1.1: The concept of model based exploration. The measurements are used to estimate parameters of a
model. Then, the model provides information about the parameter estimates. This information is used in an
exploration criterion to estimate the next measurement locations for the swarm. Once the swarm reaches the
next measurement locations, it takes new measurements and a new loop commences.

human operator and has a limited capability of autonomy. A swarm of rovers would re-
quire more human supervision, where the number of operators increases faster than the
number of rovers: one human controls a rover and probably a few more supervisors to
coordinate the swarm. The operators are needed to identify new measurement locations
and to avoid collisions between the rovers. One approach to decrease the number of op-
erators is to increase the degree of autonomy of each rover, which might involve complex
algorithms and protocols. One example that provides more autonomy is path or motion
planning. In [9], the authors provide an exhaustive survey for a motion planning algo-
rithms that could provide more autonomy into a robotic system. Other overviews of path
planing algorithms are provided in [10, 11], where the authors in [11] focus on path plan-
ing for lunar exploration. Although, a sophisticated and intelligent planning algorithm is
an additional time investment regarding development, it can also save energy because
easier paths are better traversed. Other examples to increase the autonomy could be
coordination protocols for multiple robots [12], an increasing perception of the robots’
surrounding, e.g., with artificial intelligence [13], or a flexible communication protocol
in the swarm [14]. Nonetheless, increasing the autonomy of a swarm is of paramount
importance for its practical use.

A promising concept for more autonomy and less human supervision is model based
exploration. In model based exploration, a parametrized model is exploited to derive a
control behavior for a robotic system, e.g., for steering of a rover. In case of a swarm the
control behavior would steer the whole swarm as well as an individual robotic system.
This concept is presented in Fig. 1.1, where the parametrized model uses the measure-
ments to estimate its parameters and the information about them. This information
is handed over to the exploration algorithm, where a criterion is evaluated to estimate
new measurement locations, e.g., a criterion which selects measurement locations that
posses yet unseen information or that provide a high gain of information. Once a mea-
surement location is estimated, it is handed over to a rover control instance that trans-
lates the location’s coordinates into steering commands. When the swarm reaches the
estimated locations, the swarm takes measurements, and puts the measurements back
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into the model.

From Fig. 1.1 it can be seen that model based exploration is a control loop, where
the information is used as feedback to navigate each rover in the swarm. However, as
the process is measured distributively, the allocated measurements are in the system
distributed as well. Therefore, on the one hand, it is challenging to access the joint in-
formation and to coordinate the swarm when the model and the data are distributed in
the network of the swarm. On the other hand, it is challenging to identify models that
can be used for distributed processing, and to develop algorithms that infer the model
parameters when distributed processing is used. The first challenge is referred to as dis-
tributed spatial regression for a swarm and the second challenge is referred to as swarm
exploration. Both challenges are discussed in the following.

1.2.1. DISTRIBUTED SPATIAL REGRESSION FOR A SWARM

Regression is the analysis of the relation between dependent variables and independent
input variables. The relation between these variables is described by a parametrized
model. Regression aims at finding model parameters such that the model fits the de-
pendent variables (in the sense that the model is close to the input variables or observa-
tions). Here, the measurements are the dependent variables and the location in space,
where the model is evaluated, is the input variable. If the measurement data stems from
a spatial process, the regression analysis is also referred to as spatial regression. This is
considered in this thesis.

For a swarm with spatially distributed rovers, it is reasonable to carry out the spatial
regression in a distributed way as well. Therefore, the estimation of the model parame-
ters should be performed distributively. Distributed estimation methods can be roughly
categorized into batch approaches and streaming or online approaches. Streaming ap-
proaches are used for measurement data that is measured continuously, and only the
most recent measurement data is used for the regression analysis [15, 16]. Such ap-
proaches assume that there exists a flow of data. Streaming approaches can also be used
in applications where computational resources are limited, because less data is held in
memory and computations use only the new data. Moreover, streaming approaches are
useful in scenarios where a model has to learn from a feedback. Batch approaches, how-
ever, require the availability of multiple measurements before the algorithm can com-
mence; all data needs to be in the memory [17, 18]. It is therefore more constrained
on the available computation resources, but in favor of more complex models. Because
this thesis assumes that the measurement data is collected by multiple rovers at mul-
tiple measurement locations and that all data is relevant for the exploration, the batch
approach is chosen. Overviews of batch approaches can be found in [19, 20]; nearly all
considered methods rely on a consensus for distributing data in a network, which is re-
ferred to as the swarm in this thesis.

A popular method for distributed regression analysis that uses consensus is the alter-
nating direction method of multipliers (ADMM) [18]. ADMM empowers implementa-
tions of regression analysis in a distributed fashion. Additionally, ADMM provides flex-
ibility if the regression analysis requires extra constraints. These extra constraints com-
prise, e.g., regularization, which is explained for spatial regression in [21]. Known regu-
larization functions for spatial regression are the £,-norm [22], the ¢;-norm [23], or mix-



1.2. CHALLENGES OF SWARM EXPLORATION 5

tures [24]. The ¢;-norm regularization leads to a sparse parameter estimate, i.e., most of
the parameter values become zero. This property can be become very useful for feature
selection algorithms as parameters with zero value can be neglected. Also, the sparsity
potentially leads to a reduction in the parameter space, the communication load, and
the computational load. This could lead to a better computational efficiency. Moreover,
models with fewer parameters or with only few non-zero parameters are easier to inter-
pret. Lastly, the ¢;-norm is more robust against outliers in the data compared with the
¢»-norm, because it is less sensitive to large values in the data. Therefore, in this thesis,
the ¢;-norm regularization is of particular interest. Furthermore, the distribution of the
information in the swarm when the ¢;-norm is applied and the effect of the #;-norm on
the exploration are not well studied in the literature.

Another methodology, where a sparse parameter estimate is inherent, is sparse Baye-
sian learning (SBL). SBL is part of empirical Bayes parameter estimation. Instead of
an ¢;-norm, SBL uses a hierarchical prior on the parameter weights [25] to achieve a
sparse parameter estimate. Distributed methods of SBL exist but either use loopy belief
propagation [26], which is not guaranteed to converge or use an expectation maximiza-
tion (EM) algorithm [27], which converges slowly. Therefore, effective SBL methods for
distributed spatial regression in a swarm remain an unaddressed issue in the literature.

1.2.2. SWARM EXPLORATION

In model based exploration the learned model, which was used for spatial regression,
is exploited for estimating the next measurement locations. This approach computes
the information of potential measurement locations in a distributed manner by using
the current model estimate. Thus, model based exploration creates a feedback loop,
where the statistics of the parameter estimates give feedback to find new measurement
locations (see Fig 1.1). Because this approach is based on the information in the model, it
is also called information gathering or — due to the tight relation between information
and entropy — entropy driven exploration. If model based exploration is applied to a
swarm, it is in this thesis referred to as swarm exploration.

The calculation of the information in a model is presented in [28], but the authors
assumed non-distributed data. Likewise, the authors in [29] quantified the information
of a model to identify measurement locations for a sensor network. Yet, the authors did
not consider that data might be distributed and that there might be feedback from the
model estimates. In [30] the authors showed that a rover can be navigated based on the
information provided by its estimated model. The authors further presented that if the
robot chooses its next locations this way, it yields better results compared with other
navigation methods — it leads to fewer crashes with the environment and better naviga-
tion paths are found. Other criteria that are related to an information metric are optimal
experiment design criteria [31]. Although these criteria aim at minimizing the variance
of the estimated model parameters, these criteria are mostly applied to sensor place-
ment and not for swarm exploration. Latter considers that the position of the sensors
can change, whereas the former assumes a static and final placement in a limited space.
Thus, it is an open topic how these criteria can be utilized for exploration with multiple
rovers in a distributed manner.

Approaches that involve more than a single robotic system have been looked at re-
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cently in [32-38]. For example in [35], the authors evaluated how two rovers can benefit
from each other when an information metric about their actions was used. Because the
coordination and control of a swarm is already challenging, the authors in [36] looked
into the coordination of a swarm for achieving coverage of a map in simulations. Other
approaches that focus more on the coordination of a swarm while aiming for map cover-
age are studied in [39-45]. Nevertheless, how a swarm can cooperatively compute the in-
formation of the distributed data together with autonomous coordination, has not been
considered yet.

Also, when working with a swarm of rovers, the experimental validation of swarm
exploration is inevitable because otherwise the practical use cannot be quantified. The
authors in [46] show a system of two robots, which cooperatively map structures by using
noninvasive wireless channel measurements, but the robots are not guided with an in-
formation approach. The authors in [47] present an experiment, which was a simulated
radiation leakage, with a swarm of up to nine robots, which have to explore the leakage.
For the considered scenario, this paper observes a performance increase when adding
more robots. In [48], the authors present a swarm of unmanned aerial vehicles (UAVs)
for grass mapping. The authors highlight the importance of collision avoidance and self-
awareness of the swarm, where self-awareness means that the UAVs know the position
of each other. Also, the type of sensor plays an important role in the experimental vali-
dation. For example, the authors in [49] use cameras as sensors and utilize the obtained
images for constructing a 3D image of a farmland while using a swarm. Their gather-
ing of measurements is constrained by the energy consumption of the UAVs, the speed
of the UAVs, and the quality of the obtained images. Yet, the swarm aims at covering
the area, and uses no model driven exploration approach or an approach based on an
information metric.

In summary, the experimental validation requires addressing self-awareness, sen-
sor selection, collision avoidance, energy consumption, and many more aspects. All of
these fields add further challenges to swarm exploration. If then regression analysis is
applied and the information is used to control the swarm, research fields such as infor-
mation theory, optimization theory, control theory, and robotics have to be combined.
The combination of these fields imposes even more challenges on swarm exploration.

1.3. PROBLEM STATEMENT

Not all of the aforementioned challenges can be addressed in this work. The experimen-
tal validation requires a collision avoidance, the navigation within a map, and the map
estimation itself. This thesis, does not study these topics but uses state-of-the-art solu-
tions.

The focus of this thesis lies on the distribution of the regression analysis, and how
the information of a distributed model can be accessed by the whole swarm. It is investi-
gated how to navigate a swarm to new measurement locations by exploiting the statistics
of the parameter weights. Furthermore, it is looked at how and if a sparse regularization
leads to a more efficient exploration due to the aforementioned benefits of the ¢;-norm.
In addition to that, efficient computations have to be developed to make swarm explo-
ration working in real-time for an experimental validation. Hence, the following research
questions are addressed in this thesis:
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Q1 Can model based exploration be applied to a swarm with a distributed structure
in real-time when using the entropy of a model’s parameters?

Q1.1 If optimal design strategies are used for entropy driven exploration, what is the
effect of the regularization on the exploration?

Q1.2 What are the benefits of a sparse regularization for the exploration with a swarm?

Q2 How should a model be distributed to be most suitable for model based explo-
ration in a swarm, and how well does the distributed model approximate the mea-
surements?

Q2.1 How do Bayesian methods perform compared with non-Bayesian methods when
applied to distributed spatial regression for swarm exploration?

Q2.2 When using a distributed model, what data is required to be communicated for
exploration and distributed spatial regression?

1.4. CONTRIBUTION AND OUTLINE OF THE THESIS

This section lists the outline of each chapter in this thesis. Along with the outline, the
conducted research for this thesis is highlighted. As a summary, Fig. 1.2 displays the
dependencies and links between the sections of the thesis.

Introduction
[Chap. 1]

X Distributed SBL for Distributed 1-
Models for spatial spatial regression regularized models
regression b1, c1) for spatial regression
[Chap. 3] [Chap. 2]

a A . . i i D-optimal design for
D-optimal design for Influence of basis functions - I
Distributed o and coordination on exploration with 1-
autonomous it exploration i gt
: [c5] J23C23
exploration [Sec. 4.5] [Sec. 4.3-4.4] [Sec.4.1-4.2]
Experiments with Experiments with
ground based robots ground based robots
Ex peri ments and SBL and I1-regularization
[C5]

03]

[Sec. 5.2] [Sec. 5.1]

Conclusion and Outlook
[Chap. 6]

Figure 1.2: Overview of the thesis.

* Chapter 2 introduces the foundations of this thesis’ theory. Because this work aims
at distributed spatial regression, this chapter starts by introducing two distribution
paradigms, which are applied to the used model. In addition, different network
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topologies are shown and their applicability for swarms is discussed. Finally, this
chapter shows how the parameters of the distributed spatial regression can be es-
timated.

Chapter 3 introduces Bayesian methods, which provide uncertainties of the un-
known parameters. Here, Bayesian methods are used in a distributed framework.
This chapter provides the analysis and derivation of multiple distributed SBL algo-
rithms for regression. As a result, a distributed SBL algorithm that is suited for the
challenges of swarm exploration is chosen. The research regarding this chapter
has been published in

J1 C.Manss, D. Shutin, und G. Leus, Consensus Based Distributed Sparse Baye-
sian Learning By Fast Marginal Likelihood Maximization, IEEE Signal Pro-
cessing Letters, S. 11, 2020

C1 C. Manss, D. Shutin, and G. Leus, Distributed Splitting-Over-Features Sparse
Bayesian Learning with Alternating Direction Method of Multipliers, in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, S. 3654-3658

Chapter 4 focuses on swarm exploration. The methods from the previous two
chapters are discussed for their applicability to swarm exploration. Depending
on each regression method and each distribution paradigm, a criterion for model-
based exploration is derived. This criterion has to be estimated in a distributed
manner and in real-time. After the derivation, this criterion is tested in simula-
tions. This chapter concludes that the distributed computation of the information
is possible with consensus algorithms. Furthermore, computationally efficient
performance metrics are derived. The research of this chapter has been carried
out and published in

J2 C.Manss and D. Shutin, Global-Entropy Driven Exploration with Distributed
Models under Sparsity Constraints, Applied Sciences, Bd. 8, Nr. 10, S. 21, 2018

C2 C. Manss, D. Shutin, A. V. Ruiz, T. Wiedemann, and J. Mueller, Exploration
under sparsity constraints, in 2015 European Conference on Mobile Robots
(ECMR), 2015, S. 1-6

C3 C. Manss, D. Shutin, T. Wiedemann, A. Viseras, and J. Mueller, Decentralized
multi-agent entropy-driven exploration under sparsity constraints, in 2016 41
International Workshop on Compressed Sensing Theory and its Applications
to Radar, Sonar and Remote Sensing (CoSeRa), 2016, S. 143-147

Chapter 5 examines swarm exploration in experiments. The developed techniques
for distributed spatial regression are tested and evaluated. This chapter contains
a discussion of the experiments and their analysis. The main result is that multi-
ple rovers can navigate in a map and use the information criterion for exploration.
Compared with other exploration and coverage algorithms, the entropy driven ex-
ploration requires fewer measurements to achieve an equal performance. The re-
search that leads to this chapter is published in
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J3 C. Manss, 1. Kuehner, und D. Shutin, Experimental Validation of Entropy-
Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian
Learning, Entropy, Bd. 24, Nr. 5, Art. Nr. 5, Mai 2022

C4 C. Manss, T. Wiedemann, and D. Shutin, Entropy Driven Height Profile Esti-
mation with Multiple UAVs under Sparsity Constraints, in 2017 IEEE Globe-
com Workshops (GC Wkshps), Singapore, Singapore, 2017, S. 1-6

C5 C. Manss, D. Shutin, and G. Leus, Coordination methods for entropy-based
multi-agent exploration under sparsity constraints, in CAMSAP 2019, Le Gosier,
2019.

* The last chapter, Chapter 6, concludes the overall thesis. It summarizes the ben-
efits of distributed spatial regression and the results of the experiments and sim-
ulations. After the summary, the research questions from the first chapter are an-
swered. This chapter ends with an outlook on possible future research topics.

Other research that has been carried out besides this thesis Apart from the afore-
mentioned papers, the author also did collaborate with other authors in the following
papers:

* T. Wiedemann, C. Manss, D. Shutin, A. J. Lilienthal, V. Karolj, und A. Viseras, Proba-
bilistic modeling of gas diffusion with partial differential equations for multi-robot
exploration and gas source localization, in 2017 European Conference on Mobile
Robots (ECMR), Sep. 2017, S. 17.

* T.Wiedemann, C. Manss, und D. Shutin, Multi-agent exploration of spatial dynam-
ical processes under sparsity constraints, Auton Agent Multi-Agent Syst, Bd. 32, Nr.
1, S.134162, Jan. 2018.

e J. Miiller, A. V. Ruiz, C. Manss, und T. Wiedemann, C-ABT: A continuous control
layer for inter-agent collision avoidance based on asynchronous backtracking, in
2015 IEEE Conference on Control Applications (CCA), Sep. 2015, S. 539544.

e E. Staudinger, D. Shutin, C. Manss, A. Viseras, und S. Zhang, Swarm Technologies
For Future Space Exploration Missions, 14" International Symposium on Artifi-
cial Intelligence, Robotics and Automation in Space (i-sairas), Madrid, Spain, Juni
2018.

* A. Viseras, T. Wiedemann, C. Manss, L. Magel, J. Mueller, D. Shutin, L. Merino,
Decentralized multi-agent exploration with online-learning of Gaussian processes,
in 2016 IEEE International Conference on Robotics and Automation (ICRA), Mai
2016, S. 42224229.






MODELS FOR SPATIAL REGRESSION
AND THEIR ESTIMATION

The current chapter presents the theoretical basics that are required throughout the the-
sis. The thesis’ approach for swarm exploration is to use distributed models to interpret
measurements, which are collected by a swarm. Therefore, each element in the swarm
collects measurements of an observed spatially distributed physical process, and intro-
duces new measurements into the model as time progresses. The new measurements
are introduced by locally forming a batch of data. Consequently, at the beginning of
the exploration, the model is empty and it is filled adaptively with more measurements
while the swarm explores. Figure 2.1 presents the aforementioned approach. Each agent
collects measurements along its way such that the model is updated with time.

This chapter, thus, begins by introducing a model that is suited for the chosen ap-
proach. In particular, basis function regression with sparsity constraints is utilized. Af-
terward, different network topologies are defined and two distribution paradigms for
the utilized model — heterogeneous learning and homogeneous learning — are intro-
duced. Both distribution paradigms inherit opposing properties, which are weighed
against each other. Subsequently, Chapter 2 introduces how to estimate the model pa-
rameters with the ADMM algorithm, because it can be used for both paradigms together
with sparsity constraints. A summary closes this chapter.

2.1. MEASUREMENT MODEL

2.1.1. BASIS FUNCTION REGRESSION

From now on, this thesis assumes that all vector and matrix operations are done in a
Euclidean vector space. Basis function regression [60] is the analysis of the relation be-
tween, e.g., a process dependent variable y € R and a process independent input variable
x € R by using functions ¢(x) = [¢p1 (x),...,n(x)], with ¢, (x) e Rfor n=1,..., N being a
basis function. The weights are also referred to as model parameters w = [wy, ..., wy] Te
RY. Both w and ¢(x) form a model f(w, x). If f is linear in w, i.e., f(w,x) = ¢y (xX)w; +

11
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Figure 2.1: The approach of the thesis for exploration with multiple agents.

G2(X)wy+--- = p(x)w, then, f is called a generalized linear model [61]. This way, the rela-
tionship between y and x becomes non-linear, but the model parameters remain linear.
Although the model complexity, i.e., the dimensionality of the model, can be large, ba-
sis function regression permits analytical deductions and computations because of its
linear design [60].

In this thesis, a spatial process is considered, where it is assumed that the process
is smooth, continuous, and static, where static means that it does not change over time.
Furthermore, this process can be measured at a two-dimensional measurement position
x € R?, yielding a scalar measurement y(x) € R. Please note that x can be easily extended
to R3, but it is not considered here as the processes of interest are measured in two-
dimensions. The measurements can be represented by a pair {y, x}, which is denoted
as the measurement tuple. This thesis uses a generalized linear measurement model
f(w,x) with N functions ¢, (x), n=1,...,N as

N
fw,x)=3 ¢pp(x)wp=dx)w. 2.1)
n=1

Basis function regression aims now at finding the model parameters such that f(w, x)
approximates y(x). This thesis assumes that this approximation is prone to noise, which
can be modeled as additive white Gaussian noise (AWGN) such that

yx) = f(w, x) + e(x), (2.2)

where e(x) ~ A (0,A7}) is identically and independent distributed (i.i.d.) AWGN with
zero mean and precision A. The difference between the estimated model and y(x) is
defined as the error n(@) = |y(x) — f (W, x)|. If f(w,x) approximates y(x) well, the error
is small.
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When considering multiple measurements, matrix vector notation is more conve-
nient. Define, y(X) £ [ y(x1),..., y(xM)] T ¢ RM as the measurement vector at X , where
X4 [x1,..., x0T € RM*2 gre all the two-dimensional measurement positions. The noise
e(x) is similarly defined. Further, all basis functions for all measurement locations are
grouped to obtain ¢, (X) = [Pn(x1),..., (p,,(xM)]T € RM. Then, all basis functions to-
gether are represented by the matrix ®(X) = [¢p1(X),..., ¢n(X)] € RM*N, The matrix
@ (X) is also referred to as dictionary, feature matrix, or design matrix. For avoiding clut-
ter in the notation, the dependency of the measurement locations X in ®(X), e(X), and
y(X) is dropped and remains implicit unless it is needed in the context of the analysis.
Hence, for now ®(X) = @, e(X) = e, and y(X) = y. Hence, the measurement model for
multiple measurements is given by

y=®w +e. (2.3)

Likewise the definition of the error of the model changes to n(i) = ||y — ®w|,, where
I - ll2 is the £2-norm. Similar to this error, the following cost function is defined

1
££Ls(w):§||<l>w—y||§. (2.4)
The parameter @ that minimizes (2.4) can be found by a least squares solution as
w=(@"0) oy, 2.5)

if (@7 ®)7! exists. If ®T @ is not invertible, @ can be computed by replacing @To) 1o’
with the Moore-Penrose pseudo inverse [62].

2.1.2. SPARSE BASIS FUNCTION REGRESSION

The model (2.3) can generally be used for estimating a spatial process. The process is
then approximated by a number of basis functions according to the obtained M mea-
surements {y, X}. Typically, this process is unknown before the exploration starts, and
N > M basis functions are used to provide a good flexibility in the model. This thesis
assumes that the observed process is sparse, which means, if an appropriate basis is
chosen, it can be represented by few basis functions. Thus, the model can represent the
unknown process in a compact manner. To estimate a sparse representation, the model
can be regularized in a way that the model becomes compact. This could be achieved by
setting most of the parameter weights to zero and, thus, making the corresponding basis
functions irrelevant to the model. Regularization by sparsity is a way to make the model
more compact, which will be explained in the following.

Definition 1. A vector a € C* or a matrix A € C*K is considered to be sparse, if most of
its entries are zero. Let S be the number of elements in either a or A that are equal to zero.
Then a or A are considered to be S-sparse [63]. S is also denoting the degree of sparsity.

Sparsity can be enforced by constraining or regularizing the problem (2.4) [64]. One
regularizer could be the £y "norm" or rather pseudo norm. For simplicity, however, this
thesis from now on writes it as £¢-norm.
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Figure 2.2: On the left, an example function in blue, which has been sampled at five points (orange dots).
The basis functions are represented in dashed lines and the resulting prediction with the estimated weights is
shown as a green line. On the right, the sorted absolute values of the parameter weights.

The ¢y-norm counts the number of non-zero elements of a vector. In the noiseless
case, the /p-norm has to be minimized constrained by the model in the absence of noise.
This leads to

min|wlo
w

subjectto y = dw, (2.6)

where |- ||o is the £o-norm. The minimization of this problem leads to parameter weights
w with few non-zero entries. These non-zero entries correspond to basis functions that
approximate the measurements well. The difference between regular and sparse estima-
tion is exemplified in Ex. 1.

Example 1. Figure 2.2 displays on the left a function g(x), which is measured at M = 5
locations, indicated by y(x). When these measurements are used to estimate the N =5 pa-
rameter weights for the basis functions ¢, (x),n =1,..., N, the model results in the green
line, denoted as prediction. The right of Fig. 2.2 shows the absolute values of the parame-
ter weights. All of them are non-zero, because a least squares solution (2.5) is used, which
does not lead to a sparse result. If the model is constrained by the ¢y-norm, a sparse solu-
tion might be found. Figure 2.3 displays the same scenario as in Fig. 2.2, but regularized
by the ¢y-norm. Then, only two basis functions have a corresponding parameter weight
that is non-zero. Although fewer basis functions are selected, the prediction is close to g(x)
and almost equal to the prediction in Fig. 2.2.

Sparsity has also another advantage for exploration. At the beginning of the explo-
ration the observed process is unknown and thus the number of measurements is small
M < N. This means that the model is not uniquely solvable, and multiple basis func-
tions could be equally relevant. A sparse regularization would remove irrelevant basis
functions by setting their parameter weights to zero. This way, a sparse regularization
might lead to a solvable model and to a parameter vector with many zeros.

The disadvantage of the £y-norm is that it is not smooth, not convex, in general not
analytically solvable, and NP-hard [65, Sec. 3.4]. Therefore, an alternative is needed.
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Figure 2.3: On the left, an example function in blue, which has been sampled at five points (orange dots).
The basis functions are represented in dashed lines and the resulting prediction with the estimated weights is
shown as a green line. On the right, the sorted absolute values of the parameter weights. The ¢y-regularization
leads to a sparse result.

SPARSE REGRESSION WITH BASIS FUNCTIONS AND THE ¢1-NORM

Luckily, the ¢p-norm can be approximated under certain conditions by the ¢;-norm [63,
66, 67]. The ¢;-norm has gained a lot of interest in the last decades [67-69]. Similar to
(2.6), a problem formulation with the ¢;-norm is

minflw|
w
subjectto y = dw. (2.7)

This norm is not smooth, but convex such that the theory of convex optimization can be
applied [70] to solve (2.7) under certain conditions [63, 71].

Figures 2.4(a) and 2.4(b) give a graphical explanation for the ¢y-norm, the ¢;-norm,
and the ¢», if the model fit allows for an error €. Then, the equality constraint in (2.6)
and (2.7) is replaced by |y — ®w||, < €. In each figure, the uncertainty ellipsoid of the
model fit, shown in gray, touches the objective, shown in blue. The optimal solution is
highlighted by the dashed circle. Figure 2.4(b) shows the capability of the #;-norm to
estimate the same solution as the £yp-norm in Fig. 2.4(a). For completeness, Fig. 2.4(c)
displays if the £,-norm of the parameter weights is minimized, subject to the measure-
ment model. In this case, w; and w, would both be non-zero, and w would not be
sparse.

THE LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR

The constrained form in (2.7) can also be formulated in a penalized form assuming noise.
Accordingly, the ¢;-norm is added to (2.4) as a regularization term, which yields the ob-
jective

1
jf’(w)=§||<l)w—y“§+6||w||1, 2.8)
where 6 > 0 is a regularization parameter. The choice of § can be critical, as it plays

a vital role in achieving the right amount of sparsity and reducing the error, and has
to be determined before the estimation. Thus, this parameter is determined by cross
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Figure 2.4: In all plots the dashed circle shows the intercept of both, the objective and the constraints, which
is the optimal solution. (a) Graphical explanation of (2.6). Here only w» is non-zero. (b) Graphical explanation
of (2.7). The ¢1-norm yields the same result as the £p-norm. (c) If the ¢ norm is minimized subject to the
constraints, both parameter weights will be non-zero.

validation and the research about the choice of § is still ongoing [72, 73]. In [74, Section
5.9], the authors propose to choose § = A1y 2log M, which indicates an influence of
the number of measurements and the signal to noise ratio (SNR) on 6. However, this
requires to know the precision A~ of the signal, which is often unknown for real data.

Minimizing (2.8) with respect to w is called the least absolute shrinkage and selection
operator (LASSO) [74, Chap 3]

1
i = arg min £ (w) = arg min > ||(I>w—yn§ +6wl; . (2.9)
w w

Example 2 shows the influence of § for Ex. 1.

Example 2. Continue from Ex. 1, but for the LASSO and for an increasing number of ba-
sis functions. Both norms in (2.9) are shown as separate plots in Fig. 2.5(a). The LASSO
estimator will use the addition of both norms, as shown in (2.9). Increasing the number
of basis functions leads to a lower ¢, -norm, whereas the ¢1-norm increases. As a conse-
quence, both norms have a sweet spot, which is the minimum of the sum of both norms.

This optimum depends on the choice of §, which is shown in Fig. 2.5(b). If 6 is small,
the LASSO puts more weight on the ¢,-norm, and if § is large the LASSO puts more weight
on the ¢1-norm. The choice of § is data dependent. In this example a good choice would
be & =1 because there is a global minimum where both norms balance each other out.

Many first order methods, which utilize the gradient of a function for optimization,
exist to estimate i, e.g. basis pursuit [68], iterative soft-thresholding algorithm (ISTA)
[75=77], fast ISTA (FISTA) [77, 78], ADMM [18], etc. Often the motivation of these meth-
ods is that there is no analytical solution to the original problem. However, through
an iterative optimization approach a solution of the problem can be estimated. Gradi-
ent methods are simple, yet known to be slow, but they can be improved through other
methods. For example, the ISTA algorithm was improved by the FISTA algorithm [78],
which uses a Nesterov method [79] to accelerate the convergence. Second order meth-
ods are computationally more expensive and require that the cost function is two times
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Figure 2.5: (a) A plot of the ¢7-norm, the £2-norm, and the combined norm (LASSO) when minimizing (2.8).
With an increasing number of basis functions, the ¢1-norm increases and the ¢2-norm decreases. (b) This plot
shows the influence of the penalty parameter 6 on the LASSO.

differentiable. Thus such methods are applied less often. Here, because the ¢;-norm
introduces a non-smooth term, it is not two times differentiable. Therefore, the second
derivative of (2.8) is not defined, but it can be approximated with the theory of sub-
differentials. Applying sub-differentiability, leads to a semi-smooth-Newton method
(80, 81].

2.1.3. BASIS FUNCTIONS

Depending on the function, the concept of basis function regression can be related to
other methods, such as kernel methods [60, 82-84] or Gaussian process (GP) models
[85]. This thesis, however, is not restricted to a specific type of functions and is more
general. The following introduces the types of functions, which are used in this thesis. In
this thesis, these functions are classified into local and global basis functions, because
of the following reasons. Local basis functions have non-zero values close to a defined
center and are zero or close to zero everywhere else. They can describe abrupt changes
in the exploration space that are not periodic. This makes them very flexible. Global
basis functions on the other side have mostly non-zero values in the whole exploration
space. They can be used to describe a more general behavior in the exploration space
that can also be periodic or symmetric.

RADIAL BASIS FUNCTIONS
The radial basis functions (RBFs) are real valued functions that are symmetric around
their center. They evaluate an input variable by the distance to some center. The center
can be chosen arbitrarily, e.g. if the center is zero ¢(x) = ¢(||x—0]|) with || - ]| being a norm
in the corresponding vector space.
An often applied basis function is the Gaussian function, which is defined as
llx = penl®

n

(2.10)
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Figure 2.6: This figure exemplifies the four introduced basis functions. The Gaussian and Lanczos functions
are spatially well localized, whereas the cosine function and the Legendre polynomial are defined everywhere.

where 1, is its center and o, describes the width of the Gaussian function. The Gaussian
function is exemplified in Fig. 2.6. For distances larger than 30, from its center u,, the
Gaussian RBF becomes close to zero. Thus, it can be considered as a local basis function.

LANCZOS FUNCTION
The Lanczos function is often used in computer graphics for a smooth interpolation be-
tween digital values [86, Chapter 10]. Basically, it is a truncated product of two sinc-
functions, which are evaluated for each dimension as

2 : : Xi—Hn,i

[T5, sinc(x; — gy, i)sinc (—) —On<lx—pnl2<0n,on#0
- n

o

Pn(x) = (2.11)

0 else,

where g, > 0 is the width of the sinc-window. In (2.11) the sinc is calculated element-
wise. Compared to the Gaussian function, the Lanczos function is narrower and sets all
values larger than o, to zero. An example of the Lanczos function is shown in Fig. 2.6.
Lanczos functions count as local basis functions.

POLYNOMIAL FUNCTIONS

Another example of basis functions are polynomials. Because of their orthogonality, i.e.
the inner product of any two polynomials is zero, and their ability to represent smooth
processes [87], Legendre polynomials are utilized in this thesis. They can be expressed
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in a compact form with Rodrigues’ formula [88] as

n

T n
2l At (x"x-1)", (2.12)

¢n(x) =

where 7 is the degree of the polynomial. If x is normalized, Legendre polynomials are
also orthonormal. According to the terminology in this thesis, Legendre polynomials
are classified as global functions. An example is shown in Fig. 2.6. This classification is
however not true for all polynomial functions. For example, spline functions, which are
spatially constrained and often used in image processing [74, Chap. 5], are classified as
local functions.

COSINE FUNCTION

In image compression, cosine functions of different frequencies form a discrete cosine
transformation (DCT) [89]. Each function in the DCT is orthogonal to each other. In this
thesis, it is assumed that the underlying spatial process can be separated into multiple
cosine function, just as an image. Defining the frequencies x, = [Knyl,Kn,z]T € R? the
cosine function for a two-dimensional field is

¢n(x) = cos(mx1Kp,1) COS(TX2K 1 2). (2.13)

Fig. 2.6 shows an example of the cosine function. Cosine functions are defined every-
where and are therefore global functions.

2.2. NETWORK TOPOLOGIES

All agents in the swarm form a network, which can have different topologies. To describe
these network topologies, (undirected) graphs can be utilized.

Definition 2. Consider a set of sets ¢ = {V,&}, where V = {11,..., vk} is a set of vertices,
and & ={e; j = (v, v;) 1 v;,v; €V;i < j} is aset of edges. Then, 9 is called a graph [20].

If every vertex is connected to another one over one or multiple edges, the graph is
called connected.

Definition 3. A graph¢ ={V,&} is connected if V' # @ and if there is a (possibly multihop)
path between every pair of vertices v;, v; € V.

If all vertices have a direct edge to all other vertices in the network, the graph is called
fully connected. With Def. 2 and Def. 3, a swarm can be defined as follows.

Definition 4. Consider a connected graph 9 = {V,&}, where each vertex v; € ¥ is a robotic
unit with an associated position x; with at least one communication connection e; j € &
to a neighboring vertex v;, then9 is considered a swarm and each vertex is an agent.

In a swarm, three different network topologies can be considered, which are shown
in the following [19, 20, 90, 91].




20 2. MODELS FOR SPATIAL REGRESSION AND THEIR ESTIMATION

(@ (b) (0

Figure 2.7: Different swarm topologies that are considered in this work. Red triangles represent an agent that
can only measure. Red circles represent computing agents; they can measure and compute a regression given
the measurements. (a) a centralized structure, where multiple agents transmit their measurements to a central
computing agent. (b) a decentralized structure, where multiple computing agents cooperatively estimate a
regression given the measurements. Not all agents are computing agents. (c) a fully distributed swarm, where
all agents can measure and compute.

1. The swarm can be organized with multiple measuring agents, which communi-
cate their measurements to a single agent with a computing unit. Then the swarm
consists of two different types of robots, which makes the swarm heterogeneous.
This network topology only addresses the decentralized measurement allocation,
and is exemplified in Fig. 2.7(a), where a circle represents the computing unit and
a triangle represents a measurement unit.

2. If the number of agents with computing units is increased, the swarm can be con-
sidered as a distributed swarm. Then, the measurements are gathered in a distri-
buted fashion, and the computation is distributed over the specified computing
units. However, not every computing agent has access to the full data, i.e. mea-
surements or model parameters, in the swarm. Hence, the computing agents have
to cooperate by means of communicating with each other. Figure 2.7(b) shows this

topology.

3. If every agent in the swarm is a measuring and computing unit, the swarm is fully
distributed. The fully distributed approach is shown in Fig. 2.7(c). Then, the
swarm is most likely homogeneous, i.e. all agents are identical. Because each
agent has now only partial information about the environment, the agents have
to cooperate.

In summary, each network topology, shown in Fig. 2.7, potentially influences the
distributed processing of the measurements. This thesis focuses on a fully distributed
system. The following describes how the model (2.3) can be distributed, by considering
two conceptually different distribution paradigms.
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Figure 2.8: The colored areas represent an individual agent and gray areas are shared by all agents. (a) SOF
paradigm: The measurement vector y and noise vector e are shared by all agents. (b) SOE paradigm: The
weight vector w is shared by all agents.

2.3. DISTRIBUTED MODELS

This section extends now the introduced models to a distributed setting in a network.
For a distributed setting two things are considered: the network topology and the dis-
tribution of the data. The network topology heavily impacts the communication, and
it influences the data flow in the network. Whereas the data distribution defines what
information is available at which agent. Thus it defines the distribution of the measure-
ments, of the basis functions, and of the parameter weights.

2.3.1. DISTRIBUTED PROCESSING OF BASIS FUNCTION REGRESSION

For distributed processing of basis function regression, two distribution paradigms can
be considered [92]. The first paradigm is called heterogeneous splitting. It is also known
as heterogeneous learning, attribute distribution, or splitting-over-features (SOF). In
SOF, all measurements or observable data are distributed among the computing units,
and the agents exchange their intermediate estimates. However, each agent has its own
local model. This paradigm is also presented in Fig. 2.8(a). The second paradigm is
known as homogeneous splitting, homogeneous learning, splitting-over-examples (SOE),
or instance distribution. In SOE, each agent has its own measurements or observed data,
and contributes to the computation by exchanging local estimates. It is displayed in Fig.
2.8(b). This section presents both paradigms and how they are applied to basis function
regression [92-95]. Mixtures of these two paradigms can also be considered [96, 97], but
are not studied in this thesis.

HETEROGENEOUS SPLITTING

Heterogeneous splitting or SOF uses a basis function regression on each computing
unit. Each k-th, where k = 1,..., K, computing unit in the swarm utilizes N basis func-
tions in its model, with N = Zlk(:l Ng. The dictionary is then split column-wise as ® =
[®1(X),..., Px(X)],®(X) e RM* Nk, k=1,..., K. Likewise, the parameter weights can be
re-formulated as w = [w],..., w]] T wieRN, k=1,...,K. For linear combinations of
basis functions, SOF splits ®(X) into different columns and w into rows.




22 2. MODELS FOR SPATIAL REGRESSION AND THEIR ESTIMATION

Applying the new definitions to (2.3), the distributed model for SOF is

wi
K
y=0X) ... oxX)|| P |+e=) ®rXwi+e, (2.14)
k=1

wg

as depicted in Fig. 2.8(a). In (2.14), all agents need access to the whole set of M measure-
ments y, but each agent has its own model ® (X) wj, which adds up to the joint model.
Thus, each agent only computes a model of size N < N and every agent has its own
design matrix @ (X). As this design matrix @4 (X) is only known to the k-th agent, agent
k can also define it as needed. For example, agent k can use different basis functions in
®,.(X) compared with the other agents, agent k can add or delete basis functions, and
agent k can change parameters of basis functions without any further communication
required. Hence, SOF provides more flexibility locally, as the local agent has full con-
trol over its used model. However, all measurements have to be distributed within the
swarm, and all local models have to be gathered to compute the joint model.

Inserting (2.14) into the objective (2.8), it is redefined as the distributed objective for
SOF and can be written as

2
x(w)zl
2

K K
Y & Xwi—y|| +6 ) llwgl,. (2.15)
k=1 k=1

2

The resulting objective contains now a cost-of-sums, which can optimized in a distribu-
ted manner with respect to the parameter weights [18].

HOMOGENEOUS SPLITTING

In homogeneous splitting or SOE every computing unit has the same model parameters
w, but each unit learns these parameters from its own measurements y(Xj) € RMk and
measurement locations Xj € RM*2, where M = Zlk(:l M. For brevity agent k’s mea-
surements can also be expressed as yx(Xy) = yx such that the measurement tuple for
SOE is defined as {y, Xi}. In SOE, the measurement positions of the agents are differ-
ent, and, thus, also the design matrices ® (Xy) € RM<*N where X = [X],..., X[1" and
d(X) = [(I>1T(X1), e (I)IT((XK)] T The design matrix is split row-wise. Because each agent
has its own measurements, each agent has an individual measurement noise ey € RMk

These definitions are now inserted into (2.3) yielding the SOE model as

»n ®,(X7) e
=l Jw+]|:]. (2.16)
Yk Dk (Xk) ex

The distributed SOE model is also shown in Fig. 2.8(b).
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SOF SOE
Shared {y, X} w
Private . X)wy, k=1,...,K {yi - Xi}, k=1,....,K
Complexity is dominated by M is dominated by N

2
Objective 1

K
L OpXwi -y
k=1

1 X 2
2z [@rX)w—yi|5+0lwl
2 =

K
£0 3 Juil,
k=1

Table 2.1: Differences between SOF and SOE.

Applying this distribution paradigm to basis function regression, (2.16) is combined
with (2.8) as

1 K
x(w):iz @ X w - yi|5+6 lwl, . 2.17)
k=1

Compared to (2.15), SOE leads to a sum-of-costs. This cost-function can then be solved
with multiple distributed algorithms [18, 98].

REMARKS ON THE DISTRIBUTION PARADIGMS

Both distribution paradigms have advantages and disadvantages. For distributed basis
function regression, the agents cooperate by communicating measurements, measure-
ment locations, and parameter estimates. Each paradigm has an effect on the commu-
nication load. For SOF the communication complexity is dominated by the number of
measurements M. Hence, this paradigm is of advantage if the number of model param-
eters is higher than the number of measurements, i.e. M < N. SOE, on the other hand,
is advantageous if the number of measurements is larger than the model parameters, i.e.
M > N, because the number of model parameters mostly dominates the communica-
tion load and computational complexity.

The SOE paradigm aligns with the concept of a fully distributed swarm as explained
in Sec. 2.2. All agents obtain measurements, and later exchange only their local es-
timates. Because the agents do not distribute their measurements and measurement
locations, they have their own data. For SOF, the agents have to distribute their mea-
surements y, X. This sharing of all data might seem counter-intuitive for a distributed
system with a distributed data structure as it could be seen as less independent. How-
ever, it could also be seen as more cooperative, because the overall computational com-
plexity could be large. Thus, SOF reduces this complexity. In [18, Sec. 8], the authors
discuss the advantages and disadvantages for both paradigms. Yet, the influence of both
distribution paradigms on the exploration is not studied and, thus, will be focused on in
a later chapter in this thesis. Table 2.1 summarizes the differences of both distribution
paradigms.
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In a distributed setting, both distribution paradigms can be solved by means of an
ADMM algorithm, which is presented in the following section.

2.4. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

One approach to solve (2.8), (2.15), or (2.17) for w is the ADMM algorithm [18]. This
method originates from the dual ascent method and the method of multipliers. The
dual ascent method has the benefit that it can lead to a distributed optimization, while
requiring strong assumptions on the objective function. On the other side, the method
of multipliers uses an augmented Lagrangian on the objective, which leads to better con-
vergence properties under milder conditions on the objective. However, the method of
multipliers is not necessarily suited for distributed processing.

The ADMM is intended to take the benefits of both algorithms: the distributed pro-
cessing of the dual ascent and the convergence properties of the method of multipliers.
The ADMM assumes problems, which can be separated into two independent problems,
of the form

minimize h(w) + I(z)
subjectto Aw + Bz =c, (2.18)

where h(-) and I(-) are assumed to be convex functions and A € RM*N, B e RM*N ze RN,
and ¢ € R, In the context of this thesis, ADMM provides multiple benefits: First the
considered problems can be directly formulated into the ADMM formulation. Second,
ADMM can be formulated in a distributed manner. Third, this algorithm tends to be
robust and converge comparably fast [18]. In the following, ADMM will be analyzed
for the distributed regression problem with sparsity constrains. However, for a better
understanding, it is more useful to have a look at the centralized version first.

2.4.1. ADMM FOR SPARSE REGRESSION
The problem definition of ADMM (2.18) can be reformulated to fit the LASSO problem
in (2.8). To this end, the following is used as a substitution

1
hw) £ 2 |eXw -y, 1(2) 268zl (2.19)
The constraint is then modified such that z = w. The problem in (2.8) is reformulated as
N | 2
minimize 5 [@eX)w-y|;+5lzl1,
st.z—w=0. (2.20)

To formulate an objective function out of (2.20), the constraints are introduced with a
Lagrangian. In addition, likewise to the method of multipliers, strong convexity is en-
sured by introducing an augmented Lagrangian as well. The resulting objective function
is

Lw,z,u)=h(w)+12) +u'" (z—w) + %p lz—wl3, 2.21)
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with #' € RN being the dual variable, and p > 0 as a penalty parameter on the augmented
Lagrangian.

For the analysis, ADMM is usually written in a more convenient form, where the lin-
ear and quadratic terms are combined

Z(w,z,u)=h(w)+l(z)+%p|lz—w+u||§, (2.22)

with u = u//p as the scaled dual variable. The cost (2.22) is also known as the scaled form
of ADMM.

2.4.2. ADMM FOR SPLITTING OVER EXAMPLES

Compared to the centralized problem, the distributed problems follow a similar ap-
proach for constructing the ADMM. In (2.17) every agent k has the same parameter
weights w. To make things distributed, it is assumed that every agent now has its own
parameter weights w; € R, and that they are the same for all agents, i.e. wy = wy, k, I =
1,...,K,k # l. Introducing this constraint in (2.17) and, then, comparing (2.17) with
(2.18) yields

1
hwp) = 5 | @k X we - i3, 1(z) =6zl (2.23)

The problem definition of (2.17) for ADMM is therefore

K1
minimize ) > @ X wi -yl + 612l
k=1

subjectto wp—w; =0, k,I=1,...,K,k#1
wr,—z=0k=1,..., K. (2.24)

This problem is then solved locally at agent k. Implementations of ADMM for distributed
linear sparse regression can be found in [90, 98-101]. Algorithm 1 shows the pseudo
code of the ADMM version in [18] for agent k. There, at the beginning of the i + 1-th
iteration agent k computes a local estimate of ﬁ/][cl“]. All other agents do likewise in
parallel. Then, all agents distribute their estimates such that each agent k can compute

an average of all estimates w'' " = %Zlk(:l LTII[; "1 Here, consensus algorithms can be

applied to compute this efficiently, see App C. This average w'" Y is then used to update
zj. and uy. One possible convergence criterion could be that the difference Iﬁ}!“] - u}c’] |
drops below a pre-defined threshold or if the number of iterations reaches a pre-defined

limit.

2.4.3. ADMM FOR SPLITTING OVER FEATURES

As shown already before, the objective for SOF includes the sum ®(X) w = 2115:1 O, (X)wy
inside the norm. Thus, every agent approximates all measurements y partially with its
model @4 (X)wy. For solving (2.15) distributively, the local basis functions and weights
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Algorithm 1 ADMM for SOE at agent k

1: z][co] =0and u}co] =0
2. fori=1,...,do

; . 2
i+ [l gl
2

3:

= argr min 3 H(Dk(Xk)wk—ykni +3p H wy -z

4 Distribute w[”l] to the neighbors to calculate w[”l] XX A[”l]

Ali+l 1
5: z][c”r ! :argmlnﬁllzklll+7sz—w“+ I }C’] )
glitll — gl gpli+t1] _ 2li+1]
i u, +w z,
Check convergence
li+1] _ gli+1] li+1] _ =[i+1]
zZ z, " and u u,

9: Construct i = lf/,[ci“]

10: return v

are substituted with z; = ®.(X)wy., with z; € RM such that the problem becomes

2
+6 Z lwilly
2
s.t. zk—cbk(X)wkzo, vk=1,...,K. (2.25)

mlnlmlze -
w,z

In [18, Chap. 8], the authors provide a solution for solving (2.25) distributively. In [102],
the authors suggest instead to optimize the dual function of (2.15). It is claimed that
the dual function converts into a sum-of-costs, which is straightforward to optimize
distributively. The downside of this approach is that it requires to compute two dual
functions of the separated problem. For reasons of comparison, the distributed ADMM
algorithm in [18, Chap. 8] is chosen for this thesis.

Algorithm 2 presents the pseudo code of an ADMM algorithm for the SOF para-
digm as introduced in [18]. There, Algorithm 2 assumes that all measurements y have
been distributed to all K agents prior the algorithm commences. Then, for each i +1-
th iteration, each agent k locally estimates w A[”H Then, the locally estimated model

O (X)iv [”1] is distributed to all agents such that an average over all models can be com-

puted locally as@w = LYK ®(X)w !, Here, consensus algorithms can be ap-
plied to compute this efficiently, see App C. Based on the computed average over all
models, z!'"! and u}c”l] can be computed. As before in Algorithm 1, the difference
Il’i}f“] - u][cﬂl can be utilized as a convergence criterion, if it drops below a pre-defined
threshold.

2.4.4. AUTOMATIC PARAMETER ESTIMATION FOR ADMM

ADMM introduces a penalty parameter p for the augmented Lagrangian, which is data
dependent and has to be validated beforehand. The adaptive selection of this penalty
parameter has been discussed in the literature [103, 104]. Particularly in [104], the au-
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Algorithm 2 ADMM for SOF at agent k

Require: X and y are known locally
1: z,[CO] =0and ul” =0

[0] k
220w =0

3: fori=1,...,do

(i+1] : o W _ i g, ]|
4 w. = argullinn O lwely + 5 || P (X) wy —(I>k(X)wk -z, + dw + u, )
5. Distribute ®;(X) LT/I[C”H to the neighbors
——[i+1] _[i
6 Ow =%y oxw!t
Sli+1] _ -1 e U N 1)
7z =(K+p) (y+p((l)w +u)
i . i 1 N .
g ay M =ull +ow —z*
9:  Check convergence
. li+1] _ gli+1] li+1] _ =li+1]
10: z; z, " and u!C u, .
11: Communicate @y = @} " to construct @ = [@],..., W]
12: return i
thors define the primal residual and the dual residual respectively as
=l =2y, st =2t =20, (2.26)

where z!!! is the variable z at the i-th iteration when ADMM is applied. Then, the pro-
portion of the primal residual and the dual residual are observed to derive a method
to determine p during the estimation. This method is called residual balancing and is
applied as follows. At each iteration of ADMM the update rule of the ADMM penalty
parameter is

Tincrp[i], if 7l > HS”]
plill = pliljgdeer i glil 5 L) (2.27)
o, else,

where 1> 1, 77 > 1, and 796" > 1. According to [18, Sec. 3.4], typical choices are p = 10
and 7" = 79¢°r = 2 If the scaled form of ADMM is applied, the scaled dual variable
u = u'/ p has to be updated with the new p as well.

2.5. SUMMARY

This chapter laid down the foundation for the methods used in this thesis. The model,
which is introduced in Sec. 2.1.1, will be used in Chapter 3 for a Bayesian framework.
The network topologies and the introduced ADMM algorithm will be used as well in the
following chapter. The current chapter also introduced different distribution paradigms
— SOF and SOE. Each of these paradigms will be used in the Bayesian framework for
the estimation of the parameter weights. Furthermore, as will be shown, each paradigm
influences the exploration. This is investigated in Chapter 4.







DISTRIBUTED SPARSE BAYESIAN
LEARNING OF STATIC PROCESSES
WITH TYPE II OPTIMIZATION

The last chapter introduced a method for a sparse estimate of the parameter weights,
the LASSO and its distributed version realized with an ADMM approach. Despite the fact
that the LASSO algorithm finds a sparse parameter weight estimate for the problem (2.9),
ithas some drawbacks. First, the LASSO requires a penalty parameter, which controls the
degree of sparsity. This parameter is data dependent and has to be set beforehand. Sec-
ond, the second derivative of the LASSO is not defined such that mostly first order meth-
ods exist, which have a slower convergence compared with second order methods. Thus,
itis hard to develop faster methods with regard to their convergence. However, there are
accelerated methods [77, 78, 105], which put additional requirements or assumptions on
the problem. Third, the exploration, which will be introduced in the next chapter, aims
at using the second order information as an exploration criterion. For LASSO methods,
this second order information could only be approximated, as will be shown in Chapter
4, because the second derivative of the problem (2.9) is not defined. Bayesian methods
however provide a covariance matrix of the parameter estimates, which can be used as
an alternative to the frequentist approach.

A Bayesian interpretation of the model (2.3) would treat the parameter weights as
random variables. As the parameter weights are assumed to be sparse, methods of sparse
Bayesian learning (SBL) are applied in this thesis. SBL belongs to the family of empirical
Bayes techniques, where the sparsity of the parameter weights w is enforced by choos-
ing an appropriate prior, e.g. a gamma-Gaussian prior [25]. This prior ensures that the
probability mass is concentrated on the axes of the parameter space. Furthermore, the
SBL methods decide the degree of sparsity based on the data and, compared with the
LASSO methods, do not require a penalty parameter. Thus, SBL methods are more data
dependent. Algorithms that use SBL for solving (2.9) can be found in [106-108]. How-

29
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ever, these algorithms are only centralized, and are in this form unsuited for distributed
processing. Yet, distributed processing is crucial for the work considered in this thesis.

The current chapter presents the derivation of distributed Bayesian methods, which
fit for swarm exploration as applied in this thesis. This chapter starts by explaining
SBL in general and presenting two methods: the fast marginalized likelihood maximiza-
tion (FMLM) algorithm and the reformulated automatic relevance determination (ARD)
(R-ARD) algorithm. These methods are analyzed regarding their applicability to distri-
buted processing. Then, these algorithms are considered for the distribution paradigms
SOE and SOF, which are introduced in Sec. 2.3.1 such that new distributed versions of
these algorithms are developed. Each of the derived distributed algorithms is then eval-
uated regarding its performance, convergence, and the amount of data that needs to be
communicated. This chapter ends with a discussion and a summary of the presented
results.

3.1. FUNDAMENTALS OF SPARSE BAYESIAN LEARNING

3.1.1. SPARSE BAYESIAN LEARNING

In an SBL framework typically two approaches for algorithm development are distin-
guished: Type I and Type II. Both types use a hierarchical prior [109, Chap. 5]. However,
algorithms of Type I are based on maximum a-posteriori (MAP) estimation, whereas al-
gorithms of Type II are based on evidence maximization of the hyper-parameter likeli-
hood [25, 110].

In [25], the authors present empirical but comprehensive results that show the supe-
riority of Type II algorithms. Among other things, they conclude that Type II algorithms
perform consistently better compared with Type I algorithms, and Type II algorithms
are more robust against the choice of hierarchically higher priors. For these reasons, this
thesis considers Type II SBL algorithms.

In SBL or hierarchical models the parameter weights w depend on a hyper-parameter
y € RY such that the prior PDF can be expressed as

N N
pwly) = [ pwnlyn) = [T A wnyn). (3.1)
n=1 n=1

The prior of the hyper-parameter p(y) — the hyper-prior — can be defined by a power
exponential scale mixture distribution [25]. In this thesis, the hyper-prior is chosen to be
flat (deterministic), because this leads to efficient inference algorithms [107, 108]. Also,
a flat hyper-prior performs better or equally well compared with other hyper-priors as
pointed out in [25].

Assuming the error e is normal distributed, the measurements y in the model (2.3)
can be expressed in terms of a Gaussian likelihood as

1 2
p(ylw) exp{—§||<1>w—y||A}, (3.2)

with || - [4 =T A- being the weighted £,-norm, A = AT € RM*M and I € RM*M being the
identity matrix.
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Then, in SBL the marginal likelihood is used to estimate y. The marginal likelihood
is formulated as [60, 107, 108]

0 1 1
pyly) =f p(ylw)p(wly)dw = IZI*?eXp{—EyTZ*Iy}, (3.3)

where £ = A~! + ®I'®” and I' = diag{y}. The logarithm of (3.3) yields the objective func-
tion

1 1
ZLy)=logpyly) = —Elog(IZI) -5 yiz1y. (3.4)

To find the most likely solution, the objective function (3.4) is then maximized with re-
specttoy:

¥ = arg max Z(y). (3.5)
Y

The result in (3.5) can then be used to approximate the posterior PDF of the param-
eter weights p(w|y,y) o< A (i, Z,,). More specifically, given ¥, the posterior of the pa-
rameter weights is [106]

iw=2,0 Ay, Zp=(@ A0 +T)7, 3.6)

with T = diag{y}.

Because each parameter weight estimate @, is controlled by a corresponding ¥,
the estimate Y, influences whether i, is zero or not. This mechanism can be seen in
(3.6), where ! is added to the diagonal of ®TA® and then X, is used for calculating
. If, on the one hand, ¥, — 0, ¥,,' becomes very large. By adding the flat prior ¥,
to the corresponding row in ®TA® in 3, the calculation of i, leads then to @, — 0.
On the other hand, if ¥, — oo, the corresponding n-th basis function in X,, becomes
more relevant in the model. This leads to a non-zero i,. Thus, large hyper-parameters
indicate highly relevant basis functions. To this end, if many i,, are estimated to be zero,
the estimate i becomes sparse. Likewise, basis functions, which correspond to a zero
weight 0, can be excluded from the model. Additionally, by excluding basis functions
from the estimation, the computational complexity of the estimation is reduced.

It is worth noting that the mechanism above leads also to a covariance matrix of the
parameter weights X,,, which is later used in the thesis for exploration.

3.1.2. DISTRIBUTED SPARSE BAYESIAN LEARNING IN THE LITERATURE

This thesis uses SBL methods for a swarm, which is exploring an unknown spatially dis-
tributed physical process. Because the swarm consists of multiple agents, a distribu-
ted processing of the SBL algorithms is useful. There have been previous works, which
showed distributed implementations of SBL methods. In [26] the authors presented a
distributed solution of an SBL algorithm. The authors solved the problem for the pa-
rameter weights by using variational inference [60, Chap. 10], which was distributed by
message passing and loopy belief propagation. However, if the message passing algo-
rithms contain loops, which might happen for a connected swarm, such algorithms are
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only guaranteed to converge under some conditions [111, 112]. Thus, this distribution
scheme is not considered in this thesis.

For Type Il approaches, the authors in [113] used joint sparsity models (JSMs), which
assume that all distributed hyper-parameters in a network share the same support. The
support of the hyper-parameter is furthermore assumed to be sparse. Using these as-
sumptions, the authors proposed an EM algorithm to solve for the hyper-parameters.
The M-Step in the EM algorithm can then be solved by a distributed ADMM algorithm.
The benefit of this approach is that the authors showed in a following work [27] that the
communication can be highly compressed, which reduces the communication load in
the network. Another Type II approach, which uses JSM for distributed processing, is
presented in [114]. There, the authors use variational Bayes techniques to estimate the
hyper-parameter. The authors further look into quantization errors, which might occur
due to the communication. Yet, the approaches in [113, 114] use an approximation to
estimate the hyper-parameters from the distributed support. As this thesis is interested
in the exact values, the approaches in [113, 114] are not considered here.

Because this thesis assumes Gaussian distributions for the parameter weights, it is
possible to analytically solve for the likelihood and perform distributed processing. Es-
pecially, the FMLM algorithm presented in [106], which involves the maximization of
the marginal likelihood, can be distributed. Also [108], which introduced the R-ARD al-
gorithm, can be formulated in a distributed fashion. The following sections look into
both algorithms.

3.1.3. FAST MARGINAL LIKELIHOOD MAXIMIZATION

For the derivation of the FMLM the objective function (3.4) is used. The FMLM decom-
poses y into its components such that the estimation of the optimal hyper-parameter
can be done component-wise. To prepare (3.4) for a component-wise optimization, the
matrix inversion lemma [115, 116] is applied to >~1in (3.4) to isolate the influence of the
n-th basis function on X as

-1 Ty-1
7 T plx 1
Yn +PnZ_ ¢y
where Z%l =(A1+ Z#ny,-(pi(piT)’l [107] is the covariance of the marginal likelihood

with the n-th basis function removed.
Inserting (3.7) into (3.4) yields

(3.7)

L) =logz=! —yTsly —logy, —log(y,' + L ==1¢p,) + M (3.8)
Y g 7 y n y 8Yn 8n n<y ¥n ,)/;1 +¢£Z%1(Pn’ .
which can be simplified by using the definitions
Sn=PnZ5 dn, Gn=¢l=ly 3.9)
such that
7
L(y) =L (yn) —logy,—log(y,' +s,) + _1—”
Yn' +Sn

=ZLyn+1yn. (3.10)
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Algorithm 3 FMLM
:Yn=0,Vn=1,...,.N

: Chooseanyn=1,...,N

R 7 T 1
P Yn= 16,12

1

2

3

4: I =1 and only the chosen y,, is in the model
5: while not converged do
6
7
8

fornef{l,...,N}do

Snyqn — (39)
if g2 > s, and y,, is in the model then > Update
2_
9: Yn= —q”s%s"
10: else if g2 > s, and y,, is not in the model then > Add
11: Add n-th basis function to the model
12: Yn= _‘7'15%5"
13: I=1+1
14: else if qf, < s, and y,, is in the model then > Remove
15: Yn=0
16: remove n-th basis function from the model
17: I=1-1 .
18: (AT XL vidid])

19:  Check for convergence
20: W, — (3.6)

With vy, separated, the FMLM algorithm computes now the hyper-parameter vy, iter-
atively by maximizing the marginalized likelihood (3.10) with respect to y,. It can be
shown that the marginalized likelihood (3.3) is maximized with respect to y,, at

2
dn—Sn e 2
nSZ ) lf qn > Snr

Vo= n (3.11)
0, otherwise.

As mentioned before, if ¥, = 0, the corresponding n-th basis function is excluded from
the model, c.f. Alg. 3.

Before the algorithm commences, any vy, is initialized as

_ g yl/lipnl® = 27"
Inll? '

(3.12)

n

and the rest is set to zero. Then, using (3.9) and (3.11), the algorithm iteratively builds up
an estimate 7. It starts with only a single hyper-parameter and chooses to add or delete
basis functions during the estimation. The algorithm is summarized in Alg. 3, with 7 € N
representing the number of currently used basis functions in the model.
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3.1.4. AUTOMATIC RELEVANCE DETERMINATION

In [108], the authors introduced the R-ARD by using an auxiliary function that upper
bounds the objective (3.4). The auxiliary function permits then to use algorithms for
convex optimization, which makes the optimization easier. Here, the auxiliary function
also enables for a distributed optimization, which will be derived later on.

The authors in [70, Chap 3] show that the log-determinant in (3.4) is concave in y.
The authors in [108] use the concavity of (3.4) to construct an upper-bounding hyper-
plane with the help of dual functions.

The dual function of a concave function is a convex function, and, hence, the dual of
the log-determinant in (3.4) is a convex function as well. More specifically,

log|Z| = min zly —h*(2), (3.13)

with z € RV being the dual variable and 1* (z) being the Fenchel conjugate of log|Z|. The
dual function does not need to be calculated in this derivation, as will be shown shortly,
however for more knowledge about the duality of functions, the reader is referred to [70,
Chap. 5] or [117].

With (3.13) an upper bounding function of (3.4) is defined as

Ly, 2zly-n*@+y'=ly= 2Ly). (3.14)

This upper bounding function becomes tight, for any fixed y, if minimized over z.

In [108], the authors introduced the R-ARD algorithm, which iteratively estimates z
and y. As already said, h*(z) does not need to be explicitly known for the optimization
of z because its optimal z is obtained by the slope of log|Z| for a fixed y = ¥ [70, 108].
This can be computed as

0
zZ= alongl = diag{®' =" '®}. (3.15)
Therefore, Z can be calculated by (3.15) and assumed to be fixed for the following step.
Next, the optimal y has to be found by minimizing (3.14) with respect to y for z = Z,
which is formulated as

Y =arg min £(y,z) = arg min ETy+yTZ_1y, (3.16)
Y Y

where 1" (z) has been neglected as it does not depend on y. The algorithm is summa-
rized in Alg. 4.

3.2. DISTRIBUTED SPARSE BAYESIAN LEARNING FOR HOMO-

GENEOUS SPLITTING

This section presents the derivation of distributed SBL algorithms for homogeneous
learning, which is also referred to as SOE, where through cooperation, each agent gets
the same estimate. The two algorithms FMLM [106] and R-ARD [108] are now exploited
to develop a distributed version of them for SOE. Then, these two algorithms are tested
for the scenario of swarm exploration. The derivations are published in [118] and [54],
respectively.
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Algorithm 4 R-ARD

1: Zp,<—1,Vn=1,...,N
2: while not converged do
3: ¥ <—argmin Z(y,Zz) > Bear in mind that actually z(y), but it’s fixed here

Y
4: z—(3.15)
5. Check for convergence
6: WX, ®Ay

3.2.1. DISTRIBUTED FAST MARGINAL LIKELIHOOD MAXIMIZATION
This section presents the derivation of the distributed FMLM (DFMLM). Essentially the
DFMLM is a reformulation of the FMLM into a distributed setting.

When looking back to the centralized FMLM, it can be seen that the estimation of
Yn depends on the values of s, and g,. Yet, these two values are difficult to calculate
because they require to create Z%l for all n=1,..., N in each iteration. The authors in
[106] redefined s, and g, as

—lS -1
gp=tu S XnOn (3.17)
Yn —Sn Yn —Sn
with the new terms S,, and Q,,, which are defined as
Sn=¢plAp,—PpIADE,, T AP, (3.18)
Qu=¢d'Ay-¢p Az, 0" Ay. (3.19)

The terms S,, and Q, can be seen as an intermediate result to calculate (3.17). This thesis
exploitsnow S, and Q,, to derive a distributed version of the FMLM. For SOE, every agent
k knows locally its design matrix @ and its measurements y;. Thus, for a distributed
computation, this information needs to be distributed in the network.

Therefore, the following is defined

K
DEo"A®=) ®]AD, (3.20)

k=1

K
c2o’Ay=) o] Ay (3.21)

k=1

Both, (3.20) and (3.21), can be computed by an averaged consensus algorithm [15, 19, 20,
119]. By defining e, 2 [...,0,1,0,...]7 € RN as a vector with only zeros except on the n-
th position €, = 1, (3.18) and (3.19) can be reformulated according to the newly defined
consensus terms as

Sp=€l(D-DZ,De,, (3.22)
Qu=¢€l(c-DZ,0). (3.23)
The matrix D can also be used to calculate X, as

>,=MD+rHh (3.24)
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Algorithm 5 DFMLM

1: Distribute CIJIZA(D r and CIJIZA ¥ to the neighbors to compute consensus variables.

2: D — (3.20)

3: ¢+ (3.21)

4 Yy, 3.25),Vn=1,...,N

5: Set all y, = 0 except the largest.

6: while not converged do

7: forne{l,...,N}do

8: Sn—(3.22)

9: Qn — (3.23)
10: Snyqn — (3.17)
11: if g2 > s, and y,, is in the model then > Update
12: Yn= qi—;”
13: else if g2 > s, and y, is not in the model then > Add
14: Add n-th basis function to the model
15: Yn= q"s—%s"
16: else if qfl < s, and v, is in the model then > Remove
17: Yn=0
18: remove n-th basis function from the model
19: Sw— (3.24)

20: Check for convergence
21: w— Xy ¢

The hyper-parameters I'"! is the same for all agents because it can be initialized with
(3.20) and (3.21), as shown in the following paragraph. The algorithm computes locally
the variables Z,, and S, and Q, for n=1,..., N, followed by s, and g, forn=1,...,N.
It then iteratively goes through all components of y and checks if the component is up-
dated, added, or removed. For the k-th agent, the DFMLM is summarized in Alg. 5,
where the lines 6 until 20 basically implement the procedure of the FMLM algorithm,
see Alg. 3, but all calculations depend on the consensus values.

INITIALIZATION OF DFMLM
The initialization of y,, as introduced in [106] can be reformulated such that it can be
computed with D and c as

_ gyl ignl® =271 _ Adryll Abrpn) — A~
2 A dn

-1 [cnl/ (Dn,n) -1
Dn,n

n

) (3.25)

where Dy, , = egDen and ¢, = egc. This way all values of y can be initialized by means
of the consensus terms (3.20) and (3.21). Once Y, is computed for all n = 1,..., N, each
agent chooses the highest y,, because this v, contributes the most. The other values are
then set to zero. This ensures that all agents have initially the same y.
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Local FMLM
Distribute

O AD, @] Ay, Initialize y, with (3.25)
to neighbors

Use (3.22) and (3.23)

to compute (3.17)
K- D'C -
g Iteratively check (3.11)
:1%13 v forn=1,...,N
-
[«5]
Z 2 Compute average
g 8
s =
ECINO
- O
% S
A e

Cooperative

Figure 3.1: The DFMLM requires only an initial communication step. Afterward, every agent k basically com-
putes a local FMLM with the consensus values defined in (3.20) and (3.21).

CONVERGENCE CRITERION OF DFMLM

If between two iterations (in Alg. 5 an iteration starts in line 7 and ends in line 19) y is not
changing significantly within some tolerance, then the algorithm is converged. Because
every agent locally computes an FMLM, but with D and ¢, the DFMLM algorithm enjoys
the same convergence properties as the FMLM. In [120], the authors showed that the
optimization in the FMLM is equivalent to a coordinate-wise minimization of the convex
upper bound (3.14) of the original cost function (3.4). This ensures the convergence to
the minimizer.

COMMUNICATION LOAD FOR DFMLM

Figure 3.1 shows the DFMLM algorithm as a flowchart. Due to (3.20) and (3.21), each
agent basically computes a local FMLM. Looking at Fig. 3.1, DFMLM has only one con-
sensus step at its beginning. The agents accumulate the information in the network for
estimating . Regarding the communication load, each agent transmits N? floats for
(I>]€A(I) r and N floats for (D%Ay;o The matrix D however is symmetric, which can be ex-

ML values have to be transmitted per con-

N(N+1)
2

ploited for communication such that only
sensus step. Hence, in each communication step, + N values are communicated
per agent per consensus step. It is worth noting that distributing (I)]{Acl)k and Q,{Ayk
is equivalent to sharing all data, albeit in an indirect fashion. Later in this section, the
communication load of the DFMLM and distributed version of R-ARD is compared with
each other for different network connectivities.
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3.2.2. DISTRIBUTED AUTOMATIC RELEVANCE DETERMINATION
This section shows how SOE can be applied for SBL with R-ARD and Type II optimiza-
tion. This thesis makes use of the research conducted in [108]. Currently, R-ARD is only
applicable to a centralized system,; all the data has to be available at a single entity. For
a distributed formulation, [108, Lemma 2] is useful, which shows the convexity of (3.14)
in y for a fixed z, which results in (3.16) to estimate .

In [108], the authors show how to express y” 2~ !y as a minimization over w

w?

N
y'=ly=minAly-@wlj+ ) . (3.26)
n=1 n
This re-expression leads to an upper-bounding auxiliary function, when (3.26) is in-
serted into (3.16)

N 2
Lo wDEAY-OwIE+ Y 2yt —2 > L(y,2). 3.27)

n=1 n

Now, for any fixed w and a fixed Zz, the estimate for y is ¥, = |W,|/\/Zn, YR =1,...,N.
Inserting this estimate into (3.27), leads to only a function dependent on w for a fixed z.
It can be optimized such that

_ . 2 ¥ =
W = arg min ||y—(I)w||§+z Z VvV Znlwyl. (3.28)
w n=1

Now, the function (3.27) can be minimized first over ¥ and w and then z is updated
according to (3.15). The question now is how to reformulate (3.28) and (3.15) such that
they suit a distributed computation for @ and z.

1. Expression (3.28) can be distributed similar to (2.17). The difference between (2.17)
and (3.28) is that each parameter weight in the ¢;-norm is individually weighted.
Thus,

SR 2 Y =
Lw,2) =Y |OcXw-yel;+ 5 Y Vanlwal. (3.29)
k=1 n=1
This cost function can be distributively minimized with respect to w by means of
an ADMM algorithm, see Sec 2.4.2.
2. For a distributed computation of Z, the Woodbury identity is applied to Z~! as
s =(A+oro’) ! = A- A0z, 074, (3.30)
with 2, = (@®@TA® +T"1)71, Inserting then (3.30) and (3.20) into (3.15), leads to
z=diag{®"A® - ®"A®Z, ®" A®} = diag{D - DX, D}, (3.31)
where X, = (D+T')"! and D is computed distributively by consensus.

3. The hyper-parameter ¥ follows from the distributively estimated Z and @ as ¥, =
|Wpll\/Zn, VR =1,...,N.

Now, all quantities can be calculated distributively, and the resulting distributed refor-
mulated ARD (D-R-ARD) algorithm for SOE is shown in Alg. 6.
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Algorithm 6 D-R-ARD for SOE

cZpn<—1,Vn=1,...,.N

: Distribute ®] A® to all neighbors

: D —(3.20)

: while not converged do

w — argmin £ (w,Z2) > Can be solved distributively with ADMM (2.24)

g W

w
6: ?e‘w—\/;',Vnzl,...,N
Zn
7 Zp—(D+IH
z<—(3.31)
9:  Check for convergence

10: w—Z,®Ay

CONVERGENCE OF D-R-ARD

The D-R-ARD algorithm is optimizing the convex upper bound Z(y, w,z) = Z(y). Itis
therefore reasonable that the y between two consecutive iterations is used as a stopping
criterion. Thus, if the difference of these two y values is below some threshold, the al-
gorithm stops and is considered here to be converged. The convergence of the R-ARD is
discussed in [108], and the convergence of the ADMM in [18].

COMMUNICATION LOAD OF D-R-ARD

In the D-R-ARD, first D has to be calculated with a consensus algorithm. Therefore,
each agent transmits N? floats for (DIZA(I) & per consensus step. Exploiting the symmetry
of D the transmitted floats can be reduced further to N(N + 1)/2 per consensus step.
However, D does not change during the estimation and has to be calculated only once.
Second, for the distributed estimation of w with an ADMM algorithm, it is required to
distribute the intermediate parameter estimates for w. This leads to Niapyw additional
floats per D-R-ARD iteration, where iapyv € N is the number of ADMM iterations. Thus,
assuming ipragrp € N iterations for the D-R-ARD algorithm, Niapmmiprarp floats have
to be transmitted as well. So far, no network topology is assumed. The communication
load for different network topologies is discussed in the following section.

3.2.3. SIMULATIONS FOR DISTRIBUTED SBL AND HOMOGENEOUS LEARN-
ING WITH ARTIFICIAL DATA

The distributed algorithms, mentioned above, are now evaluated against each other and

against their centralized versions. This section evaluates two aspects of the algorithms:

their performance in terms of convergence, robustness, and sparsity and their commu-

nication complexity. For the first evaluation a test function is used, as in [106]. The two

dimensional test function is defined as

r(x) £ sinc(x;) +0.1x,, (3.32)

which is shown in Fig. 3.2.
The test function (3.32) is then sampled at M positions X € R**2. These samples
are then distributed to K = 10 computing nodes, where each computing node uses M},
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—1.08 0

(@ (b)

Figure 3.2: Test function as described in [106]. (a) This figure exemplifies how the measurement positions are
assigned to K = 10 agents (Xj, k =1,...,K). A black plus sign indicates a center position in the model pu. The
same positions are used as test positions X; for the evaluation. (b) 3D representation of the data for better
visualization.

samples at Xi € RM<*2 positions and thus X = [X/],...,X}]7. Effectively, any node k

has M} = 9 measurements, a design matrix ®(Xy) with N = 225 Gaussian basis func-
tions (o, = 1.5, aregular grid of center points g, n=1,...,N), and N parameter values,
see (2.16). The distribution of the sampling positions reflects the fact that agents move,
make measurements, and estimate before they continue to explore, see Fig. 2.1. The pa-
rameter p in the distributed LASSO (DLASSO) of the D-R-ARD is set to p = 2.5. It is also
assumed that the connection between all agents is synchronous and stable.

PERFORMANCE OF DFMLM AND D-R-ARD
For evaluating the performance, it is assumed that the initial consensus for both algo-
rithms has converged. Therefore, for D-R-ARD, every node has an estimate of D and, for
DFMLM, every node has an estimate of D and c. As evaluation metric, the normalized
root mean square error (NRMSE) is used. Therefore, defining r = [r(x,),..., r(xM[)]T €
RM: as a vector which contains M, values from the observed function r(x), the NRMSE
is defined as
Ir—®X)w|
eNRMSE = ——— (3.33)
(Ll

where X; € RM*2 are test positions where the estimated model ®(X,) i is evaluated at.
Here N = M; = 225 and the test positions equal the center positions g, n=1,..., N, see
Fig. 3.2(a). The NRMSE is used because of two properties. First, at the beginning of the
iteration, when the estimated model is zero everywhere, the NRMSE results in an error
of one. From there on, the NRMSE goes towards zero. If the estimated model is an exact
representation of the underlying function, the NRMSE is zero.
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Figure 3.3: (a) shows the NRMSE with respect to the SNR for the test function (3.32). (b) displays the sparsity
of each algorithm for approximating (3.32).

Figure 3.3(a) displays the NRMSE for the defined setup, for different SNR values, and
averaged over 100 Monte Carlo runs. This way the robustness against noise is tested
for the algorithms. Figure 3.3(a) shows that the performance of all algorithms is almost
equal. Yet, for D-R-ARD, the performance is worse compared to the other algorithms
because of the distributed reweighted ¢, optimization. The optimization in D-R-ARD
is solved with a distributed ADMM — DLASSO [98] in particular — which has a penalty
parameter p for the involved augmented Lagrangian. The penalty parameter is data and
SNR dependent, and for this simulations it was fixed. The influence of p and how to
choose it is discussed in [121-123].

As the goal of SBL is to yield also a sparse result, the sparsity of each algorithm is
evaluated in Fig. 3.3(b). The algorithms that are based on the marginal likelihood max-
imization have a high sparsity, which is almost equal. The difference in sparsity comes
from different noise realizations. The D-R-ARD has the most non-zero components. This
difference stems again from the DLASSO and p, see line 5 in Alg. 1, which is used here
to estimate w. Depending on the algorithm to solve the reweighted ¢; optimization for
estimating @, the result might be sparser. In case of the D-R-ARD, the augmented La-
grangian introduces a smoothness term into the optimization, which is controlled by the
augmented Lagrangian penalty parameter. This smoothness term leads to less sparsity
compared to FMLM and DFMLM. The R-ARD solves the re-weighted ¢;-optimization
with a centralized FISTA algorithm, which yields the highest sparsity.

The sparsity and the estimate of each algorithm are also shown in Fig. 3.4. There, it
can be seen that the D-R-ARD estimates parameter weights, which correspond to basis
functions with spatially close center positions. This might result from the ADMM pa-
rameter p, which controls the influence of the augmented Lagrangian. For the FMLM
and the DFMLM the center positions of the basis functions are spatially more separated,
which is desired for the SBL algorithm. Consequently the DFMLM leads to sparser re-
sults compared with the D-R-ARD.
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communication load communication load per
before the estimation per ADMM iteration

consensus step

DFMLM MO 4 N -

D-R-ARD NeD) iaomm N

Table 3.1: Communication complexity per agent for the distributed algorithms D-R-ARD and DFMLM.

COMMUNICATION LOAD FOR DFMLM AND D-R-ARD

Communication complexity is certainly an important aspect for a distributed algorithm.
The communication complexity of the algorithms explained above is summarized in
Tab. 3.1. In a strongly connected network the consensus converges within a single it-
eration because each node is connected with each other. Therefore, this can be seen
as a lower bound on the amount of data that needs to be transmitted for the particular
problems considered here. If the network structure is only connected (see Def. 3), the
consensus algorithm needs additional iterations to converge. The convergence of differ-
ent consensus algorithms is discussed in [20, 119]. To evaluate the communication load,
this thesis assumes three different types of connected networks — low, intermediate,
and high. In these considered networks each node can only communicate with nodes
within a certain range r > 0m. For an area, which is 20 m by 20 m large, the connectivity
is considered low for r = 4m, intermediate for r = 8m, and high for r = 13m. All nodes
within the range r build a neighborhood. Figs. 3.5(a), 3.5(b), and 3.5(c) present exam-
ples of such networks for K = 30. For this analysis, this thesis assumes that each network
structure cannot change over time, i.e. any node cannot move itself such that it could in-
crease the number of nodes in its neighborhood. There are also works that optimize the
network structure to yield a better connectivity [124]. However, this is here not consid-
ered. So, it is assumed that the agents collect measurements prior to the initialization of
the estimation. For homogeneous splitting the number of measurements M is irrelevant
for the communication load, but it was always set to M = 90 and the measurements were
evenly distributed among the agents, i.e., M} = M/K. The number of parameter weights
is the same as before namely N = 225.

The following simulations are averaged over 10 runs for each number of nodes K =
{10,15,30,45} and communication ranges r = {4,8,13}. One run is the sum of all trans-
mitted floats for achieving consensus in an estimation. Figure 3.6 shows the averaged
communication load for each connectivity value and for the DFMLM and the D-R-ARD
algorithm with varying values for K. There, it can be observed that the DFMLM generally
requires fewer floats to be transmitted compared with the D-R-ARD. Also, if the connec-
tivity increases, which corresponds to a more connected network, the overall communi-
cation load is reduced for both algorithms. Indeed, the distribution of D dominates the
communication load for both algorithms. Thus, the curves appear almost parallel.
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Figure 3.4: Estimates of a particular run with an SNR of 10 dB. The black crosses indicate the center positions
of the selected Gaussian basis functions, which correspond to a non-zero weight.

Example network: connectivity=4, nodes=30 Example network: connectivity=8, nodes=30 Example network: connectivity=13, nodes=30
20 20

(@ (b) (0

Figure 3.5: Different network topologies. (a) network topology for r = 4m, K = 30. (b) network topology for
r =8m, K = 30. (c) network topology for r = 13m, K = 30. All topologies are created within a constrained area,
which is 20 m by 20 m large.
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Figure 3.6: Communication load analysis of DFMLM and D-R-ARD for a varying number of nodes K and
communication ranges . The communication load is represented as the number of floats that are transmitted
per node.

3.2.4. SIMULATIONS FOR DISTRIBUTED SBL AND HOMOGENEOUS LEARN-
ING WITH REAL DATA

The current section analyzes the DFMLM and D-R-ARD for real data with added AWGN
with different SNR. In particular, the magnetic field intensity of the Holodeck laboratory
in the German Aerospace Center (DLR) is used. The magnetic field is exemplified in
Fig. 3.7. For this simulation, K = 10 agents are considered. The M = 240 measurements
are sampled uniformly at random and are then randomly distributed to the agents such
that each has M = 24 measurements. The number of basis functions and parameter
weights is set to N = 560. As basis functions Gaussians are considered with a width set
too, =0.25.

Likewise to the previous simulation, the NRMSE is used as a performance metric with
M; =560 test positions. The performance of each algorithm is shown in Figs. 3.8(a) and
3.8(b). Figure 3.8(a) displays the NRMSE for the proposed algorithms and benchmark
algorithms. The R-ARD performs worse for lower SNR values, whereas the FMLM and
DFMLM perform equally better.

The sparsity of each algorithm for this particular dataset is shown in Fig. 3.8(b).
Again, the R-ARD yields the lowest sparsity, which might again result from the central-
ized FISTA algorithm. The sparsity for the FMLM and DFMLM algorithms is the same,
as expected. The D-R-ARD algorithm uses for higher SNR all possible basis functions
to approximate the magnetic field. This can again result from the parameter p which
influences the solution of the parameter weights and which does not promote sparsity.
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Figure 3.7: The magnetic field in the Holodeck laboratory at the German Aerospace Center (DLR) color coded.
The measurement positions are assigned to K = 10 agents (X, k =0,...,K —1). A black plus sign indicates a
center position in the model p. The same positions are used as test positions Xy for the evaluation.

3.2.5. D1scussioN OF DFMLM AND D-R-ARD FOR HOMOGENEOUS LEARN-

ING
Looking at the simulations of the previous sections, it can be summarized that the meth-
ods based on the marginalized likelihood have a lower NRMSE, especially for lower SNR
values. For the centralized versions of the algorithms a similar evaluation is presented in
[120].

For the distributed setting, the DFMLM is — according to the simulations presented
here — the better choice regarding NRMSE and sparsity. DFMLM has only a single con-
sensus step at the beginning of the estimation, which also leads to less transmitted float
values. The consensus can then be optimized according to the current network structure
[19], e.g., by estimating weighting parameters based on the network (see also App. C).
The estimation itself is comparable to the centralized estimation because the DFMLM
executes a local FMLM with the obtained consensus values.

The benefit of the D-R-ARD algorithm is that it can be solved using well known con-
vex optimization algorithms. However, it demands more communication between the
nodes in the network, and communication is usually the bottleneck in distributed opti-
mization.

When applying these algorithms to exploration (discussed in detail in the next chap-
ter), the algorithms also have to deal with a small number of measurements, especially
at the beginning of the exploration. For example, at the beginning of the exploration,
there are K measurements in total (one per agent) and the algorithm has to yield an esti-
mation such that the next measurement location can be determined with the estimated
covariance matrix. Therefore, Fig. 3.9(a) shows the performance of the algorithms for a
varying number of measurements with artificial data for SNR=10dB and p = 0.005. The
D-R-ARD algorithm is more robust for a small number of measurements. This might re-
sult from the R-ARD algorithm and the minimization of the new upper bounding func-
tion £ (w,y,z) as it makes the problem convex. The DFMLM on the other side cannot
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Figure 3.8: (a) shows the NRMSE with respect to the SNR for the real data set-up (3.32). (b) displays the sparsity
of each algorithm for the real data set-up.
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Figure 3.9: (a) shows the NRMSE with respect to the number of measurements with the test function (3.32).
(b) displays the sparsity of each algorithm for approximating (3.32). For both plots, the two first values of the
DFMLM are only displayed for explanatory reasons as the algorithm did not converge on these simulation
parameters.

handle very few measurements. This might result from the discretization chosen for
the center positions of the Gaussian basis functions. If the measurement position does
not align with the center position of the Gaussian, the parameter weights become too
large. This can result in instabilities. Thus, the DFMLM is not converging and the first
NRMSE values (for M < 50) in Fig. 3.9(a) are only shown for explanatory reasons. Fig-
ure 3.9(b) shows the sparsity for D-R-ARD and DFMLM, where the DFMLM has roughly
M non-zero parameter weights. This coincides with the explanation from above as the
algorithm tries to reflect all measurements, which might result in very large parame-
ter weight estimates. Again, it is worth noting that the two first sparsity values of the
DFMLM in Fig. 3.9(b) are only shown for explanatory reasons. The D-R-ARD algorithm
has a lower degree of sparsity, which might come from the combination of the choice of
p and the number of measurements. The DFMLM yields a better performance for more
measurements, but it is not providing reasonable estimates for a smaller number of mea-
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surements, which is critical at the beginning of the exploration. Because the D-R-ARD is
yielding reasonable estimates independently of the number of measurements, it is con-
sidered in the next chapter as the algorithm for exploration, although the estimated i is
less sparse compared to DFMLM.

3.3. DISTRIBUTED SPARSE BAYESIAN LEARNING FOR HETERO-
GENEOUS SPLITTING

In heterogeneous learning, the set of basis functions that are used in the swarm are split
among all agents. Therefore, the model complexity is reduced locally at each agent,
which alleviates the computation especially when the total number of basis functions
dominates the computational complexity. This section presents heterogeneous learning
for SBL, and in particular R-ARD as introduced in Sec. 3.1.4 because this method has
more robustness for fewer measurements.

3.3.1. DISTRIBUTED AUTOMATIC RELEVANCE DETERMINATION FOR HET-
EROGENEOUS LEARNING
As shown in Sec. 3.2.2, the authors in [108] use an auxiliary function (3.14) to express
an upper bound on the original objective (3.4) to make the computation easier. This
chapter follows the same approach, but for heterogeneous learning by using the model
(2.15). The following presents the derivation of the D-R-ARD algorithm for SOF.
Consider the upper bound in (3.27), which is presented here again for convenience

1 N
Lw,D=ly-@wly+5 Y VZulwal. (3.34)
n=1

To this end, for SOF, the measurements y are known to all agents and ® and w are dis-
tributed in the network. The problem that now arises is the distributed computation of
z considering the distributed SOF paradigm. The computation of Z is not that simple as
in the SOE case, but it can be approximated. The reason for this is that for the SOF case
®” ® can not be split into sums with respect to the measurements.

The optimal value of Z is obtained centrally in closed form [108] as

z=diag{®@ > '@}. (3.35)

In order to get a formulation that is suited for a distributed estimation, the matrix inver-
sion lemma [115, 116] is applied to ! resulting into

l=(A+oro) ' =A-per '+ A0) DA
=A-A®Z,®'A (3.36)
Inserting (3.36) into (3.35) leads to
z = diag{®” A®} - diag{® A®Z, 0T A®}. (3.37)

To distribute this estimate within the SOF paradigm, it is assumed that Z can be dis-
tributed among the agentsasz = [2],...,z717, where z; € RNk, k = 1,..., K. The following
considers now each term in (3.37) separately to isolate the contribution of agent k to z.
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For the first diagonal term in (3.37), the contribution of agent k is computed as
diag {®" A®}|, = diag{®@] A®;}, (3.38)

where | means in this context that only the contribution of the k-th agent is considered.
Here, ‘| also reduces the size of a vector, for SOF, from N to Ng.

For the second term, however, the k-th agent’s contribution is not trivial and it will
turn out that for SOF the contribution of agent k cannot be isolated completely. With an
appropriate permutation matrix, Z,, = (@7 A® +I'"1)~! can always be brought into the

block structure
-1 r -1
OTAD, +T ;! OTAD; z-! oIAD;
.= k k kP Yk _ w,k A%k , (3.39)
T Tady. + -1 T -1
<I)].CA<I)k <I>].CA(I>,€+1“I.C (IJI.CA(Dk Zw'l.c

where 2, = (@[ A®+T ) and 2, ¢ = (cpl{Acb Pt ril)*l. Then, (3.39) is inserted
into diag{®” A®X,®T A®} in (3.37) such that the largest share of the k-th agent can
then be isolated by reformulating the term as

diag{®” A®Z,, ®T A®}|; = diag {®] ADZ,,  Of AD;
+(Zw k@A, — DT (2 @F AQL — D}, (3.40)

where Q) = TAtl)k(Z‘ - — <I)TA(I>ka k(DTA(I)k) 1(I>TA<I)k and the term in the inverse

is the Schur complement of (3. 39) This thesis now c0n51ders only the two contributions
to z of agent k, which are combined into

Z = diag{® ] A®} — diagl®] A®(Z,, 1 D] AD}, (3.41)
with Zj € RVk such that Z; can be reformulated as
2k = 2 — diag{(Z k@ A — D Qp (2 @f AD — D} (3.42)

The idea is now that Z;. can be used as an approximation to zj. The same can be done
for all other agents such that Z = (2] ,...,Z}]" € RN, If then Z is used in (3.27), it leads to
the objective function

A wy, 2
Ly, wz=) znyn+y—+itlly—(l>w||2. (3.43)
n

n=1

It can be shown that the objective in (3.43) upper bounds the objective (3.27), i.e.,
Ly, w,z) = £L(y,w,z) since

Zli = diag{®@ ! A®}|; — diagi@ T A®Z , @7 A®}|; = 0. (3.44)
Thus,

diag{®’ A®}|, = diag{®’ A®Z, @ A®}|,. (3.45)
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Then using (3.40) in the right hand-side results in

diag{®; A®;} = diag {®] A®(Z,, (D] AD;}
+diag{(Zw k @f A — DT Qp (21 @F A®, — D} (3.46)

To obtain Zj as in (3.41), diag{®; A®Z,, ;@] A®y} is substracted such that
Zi = diagl{(Z k@{ A® — DT Qp (24 1@ ADy — D} (3.47)

With (3.47) it follows that zj = zj, and, therefore, Z(y, w, z) = £(y, w,z). Furthermore,
if there is no correlation between the basis functions of all agents, i.e. they are orthogo-
nal, i.e. ® A®; = 0 for k # k', then this bound becomes tight.

Substituting now z with z in (3.34), the R-ARD problem is then reformulated in a
distributed fashion for SOF as

2
K 2 K Ng

W=argmin |[y— ) ®cwy ) > Y\ Zinlwinl, (3.48)
w k=1 2 k=1n=1

which can be distributively minimized over w with e.g. an ADMM algorithm [18, Sec.
8.3]. It is worth noting that when applying ADMM to solve for w in (3.48) each agent k
only requires its own Zzj. in this estimation. Thus, the other z; do not need to be known
locally.

Likewise, the computation of ¥4 can be realized locally with z; as

,Vn=1,...,Ny; k=1,...,K. (3.49)

All steps of the D-R-ARD for SOF are summarized in Alg. 7.

Algorithm 7 D-R-ARD for SOF

1: Initialize Zj — diag(®} A®y)
2: while j < max_Iteration; do

3: wy. — (3.48) > Solve e.g. with ADMM
4 y—(3.49)

5. Check for convergence

6 Zr— (3.41)

3.3.2. CONVERGENCE OF D-R-ARD FOR HETEROGENEOUS LEARNING
As introduced in the previous section, the D-R-ARD for SOF optimizes an upper bound-
ing function Z(y, w, z). The current section shows empirically that the minimization of
Z(y, w,z) converges to an approximate solution compared to the original cost-function
Z(y, w,z) of the R-ARD in [108]. Here the R-ARD estimates w with a centralized ADMM
with the same p as the D-R-ARD for SOF.

For this empirical proof, an artificial process is generated by first sampling the known
weights from the prior p(w|y), with y = [y1,y2]” and w € R?. Then, the weights w are
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Figure 3.10: (a) Two dimensional contour-plot of (3.4) for only two dependent hyper-parameters, as well as
the convergence of D-R-ARD for SOF and the algorithm shown in [108]. Please note that the lines in the plot
overlap. (b) Absolute difference of (3.4) between D-R-ARD for SOF and R-ARD.

used to generate a process with the model (2.1). For the design matrix ® Gaussian basis
functions are used. Therefore, the true y is known together with the objective function
Z£(y), which is then optimized by the D-R-ARD.

The contour lines in Fig. 3.10(a) represent the cost-function (3.4). The cost-function
(3.4) is the original SBL cost-function, which is upper-bounded by £ (y, w, z) for R-ARD.
The convergence paths of D-R-ARD for SOF and R-ARD are shown in Fig. 3.10(a) as
well. By showing that the convergence paths of both algorithms are the same, it can be
assumed that D-R-ARD converges to the same solution for such processes.

An absolute difference between both convergence paths is shown in Fig. 3.10(b),
where £ _R_ARD (V) is (3.4) evaluated for D-R-ARD and LR_ARp (¥) is (3.4) evaluated
for R-ARD. Clearly, Fig. 3.10(b) shows a difference between D-R-ARD for SOF and R-ARD.
Yet, the difference is minimized with more iterations and stabilizes after few SBL itera-
tions.

3.3.3. SIMULATIONS FOR D-R-ARD FOR SOF

After showing that D-R-ARD converges to the same solution as the R-ARD algorithm, this
section evaluates the robustness and the convergence speed of the algorithm for differ-
ent SNR values. Therefore, the magnetic field data as shown in Fig. 3.7 is used. From
this data, M = 500 measurements y are uniformly sampled and disturbed by AWGN as
shown in (2.3). The precision of the noise is assumed to be constant for each run, i.e.
A = AI. The precision is calculated from the SNR as

A= L1g01sNRas, (3.50)
S
where ¢ is the signal power of the magnetic field and SNRgp is the SNR in dB. Then, it
is assumed that this y is distributed over K =5 agents, and that for each agent ®(X) is
generated as shown in (2.14). The estimates are averaged over 50 runs per SNR.
The average of the convergence speed for D-R-ARD and R-ARD is displayed in Fig.
3.11(b), where the NRMSE, defined in (3.33), is the used metric. For both algorithms, the
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Figure 3.11: (a) Absolute difference between exact zZ and approximated z. (b) The NRMSE versus the number
of iterations of D-R-ARD for different SNR values. Note that some curves are overlapping.
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Figure 3.12: The amount of non-zeros in w for D-R-ARD for SOF and R-ARD. The box-plot separates each
quartile of the runs into regions and shows the mean value of the runs as an orange line. D-R-ARD for SOF
estimates w with less non-zero values.

NRMSE increases with lower SNR with equal performances for both algorithms. Thus, it
can be assumed that both algorithms are equally robust for the same noise level. How-
ever, if the SNR becomes higher, the difference between both NRMSE values slightly in-
creases, as seen for 20 dB. An explanation could be that for high SNR more parameter
weights are non-zero, and due to the approximation zZ some information is neglected in
the estimation. Therefore, this might result in a slightly higher NRMSE for D-R-ARD for
SOF compared to R-ARD.

In addition to the NRMSE, the absolute difference between z and Z is evaluated,
which can be seen in Fig. 3.11(a). For low SNR, the difference between the approximated
and the exact solution of Z is converging fast and not changing with higher number of
iterations. If the SNR is higher, ||z — Z]| is still decreasing with later iterations, although
the algorithm converges as observed in Fig. 3.11(b). This could imply that for higher SNR
the D-R-ARD needs more iterations to converge to the same solution as the R-ARD. Yet,
the corresponding NRMSE in Fig. 3.11(b) seems converged.

Because D-R-ARD uses an approximation z for optimization, it calculates a stronger
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penalty on the sparsity. In (3.49) it can be seen that Z controls the sparsity of . Now
that Z = Z as shown in (3.42) and the equations that follow, the sparsity should be higher
for D-R-ARD for SOF. In other words, using D-R-ARD for SOF w has fewer non-zero
values. This is shown in Fig. 3.12, where the number of non-zero values is averaged over
the number of agents and shown for each run as a box-plot. It can be observed that the
D-R-ARD for SOF has on average fewer non-zero values in @ compared with the R-ARD.

3.4. SUMMARY

This chapter introduced Bayesian methods for a distributed setting. In particular, the
methods of SBL were utilized to achieve a sparse solution of the parameter weights.
Compared to classical methods, e.g. LASSO, SBL methods do not require a threshold
parameter and thus SBL methods need less parameter tuning.

In particular this chapter presented distributed algorithms, which are based on SBL.
In total three different algorithms were presented: DFMLM, D-R-ARD for SOE, and D-R-
ARD for SOF. The algorithms DFMLM and D-R-ARD for SOE use consensus strategies
to distribute the data in the network. The derivations showed that DFMLM only needs a
single consensus step and therefore communicates less data to achieve the same result
as the D-R-ARD for SOE. The D-R-ARD for SOE on the other side was able to use pop-
ular convex optimization schemes. Furthermore, for few measurements this algorithm
yields a lower error compared with the DFMLM. This happens at the beginning of the
exploration and therefore D-R-ARD is the better choice for swarm exploration. After the
evaluation of DFMLM for SOE, it was decided against to derive a DFMLM for SOF out
of the following reason: A distributed version of this algorithm with the SOF paradigm
would become complicated and would potentially lead to approximations, which in turn
could lead to further instabilities.

The third algorithm — D-R-ARD for SOF — permitted the use of a locally model,
which provides more flexibility in selecting the basis functions. Yet, the objective had to
be reformulated to be suited for this distribution paradigm. The simulations empirically
showed that D-R-ARD for SOF converged to an approximate solution of its centralized
counterpart. Also the convergence speed of D-R-ARD for SOF was equal to R-ARD.

It can also be concluded that the developed distributed SBL algorithms have no or
only minor cuts in performance compared with their centralized versions. For all the
D-R-ARD algorithms it is important to choose the parameter p carefully as it influences
the convergence speed [121, 125], helps to stabilize the estimation if there are only few
measurements, and, if the number of iterations is fixed, also the error and the degree
of sparsity. However, the simulations indicate that if the parameter is chosen for a low
error, it does not necessarily lead to a high degree of sparsity. This might suggest to vary
this parameter with increasing iterations. Yet, this has not been looked at and might
potentially influence the overall convergence speed of the algorithm.



DISTRIBUTED EXPLORATION WITH
OPTIMAL EXPERIMENT DESIGN
FOR THE DISTRIBUTION
PARADIGMS SOE AND SOF

The previous chapters introduced methods to estimate model parameters based on mea-
surements but what is the next optimal measurement location? This question can be
answered with exploration. Exploration exploits all so far obtained measurement val-
ues, measurement locations, and parameter estimates to determine a next measure-
ment location. This is depicted in Fig. 4.1. Ideally, the next measurement location
should be most informative such that the confidence about the parameter estimates is
increased. One approach to exploration that increases the confidence about the param-
eters is optimal experiment design (OED) [31]. OED alters the information matrix that
depends on the measurement locations. Also, through various criteria, OED can change
the type of exploration. It is however not researched how to calculate OED-criteria in
a distributed fashion and how the criteria are affected if the parameter estimates are
sparse. These two aspects are analyzed in this chapter.

The current chapter therefore starts by explaining two potentially useful OED-criteria
for exploration. Afterward, the distribution paradigms introduced in Sec. 2.3.1 are ap-

{y, X}, parameter New measurement
Measurement | Uncertainty Exploration locationX Robot
—> EE———
model criterion movement

Figure 4.1: The approach of exploration in this thesis.
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plied to the D-optimality criterion as it is the potentially most useful criterion for swarm
exploration. The resulting distributed computation of the D-optimality criterion based
on the distributed LASSO algorithm is then verified in simulations. Additionally, the ef-
fects of different basis functions and approaches to parallelize the exploration are ana-
lyzed. The parallelization is realized by constraining the search space for measurement
locations and coordinate the agents more effectively. Thus, the methods for paralleliza-
tion are here also referred to as coordination methods. Furthermore, the D-optimality
criterion based on the distributed SBL is derived and compared with the D-optimality
criterion based on the distributed LASSO. At the end, a summary is given as well as
some first concluding remarks on distributed exploration.

4.1. OPTIMAL EXPERIMENT DESIGN

OED seeks to minimize the variance of an estimator with respect to a statistical criterion.
The latter usually involves the covariance matrix of a parameter vector. In this thesis, cri-
teria are considered that increase the confidence of this parameter vector. For the model
(2.3), the parameter vector w can be estimated through the well known least squares
method [117, Chap. 3.8] as

=@ o) o’y 4.1)

which corresponds to the maximum likelihood estimate, if Gaussian noise on the mea-
surements is assumed. The confidence of the estimate @ is then proportional to

var() < (@T®) ' =/, 4.2)

with €' € RN, which is known as the covariance matrix of the parameter estimates.
Please note that var(iv) also depends on the noise variance of the measurements, which
is neglected here as the real noise is often unknown. Thus, var(w) is considered to be
proportional to (@7 ®)~!.

For the considered model, its inverse is also known as the Fisher information matrix
[126]. Obviously, the covariance matrix depends on the design matrix ® and how it is
constructed. Depending on the choice or construction of @, the variance of the estimate
i can be reduced. In the following, two OED-criteria based on the covariance matrix are
introduced to increase the confidence about @: the A-optimality and the D-optimality
criterion.

The A-optimality criterion minimizes the trace of the inverse of the information ma-
trix of the parameter weight estimates

mintr{(®’®)"'} = mintr{C’}. (4.3)

Because of the fact that tr{C'} = ZI,;[:I Acrp with A¢r ,,n=1,..., N, being the eigenvalues
of C', the A-optimality criterion is equivalent to minimizing the sum of the eigenvalues
of the covariance matrix. The A-optimality can therefore be interpreted as the minimiza-
tion of the average variance of the parameter weight estimates. It is therefore also called
the average variance criterion. The A-optimality is used for exploration in [127] for re-
gression designs, in [128, 129] as an uncertainty prior for map exploration, in [130] for
designing calibration measurements, and in [29, 131] for greedy exploration designs.
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The D-optimality criterion on the other hand minimizes the determinant of the in-
verse of the parameter weight estimates’ information matrix

mindet{(®’ ®)~!} = mindet{C'}. (4.4)

The D-optimality criterion can also be related to the minimization of the differential
Shannon entropy [31, 132]. Due to this relation, D-optimality can be seen as the mini-
mization of the entropy of the underlying statistical model. The terms D-optimality and
entropy might be used interchangeably in this thesis. Because det{C'} = ]'[1,:’:1 Ac' n, this
criterion can also be seen as minimizing the product of the eigenvalues of the covari-
ance matrix, which corresponds to the volume of the confidence ellipsoid. In compari-
son with the A-optimality criterion, the D-optimality criterion also considers the model
paramater covariances, where the A-optimality only reduces the variance of the param-
eter estimates [133-135]. Furthermore, it has been shown that the D-optimality crite-
rion works better in constrained regions [136]. In [137] it has also been shown that D-
optimality has desirable effects when it comes to exploration for simultaneous localiza-
tion and mapping (SLAM) such as a better quantification of the uncertainty compared
with A-optimality. Thus, D-optimality is the better choice because of the aforemen-
tioned property, and from now on only the D-optimality criterion is considered.

4.2. D-OPTIMAL EXPERIMENT DESIGN FOR DISTRIBUTED EX-
PLORATION

optimal experiment design is defined for a centralized planning: a centralized comput-
ing unit evaluates the OED criterion and yields a new measurement positions. This sec-
tion analyzes how the D-optimality criterion (4.4) can be formulated in a distributed
fashion for two conceptually different distribution paradigms: the homogeneous learn-
ing and the heterogeneous learning, see Sec 2.3.1. Furthermore, this section presents
the analysis of the D-optimality criterion for sparse parameter weights when having a
sparse covariance matrix. This section shows that these sparsity constraints lead to a
D-optimality criterion that is tightly coupled with the estimated parameter weights from
the underlying estimator. Due to the sparsity constraints, every new measurement might
change the result of the estimation as well as the structure of the covariance matrix. It
turns out that in this case the D-optimality criterion has to be evaluated after each new
measurement. Consequently, from a theoretical perspective, the D-optimality criterion
cannot be planned beforehand and that it has to evaluated after each single measure-
ment. This implies that it needs to be evaluated sequentially. The results from this anal-
ysis are new to the literature and have been published in the course of this thesis in [53].

This section starts by presenting the state of the art in exploration methods. Then,
the centralized D-optimality criterion but under sparsity constraints is revisited and fol-
lowed by the derivation of the D-optimality criterion for the two proposed distribution
paradigms. Both methods are then compared in simulations, where multiple agents ex-
plore a magnetic field.
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4.2.1. RELATED METHODS FOR EXPLORATION

In [28], the authors minimize the determinant of the covariance matrix for an optimal
camera placement for a 3D-image. The authors name it exploration driven by uncer-
tainty and they motivate their work with the Shannon-entropy criterion. They also cre-
ate a link to OED as proposed in [138] but the problem they look at is not sparse. In
[29], the authors compare the D-optimality criterion and other OED criteria with the
mutual information for GP regression and sensor placement. The result of this work is
a greedy algorithm that uses the mutual information for finding optimal sensor place-
ments. In their work, the authors do not assume that the considered model is sparse and
they make the sensor placements beforehand. Thus, previous sensor measurements are
not influential to future sensor measurements. An extension of [29] for multiple agents
and a decentralized estimation of the mutual information is presented in [139, 140]. In
[139], the authors consider multiple agents that should solve a traveling salesman prob-
lem by applying the methods mentioned in [29]. The agents are furthermore partitioned
and they estimate the traveling salesman problem in a decentralized fashion. In [140],
the authors consider UAVs and they aim at maximizing the information for a traversed
path.

Another exploration approach for multiple agents is shown in [45]. There, the au-
thors use a probabilistic approach to steer cameras, which are mounted on multiple
UAVs. The authors define an information metric that is based on the information per
pixel. However, the authors do not look into a distributed computation of the problem.

4.2.2. CENTRALIZED D-OPTIMAL EXPERIMENT DESIGN FOR EXPLORATION
UNDER SPARSITY CONSTRAINTS

As mentioned before, OED aims at optimizing the variance of an estimator. In the con-
text of exploration, a criterion is optimized by selecting measurement locations X, which
directly influence the design matrix ®(X) of the model (2.5) and the covariance matrix of
the parameter weights. The inverse of the covariance matrix is also known as the Fisher
information matrix [126, 141], which can be approximated by using the Hessian of the
cost-function of the estimator [126].

From now on the LASSO estimator in (2.9) is considered. The first derivative of the
LASSO cost function (2.8) cannot be calculated because of the #;-norm, which is non-
smooth in 0 and, therefore, the gradient is not defined at 0. The ¢;-norm is depicted in
Fig. 4.2(a). Subsequently, no second-order derivative is defined. However, it is possible
to define a minimizer of (2.9) by using the soft-thresholding operator [23, 142]. The soft-
thresholding operator is defined as

F5(u) £ max(0, |u| - 6) sign (u), (4.5)

with sign (-) returning the sign of the vector’s components and max(0, ) returning the
components if they are larger than zero and zero otherwise. The soft-thresholding oper-
ator results in an approximated derivative, which is displayed in Fig. 4.2(b).

For solving (2.9), the ISTA algorithm [75, 78] can be used together with the soft-
thresholding operator. Basically, the ISTA algorithm iteratively applies a gradient step
on the considered variable, followed by a shrinkage step. Thus, the minimizer @ for (2.9)
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Figure 4.2: (a) Sparse regularized quadratic cost function and possible subgradients at zero. (b) Sparse regular-
ized cost function and the soft-thresholding operator, which acts as a derivative.

can be iteratively calculated by applying
= w-o'@w-y), (4.6)

multiple times until @ converges.

Due to the max-operator the soft-thresholding operator is also not differentiable.
To circumvent this non-differentiability, this thesis proposes to utilize an active set ap-
proach, which is introduced in [105] for slantly Newton differentiable functions such as
(2.8). In Def. 5 the active and inactive sets are defined.

Definition 5. Consider a matrix A€ C**? and a vector b € R? with entries by that is S-
sparse. Then, for the product Ab, the set o/ ={q:bs #0,Yq=1...,Q} forms the set of the
column indexes of A that are weighted by a non-zero component of b. Thus, <f is called
the active set. Likewise, .# = {1...,Q} \ o/ is the inactive set.

The active and inactive sets are then defined as

o ={neN: i, #0}, (4.7)
& ={neN:w, =0}. (4.8)

To use the D-optimality criterion for an estimator such as (2.9), the Hessian can be ap-
proximated as shown in the following steps.

1. LetS§, 228/ |wy|, n=1,...,N, such that (2.8) is rewritten as
1 , 1N )
Lw) == |0w-y| += ) balwnl” (4.9)
2 2n=1

This way the resulting objective function becomes smooth in w for any fixed 6,.
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2. Then the second-order derivative of (4.9) is approximated as

2L w)

ol (@ @+A)", (4.10)

where A = diag{d,,...,0n}.

3. Next, the estimates @ have to be inserted to calculate the covariance of the param-
eter estimates. For the components of the inactive set, where 0, = 0,n € .#, the
covariance becomes zero as well because

.2 .26
lim 6, = lim — =
Wp—0 Wp—0 |10y

oo, (4.11)

and due to the inversion in (4.10), the rows and columns that belong to n € .
become zero as well. Thus, the parameter estimates that belong to the inactive set
can be neglected and components of the active set — see Def. 5 — are utilized to
compute the covariance matrix.

4. Generate a selection matrix P € RV*!¥! to exclude the inactive set, where P consist
of column vectors that have a 1 on the n-th row, where n € «f such that ® _, = ®P
and @, € RM*I<1,

5. Then, the Hessian of (2.8) is approximated as

2L (w)

~ -1
T ~(@Lo,+A,) =C (4.12)

where A, € Rl and A, :diag{gl,...,gN} Vneo.

It is worth noting that the inactive set has no influence on (4.10), because of the same
reasons as explained in Sec. 3.1.1. Parallel to Sec. 3.1.1, §,, takes over the functionality of
the hyper-parameter y;,! in (3.6). If i0,, = 0 then 8, is not defined and the corresponding
n-th basis function can be excluded from the model.

The approximated Hessian (4.12) is then used as a covariance matrix for the param-
eter weights. Beside its dependence on the parameter estimates, it is also dependent
on the type of basis functions and for which x and pu they are evaluated. The following
considers Gaussian basis functions, which are introduced in (2.10). For convenience the
definition of the Gaussian basis function is shown here again

llx — pl|? }

5oz (4.13)

olx,p) = eXP{—
They are centered at a position y, and are evaluated at a position x. Here, the width of
these functions is defined by o > 0, which is equal for all basis functions.

Consider now M measurement positions such that X = [x1,...,Xp] T ¢ RM*2_ Then,
10. T [(p(xl,pn), cen (X, p,,)] Te RM is a Gaussian basis function evaluated at all
measurement positions in X. For N center positions M = [p!,..., uT] T e RN%2 the de-
sign matrix is constructed as ®(X, M) = [¢(X, p1), ..., (X, un)] € RM*N. Subsequently,
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¢(x, M) = [p(x,p1),...0%, pn)] TerN represents the row for the measurement x in
®(X,M). As will be shown in the following, the dependency of X and M in ®(X, M)
is important for the exploration.

As written above, let ® (X,M) = ®(X,M)P € RM*I<| pe the design matrix with col-
umn indices from the active set. Writing (4.12) with @, (X, M) highlights the depen-
dency of the approximated covariance on the measurement positions and the center
positions of the basis functions as

CX, M= (@, X M., X M +&Q¢)’1. (4.14)

For a hypothetical measurement position ¥ € R? and potential center position of a
basis function i € R? the D-optimality criterion can be evaluated by using (4.14). For the
evaluation, a row depending on X and a column depending on ji is added to @, (X, M)
as

~ D (X, M) (X,
&,0x", 787, MmN = ¢ w1 (4.15)

PLEM)  HE P

where ¢ (% M) = (¢7 (&% M)P)" € R such that ¢, (%, M) = [p(&, p1), ..., pE ), ...,
IENTIN] TVne of; the subscript «f denotes that only center positions y,, are consid-
ered where n € /. The reason why it is important to add also a column is that basis
functions that have been canceled out cannot be reconsidered. Otherwise, only active
basis functions would be taken into account. This applies as well for global basis func-
tions. For example, a new measurement location might excite currently inactive fre-
quency components, if DCTs are used. A theoretical analysis is presented in Appendix
B.1. Example 3 shows the effects, with and without an added column to ®@_.

Example 3. Consider the function g(x) of Example 1. The signal model considered in
the current example sets the number of basis functions to N = 20 with ¢, (x), n=1,...,N
being Gaussian basis functions. The basis functions are uniformly distributed in x. For
simplicity, the center positions of the basis functions are set equal to the potential mea-
surement positions, i.e. [L = X (Why this is a reasonable choice, is explained later in Sec.
4.2.3). Due to the sparsity constraints, some basis functions belong to the inactive set and
are therefore not contributing to the prediction. Even if N >> M, e.g. the exploration space
can be densely populated with basis functions, the sparsity constraints would control the
estimates such that the active set becomes small. As a result, if no column is added to ®,
the D-optimality criterion considers only active basis functions, as shown in Fig. 4.3(a).
Accordingly, at locations that have no basis function, the covariance is zero. A low variance
is the same as a high precision and subsequently the model is confident about this posi-
tion. The D-optimality criterion then yields a high value and positions far away would
not be chosen as measurement positions.

In Fig. 4.3(b) a column is added to ® as shown in (4.15) such that the D-optimality
can consider an activated basis function at this position. If a column is added, the model
estimates that there is no information about the corresponding parameter weight, which
leads to a high covariance. Hence, the D-optimality criterion yields a lower value such
that measurement positions further away would be considered.
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Without added column With added column

/\ /\ — 9(x)
y(x)
2 S f\ 2 — prediction
\ /\ D-optimality
01 < 0 SV . X Xnext
0 1 2 3 0 1 2 3
X X
(a) (b)

Figure 4.3: The observed function is g(x) and y(x) are obtained measurements of g(x). The prediction of the
model based on the measurements y(x) is shown in green. The left figure presents the D-optimality criterion, if
no column is added to (4.15) in orange. The right figure shows the D-optimality criterion, if a column is added
to (4.15) also in orange. The minimum of the D-optimality criterion is highlighted in both figures as a green
cross, which would result in the next measurement location xpext. This location has not been measured yet.

As presented in Example 3 and Appendix B.1, it is necessary to add a row and a col-
umn to @, to evaluate the D-optimality for potential next measurement locations. This
is mainly due to the resulting sparsity, because otherwise the model can not yield predic-
tions that require basis functions that belong to inactive parameter weights. Therefore,
¢ (X, 1) and ¢(X, i) are added to @ as introduced in (4.15). Local basis functions re-
quire a center location fi and are evaluated at a hypothetical measurement location x.
Here it is assumed that a new measurement location can only activate one basis func-
tion, i.e. changing a parameter weight from zero to non-zero. However, the center po-
sition fi and the hypothetical measurement location ¥ do not necessarily have to be the
same. With (4.15) and @, = ®, ([XT,%7,[M7,117), the covariance of all measure-
ments and a hypothetical measurement location is given as

C(x", 57, M7, ") = (@7, ®,, +diag{A.,,0}) ", (4.16)

where setting the additional diagonal term to zero does not regularize the potentially
activated basis function; it is therefore in the model. It is worth noting that, if the regu-
larization of the column corresponding to the hypothetical center position would be too
high, the covariance might favor already measured positions. With a gradually increas-
ing regularization of the column corresponding to the hypothetical center position, the
D-optimality criterion would look like as shown in Fig. 4.3(a).

Inserting (4.16) into the D-optimality criterion leads to the problem formulation

-1
= . ~T ~ o
X= argmin log|®_®+ , (4.17)
XeX ficeM\M|y 0

where & are all possible measurement locations, .# are all possible center locations,
and 4 \ M|, excludes the center locations that belong to the active set &« from /4.
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For localized basis functions, the minimization of (4.17) involves two parameters, the
potential measurement location ¥ € & and a potential center position fi € 4\ M| . If
global basis functions are utilized, they would not optimize (4.17) for the center position
but for another parameter, e.g., the frequency component as in (2.13).

The problem at this point is that (4.17) is not suited for a distributed optimization,
and (4.17) requires the calculation of the determinant of the covariance C for all hypo-
thetical measurement and center positions, which is computationally expensive. There-
fore, in the following, (4.17) is algebraically altered to prepare this criterion for a distri-
buted optimization and to reduce the computational complexity.

First, (4.15) is inserted into C and the logarithm is applied to it

olo, +A,;, @ PX, )

T X, o, ¢TX DPX, )

logdetC((X”, %", M", 11") = - log

¢ (X, M)
T onEm @] @
(%, 1)

where the argument of the log-determinant is already split into two terms, the first deal-
ing with the measurements X and the second dealing with the hypothetical measure-
ment %. To simplify the notation logdet C = logdet C ([X”, %7, [M”, i]T) is defined. Ad-
ditionally, define

A0l o, +A,y, 2" X, DOy bZ2e" (X, DX, ). (4.19)

Then, (4.18) can be written as

A c(fr) . ¢ (X, M)

logdetC = —log
(i) by (%, 1)

L EM PE |- (4.20)

Using the matrix determinant lemma [143] on (4.20) yields

~ A c(i)
logdetC = —log
e b
-1
A | |psEM)
—log|1+ ¢! (% M) ¢ ) . @2

cp? b (%, fi)

Now, the first term in (4.21) depends only on the potential center position fi and the
second term depends on the potential measurement location X and fi. For the first term,
it can be shown that

A clip ]
log =log|Al +logq(f1), (4.22)

c? by




4. DISTRIBUTED EXPLORATION WITH OPTIMAL EXPERIMENT DESIGN FOR THE
62 DIiSTRIBUTION PARADIGMS SOE AND SOF

where q(j1) = b(jt) — ¢ (j1) A~ ¢(fi) is the Schur complement [144] of the corresponding
matrix. By using the matrix inversion lemma [116] on the inverse in (4.21), it can be
shown that

-1

A c( A - Ale(g(p e TATY —A7 e(i)/ q(p)
ml mq(@) " c(i DI (4.23)

cw? b -c(wTA Y q(p) 1/q(jp)

Inserting (4.23) into the second log-term in (4.21) followed by expanding the product
leads to

-1
A c(f) ¢ (X, M)

cp” b (X, 1)

- log(l + ¢ & M)A ¢y (% M) + (1) — ()" A7 by (& M) /q(p)) . (4.24)

log|1+ @& M) ¢ )]

Then (4.22) and (4.24) are inserted into (4.21) such that
logdet C(%, i) = —log| A| - 1og(q(,1) + gL (% M)A ¢, (% M)
+(PE M- A gy EM) ). @25

The function (4.25) represents the objective of the D-optimality criterion in the log do-
main. For the optimization over all potential next measurement and center locations,
this formulation only needs to compute A~! once at the beginning and can be reused
for the next iterations. The first log term is independent of X and fi and can be neglected
in the optimization. The calculation of (4.25) does not require the computation of a de-
terminant of a large matrix as in (4.17) but only matrix vector operations. It is therefore
computationally less expensive. This criterion is then inserted into (4.17) to formulate
the optimization problem for the exploration as

%= arg min logdet C(, fi)
Xex,
AEM\M)

= arg max log(q(fl) (1+¢L&FEMA ' &EM)+ (p&E ) -c(p)’ Ay X, M))z),
XX,
ﬁeﬁ\mﬂ

(4.26)

where the arg min is changed into arg max because of the minus sign in (4.25) and
log| Al is neglected as it is independent of the next measurement location.

4.2.3. IMPACT OF THE L1-REGULARIZED LINEAR MEASUREMENT MODEL

FOR THE EXPLORATION CRITERION
In Sec. 4.2.2 the cost function (2.9) is approximated by (4.9). This approximation involves
the parameter § for the sparse regularization. The influence of this parameter on the D-
optimality criterion is not evaluated. Therefore, the following evaluates the D-optimality
criterion for different values of 6 in (4.9).



4.2. D-OPTIMAL EXPERIMENT DESIGN FOR DISTRIBUTED EXPLORATION 63

The influence of the regularization parameter is analyzed by considering a one-dimensional
scenario with two measurements at x[1] = —4 and x[2] = 4 and two one-dimensional
Gaussian basis functions as introduced in (2.10) with center positions p[1] = x[1] = -4
and p[2] = x[2] = 4. The width of the Gaussian basis functions is fixed at o = 0.3 and
equal for both considered basis functions. The weights @ of this scenario are estimated
centrally by (2.9).

Fig. 4.4 presents the D-optimality criterion for 6 = {0.001,...,500} and 5; =26/|w;l.
In Fig. 4.4(a), logdet C(X, ji) is optimized over a next possible measurement location ¥
and over the next center position fi of a new basis function (for every X the best possible
fiis considered). However, when looking at the definitions of the Gaussian basis function
(2.10), its maximum is at the center position and, thus, ¢(X, f1) in (4.26) has the highest
value when X and i coincide. The optimization with X = ji for Gaussian basis functions
is presented in Fig. 4.4(b).

500 500

8 8
400 400
— 6 —6
3 S
i 300 I 300
10 4 < 0 4 o
< 200 < 200
20 20
2, <,
100 100
0 0
—4 -2 0 2 1 —4 -2 0 2 4
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Figure 4.4: Variation of the regularization parameter § and its influence on the D-optimality criterion under

sparsity constraints. The black curve shows the case for 6 = A_% v/2log(M) [74, Section 5.9], where M = 2
and A is the precision of the measurement noise. (a) presents the optimization over X and f (for every X the
best possible ji is considered). (b) presents the same optimization with the additional constraint X = fi. The
smallest value of the D-optimality would be chosen as a next measurement position.

According to (2.9), if & — 0 no regularization is used, and the LASSO objective func-
tion reduces to the standard least squares problem. In this case, the exploration criterion
becomes highly peaked at the existing measurement locations, and the criterion would
favor points that are further away from the measurement locations. If § — oo, there is
only regularization in (2.9), and consequently most of the parameter weights converge
towards zero. As can be seen in Fig. 4.4, for large values of 6 the D-optimality criterion
favors measurement locations that have already been measured. This behavior results
from the diagonal loading in (4.16), which reflects the sparsity constraints in (2.9). A high
value of 6 leads to a high sparsity regularization and to a high diagonal loading value as
5; = 26/|w;|. This diagonal loading mechanism has the effect that it stabilizes the in-
version of the covariance matrix by increasing the diagonal. Likewise, the variance of
the corresponding parameter weights increases as well. As the D-optimality criterion
aims at minimizing the covariance matrix (4.16), the criterion wants to minimize the
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high variance of the parameter weights by measuring again at the same position. As a
result, the agents do not explore but measure again at already measured locations to de-
crease the variance. In other words, if § is large, a non-zero parameter weight somehow
contradicts the D-optimality criterion under sparsity constraints and, consequently, the
knowledge about this parameter weight has to be increased. If § is fixed, this effect is
controlled by the values of the active parameter weights, i.e., through the definition of
6n =26/ lwyl, n=1,...,N.

In [74, Section 5.9], the authors suggest § = A‘% v/2log(M) as a penalty parameter for
the regularization in (2.9), where A is the precision of the measurement noise and M is
the number of measurements. The corresponding value for this adaptive 6 is highlighted
as a black line in Fig. 4.4. In each figure it can be seen that this choice is a reasonable
compromise, as it is in between a large 6 and a small §. Additionally, this choice makes
6 adaptive to the number of obtained measurements.

4.2.4. DISTRIBUTED D-OPTIMAL EXPERIMENT DESIGN FOR HETEROGE-
NEOUS LEARNING

In a distributed setting, the D-optimality criterion is not easily computable and requires
cooperation between all agents. This section presents how to distribute the D-optimality
criterion for the heterogeneous learning paradigm, which is introduced in Sec. 2.3.1.

In heterogeneous learning, every agent k has its own set of Ny basis functions, and
every agent has access to all measurements y and all measurement locations X. This is
represented by splitting the design matrix into ® ./ = [®.1,..., . x| and the regular-
ization term into A vz diag {3 S T A o, K}. Every agent k has now only the local infor-
mation @ ; and A « & available, but it is also important to obtain knowledge about the
other agents’ measurements. One potential method to achieve insight about the other
agents’ measurements is the consensus algorithm [19, 20]. For applying the consensus
algorithm on the D-optimality criterion the following is defined

K
HEo A j0l, =Y @A} @], 4.27)
k=1
A N LS N
AdD L0 A} Py ZFM) =) Oy A} boy(% M), (4.28)
k=1
A N X ™~
V(X 2P (& MA) Py (X, M) = kZ ¢ (XM A} oy (% M), (4.29)
=1

where ¢/ (%, M) = [¢p, (%, M)),..., ¢~ (%, My)] " The definitions (4.27), (4.28), and (4.29)
are suited for a distributed computation by means of an averaged consensus for het-
erogeneous learning [53]. The next paragraphs show how to express the D-optimality
criterion with these definitions for heterogeneous learning.

First, A~! in (4.25) can be computed by applying the Woodbury identity [116] as

Al =(@T®,+A,) ' =A}-A 0" (I+0,A )} 0)) @ A7) (4.30)
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Then, inserting (4.30) into g () yields

q@) = b - T (WA ()
=" (X, ppX,x) - p" (X, x) Dy
(A} -Ajela+o A}l )0 A )0 p(X, )
=¢"X,p I+ H) " ¢X, 1), (4.31)

where again the Woodbury identity is used. The other summands in the second loga-
rithm of (4.25) can as well be expanded using the definition in (4.30). This results in

¢LEMA ¢y (X, M) =¢!, (& MA} Py (XM
~¢LEMA oL 1+ H) '@ A} ¢y F M)
=v®-d®TU+ D) d®), (4.32)

and

cx) A P FM) =T (X, O A} oy (X M)
-¢"X, o A0, I+ H) '@ A} ¢y (% M)
=X, )" d®-¢X, )" HUI+H) 'd®
=" (X, ) (I-HI+H)™)d). (4.33)

All equations (4.31), (4.32), and (4.33) can be calculated in a distributed fashion by using
(4.27), (4.28), and (4.29). To calculate the D-optimality criterion distributively for het-
erogeneous learning, the last step is to insert (4.31), (4.32), and (4.33) into (4.25), which
leads to

logdet C(%, ji) = —log|A| —1og(¢T(X, I+ H oKX, )
+(@"X, U+ H) 7 $X,p)wE-d&® I+ H) ' d®)
+HPE D - (I-HI+ B ™) d@)’), (4.34)

where the terms H, d(X), and v(X¥) are computed by a consensus with (4.27), (4.28), and
(4.29), respectively. Because d(X) and v(X) depend on X, it is worth noting that if (4.34)
is computed locally for agent k, the hypothetical measurement location X has to be dis-
tributed in the network before the consensus can commence. Unlike SOE, SOF does not
require to distribute a potential new center position fi because by virtue of SOF each
agent can choose this independently; the definitions (4.27), (4.28), and (4.29) require
only previously known center positions.

The next measurement location is then found by minimizing (4.34) over all possible
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Algorithm 8 distributed exploration with SOF for LASSO (DE-SOF-LASSO)

H —(4.27) > Consensus
forxe % do

Send X to all neighbors

d(x) —(4.28) > Consensus

v(x) —(4.29) > Consensus
R — (4.35)

next measurement locations and center positions as shown in (4.26) such that

%, = arg min logdet C(X, ji)

XeX,
= arg max log (¢T(X, DUI+H X, L
XeX,

fiet\ M,
+(@T X, I+ H X, ) (0@ -d®T I+ H)™d®)
+HPE W -(1-HI+ W) ad®)’) (4.35)

To find ¥, an agent k distributes only the potential next measurement location ¥ to its
neighbors to compute d(X) and v(X) distributively. The advantage of heterogeneous
learning is that agent k does not need to know the other potential candidate basis func-
tions of its neighbors, i.e. ¢, because each agent chooses the center positions indepen-
dently. Consequently, for local basis functions, the center positions have to be known
only locally (global basis functions have no center positions but are characterized by an-
other parameter). This feature of the heterogeneous learning opens up the possibility
of further distribution schemes with specialized agents, which focus only on parts of the
observed process, i.e. one agent for high frequency components and another for low fre-
quency components of the observed process. Yet, the analysis of this is not within the
scope of this thesis.

The distributed exploration with SOF for LASSO (DE-SOF-LASSO) for estimating new
measurement locations X is shown in Alg. 8 as pseudocode for agent k. As can be seen in
Alg. 8, three consensus iterations are required to estimate the next optimal measurement
location Xj. The communication load in the network is depending also on the network
topology. However for each consensus iteration to compute H, agent k has to transmit
M (M —1)/2 floats to its neighbors as @, kﬁ;{l, kd)L, i Is a symmetric matrix. Likewise, to
compute d(X) and v(x) each consensus iteration requires M + 1 floats to be transmitted
for each ¥, respectively. Furthermore, X has to be transmitted beforehand. Let I, € N be
the number of consensus iterations in a network and |Z'| € N the number of hypothetical
measurement positions X € R?. Then, DE-SOF-LASSO requires

(M(M—l M? |Z|-1

I )+|%|(M+1))+2|5L’|:IC(7+TM+|3{| +21%] (4.36)

floats to be transmitted for agent k. This consensus is dominated by M? and therefore
the communication load depends on @ (M?).
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Figure 4.5: This flow-chart summarizes the whole swarm exploration for heterogeneous learning. At start
every agent took a measurement and, then, the k-th agent starts with the exploration process. After the agent
k has reached its next measurement location and each agent has incorporated the new measurement, agent
k + 1 starts with the exploration.

Figure 4.5 summarizes the whole swarm exploration for heterogeneous learning in
a block diagram. At the beginning, every agent takes a measurement at it current lo-
cation, which is then distributed and introduced into the model of each agent as X); =
[x1,..., %17, y = [y(x1), y(xx)] T and locally ® (X, My). Afterward, the distributed re-
gression is applied to infer the new model parameter weights. This is followed by the dis-
tributed exploration, which estimates new measurement locations according to (4.35).
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Once Xy is estimated, agent k has to measure at this location before the next agent k + 1
can continue. Thus, agent k navigates to its next measurement location and measures
such that the new measurement can be incorporated locally and distributed to the other
agents. The new estimated model is then used to estimate the next measurement loca-
tion for agent k+ 1. Figure 4.5 depicts also that heterogeneous learning involves multiple
stages where data has to be distributed: the new measurements and measurement loca-
tions, during the regression, and two times during the evaluation of the D-optimality
criterion. As for Gaussian basis functions, it is reasonable to select x;. also as the center
position, i.e. g = xi, because the Gaussian basis function is maximal at its center.

4,2.5. DISTRIBUTED D-OPTIMAL EXPERIMENT DESIGN FOR HOMOGENEOUS
LEARNING

Compared with heterogeneous learning, in homogeneous learning all K agents have
the same parameter weights w. Also, every agent k has its own measurements y; and
its own design matrix ®;(Xy), with y = [y{,...,y,{]T, ®(X) = [<I>1T(X1),...,(I)IT((XK)]T,
and X = [X],...,x[] " The number of each agent’s measurements does not have to be
necessarily equal for all agents, but the number N of basis functions is the same for all
agents. When applying homogeneous learning, the measurements are treated in a distri-
buted fashion and this distribution paradigm does not require further communication
for the measurements because the measurements stay local. The measurement model
— the basis functions and their number, i.e., the model size — is known a-priori for all
agents.

This section shows how to distribute the D-optimality presented in (4.25) for homo-
geneous learning. Each agent k computes the vector ¢ (X, M) locally because the N
basis functions are known to all agents. If localized basis functions are used, also the
center positions M are known to all agents by design. Likewise, ¢ (%, jt) as well as A are
locally known quantities. The D-optimality criterion (4.25) is defined by variables that
are calculated by products of these locally known quantities due to the cooperative es-
timation. It is, therefore, possible to make their computation distributed in the network
for homogeneous learning without further reformulation. Thus, the variables in (4.19)
can be redefined for a consensus as

K
A0 0, +A, =0 +) O (Xp®,, (X)), (4.37)
k=1
K
cp Lol pX,p=Y o, (X)dXx ), (4.38)
k=1
K
b 2¢" X, weX, 1) =Y ¢ Xk, (X, ). (4.39)
k=1

In contrast to heterogeneous learning, the above defined consensus terms depend on
the center positions of potential basis functions, if localized basis functions are used in
the model. If global basis functions are used, e.g. DCTs, the center positions would be
substituted by e.g. frequency components. It is worth stressing that N is defined to be
fixed here and all possible basis functions are known to all agents. As a consequence,
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Algorithm 9 distributed exploration with SOE for LASSO (DE-SOE-LASSO) for agent k

A —(4.37) > Consensus
forall ie 4\ M|y do
c(f1) —(4.38) > Consensus
b(f1) —(4.39) > Consensus
X — (4.26)

for agent k the position of a potential basis function does not need to be transmitted to
agent k’s neighbors; all basis functions and their order of appearance in the model is de-
fined beforehand. Thus, if agent k estimates the D-optimality criterion in homogeneous
learning, it is only necessary to evaluate the center positions fi that are currently not in
M|, . Furthermore, to make the computation of ¢(ft) and b(ji) faster, they can be com-
puted in a single consensus for all fi € .4 \ M|, . By virtue of the homogeneous learning,
each consensus to calculate A, c(j1), and b(ft) is independent on the hypothetical mea-
surement position X. This is different to heterogeneous learning, where the potential
measurement locations have to be communicated.

In Alg. 9 the distributed exploration with SOE for LASSO (DE-SOE-LASSO) is pre-
sented. As can be seen in Alg. 9, the DE-SOE-LASSO requires one initial consensus and
two consensus steps for each potential center position. As mentioned earlier the latter
two consensus steps can be computed in bulk as here all agents know all possible cen-
ter positions fi and their order of appearance by virtue of the distribution paradigm.
Because of this, each agent can locally compute c(j1) and b(f1) without further com-
munication and re-use A from the parameter estimation. The communication load for
each consensus step depends on the network topology. To calculate the communication
load per agent k, let I, define the number of consensus iterations and N = |</| is the
number of active basis functions in the model. Then, the consensus step for A requires
I. Ny (N —1)/2 floats to be sent per consensus for agent k, where already the symmetry
of A is exploited. For the computation of ¢(fi) and b(f1), I N, floats and I, floats are
transmitted per agent k. Therefore, agent k communicates

Ny (Ngy —1
I, %+Nd+l

N2 N
=1 -Z+=Z 1 (4.40)
2 2

floats to calculate the D-optimality criterion. This is dominated by N;.

Figure 4.6 summarizes the distributed exploration in more detail from the point-
of-view of agent k. The exploration starts for each agent k by making a measurement
y(xg) at the location x;. This measurement is then introduced locally in the model
by Xae1 = (XD, %], yie = [yD, vy, and @ (Xag1, M) = (@7 (X, M), p(xi, M)
Then, the parameter weights have to be estimated with the new measurements. The dis-
tributed regression can be implemented as suggested by the literature, e.g. [18, 98]. Once
the weights i are estimated, the model is passed to the exploration. For the exploration,
the aforementioned consensus terms ((4.37), (4.38), and (4.39)) and the evaluation of the
D-optimality criterion (4.25) are used to estimate the next measurement location for the
agent k. This agent then navigates to its next measurement position and takes a mea-
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Figure 4.6: This flow-chart summarizes the whole swarm exploration for homogeneous learning. At the begin-
ning each agent makes a measurement at its current position. Then the exploration process starts for agent k
by first estimating the parameter weights and afterward estimating a next measurement location. Agent k then
navigates to the measurement location and introduces this measurement into its local model. Subsequently,
agent k + 1 continues with the exploration.

surement there. Then again every agent incorporates the single new measurement and
the next agent k + 1 would start exploring. It is worth noting that, to this end, the explo-
ration is applied sequentially; agent k explores and the other agents wait until agent k
reached its measurement point, then agent k + 1 explores, etc. The figure also highlights
the data that is passed to each part of the swarm exploration.
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SOE

SOF

Distribute w € RV

Distribute ®;w, € R and
{Xmn, ym} for each new measure-

ment

Estimation
Fixed number of basis functions N More flexibility for selecting basis
functions
Estimate A € RN+*Ne/ | ¢(ji) € RN+  Estimate H € RM*M d(%) € RM
and b(f1) € R by means of aconsen- and v(X) € R by means of a consen-
sus, where N, is the number of all  gys. MTZ + %M +]%| have to be
active basis functions. Eezlch agent transmitted per agent and consen-
. . N . .
communicates its part. —Z + NT“ +1 Susiteration.
values have to be communicated
per agent and consensus step.
Exploration fi € .4 \ M|, does not need to The center positions fi are only

be communicated, because every
agent knows all basis functions.

Measurements are known locally.
Thus ¥ € & does not need to be
communicated.

The selection of new basis func-
tions requires communication with

locally needed. Thus, no com-
munication is required to optimize
these.

All measurements need to be com-
municated as well as the proposed
positions X € X.

Basis functions are optimized and
set individually by each agent.

all agents because every agent uses
the same model.

Table 4.1: Differences between the distribution paradigms for estimation and exploration.

Table 4.1 summarizes the different aspects for both distribution paradigms for esti-
mation and exploration. Table 4.1 summarizes also the values that need to be transmit-
ted per proposed measurement location. For SOE, this amount depends on the number
of used basis functions N and for SOF this amount depends on the number of measure-
ments M. If the number of measurements is low, e.g. at the beginning of the exploration,
SOF has an advantage in terms of communication load. On the other hand, SOE is ad-
vantageous if the number of basis functions N is larger than M.

4.2.6. EVALUATION OF D-OPTIMAL EXPERIMENT DESIGN FOR EXPLORATION
WITH REAL DATA

This section tests the proposed criterion for exploration and for different distribution

paradigms. The unknown process that is explored in this section is the magnetic field
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Figure 4.7: (a) Magnetic field of the Holodeck at DLR premises. This plot displays the magnetic field intensity
in color coding. A black rectangle highlights the cut out of the magnetic field, which is shown again in (b) and
is used for the simulations.

measured on the floor of the laboratory, which is called Holodeck. The magnetic field was
measured by a Xsens MTx' and was also used in previous literature [58]. The magnetic
field is shown in Fig. 4.7(a). The data was sampled on a regular grid & = {xy,..., X2}
with |Z'| = 4128.

The design matrix in this particular test is built with Gaussian basis functions, c.f.
(2.10). The width of each basis function is o = 30cm. The number of agents is K = 10,
and the starting position of each agent is drawn at random uniformly from & . For the
homogeneous learning, it is important to define the center positions for the used basis
functions in the design matrix. Therefore, for SOE, each point in & is used as a center
point for the basis functions. For heterogeneous learning the construction of the design
matrix @ (X, M) of each agent k can be arbitrary. Therefore, for SOF, in this experiment
and also in the following of this thesis, the center positions of the basis functions are set
equal to the measurement positions. It is assumed that the agents can move to the next
position instantly and thus no collision avoidance is considered. For the estimation of
the parameter weights a distributed ADMM is employed [18, Section 3.4], with p = 1.0 for
the homogeneous learning. This parameter has been evaluated in cross validations and
is data dependent. For heterogeneous learning, the ADMM penalty parameter is learned
by residual balancing, c.f. Sec. 2.4.4, and it is initialized with p = 1.0. Likewise to Sec.
4.2.3, the LASSO penalty parameter is chosen as 6 = Az v/2log(M). A cross validation of
6 and the width of the Gaussian basis functions o is presented in the Appendix A.

The proposed methods are benchmarked against a systematic exploration and a ran-
dom exploration, i.e. meander and random walk respectively. The benchmarks are
therefore explained in more detail in the following.

Meander: For this exploration, all agents start at an individual predefined position,
which s at x[0] = [1.5, %] " in this simulation, see Fig. 4.7(a). The agents move in a back

1 https://www.xsens.com/
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and forth pattern, starting from the left border to the right. Their step size is related to
the Gaussian basis functions to create an overlap between neighboring basis functions.
Hence, the step size is set to 30 cm.

Random walk: The agents start at a random position, and their next measurement lo-
cation is defined by selecting a point random uniformly from &'.

Note that both benchmarks are non-cooperative; the agents do not exchange any data
or information to do the exploration. The proposed methods are used as described in
Alg. 8 and Alg. 9 for heterogeneous learning and homogeneous learning respectively.

As evaluation metric, the NRMSE is used for this simulation as

_leX, Mw - f|?

= , 4.41
€SOE TGE (4.41)
K 2
=1
e = , (4.42)
SOF If112

for SOE and SOF, respectively, where f = [f(x0),..., f(xa)]" € R¥,x € & is the true
magnetic field discretized at the locations in &'.

A prediction of the magnetic field for all exploration strategies and distribution para-
digms is displayed in Fig. 4.8, after the estimation of . The left side in Fig. 4.8 shows the
estimations for homogeneous learning, and the right side are the estimations for hetero-
geneous learning. Each row in Fig. 4.8 corresponds to an exploration strategy, as noted
by the axis label. The colored circles represent the measurement locations of each agent.
The estimated center position of the basis functions, which correspond to a non-zero
weight, are shown by black crosses.

Both of the proposed strategies tend to make measurements at the border of the en-
vironments, as indicated by the colored circles. This effect is of numerical nature and has
also been observed in [29]. Yet, the proposed methods yield a good coverage of the area
as the measurement locations are well distributed. For the meander strategy this cover-
age depends obviously on the choice of the step size. In this scenario, either the step size
should be increased or more measurements would have been required to achieve better
coverage. However, the step size here is chosen according to the width of the local ba-
sis function and changing the step size might lead to smaller overlap between the basis
functions and might therefore lead to a lower sparsity or a higher error. Also, increasing
the number of measurements solely for the meander might be an unfair comparison.
The random uniform sampling from & of the random walk does not consider already
measured positions. Furthermore, as only a finite number of measurements is consid-
ered here, it might happen that parts of the area are not sampled at all.

The movement direction and the step size of the meander influence how the mag-
netic field is measured and subsequently how each measurement reduces the NRMSE.
For the meander approach this is even independent of the distribution paradigm as
shown in Fig. 4.9. A similar behaviour, independent on the distribution paradigm, can
be seen for the random walk in Fig. 4.9 but less pronounced. This figure also shows that
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Figure 4.8: Estimates of a single run for all distribution paradigms and methods compared. All estimates are
normalized to one. Colored circles represent measurement position, where each agent has a different color.
The black crosses show the center positions of basis functions, which correspond to a non-zero parameter
weight.

the D-optimality reduces the NRMSE faster than the benchmark methods for both distri-
bution paradigms. Yet, the performance of the D-optimality for SOF is better compared
with the performance for the D-optimality for SOE.

Because heterogeneous learning places the center of a basis function at measure-
ment locations, the ratio of M/N is close to one, and thus the estimation might lead
to smaller overfitting. The way how basis functions are introduced in SOF controls the
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Figure 4.10: (a) Active components for homogeneous learning (dashed) for K = 10 agents averaged over 10
runs; (b) active components for heterogeneous learning (solid) for K = 10 agents averaged over 10 runs.

number of active parameter weights and they cannot be larger then the number of mea-
surements. This can be seen in Fig. 4.10(a), which shows the number of active parame-
ter weights and is explained later. For homogeneous learning this ratio is small because
M < N and therefore this method could tend to overfitting. This effect could be reduced
by changing the penalty parameter  which also could lead to a higher error as the result
becomes sparser. Another reason might be that the criterion for convergence in SOE is
not reflecting the sparsity and that the parameter estimation actually requires further it-
erations. This assumption could be supported by the fact that many selected center loca-
tions are close to each other. Figures 4.10(a) and 4.10(b) display the number of non-zero
parameter weights, i.e. |</|, versus the number of measurements. Indeed, for homoge-
neous learning, the number of active components versus the number of measurements
is larger at the beginning, c.f. Fig. 4.10(a). Once a certain number of measurements is
reached, the regularization becomes more aggressive because § = A3 v/2log(M), and
also the ratio M/ N becomes better with increasing M. A reason for this effect could be
that fi is optimized as well by the criterion such that always relevant center positions
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Figure 4.11: D-optimalities of a single run for SOE and SOF. The color coding of the entropies is the same for
all plots. Colored circles represent measurement positions, where each agent has a different color. The black
crosses show the center positions of basis functions, which correspond to a non-zero parameter weight.

are chosen. Thus, N,y is also increasing. Once the exploration area has been explored
enough, the number of active basis functions — and also N, — stabilizes as new center lo-
cations do not contribute to the criterion as much as before. For heterogeneous learning,
the ratio M/ N is almost constant. Only at the end, when the density of measurements
is high enough, some measurements do not lead to a new basis function with non-zero
parameter weight. At the end of the simulation, the D-optimality criterion is calculated
for all exploration strategies and shown in Fig. 4.11 for all distribution paradigms. There,
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Figure 4.12: Influence of using different basis functions on the estimation performance. Figure (a) shows the
NRMSE, and Fig. (b) displays the non-zero components of w in percent.

the left column refers to the SOE paradigm and the right column refers to the SOF para-
digm whereas the exploration methods are depicted in the rows. The color scaling is the
same for all plots. For the entropy-driven approach, the D-optimality criterion is more
evenly reduced compared with the other methods. Homogeneous learning leads to a
slightly worse minimization of the D-optimality criterion compared with heterogeneous
learning, most likely due to because of the poor ratio M/N. For random walk and me-
ander, the entropy yields some highly informative locations, which would yield a high
information gain, but they have not been actively approached.

4.3. INFLUENCE OF BASIS FUNCTIONS ON THE D-OPTIMALITY

CRITERION FOR EXPLORATION

This section analyzes the influence of different basis functions on the D-optimality. Thus,
the magnetic field data, as introduced in Sec. 4.2.6, is used to test different types of ba-
sis functions, which are introduced in Sec. 2.1.3. It is again assumed that the agents
can move in the environment instantly to their measurement locations. The number of
agents is set to K = 3, and the algorithm to estimate the parameter weights is the ADMM
asintroduced in [18] for homogeneous learning. The penalty parameter for the ADMM is
initially set to p = 10, but it is adaptive. To reduce the complexity, the data set is sampled
on a regular grid with || = 2280 with 30 cells in x-direction and 76 cells in y-direction.

The Gaussian basis function and the Lanczos basis function have parameters, which
define the width of each basis function, see Sec. 2.1.3. These parameters are chosen
as Ogauss = 0.2 for the Gaussian basis function and jancz0s = 0.5 for the Lanczos basis
function. Additionally, Legendre polynomials and the DCT are employed. The Legendre
polynomials are two-dimensional with a degree of 25 in x- and y-direction, which leads
to 626 basis functions including the bias, see Sec. 2.1.3. The DCT basis functions vary in
frequency from 0 until 100 Hz in x- and y-direction in 5 Hz steps. Therefore, there are 401
basis functions, including the bias.

The simulation results are shown in Figs. 4.12(a) and 4.12(b) for the considered basis
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functions with the D-optimality criterion for homogeneous learning. Considering Fig.
4.12(a), the localized basis functions — the Gaussian and Lanczos basis functions — re-
duce the NRMSE faster compared to the global basis functions — Legendre polynomials
and the DCT. At the end, however, the global basis functions slightly outperform the lo-
calized basis functions. Fig. 4.12(a) also shows that regardless of the basis function, the
D-optimality criterion still reduces the NRMSE effectively. Regarding the sparsity, pre-
sented in Fig. 4.12(b), the parameter weights of all basis functions can be considered to
be not sparse in this case. Yet, the low sparsity is also influenced by the parameters 6 and
p- The first parameter determines directly the promoted sparsity. The second parameter
is a regularization parameter of the ADMM algorithm and influences the convergence
speed, see (2.21). Other influential parameters for the sparsity are the combination of
width and the regular sampling grid for calculating the prediction for local basis func-
tions or the relative small number of basis functions, which was small due to computa-
tional reasons, for the global basis functions.

The simulation indicates that the D-optimality is able to reduce the error faster with
local basis functions compared to global basis functions. However, the global basis func-
tions seem to represent the considered process better as fewer basis functions are used
and fewer basis functions are considered in the model. Moreover, the error curves flat-
ten out with more measurements as the evaluation depends on the discretization and
the choice of the width of the basis functions. Global basis functions do not depend on
a width. For local basis functions, this suggests to make either the discretization or the
width adaptive but this is not considered in this thesis. However, in the next section the
distributed model is exploited to reformulate the D-optimality into a more parallelizable
exploration, which increases the effectiveness of the exploration.

4.4. PARALLELIZATION OF THE D-OPTIMAL DESIGN CRITERION
FOR A SWARM SYSTEM

Section 4.2 introduced the D-optimal criterion as an exploration criterion. Simulations
indicated that this criterion reduces the NRMSE faster compared with the benchmark
exploration strategies — meander and random walk. Furthermore, it has been shown
that this criterion can be computed in a distributed fashion regardless of the distribution
paradigm. However, the D-optimality criterion is originally not intended for a swarm
system because for an optimal computation, the criterion has to be evaluated sequen-
tially after each measurement of each agent. This sequential evaluation leads to a de-
crease in time-efficiency as all agents have to wait once it is their turn. Additionally, the
whole search space & is considered for all agents but it could also be split among agents
to reduce the computation time. Therefore, this section empirically analyzes the per-
formance of the D-optimal criterion when it is computed in parallel. Furthermore, it is
looked at how to coordinate the agents to avoid inter-agent collisions. In this section,
only homogeneous learning is considered as this parallelization is independent of the
distribution paradigm.
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4.4.1. COORDINATION STRATEGIES
For a discretized exploration space &', the maximization of (4.25) requires in general the
evaluation of all ¥ € &. Section 4.2 presented how to distributively solve

% =arg min logdetC((XT, %7, M7, @7). (4.43)
TeX F=ji

Yet the agents cannot detect and approach next measurement locations at the same
time. To see this, the next optimal measurement position can only be estimated after
each measurement is introduced because the estimation depends on the measurements
y and, furthermore, C([X”,%]7, (M7, 117) depends on the current active set <, which is
an output of the estimation. Due to this processing chain, if agent k is moving to the next
measurement location, the remaining agents have to wait for agent k’s new input to op-
timally solve (4.43). Consequently, the D-optimality cannot profit from the distributed
system as everything has to be processed sequentially.

To circumvent this and facilitate a parallel optimization of (4.43), the approach here
is to manipulate the set & such that a parallel exploration with the D-optimality is pos-
sible. In essence, the set & is split into subsets Xy € Z,k =1,...,K. How &} is chosen
and distributed in the network is referred to as coordination method. Depending on the
coordination method the size of & also varies. The considered coordination methods
are introduced in the following.

1. Coordination method seqDOpt as introduced in Sec. 4.2.2 and [53]. It directly
uses the whole set & for candidate locations. As already noted before, here the
agents move sequentially between the measurements. It is basically a centralized
method and used as a benchmark. Furthermore, the coordination method seq-
DOpt requires no or almost no cooperation between the agents. This is because
each other agent waits for the current agent to measure before a new measurement
location is estimated. Thus, there is only a single next measurement location at a
time.

2. In the coordination method DOpt proposed here, the agents sequentially select
their next measurements locations according to the D-optimality criterion in a
pre-defined order, where one agent is the starting agent. The first agent k chooses
X, € & that maximizes the D-optimality criterion and communicates Xy to the
swarm. Then, to avoid collisions between agent k and the other agents, a safety
area 37,‘”\1C ={x:||x—X| < rs} with r; > 0 around X}, is removed from &', too. The new

set for the k + 1-th agent is then X1 = {x eEX\ B/K\k} The procedure is repeated

for the other agents in the swarm, until every agent k estimates X, VZ \ X, Vk=
1,...,K. Then, each agent navigates to its next measurement location at the same
time. Therefore, the DOpt requires the communication of the estimates measure-
ment locations during the evaluation of (4.43). This coordination method is exem-
plified in Fig. 4.13 on the left.

The difference to the centralized version is that here the exploration space & is
iteratively reduced by ¥. Moreover, the movement of the agent commences af-
ter every agent has a next measurement location. Before, the current agent first
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after reaching gog)

Figure 4.13: Two of the proposed coordination methods: DOpt on the left and voronoiRegions on the right.
The right figure indicates that the Voronoi regions move with the agents.

moved, took a measurement, and started the estimation of the weights, and, then,
the next agent estimated a new measurement location taking the recent measure-
ment into account.

3. For the coordination method voronoiRegions the set & is partitioned into K non-
overlapping Voronoi regions [145] such that Z = Ulk(:1 X ]im“) before the estima-
tion of agent k’s m + 1-th measurement location commences. To construct the
Voronoi regions &, lim“), the current position of agent k — x; from the last mea-
surement m — acts as a Voronoi vertex, and, by design, all points in their Voronoi
region have the shortest distance to their Voronoi vertex. Thus, when locally solv-
ing (4.43), each estimate will have the shortest distance to the current agent. Addi-
tionally, this method acts as a collision avoidance between other agents. Regard-
ing the communication, this coordination method requires the communication
of each agent’s position before and during the evaluation of (4.43). The positions
are then used to construct the Voronoi graph. This method is also shown on the
right of Fig. 4.13. There, two Voronoi edges are shown: in black for before the
agents started the estimation of the next measurement location and in red after
the agents reached the next measurement location.

4.4.2. SIMULATION RESULTS FOR COORDINATION STRATEGIES AND
D-OPTIMAL EXPERIMENT DESIGN FOR SWARM SYSTEMS

To test the coordination methods, an area without obstacles is assumed with the same
size as in the simulations in Sec. 4.2.6 and the magnetic field, as introduced in Fig. 4.7(a),
is explored. It is assumed that the agents can move instantly to their measurement lo-
cations, but a collision avoidance at the goal positions is included as it is used later in
the experiments in Chapter 5. The number of agents in this scenario is set to K = 3.
The algorithm to estimate the parameter weights is the ADMM introduced in [18] with
p =10 as ADMM penalty parameter. In this simulation each agent will collect M} = 133



4.4. PARALLELIZATION OF THE D-OPTIMAL DESIGN CRITERION FOR A SWARM SYSTEM 81

Gaussian DCT
1.0
0.9
0.8
& 0.7
=
@
Z06
0.5
0.4
0.3
Lanczos Legendre
1.0
0.9
0.8
807
=
x
Z06
0.5
0.4
0.3
0 20 10 60 80 100 120 0 20 10 60 80 100 120
measurements measurements
—— DOpt —— Meander —— seqDOpt

—— Voronoi regions

Figure 4.14: Simulation results of different coordination methods for different basis functions based on opti-
mal experiment design (OED) with the D-optimality criterion.

measurements. Additionally, the coordination methods are evaluated for different basis
functions, as introduced in Sec. 2.1.3. The parameters for the basis functions are set to
OGauss = 0.2 for the Gaussian basis functions, 0 anczos = 0.55 for the Lanczos basis func-
tions, for the cosine basis functions the frequencies range from 0 Hz to [20 Hz] in x- and
y-direction, and the Legendre polynomials have a degree of 20 in x- and y-direction.
The NRMSE of all simulations is shown in Fig. 4.14, where the two left plots show the
NRMSE of the localized basis functions and the two right plots show the NRMSE of the
global basis functions. For the localized basis functions, DOpt yields the best result after
133 measurements per each agent. In these simulations, the benchmark, seqDOpt, per-
forms better at the beginning for localized basis functions, but is outperformed by the
DOpt method at the end. One potential reason for this could be that there are regions
excluded in DOpt for reasons of collision avoidance and this forces the other agents to
select measurement locations that are suboptimal. This could be excluded in the sim-
ulation as no agents can collide, but as this is evaluated for a real scenario the collision
avoidance has to be included. However, the suboptimal sampling might increase the
exploration in the coordination method instead of exploitation as also less important lo-
cations are measured. The method voronoiRegion yields the worst performance for the
localized basis functions. When using the voronoiRegion method it was observed that
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agents might get stuck in corners as the Voronoi graph is recomputed after each agent
has taken its measurement. Thus these agents can only explore in their close surround-
ing and it might be difficult to get out of a small exploration area.

The right plots in Fig. 4.14 present the results for the global basis functions. The
Legendre polynomials identify the bias of the magnetic field, which reduces the NRMSE
with the first measurements. For Legendre polynomials the meander strategy is able to
reduce the error faster compared to the coordination strategies. Yet the coordination
strategies yield a lower error at the end. Generally, the influence of the coordination
methods is less prominent for Legendre polynomials and cosine functions. This could be
explained by their global view; taking a measurement at some location, might influence
the whole estimate. Also, due to the symmetry of the global basis function, there exist
multiple measurement positions that improve the estimate equally. Therefore, it seems
reasonable that coordination is less influential.

4.5. USING A SPARSE BAYESIAN MODEL FOR EXPLORATION

WITH D-OPTIMALITY

The D-optimality criterion can also be applied, if a Bayesian paradigm is used. The dif-
ference compared with the previous section is that for the Bayesian method, the covari-
ance of the posterior p(w|y) is used in the D-optimality criterion. Section 3.1.1 presents
how the mean w and the covariance X, of p(w|y) are approximated in a Type-II SBL
framework. The covariance in (3.6) is presented here again for convenience with the
dependency of the center positions for localized basis functions as

2, = (@7 (X, M)ADX, M) +T71) " (4.44)

There is a similarity between the covariance (4.44) of the SBL methods and the approx-
imated Hessian (4.14). The term I'! in (4.44) substitutes the term A in (4.14). Yet, the
difference of both is significant as indicated in the Example 4, which presents the differ-
ence in the resulting D-optimality criterion for the Bayesian approach and for the ap-
proximated approach.

Example 4. The function g(x) in Example 1 is considered here with N = 20 basis func-
tions and ¢, (x), n=1,...,N. The left side of Fig. 4.15 presents the estimates when using
the LASSO estimator with varyingd. Also, the estimate of a Bayesian SBL algorithm is pre-
sented as a black dotted line. The right side of Fig. 4.15 shows the estimated D-optimality
for the corresponding LASSO estimate and 6. The dependency of the parameter 6 is clearly
visible. When the covariance of estimated posterior in the Bayesian framework is used, the
D-optimality is peaked at the measurement positions. For the approximated covariance a
similar behavior is only observed for an appropriate §, i.e. 6 = 0.23334 or 6 = 0.46667. If
6 is set wrong, the D-optimality criterion can not be used for exploration. In this example,
for 6 = 0.7, which might be too high, the D-optimality is minimal at x = 1.8 and focuses
more on exploitation, or alias effects might occur as for 6 = 1e — 5, which seems to be too
low, at x = 1.5. The choice of 6 depends on the applied basis function and the observed
process.

Because both covariances are similar the distributed computation are similar as well.
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Figure 4.15: The difference between the Bayesian estimated D-optimality and the approximated D-optimality
for varying 4.

If a new measurement at X is considered for (4.44), then a new row ¢ (X, M) and a new
column ¢ (X, f1) are added to @ as

_ OX, M) ¢(X, )
ox’ xm", MT,m" = X0 ) (4.45)
T EM) P& P

Then, (4.45) is used to construct a new covariance

-1

- . T
So=loTuxT,xT, M, mHAaext xT, M, m" + 1 ,  (4.46)

where ¥ is a sparsity parameter associated with a new column [¢ (X, j1) T o@EmT, A=
diag{[ A,...,A ,A]} € RMTIXM+1and 1 € R is the assumed noise precision at the pro-
——

M elements
posed measurement position.

In the previous section, only the columns of @ that belong to the active set </ con-
tribute to the approximation of the Hessian, but for the SBL framework relevant basis
functions are determined by ¥: If ¥, > 0, the corresponding column of ® is used in the
model; it can be interpreted as the corresponding column belonging to the active set,
where for SBL the active set is defined as o/ = {n € N: ¥, > 0}. Consequently, the choice
of ¥ also influences if the basis function contributes to the model or not. The choice of
¥~!is further elaborated in Appendix B.3.

Using the covariance (4.46), the D-optimality criterion in (4.4) is formulated as

i logdet{Z,, (X, M, %, i)} . 4.47
J?E%,;I‘E%\M\d ogdet{Zu( %} (4.47)

In the following steps, the dependency of X in X, is isolated to make use of the matrix
determinant lemma [143]. Also, the notation is simplified for better readability. First, X
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is isolated as

T -1 T -
S (M5 ) = o A®+T O AP(X, 1)
w ’ » -

T X, A ApT(X, X, @) +7 !
@ ™m
+A P M)

¢(X, 1)

Then, similarly to (4.19), the following is defined as

dEX,M) oX @) - (4.48)

cspL() 2O APX, 1),  bspL(p) 2 dT (X, WAGX, 1) +7 !, (4.49)

where a subscript SBL indicates that these expressions are defined for an SBL method
and are not mistaken for (4.19). Inserting the definitions (4.49) into (4.46) leads to

L4 essL(@| L |oEM
+A

Cap (i) bspL(D) e

ZoX, M%7 = STEM) PE )| (450

As can be seen in (4.50), the second term shows the contribution of the potential mea-
surement position to Z,,. Then, the same derivation steps as in Sec. 4.2.2 starting from
(4.21) follow, which lead to an elementwise computation of the D-optimality at location
X. By taking the logarithm of the objective in (4.47), the inverse changes into a minus
sign, and afterward the matrix determinant lemma [143] is applied as
-1 o
log|E. (X, M%) = —log| ¢ W
cspL() T bspr ()
-1

o c(p (X, M)
cw’ by (%, 1)

~ b
—log|1+A|pE M) ¢, )

(4.51)

Using the Schur complement gsgy,(f) = bspr (1) — csTBL(ﬁ)Z wCsBL(f1), the first term on the
right hand side in (4.51) can be reformulated as

>-1 csprL (1)
log w =—log|Z,, | +loggspL(f1). (4.52)
cspL() T bspr (ji)

The inverted block matrix in the second term on the right hand side, can be inverted by
applying inversion rules for structured matrices [116], which permit to write it as
-1
z,) csBL(f) Z .~ ZwessL() gseL(f) " esL (T2 —ZwespL(L)/ gspL(f1)

espL() T bspr(f) —cspL() T2,/ gspL(D) 1/gsgL(ft)
(4.53)



4.5. USING A SPARSE BAYESIAN MODEL FOR EXPLORATION
WITH D-OPTIMALITY 85

such that

-1
~ B =) essL()|  |PEM)
logl1+|p@m ¢@Em|| ] o
cspL(ft)"  bspL(f1) OICA )]

= log(l + A7 (& M)Z,p(E M) + A (P, 1) — cspL (i) 2, (E M) /CISBL(ﬁ))- (4.54)

Inserting (4.52) and (4.54) into (4.51), the D-optimality criterion (4.47) can be formulated
for exploration as

X = arg min loglfwl = arg max log [qSBL(fL)(l + %([JT(f, MZ,¢(x, M)
XeX, XX,
e l\M fped\M

+ MO ) - osp (@) ZupE M) ], (459)

where log|Z,,| is dropped as it is constant in X or fi.

4.5.1. D-OPTIMAL EXPERIMENT DESIGN FOR SBL AND HOMOGENEOUS

LEARNING
The structure of the approximated covariance (4.14) is similar to the covariance of the
posterior (4.44). The difference is that the term Ilin (4.44) is used instead of the term
A in (4.14). Thus, the distributed computation of the D-optimality can be applied for the
covariance of the posterior in a similar fashion.

For homogeneous learning, all agents locally know ¥ and no further distributed es-
timation of it is necessary. Likewise, the covariance X, is also known to each agent due
to the estimation. As shown in (4.38) and (4.39), the definitions in (4.19) can be refor-
mulated such that they can be computed with a consensus algorithm for homogeneous
learning. This is also true for the definitions made here in this section. Thus, the con-
sensus steps can be redefined as

K
cspL () 2 OTAP(X, 1) = Y. ©T (Xp) Ardp(Xy, f1), (4.56)
k=1
K
bspL(p) £ ¢ (X, AGX, ) +7 ' =7+ Y &7 Xi, WAL Xk, 1), (4.57)
k=1

where Ay = AT € RM-*Mk js a diagonal matrix with the precision of the measurement
noise on the diagonal (Please note that the size of this matrix depends on My). The size of
this matrix is defined by the number of measurements M, of each agent k. Subsequently,
with the definitions (4.56) and (4.57), the D-optimality criterion as shown in (4.55) can
be already estimated in a distributed fashion.

4.5.2. D-OPTIMAL EXPERIMENT DESIGN FOR SBL AND HETEROGENEOUS
LEARNING

For heterogeneous learning, every agent has its own estimated hyper parameters ¥, i.e.

fk = diag {?k} Vk=1,...,K. As a result, the definitions (4.49) cannot be used for a dis-

tributed computation of the exploration criterion (4.55). Therefore, for heterogeneous
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learning define
Hgp 2 0oT@” = Z o, I, (4.58)

k=1
dsp (%) 2 ®T (%, M) = Z o T (X, My), (4.59)
k=1
A =] K =
vspL(®) 2 ¢ (& MITE M) = Y ¢(F M) T, My). (4.60)
k=1

Analog to the derivations provided in Sec. 4.2.4, the new definitions are used to ex-
press (4.55) for heterogeneous learning. The derivations for the distributed SBL follow
the same steps as the derivations in Sec. 4.2.4. Starting by applying the matrix-inversion-
lemmato X,, as

~

Sp=T-To'A'+ole") 'er=T-Tod (A~ + Hgg) ' @T. (4.61)
Then, (4.61) is inserted into gspy,

gspL() =7 '+ T (X, WAPX, 1) — T (X, HADZ, ®T AP(X, j1)
=7 '+ " (X, WAPX, 1)
—oT (X, p)A(chq)T —oro (A + HSBL)‘ltpchT)A(p(X, B.  (4.62)
Now, (4.58) is inserted into (4.62) to apply the Woodbury identity as
gsL() =7 '+ T (X, AP X, 1)
- (PT(X, fl)A(HSBL — Hspr. (A~ + HSBL)_lHSBL)A(P(X, )

-1
=7+ o7 (X, DAGX, ) - ¢T (X, mA(A + HgBlL) AP(X, fi). (4.63)

Afterward, A can be excluded such that the Woodbury identity is applied a second time
on (4.63) such that

gssL() =7 '+ T (X, }t)( A(A+ Hg) ™! )(p(X, i)

=7 '+ (X, 1) (A + Hspr) ™ p(X, ). (4.64)

The expression (4.55) has to be reformulated into a distributed form. This is done by
looking at each summand in (4.55) separately. The first summand gsgy,(f1) is already
derived in (4.64). Next, the aforementioned definitions (4.58), (4.59), and (4.60) are used
on the second summand of (4.55) such that

AT (& MZpE M) = A" (& M) (T-Te®’ (A + Hsp) ' @T) p(X, M)
= AvspL (%) — Adspr (%) T (A" + Hspp) ™' dspy (). (4.65)
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Finally, the last term is reformulated with (4.61), (4.58), and (4.59) which yields

cseL(®) 2w (E M) = csp(x)" (T-T@®" (A~ + Hsp) ' @T) (%, M)
=¢p" (X, )A® (T -Td" (A" + Hspy) "' ®T) (%, M)
=¢" (X, A (BT P(E, M) - ®T®" (A~ + Hspr) ' ®Tp(%, M))
=¢" (X, WA (dspL(® — Hsp (A" + Hspr) " dspr (%))
=¢7 (X, A (1 — Hgp (A7'+ HSBL)_I) dspy (%) (4.66)

As alast step, the resulting summands gsgr.(f1), (4.65), and (4.66) are inserted into (4.55)
to yield the distributed criterion for the SBL method and for SOF:

X = arg max log (qSBL(ﬁ) (1+ AvspL(®) — Adspr (B)T (A~ + Hepp) ™ dspL, (%))
XeX =X

+ A9 )~ o7 X, WA (1 Hpe (A + How) ') s8] ), 467

where for a distributed calculation gspy,(f1) as in (4.64) has to be applied for SOF. The
performance evaluation of the exploration based on SBL is conducted through experi-
ments in the next chapter.

4.6. SUMMARY AND DISCUSSION

The current chapter applied the D-optimality criterion on two distribution paradigms:
heterogeneous learning (SOF) and homogeneous learning (SOE). Looking at the model
(2.9), heterogeneous learning distributes the columns of ® and the parameter weights
w in the network. In contrast, homogeneous learning distributes the rows of ® and the
measurements. This chapter presented how to accumulate the distributed data to eval-
uate the D-optimality criterion. The data accumulation is realized by simple averaged
consensus algorithms, which are well known in the literature [19, 20]. For SOE, on the
one side, the amount of communicated data depends on N — the number of used basis
functions — and the number of proposed center positions. Here, an agent doesn’'t have
to transmit the proposed next measurement locations & because the agents do not need
to know them for computing the consensus terms. For SOF, on the other side, the trans-
mitted values are dominated by M — the number of measurements — and the proposed
next measurement locations ¥ € Z. In contrast to SOE, for SOF, the proposed center
positions are not required for computing the consensus terms. However, the proposed
next measurement locations X € & of each agent have to be known to the other agents,
before the estimation of the next measurement location commences.

Furthermore, this chapter discusses how the data acquisition can also be used for
different frameworks, i.e. the Bayesian framework and the frequentist framework. Both
frameworks and distribution paradigms are evaluated in simulations. By the virtue of
the Bayesian framework, the covariance matrix of the posterior can be used in the D-
optimality criterion. For the LASSO-type estimator, the covariance of the parameter
weights has to be approximated with an active set approach. This approximation de-
pends on the penalty parameter 6 of the LASSO cost function, which has to be chosen
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before the estimation and exploration. A large § makes the parameter estimate sparser,
which is intended here. However, if § is too large, the D-optimality puts too much em-
phasis on already measured locations, see Sec. 4.2.3. This leads to less exploration and
in extreme cases the robot would repeatedly measure at the same position. Therefore,
the estimation and the exploration have to use a compromise value for 6 when using the
approximated covariance. For the Bayesian framework, all parameters and hyper pa-
rameters are computed from the data. Also, the computed covariance of the parameter
weights is used and now approximation is required. The only design choice is ¥, which
is discussed in App. B.3.

This chapter also looked at the parallelization of the evaluation of the D-optimality,
exemplified for the SOE paradigm. The division of the area based on a Voronoi tessella-
tion before each exploration step leads to a lower performance. The best performance
is yielded, if the joint D-optimality criterion is evaluated in parallel on each agent, and
if the next measurement locations and a safety area around it are excluded from preced-
ing agents. This leads to a parallelized exploration and to a more explorative behavior
in the swarm. Thus, the performance increases after an initialization phase. The par-
allelization will then be used for the experiments, which are presented in the following
chapter.

This chapter showed that the D-optimality can be evaluated for a distributed swarm
and for problems with sparsity constraints. The SOF paradigm has more flexibility in
deleting unused basis functions, such that the model complexity is kept low. In addi-
tion, SOF reached a lower NRMSE faster compared with SOE. On the other hand, SOE
requires less data to be transmitted, which might be more practical for a real system and
especially larger networks.



EXPERIMENTAL EVALUATIONS

This chapter evaluates the distributed algorithms for parameter estimations presented
in Sec. 2.4 and Chap. 3 and the exploration criteria from Chap. 4 in experiments. The
goal is to show that the whole system can be implemented in real-time and with real
sensors. To this end, this chapter demonstrates two experiments: The first experiment
is a hardware-in-the-loop experiment, which demonstrates the real-time applicability
and the effectiveness of the coordination methods presented in Sec. 4.4. The second ex-
periment adds real-sensors and obstacles to the experiment and compares the Bayesian
algorithms, see Chap. 3, with the distributed ADMM in Sec. 2.4 for both distribution pa-
radigms. Additionally, with regard to more complex environments and real agents, both
experiments require an inter-agent collision avoidance. Moreover, the experiment with
obstacles, i.e. map constraints, requires a path-planner to safely reaching a target posi-
tion. The following section presents the hardware-in-the-loop experiment, which also
evaluates the coordination methods (see Sec. 4.4.1) in an experiment.

5.1. DIFFERENT COORDINATION METHODS FOR ENTROPY DRIVEN

EXPLORATION

In Sec. 4.4.1 different coordination strategies to parallelize the exploration were dis-
cussed. The current section presents experimental validations of the last chapter’s re-
sults in a hardware-in-the-loop experiment. Hardware-in-the-loop means in this case
that the sensor readings, which are the input to the estimation, are simulated. There-
fore, the experiment will evaluate,

e if the overall setting is applicable in real-time,
e if there is influence of noisy positions on the overall setting, and
« if the coordination of the agents behaves as in the simulations.

This section starts with the detailed presentation of the experimental setup. Afterward,

89
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Figure 5.1: The Holodeck at the DLR premises. The circles highlight the VICON camera system, which is used
for indoor positioning and motion tracking.

the experimental validations are shown and compared with the simulation results of Sec.
4.4.1.

5.1.1. EXPERIMENT SETUP

In this experiment, the magnetic field on the ground of the Holodeck is explored. The
Holodeck is displayed in Fig. 5.1. For positioning of the agents, the laboratory is equipped
with a motion capture system manufactured by VICON!. In particular, 16 cameras of the
Bonita version are employed. The 16 cameras are marked by circles in Fig. 5.1. The VI-
CON system is able to position and track objects in the laboratory by observing reflecting
markers that are placed on the objects from different angles. At least four markers are re-
quired to position or track an object, e.g. a robotic platform, such that the position and
orientation of the object can be measured. If there are multiple objects to be observed,
the constellations of the reflecting markers on each object have to be unique in each
experiment.

The setup comprises three holonomic ground robots, which are in the following re-
ferred to as slider and are displayed in Fig. 5.2. The current experiment takes place in
an obstacle free map such that the experimental area comprises only these three sliders.
Each slider is manufactured by Commonplace Robotics?. The holonomic wheels enable
the slider to move in any direction without the need for turning. This simplifies the con-
troller of the slider, as each path becomes a straight line; the controller does not need to
account for dynamic constraints.

The positioning system is much more accurate than the actuators of the slider, which
makes it difficult to reach an exact position. As the controller tries to correct this, it

Ihttps://www.vicon.com/, accessed in January 2024
2https://cpr-robots. com, accessed in January 2024
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Figure 5.2: The three slider on the ground of the Holodeck.

can lead to an oscillating behavior of the slider. To avoid this oscillating behavior, the
goal position is modeled as a circle with a 10 cm radius centered at the desired point.
Although this introduces noise on the optimal measurement position, it increases the
reliability of the whole system. For computation and control, each slider is equipped
with an Intel NUC3, which is connected to the slider wheel actuators.

The software setup for this experiment is presented in Fig. 5.3. The experiment itself
is designed similar to the simulations in Sec. 4.4.1 for easier comparison. After the ini-
tialization of the system, each slider executes a sensor software, which simulates a mag-
netic field sensor to generate measurements. The sensor simulation gives more control
about the experienced noise. Therefore, the simulated sensor reads the measurement
from the ground truth, here the magnetic field, and adds i.i.d. noise to the measurement.
Once the measurements are introduced into the model, the distributed regression, see
Sec. 2.3.1, commences and eventually yields a parameter estimate. The algorithm used
for the estimation is the DLASSO, with an augmented Lagrangian parameter p = 10 and
with a sparsity parameter § = 0.5. For reasons of better interpretability, the experiment
only considers Gaussian basis functions, with a width of 0 = 0.3.

The parameter estimate together with the set of active features is then forwarded to
the distributed exploration to evaluate the D-optimality. The D-optimality is then used
in the coordination to select the measurement locations for all sliders. The coordination
strategies, which are utilized in this experiment, are segDOpt, DOpt, and voronoiRegions.
As a benchmark the meander strategy is used. For procedural reasons the distributed
regression of the magnetic field and the exploration criterion are executed on the central
computer but in separated threads such that the distributed processing is simulated.
In addition, this centralized computation facilitates the communication protocol of the
estimation and exploration because everything is synchronized.

Once, every agent has its next measurement location, it is passed as a goal position
to the controller and the collision avoidance. The collision avoidance software and the
slider controller are executed on the Intel NUC. The collision avoidance for this exper-
iment is introduced in [146] and denoted as field-of-view avoidance (FOVA). It is orig-

Shttps://www.intel.de/, accessed in January 2024
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Figure 5.3: Software setup of the experiment to test coordination strategies. Each gray box represents interac-
tions between other agents. This software setup is representative for the SOE distribution paradigm.

inally intended as an UAV collision avoidance for multi-rotor UAVs. Moreover, it is a
reactive collision avoidance and, therefore, avoids collisions with approaching agents
by circling around them, without changing the goal. If the turn direction is fixed for all
agents this algorithm is guaranteed to avoid collisions. It can be applied in this exper-
iment due to the holonomic wheels of the slider, which have similar dynamics in the
x-y-plane as that of UAVs. Yet, in this work, the FOVA is altered and specifically param-
eterized for the laboratory constraints and the inertia of the sliders. When testing the
collision avoidance, the sliders sometimes overshoot the goal position, if they have to
avoid another approaching slider. To avoid this overshooting, the agent’s velocity is re-
duced within the close surrounding of the goal position. Another amendment to the
FOVA is a monitoring if the avoidance would make the slider exit the experimental area
that is tracked by the VICON system. Otherwise, the slider would not get new position
updates and would continue to move towards the walls of the laboratory. As a solution,
the collision avoidance stops the slider instead and waits until the approaching agent
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Figure 5.4: The performance of the experiments with Gaussian basis functions for different coordination
methods. Each experiment was conducted for the same duration.

has passed. The specific parameters of the FOVA are presented in Appendix D.1 together
with more details on the algorithm. Because this experiment considers a map without
obstacles, no additional path planner is required as the best path is a straight line. If ev-
ery agent has reached its measurement location, they conduct a measurement. Each run
of one experiment takes approximately 30 min, and the NRMSE is used as an evaluation
metric, c.f. Sec. 4.2.6.

The whole experiment is controlled by a central computer because of the choice of
using the robot operating system (ROS)?. ROS is a framework for writing robotic soft-
ware, and it provides tools, libraries, and conventions to program robotic software. Es-
pecially, this experiment makes extensive use of the code conventions to distribute data
between the applications, i.e. the controller, the positioning system, the FOVA, and the
exploration.

5.1.2. EXPERIMENTAL RESULTS

The experiment has been conducted for all coordination methods, and the results are
shown in the following. Figure 5.4 displays the NRMSE curves for a single experiment
and for different coordination strategies. Figure 5.4 shows almost identical behavior
compared with the simulation results in Sec. 4.4.1. The voronoiRegions method per-
forms better compared with the simulation results in Sec. 4.4.1 in Fig. 4.14. Compared
with the other coordination methods, the parallelized D-optimality method yields the
lowest error, likewise to the simulations in Sec. 4.4.1. With regard to the number of ob-
tained measurements, the D-optimality method performs most efficiently. As expected,
the meander reaches the lowest error, but has to take about four times as many measure-
ments. Thus, the meander is less measurement efficient.

As the time for each esperimental run is approximately 30 min, the three proposed
methods are not able to make measurements as many measurements as the meander
method for two reasons. First, each of the proposed exploration methods conducts fewer
measurements compared with the benchmark because the evaluation of the covariance
is computationally expensive. This is especially visible for the D-optimality method be-

4http://www.ros.org, accessed in January 2024
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Figure 5.5: (a) The online estimate of the magnetic field during an experiment. (b) The corresponding D-
optimality criterion. In both pictures, the arrows represent the location of the slider.

cause there the exploration criterion is evaluated for the whole environment. VoronoiRe-
gions, which computes the exploration criterion for each agent on a smaller and individ-
ual region, acquires more measurements compared with the D-optimality method. Sec-
ond, the proposed exploration methods might yield positions that have a longer travel
distance such that each slider requires more time to reach its position. The meander
method, on the other side, chooses next measurement locations that are close to the
current position such that the next measurement location can be reached in less time.

Because the experiments perform all computations in real-time the estimates and
entropies can be computed at run time as well. Figure 5.5(a) shows the online estimate
of an experiment, and Fig. 5.5(b) the corresponding D-optimality criterion. The criterion
clearly shows the measurement locations, which yield a dip in the evaluated exploration
criterion — indicated in blue color. With these few measurements, the estimate looks
qualitatively similar to the ground truth.

To summarize this experiment, the meander method evaluates no criterion at all,
and is thus able to conduct more measurements than the other methods. Yet, the mean-
der method is less measurement efficient as it requires almost three times as many mea-
surements to reach the same error compared with the D-optimality. In this experiment,
this method achieves four times more measurements and almost the same NRMSE as D-
optimality. The caveat of this hardware-in-the-loop experiment is that a measurement
is not time consuming. However, if a sensor requires more time to measure, e.g. a gas-
sensor, or the sensor can only be used a limited amount, e.g. the gas chromatograph on
the Mars rover Curiosity [147, Sec. 6], then the exploration driven by the D-optimality
criterion would lead to a better and more efficient coverage of the area. Additionally,
a more effective implementation of the D-optimality would directly benefit the perfor-
mance of all algorithms. It would directly lead to more measurements and hence a bet-
ter performance; the performance of the meander method with regard to measurements
per time cannot be improved.

Regarding the coordination methods, the experiment demonstrates also that the D-
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optimality method indeed leads to a better performance in terms of measurements per
NRMSE than the sequential D-optimality at the end. However, at the beginning of the
exploration, the performance is marginally diminished compared with the sequential D-
optimality.

5.2. EXPLORATION WITH MULTIPLE GROUND ROBOTS UNDER
MAP CONSTRAINTS

The previous section showed an experiment, where three robots explored the magnetic
field intensity in the Holodeck. The purpose of this experiment was to demonstrate the
coordination methods in real-time with a hardware-in-the-loop experiment. It further-
more showed the effectiveness of the coordination methods together with the explo-
ration. The current section extends the experiment of the previous section by using real
sensors, and considers obstacles within the map. This additionally demands of a path-
planning algorithm. Another drawback of the previous experiment was the slow com-
putation of the exploration criterion. The following experiment uses an improved im-
plementation, which is described in B.2, to accelerate the evaluation of the exploration
criterion.

5.2.1. PREPARATIONS FOR THE EXPERIMENT

Before the experiment can commence, the map has to be constructed and the sensors
have to be calibrated together with the collection of a ground truth. This is presented in
the following.

MAP CONSTRUCTION

For the experiment itself, it is assumed that the map is a-priori known to the rover. Yet,
the map has to be recorded before the experiment. For this, a single rover is equipped
with a light detection and ranging (LIDAR) unit manufactured by Velodyne®, in particu-
lar a VLP-16, to scan the environment. The LIDAR emits a laser beam, by which it mea-
sures the distance to any surrounding object. This distance together with the position
of the slider, estimated by the Vicon system, is then transformed into a map. Because
the Vicon position of the slider is used for this map construction, it is simpler compared
to SLAM algorithms [148, 149]. The map is then constructed as the rover traverses the
environment. For the map construction and the use of the LIDAR, ROS packages are
used: the steering of the slider is done with the help of ROS’ navigation stack [150] to-
gether with the Teb Local Planner [151]. The map was constructed by using Octomap
[152]. In Fig. 5.6(a) a picture of the experimental setting is displayed. A white line in this
figure represents the borders of the experimental area and the placed cardboard boxes
represent the obstacles. Figure 5.6(b) shows the resulting constructed map, which is sub-
sequently used in the experiment.

SENSOR CALIBRATION
In the current experiment, each robot is equipped with a real sensor — a magnetic field
sensor by XSens — which is displayed in Fig. 5.7. The sensor is an XSens MTw inertial

Shttps://velodynelidar.com/
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(@ (b)

Figure 5.6: (a) The experimental setting with obstacles. The white line indicates the experimental area, where
the slider can navigate. (b) The constructed map.

measurement unit (IMU), which is shown in Fig. 5.7. This sensor has a three-axis magneto-
resistive magnetometer, and is a commercially available sensor package. It additionally
provides accelerometers, gyroscopes, and a barometer, which are not used in this experi-
ment.

Although both sensors are from the same
product line of the same manufacturer,
their absolute measurements differ. This
requires the sensors to be calibrated rela-
tively to each other to perceive the envi-
ronment equally. The approach used in
this thesis is described in [153] and is de-
scribed in more detail in App. E.

The authors in [153] assume that the
sensor readings of one sensor can be ex-
pressed as another sensor’s reading by a
linear transformation and rotation. This Figure 5.7: Magnetic field sensor of XSens — the Xsens
calibration is only useful if the orientation MTx.
of both sensors is constant during the ex-
periment, which applies to the experiment considered here. If the orientation of the
sensors might change due to the navigation of the agents or collision avoidance, the sen-
sors have to be intrinsically calibrated first before the aforementioned sensor alignment
can be used. For further information on intrinsic calibration of inertial and magnetic
sensors, the reader is referred to [154]. In this experiment, it is ensured that the orien-
tation of the sensors remains the same for measuring such that no further calibration is
required.

Also, the sensors react to the metal in the wheels of the robots and how the wheels
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are turned. Therefore, the sensors are attached to a wooden rod. The length of the rod
was chosen such that the influence of the wheels is minimal and that the stick is as short
as possible.

COLLECTING A NEW GROUND TRUTH

For performance evaluations, new ground truth data has to be collected using the cali-
brated sensors. For collecting the ground truth data, one slider measures the area of the
Holodeck on a grid with high resolution, where the distance between each measurement
was set to be 5cm. On each measurement position multiple sensor readings are taken
and averaged. The resulting ground truth is displayed in Fig. 5.8

Magnetic field intensity [1T]

x in [m]

Figure 5.8: Magnetic field intensity of the Holodeck collected for the experiment with real sensors. The mea-
surements were made in 5 cm steps.

5.2.2. EXPERIMENTAL SETTING

In this experiment, the exploration task is the same as in the previous experiment, yet for
the current experiment the setting changed substantially. Due to the obstacles, the space
in the laboratory becomes more limited such that only two robotic platforms are used
in this experiment. Moreover, the same robotic platforms are utilized, but they include
now a magnetic field sensor as shown in Fig. 5.9.

The whole system design for this experiment is shown in Fig. 5.10. In this figure the
previous system is extended by the map information, the A* path-planner, and the col-
lision avoidance based on the A*-algorithm. Here the popular A*-algorithm [155, 156] is
used as a path-planner, see also Appendix D.2. The previously discussed FOVA cannot be
used because it does not consider the map constraints. Thus, in this experiment a state
machine, which makes use of the A*-algorithm, is created to account for inter agent col-
lision avoidance. The state machine is designed to have alocal and a global frame, which
are shown in Fig. 5.11. If there is a goal position, a path is planned on a global frame, i.e.
the whole map, and, if there is no other robotic system in its path, the goal is reached
eventually. If another slider enters the local frame, while the robot is on its way towards
the goal, the robot stops and the path within the local frame is re-planned to avoid col-
lisions. If the planner is not able to find a solution on the local frame, the global path is

E
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Figure 5.9: The slider, which is one of three robotic platforms in this experiment. It is equipped with an Intel
NUC PC and a sensor, which is located on a wooden stick (left of the picture). On top is a lidar of the company
Velodyne, but the lidar is not used in this experiment.

re-planned taking the current slider as an obstacle into account. The path planner is rep-
resented by the yellow box in Fig. 5.10. On each slider — on the software side — runs the
motor controller, which translates the measurement locations into velocity commands
for each wheel, the path-planner, and the sensor software. Whereas the exploration and
regression is running again on a single computer but in a distributed fashion.

REGRESSION ALGORITHMS

The experiment presented in the previous Sec. 5.1 focused on different coordination
strategies, which parallelized the evaluation of the exploration criterion. In this experi-
ment two frameworks for the regression are compared with each other and their influ-
ence on the exploration. The two frameworks are the frequentist framework, where the
ADMM algorithm belongs to, and the Bayesian framework, where the D-R-ARD algo-
rithm belongs to. Both algorithms can be implemented for the homogeneous learning
paradigm and the heterogeneous learning paradigm. Thus, there are four algorithms to
compare — ADMM for SOE, ADMM for SOF, D-R-ARD for SOE, and D-R-ARD for SOF.
Table 5.1 lists where the algorithms are discussed and where the corresponding explo-
ration criterion is derived in this thesis.

5.2.3. EXPERIMENTAL RESULTS

The NRMSE of all conducted experiments with respect to time and to the number of
measurements is shown in Fig. 5.12. The performance is plotted as a scatter plot since
each experimental run has a different duration and the time that a measurement takes
is not equal due to path lengths and collision avoidance. Also, the number of mea-
surements in each experiment varies. The time steps are asynchronous as the ROS sys-
tem uses asynchronous interprocess communication, and the number of measurements
varies because the computation time for each measurement could be different. All of this
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Figure 5.10: System design with additional path planner and map constraints. Each gray box represents inter-
actions between agents. This software setup is representative for the SOE distribution paradigm.

complicates the averaging over multiple algorithm runs such that a scatter plot is more
appropriate.

As can be observed in this figure, the variation of the NRMSE for each experiment is
low, except for the D-R-ARD for SOF. For both ADMM algorithms four experiments are
displayed, whereas for each D-R-ARD algorithm two experiments are shown.

Considering the NRMSE with respect to time (the top part of Fig. 5.12), the D-R-ARD
for SOE achieves the best performance. Regarding the ADMM algorithms, the SOE para-
digm performs initially better until 1200 s until the SOF paradigm outperforms the SOE
paradigm. The weakest performance has the D-R-ARD for SOF. This follows from the
distributed structure of the algorithm, which requires computing a matrix inversion in
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Figure 5.11: This figure exemplifies the local and global frame for the path planner. The global frame is basi-
cally the whole map. The local frame is a small highlighted area around each robot. The green and blue dots
represent the calculated paths of each robot, and the arrow the target orientation. The pink dots represent the
considered measurement locations . of the robot k. Here it is the robot on the right that corresponds to the
green path.
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Figure 5.12: The NRMSE of the conducted experiments with respect to time and with respect to the number of
measurements.
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Regression introduced in  Exploration introduced in

ADMM for SOE Sec. 2.4.2 Sec. 4.2.5
ADMM for SOF Sec. 2.4.3 Sec. 4.2.4
D-R-ARD for SOE Sec. 3.2.2 Sec. 4.5.1
D-R-ARD for SOF Sec. 3.3.1 Sec. 4.5.2

Table 5.1: The algorithms that are used in this experiment and the section where they are introduced.

ADMM for SOE ADMM for SOF D-R-ARD for SOE D-R-ARD for SOF

meas 1.8 1.2 1.8 0.6

min

Table 5.2: The number of measurements per minute for each algorithm.

each of its iterations. Whereas the corresponding algorithm with the SOE distribution
paradigm requires to invert the matrix only once, which drastically increases the per-
formance. To emphasize the aspect of computational efficiency, Table 5.2 shows the
acquired measurements per minute. There, the algorithms that are distributed by the
SOF paradigm require fewer measurements because these algorithms cannot cache the
matrix inversion.

The D-R-ARD algorithms have generally a higher computational complexity com-
pared with the ADMM algorithms. This is because that the D-R-ARD algorithms utilize
the gradient and its curvature, which are also referred to as first order and second order
derivative, respectively. Using the second order derivative involves the inversion of the
Hessian, which can be computationally complex. However, the D-R-ARD algorithms re-
quire therefore fewer iterations to converge than the ADMM algorithms, which utilize
only the gradient.

Looking at the NRMSE with respect to the number of measurements (the bottom
part of Fig. 5.12), the performance of the D-R-ARD for SOF is almost equal to the ADMM
for SOF, while the ADMM for SOF is able to achieve more measurements, see also Tab.
5.2. This is explained by the computational complexity of the Bayesian framework and
the SOF paradigm, where matrix caching is not possible. Therefore, regarding the SOF
distribution paradigm ADMM for SOF is the winner.

Whereas, for the SOE distribution paradigm, the Bayesian framework performs bet-
ter. In the experiments presented here, the D-R-ARD for SOE achieved a lower NRMSE in
total, and it is more measurement efficient compared with the ADMM for SOE algorithm.
An explanation for this could be that D-R-ARD for SOE computes the covariance of the
parameter weights and does not approximate it. The computed covariance seems then
to be better for the D-optimality criterion than the approximated version for the ADMM
for SOE shown in Sec. 4.2.5. Also, the ADMM for SOE flattens out at the end, which could
result from the gridding in the model. Moreover, the sparsity regularization also intro-
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duces some error, as small weights are set to zero. These weights can then not contribute
to the prediction. Either the Bayesian methods appear to be much more robust for that,
or the ADMM methods require more time to converge if such a discretization and basis
functions are used.

To support the claim that the Bayesian framework estimates a better covariance of
the parameter weights when the SOE paradigm is applied, Figs. 5.13(a) and 5.13(b) dis-
play the estimated magnetic fields and the calculated D-optimalities, which result from
the covariance, at different time steps during the experiment. In both figures, the left
most plots display the beginning of the experiment and the most right plots show the
end result of the experiment. At the beginning of the experiments, both algorithms —
ADMM and D-R-ARD for SOE — estimate a sparse covariance with not much differ-
ence. As the number of measurements increases the approximated covariance in the
frequentist framework becomes smooth whereas the covariance estimated in the Baye-
sian framework stays sparse with respect to the used basis functions. Looking back at
Fig. 4.4 in Sec. 4.2.3 this smoothing effect seems reasonable, as § is chosen as a compro-
mise between sparsity and a reasonably well approximated covariance.

As a second conclusion, the ADMM for SOE involves a thresholding operator, which
is controlled by the same parameter §. This operator sets all not used basis functions
to zero such that in a second step these basis functions cannot be considered for the
exploration. The D-R-ARD for SOE, on the other side, estimates a hyper-parameter for
each basis function. This way, each basis function and consequently each parameter
weight have an individual sparsity parameter, which leads to a covariance that is better
conditioned.

5.3. SUMMARY AND CONCLUSION

Chapter 5 verified the theoretical results from the Chapter 3 and Chapter 4 in two exper-
iments. The first experiment considered the parallelization of the D-optimality criterion
in a hardware-in-the-loop experiment in an obstacle-free environment. Because the ex-
periment involved real robotic platforms, a reactive collision avoidance, FOVA, was uti-
lized. This experiment demonstrated that the D-optimality can be evaluated in parallel
by using the coordination methods introduced in Sec. 4.4.1. With respect to the number
of measurements, a simple parallel sampling of the D-optimality leads to a more effec-
tive exploration.

The second experiment evaluated the algorithmic frameworks — the Bayesian and
the frequentist framework — in an environment with obstacles and with real sensors. As
the environment was not obstacle-free, a path planner had to be used and a collision
avoidance that avoided the other agents and the obstacles. For both tasks an A* path
planner was used, which featured a global and a local map. Also, the sensors had to be
calibrated and a new ground-truth had to be collected.

This experiment was conducted multiple times for each of the four proposed algo-
rithms, which are defined in either the Bayesian or frequentist framework and utilize one
of the two distribution paradigms. For the homogeneous learning (SOE) the algorithm in
the Bayesian framework performed more efficient than the algorithm in the frequentist
framework. Although the algorithm in the Bayesian framework is computationally more
complex, the estimates and the resulting exploration led to a lower error although fewer
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measurements have been collected. This indicates that the measurements are more in-
formative. It might be explained by that the use of an approximated covariance seems
to be inferior to the estimated covariance within the Bayesian framework. This seems to
be particularly true for the SOE distribution paradigm. For the heterogeneous learning
(SOF) the Bayesian method was computationally too demanding and therefore did not
collect as many measurements as the corresponding algorithm in the frequentist frame-
work. When comparing the first 30 measurements, the performance of both algorithms
coincided, yet this cannot be generalized as the experiment was stopped after approx.
30 min because the NRMSE was not substantially decreasing or the time between the
next measurements became too long.

From both experiments it can be concluded that a parallel evaluation of the D-optimality
criterion is definitely useful. The experiments show that the whole system with multiple
robotic platforms, a distributed inference, and a distributed exploration criterion is real-
time applicable.
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Figure 5.13: (a) SOE with a frequentist framework. (b) SOE with a Bayesian framework. In both figures, the
upper row displays the estimates at different time steps and the lower row shows the entropy at the same time
steps.



CONCLUSION AND OUTLOOK

In this chapter, the main contribution of the thesis is summarized, followed by a reflec-
tion on the research questions that have been derived in the first chapter of this thesis.
Afterward, the limitations of this thesis are discussed, followed by an outlook and future
work.

6.1. SUMMARY OF THE MAIN CONTRIBUTION

This thesis considered the problem of using a spatially distributed robotic system or
swarm for exploratory tasks. Although the exploratory task is generic, this thesis is mo-
tivated by space exploration. Because of maintenance and control reasons, the swarm
had to autonomously decide for its measurement locations and the coordination of each
individual robotic system within the swarm. This thesis thus investigated an informa-
tion driven approach for exploration. Here, a generalized linear model, which uses basis
functions, is utilized to estimate parameter weights, from which a resulting covariance
is used for the exploration based on the theory of optimal experiment design. Addition-
ally, this thesis assumes that the parameter weights of the generalized linear model are
sparse, which means that there are more zero parameter weights than nonzero param-
eter weights, due to the following reasons: First, most processes found in nature could
be represented as a linear combination of some overcomplete basis vectors, where the
coefficients of this basis become sparse. This makes it possible to present the model in a
compact manner. Second, at the beginning of the exploration the number of measure-
ments is much smaller than the number of parameter weights, which makes the model
not uniquely identifiable without a regularization — here a sparse regularization was ap-
plied.

To learn these sparse parameter weights from the measurements in a distributed
fashion, the ADMM algorithm was selected. This algorithm can be used for multiple dif-
ferent distribution paradigms, and this thesis chose the heterogeneous learning (SOF)
and the homogeneous learning (SOE) paradigm. Here, the ADMM algorithm is applied
to a sparsity constrained problem, which makes the regularized cost function not twice

105
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differentiable. Hence, the algorithm cannot provide a covariance of the parameter weights.
Therefore, this thesis also investigated into Bayesian methods for solving sparse gener-
alized linear models and particularly SBL methods. Due to the nature of Bayesian meth-
ods, the variance of the posterior PDF of the parameter weights can be used. SBL meth-
ods of the so called type-1I were identified to be promising for the considered problem.
So in this thesis the development of distributed type-II SBL algorithms is shown based
on consensus techniques to solve for the parameter weights. In particular, this thesis
presents the derivation of distributed versions of two SBL algorithms, the FMLM and
the R-ARD, for the distribution paradigm SOE (DFMLM and D-R-ARD respectively). It
turned out that for a small number of measurements the DFMLM is not as robust as the
D-R-ARD and required more iterations to converge to a solution. For a larger number
of measurements, the DFMLM is superior to the D-R-ARD. Simulations with different
swarm topologies showed that the DFMLM has a reduced communication load com-
pared with the D-R-ARD. Nonetheless, the robustness especially for a small number
of measurements was considered to be of higher importance for the exploration, espe-
cially at the beginning, and therefore the D-R-ARD was used; the DFMLM had problems
to converge with only very few measurements.

Afterward the thesis presented the derivation of a D-R-ARD algorithm for the SOF
distribution paradigm. It happened that the distributed version of D-R-ARD required
an approximation of an intermediate variable during the estimation as it could not be
estimated in a distributed manner otherwise. This thesis shows an empirical investiga-
tion of the convergence properties of the new algorithm with the approximation for the
considered problems. The result was that the D-R-ARD for SOF converged to the same
solution. Also, multiple simulations showed that the difference between the exact and
approximated solution is negligible during the estimation. As a side effect the distribu-
ted algorithm leads to sparser results due to the used approximation at the expense of
an increase NRMSE.

The exploration utilized the D-optimality criterion, which originates from the theory
of optimal experiment design. Due to the distribution of the data — either the distribu-
tion of the measurements for SOE or the distribution of the models for SOF — this thesis
presented for both distribution paradigms the derivation of a distributed version of the
D-optimality criterion. For the cost-function that is sparsity regularized the Hessian,
which can be used as a covariance on the parameter weights, cannot be calculated. It
turns out that the sparsity induced cost-function can be altered into a Ridge-regression
based on the sparse estimates. This way, it is possible to get an approximation of the Hes-
sian matrix of the sparsity induced cost-function for the nonzero parameter estimates,
which can then be used in the D-optimality exploration criterion. The analysis shows
however that the penalty parameter for sparsity of the sparse cost-function could influ-
ence the approximation negatively if it is chosen to be too large. For the Bayesian meth-
ods, the covariance of the weight posterior PDF is used for the D-optimality criterion.
In the considered setting, it does not require an approximation and can be computed
exactly.

As the system is distributed, the exploration has to be formulated in a distributed
fashion as well. In particular, the problem was that the data is distributed within the
swarm. Therefore, this thesis showed how to estimate the D-optimality criterion for a
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potential measurementlocation for each distribution paradigm by means of a consensus
algorithm. Unfortunately, the optimization of the D-optimality criterion is NP-hard such
that this criterion has to be evaluated for each potential measurement location. This
thesis shows in simulations that the distributed D-optimality criterion leads to a better
performance than randomly selected measurement locations or a systematic traversing
of an area.

Furthermore, this thesis also investigated into the influence of different basis func-
tions on the D-optimality criterion and how to coordinate the robotic systems. One re-
sult was that the parallel sampling of the D-optimality had a better performance than the
sequential sampling. For the sequential sampling, the agents moved in turns to the loca-
tion with the lowest D-optimality, whereas in the parallel sampling the first agent moved
to the location with the lowest D-optimality, the second agent to the location with the
second lowest D-optimality, and so forth. It turned out that the parallel sampling was
more robust against the discretization effects of the environment’s gridding, which led
to aliases in the D-optimality criterion.

After the analysis of the building blocks of this work — the distributed parameter
weight estimation and the distributed exploration — experimental validations demon-
strated how the proposed system might work together. First, this thesis shows a hardware-
in-the-loop experiment, where the controller of the robotic platforms and the position-
ing system introduces position noise into the system. This experiment validated the
results from the coordination strategies without a real sensor, as the sensor might in- m
troduce additional measurement noise into the system. Thus, in a second experiment,
a sensor device was added to each robotic platform and, additionally, the environment
was populated with obstacles. Also in this experiment, the different algorithms, i.e. the
D-R-ARD and the ADMM, and their resulting D-optimality criteria were compared. The
result of this experiment showed that the estimated covariance of the Bayesian meth-
ods led to a better performance for the SOE distribution paradigm although the Baye-
sian methods are computationally more complex. For the SOF distribution paradigm,
the performance with respect to the number of measurements was not worse but the
D-R-ARD for SOF is computationally complex such that the computation is very time
demanding. Hence, the D-R-ARD for SOF was not able to acquire as many measure-
ments during the time of the experiment as the corresponding ADMM algorithm.

This summary ends by reflecting the guiding research questions from the introduc-
tion by providing comprehensive and concise answers.

Q 1:Can model based exploration applied to a swarm with a distributed structure
in real-time when using the entropy of a model’s parameters? Although the calculation
of the D-optimality and the estimation of the parameter weights require more time than
"just measuring", the experiments indicate that it is possible to use such a system for
exploration in real-time.

Q 1.1: If optimal design strategies are used for entropy driven exploration, what is
the effect of the regularization on the exploration? This work considers a sparse reg-
ularization for the parameter weight estimation such that the resulting covariance also
becomes sparse. Nevertheless, such regularizations are often controlled via a penalty
parameter in the estimation. For the parameter estimation with ADMM, as shown in
Sec. 4.2.3, the value of this penalty term can negatively influence the entropy driven ex-
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ploration. If the value of § is too high, the D-optimality results in an exploiting behavior,
i.e. the agent visits already measured locations, while if the value of § is small the D-
optimality results in an explorative behavior. However, this penalty parameter is chosen
for the estimation and not for the exploration. Consequently, this penalty parameter has
to be chosen adequately with respect to the data and the desired exploration behavior.
This is different for the Bayesian methods, as they learn the hyper parameter from the
data and for each parameter weight individually. As the hyper parameters influence on
the covariance, the D-optimality criterion results in an exploiting behavior, if there is less
information about a parameter weight. Likewise, if there is enough information about
the parameter weights, the D-optimality results in an explorative behavior.

Q 1.2: What are the benefits of a sparse regularization for the exploration with a
swarm? As zero parameter weights do not contribute to the covariance matrix, the size
of the covariance matrix becomes reduced. For the Bayesian methods, the sparse reg-
ularization lead to a more distinct exploration behavior, where the algorithm decides
between exploration and exploitation. Generally, zero parameter weights lead to a lower
computational complexity. For a distributed case, it could lead also to a smaller load
on the communication, as the matrix and vector sizes become reduced, but this has not
been investigated in this thesis.

Q 2: How should a model be distributed to be most suitable for model based explo-
ration employed for a swarm, and how well does the distributed model approximate
the measurements? The heterogeneous learning often leads to a smaller error metric
and thus leads to a better approximation, but for the estimation it requires to distribute
the measurements and intermediate steps of the estimation in the swarm. Whereas the
homogeneous learning only communicates intermediate parameter weight estimates,
and it can be implemented more efficiently, due to caching of matrix inversions. There-
fore, the exploration is equally possible with both distribution paradigms, but depend-
ing on the application the communication load can vary. The communication load is,
however, not considered in this thesis. Regarding the estimation, the heterogeneous dis-
tribution paradigm yielded the lowest error with an equal number of measurements.

Q 2.1: How do Bayesian methods perform compared with non-Bayesian methods
when applied to distributed spatial regression for swarm exploration? Bayesian meth-
ods do not approximate the covariance matrix, and the covariance matrix is not depen-
dent on a predefined penalty parameter. Hence, the exploration leads to better mea-
surement locations and consequently to a better performance. That being said, Baye-
sian methods are computationally more complex but require fewer measurements com-
pared with classical methods such as ADMM. Thus Bayesian methods are more effective
and could be used in applications where the measurement duration or cost is high, and
ADMM methods are more effective, if the measurement duration and cost is small.

Q 2.2: When using a distributed model, what data is required to communicate for
exploration and distributed spatial regression? This question cannot shortly be an-
swered, as it not only depends on the distribution paradigm but also on the used algo-
rithm. Generally speaking, for homogeneous learning the communication for estima-
tion and exploration is dominated by the number of used parameter weights and the
sparsity, whereas the estimation and exploration for heterogeneous learning is domi-
nated by the number of measurements. Tables 2.1, 3.1, and 4.1 additionally provide an
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answer to this question for the estimation with classical methods, for the estimation with
Bayesian methods, and for exploration, respectively.

6.2. DISCUSSION AND LIMITATIONS

The following chapter puts the thesis in a broader context and discusses limitations and
simplifications that have been made in this work. In particular, this thesis’ introduc-
tion started with the extraterrestrial exploration of the planet Mars. Nowadays, the fifth
rover — Perseverance [157] — and the first helicopter — ingenuity [158] — of the NASA
are roving/flying on Mars with the objective to find previous life on Mars. Furthermore,
another nation, China, landed its first Rover on Mars as well [159]. Regarding Perse-
verance, for the search of previous life on Mars this rover has cameras [160, 161], gas
chromatographs, mass spectrometers, and further sensors [162] on board, whereas this
thesis only considered the magnetic field only. However, the methods provided in this
thesis could be considered as sensor agnostic; the magnetic field was only considered
here for the simplicity in measuring and understanding of the methods investigated in
this thesis. Other static processes such as temperature distributions, a map of a distri-
bution of certain elements, and the spatial distribution of radiation could be measured
more time effectively with a higher grade of autonomy using the proposed methods. The
assumptions for these processes are that they are static or slowly changing and smooth.

The swarm aspect considered in this thesis is also becoming more and more a real-
istic. With Perseverance and Ingenuity [157, 158], two robotic platforms for exploration
have been sent to Mars as the same payload. It is therefore only reasonable, also regard-
ing to colonization plans for Mars [163, 164], that multiple robotic platforms, i.e. swarms,
will be sent to Mars. For more robotic platforms on Mars a holistic and autonomous con-
trol of the robotic platforms is crucial; and this thesis provided there some new insights
to the research field. Yet without loss of generality, this thesis considered swarms up to
a size of ten swarm elements in simulations and up to three swarm elements in experi-
ments. Regarding the experiments, the reasons for this number were mainly the space
in the laboratory and availability of robotic platforms. For the simulations the reasons
were computational complexity as the whole system was simulated on a single com-
puter. More efficient implementations could however reduce the computational load,
as partially shown in Appendix B.2.

The problem of the scalability of the swarm, e.g. increasing the number of swarm
elements or increasing the model size, has not been addressed in this thesis. For exam-
ple, if considering that each sensor has only a limited spatial view, the measurements
and the estimations could be distributed more efficiently. With regard to the scalability
of the parameter estimation, it is probably not necessary to distribute all parameters for
homogeneous learning or all measurements for heterogeneous learning. This way larger
models and swarms could be realized as the computational load is not equally increas-
ing. A realization of this might result in mixing the distribution paradigms discussed in
this thesis. The effect of this mixing on the exploration is not discussed in this thesis, but
it can be assumed that both properties of both distribution paradigms are inherited to a
mixed version. Hence, the distribution of parameter and measurements could become a
complex protocol, which should maintain where to send which measurements and pa-
rameter values for the estimation. For dynamic robotic platforms, such a protocol could




110 6. CONCLUSION AND OUTLOOK

become even more complex as the robotic platforms change their location after each
measurement. It is therefore also difficult to argue if one distribution paradigm is better
compared with the other, as for larger swarms probably mixtures of both paradigms are
employed.

As the topic presented in this thesis is highly interdisciplinary other aspects have
been simplified. The aspects of a delay due to communication and data loads for spe-
cific communication channels have been more or less neglected. Also, the thesis almost
always assumed a perfect localization of the swarm. Just recently, the introduction of a
communication delay, a load of the communication channel, and the introduction of a
localization are investigated in [14]. For the last experiment, this thesis assumed that the
map of all obstacles is known beforehand. A robotic system on Mars would require that
such a map is estimated accurately.

6.3. OUTLOOK

The following section denotes future research topics that either emerge from the results
of this thesis or that could extend the presented system. One aspect that addresses both
of the aforementioned topics would be the investigation of the scalability of a swarm
with respect to the number of swarm elements and the number of parameters. Thus,
scalability means on the one hand how the robotic systems in the swarm scale up such
that they can still explore effectively. This would involve research on mixtures of the
distribution paradigm [91] and how the estimation results can be distributed for explo-
ration. On the other hand, scalability could also be invested regarding the size of the
parameter space and the discretization of the exploration area. Both influence the com-
putational complexity of the exploration method in this thesis.

For the frequentist approach in this thesis, the hyper-parameter 6 could be further
investigated. This hyper-parameter was introduced to primarily control the degree of
sparsity, but it also controls the exploration versus exploitation ratio. The idea would be
to actively control this parameter to put more emphasis on exploration or exploitation.
This thesis assumed that ¢ is constant and that it is adjusted once for the estimation,
but it is unclear what would happen if this parameter is tuned for the evaluation of the
exploration criterion.

It would also be useful to investigate a more effective evaluation of the exploration
criterion. Currently, the exploration criterion is evaluated for each potential measure-
ment location. A gradient based evaluation of this criterion would require to convexify
the non-convex criterion or put constraints on its evaluation. Furthermore, if multiple
processes should be explored at the same time, would a superposition of exploration
criteria still be effective? In particular, the exploration of a map together with the explo-
ration of unknown processes, would be a realistic scenario because in a real scenario the
map might be unknown. In a follow-up step, the exploration could be combined with
the estimation algorithm; i.e. during the estimation algorithm, the exploration criterion
is evaluated as well. The movement of the swarm depends then of the current interme-
diate parameter estimate. Then, it might not make sense to estimate next measurement
locations, but to estimate directions, which provide — based on the current iteration —
the most information. A hypothesis could be that the robots in the swarm would traverse
a path in the environment that follows partly the gradient of the estimation and partly
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the gradient of the D-optimality.

Likewise, for a more effective evaluation of the exploration criterion, the distribution
of the agents could be exploited more. If the next measurement location should be close
to a particular agent, the whole D-optimality has not to be evaluated. Consequently
some gathered information can be left out for exploration, which reduces the computa-
tional complexity of the exploration. This way the coordination of the agents could be
integrated into this evaluation.

As another approach to the exploration, the path of the robot could be included.
When a path-planner for the navigation in a map is used, the intermediate steps in the
resulting path could also be influenced by the exploration. Then, the robotic platforms
in the swarm could decide for longer paths as they maximize the information, but at
the same time have to decide for paths such that they reach their destination. First
thoughts on single agent systems with an informative path planner have been looked
at in [140, 165]. Another question in this context would be, when to change the orig-
inal destination when information has been gathered along the trajectory; may be the
originally estimated measurement location is not useful anymore.

This work could furthermore be extended by learning the basis functions that are
used for the regression. The problem then — especially at the beginning of the explo-
ration — would be the low number of measurements because learning the basis func-
tions introduces even more unknowns to the system than measurements. Potentially,
the exploration might be influenced by learning the basis functions and vice-versa.







CROSSVALIDATION FOR THE
MAGNETIC FIELD IN THE
HOLODECK

This section briefly presents the reconstruction of a part of the magnetic field in the
Holodeck when using the ADMM algorithm. Two important parameter for the estima-
tion are 6 and o. The first parameter § controls the sparsity, i.e. the number parameter
weights that are non-zero. Thus, alarge value for 6 would result in few non-zero parame-
ter weights. The second parameter o controls the width of the Gaussian basis functions.
To find good values for these parameters, a cross validation is used.

Figure A.1 presents the reconstruction of the magnetic field in the Holodeck when
using the ADMM algorithm depending on the two parameters o and §. For generating
Fig. A.1 an SNR of 30dB is assumed and a measurement to parameter ratio of M/N =
40/400 = 0.1. With the aforementioned argumentation and with respect to to Fig. A.1
reasonable values for o and ¢ are o = [0.25...0.4] and § = [0.08...0.25]. Here o is large
enough that the basis functions spatially spans over a relatively large area, and ¢ is large
enough that the resulting estimation is sparse.

The NRMSE for each of the cross validations in A.1 is shown in Fig. A.2. There, it can
be observed that a narrow Gaussian basis function (small o) leads to a lower error, but
then the basis function can only represent a smaller area. However, if o is chosen to be
larger, less sparsity (small §) is required to yield alower NRMSE. Thus, there is no optimal
choice for either variables and a trade-off has to be made regarding the coverage of the
basis functions (o) and the sparsity regularization (6). When ¢ is chosen according to
[74, Section 5.9],i.e. § = Az v/2log(M), then 6 = 0.015. Figure A.3 evaluates the number
of measurements vs ¢ for this scenario for different SNR values. If the SNR is high, §
is low, and if the SNR is low, ¢ is large. This expresses that a low SNR requires more
regularization as the measurements are noisy. On the other side a high SNR means that
the measurements posses only little noise and therefore require less regularization.

113



114 A. CROSSVALIDATION FOR THE MAGNETIC FIELD IN THE HOLODECK

o: 0.76

o: 0.60

s
1

o:0.43

o:0.35

o 0.27

o: 0.18

o: 0.10

Figure A.1: The reconstruction of the magnetic field in the Holodeck with the LASSO solver for varying lasso
parameter § and varying kernel widths o for Gaussian basis functions.
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Figure A.3: The choice of 6 according to [74, Section 5.9] for varying SNR and number of measurements. The
black lines indicate the choice of § for the cross validation considered in Fig. A.1.
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A small remark: the parameter o is also important for the exploration because small
values of o reduce the spatial size of the Gaussian basis functions; they become nar-
rower. As the next measurement locations are chosen according to the model’s ability
to predict values at unseen locations, the model can only predict at very close locations.
Another problem can occur it the Gaussian basis function is significantly smaller than
the discretization. Then, the number of basis functions is not increased, and the pa-
rameter weights can become very large to account for measurements between the basis
functions. This leads to instabilities in the model and high variances at these locations.
Therefore, the exploration is going to consider those measurement locations more often,
although it might not be necessary.



D-OPTIMALITY FOR EXPLORATION

B.1. ADDING OF BASIS FUNCTIONS TO THE D-OPTIMALITY CRI-
TERION

The D-optimality is used to estimate new measurement locations X by solving

X = arg min det{(@T(i)fI')(f)+aI)71}, (B.1)
XexX

where ® € RM*N and a > 0 ensures through diagonal loading that the inverse always
exists. For the problems considered in this thesis, the diagonal loading yields from the
sparsity regularization of the regression problems. Due to this sparsity regularization
and due to localized basis functions, it is necessary to add also an additional column to
@ (%) as shown in the following. Consider therefore a scenario with one measurement,
M =1, and one potential new measurement, but no column is added to ®(), i.e.

(%) = , (B.2)

where u(x) € RN and v(%) € R are two measurement rows in ® € R>*", and x and % are a
measured position and a potential measurement location, respectively. Please note that
u and v are constructed by N local, yet only relevant basis functions due to the sparsity
constraints; irrelevant basis functions have been removed through the sparsity regular-
ization. In the following analysis the dependency on x is dropped for better readability.
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Then, consider
logdet{(® ®+aD™'} = ~logdet{®" ® + al}
= —logdet{uu” + v(@® v’ (% +al}
= -log{det{uu’ + alldet{l+ v’ ®@mu’ +aD'v®}}
= —logdet{uu’ + al} -logdet{1+ v’ @ (uu’ +aD'v®}.
(B.3)

The first term in (B.3) is independent of ¥ and therefore constant if the D-optimality
is optimized over X¥. The second term can be reformulated with the matrix inversion
lemma as
logdet{1+ vT@wu’ +an™! v(x)}
=logdet{1+ v (% (a_II— a lu(l+ uTa_lu)_luTa_l) v(®)}
a 2w’ @uw? }

=logdet<1 -1 2= = =
og e{ +a v a1l

a @2 + a2 v@ I lul? - a2 (v @ u)’
=logdet{ 1+ —
1+al)ul?
2 -1 2112 — (T (3 102
“logdet!1+ lv@I” |« (lv@ 11 ul® - @' @ w?) . B4
a+ |lull? a+ |ul?

Now, the last term in the determinant of (B.4) is basically a Cauchy-Schwarz inequality:
@1 ul? = 0" @w?. (B.5)

Note that from the Cauchy-Schwarz inequality, the term under the logarithm in (B.4) is
positive. As such, there are now two cases to analyze: first, either the new measurement
location X is far away from the other measurement location, or, second, X is close to the
other measurement location x.

1. If X is "far away" from x, i.e. u L v(X), and v (X)u = 0. This can be considered in
(B.4) such that

=112 -1 ~ 112 2_0
logdetd 14 LY@ o (Iv@I7ul”-0)
o+ llul? a+lul?
247! D121 l2
= logdet 1+||v(5c’)|| a”" (lv@)1*1ul®)
a+lul?
a v@I? (a+llul?)
=1 1 _ e a U@,
ogdet{ + at Ul ogdet{l+a ' lv®|°}. (B.6)

Now, if X is far away from x, the N local basis functions in the model are not de-
fined for these far location. Subsequently, under these conditions, v(X¥) becomes
zero and therefore the D-optimality yields

logdet {(® @+ aD ™'} = ~logdet{uu’ +al}. B.7)
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2. If % is close to x such that v (®)u — |[v&)|l|ull, i.e. u and v(X) are similar (for
localized basis functions, this is the case if the measurement locations are close).
Then, the last term in the determinant of (B.4) becomes zero such that

lv(®))? 0 } { lv(®)? }
logdet{1+ + =logdet{1+——". B.8
% e{ a+lul? o+l O e (B2
Thus, under these conditions the D-optimality yields
o7 d -1 T o))
logdet{(®@"' ®+al)™'} = —logdet{uu" + al}-logdet 1+W . (B9

As the D-optimality criterion, as shown in (B.1), gets minimized, it would always
measure at already measured measurement locations, as the results in (B.7) and (B.9)
indicate

lv@)?

T
—logdet{uu" +al} —logdet{l t ot al

}< ~logdet{uu’ +al}. (B.10)
Therefore, locations close to already measured locations are preferred by this criterion if
no column is added. If, however, a column at the hypothetical measurement location is
added, it is ensured that the model is defined for each considered location X as shown in
the following. When adding a column to the design matrix, it becomes

_ u’ v,

®(%, 1) = , (B.11)
v (® vE @)

where fi is the center position of a newly added local basis function. As shown in Sec.
4.2.2, the D-optimality becomes

logdet{(®"® +aD)™'} = —logdet{uu’ + al} -logq(j)

(vE ) — v (x, pu’ wu’ +ah) (D)
q(m

—logdet 1+ v @ uu’ +an™ V(%) +

(B:.:l)
(B.12)

with q(jt) = [|lv(x, j)|1? — v(x, u’ (wu’ + al)'uv’ (x, ji). Adding a column, as shown
in (B.12), adds an additional term, which considers that a new basis function can be
activated. Considering the cases from above

1. If x is far away from x, then the D-optimality yields
logdet{(®"®+aD ™'} = —logdet{uu’ + alI} -logq(f)

(B.13)

—logdet{1+ (v& ) - v pu’ @u’ + e w(@)’ }

q(p)
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Figure B.1: The resulting D-optimality for a one-dimensional environment for adding a column to ® and for
not adding a column to ®@. In each cases, the exploration algorithm would choose the minimum of either the
orange curve or the blue curve.

2. If ¥ = x, then the additional term that considers the newly added basis function
becomes zero because u and v are evaluated at the same positions. Thus the D-
optimality yields

logdet{(&)T&)—i-aI)*l}: —logdet{uuT+aI}. (B.14)

The additional term results in a more explorative behavior. Figure B.1 shows this also
graphically for one measurement position and the D-optimality evaluated along x.

B.2. FAST EVALUATION OF THE D-OPTIMALITY

The computations of the D-optimality criterion can be cumbersome if applied for each
measurement location sequentially. A vectorized computation of the criterion however
could exploit the benefits of faster computations. Considering (4.25), which is put here
again for convenience

logdet C =log|A| + log(q(p) +q(eL (X, M)A & M)
+ (PE M) - e A7 gy (% M), (B.15)

where the first log-term can be neglected as it is independent of the potential mea-
surement location X and g(ft) = b(f1) — cT(ﬁ)A’lc(fz). Please note that according to
(4.19) A™! always exists. For the following discussion the term ¢(, jt), which repre-
sents a basis function centered at fi and evaluated at a potential measurement loca-
tion X, is important. Assuming the two-dimensional case and that there are in total
T € N potential measurement locations and X = [%],...,¥L]7 € RT*? are all potential
measurement locations in matrix notation, then it is possible to construct the vector
¢(X) = [p(F, %), ..., p(Fr, %)) T € RT. The vector ¢, (X) evaluates a basis function at all
potential measurement locations, if the basis function is centered at the ¢-th potential
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measurement location ;. Then the matrix, ®(X) £ [¢;(X),...,¢7(X)] € RT*T can be
constructed, which comprises all basis functions, evaluated and centered at all potential
measurement locations. Likewise, the matrix ®(X) = (P1(X),...,p7(X)] € RM*T con-
sists of all basis functions, evaluated at all existing measured positions X but centered at
all potential measurement locations, and the matrix ®(X) £ [¢; (X),...,pn(X)] € RT*N
consists of all basis functions, evaluated at all potential measurement positions and cen-
tered at all center locations M. In the next two paragraphs, these definitions will be used
to define faster matrix calculations for multiple potential measurement locations X for
both distribution paradigms.

B.2.1. FAST EVALUATION OF THE D-OPTIMALITY FOR SOE

Now;, (B.15) will be reformulated for a faster computation for the SOE paradigm. There-
fore the following definitions, which can also be calculated with a consensus algorithm,
are introduced:

Do’ X)®, = Zcb (X, X) @, (X, X), (B.16)
k=1
b £ diag{®” (X)® (X)} = Zdlag T (Xp, X) @ (Xi, X)}, (B.17)

- - T
where ®_, € RM*!| a5 introduced in Sec. 4.2.2 and ® (X, X) = [(,blT(X),...,([JlﬂlC X)| €
RMexT is the part of the k-th agent from ® (X), i.e.

@ (X, X)
@ (X) = : . (B.18)
® (X, X)
With the term A, defined in (4.19), these defintions can then be used such that
q=b-diag{D"A™'D}. (B.19)

Then (B.15) can be formulated into a matrix vector expression (neglecting the first loga-
rithmic term) as

logdet C = log(q + q o diag{®(X) A '@’ (X)}
+ (diag{®(X)} - Sq{diag{D" A"'@(X)}})), (B.20)

where Sq{-} is an element-wise square operation on a vector and o is the Hadamard prod-
uct [166].

The computation of (B.20) involves the diag{-} function, which takes the diagonal
of a matrix. Consequently, the off-diagonal entries of this matrix are not used and the
computation can be accelerated further by exploiting Einstein-summation [167] in the
implementation. When using Einstein-summations for calculating the diagonal of a ma-
trix product, only the corresponding columns and rows are multiplied. Thus, the com-
putational complexity is reduced from quadratic to linear.
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B.2.2. FAST EVALUATION OF THE D-OPTIMALITY FOR SOF

If the SOF distribution paradigm is applied, the fast computation changes accordingly.
For convenience, the exploration criterion from Chap. 4 for the SOF distributiion para-
digm is shown here again

logdet C = log|A| +log(q
+q@ - d® "I+ )~ d®)
+HeEm-(1-HI+ D) d®)’) (B.21)
where H is defined in (4.27), d(%) in (4.28), and V(&) in (4.29). First, the term ® (X, My) =
(1 X),..., PN, (X)] € RT*Nk is defined, which represents the contribution of agent k to

® (X). Next, following an equal approach as before, the definitions, which can also be
calculated by a consensus, are introduced as

K
E2o A0 (X)=) &, X, MyA ‘e (X, M), (B.22)
k=1
~ o~ ~ K ~ o~ ~
g2 diagle XA '@’ (X} =) ©(X, M)A 0" (X, My). (B.23)
k=1

First, by using the defintion of ®(X), the Schur-Complement from before, can be defined
as

q = diag{®X)(I - H) '@ (X)}, (B.24)

where ®(X) is known to all agents by virtue of the SOF distribution paradigm. Next, the
last two terms in (B.21) are reformulated for a faster computation such that

@ -d®" I+ ' d®)|go o 7 = g0 (& - diaglE" I- D)'B), (B.25)
and

(p&Fm—-(I-HUI+H) ) d® . =Sq{diag{®(X)} - diag{(I - H (I + H))E}}.

(B.26)

2
) )for all

If the criterion (B.21) is used in a vectorized formulation, the exploration when using the
SOF paradigm is then

% =argmin log(q +qo(g - diag(E" (1 - H)'E})
+ 50 {diag {®(X)} - diag{(1 - HUI+ B)™") B}}). (B.27)

B.3. THE CHOICE OF ¥ FOR EXPLORATION

In Sec. 4.5, it is mentioned that for the exploration the choice of ! for newly added
columns influences the exploration. In the following, (4.55) is analyzed regarding the
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value of ¥~!. For convenience (4.55) is shown here again as

% =argmin log|Z,|= arg max log [qSBL(p)(l +/l<p (X, )X, (X, M))
Z, Xe&,
p:;l\M MEM\M

+ MO ) - esp () ZupE M) (B28)

The parameter ¥ > 0 only appears in b(fi), which is only used in gsp(f1). As the
logarithm is not defined for negative values, the following will evaluate ¥, if it can be
chosen such that the argument in the logarithm becomes zero. For having a positive

term inside of the logarithm, it therefore needed that
. x ~ ~ Y ~ « . ~ 2!
gspL () (1 + /MIJT(x, XN)Zwdp(x, Xn)+ A ((/)(x, i) — CSBL(II)Tzw(,b(xyXN)) =0. (B.29)

As 77! is the only term that could be chosen, it is expressed in the following. For this, the

definition gspr. (f1) = bssL(j1) — cZ5; () ZwespL (1) and bspr (i) £ ¢ (X, )AP(X, 1) + 7!
are used such that

gspL(i) (1+ AT (% XN Z 1 p(F Xn)) > “ A (o, 1) — espL () T Zwp(F Xn))

>0

(<p(x 1) — espL (i T2 0 p (%, X))
(1+ 1T (% XN Z (% X))
b =1 ~(¢E )~ espL() 2w p(F X))

(1+ 2T (% Xn)Z 0w (X Xn))
(0, i) — espr (D) Zwd(E Xn))°
(1+ 2T (% Xn)Z 0w (X Xn))

b(f) — el () Z 1w Cspr (1) = qSBL(p) =

+ Capy, (1) Z 1y CsBL (1)

OX, DTAGX, 1) +7 = -1

>0

+ Capp () Z 1y CsL (1)

(¢>(x 1) - cspL (i) T2 (% Xn)
(1 +/1¢T(x,XN)Zw(P(x,XN))

¥ [ &g (I Z 1 cspL(f) —

-oX, ) AP(X, ).
(B.30)

Thus 7! has to be larger than the right-hand side of (B.30) to ensure a positive term
within the logarithm of the exploration criterion. Also, by definition, all hyper-parameter
and, therefore also ¥ ! have to be larger than zero.

Here another remark on ¥: This parameter can also be chosen such that the agents do
more exploration or exploitation. The agents would explore more, if ¥ becomes as small
as possible. On the other side, if ¥ becomes very large, the agents would exploit more
already measured locations; the algorithm aims then at maximizing the confidence of
the already estimated values. This scenario is, however, not investigated in this thesis.







CONSENSUS ALGORITHMS

Consensus, which is also known as the distributed averaging problem, arises in the con-
text of coordination of networks of autonomous agents but also in development of distri-
buted processing algorithms, as presented in this thesis. There exist multiple realizations
of the consensus algorithm:

1. Distributed averaging in a synchronous [168] and an asynchronous fashion [169].

2. Gossip algorithms [170] and in particular randomized gossiping [171] and geo-
graphic gossiping [172], where a peer to peer connection between two nodes is
used.

3. Gossiping with eavesdropping [173], where intermediate nodes listen to the peer
to peer communication.

4. Broadcasting realizations, e.g. the broadcast weighted gossip [174].

This thesis uses the synchronous distributed averaging. Distributed averaging requires
weighting parameters for the network. The weighting parameters can be derived from
[168]

 the minimization of the spectral norm of the network, which results in a weighting
matrix with different weighting factors for each node,

* the eigenvalues of the network’s Laplacian matrix,

* or the network diameter, which is the longest path between two nodes within the
graph.

As an example, Fig. C.1(a) presents a network with the diameter of 4. The convergence of
the three aforementioned methods for the example network is presented in Fig. C.1(b).
Although this is only an example, the result coincides with the results presented in [168].
Therefore, all these three algorithms converge with a geometric rate and, with an in-
creasing number of iterations, the symmetric weights method performs best. Yet the
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Figure C.1: (a) An example network with diameter 4. (b) Error versus the number of transmissions of three
synchronous distributed averaging methods for the example network in (a).
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Figure C.2: (a) An example network (b) The performance of asynchronous distributed averaging methods for

the network presented in (a).

symmetric weights method involves an estimation of the weighting parameter for each

network.

For comparison reasons, the plot in Fig. C.2(b) displays the performance of the asyn-
chronous methods for solving the distributed averaging problem [169, 171-173] against
the network diameter method for the example network in Fig. C.2(a). This example
shows that asynchronous communication comes with a loss of performance, i.e. more
transmissions are required to achieve an equal error compared with synchronous meth-

ods.



COLLISION AVOIDANCE AND PATH
PLANNING

D.1. COLLISION AVOIDANCE

The collision avoidance was realized using a FOVA algorithm [146]. Originally, this algo-
rithm was tailored for UAVs, which are holonomic and have no obstacles except for other
UAVs. The benefit of this algorithm is that it does not necessarily require any commu-
nication between the UAVs, yet the UAVs have to see each other for distance measuring.
The FOVA can then be explained as follows.

1. Once an UAV j has been detected within the field-of-view of UAV i, the algorithm
models the UAV j by a potential field, where the center of j has the highest poten-
tial. Figure D.1(a) graphically explains the modeling of UAV i’s field of view.

It is determined by the range R € R and an angle 0 < a; < 180. Once another UAV
Jj enters the field of i, the distance d;; € R and the relative angle 0;; are estimated.
As a safety measure each UAV has an area, which models the physical dimensions
of each UAV, denoted as r; or r;.

2. The sensing UAV i also has a potential field and both fields are combined over a
system of equations to create a spring-like mechanism, which results in a force
pushing away from UAV j. The following presents the equations, but for a detailed
description and derivation the reader is referred to [146]. The first equation con-
trols the velocity Vipin < v; < Vinax € R as

Vi:Vmax_Avrn]aX(ﬁaj’ﬁdj)» (D.1)

where AV = Vipax — Vimin and 0 < ,Baj <landO=< ﬁdj <1 are so-called barrier func-
tions with respect to UAV j that depend on the relative angle 6;; and the distance
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Starting Location

1 Robot Path

By

(@) (b)

Figure D.1: (a) This figure is taken from [146] and it graphically introduces the field-of-view and the distance
variables of the FOVA algorithm. (b) This figure exemplifies a resulting potential field and a path of a UAV when
confronted with an obstacle.

d;j, respectively. The second equation controls the turning rate u;

—7T Vinax

D.2
di; (D.2)

ui=K(1- m]ax(ﬁaj,ﬁdj))(et ~0)+)_Ba;Ba;
7

with some constant K > 0 and the angle to the target 8.

3. The velocity v; and u; are then sent to the motion controller of UAV i to evade
UAV j while still going towards the target location. Figure D.1(b) exemplifies the
resulting potential field and the UAV path denoted as "Robot Path".

The original algorithm was slightly modified to account for holonomic ground vehi-
cles and for the laboraty conditions in the Holodeck. Additionally, the ground vehicles
did not have an active sensing system for distance measuring, e.g. a Lidar or stereo-
scopic camera. Thus, the limited view of the robots was simulated with positioning data
obtained from the VICON! camera system in the laboratory; the VICON system also pro-
vided the location of the agents. To account for the walls in the laboratory, the walls were
added as static "agents" to the algorithm. When using the orignal algorithm, it was ob-
served that the ground robots tend to osczillate at their target location. This is due to
the built-in controller, which cannot reach the goal perfectly. Thus, the velocity of the
ground vehicle was modified according to the distance to the goal as presented in Fig.
D.2(a). There, at a distance dj, € R the velocity was reduced until the distance Ry € R
where the velocity was set to zero. This approach removed the osczillating behaviour for
the ground vehicles.

Thttps://www.vicon.com/
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Figure D.2: (a) Velocity reduction, when reaching the target location, to avoid osczillations at the destination.
(b) Recorded test of the modified FOVA for three ground vehicles. Each vehicle drove towards to cross while
avoiding the other ground vehicles.

Figure D.2(b) presents a recorded test with three ground vehicles, which are differen-
tiated by color. Each ground vehicle moved towards the target location denoted by the
cross. The line represents the trajectory of each ground vehicle. Apparently the ground
vehicles did not collide and avoided each other by circling around each other.

D.2. A* - PATH PLANNER
The A* algorithm is according to [10] the standard search algorithm for the shortest path
problem in a graph [175]. Essentially, this algorithm minimizes the fitness function

f(n)=gn)+h(n), (D.3)

which is comprised of the terms g(n) — the spent cost of moving from start to position n -
and h(n) — a heuristic estimation of the cost of moving from 7 to the goal position. The A*
algorithm minimizes f(n) by managing two lists of open positions and closed positions.
The open positions are considered for the minimization and the closed positions contain
at the end of the algorithm the path to the goal. The whole algorithm is summarized in
Alg. 10. An example scenario is presented in Fig. D.3, where the A* algorithm finds a
path in a grid-environment.
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Algorithm 10 A* algorithm
1: open_list — Start position
2: closed_list — empty list
3: while destination not reached do

4 n—argmin f(n)Vn € open_list
n
5: if 77 == destination then
6: append closed_list by 7 return closed_list
7: else
8: Remove 7 from open_list
9: Append closed_list by 7
10: for neighboring positions m of 77 do
11: if not m € open_list then
12: Append open_list by m
11
10
9
8
7 —— path
6 ®  Start
- 5 x  Goal
41 o = obstacle
3
2
1
0

Figure D.3: Example scenario, where a solution of the A* algorithm is presented.



SENSOR CALIBRATION

The authors in [153] assume that the sensor readings of one sensor can be expressed
as another sensor’s reading by an affine transformation and rotation. A single measure-
ment taken at a position x € R® has three components; one component of the magnetic
field per Euclidean axis. The measurements of the sensors {1,2} are arranged in the vec-
tors z; € R® and z, € R3, respectively. Then a translation b € R* and rotation R € R3*3 is
computed to align z, to z; such that

z1(xm) = Rzp (%) + b, (E.1)

where x,,, means the m-th measurement location. The estimation of R and b can be
formulated as an optimization problem. Therefore, the rotation matrix R = [rlT ey rST] T
with the rows rl.T eR3, i=1,...,3, is used to formulate an optimization parameter 6 =
(r1,...,r3,bT1T € R'2 such that

21(xm) = H' (x)0, (E.2)
with
2] (Xm) O 100
H'(xpm) = 2] (xm) 0 1 0ofeR™?2 (E.3)
0 z)(xn) 0 0 1

To achieve a better calibration multiple measurement locations have to be considered.
Thus, if D € N measurement locations defined as Xp = [x1,...,xp]T € RP*3 are consid-
ered, then H(Xp) = [H'T (x)),..., H' (xp)] " € R®P*12, and Z, (Xp) = [2] (x1),..., 27 (xp)] " €
R3P. For multiple measurements (E.2) can then be formulated as a maximum likelihood
problem as

0 = argmin | H(Xp)0 — Z; (Xp) |13, (E.4)
]
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Figure E.1: (a) absolute values of the magnetic field samples of two sensors. Each sensor measured on the same
locations. (b) absolute values of the magnetic field samples after the corrections. The sensors are now aligned.

which is then solved by least squares method, see Sec. 2.1.1.

The sensor readings before the calibration are presented in Fig. E.1(a). Figure E.1(b)
displays the differences of both sensor readings before and after the calibration. It can
be seen that the used method reduces the bias and it also reduces the variance. However,
the error does not go down to zero. This is because each sensor involves non-linearities,
which cannot be considered by the affine transform of this calibration. Also electrical
components in the robots might influence the sensor readings, but this has not been
looked at.
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