

Delft University of Technology

Scheduling Workloads of Workflows in Clusters and Clouds

Ilyushkin, Alexey

DOI
10.4233/uuid:18b7ff8a-6e70-4c9b-8b8e-c5c595fd40ea
Publication date
2019
Document Version
Final published version
Citation (APA)
Ilyushkin, A. (2019). Scheduling Workloads of Workflows in Clusters and Clouds. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:18b7ff8a-6e70-4c9b-8b8e-c5c595fd40ea

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:18b7ff8a-6e70-4c9b-8b8e-c5c595fd40ea
https://doi.org/10.4233/uuid:18b7ff8a-6e70-4c9b-8b8e-c5c595fd40ea

A.S. ILYUSHKIN

S CHEDUL ING
WORKLOADS OF WORKFLOWS
IN CLUSTERS AND CLOUDS

A
.S.ILY

U
SH

K
IN

S
C
H
E
D
U
L
IN

G
W

O
R
K
L
O
A
D
S
O
F
W

O
R
K
FL

O
W

S
IN

C
L
U
ST

E
R
S
A
N
D
C
L
O
U
D
S

9 789463 662284

ISBN 978-94-6366-228-4

This dissertation addresses three key challenges that are characteristic to the online
scheduling of workloads of workflows in modern distributed computing systems.

The first challenge is the realistic estimation of the resource demand of a
workflow, as it is important for making good task placement and resource alloca-
tion decisions. Usually, workflows consist of segments with different parallelism
and different interconnection types between tasks which affect the order how the
tasks become eligible. Moreover, realistic task runtime estimates are not always
available.

The second challenge is the efficient placement of workflow tasks on com-
puting resources for minimizing average workflow slowdown while achieving
fairness. A wrongly chosen task placement policy can easily degrade the per-
formance and negatively affect the fair access of workflows to computing resources.

The third challenge is the automatic allocation (autoscaling) of computing re-
sources for workflows while meeting deadline and budget constraints. Computing
clouds make it possible to easily lease and release resources. Such decisions should
be made wisely to minimize slowdowns and deadline violations, and to efficiently
use the leased resources to reduce incurred costs.

To address these challenges, this dissertation proposes novel scheduling poli-
cies for workloads of workflows and investigates the applicability of relevant
state-of-the-art policies to the online scenario. For new policies, implementation
effort and suitability for production systems are kept in mind. The considered
workflow scheduling policies are experimentally evaluated by conducting a wide
set of simulation-based and real-world experiments on a private multicluster
computer. Additionally, a Mixed Integer Programming (MIP) approach is used to
validate the obtained real-world experimental results versus the optimal solution
from a MIP solver.

A
.S.ILY

U
SH

K
IN

S
C
H
E
D
U
L
IN

G
W

O
R
K
L
O
A
D
S
O
F
W

O
R
K
FL

O
W

S
IN

C
L
U
ST

E
R
S
A
N
D
C
L
O
U
D
S

Presentation: 14:30

Defense Ceremony: 15:00

Thursday, 19 December 2019

Senaatszaal

TU Delft Auditorium

Mekelweg 5, Delft

The Netherlands

Scheduling Workloads of Workflows

in Clusters and Clouds

Alexey Sergeyevich Ilyushkin

Scheduling Workloads of Workflows

in Clusters and Clouds

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus
Prof. dr. ir. T.H.J.J. van der Hagen,
Chair of the Board for Doctorates

to be defended publicly on
Thursday 19 December 2019 at 15:00 o’clock

by

Alexey Sergeyevich Ilyushkin

Master of Science in
Software for Computing Machinery and Automated Systems,

Penza State University, Russia,
born in Kuznetsk, Penza oblast, USSR.

This dissertation has been approved by the promotors:

Prof. dr. ir. D.H.J. Epema
Prof. dr. ir. A. Iosup

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. ir. D.H.J. Epema Delft University of Technology, promotor
Prof. dr. ir. A. Iosup VU University Amsterdam and

Delft University of Technology, promotor

Independent members:

Prof. dr. K.G. Langendoen Delft University of Technology
Prof. dr. ir. B.R.H.M. Haverkort Tilburg University
Prof. dr. E. Deelman University of Southern California, USA
Prof. dr. R. Prodan University of Klagenfurt, Austria
Dr. P. Grosso University of Amsterdam
Prof. dr. E. Visser Delft University of Technology, reserve member

The work described in this dissertation has been carried out in the ASCI graduate
school. ASCI dissertation number 409. This work was supported by the Dutch
national program COMMIT within the IV-e (e-Infrastructure Virtualization for
e-Science Applications) project. Part of this work has been done in collaboration
with the Standard Performance Evaluation Corporation (SPEC) within the Cloud
Research Group.

Keywords: scheduling, workflow, directed acyclic graph, workload, queuing theory,
slowdown, fairness, autoscaling, resource provisioning, allocation,
cluster, datacenter, cloud computing, distributed computing

Email: alexey.ilyushkin@yandex.ru

Printed by: Gildeprint B.V., Enschede, The Netherlands

Cover by: A.A. Andreev. The cover shows an artistic interpretation of a regular
matchstick graph.

Copyright c© 2019 by A.S. Ilyushkin

ISBN 978-94-6366-228-4

Typeset by the author with the LATEX document preparation system.

An electronic version of this dissertation is available at http://repository.tudelft.nl.

mailto:alexey.ilyushkin@yandex.ru
http://repository.tudelft.nl

В память о маме — Марине Юрьевне Илюшкиной.

In memory of my mother Marina Yuryevna Ilyushkina.

Contents

1. Introduction 1
1.1. Workflow Scheduling Approaches 3
1.2. Workflow Scheduling Challenges . 7
1.3. Workflow Applications . 8
1.4. Workflow Task Placement Policies 10
1.5. Workflow Resource Allocation Policies 12
1.6. Workflow Management Systems . 16
1.7. Problem Statement . 18
1.8. Research Methods . 19
1.9. Dissertation Outline and Contributions 20

2. Scheduling with Unknown Task Runtimes 23
2.1. Introduction. 23
2.2. Problem Statement . 25

2.2.1. The Model . 25
2.2.2. Performance Metrics . 25

2.3. Scheduling Policies . 26
2.3.1. Calculating the Level of Parallelism 26
2.3.2. Queue Management and Task Selection 28
2.3.3. The Strict Reservation Policy 28
2.3.4. The Scaled LoP Policy . 29
2.3.5. The Future Eligible Sets Policy 29
2.3.6. The Backfilling Policy . 30

2.4. Experiment Setup . 30
2.5. Experiment Results. 32
2.6. Related Work . 37
2.7. Conclusion . 38

3. The Impact of Task Runtime Estimate Accuracy 39
3.1. Introduction. 39
3.2. Problem Statement . 41

3.2.1. The Model . 41
3.2.2. Performance Metrics . 42

3.3. Scheduling Policies . 42
3.3.1. The Upward Rank Computation. 43
3.3.2. Greedy Backfilling . 43
3.3.3. Critical Path Prioritization. 44
3.3.4. Online Workflow Management 44
3.3.5. Fairness Dynamic Workflow Scheduling 44
3.3.6. Hybrid Rank . 44

vii

viii Contents

3.3.7. Fair Workflow Prioritization 45

3.3.8. Workload HEFT . 46

3.4. Experiment Setup . 47

3.4.1. Workloads . 47

3.4.2. Simulation Environment . 48

3.4.3. System Stability Validation 49

3.5. Experiment Results. 49

3.5.1. Performance of Dynamic Policies 50

3.5.2. Effects of Heterogeneity . 52

3.5.3. Performance of Plan-based WHEFT. 55

3.5.4. Performance of a Batch Submission 56

3.5.5. Fairness . 57

3.6. Related Work . 57

3.7. Conclusion . 59

4. An Experimental Performance Evaluation of Autoscalers 61

4.1. Introduction. 62

4.2. A Model for Elastic Cloud Platforms 63

4.2.1. Requirements . 63

4.2.2. Architecture Overview . 64

4.2.3. Workflow Applications and Deadlines 65

4.3. Performance Metrics for Autoscalers 66

4.3.1. Supply and Demand . 66

4.3.2. Accuracy . 66

4.3.3. Wrong-Provisioning Timeshare 68

4.3.4. Instability of Elasticity . 68

4.3.5. User-oriented Metrics. 69

4.3.6. Cost-oriented Metrics. 69

4.4. Autoscaling Policies . 71

4.4.1. General Autoscaling Policies 71

4.4.2. Workflow-Specific Autoscaling Policies 73

4.5. Experimental Evaluation . 75

4.5.1. Setup of Workflow-based Workloads 75

4.5.2. Setup of the Private Cloud Deployment 77

4.5.3. Experiment Configuration 78

4.5.4. Experiment Results . 79

4.5.5. Performance of Enforced Deadline-based SLAs 86

4.6. Analysis of Performance Variability 89

4.6.1. Overall . 89

4.6.2. Performance Variability per Workflow Size 91

4.7. Autoscaler Configuration and Charging Model 92

4.8. Which Policy is the Best? . 93

4.8.1. Pairwise Comparison . 93

4.8.2. Fractional Difference Comparison 93

4.8.3. Elasticity and User Metrics Scores. 94

Contents ix

4.9. Threats to Validity . 95
4.10. Related Work . 96
4.11. Conclusion . 97

5. Performance-Feedback Autoscaling 99
5.1. Introduction. 99
5.2. Problem Statement . 101

5.2.1. Autoscaling Model . 101
5.2.2. Performance Metrics . 103

5.3. Autoscalers . 104
5.3.1. Planning-First Autoscaler 104
5.3.2. Scaling-First Autoscaler . 106
5.3.3. Performance-Feedback Autoscaler 107

5.4. Experiment Setup . 111
5.4.1. Apache Airflow Deployment and Configuration 112
5.4.2. Billing Setup . 113
5.4.3. Workloads . 114

5.5. Experiment Results. 115
5.5.1. Algorithm Performance. 116
5.5.2. Workload Performance . 119
5.5.3. Elasticity Performance . 119
5.5.4. System-Oriented Performance 120
5.5.5. Autoscaling Dynamics . 122

5.6. The Optimal Solution . 123
5.6.1. Mixed Integer Programming Model 123
5.6.2. Heuristics vs. the Optimal Solution 125

5.7. Related Work . 127
5.8. Conclusion . 127

6. Conclusion 129
6.1. Conclusions . 129
6.2. Suggestions for Future Work . 131

Bibliography 133

Summary 147

Samenvatting 149

Acknowledgements 153

Curriculum Vitae 157

List of Publications 159

1

Introduction

M
any activities can be split up into multiple smaller, interconnected tasks,
which all together are often known by the general term workflow. Work-

flows are widely used in various spheres ranging from managing manufacturing
activities to orchestrating computing jobs. The history of workflows started in
the pre-electronic-computing era in the early 20th century. Even though the term
“workflow” was not yet in use at that time, the principles that underlie the mod-
ern workflow concept were already present. Originally, workflows were mostly
adopted to express the flow of materials, for example, machine parts, between
multiple workers to define supply chains and perform planning at the factory level.
Taylor, Adamiecki, and Gantt were among the first who proposed to use scientific
methods to improve industrial efficiency [151, 121, 44]. While Taylor proposed
new management approaches, Adamiecki and Gantt are mostly known for their
charts for visualizing a project schedule with dependencies between individual
tasks. One of the most prominent early examples of industrial optimization is the
introduction of mass production technologies for car manufacturing by the Ford
Motor Company. Such manufacturing-related workflows nowadays are classified as
production workflows [106]. These early developments helped to create planning
techniques for complex manufacturing processes with the goal to achieve better
work balancing, increase overall worker performance, and make the manufacturing
process continuous.

In the subsequent years, the demand for rationalization only increased, which
led to the emergence of new mathematical optimization techniques for improving
workflow performance. For example, in 1939, Kantorovich established the principles
of linear programming [93, 94] when helping to optimize plywood production. The
productivity of veneer peeling machines depended on the material being processed,
which in turn affected the final product output for this group of machines. The new
method exploited this circumstance to optimally distribute the materials among the
machines to maximize the product output. In 1947, Danzig published the Simplex
method [49] for solving linear programming problems of higher dimensionality,
which gained success due to the appearance of electronic computers. In the late

1

1

2 1. Introduction

1950s, Walker and Kelley developed the Critical Path method [95] minimizing
the project cost and completion time. This method optimized project plans by
considering the tasks lying on the longest path within a plan—the critical path.
The tasks on the critical path, which determine the lower bound of the project
duration, were given priority.

Later on, the planning and rationalization principles started to find application
in other non-purely industrial spheres, e.g., for formalizing and controlling the
flow of documents and finances within organizations [37, 69]. Such administrative
(organizational) workflow applications are currently classified as business work-
flows [36]. The progress in computing machinery and in software enriched the
tools for describing workflows in a completely digital form and further facilitated
automated planning.

Finally, workflows started to get used for automating computations, especially in
distributed systems. Such workflows are currently classified as computing workflows.
A workflow (WF), or, alternatively, a Directed Acyclic Graph (DAG), is a convenient
concept for representing complex computing jobs, as a typical distributed computing
application consists of tasks which communicate with each other. The tasks can
perform different roles, which are dictated by the objectives of the application.
While one task produces data, the dependent tasks consume them. With workflows,
it is possible to define the relationships between the tasks and to control the
execution flow.

Computing workflows represent a wide scope of application structures: parallel
applications, e.g., Message Passing Interface (MPI) applications, data processing
frameworks such as MapReduce [51], and conveniently parallel batch applications
such as bags-of-tasks [86]. The most prominent examples of modern computing
workflow applications are used in scientific research, especially in support of large-
scale physics experiments. Examples are the Large Hadron Collider (LHC), which
produced over 50 petabytes of physics data in 2016 [125] and already helped to dis-
cover the Higgs boson [20], and the Laser Interferometer Gravitational Observatory
(LIGO), which generates one petabyte of data per year [96] and helped to successfully
detect gravitational waves [21]. Of course, there are many workflow applications
in other scientific fields, such as computational chemistry and biology [129, 143].
Moreover, (often smaller) workflows are used for non-scientific applications, e.g., for
steering computations in clouds [57], processing sensor data [113], and orchestrating
Internet-of-things devices [165].

The most popular representation of workflows is by means of DAGs. In this
dissertation by job we understand the whole workflow DAG, by task we understand
a node of a workflow DAG, and by a precedence constraint we understand an edge
of the DAG connecting two tasks. The size of a workflow is defined as the number
of its tasks. A workflow task is eligible for execution when all of its ancestors,
according to the workflow structure, have completed and all the required data have
arrived over the communication links.

Figure 1.1 shows an example of a very simple workflow DAG which consists
of five nodes which represent individual computational tasks t1, t2, ..., t5 and five
edges which represent data and control dependencies (precedence constraints)
w1, w2, ..., w5. Task t1 is an entry task and task t5 is an exit task. The tasks with

1.1. Workflow Scheduling Approaches

1

3

t
1

t
2

t
3

t
4

t
5

w
1

w
2

w
3

w
4

w
5

Figure 1.1: An example of a workflow.

outgoing edges are called predecessors or parent tasks with regard to the tasks in
which these edges enter. The tasks with incoming edges are called successors or
child tasks with regard to the tasks from where these edges originate. For example,
t1 is a predecessor of t2 and t3, and t2 and t3 are successors of t1. In every workflow
DAG it is possible to distinguish basic inter-task interaction patterns which are
often observed in practice:

1. The pipeline consists of a chain of tasks each of which (except for the first
task in the chain) has only one precedence constraint in the DAG from
its predecessor in the chain. In Figure 1.1, the tasks t3 and t4 constitute
a pipeline. The data produced by task t3 are transferred via link w4 and
consumed by task t4.

2. The data distribution or map operation models a situation when multiple
tasks have precedence constraints only to a single ancestor task. In Figure 1.1,
a map operation consists of tasks t1, t2, t3 and the data transfer links between
them, namely, w1 and w2. The data produced by task t1 are distributed (or
mapped) to tasks t2 and t3 via communication links w1 and w2.

3. The data aggregation or reduce operation models a situation when a single
task has precedence constraints to multiple ancestor tasks. In Figure 1.1,
a reduce operation consists of tasks t2, t4, t5 and the data transfer links
between them, w3 and w5. The data produced independently by tasks t2 and
t4 are transferred via links w3 and w5 to task t5 for aggregation.

4. The parallel processing model or bag-of-tasks represents the parallel indepen-
dent execution of multiple tasks which do not have precedence constraints
among them. In Figure 1.1 parallel processing is represented by tasks t2 and
t3, and by t2 and t4. The tasks in either of these pairs can be executed in
parallel.

1.1. Workflow Scheduling Approaches
The growing applicability of computing workflows has led to the development of
appropriate algorithms designed for scheduling them efficiently. Workflow schedul-
ing can be seen from the task placement and resource allocation perspectives,
where by task placement we understand the mapping of tasks to computing re-
sources, and by resource allocation we understand the allocation and deallocation
of computing resources. The allocation and deallocation of resources, e.g., virtual

1

4 1. Introduction

Single
Worklow

Batch of
Worklows

Stream of
Worklows

Repeated
submissions

Stochastic
arrival process

SlowdownMakespan Fairness

Oline

Worklow
Arrival

Planning

Plan-based
Placement and

Allocation

Task Execution

Fairness

1 2

2a

Worklow Schedulers

Online

Online: Plan-based

Planning

Plan-based
Placement and

Allocation

Oline: Plan-based
1a

Task Execution

Dynamic
Placement and

Allocation

Oline: Dynamic
1b

Task Execution

Worklow
Arrival

Dynamic
Placement and

Allocation

Task Execution

2b
Online: Dynamic

Figure 1.2: A hierarchy of classes of workflow scheduling approaches for task placement and
resource allocation.

machines in a public cloud, is usually controlled automatically using autoscaling [72].
Figure 1.2 presents the hierarchy of classes of workflow scheduling approaches for
task placement and resource allocation used in this dissertation.

Originally, computing workflows were mostly executed on standalone computers
or on computing clusters and grids [100, 138, 23]. This execution model is still pop-
ular, for example, in research institutions, and it usually implies a limited number of
known users running a limited number of pre-defined workflows, possibly submitted
and executed in batches. We classify scheduling policies designed specifically for
static sets (i.e., initially present at the moment when the scheduling decisions are
made) of workflows with fully known inter-task dependencies as offline policies
(Block 1 in Figure 1.2). As the same workflows or batches of workflows are often
executed repeatedly, either the user or the scheduling system may be able to derive
reasonable estimates of the task runtimes [124, 43]. In such a situation, using not
only the fully known inter-task dependencies but also the task runtime estimates,
and, sometimes, the communication overheads between tasks, it is possible to
create a task placement and resource allocation plan beforehand [155, 170, 23, 33].
Such policies constitute the majority of the available state-of-the-art offline policies,

1.1. Workflow Scheduling Approaches

1

5

and we refer to them as offline plan-based policies (Block 1a). Another group of
offline policies, while still scheduling an initially present set of workflows, does not
construct any plan, but, instead, makes the scheduling decisions on-the-fly, e.g.,
when a task becomes eligible or a resource becomes idle [116]. We refer to such
policies as offline dynamic policies (Block 1b).

For offline policies, the most common performance metric from the end-user
perspective is the minimization of the makespan of a workflow or a batch of
workflows. For a single workflow, the makespan is defined as the time between the
start of its first task until the completion of its last task. Accordingly, for a batch of
workflows the makespan is defined as the time between the start of the first task of
any workflow in the batch until the completion of the last task of any workflow in
the batch. It is often supposed that a workflow or a batch is executed on resources
reserved beforehand exclusively for the submitting user, so that the policy is fully
aware of the number and the type of the available resources [142, 24, 164]. This
means that during the execution of workflows belonging to a certain user, no direct
interference on their performance can be observed from other users. Therefore, the
access to computing resources among multiple users is usually outside the scope
of offline policies. When scheduling a batch of workflows, the user is normally
interested in the minimization of the makespan of the whole batch rather than in
the minimization of the makespans of specific workflows within the batch.

Nowadays, computing workflows are used in a much wider scope compared
to their earlier applications in clusters and grids. They have become a popular
automation tool for controlling computations in various types of online systems, for
example, within website back-ends, in data analytics services, in computing clouds,
etc. [162, 158]. In such environments, multiple users can constantly submit their
workflow jobs, thus generating a stochastic arrival process, leading to workloads
(streams) of workflows.

In such workloads of workflow, every arrival can contain a unique workflow
structure, so that deriving statistical information on task runtimes and inter-task
communication overhead is difficult [43]. Various workflows can also have different
priorities. For example, while some workflows are responsible for running business-
critical infrastructure and are very sensitive to delays, e.g., processing of radar
data for a weather forecasting website, other workflows process auxiliary data,
e.g., user preferences in social networks which are not time-critical. Additionally,
workflows can be assigned deadlines that define the time by which each workflow
should be completed [164]. In cloud computing, the resources are paid for based
on usage, so that the user normally has a certain budget to spend on workflow
execution [119, 164]. Cloud computing services provide various types of resources
with different performance characteristics and costs. The same workflow can be
executed on different combinations of resource types, which leads to a variety of
performance and cost options. All these factors make scheduling of workloads of
workflows challenging and requires special policies [169, 77, 29]. The scheduling
of workloads of workflows can be classified as an online problem (Block 2). In
online scheduling, similarly to offline scheduling, we distinguish online plan-based
scheduling (Block 2a) and online dynamic scheduling (Block 2b). The plan-based
scheduling approach constructs a (partial) plan on every workflow arrival and

1

6 1. Introduction

strictly follows this plan to perform task placements and resource allocations
between workflow arrivals. In the dynamic approach, the scheduling decisions are
made just-in-time, e.g., when a workflow arrives, a task becomes eligible, or a
processor becomes idle.

For online policies, the response time and slowdown of workflows are more
appropriate performance metrics rather than the makespan. While the response
time captures the queuing time and the makespan, the slowdown is defined as the
ratio between the response time and the ideal makespan, e.g., when a workflow
runs in an empty system. Additionally, due to multi-tenancy, when multiple users
share the same computing resources, the scheduler is responsible for fair access of
workflows to the resources, where fairness can be defined in multiple ways, depending
on the application. For example, fairness can be interpreted as a guarantee that
a workflow obtains a share of the computing resources proportional to its (user-
defined) priority, and, accordingly, is expected to achieve better performance.
In offline scheduling, fairness is rarely addressed as it is usually supposed that
all the submitted workflows belong to the same user. The notion of fairness
partially overlaps with the notion of Service-Level Agreement (SLA), which is
usually understood as a commitment between the end-user and the service provider
regarding the quality of the provided service. Compared to fairness, SLA is a
broader notion as it usually involves service availability guarantees, responsibilities
for SLA violations, etc. [74] When using online policies, it can be problematic
to achieve fairness and meet SLAs for individual workflows due to insufficient
statistical information on historical workflow runs and limited time available for
making scheduling decisions.

In this dissertation, as a system-oriented metric we often use the maximal
utilization, which is defined as follows. First, the instantaneous utilization at any
moment in time is the ratio of the number of currently occupied resources (which
are running tasks) and the total number of available resources. When we refer to
the utilization, we usually mean the average utilization on a certain time interval
(e.g., the duration of an experiment), which is the average of the instantaneous
utilization on that interval. Due to the dependencies among workflow tasks, the
tasks may not be able to start their execution even though there are idle resources—
the tasks have to wait to become eligible. In other words, workflow scheduling is
not work-conserving. As a consequence, it will in general be impossible to achieve
a utilization of 1.0, and the system will become unstable, i.e., when the queue of
waiting workflows/tasks will grow without bounds, at utilizations lower than 1.0.
We define the imposed utilization of a specific workload with some (stochastically)
defined mix of workflows as the utilization the system will achieve under that
workload, given also its arrival rate, if the system would be able to deal with it
in a stable way. The imposed utilization can be computed from the average total
runtime of the workflows, the arrival rate, and the size of the system. If the system
is unstable, the utilization actually achieved will fall short of the imposed utilization.
Finally, we define the maximal utilization (for a given workload of workflows and
task placement policy) as the highest utilization that can be achieved, i.e., such
utilization ρm so that for any imposed utilization ρ with ρ < ρm the system is
stable (not saturated), and for any imposed utilization ρ with ρ > ρm the system

1.2. Workflow Scheduling Challenges

1

7

Scheduler

Autoscaler

Stochastic arrival process
of worklows

Users

Storage

Resources

Task

Task

Task

Data IO, status updates

Supply and demand
information

Task placement

Allocation and
deallocation

Task and
resource states

1

2

3

5

4

Figure 1.3: The general architecture of a workflow management system for online workflow
scheduling.

is unstable (saturated).
Workflows are usually scheduled and executed by specialized workflow manage-

ment systems. The general architecture of a typical workflow management system,
which we also use in this dissertation, is presented in Figure 1.3. The presented
system is supposed to be deployed in a large-scale homogeneous or heterogeneous
computing system, such as a large cluster or a datacenter. The system is subject
to an arrival stream of workflows (Component 1 in Figure 1.3). The workflows
in the stream arrive according to some stochastic process. The storage (Com-
ponent 2) stores the information on submitted workflows and their tasks. The
scheduler (Component 3) places tasks onto the computing resources. The comput-
ing resources (Component 4) are capable of running workflow tasks. The optional
autoscaler (Component 5) automatically controls the number of allocated resources.
We only consider processors as the type of system resources that can be controlled
by the scheduler, the autoscaler, or both.

1.2. Workflow Scheduling Challenges
In this dissertation, we study the problem of online scheduling workloads of
workflows which arrive over time in a distributed computing environment such as
a cloud, a cluster, or a datacenter. We see a growing demand for online dynamic
scheduling policies for workloads of workflows with support of multiple users,
as the existing state-of-the-art policies cannot provide the required performance
characteristics. While existing offline policies are not always directly applicable
to workloads due to different performance goals, state-of-the-art online plan-based
policies have potential scalability issues when dealing with sudden workload surges as
their planning overhead limits the system and workload performance [118, 119, 160].
Partially, this is the reason why modern cloud services, which are the main target of
the execution of such workloads of workflows, demonstrate significant performance
variability especially from the multi-tenancy perspective [86, 105]. We identify
and focus in this dissertation on three major challenges for online scheduling of
workflows.

1

8 1. Introduction

1. How to realistically estimate the resource demand of a workflow? Usually,
workflows consist of segments with different parallelism and different inter-
connection types between tasks which affect the order how the tasks become
eligible. Moreover, realistic task runtime estimates are not always available in
advance and can only be obtained after a real workflow execution [43] or, in
some cases, after a code analysis [99]. The user runtime estimates are often
subjective [124] and thus less useful. The knowledge of resource demand is
important for making good task placement and resource allocation decisions.

2. How to assign tasks of workflows to resources to minimize average slowdown
while achieving fairness? A wrongly chosen task placement policy can easily
degrade the performance of certain workflows in workloads and negatively
affect the fair access of workflows to computing resources [32]. Fairness is very
important in concurrent environments where multiple users simultaneously
execute their workflows, as different users could have different numbers and
types of workflows submitted. However, the efficiency of certain scheduling
policies could depend on the system utilization, and fairness can be interpreted
differently depending on user and service provider interests. For example,
jobs can be prioritized based on the total number of submitted jobs by a user,
based on the disposable budget, or on the number of tasks in the jobs, etc.

3. How to allocate resources for workflows while meeting deadline and budget
constraints? Modern computing infrastructures make it possible to easily
lease and release computing resources. Autoscaling decisions should be made
wisely to minimize slowdowns and, accordingly, minimize deadline violations.
In order to minimize incurred costs, the over-provisioning of resources during
autoscaling should be minimized, and the use of leased resources by the
placement policy should be efficient. Online scheduling makes it possible
to react to changes in the number of allocated computing resources during
the workload execution. Thus, preferably, the autoscaler and the scheduler
should operate in tandem to achieve common optimization goals without
counteracting each other.

1.3. Workflow Applications
The majority of extreme-scale workflows originate from the scientific domain. The
Pegasus project [55] has done a great job on classifying and modelling many
important scientific workflows. Figure 1.4 shows the structure of three typical
scientific workflows from different fields. The Montage workflow [90, 152, 38,
92], created by NASA/IPAC Infrared Science Archive, is used in astronomy for
processing telescope images to produce large custom mosaic images of the sky.
Various operations can be applied to the input images, for example, they can be
rotated, scaled, or their brightness can be adjusted. The geometry of the final
mosaic depends on the geometry of the input images. The workflow has a complex
structure, which is determined by the types of applied operations, and its size is
determined by the number of processed images.

The LIGO Inspiral Analysis workflow processes the data from the detectors
of the Laser Interferometer Gravitational Wave Observatory (LIGO) [22], and

1.3. Workflow Applications

1

9

...

...

...

(a) Montage

...

...

...

...

...

...

...

...

(b) LIGO

...

(c) SIPHT

Figure 1.4: The structure of the scientific workflows we use in our experiments.

searches for signals from binary inspirals—pairs of binary stars that are losing
energy or binary black holes. The workflow successfully helped to detect in 2015
gravitational waves predicted earlier by general relativity. The experiment uses
three laser interferometers and records approximately 1 TB of data per day. The
LIGO workflow is extremely parallel and consists of many smaller (sub-)workflows
combined into a single workflow. Each sub-workflow handles a block of time-
frequency data from one of the detectors with a length of 2048 seconds. For each
block, and for each detector, the workflow generates a set of template waveforms
which are used to filter the data in blocks. By matching the data to each template,
a binary inspiral signal can be detected by the high level of the signal-to-noise ratio.
The task will produce a trigger which will be validated by comparing with triggers
from other detectors.

The sRNA Identification Protocol using Highthroughput Technologies (SIPHT)
workflow [108, 38, 92] is used to search for small untranslated bacterial regulatory
sRNAs which are responsible, for example, for secretion and virulence of cells. The
structure of SIPHT workflows stays almost the same between separate workflow
instances, and only differs in the number of Patser [159] tasks which perform
matrix-based pattern matching procedure. The number of Patser tasks depends
on the input, more precisely on the number of transcription factor binding sites
(TFBSs). However, the most computationally intensive tasks are those which
compare sequence combinations.

The Large Hadron Collider is another prominent example of large-scale scientific
workflows [39, 19]. Currently, it relies on a computing grid which consists of 170
interconnected computing centers. The Tier 0 computing center is located in CERN
and processes the raw LHC data. The output from Tier 0 is consumed by twelve
Tier 1 computing centers which split the data into smaller parts which are further
processed by dependent computing centers down the grid. For each experiment
these operations are controlled by a special workflow.

In 2017 there were 6.4 billion of IoT devices in the world [126]. With the
appearance of cheap platforms such as the Raspberry Pi, esp8266, and Arduino, the
number of IoT devices continues to increase and is expected to reach 20.8 billion by

1

10 1. Introduction

Policy Name Type Year Published Reference
HEFT offline plan-based 2002 [155]
Hybrid.BMCT offline plan-based 2004 [142]
OWM online dynamic 2011 [77]
FDWS online dynamic 2012 [29]
HR online dynamic 2008 [169]

Table 1.1: An overview of task placement policies.

2020. Most of the IoT applications are represented as data transformation workflows.
For example, the location data obtained from tracking devices installed on public
transport and from mobile phones are pre-processed, filtered, and aggregated to
calculate the road situation. Or smart thermostats installed throughout a building
send temperature readings to the central heating controller which aggregates
the data and optionally reports it to the energy supplier to estimate the energy
consumption and calculate the efficiency. A similar example of a data transformation
workflow is the content delivery networks which perform video transcoding [98]
on-the-fly between the content providers, such as YouTube, and the clients. The key
difference between data transformation workflows and scientific workflows is that
the former can run the multiple chained tasks simultaneously by simply “pumping”
the data through them. However, data transformation workflows can alternatively
be decomposed into a set of classic workflows with sequentially running tasks.

Workflows are also common in data analytics frameworks, such as Hadoop [3].
For example, BTWorld [70] is a time-based big data analytics workflow for analyzing
the evolution of the BitTorrent peer-to-peer network [45]. It uses the Hadoop
distributed file system (HDFS) as a storage engine, Hadoop as an execution engine,
and Pig Latin [130] as the high-level SQL-like language that compiles automatically
into MapReduce jobs. New time-stamped records, representing snapshots of the
global BitTorrent network, are periodically added to the continuously growing
BTWorld data set. BTWorld relies on a logical workflow of seven types of SQL-like
queries executed over the data records from the dataset. The total size of data files
processed by the workflow by 2013 exceeded 14 TB. Currently, the data collected
by BTWorld during its more than 8 years of operation represent one of the largest
studies of peer-to-peer systems.

1.4. Workflow Task Placement Policies
In this section, we give an overview of relevant state-of-the-art workflow scheduling
policies specifically created for task placement, following the classification in Fig-
ure 1.2. We only discuss here offline plan-based and online dynamic task placement
policies, as, to the best of our knowledge, offline dynamic and online plan-based
policies are mostly used in combination with resource allocation, and are further
presented in Section 1.5. The policies discussed in this section are summarized in
Table 1.1, and are used further in the dissertation for comparison with the novel
proposed policies. We use several policies from each group to give an idea of their
working principle. Additional information on more relevant policies is provided in
the related work sections in each appropriate chapter.

1.4. Workflow Task Placement Policies

1

11

Before describing the workflow task placement policies, we start with introducing
some notions. Scheduling of workflows often operates with the notions of eligible
set and level of parallelism. For a workflow, at any point in time before or during
its execution, its eligible set (of tasks) is the set of non-completed tasks of which
the precedence constraints have been satisfied. In other words, the eligible set is
the set of all tasks that are currently running and those that are waiting but that
could run if sufficient resources were available. More generally, we introduce the
notion of the generation-i eligible set (or the eligible set of generation i) at any
point in the execution of a workflow, which is a potential future eligible set. The
generation-0 eligible set of a workflow is simply equal to its current eligible set. The
generation-(i+ 1) eligible set of a workflow contains all the tasks that will become
eligible when (exactly and only) all the tasks from its generation-i eligible set have
completed. It is important not to confuse eligible sets with levels in a workflow.
The levels consist of the tasks that have the same distance from the entry task.
However, the eligible sets of generation-i can differ from the levels, because paths
of different lengths can exist in a workflow from the entry task to any other single
task.

For a workflow that has not yet completed, we define its Level of Parallelism
(LoP) as the maximum number of processors it may ever use at any future point
in its execution, which is equal to the maximum number of tasks in any of its
potential future eligible sets. Of course, the LoP of a workflow can only stay the
same or decrease during its execution. The LoP can be computed exactly [79] or
approximately [83].

The upward rank is often used to prioritize tasks in workflows based on their
duration and proximity to the exit task. The upward rank requires task runtime
estimates for all the resource types and communication overhead estimates for
all the communication links to be known beforehand. Since the exit task has no
successors, its upward rank simply equals to its average estimated runtime on all the
resource types. For each task in a workflow its upward rank is recursively calculated,
starting from the exit task, as the sum of the average estimated runtime of the task
and the maximal sum (among all its immediate successors) of the upward rank
of an immediate successor and the average communication overhead between the
current task and that successor. A more detailed definition of the upward rank is
provided in Section 3.3.1. The average estimated execution time is calculated for
each task using the average speed of the processors in the system. The average
estimated communication cost is calculated as the average communication start-up
time plus the size of the data to be transmitted, divided by the average transfer
rate between the processors. The length of the critical path of a workflow is equal
to the maximum value of the upward rank among all its tasks. By workflow length
we mean the length of its critical path.

Similarly, the downward rank of a task is recursively calculated starting from
the entry task as the maximal sum, among all the immediate predecessors, of the
downward rank of an immediate predecessor, the average estimated execution time
of the predecessor, and the average communication overhead between the current
task and that predecessor. For the entry task the downward rank is zero.

We now turn to the discussion of the policies. The Heterogeneous Earliest Finish

1

12 1. Introduction

Time (HEFT) [155] is an offline plan-based policy proposed by Topcuoglu in 2002
and it is one of the most well-known heuristics for scheduling individual workflows.
Given a workflow DAG with known task runtime estimates and communication
delays between the tasks, this policy produces a task placement plan which is used
to steer the workflow execution. HEFT uses upward rank to prioritize tasks. It
adds the tasks to the plan in descending order of their upward ranks and assigns
the tasks to processors that minimize their earliest finish times.

The Hybrid Balanced Minimum Completion Time (Hybrid.BMCT) [142] is an
offline plan-based policy proposed by Sakellariou and Zhao in 2004 and consists
of two parts: Hybrid and BMCT. The Hybrid part first sorts workflow tasks in
descending order of their upward ranks, and then successively groups the tasks into
eligible sets so that each set contains tasks with no direct dependencies between
them. Each task can belong to a single eligible set only. For each workflow the
eligible sets are numbered in the order of their creation, with the eligible set
containing the entry node of the workflow having number one. The tasks from each
eligible set are assigned to processors using the BMCT list-scheduling policy with
the objective to complete the execution of all tasks as early as possible. In the
beginning, BMCT plans the tasks to the processors minimizing their execution time.
After the initial assignment, BMCT tries to optimize the plan by moving tasks
between processors to minimize the overall makespan until no further improvement
is possible.

The Online Workflow Management (OWM) [77] is an online dynamic policy
proposed by Hsu, Huang, and Wang in 2011. It maintains a single joint eligible set
containing only a single eligible task (if any) with the highest upward rank from
every workflow present in the system. As long as there are eligible tasks in the
system, the scheduler selects the task with the highest upward rank from the joint
set and tries to assign it to a processor. If the idle processors have different speeds,
the task is placed on the fastest one. If the processors have the same speed, the
policy checks for the busy processor which will be idle first, whether the task has a
lower estimated finish time on it rather than on any idle processors. If that the
case, the task is postponed, otherwise, it is placed on any of the idle processors.

The Fairness Dynamic Workflow Scheduling (FDWS) [29] is an online dynamic
policy proposed by Arabnejad and Barbosa in 2012. It maintains a single joint
eligible set in the same way as OWM. However, within the joint set each task is
prioritized based on the fraction of remaining tasks of its workflow and the workflow
length.

The Rank Hybd (HR) [169] is an online dynamic policy proposed by Yu and
Shi in 2008. The policy maintains a single joint eligible set of all the eligible tasks
from all the workflows in the system. If the tasks in the joint set belong to different
workflows, the scheduler selects the task with the lowest upward rank. If the tasks
in the joint set are from the same workflow, the algorithm selects the task with the
highest upward rank.

1.5. Workflow Resource Allocation Policies
In this section, we give an overview of different types of autoscalers for workflows—
specialized policies targeting resource allocation. The resource allocation problem

1.5. Workflow Resource Allocation Policies

1

13

Policy Name Type Year Published Reference
DSCS online plan-based 2011 [118]
PBTS online plan-based 2011 [40]
Scheduling-First online plan-based 2013 [119]
Scaling-First online plan-based 2013 [119]
IC-PCP offline plan-based 2013 [24]
DPDS offline dynamic 2015 [116]
SPSS offline plan-based 2015 [116]
DCCP offline plan-based 2017 [33]
MIP offline plan-based 2017 [164]

Table 1.2: An overview of resource allocation policies.

has attracted much attention in recent years due to the appearance of cloud
computing with its on-demand resource provisioning model. The policies considered
in this section are summarized in Table 1.2.

Autoscaling policies are usually designed to serve workloads and to operate
in an online setup by leasing and releasing computing resources on-the-fly during
execution [25]. The demand of resources is the minimal number of resources
required for delivering the service according to SLA. The resource supply is the
number of allocated (idle, booting, or busy) resources. In the context of autoscaling
for workflows, the momentary demand is usually calculated based on the number
of eligible and running tasks in all the workflows in the system. The goal of
autoscalers is to match the supply and demand so that ideally, there are always
enough resources to execute eligible tasks while not violating the SLA. Thus, when
the supply exceeds the demand, the system is over-provisioning, and when the
supply is lower than the demand, the system is under-provisioning.

Papers describing workflow scheduling policies often use overlapping approaches
when addressing both task placement and resource allocation problems. Thus, it is
often hard to draw a clear line to unambiguously classify the policies. The majority
of autoscalers for workflows are plan-based, i.e., they are usually invoked periodically
to create a resource allocation plan (and, often, a task placement plan) for the
period between successive autoscaler invocations. At the same time, a large amount
of research has been done for offline scheduling of a single workflow or a batch of
workflows. Such offline policies, despite creating complete allocation and placement
plans only once before the execution, use very similar techniques to the plan-based
online autoscalers. Thus, even though authors of offline workflow resource allocation
policies sometimes do not directly present these policies as potential autoscalers,
we include them in this section (without calling them autoscalers) as they can be
easily adapted to be used in a periodic autoscaling setup.

Additionally, we distinguish general and workflow-specific autoscalers. Gen-
eral autoscalers have been proposed for request-response applications, such as
web-servers [26, 64], and can be potentially applicable for autoscaling workloads
of workflows. Workflow-specific autoscalers have been developed specifically for
autoscaling workflows, and, for example, are aware of the workflow DAG struc-
ture [118, 40]. In this section, we focus solely on the workflow-specific autoscalers.

1

14 1. Introduction

The Dynamic Scaling-Consolidation-Scheduling (DSCS) policy [118] is an online
plan-based autoscaler which combines scheduling and allocation approaches, pub-
lished by Mao and Humphrey in 2011. DSCS is one of the first proposed autoscalers
dedicated for workloads of workflows. The policy supports soft deadlines assigned
on a per workflow basis by the user and supposes that the budget is unlimited. The
main optimization goal of DSCS is to meet as many workflow deadlines as possible
while minimizing the total operational cost. In the beginning, the policy groups
workflow tasks that share the same predecessor and prefer the same resource type,
and considers them as a single task. To improve the resource utilization, the policy
tries to plan sequential execution of certain parallel tasks, if it does not lead to the
deadline violation. Then DSCS distributes the per workflow deadline among its
tasks proportionally to their runtimes on the most cost-efficient resources. If such
assignment does not allow the workflow to finish by its deadline, DSCS tries to
reduce the workflow makespan by placing certain tasks on faster but more expensive
resources, which allow to shorten the maskespan at lowest increase in operational
cost. The resources are allocated based on so-called “load vectors”, where the load
vector represents the number of resources of a certain type required to finish the
task without violating its deadline. Finally, after resources are allocated, DSCS
plans the tasks to the resources giving priority to the tasks with earliest deadlines.

The Partitioned Balanced Time Scheduling (PBTS) policy [40] is an online
plan-based autoscaler proposed by Byun, Kee, Kim, and Maeng in 2011. The policy
creates a resource allocation and task placement plan for each “time partition”
which equals the billing period of the cloud provider, e.g., one hour. The goal
of PBTS is to minimize the operational cost within a time partition and finish
the workflow within its deadline. To minimize the operational cost, PBTS places
the tasks on resources by allowing workflow tasks to be delayed (by slack time) if
such a delay does not violate the workflow deadline. For that, PBTS, following
the workflow structure, builds a task placement plan for each time partition to
determine how the required resource demand is going to change. Then the policy
distributes the slack time over time partitions to minimize the operational cost.
Finally, PBTS approximates the required resource capacity within the target time
partition and places the tasks on the resources.

The Scheduling-First policy [119] is another online plan-based autoscaler pro-
posed by Mao and Humphrey in 2013. It is designed for autoscaling workloads of
workflows in clouds with budget constraints. Each workflow has a user-assigned
numeric priority, the budget is provided per autoscaling interval and is distributed
among all the submitted workflows based on their priority. The policy iterates
through the eligible tasks of all the workflows sorted in the descending order of
their workflow priorities, and for each task it tries to allocate the fastest resource
while there is enough budget. After that, the policy consolidates the resources by
planning the execution of the remaining eligible and not-yet eligible tasks on the
allocated resources.

The Scaling-First policy [119] is an online plan-based autoscaler proposed by
Mao and Humphrey together with Scheduling-First. It first creates an independent
per-workflow plan so that the number of resources in each plan could be bigger than
the actual maximal number of available resources in the system. Then it calculates

1.5. Workflow Resource Allocation Policies

1

15

the cost of each plan and scales it down to fit within the budget constraint. Finally,
the policy allocates the resources based on the plan information and performs the
resource consolidation.

The IaaS Cloud Partial Critical Paths (IC-PCP) policy [24] is an offline plan-
based policy proposed by Abrishami, Naghibzadeh, and Epema in 2013. The
policy is designed for planning a workflow execution in an IaaS cloud, and supposes
that the workflow has a user-specified deadline and an unlimited budget. The
optimization goal of the policy is to minimize the execution cost of the workflow,
while completing the workflow before the deadline. IC-PCP finds the critical path
in the workflow and distributes the workflow deadline among the tasks on the
critical path in proportion to their minimum runtime. After that, each task on the
critical path has a deadline assigned which is used to compute task deadlines for
all of its predecessors. Finally, the policy plans tasks on the cheapest resources
that allow to meet task deadlines.

The Dynamic Provisioning Dynamic Scheduling (DPDS) policy [116] is a offline
dynamic autoscaler proposed by Malawski in 2015. It is designed to provide
autoscaling for already present ensembles of scientific workflows during the execution,
where each workflow has a user-assigned numeric priority. In a sense, DPDS is a
transitional phase between a purely offline plan-based policies and online dynamic
policies. DPDS supports cost- and deadline-constrained provisioning of resources
of a single type only, where the deadline and the budget are provided for the whole
ensemble. DPDS calculates the number of resources to provision so that the entire
budget is consumed before the deadline. It allocates the calculated number of
resources at the beginning of the ensemble execution. Then it leases or releases
resources based on their utilization by the workflows according to given thresholds.
To schedule workflow tasks, DPDS maintains a joint eligible set in the same way
as in the aforementioned HR policy (see Section 1.4). The tasks from the set are
placed on random idle resources according to the priority of the workflow to which
they belong.

The Static Provisioning Static Scheduling (SPSS) policy [116] is an offline
plan-based policy also proposed by Malawski in the same paper as DPDS. SPSS
creates a plan for each workflow in the ensemble in priority order, and rejects any
workflow that exceeds the deadline or budget. The goal of the policy is to finish
each workflow by the deadline with the lowest possible cost to maximize the number
of workflows completed within the given budget. SPSS distributes the workflow
deadline to its individual tasks considering the slack time of the workflow, which is
the additional amount of time that a workflow can extend its critical path while
completing by the ensemble deadline. The slack time is distributed to each level of
the workflow proportionally to the number of tasks in that level and the total task
runtime in that level. The tasks are then planned on resources that minimize the
execution cost and meet the task deadlines. A new resource is allocated if there are
no slots available on the allocated resources that would allow the task to finish by
its deadline. SPSS performs resource consolidation, similarly to Scheduling-First
and Scaling-First policies, in order to increase the utilization of allocated resources.

The Deadline Constrained Critical Path (DCCP) policy [33] is an offline plan-
based policy proposed by Arabnejad, Bubendorfer, and Ng in 2017. The policy has

1

16 1. Introduction

the same goal as the IC-PCP policy. For each workflow task, DCCP calculates
its distance to the exit task, which is the number of DAG edges on the shortest
path to the exit task, and then groups the tasks with the same distance. Then
the user-defined deadline is distributed among the levels of the workflow so that
the levels with bigger task runtimes get a larger share of the workflow deadline.
DCCP relies on the notion of Constrained Critical Path (CCP) [97], which denotes
the subset of tasks laying on the critical path that are currently eligible. For
finding the critical path, the policy utilizes modified upward and downward ranks
that aggregate the communication overhead between a task and its successors
and predecessors, instead of just selecting the maximum communication overhead.
DCCP co-locates tasks from CCP that communicate within the same resource.
The tasks are planned on resources that minimize their earliest completion time
and do not exceed the level deadline.

The Mixed Integer Programming (MIP) policy [164] is an offline plan-based
policy proposed by Wang, Xia, and Chen in 2017. The goal of MIP is to minimize
the operational cost of using different types of cloud resources while ensuring the
completion of the scheduled workflows by their deadlines. In contrast to all the
considered heuristic policies, the MIP approach guarantees that the produced
solution is optimal. The policy requires task runtime estimates and formulates the
workflow scheduling problem using five MIP constraints: (i) Precedence constraints
that require the tasks to be executed in the order specified by the workflow,
(ii) Resource constraints that describe the requirements of each task to certain
resource types, and set the limits to the maximal number of resources of each type
that can be allocated, (iii) Non-overlapping constraints describe that each resource
can run only a single task at a time, (iv) Ready time constraints that specify the
time when each workflow can start its execution, and (v) Deadline constraints that
require each workflow to finish by its deadline. The policy relies on the Gurobi
MIP solver [14] for finding the solution. The policy models the decision space as a
matrix of time slots vs. resources where each element is a binary decision variable
which represents a task assignment. The precision of the solution depends on the
time discretization used.

1.6. Workflow Management Systems
Computing workflows are usually executed by specialized workflow management
systems. Even though such systems can provide different functionality, the funda-
mental properties inherent to most workflow management systems are: controlling
task execution order in accordance with the workflow structure, and scheduling and
placing of tasks on resources. Optionally, workflow management systems implement
dedicated interfaces for data exchange between tasks, and resource management
functionality.

To control the task execution order within a workflow, a workflow management
system needs to know which tasks are eligible to start their execution. To this end,
a workflow management system either periodically or in an event-driven manner
monitors task statuses. Periodic monitoring means that the tasks are periodically
polled by the workflow management system and their current status is checked.
Event-driven approach means that a task sends a message to the workflow manage-

1.6. Workflow Management Systems

1

17

ment system when it changes its state, thus, potentially enabling faster triggering
of descendants. Alternatively, a task can send messages directly to its descendants
to trigger them. Various hybrid approaches are also possible, including the modifi-
cation of inter-task dependencies during the workflow execution based on a certain
criteria. Periodic monitoring is employed by most workflow management systems,
e.g., Pegasus [17, 54], ASKALON [61], and by the more recent Apache Airflow [2].
Event-driven approach is common in serverless computing services, e.g., Amazon
Lambda [1], IBM Cloud Functions [15], and Azure Functions [5], where serverless
computing is a form of cloud computing enabling outsourcing of the operational
logic to the service provider.

The eligible tasks are placed on resources according to a scheduling policy
implemented by the workflow management system. Data can be exchanged between
tasks either in peer-to-peer manner or centrally, e.g., through a shared file system.
In any case, the workflow management system is aware about the exchanged data
if that is important for determining task eligibility. Resource management is often
performed by a specialized independent software layer, which, in some cases, can
perform automatic allocation and deallocation of resources to react and adapt to
the fluctuations in the number of eligible tasks to meet performance goals.

It is important to notice that the traditional approach, used by the majority of
standalone workflow management systems, supposes that the user is responsible
for deploying most of the software layers implementing the operational logic. In
contrast, serverless services do this job for user, guaranteeing that the workflows
are containerized, deployed, scheduled, provisioned, and available on demand, while
only charging the user for the used resources. However, all the aforementioned
workflow management systems and even the serverless computing services, require
the user to first define a workflow which will stay in the system and will further be
triggered either periodically or by an event. Thus, most of the existing systems,
even if they are capable of processing workloads of workflows, are still designed
with the offline approach in mind.

The Pegasus project [54, 55, 17] has developed a workflow management system
for scientific workflows which first appeared in 2001. The development of Pegasus
was motivated by the necessity to match the growing computational needs of
the scientific community and the available cyberinfrastructures. Pegasus supports
multiple execution engines, thus, the same workflows can be run on different physical
infrastructures such as clusters, grids, and clouds. Based on the user-provided
XML description of a workflow, Pegasus generates an executable workflow, i.e.,
the mapping of workflow tasks on the resources. The job scheduler controls the
execution flow of individual workflow jobs according to the mapping. Pegasus allows
local and remote execution of workflow tasks, possibly structured as a sub-workflow.
A separate monitoring component provides information on running workflows, tasks
and performance.

The ASKALON grid environment [61, 34] is designed specifically for execution
of workflows in dedicated datacenters and computing grids. In ASKALON, the
scheduler is responsible for processing the user-provided XML-based workflow
specification and mapping workflow tasks onto resources. The scheduler uses
HEFT as the primary scheduling policy, however, other policies are also supported.

1

18 1. Introduction

The execution process is controlled by an enactment engine which resolves the
data flow dependencies between tasks according to the mapping generated by the
scheduler. The resources are controlled by the ASKALON resource manager which
is responsible for discovering and reserving the resources based on requests from
the scheduler. ASKALON also provides functionality for predicting task runtimes
and data transfer times using the history of previous executions.

E-Science Central [75, 10] is a cloud computing platform and a service for
execution of scientific workflows, data management, analysis and collaboration with
support of private and public clouds. The platform provides a set of virtualized
services that are available to the user as a Software-as-a-Service (SaaS) application
through a Representational State Transfer (REST) interface. Workflows in e-Science
Central can be defined either graphically or using an XML-based language. The
platform allows users to upload their own services, representing workflow tasks,
which are deployed on demand by a workflow enactment engine when they are
required for workflow execution. The services exchange messages through a message
execution engine. The workflow execution engine is responsible for creating a
message plan which describes the order in which the services must be executed.

Apache Taverna [78, 4] is a workflow management system created for construct-
ing and running workflows of services. It was originally designed for executing
molecular biology workflows. Taverna workflows can be executed either locally or
remotely using the Taverna Server service, which allows sharing workflows to a
larger community of scientists. Different types of web interfaces are supported by
services, constituting user workflows. The Freefluo enactment engine is responsible
for executing the workflow based on the user-provided XML-definition, while the
scheduling of workflow tasks and control of precedence constraints are driven by
messages exchanged between workflow services.

Apache Airflow [2] is a workflow management system designed initially by Airbnb
for automating data warehousing and analytics within the company. Airflow uses
Python-based workflow descriptors which incorporate both inter-task dependencies
and the task implementation code. Airflow uses a central scheduler which runs as a
separate instance and makes decisions based on the status of workflows and tasks
obtained from the database. Local and remote task execution are supported. The
simplest way to distribute multiple workflow tasks over a set of Airflow workers
is by using the Celery [7] asynchronous task queue. More elaborated execution
models are supported with, for example, the Dask library [9] for parallel computing
in Python to automatically parallelize individual workflow tasks.

1.7. Problem Statement
The research questions we address in this dissertation cover various aspects of task
placement and resource allocation problems when dealing with the problem of online
scheduling workloads of workflows in homogeneous or heterogeneous distributed
computing environments. We identify the following research questions:

RQ1: What are appropriate policies for online scheduling of workflows without
knowledge of task runtimes? Workflow scheduling policies often rely on the knowl-
edge of task runtime estimates. However, in situations with unique arrivals, it is
not always possible to obtain such estimates. When the task runtime estimates are

1.8. Research Methods

1

19

unknown, the workflows and workflow tasks can be still prioritized in different ways
using alternative performance metrics, and various resource reservation schemes
can be utilized.

RQ2: How do inaccurate task runtime estimates affect the performance of
workflow scheduling algorithms? In situations when it is possible to obtain task
runtime estimates, for example, when tracking and analyzing repeated workflow
submissions, the quality of such estimates can vary. The impact of inaccuracy in
task runtime estimates is rarely addressed by the designers of workflow scheduling
policies. Usually, fully correct task runtime estimates are assumed. Inaccuracies in
runtime estimates can have a different performance impact depending on statistical
characteristics of workloads and the heterogeneity of the system.

RQ3: What is the performance of general versus workflow-specific autoscalers?
Many general autoscalers which are agnostic to the controlled application types
have been proposed. They are general because they mostly make their decisions
using only external properties of the controlled system, e.g., workload arrival rates,
or the output from the system, e.g., response time. At the same time, a variety of
workflow-specific autoscalers have been proposed, which have access to the workflow
structure, task runtime estimates, etc., and, supposedly, are able to better predict
future resource demand.

RQ4: What are the performance benefits of feedback mechanisms in online
scheduling of workflows? Online scheduling of workloads of workflows may benefit
from using a feedback loop on performance metrics for making scheduling decisions.
Various performance metrics can be calculated on-the-fly during the workflow
execution. For example, if task runtimes are not available, the task throughput and
past CPU time consumption can be analyzed, and, if task runtimes are available,
the slowdown of the already finished part of the workflow can be determined. These
approaches have not been previously applied to online workflow scheduling.

1.8. Research Methods
The research presented in this dissertation was supported by the Infrastructure
Virtualization for e-Science applications (IV-e) project of the national Dutch
COMMIT program [8]. E-Science is a computationally intensive science that is
carried out in highly distributed computing environments where workflows are
commonly used. We choose scientific workflows described by the Pegasus project as
the main workload for our study. These workflows fit nicely within the considered
e-Science paradigm, are publicly available and well defined, and are widely used by
the research community.

For studying workflow scheduling policies, we use both simulations and real-
world experiments. With the task placement policies in Chapters 2 and 3, we
use simulations, as, in contrast to real-world experiments, simulations allow for
testing the considered policies with a much larger number of configurations, e.g.,
under different system utilizations. For this purpose, we have developed a custom
simulator based on the DGSim simulator [84], which was created in the Distributed
Systems group of the Delft University of Technology.

For studying the autoscaling policies in Chapters 4 and 5, we execute real-world
experiments with an actual workflow management system. Sacrificing the number

1

20 1. Introduction

of parameters that can be evaluated, real-world experiments usually produce more
representative results, as they, for instance, incorporate the possible overheads
caused by the involved software layers.

For the experiments in Chapter 4, we extend the Koala grid scheduler [62], also
developed in the Distributed Systems group of the Delft University of Technology,
by adding support to it for the execution of workflows defined in the XML format.
In Chapter 5, we extend the code of the Apache Airflow workflow management
system [2] to incorporate resource allocation. To speed-up the experiments and
test more system configurations, in Chapter 5 we emulate resource allocation while
using the actual Airflow [2] workflow management system. By such emulation we
mean that the workflow management system continuously runs a set of resources,
while marking the resources as allocated or deallocated instead of starting them up
or shutting them down.

We run all our experiments on the DAS-4 multicluster system [35]. Using
this private system minimizes the effects of background load, which is common
in public clouds [86]. For the cloud experiments in Chapter 4, we rely on the
OpenNebula [123] cloud computing platform deployed on DAS-4. In Chapter 5,
to validate the experimental results obtained from the Airflow system against the
optimal solution, we use a Mixed Integer Programming (MIP) optimization model
and implement it in the popular Gurobi solver [14].

1.9. Dissertation Outline and Contributions

In this section, we present the structure of the dissertation and our contributions
as the answers to the four research questions stated in Section 1.7.

Scheduling Workloads of Workflows with Unknown Task Runtimes. In Chap-
ter 2 we answer RQ1 by proposing a family of four novel online workflow scheduling
policies. The proposed policies include a greedy backfilling policy, which schedules
any eligible task of any workflow in the system, and three policies that employ
different forms of processor reservation. The main distinguishing feature of the four
scheduling policies we propose is to what extent they are greedy in scheduling any
task of any workflow in the queue versus to what extent they reserve processors
for workflows towards the head of the queue in order not to unduly delay these
workflows. To be able to make processor reservations, we propose a method for the
realistic estimation of workflow level of parallelism. We simulate a homogeneous
computing system where we execute the proposed policies with synthetic workloads
of realistic workflows. As main metrics we use the average workflow slowdown
and the maximal utilization that can be achieved. Our results show that even
at moderate imposed utilizations, the greedy backfilling policy achieves better
performance compared to the policies which use processor reservation. This chapter
is based on our publication:

Alexey Ilyuskin, Bogdan Ghit
,
, Dick Epema, “Scheduling Workloads of Workflows with Unknown

Task Runtimes”, IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2015.

1.9. Dissertation Outline and Contributions

1

21

The Impact of Task Runtime Estimate Accuracy on Scheduling Workloads of
Workflows. In Chapter 3 we answer RQ2 by scheduling workloads of workflows
with varying accuracy of task runtime estimates that are available to the scheduler.
We implement four state-of-the-art online dynamic workflow scheduling policies,
and propose two novel online dynamic policies, one of which addresses fairness, and
the other one is our adaptation of the popular offline plan-based HEFT policy to
the online plan-based case. Additionally, we describe two methods for automatic
validation of system stability. We simulate a heterogeneous computing system and
use two workloads, where the first workload consists of realistic workflows and the
second one consists of random workflows. In our results, we can clearly see that the
knowledge of task runtime estimates gives significant performance improvement
in the average job slowdown for the considered dynamic online policies, but only
at extremely high utilizations. Our fairness-oriented policy effectively decreases
the variance of job slowdown and thus achieves fairness. The adapted HEFT
policy demonstrates poor performance compared to dynamic online policies and
brings extra complexity to the scheduling process. We conclude that at moderate
utilizations, simpler backfilling-based policies that do not use task runtime estimates
show comparable performance to more advanced policies. This chapter is based on
our publication:

Alexey Ilyuskin, Dick Epema, “The Impact of Task Runtime Estimate Accuracy on Scheduling
Workloads of Workflows”, IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2018 (best paper award nomination).

An Experimental Performance Evaluation of Autoscalers. In Chapter 4 we
answer RQ3 by experimentally evaluating five state-of-the-art general autoscalers
and two novel workflow-specific autoscalers. Moreover, we present and refine
performance metrics endorsed by the Standard Performance Evaluation Corporation
(SPEC) [73] for assessing autoscalers, and define three approaches for comparing
the autoscalers using the considered metrics. The experimental results show that
general autoscalers can demonstrate comparable performance to workflow-specific
autoscalers, if the former have access to workload statistics. The workflow-specific
autoscalers, in turn, require task or workflow runtime estimates. As many workflows
have deadline requirements on the tasks, we additionally investigate the effect of
autoscaling on meeting workflow deadlines. Besides that, we look into the effect
of autoscaling on the accounted and hourly-based charged costs, and evaluate
performance variability caused by the autoscaler for various groups of workflow
sizes. Our results highlight the trade-offs between the suggested policies, their
impact on meeting the deadlines, and their performance in different operating
conditions. This chapter is based on our two publications:

Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessandro V. Papadopoulos, Bogdan Ghit
,
,

Dick Epema, and Alexandru Iosup, “An Experimental Performance Evaluation of Autoscaling Poli-
cies for Complex Workflows”, ACM/SPEC International Conference on Performance Engineering
(ICPE), 2017 (best paper award nomination).

Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, André Bauer, Alessandro V. Papadopoulos,
Dick Epema, and Alexandru Iosup, “An Experimental Performance Evaluation of Autoscalers for
Complex Workflows”, ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), Vol. 3, No. 2, 2018.

1

22 1. Introduction

Performance-Feedback Autoscaling for Workloads Workflows. In Chapter 5 we
answer RQ4 when applied to the autoscaling problem. We compare two state-of-the-
art online plan-based autoscalers with our novel online dynamic autoscaler. To make
autoscaling decisions, this novel autoscaler analyzes historical task throughput
and uses the not yet finished part of the workflow, instead of relying on task
runtime estimates, as observing task throughput normally requires less effort than
obtaining task runtime estimates. We emulate a heterogeneous cloud system
with two independent users and use two workloads with different task runtime
distributions. Overall, our approach shows lower time complexity and effectively
minimizes workflow slowdowns compared to the state-of-the-art autoscalers. The
usage of historical throughput information provides fairly accurate estimation
of resource speeds when dealing with workloads with a long-tailed task runtime
distribution. We additionally validate the experimental results by comparing the
workflow slowdowns obtained from an actual workflow management system with an
optimal solution obtained from solving the problem described as a mixed integer
programming model. This chapter is based on our publication:

Alexey Ilyushkin, André Bauer, Alessandro V. Papadopoulos, Ewa Deelman, and Alexandru
Iosup, “Performance-Feedback Autoscaling with Budget Constraints for Cloud-based Workloads
of Workflows” (under review).

Conclusions. In the final Chapter 6 we summarize the main findings of this
dissertation and provide suggestions for future work.

2

Scheduling with

Unknown Task Runtimes

W
orkflows are important computational tools in many branches of science,
and because of the dependencies among their tasks and their widely different

characteristics, scheduling them is a difficult problem. Most research on scheduling
workflows has focused on the offline problem of minimizing the makespan of single
workflows with known task runtimes. The problem of scheduling multiple workflows
has been addressed either in an offline fashion, or still with the assumption of
known task runtimes. In this chapter, we study the problem of scheduling workloads
consisting of an arrival stream of workflows without task runtime estimates. The
resource requirements of a workflow can significantly fluctuate during its execution.
Thus, we present four scheduling policies for workloads of workflows with as their
main feature the extent to which they reserve processors to workflows to deal with
these fluctuations. We perform simulations with realistic synthetic workloads and
we show that any form of processor reservation only decreases the overall system
performance and that a greedy backfilling-like policy performs best.

2.1. Introduction
Workflows are widely used for all kinds of computational and data analysis problems
in many branches of science such as astronomy and bioinformatics. Because of the
dependencies among their tasks and because of the diversity of their structures,
sizes, and task runtimes, scheduling workflows efficiently on clusters and datacenters
is a difficult problem. Most research on scheduling workflows focuses on the offline
problem of minimizing the makespan of single workflows for which estimates of the
task runtimes are known. In contrast, in this chapter we propose four scheduling
policies for online scheduling workloads consisting of arriving workflows with
unknown task runtimes, and we perform simulations to evaluate their performance.

The problem of minimizing the makespan of single workflows has been studied
very extensively, usually assuming that the task runtimes are known. Well-known

23

2

24 2. Scheduling with Unknown Task Runtimes

approaches for task selection when resources become available are the HEFT
policy [155] that schedules each workflow task on the processor that minimizes
its finish time, and policies that try to optimize the schedule of the critical path
of a workflow [100, 138, 23]. Scheduling multiple workflows has received some
attention in the past. However, some of this work still considers the offline problem
of minimizing the total makespan of a fixed set of workflows, without or with the
added requirement of fairness [170]. Other work does consider the online problem
with an arrival stream of workflows but translates the problem into scheduling and
executing complete batches of workflows before considering later arrivals [76], or
builds a single DAG from the DAGs representing a set of workflows [169]. In this
chapter, we study the online problem of scheduling an arrival stream of workflows,
which in addition to the problem of task selection involves the problem of workflow
selection from which to pick tasks to run.

The workflows that are used in practice are still growing in size, complexity,
as well as in the number of dependencies among their tasks [38, 92, 152]. Even
though workflows are popular as an automation tool for e-Science experiments [132],
obviously, the workloads of real clusters consist of jobs of different types in addition
to workflows, such as parallel applications and bags-of-tasks. When workflows are
run very often, either the user or the system may be able to derive reasonable
estimates of the runtimes of tasks of workflows.

However, in this chapter, we take a step back and we address the fundamental
research question: What are appropriate policies for online scheduling workflows
without having knowledge of task runtimes, and what is their performance in terms
of the job slowdown as a function of the system utilization, and of the maximal
utilization?

When scheduling workflows from the queue of workflows that have been submit-
ted but that have not yet completed, resources may be available while the workflows
towards the head of the queue may not have tasks that are eligible to run. Thus,
the main distinguishing feature of the four scheduling policies we propose is to
what extent they are greedy in scheduling any task of any workflow in the queue
versus to what extent they reserve processors for workflows towards the head of
the queue in order not to unduly delay these workflows. Our policies range from a
very strict reservation-based policy that guarantees no delay to the workflow at the
head of the queue due to later workflows, to a greedy backfilling policy. The jobs
for the simulations we generate based on real scientific workloads [38, 92, 132, 152].
In our performance evaluation we report the average job slowdown of the workflows
and the maximal utilization—because workflow scheduling is not work-conserving
due to the precedence constraints among workflow tasks, the system may become
saturated for utilizations well below 1.0. For the implementation of the system
model and the proposed scheduling policies we use an improved version of the
DGSim discrete event simulator [85].

This chapter is organized as follows. In Section 2.2 we provide our problem
statement. Section 2.3 motivates and presents our scheduling policies. Section 2.4
discusses our experimental setup and characterizes the synthetic workloads. In Sec-
tion 2.5 we show and explain the obtained results. Section 2.6 contains a survey of
related work. Finally, in Section 2.7 we present our conclusions.

2.2. Problem Statement

2

25

2.2. Problem Statement
This section presents our model for the problem of scheduling workloads of workflows
with unknown task runtime estimates and the performance metrics.

2.2.1. The Model

We consider large-scale computing systems such as large clusters and datacenters
that are subject to an arrival stream of workflows. We only consider processors
as the type of system resources that can be controlled by the scheduler. Every
computing node in the system contains only one processor. Furthermore, we assume
that the system is homogeneous, with identical processors and communication links
between them. Since we focus on the computational properties of workflows, we
assume that the data transfer times between computing nodes in our simulated
system can be neglected. This is equivalent to the situation in a real system
when all the tasks of a workflow write their results to a shared storage so that all
the required data are immediately available for any workflow task when all of its
dependencies are satisfied.

In this chapter we assume that each workflow task requires only one processor.
All the considered workflow structures have a single entry node and a single exit
node. We guarantee this by adding, if necessary, one or two artificial nodes with
zero runtime.

Many workflow scheduling algorithms employ user estimates or predictions of
task runtimes. It is well known that the estimates provided by users are usually
quite inaccurate [124]. At the same time, the runtime prediction approaches are
often relatively complex, do not work well for some situations, and can also be
inaccurate. Finally, always new or unknown workflows can be submitted to systems.
For all of these reasons, we suppose that the runtimes of the tasks of the workflows
are unknown to the scheduler.

2.2.2. Performance Metrics

In order to compare the implemented scheduling policies, we define a set of metrics
and baselines. Scheduling workflows is in itself not work-conserving as there may be
idle processors in the system while there is no waiting task with all its dependencies
satisfied. In addition, a property of several of our policies is that they reserve
processors to workflows in order to deal with their fluctuating resource requirements.
As a consequence, policies scheduling workloads of workflows may not be able to
drive a system up to a utilization of 1.0. Therefore, we use the maximal utilization,
which is defined in Section 1.1, as a system-oriented metric to assess the performance
of workflow scheduling policies.

As a user-oriented metric to assess workflow scheduling policies we use the
(average) slowdown, which is defined in steps in the following way:

• The wait time tw of a workflow is the time between its arrival and the start
of its first task.

• The makespan tm of a workflow is the time between the start of its first task
until the completion of its last task.

2

26 2. Scheduling with Unknown Task Runtimes

• The response time tr of a workflow is the sum of its wait time and its
makespan: tr = tw + tm.

• The slowdown s of a workflow is its response time (in a busy system, when
the workflow runs simultaneously with other workflows) normalized by its
makespan t′m in an empty system of the same size (when the workflow has
exclusive access to all the processors): s = tr / t

′
m.

We additionally define the execution time te of a workflow which is the sum of the
runtimes of all of the workflow tasks. The te metric is mostly useful for analyzing
the workloads.

2.3. Scheduling Policies
In this section, we will describe the four policies for scheduling workloads consisting
of workflows the simulation results of which we will show later in the chapter.
Before doing so, we will present a novel method for calculating LoP with some
relevant concepts, and will describe the way the scheduler manages the queue of
waiting workflows.

2.3.1. Calculating the Level of Parallelism
In some of our scheduling policies, we will use the LoP of the remaining part of a
workflow consisting of the tasks that have not yet completed for deciding how many
processors to reserve for it. Then, whenever a task of a workflow completes, the LoP
of the remaining part of the workflow has to be recomputed, leading to a very large
number of LoP recomputations. The DAG representing the non-completed part of
a workflow is a sub-DAG of the original workflow DAG. Such a sub-DAG can have
multiple entry nodes but will always have a single exit node. We say that a node a
precedes (follows) node b in a DAG when there is a path of precedence constraints
from a (b) to b (a). Two nodes a and b are said to be comparable (incomparable) if
one (none) of them precedes or follows the other. With the “comparable” relation,
a DAG can be considered as a partially ordered set (poset). The value of the LoP is
equal to the width of this poset, which is defined as the cardinality of the maximum
set of incomparable elements in the poset. There exist multiple algorithms [79] to
compute the exact LoP using Dilworth’s chain partition of the original DAG, but
they require the creation of an additional comparability graph or a bipartite graph.
Dilworth’s theorem [58] represents the width of a poset as a partition of the poset
into a minimum number of chains, where each chain is a path from a source to a
sink in the directed comparability graph.

To avoid the construction of any auxiliary data structures, we will use a simple
LoP approximation algorithm that calculates the LoP in an adequate time even for
large workflow structures, and, as we will show, it does so with only a relatively
small amount of underestimation of the actual LoP for many well-known workflow
structures. Our approximation algorithm uses the size of the largest generation-i
eligible set as the value of the LoP. To find the size of this set the algorithm employs
tokens to simulate an execution “wave” in a DAG. Initially, the algorithm places
tokens in the entry nodes of the DAG. Then in successive steps it moves these
tokens to all the nodes all of whose parents already hold a token or were earlier

2.3. Scheduling Policies

2

27

(a) Token propagation steps. (b) Two real LoPs.

Figure 2.1: An example of LoP approximation (a) versus the exact LoP (b).

(a) Montage. (b) LIGO.

(c) SIPHT.

Figure 2.2: A comparison of the exact and the approximation method for calculating the LoP for
different workflow structures.

tokenized, until the exit node gets a token, as shown in Figure 2.1a. After each
such step, the set of tokenized nodes is recorded. At the end of the algorithm, the
size of the largest recorded tokenized set is the approximated LoP value. Note that
in fact, these tokenized sets coincide with the eligible sets of different generations
as defined in Section 1.4.

We have compared the results provided by this approximation algorithm with
the exact LoPs for different workflow sizes for five popular workflow structures,
LIGO, SIPHT, Montage, Cybershake, and Epigenomics. For each considered size of
each workflow type, we generate 50 DAGs using the synthetic workflow generator by
Bharathi et al. [16]. As can be seen from Figure 2.2, our method approximates the
true LoP value extremely well. We provide the LoPs here only for LIGO, SIPHT,

2

28 2. Scheduling with Unknown Task Runtimes

and Montage, since Cybershake and Epigenomics show similar results. For both
methods, the LoP values obtained for the 50 DAGs of each workflow type are all
very close to the mean. Of course, there can be situations where our approach does
underestimate the LoP, see for instance the simple example in Figure 2.1. However,
since the algorithm works well for the selected workflows, which are quite popular
and representative, we will use the LoPs computed by it when simulating policies
that use LoP in their scheduling decisions.

From the results in Figure 2.2, we can conclude that the tested workflows have
rather regular, but still different, structures. First of all, for all three workflow
structures, the (average) LoP increases superlinearly (and especially for Montage
and SIPHT, in a very strong way). Secondly, even for LIGO, but especially for the
other two, the LoP is very large in relation to their total size. For LIGO, the LoP
is slightly less than 200 for a workflow size of 800, but Montage and SIPHT already
reach that LoP for workflows of size less than 400.

2.3.2. Queue Management and Task Selection
We assume that the scheduler maintains a single queue of waiting workflows. Every
arriving workflow is appended to the tail of the queue, and the scheduler decides
which tasks of which workflows in the queue are scheduled when resources become
available. For all the policies we will consider, the scheduler is invoked when a task
of a workflow completes, or when a new workflow arrives (possibly to a non-empty
queue). The workflows are in principle processed in the order of their arrival, but
multiple workflows can be partially in execution while the remainder of their tasks
are still waiting (either for a lack of resources or because of precedence constraints
between tasks), in which case we still regard them to be present in the queue. A
workflow only leaves the queue when all of its tasks are finished.

When the scheduler is activated, it selects the workflows in the queue from
which tasks are scheduled in a way dictated by the actual scheduling policy. As we
assume that all workflow tasks require only one processor and that we do not have
user estimates or predictions of task runtimes, after the scheduler has selected a
workflow from which to start a task, it picks a task from the workflow’s eligible
set randomly. As the execution order of the tasks from the current eligible set
may influence subsequent eligible sets, and so, the makespan of the workflow, this
random task selection may not lead to the optimal schedule for the workflow, but
without knowledge of task runtimes it is difficult to do better. Giving priority
to tasks in the eligible set that would enable large numbers of other tasks might
improve the makespan of a workflow, but this is highly dependent on the task
runtimes.

2.3.3. The Strict Reservation Policy
The most classic and simple general queuing policy is FCFS. When scheduling
workflows, the definition of FCFS is not completely straightforward. The idea
behind our version of the FCFS policy for workflows can be summarized by the
condition that the service to a workflow will only be influenced by the workflows
ahead of it in the queue and never by workflows behind it in the queue. We enforce
this condition by strictly reserving for any workflow in the queue sufficient resources

2.3. Scheduling Policies

2

29

so that it will never be delayed by any later workflow—hence the alternative name
is Strict Reservation (SR) policy.

With the SR policy, when the scheduler is invoked and the workflow at the
head of the queue has fewer processors allocated to it than its LoP (which may
be in use or idle), it allocates additional available processors to the workflow at
the head of the queue until the workflow has LoP processors or until there are no
more available processors. When at a later time the scheduler is invoked again
while the workflow at the head of the queue has not yet been completed, the
scheduler recomputes workflow’s remaining LoP, keeps LoP processors allocated to
the workflow, and releases any excessive processors. If any idle processors remain
after LoP processors have been allocated to the workflow, the scheduler tries to
schedule the next workflow in the queue—it does so in exactly the same way as if
that workflow were at the head of the queue.

2.3.4. The Scaled LoP Policy

Of course, workflows may never attain their LoPs, and especially for large workflows,
the SR policy may be very wasteful and lead to a low maximal utilization. Whereas
the SR policy executes a workflow in the shortest possible time once it starts
allocating processors to it, the wait times of the workflows with SR may be
excessive. A straightforward solution to this problem is to reduce the reservation of
a workflow to a number of processors that is lower than its LoP. Thus, the Scaled
LoP (SLoP) policy with scaling factor f, 0 ≤ f ≤ 1, tries at all times to keep
f · LoP processors allocated to a workflow. This means that if at some point the
size of the eligible set of a workflow is smaller than f · LoP, the scheduler will try
to keep reserved a number of processors equal to the difference between these two
values. If, however, at some point the size of the eligible set of a workflow exceeds
f · LoP, the SLoP policy will allocate any available processors to eligible tasks of
the workflow. The SLoP policy behaves similar to the SR policy albeit with a lower
reservation target, and in the boundary case when f = 1 it is equal to it. At the
other extreme, as we will see below, our backfilling policy is in fact identical to the
SLoP policy with scaling factor equal to 0.

2.3.5. The Future Eligible Sets Policy

The idea behind reserving processors for workflows is to reduce the delay in placing
tasks in the eligible set. Rather than, when reserving processors, taking a worst-case
perspective on the number of processors a workflow may ever need as we did in the
SR policy, we may also try to look into the future of the execution of the workflows.
Thus, the Future Eligible Sets (FES) policy with depth n tries to allocate to a
workflow a number of processors that is equal to the size of largest eligible set of
any generation from 0 through n. With our approximation of computing the LoP
as presented in Section 2.3.1, the FES policy with depth ∞ coincides with the SR
policy. At the other extreme, as we will see below, our backfilling policy is in fact
identical to the FES policy with depth equal to 0.

2

30 2. Scheduling with Unknown Task Runtimes

2.3.6. The Backfilling Policy
Depending on the scaling factor and the depth, the SLoP and FES policies may be
very wasteful of resources because of useless reservations. To completely do away
with reservations and the waste of resources it entails, we now define the Backfilling
(BF) policy that tries to allocate to any workflow any number of processors up to
the size of its current eligible set. Thus, at every invocation, the scheduler scans
the queue from head to tail and from each workflow it encounters it places as many
tasks from the corresponding eligible set as it can. Thus, the BF policy is greedy
as it allows to schedule any task from any eligible set of any workflow in the queue.
As we assume that each task requires only one processor, there will only be idle
processors in the system when all tasks in the eligible sets of all workflows in the
queue are actually running. As already remarked above, the BF policy is a special
case of the SLoP policy with scaling factor f = 0.

Our BF policy for workflows is similar to the backfilling policies that have
been introduced for parallel jobs [149, 124], but our policy does not use runtime
estimates. However, even so, with our BF policy for workflows and because of
our assumption that each task requires one processor, starvation is intrinsically
impossible—we always try to schedule as many tasks of a workflow as possible
before considering the next workflow, thus always granting at least some resources
to a workflow before allowing workflows later in the queue to receive resources. In
contrast, unless special measures are taken, starvation is possible when backfilling
parallel jobs (and when backfilling workflows with parallel tasks).

Compared to the SR policy, with BF, on the one hand workflows can be delayed
by later workflows, thus increasing the makespans and so the job slowdowns. On
the other hand, BF allows the workflows in the queue to start their execution earlier,
thus decreasing the wait times and so the job slowdowns. From our evaluation we
will see which of these two effects is stronger.

2.4. Experiment Setup
In this section, we present our simulation environment and we characterise the
synthetic workloads we use to analyse the performance of our scheduling policies.

We have modified the DGSim simulator [84, 85] for cluster and grid systems
to include our scheduling policies. The only resource modeled in our simulations
is the processors. We assume that the workflows submitted to the simulated
cluster arrive according to a Poisson process. The size of the homogeneous cluster
we use in all of our simulations is 100. For our simulations, we select three
representative types of workflows from different application domains, i.e., astronomy
(Montage [90, 152, 38, 92]), physics (LIGO [139, 152, 38, 92]), and bioinformatics
(SIPHT [108, 38, 92]). Montage builds mosaic images of the sky obtained from
different telescopes. LIGO is used to process data from detectors of the Laser
Interferometer Gravitational Wave Observatory (LIGO) [22] and its mission is to
detect gravitational waves predicted by general relativity. SIPHT helps to search
for small untranslated bacterial regulatory RNAs.

In Figure 1.4, we show the structure of the DAGs of the three workflow types.
Montage has the most complicated structure and its size is determined by the
number of processed images. A LIGO workflow usually consists of many smaller

2.4. Experiment Setup

2

31

0 2000 4000 6000 8000 10000 12000
Job runtime (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ili

ty

Figure 2.3: The distribution of the total workflow execution times in the workloads.

0 50 100 150 200 250 300 350 400 450
10-6
10-5
10-4
10-3
10-2
10-1

Pr
ob

ab
ili

ty Montage

0 200 400 600 800 1000
10-6
10-5
10-4
10-3
10-2
10-1
100

Pr
ob

ab
ili

ty LIGO

0 1000 2000 3000 4000 5000
Task runtime (s)

10-6
10-5
10-4
10-3
10-2
10-1
100

Pr
ob

ab
ili

ty SIPHT

Figure 2.4: The distribution of the task runtimes for each workflow type (the horizontal axes have
different scales, and the vertical axes are in log scale).

workflows combined into a single workflow. Similarly to LIGO, the SIPHT workflow
combines smaller independent workflows, but with very similar structures. The
workflow types are diverse not only in the structure of their DAGs, but also with
respect to the processing requirements of the component tasks as we will see below.
Furthermore, we have already analysed the maximum levels of parallelism they can
achieve in Section 2.3.1.

We generate four workloads of 3,000 workflows each using the workflow gener-
ator [16] presented by Bharathi et al. [38]: one workload per workflow type, and
an additional workload that mixes equal fractions of the three types. As with
many other workloads in computer systems, in practice, workflows are usually
small, but very large ones may exist too [132]. Therefore, in our simulations we

2

32 2. Scheduling with Unknown Task Runtimes

distinguish small, medium, and large workflows, which constitute fractions of 75%,
20%, and 5% of the workloads. We assume all workflows to have even sizes due
to the limitations of the generator. The size of the small, the medium, and the
large workflows is uniformly distributed on the intervals [30, 38], [40, 198], and
[200, 600], respectively.

In order to obtain simulation results for the different workflow types that
can easily be compared (especially when simulating the mixed workload), we use
the same total execution time distribution for all three workflow types. This
distribution is a two-stage hyper-Gamma distribution derived from the model
presented by Lublin and Feitelson [112]. The shape and scale parameters (α, β) of
two component Gamma distributions are set to (5.0, 501.266) and (45.0, 136.709),
respectively. Their proportions in the overall distribution are 0.7 and 0.3. The
average total execution time is one hour. Figure 2.3 visualizes this distribution. For
every workflow, we normalize the task runtimes generated so that its total processing
requirement is equal to the corresponding sample of the execution time distribution.
In Figure 2.4, we show the distributions of the normalized task runtimes for each
workflow type. The maximum task runtimes in Montage and LIGO are an order
of magnitude smaller than the maximum task runtimes in SIPHT, but all three
workflow types share the phenomenon that they are dominated by short tasks.

In our simulations, we vary the utilization starting at 0.05 with step size 0.05.
If for some utilization the system did not become stable in the simulations, we will
only show performance results up to that utilization. We will consider the highest
utilization for which the system did become stable as the maximal utilization,
defined in Section 1.1. We set the scaling factor f in our SLoP policy to 0.2,
0.8, and 0.9, and we evaluate the FES policy with depths 1, 2, and 10. For each
experiment, we report the average job slowdown over three repetitions, and we only
show results when the system is in steady state. Thus, when reporting performance
results, to be on the safe side, we omit the performance information for the first
1,000 workflows in each simulation and for those workflows that have not completed
their execution before the start of the last arriving workflow.

2.5. Experiment Results
In this section we report our simulation results and their analysis. In Figure 2.5,
we show for all the policies and for all four workload types the mean workflow
slowdown as it depends on the utilization in the system. The last point in all curves
is for the highest utilization for which the system is stable in the simulations. In
Table 2.1, we summarize these maximal utilizations.

As a first general observation, we find that for all policies that do some form
of reservation, the maximal utilization is low, or even very low. The worst is
a maximal utilization of only 0.2 for the SR policy with the SIPHT workload.
Apparently, reserved resources often remain idle, and the benefit of reservations for
a short makespan do not balance their negative effect of having long wait times.

Our second general observation is that the performance both in terms of mean
slowdown and maximal utilization varies considerably across the three workloads
consisting of a single workflow type. However, the different workflow types almost
always have the same relative performance. In particular, for all the policies except

2.5. Experiment Results

2

33

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(a) SR.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(b) SLoP, f = 0.9.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(c) SLoP, f = 0.8.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(d) SLoP, f = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(e) FES, depth 10.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

SIPHT
Mixture

Montage
LIGO

(f) FES, depth 2.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

Montage
Mixture

LIGO
SIPHT

(g) FES, depth 1.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

M
ea

n
sl

ow
do

w
n

Montage
LIGO

Mixture
SIPHT

(h) BF.

Figure 2.5: The mean slowdown of workflows as a function of the utilization for the different
policies and for each of the four workload types (the vertical axis is in log scale).

2

34 2. Scheduling with Unknown Task Runtimes

Workload type
Policy Montage LIGO SIPHT Mixture
SR 0.55 0.70 0.20 0.35
SLoP, f = 0.9 0.55 0.70 0.20 0.35
SLoP, f = 0.8 0.55 0.70 0.25 0.40
SLoP, f = 0.2 0.75 0.85 0.50 0.65
FES, depth 10 0.55 0.70 0.20 0.35
FES, depth 2 0.55 0.70 0.20 0.35
FES, depth 1 0.55 0.95 0.80 0.80
BF 0.95 0.95 0.95 0.95

Table 2.1: The maximal utilizations for the considered scheduling policies.

FES with depth 1 and BF, LIGO performs the best and SIPHT performs the
poorest. This can be explained from the perspective that the number of reserved
processors that is actually used is higher for LIGO than for the other workflow types.
In contrast, SIPHT and Montage use smaller fractions of the reserved processors.

Third, as can be expected, the performance for the mixture workload is always
somewhere in between the performance of the pure workloads. Except for the cases
with the FES policy with depth 1 and the BF policy, it has a very low maximal
utilization that is well below the maximal utilizations for the Montage and LIGO
workloads.

As to the performance of the SR and SLoP policies, decreasing the scaling factor
f improves the performance as the curves for all workloads move to the right in the
plots when going down from Figure 2.5a to Figure 2.5d. Going from a scaling factor
of 1.0 (SR) through 0.9 and 0.8 to 0.2, the maximal utilization for the mixture
workload increases from 0.35 (for scaling factors of 1.0 and 0.9) through 0.4 (for
a scaling factor of 0.8) to 0.65 (for 0.2). Apparently, when decreasing the scaling
factor, the SLoP policy decreases the number of idle but reserved processors.

Our experiments with the FES policy show that increasing the depth decreases
the performance because the scheduler reserves ever more processors to each
workflow. As Figure 2.5f shows, with a depth of 2 the FES policy already starts to
behave like SR, and with a depth of 10 it has almost identical performance to SR.
For a depth of 1 the FES policy goes closer to the BF policy, and an interesting
effect can be observed. Whereas SIPHT for most policies exhibits the poorest
performance, with FES with depth 1 it suddenly achieves a maximal utilization of
0.8. It means that with a depth of 1 the reservation size for SIPHT sharply drops.
In contrast, Montage has the same maximal utilization with FES for depths 1, 2,
and 10. The reason for this is the structure of the Montage workflow, which causes
the scheduler to reserve quite a large number of processors even with a depth of 1.

Finally, the BF policy (which is identical to SLoP with a scaling factor of 0.0
and to FES with depth equal to 0) shows by far the best performance results. As
can be seen from Figure 2.5h, it treats all the workflow types almost equally, and
it is even stable at a utilization 0.95. Apparently, at extremely high utilizations
there are always eligible waiting tasks to be found in the queue to start when a
task finishes. Overall, we can conclude from Figure 2.5 that the SR policy is the

2.5. Experiment Results

2

35

102 103

WF size

100

101

102

Sl
ow

do
w

n

Montage
LIGO
SIPHT

mean median min, max Q1, Q3

(a) SR at a utilization of 0.35.

102 103

WF size

100

101

102

Sl
ow

do
w

n

Montage
LIGO
SIPHT

mean median min, max Q1, Q3

(b) BF at a utilization of 0.95.

Figure 2.6: Scatter plots of the slowdowns versus the sizes of all workflows in the simulations for
the mixed workload with the SR and BF policies at their maximal utilizations (both axes are in
log scale).

worst and the BF policy is the best among our policies—reserving processors for
workflows with workloads consisting solely of workflows is not a good idea!

In Figure 2.6, we show scatter plots with the slowdowns versus the sizes of all
workflows in the simulations for the mixed workload with the SR and BF policies at
their maximal utilizations. We show these plots for these two cases as they are the
policies that are at the extremes of the spectrum of policies we consider. The most
striking thing about these plots is not that they are very different, because in fact,
they are not. The striking thing is that they are almost identical at such widely
different utilizations (0.35 versus 0.95), exhibiting the huge advantage of using the
BF policy. The variation of the density of dots in the horizontal direction is caused

2

36 2. Scheduling with Unknown Task Runtimes

Mean wait time (s) Mean makespan (s)
Policy S M L S M L
Empty system — — — 1136 429 130
SR 636 628 658 1162 484 263
SLoP, f = 0.9 584 578 645 1188 492 249
SLoP, f = 0.8 3195 3121 3329 1174 546 295
SLoP, f = 0.2 879 892 938 1291 597 297
FES, depth 10 637 632 652 1160 480 264
FES, depth 2 526 525 547 1189 503 278
FES, depth 1 596 631 581 1191 530 273
BF 703 707 694 1199 546 271

Table 2.2: The mean wait time and the mean makespan for the small (S), medium (M) and large
(L) workflows with the mixed workload for the considered scheduling policies at their maximal
utilizations, and in an empty system.

by the job size distribution in the used workloads as described in Section 2.4, with
many small jobs of sizes below 40, and much smaller number of medium-sized jobs
with sizes between 40 and 200, and a still smaller number of jobs with sizes between
200 and 600. Since we only generated even workflow sizes, it also explains the
columns for small workflow sizes. None of our policies takes into account the size of
a workflow when processing the queue. Still, in Figure 2.6 there are somewhat more
outliers with slowdowns over 20 among the larger jobs than among the smaller
ones, although the difference is not really significant. Among the outliers, most
workflows are of the type LIGO, which has the smallest LoP; there are hardly any
outliers of type SIPHT.

In Table 2.2, we present the mean wait time and the mean makespan for small,
medium, and large workflows as defined in Section 2.4 with the mixed workload for
all our policies at their maximal utilizations, and in an empty system. As expected,
for every policy separately, the mean wait time does not depend on the workflow
size. The longer mean wait times for the SLoP policy with scaling factor f equal
to 0.8 and 0.2 are explained by the step size of 0.05 we use to vary the utilization
in our experiments—with a smaller step size to detect the maximal utilization all
the mean wait times in Table 2.2 would be in the same range. For all policies,
the values of the makespans of three groups of workflows are relatively similar.
This can be explained from the perspective that when the system is close to its
maximal utilization, then despite the length of the queue, the scheduler considers
only some set of workflows that are close to the head of the queue. The size of
this set is related to the size of the system: the larger the system, the deeper the
scheduler should inspect the queue for eligible workflow tasks. Another interesting
observation is that the larger the workflows, the shorter their makespans. This
effect is explained by our usage of the same total execution time distribution for
all the workflow sizes, and by the fact that smaller workflows have lower levels of
parallelism.

Furthermore, while for small and medium workflows the makespans at the
maximal utilizations of the policies are almost equal to those in an empty system,
large workflows then have makespans that are twice as large. Apparently, even in a

2.6. Related Work

2

37

0 1 2 3 4 5
Simulated time (h)

0

20

40

60

80

100

Pr
oc

es
so

r d
em

an
d

Reserved processors
Joint eligible set size
System size

Figure 2.7: The dynamics of the joint eligible set size and the number of reserved processors
during the simulation of the SR policy at a utilization of 0.35 during a 5-hour period.

busy system small and medium workflows can get a number of processors close to
their LoPs, while large workflows suffer more from the presence of other workflows
in the system.

Finally, we investigate in more detail how reservations limit the maximal
utilization. Figure 2.7 shows the size of the joint eligible set, which comprises the
tasks of the eligible sets of all workflows in the queue, and the number of reserved
processors for the SR policy at its maximal utilization during a 5-hour period of
the simulation. Obviously, the size of the joint eligible set can exceed the size of the
system (in Figure 2.7, we crop these outliers higher than size 110) and is related to
the queue size and the properties of workflows in the queue. The minimum of the
two curves gives the number of wasted processors. Apparently, with SR, when the
utilization is equal to 0.35, the system capacity spent on reservations approaches
0.65, and the system is saturated.

2.6. Related Work
There is an enormous amount of literature on the problem of scheduling workflows.
Most of it concentrates on scheduling single workflows in order to minimize the
makespan, for which many techniques have been proposed. For instance, the
HEFT policy [155] computes the upward rank of a task as the length of the critical
path from that task to the exit task in terms of the time it takes to process
the tasks on the path, and schedules the task with the highest upward rank.
Previously, Abrishami at el. [23] presented and analyzed a scheduling algorithm for
workflows that recursively schedules partial critical paths. There are also several
decent overview papers that present and discuss many algorithms for scheduling
workflows [102, 101]. Invariably, all of these algorithms assume knowledge of task
runtimes.

The problem of scheduling multiple workflows can be split up in the offline
problem of scheduling a fixed set of workflows and the problem of online scheduling
an arrival stream of workflows as we do in this chapter. Two approaches to the
offline problem are executing batches with mixtures of multiple workflows [76], and
building a single composite workflow from multiple workflows and then execute

2

38 2. Scheduling with Unknown Task Runtimes

it [170]. In the paper by Yu et al. [169], an online stream of workflows is considered,
but the authors use a DAG composition approach and task runtime information to
prioritize the tasks using HEFT. Also in the paper by Hsu et al. [77], a stream of
arriving workflows is used and the ideas from the Yu’s paper [169] are extended
by considering the critical path for each workflow. In the work by Lee et al. [104],
the Pegasus planner [54] and the DAGMan [67] batch workflow executor are
used. In addition, a scheduling algorithm that allocates resources based on their
runtime performance is proposed and real-world experiments are conducted using
grid middleware over clusters. Despite the fact that they treat each workflow
separately without composing a single DAG, their algorithm still uses task runtime
information. In the paper by Singh and Deelman [145], a trace of a Teragrid cluster
with applications representing (modified) Montage workflows is simulated. Different
provisioning policies and priority schemes are considered, with a cap on the amount
of resources that can be used by a single workflow.

A large body of work proposes backfilling as the main technique to improve the
system utilization and reduce the job slowdowns in the area of parallel applica-
tions [124, 107, 141, 144, 89]. Despite the simplicity of the backfilling technique,
there exist many variations of the algorithm. For instance, the number of reser-
vations granted by the backfilling algorithm distinguishes two main strategies,
conservative and aggressive. The former assigns to each job a reservation when it
enters the system and moves smaller jobs forward in the queue as long as no delays
are incurred on any of the previously queued jobs. The latter allows any job to be
backfilled as long as it does not delay the first job in the queue. The number of
queued jobs considered by the backfilling algorithm may have a significant impact
on the overall performance. To maximize the utilization, dynamic programming
may be employed to find the optimal packing of the jobs [144]. These aspects have
been analyzed and incorporated in the Maui project which currently provides a
real-world implementation of the general backfill algorithm [89]. The main feature
distinguishing backfilling for parallel jobs and workflows is that with workflows, as
soon as any number, however low, of resources are available, a workflow can make
progress. So the concerns about not delaying workflows with backfilling are much
less pressing.

2.7. Conclusion
In this chapter, we have presented a family of four policies for scheduling workloads
consisting of arrival streams of workflows with unknown task runtimes. The main
distinguishing feature of these policies is to what extent they reserve processors to
workflows towards the head of the queue to deal with fluctuations in their level
of parallelism. We have simulated these four policies in a cluster with synthetic
workloads derived from popular real workflows with as metrics the average workflow
slowdown and the maximal utilization that can be achieved. Our main conclusion
is that any form of processor reservation for workflows without runtime estimates
only decreases the overall system performance, leading to low or even to very low
maximal utilizations.

3

The Impact of Task Runtime

Estimate Accuracy

W
orkflow schedulers often rely on task runtime estimates when making
scheduling decisions, and they usually target the scheduling of single workflows

or batches of workflows. In contrast, in this chapter, we evaluate the impact of the
absence or limited accuracy of task runtime estimates on slowdown when scheduling
complete workloads of workflows that arrive over time. We study a total of seven
policies: four of these are popular existing scheduling policies for (batches of)
workloads from the literature, including a simple backfilling policy which is not
aware of task runtime estimates, two are novel workload-oriented policies, including
one which targets fairness, and one is the well-known HEFT scheduling policy for a
single workflow adapted to the online workload scenario. We simulate homogeneous
and heterogeneous distributed systems to evaluate the performance of these policies
under varying accuracy of task runtime estimates. Our results show that for
high utilizations, the order in which workflows are processed is more important
than the knowledge of correct task runtime estimates. Under low utilizations,
all policies considered show good results, even a policy which does not use task
runtime estimates. We also show that our Fair Workflow Prioritization (FWP)
policy effectively decreases the variance of job slowdown and thus achieves fairness,
and that the plan-based scheduling policy derived from HEFT does not show
much performance improvement while bringing extra complexity to the scheduling
process.

3.1. Introduction
In workloads of modern computing systems, workflows are often used as a tool
to drive complex computations, and their popularity continues to increase [52].
Many of these workflows are usually submitted to the system repeatedly so that
(statistical) runtime estimates of their tasks can be derived [92, 135]; alternatively,
runtime estimates can be provided by users [76]. However, the accuracy of runtime

39

3

40 3. The Impact of Task Runtime Estimate Accuracy

estimates significantly depends on the employed estimation algorithm, or on the
user—user runtime estimates can be very unreliable [63, 103]. Most previous work
on scheduling workflows [155, 169, 29, 32] has assumed some (and often even
perfect) knowledge of task runtimes. Moreover, often has been considered the
offline problem of scheduling a single workflow or a batch of workflows (which are
all initially present), or periodic submissions with a fixed interval. In most cases,
the makespan has been used as the main metric.

However, workflows may be submitted to a system over time according to some
arrival pattern, in which case job slowdown is a much more appropriate performance
metric. Then, especially when workflows of widely different sizes are submitted,
fairness becomes an issue, and an important goal is to reduce the variability of
job slowdown. In this chapter, we investigate how the accuracy of task runtime
estimates affects the quality of scheduling, and we address the issue of fairness
in the online case of scheduling complete workloads of workflows. Moreover, we
evaluate the system stability to know at which workflow arrival rates the system
starts to uncontrollably accumulate waiting workflows. Besides that, we identify
the maximal achievable system utilization which guarantees the stability.

We distinguish dynamic and plan-based policies. Dynamic policies make task
placement decisions just-in-time when a processor becomes idle or a new task
becomes eligible. Plan-based policies construct a full-ahead plan on every workflow
arrival and strictly follow this plan to perform task placements between the workflow
arrivals.

Task runtime estimates have been heavily used for different forms of task
prioritization by various scheduling algorithms for single workflows and for batches
of workflows. The most popular approaches [155, 142, 76, 32] include upward and
downward ranking and different forms of list scheduling techniques. Workflow tasks
are usually prioritized in ascending or descending order of their runtimes or by their
proximity to the entry or exit task. The individual workflows are often prioritized
based on the length of their critical path (a longest path from an entry to the exit
task). In this situation, inaccurate runtime estimates can significantly affect the
task and workflow ranking, as not only the length of the critical path can be affected
but even a wrong critical path can be used. Knowing how the quality of estimates
affects the performance helps to create better error-resilient scheduling policies and
is useful when selecting policies which are less sensitive to incorrect estimates. In
Chapter 2, we used a different approach where we scheduled an arriving stream of
workflows without using any runtime estimates at all, and completely relied on the
structure of the workflows when making scheduling decisions.

To study the influence of the accuracy of task runtime estimation on the
performance, in this chapter, we study a total of seven scheduling policies for
workloads of workflows, and we simulate their execution on two workloads of
realistic workflows. Four of these are existing dynamic workflow scheduling policies,
namely Greedy Backfilling (GBF), which came out best of all the policies we
proposed in Chapter 2 when no runtime estimates are available, Online Workflow
Management (OWM) [77, 32], Fairness Dynamic Workflow Scheduling (FDWS) [29,
32], and Rank_Hybd (HR) [169]. We also propose the simple Critical Path
Prioritization (CPP) policy and, in order to address the issue of fairness, the Fair

3.2. Problem Statement

3

41

Workflow Prioritization (FWP) policy. To check how existing plan-based scheduling
algorithms can be applied when scheduling workloads of workflows, we have adapted
the Heterogeneous Earliest Finish Time (HEFT) [155] policy to the online case.
All policies except GBF require task runtime estimates for their operation.

The main research questions we address in this chapter and our contributions
towards answering them, are:

1. What are the appropriate policies for dynamic scheduling of workloads of
workflows with known task runtime estimates? We propose in Section 3.3 two
novel dynamic workflow scheduling policies (CPP and the fairness-oriented
FWP), implement four state-of-the art online dynamic policies, and adapt
the popular HEFT policy to the online case.

2. How do inaccurate task runtime estimates affect the performance and fairness?
We show in Section 3.5 the effect of incorrect task runtime estimates on
the performance and fairness when scheduling workloads of workflows in a
simulated computing environment.

3. How does the knowledge of task runtime estimates help to improve the per-
formance and achieve fairness, and how applicable are plan-based policies
for online scheduling of workflows? We demonstrate in Section 3.5.1 that
the knowledge of task runtime estimates improves the performance at high
system utilizations, and in Section 3.5.3 we show that the plan-based approach
struggles to deal with workloads of workflows.

3.2. Problem Statement
This section presents our model for the problem of using runtime estimates for
scheduling workloads of workflows and the performance metrics.

3.2.1. The Model
In this chapter, we consider both homogeneous and heterogeneous computing
systems, in contrast to Chapter 2, where we only study homogeneous systems. For
the rest, the system model, the arrival process, and the workflow definitions are
the same as in Chapter 2. When the system is heterogeneous, we suppose that the
execution time of a task on a processor is inversely proportional to the processor
speed.

The runtime estimates are often extracted from historical runs, simulations of
workflow executions, or even are obtained from users [63, 43]. However, the quality
of such estimates can vary significantly depending on the estimation method. To
study the effect of the quality of task runtime estimates on the system performance,
we modify the perfect task runtimes obtained from the synthetic workload using a
certain pre-defined error factor fe. The error allows to either under-estimate or
over-estimate the task runtimes. All of the evaluated schedulers are not aware of
under- or over-estimation. They can only derive the error in task runtimes post
factum by comparing the given runtime estimates with the actual task runtimes
obtained during the execution (as in our FWP policy, Section 3.3.7). We use three
methods to introduce the estimation errors:

3

42 3. The Impact of Task Runtime Estimate Accuracy

• Static error: Here we multiply the runtime of every task of every workflow
by the error factor fe.

• Random error I: Here we multiply the runtime of every task within a single
workflow by the same random error factor. This random error factor is
independently generated for every workflow in the workload by drawing it
from the uniform distribution on the interval (0, fe × 2]. So on average, task
runtimes in the workload are under- or overestimated by a factor of fe.

• Random error II: Here we multiply the runtime of every task by an individually
generated random error. The runtime estimate of a task is computed by
multiplying its original correct task runtime dr by a random error factor
drawn from the uniform distribution on the interval (0, fe/dr × 2]. This is
an extreme case of introducing an error, as it changes the distribution of
task runtimes to a uniform distribution on the interval (0, fe × 2]. Thus, the
scheduler operates with estimates which are very far from the original ones.

3.2.2. Performance Metrics

In this chapter, we use a set of metrics and baselines, similar to those defined
earlier in Section 2.2.2. However, in contrast to Chapter 2, where task runtimes
are unknown, in this chapter we suppose that task runtime estimates are available.
Accordingly, we can calculate the critical path length c of a workflow using the
perfect task runtimes obtained from the synthetic workload. We define the slowdown
s of a workflow as its response time tr (in a busy system, when the workflow runs
simultaneously with other workflows) normalized by the length c of its critical
path: s = tr / c. The critical path length computation is originally presented in
Section 1.4 and further explained in Section 3.3.1.

3.3. Scheduling Policies

In this section, we first provide a detailed definition of the upward rank computation,
which is crucial for task prioritization in almost all of the scheduling policies we
consider. Then we present GBF the greedy backfilling dynamic policy which does
not use task runtime estimates at all, and five dynamic policies: CPP, OWM,
FDWS, HR, and FWP, that require task runtime estimates. Dynamic policies
make scheduling decisions whenever a new task becomes eligible or a processor
becomes idle. Finally, we present the plan-based WHEFT policy which uses task
runtime estimates to construct a full ahead execution plan on every workflow arrival;
between arrivals, the execution is completely guided by the precomputed plan. We
classify the considered policies by their distinctive properties in Table 3.1. The
GBF policy is included in this chapter as it has shown good performance earlier in
Chapter 2. The dynamic policies that require task runtime estimates have been
selected based on the comparative study by Arabnejad et al. [32]. We choose HEFT
as it is one of the most popular algorithms for workflow scheduling and it is often
used as a reference [170].

3.3. Scheduling Policies

3

43

Property
Policies

GBF CPP OWM FDWS HR FWP WHEFT
Proposed in this dissertation + + – – – + +
Plan-based – – – – – – +
Explicit job queue (FCFS) + + – – – – –
Joint eligible set (one task per WF) – – + + – + –
Joint eligible set (all eligible tasks) – – – – + – –
Fairness-aware – – – + – + –

Table 3.1: The distinctive properties of the considered policies.

3.3.1. The Upward Rank Computation

Further, we extend the less formal definition of the upward rank presented earlier
in Section 1.4. For each task ni in a workflow, the upward rank ru is recursively
calculated, starting from the exit task, using the following formula:

ru(ni) = ei + max
nj∈S(ni)

(ci,j + ru(nj)), (3.1)

where ei is the average estimated execution time of task ni, S(ni) is the set of
immediate successors of task ni, and ci,j is the average communication delay
between tasks ni and nj . Since the exit task has no successors, its upward rank is
just equal to its average estimated execution time. The average estimated execution
time ei is calculated for each task using the average speed of the processors in the
system. The average estimated communication cost ci,j is calculated as the average
communication start-up time plus the size of the data to be transmitted, divided
by the average transfer rate between the processors. The length c of the critical
path of a workflow is equal to the maximum value of ru among all the workflow
tasks N :

c = max
ni∈N

(ru(ni)). (3.2)

In this chapter, we approximate LoP by dividing the total execution time te of a
workflow by the length c of its critical path.

3.3.2. Greedy Backfilling

The simple Greedy Backfilling (GBF) policy is an application of greedy backfilling
to workflow scheduling which we proposed in Chapter 2. This policy processes
workflows in FCFS order, and does not require task runtime estimates for its
operation. In GBF, on every invocation, the scheduler, starting from the head of
the queue, selects the first workflow with a non-empty eligible set, randomly picks
a task from it, assigns it to the first available fastest processor, and removes it from
the set. It continues to do this until the eligible set of the workflow is empty or
until there are no more idle processors. When the eligible set is empty but the
system still has idle processors, the scheduler takes the eligible set of the next
workflow in the queue, and so forth.

3

44 3. The Impact of Task Runtime Estimate Accuracy

3.3.3. Critical Path Prioritization
Our Critical Path Prioritization (CPP) policy extends our GBF policy. In CPP,
on every invocation, the scheduler, starting from the head of the queue, selects the
first workflow with a non-empty eligible set, picks the task from it with the highest
ru, assigns it to the first available fastest processor, and removes it from the set.
For the rest, the CPP scheduler is similar to GBF.

3.3.4. Online Workflow Management
The Online Workflow Management (OWM) policy [77, 32] maintains a single joint
eligible set which contains only a single eligible task (if any) with the highest ru
from every workflow in the system. At every scheduler invocation, as long as the
system has workflows with eligible tasks, the scheduler selects the task with the
highest ru from the joint set. If the idle processors have the same speed, OWM finds
the busy processor which will become idle earlier than any other busy processor.
If the estimated finish time of the selected task on that busy processor is smaller
than EFT on any of the idle processors, the task is postponed (stays in the joint
set) until the next scheduler invocation. Otherwise, the task is assigned to any of
the idle processors. If the idle processors have different speeds, the task is assigned
to the fastest idle processor.

3.3.5. Fairness Dynamic Workflow Scheduling
The Fairness Dynamic Workflow Scheduling (FDWS) policy [29, 32] maintains a
single joint eligible set which is formed in the same way as in OWM. However,
within the joint set each task of a workflow j is additionally prioritized with rank
ra (highest first) which considers the fraction of remaining tasks of the workflow
and the length of its critical path. The additional rank ra is defined as follows:

ra,j =

(

mj

pj
· cj

)−1

, (3.3)

where mj is the number of unfinished (not yet eligible or eligible) tasks in workflow
j, pj is the total number of tasks in the workflow, cj is the initial length of the
workflow (at the moment of its arrival to the system). The first factor in the
formula prioritizes workflows with lower fractions of remaining tasks, while the
second factor in the formula gives priority to shorter workflows. There are two
versions of the FDWS policy in the literature. The first version considers both idle
and busy processors for task allocation. If the selected processor is busy the task
is placed in its task queue. The second version considers only idle processors. In
both cases the processor allowing the lowest estimated finish time for the task is
selected. For better comparability with other considered policies, in this chapter
we use the version of the FDWS policy [32] without per processor queues.

3.3.6. Hybrid Rank
The Hybrid Rank (HR, the original name is Rank_Hybd [169]) policy maintains
a single joint eligible set of all the eligible tasks from all the workflows in the
queue. On arrival of a workflow, the policy computes ru for all its tasks. At every

3.3. Scheduling Policies

3

45

scheduler invocation, if the tasks in the joint set belong to different workflows, the
scheduler selects the task with the lowest ru. If the tasks in the joint set are from
the same workflow, the algorithm selects the task with the highest ru. On the one
hand, the HR policy tries to achieve fairness by allowing shorter workflows to start
their execution earlier. On the other hand, during the execution of a workflow,
the length of the remaining part of its critical path decreases as more tasks finish.
Although HR could delay longer workflows just after their arrival, the policy gives
them more preference when they are about to finish.

3.3.7. Fair Workflow Prioritization
We propose the Fair Workflow Prioritization (FWP) policy which is similar to
OWM and FDWS in the way it forms the single joint eligible set, but which uses
a different mechanism to compute task priorities to achieve even better fairness
than FDWS. On every workflow completion, by averaging historical slowdowns of
previously finished workflows, FWP computes the target slowdown which all the
workflows in the system are supposed to experience. The workflows are prioritized
based on their proximity to the target slowdown. The lower the current slowdown
of a workflow than the target slowdown, the lower its priority, the higher the current
slowdown than the target slowdown, the higher its priority.

FWP allows to achieve better fairness when scheduling multiple workflows
simultaneously, as the acceleration of certain workflows is done at the cost of
decelerating others. Thus, the number of possibilities to slow down a certain
workflow is limited by the number of workflows present in the system. To achieve
the same target slowdown, workflows with longer critical paths should be delayed
more compared to workflows with shorter critical paths. If the system does not
have enough concurrent workflows, the workflows with longer critical paths will
experience lower slowdowns than the target. An alternative solution is to postpone
certain workflows by periodically excluding their tasks from the joint eligible set
and making them eligible for scheduling after a timeout. However, we keep this
improvement for future work.

We calculate the target slowdown st based on the history of slowdowns si of K
previously finished workflows by averaging them:

st =
1

K
·

K
∑

i=1

si. (3.4)

When the history is empty, the system is initialized with st = 1. For workflow j,
its current slowdown ŝj is calculated as:

ŝj =
t̂r,j + ĉj · ξ

cj · ξ
, (3.5)

where t̂r,j is the current residence time of workflow j from its arrival till now, ĉj is
the length of the critical path of the remaining part of the workflow (which is not
yet running), cj is the length of the workflow, and ξ is the correction coefficient
which is required to cope with possibly incorrect estimates. Since FWP depends
on critical path length to calculate ŝ, incorrect task runtime estimates could affect

3

46 3. The Impact of Task Runtime Estimate Accuracy

the ranking. Thus, after the completion of each task, the policy stores its actual
measured runtime dm and its estimated runtime de, and computes a correction
coefficient ξ using information about the M tasks that finished last:

ξ =

M
∑

i=1

dm,i

M

/

M
∑

i=1

de,i

M
. (3.6)

To prioritize the task from workflow j within the joint eligible set, FWP uses
rank rb which is calculated as:

rb,j = ŝj − st, (3.7)

where ŝj is the current slowdown of workflow j and st is the target slowdown.

3.3.8. Workload HEFT
The Workload HEFT (WHEFT) policy is our adaptation of HEFT policy [155]
for scheduling workloads of workflows. In addition to the scheduler, WHEFT uses
a separate planner which maintains a global execution plan for all the workflows
in the system. For each non finished task in the workflow, the plan defines the
processor where and when the task should run. On every new workflow arrival a
completely new global plan is created. Between the workflow arrivals the execution
is completely guided by the scheduler using the plan.

Since the workload is an arriving stream of incoming workflows, to be able to
apply HEFT it is required to combine the workflows in the system into one. For
that, we use an Alternating DAGs approach proposed by Zhao and Sakellariou [170]
as in the original paper it showed better performance compared to other approaches
from the same group. To apply the Alternating DAGs approach, WHEFT planner
first combines the workflows in the system by adding a single joint exit node. Then
it computes upward ranks ru for all the tasks within the new combined workflow.
Further, using the Hybrid policy [142], WHEFT splits the combined workflow into
levels where each level contains only independent tasks. The tasks within each level
are grouped according to the original workflow where they belong to. WHEFT
switches between the groups in a round robin manner to make a sorted list of tasks
in (descending order of their ru). The plan is created by sequentially traversing the
levels and sequentially processing the sorted lists of tasks made from the groups by
applying HEFT to them.

The WHEFT scheduler is called after the plan construction and after each
task completion. The scheduler sequentially checks the plan and tries to assign
non-running tasks from the plan to according processors. The tasks are checked
for eligibility in the ascending order of their planned start times. If a task is not
yet eligible, the scheduler proceeds to the next processor. When a task finishes,
the scheduler removes it from the plan. The scheduler does not perform any task
preemption. If, according to the plan, a certain task should be currently started,
but the processor where it should run is still busy (as the plan could be incorrect
due to erroneous runtime estimates), the task which occupies the processor runs
until its completion.

3.4. Experiment Setup

3

47

3.4. Experiment Setup
In this section, we present the synthetic workloads we use to analyse the performance
of our scheduling policies and we present our simulation environment.

3.4.1. Workloads
In our simulations, we use two workloads with an arrival process of workflows,
and a batch of workflows that are all submitted simultaneously. Workload I mixes
equal fractions of three representative types of workflows and is generated using the
workflow generator [16] presented by Bharathi et al. [38]. The workflows are taken
from different application domains, i.e., astronomy (Montage [90, 152, 38, 92]),
physics (LIGO [139, 152, 38, 92]), and bioinformatics (SIPHT [108, 38, 92]).

Workload II solely consists of random workflows generated using an existing
random DAG-generator created by Suter et al. [148]. The generator has four
configuration parameters: jump sets the maximum number of workflow levels
induced by the inter-task dependencies, regular specifies the regularity of the task
distribution across workflow levels, fat specifies the width (LoP) of the workflow,
and density specifies the numbers of dependencies between tasks of two consecutive
workflow levels. The values for these parameters we use are selected uniformly
from the following sets: jump = 1, 2, 3, regular = 0.2, 0.8, fat = 0.2, 0.8, and
density = 0.1. We use only a single and relatively low value for density since
for large workflows (with several hundreds of tasks and more), higher densities
significantly increase the complexity of finding a critical path. More information
on the parameterisation of the random DAG generator can be found in its code
repository [148].

For the total workflow execution time te in Workload I, we use a two-stage
hyper-Gamma distribution from the paper by Lublin and Feitelson [112], in the
same way, as described in Section 2.4. Figure 3.1 visualizes this distribution. In
Workload II we use the original total execution time distribution obtained from
the generator, see Figure 3.2. In order to obtain simulation results for the different
workflow types that can easily be compared, in both workloads we use the same
average total execution time of one hour. For every workflow in both workloads,
we normalize the generated task runtimes so that its total processing requirement
is equal to the corresponding sample of the execution time distribution.

In Figures 3.1 and 3.2 we show the distributions of the task runtimes, the
branching factors (the total number of inter-task links in a workflow divided by its
size), and the approximated LoPs (te/c). The two workloads share the phenomenon
that they are dominated by short tasks. However, the task runtimes in Workload I
are an order of magnitude longer than in Workload II. At the same time, the range
of the total job runtimes in Workload II is four times as large as in Workload I.
Interestingly, Workload II also shows a higher diversity of branching factors but a
twice smaller approximated LoP.

For each utilization level, both workloads consist of three unique sets of workflows
with 3,000 workflows each, which allows us to perform three independent simulation
runs with all the policies per utilization level. As with many other workloads in
computer systems, in practice, workflows are usually small, but very large ones
may exist too [132]. Therefore, in our simulations we distinguish small, medium,

3

48 3. The Impact of Task Runtime Estimate Accuracy

0 2000 4000 6000 8000 10000

Job runtime (s)

10−3

10−2

10−1

100

P
ro
b
a
b
il
it
y

0 1000 2000 3000 4000 5000

Task runtime (s)

100

10−2

10−4

10−6

1.0 1.5 2.0 2.5 3.0

Branching factor

100

10−2

10−4

10−6P
ro
b
a
b
il
it
y

0 20 40 60 80 100

Approximated LoP

100

10−2

10−4

10−6

Figure 3.1: Statistical characteristics of Workload I. The vertical axes have a log scale.

0 10000 20000 30000 40000

Job runtime (s)

10−4

10−3

10−2

10−1

100

P
ro
b
a
b
il
it
y

0 100 200 300 400

Task runtime (s)

100

10−2

10−4

10−6

0 2 4 6 8 10

Branching factor

100

10−2

10−4

10−6P
ro
b
a
b
il
it
y

0 10 20 30 40

Approximated LoP

100

10−2

10−4

10−6

Figure 3.2: Statistical characteristics of Workload II. The vertical axes have a log scale.

and large workflows, defined by sizes that are uniformly distributed on the intervals
[30,38], [40,198], and [200,600], respectively (all workflows are assumed to have
even sizes). The small, medium, and large workflows constitute fractions of 75%,
20%, and 5% of the workload.

Finally, we use a batch of 1,000 workflows consisting of workflows from Work-
load I. Accordingly, the statistical characteristics of the batch are similar to those
of Workload I.

3.4.2. Simulation Environment
We have modified the DGSim simulator [84, 85] for cluster and grid systems to
include the workflow scheduling policies we consider. The size of the cluster we
use in all of our simulations is 100 single-processor nodes. We vary the accuracy
fe of the estimates using the following values: 0.1, 2, 5, and 10. As in our model
the communication overhead is not considered, the ru values are computed only
using the average estimated execution time. We suppose that after a task has been
assigned to a processor, it runs there until its completion. For our FWP policy we
choose values of K = 300 and M = 1000 (see Section 3.3.7).

We mostly focus on a homogeneous system where all the processors have an
average processing speed of 1 workflow/hour. However, we also perform a set
of experiments with a heterogeneous system with two equally sized groups of

3.5. Experiment Results

3

49

processors: fast processors with an average processing speed of 1.5 workflow/hour
and slow processors with an average processing speed of 0.5 workflow/hour.

For the majority of the simulations we use a system utilization of 98% since all
the considered dynamic policies can handle such high utilizations (we show this
later in Section 3.5). We only show results when the system is in steady state,
i.e., when reporting performance results for workloads, we omit the performance
information for the first 1000 workflows and last 1000 workflows in each simulation.

3.4.3. System Stability Validation
To be able to clearly distinguish situations when the system is or is not stable in a
long-term perspective, we use two methods: the statistical system stability check
proposed by Wieland et al. [166], as well as the Lyapunov drift theorem [128]. For
every simulation run, we perform both stability tests. The system is considered
stable if each method shows at least two stable results out of three.

According to the Wieland approach, we take the observed number of workflows
in the system N(t) (both queued and partially running) at every moment t, where
0 ≤ t ≤ τ with τ the total duration of the simulation, and split the observations
into b batches, where b = 10. Then for each batch j = 2, . . . , b we compute the
time average number of workflows in the system within the batch as:

λ̂N,j =

j·τ/b
∫

(j−1)·τ/b

N(t)

τ/b
dt. (3.8)

Then we compute the difference between the last and second batch observations:
λ̂N = λ̂N,b − λ̂N,2, and compute the variance σ2 of batch observations with b− 1
degrees of freedom. We conclude whether the system is stable if

λ̂N√
2 · σ

> t1−α,b−2, (3.9)

where t1−α,b−2 is the 1− α Student-T quantile with b− 2 degrees of freedom. For
the default values of b = 10 and α = 0.05, t1−α,b−2 = 1.86, thus, stability is rejected

if λ̂N > 2.63 · σ.
For the Lyapunov drift-based stability check we compute the mean Lyapunov

drift throughout the simulation as follows: δ(t) = l(t)−l(t−1), where l(t) = N(t)2/2.
A low value of the mean Lyapunov drift after the initial transient indicates that
the system converges and is stable. For our system we experimentally derive a
threshold of 1 for the mean Lyapunov drift; if the mean drift exceeds 1, the system
is considered unstable.

3.5. Experiment Results
In this section, we present our experiment results. We first investigate how varying
the error in task runtime estimates affects the slowdowns of workflows in homo-
geneous and heterogeneous systems for the six dynamic scheduling policies we
consider. Then we show the performance of the plan-based WHEFT policy and
the performance when scheduling batches of workflows.

3

50 3. The Impact of Task Runtime Estimate Accuracy

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I.

Figure 3.3: Slowdown versus the error factor at 98% system utilization in a homogeneous system.
NE is No Error, means are marked with ×. Missing bars indicate unstable situations.

3.5.1. Performance of Dynamic Policies

First, we compare the performance of the six dynamic policies we consider in a
homogeneous system with the three methods for introducing estimation errors. All
of these policies are able to achieve a 98% system utilization without destabilizing.
Figures 3.3a and 3.3b show the workflow slowdown distribution and standard
deviation versus the error factors in our two random error methods for both
workloads. We do not show outliers in these figures and set the whisker boundaries
within 1.5 times of the interquartile range. Changing the runtime estimates by
a static factor does not affect the performance of any of the dynamic policies.

3.5. Experiment Results

3

51

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I. The vertical axis has larger scale.

Figure 3.4: Slowdown standard deviation versus the error factor at 98% system utilization in a
homogeneous system. NE is No Error. Missing bars indicate unstable situations.

The reason is that all the task upward ranks simultaneously scale in the same way,
and that as a consequence, the order of selecting workflow tasks for execution is
not affected. Therefore, we do not present the results for the Static error method
as they are identical to the No Error results in Figures 3.3 and 3.4. Without an
error, the mean number of workflows (fully or partially running and waiting) in
the system throughout the experiment varies from 35 (CPP) to 40 (HR).

For the Random error I method, in Figures 3.3a and 3.3b we see that the
performance of the policies is largely insensitive to the value of the error factor. We
also find that the GBF and CPP policies, which both employ the FCFS principle,

3

52 3. The Impact of Task Runtime Estimate Accuracy

exhibit a much poorer mean slowdown and higher percentiles than the other policies.
Moreover, the CPP policy exhibits only a slight decrease in the mean slowdown
and the standard deviation with Workload I (see Figure 3.4a) over the GBF policy,
which shows that the way in which it uses task runtime estimates is not effective.
Notably, for our FWP policy the results for the No Error case are definitely the
best. It also achieves lower values of the standard deviation with an error factor
of 2.0 for Workload I, at the cost of an increased mean slowdown. In the other
cases, FWP shows comparable or slightly higher standard deviation than the other
policies, except GBF and CPP.

In contrast, using the Random error II method for varying the estimation error
factor (see Figures 3.3c and 3.4c) does affect the slowdowns of the workflows in
Workload I, creating many outliers and significantly increasing the mean slowdowns
and standard deviations for all policies except GBF and CPP. OWM and FDWS
even destabilize at high over-estimation factors, but stay stable at lower 97%
utilization for all the error factors. However, our FWP policy shows the lowest
values of the standard deviation compared to OWM, FDWS, and HR due to its
correction mechanism for task runtime estimates (Figure 3.4c). At the same time,
the Random error II method hardly affects Workload II and shows similar results as
Random error I. Thus, we omit the results for Random error II with Workload II as
they look identical to the Figures 3.3b and 3.4b. The statistical characteristics of
the workloads (Figures 3.1 and 3.2) show the cause of this observation: Workload I
has a much higher variability of task runtimes.

3.5.2. Effects of Heterogeneity

We conduct the same set of experiments with the dynamic policies as in Section 3.5.1
in a heterogeneous system and, analogously, we omit the results with static error
factor. Interestingly, in a heterogeneous system the dynamic policies stay stable even
at 99% imposed utilization with correct runtime estimates. Even though the average
service rate of the heterogeneous system is the same as of the homogeneous system,
the stream of arriving workflows does not split equally between two processor
groups. There are two reasons for this: all the considered policies give priority to
faster processors, and faster processors more often lead to scheduler invocations
as they simply capable to process tasks faster. Compared to the homogeneous
environment, the mean number of workflows in the heterogeneous system during
the experiment without an error is higher and ranges from 38 (CPP) to 43 (HR).

For comparability with the results in Section 3.5.1, in Figures 3.5 and 3.6 we
show the results for the heterogeneous system at 98% utilization. Some policies,
e.g., OWM, FDWS, and HR destabilize at certain error factors even more often as
in the homogeneous system. However, similarly to the homogeneous system, all the
considered dynamic policies are stable at 97% utilization for all the error factors.
Comparing Figures 3.3 and 3.5, we can see that for all the policies their mean
slowdowns increase in the heterogeneous system. At the same time, the values of
standard deviation stay comparable to the homogeneous system, and only OWM
perform much poorer and even destabilizes at error factor 0.1. The reason is that

3.5. Experiment Results

3

53

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I.

Figure 3.5: Slowdown versus the error factor at 98% system utilization in a heterogeneous system.
NE is No Error, means are marked with ×. Missing bars indicate unstable situations.

OWM postpones tasks if there exist better placement in the future on a faster
processor, and, of course, it is only applicable to the heterogeneous system. However,
when task runtimes estimates are incorrect, OWM starts to make “mistakes” by
unnecessarily postponing more tasks. Similar but even worse behavior can be
observed in Figures 3.5c and 3.6c with Workload I and Random error II where
OWM destabilizes for any error factor.

As in Section 3.5.1, all the policies stay stable with Workload II and only
exhibit slightly higher mean slowdowns. Only in Figure 3.6b OWM shows an
increase of standard deviation, however, without destabilizing. We do not present

3

54 3. The Impact of Task Runtime Estimate Accuracy

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I. The vertical axis has larger scale.

Figure 3.6: Slowdown standard deviation versus the error factor at 98% system utilization in a
heterogeneous system. NE is No Error. Missing bars indicate unstable situations.

results for Workload II with Random error II as they are almost identical to
Figures 3.5b and 3.6b with the only difference that OWM does not increase the
standard deviation at error factor 0.1 and stays in line with FWP, FDWS, and HR.

Our FWP policy shows comparable performance to FDWS and HR while showing
lower slowdown variability with Random error II and Workload I (Figure 3.6c) as
FDWS and HR simply destabilize. Moreover, CPP policy performs better than
GBF, showing that prioritizing tasks with higher upward rank has more effect in a
heterogeneous system.

3.5. Experiment Results

3

55

(a) Slowdown in various system configurations.

(b) Standard deviation of slowdown in various system configurations.

Figure 3.7: The performance of WHEFT in comparison with the dynamic policies at 97% imposed
system utilization without estimation errors. Means are marked with ×.

3.5.3. Performance of Plan-based WHEFT

We include only a limited set of results with WHEFT as it simply turns out to be
ineffective with workloads of workflows and brings extra complexity by requiring
plan construction. Figure 3.7 shows a performance comparison of WHEFT with the
dynamic policies at an imposed system utilization of 97%, as this is the maximum
utilization at which WHEFT is stable in the No Error scenario. As a first conclusion
from Figure 3.7, we find that a lower utilization decreases slowdowns and reduces
the difference between (the interquartile ranges of) the dynamic policies compared
to the results in Figures 3.3 and 3.5.

WHEFT is unstable for both error types and all error factors at 97% utilization.
We investigated at which utilizations WHEFT stabilizes by decreasing the system
utilization with steps of 10% in the presence of task runtime estimation errors. It
turns out that WHEFT is only stable for all the considered error factors at a very
low utilization of 40%.

The reason why WHEFT is so sensitive to estimation errors is that between
workflow arrivals it is completely plan-driven and thus has less flexibility to cope
with incorrect runtime estimates. If according to the plan a certain task should
be currently scheduled to a processor, but it is not eligible due to the incorrectly
calculated plan, WHEFT just skips it, leaving the processor idle. It thus creates a
gap in the schedule and slows down the workflow to which the task belongs. Once

3

56 3. The Impact of Task Runtime Estimate Accuracy

a task is wrongly placed in the plan due to incorrect estimates, it can only possibly
be relocated to a better position when a new workflow arrives. While WHEFT
postpones tasks “unintentionally”, OWM postpones tasks on purpose in the hope
that finally they will be scheduled on a faster processor. So the reason why WHEFT
shows poor results is similar to why OWM becomes unstable in Section 3.5.2.

At a 97% utilization, our simulated system receives 97 workflows per hour (since
the workflows have an average total execution time of 1 hour), which means that on
average, the plan is recomputed 97 times per hour. So on average, every workflow
task has a chance to be relocated to a better position 97 times during the workflow
execution. Decreasing the utilization decreases the number of simultaneously
scheduled workflows, but at the same time it decreases the number of possible task
relocations.

Moreover, the original HEFT policy schedules tasks with higher upward ranks
first. For this reason, WHEFT gives priority to longer workflows constituting the
joint workflow. Accordingly, WHEFT postpones shorter workflows, which represent
the majority of both our workloads. That increases the average slowdown and
accumulates more workflows in the system, finally destabilizing it.

For plan-based policies in real-world non-simulated environments, the duration
of the plan construction phase is crucial. Newly arrived workflows cannot start
their execution until their tasks have been added to the plan. This can additionally
increase job slowdown. In the considered simulated environment, from the perspec-
tive of workflows plan construction takes zero time, but in real systems it should
be much smaller than the average workflow inter-arrival time. In our case, for 1000
simultaneously running workflows (see Section 3.5.4) the plan construction takes
40 minutes for a Python3 implementation running on a DAS-4 [35] node (2.4 GHz
Intel E5620 CPU, 24 GB RAM). The planning time, however, can be reduced by
using a tree structure (e.g., a k-tree [134]) to store the information about the gaps
in the plan. It will decrease the time required to find an appropriate gap for a task
at the cost of a higher memory consumption.

3.5.4. Performance of a Batch Submission
In this section, we investigate how the considered policies behave when handling a
batch submission. Since this chapter mainly focuses on the analysis of workloads
of workflows, we only perform a limited set of experiments with a single batch
submission of 1000 workflows based on Workload I in a homogeneous system.
Figure 3.8 shows the total schedule length in hours of this batch with variable
Random error I. We do not show the results for Random error II as they are
comparable. There is a small difference for under- and over-estimating situations,
with GBF and CPP producing schedules that are longer by half an hour (5.5%)
than the other dynamic policies.

We do not report slowdowns, as we suppose that batch submissions usually
come from a single user who is only interested in minimizing the total schedule
length rather than achieving fairness among the workflows in the batch. We can
clearly see that WHEFT, indeed, constructs a shorter schedule than the dynamic
policies. However, it is less resilient to errors as its scheduler postpones tasks
which are not eligible or if a target processor is occupied (as in Section 3.5.3). The

3.6. Related Work

3

57

Figure 3.8: The total schedule length in hours of a batch submission based on Workload I with
1000 workflows in a homogeneous system. NE stands for No Error.

schedule length created by WHEFT matches the expected length of 10 hours, as
we scheduled 1000 workflows with an average total execution time of 1 hour on 100
processors. Surprisingly, GBF and CPP policies produce shorter schedules than
the other dynamic policies. Note, that GBF and CPP process workflows in the
order in which they are defined in the batch, while all the other policies use various
ways of ranking to prioritize workflows.

3.5.5. Fairness
To demonstrate that our FWP policy allows to achieve better fairness when
scheduling workloads of workflows, in Figure 3.9 we show scatter plots when
running both workloads at 98% utilization in a homogeneous system without
runtime estimation errors. We can clearly see that FWP reduces the number
of outliers and moves the median slowdown closer to the mean than any other
policy, while slightly increasing the mean. Similar behaviour is observed in the
heterogeneous system (not shown).

Obviously, Workload I is more challenging for the dynamic policies as it contains
more highly parallel workflows (see Figure 3.1). From one perspective, containing
more tasks those workflows have more chances to adjust their ranks during the
execution. From another perspective, among those highly parallel workflows some
have very short critical paths, which means that their slowdowns, in case of any
delay, increase much faster compared to relatively sequential workflows with long
critical paths. These “short” but highly parallel workflows are the main reason why
FWP does not show even better results with Workload I. None of the considered
dynamic policies is able to completely remove such outliers. Including the level of
parallelism when computing the rank in FWP might help to solve this problem.

3.6. Related Work
Our work is a first study in the field which considers the influence of task runtime
estimates on the quality of scheduling for a variety of workflow scheduling heuristics.

Yu ans Shi [169] use Poisson arrivals, but suppose perfect runtime estimates, and
do not investigate slowdown variability. Hsu et al. [77] propose the original OWM
algorithm and also use Poisson arrivals with a set of experiments dedicated to the

3

58 3. The Impact of Task Runtime Estimate Accuracy

(a) Workload I.

(b) Workload II.

Figure 3.9: Scatter plots of slowdowns versus the sizes of workflows at 98% utilization in a
homogeneous system without an error. The point color encodes the approximated LoP, the
vertical axes have a log scale.

impact of inaccurate runtime estimates. Unlike us, that paper only considers one
type of random uncertainty and compares OWM only with two other algorithms,
including Rank_Hybd (HR) which we implement in this chapter. Moreover, the
number of scheduled workflows in that paper is only 100, and the system utilization
and stability are not taken into account.

In the paper by Arabnejad and Barbosa [30] the authors compare HEFT with
FDWS and show that HEFT exhibits the poorest performance. They claim that
they modified the original HEFT to use it in an online scenario, but do not clearly
explain how. Moreover, the authors do not consider system utilization, just simply
submitting relatively few workflows (50) with a fixed interval. In the recent paper
by Arabnejad and Barbosa [31] which targets multi-QoS constrains the system

3.7. Conclusion

3

59

utilization is not considered either.
The slowdown-based fairness problem has been addressed before. Zhao and

Sakellariou [170] proposed a plan-based policy which targets fairness using a
variety of approaches. However, their algorithm has limited applicability for
workloads of workflows as it is plan-based. Recently, Wang et al. [163] proposed
fairness-aware dynamic FSDP algorithm which, however, does not clearly link the
current slowdown and the target average slowdown which should be achieved, and
recomputes workflow priorities on every new workflow arrival only. In contrast,
our FWP policy recomputes priorities when a task becomes eligible or a processor
becomes idle. An algorithm for fairness and granularity control for online scheduling
of workflows is also addressed in a paper by Ferreira da Silva et al. [65]. Their
approach, though, does not consider system utilization.

Among the algorithms which can operate without task runtime estimates
we distinguish PRIO [117] which was successfully implemented in the DAGMan
component of the Condor distributed job scheduler [153]. However, we do not
include it in the comparison, as it tries to maximize the number of eligible tasks in
hope to increase the throughput of the system, while in this chapter we focus on
upward rank-based policies.

3.7. Conclusion
In this chapter, we have investigated the effect of incorrect task runtime estimates
on the performance of dynamic and plan-based scheduling policies in the online
scenario of scheduling workloads of workflows.

We can clearly see the benefit of knowing task runtime estimates as we do
observe significant performance differences between the considered dynamic policies
and large improvements in average job slowdown, but only at extremely high system
utilizations. Similarly, the sensitivity to incorrect task runtime estimates increases
at higher system utilizations. The order in which the workflows are processed is
very important, as it allows to achieve a fairer distribution of slowdowns among
workflows in the workload, as in our FWP policy.

Giving priority to workflows with longer critical paths, especially at extremely
high utilizations, easily destabilizes the system if the workload has a majority of
short jobs, as these short jobs start to accumulate. At lower utilizations, which are
very common in real datacenters, simpler backfilling-based policies that do not use
task runtime estimates are quite applicable and show comparable performance to
more advanced fairness-oriented policies.

The plan-based WHEFT policy shows poor performance with workloads of work-
flows, but it does construct the shortest schedule for batch submissions. Moreover,
WHEFT is quite unstable with incorrect task runtime estimates, running stably only
at the relatively low utilization of 40%. We believe that even more complex policies
like Hybrid.BMCT [142] would also suffer from this problem. Even though we do
not exclude that plan-based approaches could achieve slowdowns comparable to
those of dynamic policies, their planning overhead and implementation complexity
do not seem to be worth it.

4

An Experimental

Performance Evaluation

of Autoscalers

E
lasticity is one of the main features of cloud computing allowing customers
to scale their resources based on the workload. Many autoscalers have been

proposed in the past decade to decide on behalf of cloud customers when and
how to provision resources to a cloud application based on the workload, utilizing
cloud elasticity features. However, in prior work, when a new policy is proposed, it
is seldom compared to the state-of-the-art, and is often compared only to static
provisioning using a predefined Quality-of-Service target. This reduces the ability of
cloud customers and of cloud operators to choose and deploy an autoscaling policy as
there is often not enough analysis on the performance of the autoscalers in different
operating conditions and with different applications. In this chapter, we conduct
an experimental performance evaluation of autoscaling policies, using workflows—
a popular formalism for automating distributed computations for applications with
well-defined yet complex structures. We present a detailed comparative study of
general state-of-the-art autoscaling policies, along with two new workflow-specific
policies. To understand the performance differences between the seven policies, we
conduct various experiments and compare their performance in both pairwise and
group comparisons. We report both individual and aggregated metrics. As many
workflows have deadline requirements on the tasks, we study the effect of autoscaling
on workflow deadlines. Additionally, we look into the effect of autoscaling on the
accounted and hourly-based charged costs, and evaluate performance variability
caused by the autoscaler selection for each group of workflow sizes. Our results
highlight the trade-offs between the suggested policies, how they can impact meeting
the deadlines, and how they perform in different operating conditions, thus enabling
a better understanding of the current state-of-the-art.

61

4

62 4. An Experimental Performance Evaluation of Autoscalers

4.1. Introduction
Cloud computing emerged as a computing model where computing services and
resources are outsourced on an on-demand pay-per-use basis. To make this model
useful for a variety of customers, cloud operators try to simplify the process of
obtaining and managing the provided services. To this end, cloud operators make
available to their customers various autoscaling policies (autoscalers, AS), which
are essentially parametrized cloud scheduling algorithms that dynamically regulate
the amount of resources allocated to a cloud application based on the load demand
and the Quality-of-Service (QoS) requirements typically set by the customer. Many
autoscalers have been proposed in the literature, both general autoscalers for
request-response applications [26, 42, 157, 64, 127] and autoscalers for more
task- and structure-oriented applications such as workflows [25, 40, 60, 47, 136, 46].
The selection of an appropriate autoscaling policy is crucial, as a good choice can
lead to significant performance and financial benefits for cloud customers, and
to improved flexibility and ability to meet QoS requirements for cloud operators.
Selecting among the proposed autoscalers is not easy, which raises the problem
of finding a systematic, method-based approach to comprehensively evaluate and
compare autoscalers. The lack of such an approach derives in our view from ongoing
scientific and industry practice. For the past decade, much academic work has
focused on building basic mechanisms and autoscalers for specific applications,
with very limited work spent in comparisons with the state-of-the-art. In industry
settings, much attention has been put on building cloud infrastructures that enable
autoscaling as a mechanism, and relatively less on providing good libraries of
autoscalers for customers to choose from [73, 133]. To alleviate this problem, in this
chapter we propose and use the first systematic experimental method to evaluate and
compare the performance of autoscalers using workflow-based workloads running
in cloud settings as a use-case application.

Modern workflows have different structures, sizes, task types, run-time proper-
ties, and performance requirements, and thus raise specific and important challenges
in assessing the performance of autoscalers: How does the performance of general
and of workflow-specific autoscalers depend on workflow-based workload character-
istics? Among the many application types, our focus on workflow-based workloads
is motivated by three aspects. First, there is an increasing popularity [150, 152]
of workflows for science and engineering [22, 90, 108], big data [109], and business
applications [154], and by the ability of workflows to express complex applications
whose interconnected tasks can be managed automatically on behalf of cloud cus-
tomers [88]. Second, although general autoscalers focus mainly on QoS aspects, such
as throughput, response-time and cost constraints, some autoscalers also take into
account application structure [115]. One of the main questions we want to answer
in this chapter is: How does the performance of general and of workflow-specific
autoscalers differ?

Another interesting aspect that arise with workflow scaling is the effect of the
autoscalers on workflow deadlines. Many of the workloads have deadlines, basically
a bound on the tolerated time by the user between the workflow submission and
when the computation results are available. Having enough capacity in the system
for the workflows to finish their processing before the deadline can be severely

4.2. A Model for Elastic Cloud Platforms

4

63

affected by the presence of autoscalers. For that we enforce per-workflow and
per-workload deadlines which allow us to see: How does each autoscaler affect
deadline violations?

One of the core properties of an autoscaler is the ability to minimize operational
costs while keeping the required performance level. We calculate the incurred costs
for each considered autoscaler which allow us to answer the questions: How do the
autoscalers affect charged and accounted costs?, and How do the autoscalers find a
balance between performance and cost?

Towards addressing the aforementioned questions, our contribution is threefold:

1. We design a comprehensive method for evaluating and comparing autoscalers
(Sections 4.2–4.4). Our method includes a model for elastic cloud platforms
(Section 4.2), a set of relevant metrics for assessing autoscaler performance
(Section 4.3), and a taxonomy and survey of exemplary general and workflow-
specific autoscalers (Section 4.4).

2. Using the method, we comprehensively and experimentally quantify the
performance of 7 general and workflow-specific autoscalers, for more than
15 performance metrics (Section 4.5). We show the differences between
various policy types, analyze parametrization effects, evaluate the influence
of workload characteristics on individual performance metrics, and explain
the reasons for the performance variability we observe in practice.

3. We also compare the autoscalers systematically (Section 4.8), through 3 main
approaches: a pair-wise comparison specific to round-robin tournaments, a
comparison of fractional differences between each system and an ideal system
derived from the experimental results, and a head-to-head comparison of
several aggregated metrics.

4.2. A Model for Elastic Cloud Platforms
Autoscaling is an incarnation of the dynamic provisioning problem that has been
studied in the literature for over a decade [41]: many autoscalers in essence try
to solve the problem of how much capacity to provision given a certain QoS,
published state-of-the-art algorithms make different assumptions on the underlying
environment, mode of operation, or workload used. It is thus important to identify
the key requirements of all algorithms, and establish a fair cloud system for
comparison.

4.2.1. Requirements
In order to improve the QoS and decrease costs of a running application, an ideal
autoscaler proactively predicts and provisions resources such that: a) there is always
enough capacity to handle the workload with no under-provisioning affecting the
QoS requirements; b) the cost is kept minimal by reducing the number of resources
not used at any given time, thus reducing over-provisioning; and c) the autoscaler
does not cause consistency and/or stability issues in the running applications.

Since there are no perfect predictors, no ideal autoscaler exists. Thus, there
is a need to have better understanding of the capabilities of the various available

4

64 4. An Experimental Performance Evaluation of Autoscalers

Workload

Monitoring

Job Queue

Task

Placement

Policy

Lease/Release

Scheduler

Demand

Analyzer

Supply

Analyzer

Universal Autoscaler

Resource Manager
Filter

Prediction

Infrastructure

Autoscaling Policy

Resource Status

Task Status3

5

6

2

4

8 9

7

1

Figure 4.1: Elastic cloud platform.

autoscalers in comparison to each other. In this chapter, we classify autoscaling
algorithms in two major groups: general and workflow-specific. Examples of general
autoscalers include algorithms for allocating virtual machines (VMs) in datacenters.
They are general because they mostly take their decisions using only external
properties of the controlled system, e.g., workload arrival rates, or the output from
the system, e.g., response time. In contrast, workflow-specific autoscalers base
their decisions on detailed knowledge about the running workflow structure, task
dependencies, and expected runtimes of each task [118]. Often, the autoscaler is
integrated with the task scheduler [115].

Although many autoscaling algorithms targeting different use case scenarios
have been proposed in the literature, they are rarely compared to previously
published work. In addition, they are usually tested on a limited set of relatively
short traces. Many autoscaling-related papers seldom go beyond meeting some
predefined QoS bound, e.g., with respect to response time or throughput, that is
often set (artificially) by the authors. Although the performance of many autoscalers
is very dependent on how they are configured, this configuration is rarely discussed.
To the best of our knowledge, there are no major comparative studies that analyse
the performance of various autoscalers in realistic environments with complex
applications. This chapter aims to fill this gap.

4.2.2. Architecture Overview

Keeping the diversity of used cloud applications and underlying computing ar-
chitectures in mind, we setup an elastic cloud platform architecture (Figure 4.1),
which allows for comparable experiments by providing relatively equal conditions
for different autoscaling algorithms and different workloads. The equal size of the
virtual computing environment, which is agnostic to the used application type, is
the major common property of the system in our model. We believe that our archi-
tecture represents modern elastic cloud platforms properly and reflects approaches
used in many commercial solutions.

While our experiments should be valid for any cloud platform, we decided not
to run any experiments on public clouds for two main reasons. First, scientific work-
flows have been shown to be cost-inefficient on public clouds [86, 168]. Second, as
this chapter aims to fairly benchmark the performance of autoscalers, public clouds

4.2. A Model for Elastic Cloud Platforms

4

65

will introduce variability due to the platforms as public cloud VM performance can
vary considerably [86].

The core of our system is the autoscaling service (Component 1 in Figure 4.1)
that runs independently as a REST service. The experimental testbed consists
of a scheduler (Component 2) and a virtual infrastructure service (Component 3)
which maintains a set of computing resources. A resource manager (Component 4)
monitors the infrastructure and controls the resource provisioning. Users submit
their workflows directly to the scheduler which maintains a single job queue
(Component 5). The tasks from the queued workflows are mapped to the computing
resources in accordance to the task placement policy (Component 6). The scheduler
periodically calls the autoscaling service providing it with monitoring data from
the last time period. We refer to this period as the autoscaling interval.

The autoscaling service implements an autoscaling policy (Component 7) and
has a demand analyzer (Component 8) which uses information about running and
queued workflows to compute the momentary demand value. The supply analyzer
(Component 9) computes the momentary supply value by analyzing the status of
computing resources. The autoscaling service responds to the scheduler with the
predicted number of resources which should be allocated or deallocated. Before
applying the prediction, the resource manager filters it trimming the obtained value
by the maximal number of available resources. To avoid error accumulation, the
autoscaling interval is usually chosen so that the provisioning actions made during
the autoscaling interval has already taken effect. Thus, it is guaranteed that the
provisioning time is always shorter than the autoscaling interval. In case when
the provisioning time is longer than the autoscaling interval, the resource manager
should apply the prediction only partially considering the number of “straggling”
resources. In practice, it means that the resource manager should consider booting
VMs as fully provisioned resources.

4.2.3. Workflow Applications and Deadlines

For our experiments, in this chapter we use complex workflows as our system
workload. We rely on the same workflow job definitions as presented in previous
chapters (e.g., in Section 2.2.1). Scheduling of workflows is often time critical and
involves meeting deadlines for the processing times. For example, workflows for
processing satellite data should handle the received information while the satellite
makes a turn around the planet [137, 59]. Such workflows should finish before
a new batch of information is received. Another example is the case of modern
cloud services where the user pays per time slot and the deadlines are bounded
to the lengths of these time slots [114]. We assume that deadlines for workflows
are set on a per-workflow and per-workload basis. Per-workflow deadlines are
unique for every workflow and are normally assigned based on user (statistical)
estimates of the possible workflow runtimes. Per-workload deadlines are common
when processing batches of workflows. In this case, a per-workload deadline applies
to all the workflows in the workload. We consider soft deadlines which can be
violated without affecting the execution of a workflow. Soft deadlines is a measure
that can additionally reflect induced infrastructure costs for users.

4

66 4. An Experimental Performance Evaluation of Autoscalers

Time

Demand
Supply

R
es

o
u
rc

es

T

A

U

A

A

B

B

O

U

O
 B

U

O

Figure 4.2: The supply and demand curves illustrating the under- and over-provisioning periods
(A and B) quantified in the number of resources (areas U and O).

4.3. Performance Metrics for Autoscalers
We use both system- and user-oriented evaluation metrics to assess the performance
of the autoscalers. The system-oriented metrics quantify over-provisioning, under-
provisioning, and stability of the provisioning, all of which are commonly used in
the literature [73, 26, 72, 28]. All the considered system-oriented metrics are based
on the analysis of discrete supply and demand curves. The user-oriented metrics
assess the impact of autoscaler usage on the workflow execution speed.

4.3.1. Supply and Demand

The resource demand induced by a load is understood as the minimal amount of
resources required for fulfilling a given performance-related Service-Level Objective
(SLO). In the context of our workflow model, a resource can only process one task
at a time. We thus define the momentary demand as the number of eligible and
running tasks in all the queued workflows. Extending the model to include resource
sharing is trivial by using the average number of tasks processed by a resource
instead.

Accordingly, the supply is the monitored number of provisioned resources that
are either idle, booting or processing tasks. Figure 4.2 shows an example of the
two curves. If demand exceeds supply, there is a shortage of available resources
(under-provisioning) denoted by intervals A and areas U in the figure. In contrast,
over-provisioning is denoted by intervals B and areas O.

4.3.2. Accuracy

Let the resource demand at a given time t be dt, and the resource supply st. The
average under-provisioning accuracy metric aU is defined as the average fraction
by which the demand exceeds the supply. Similarly, over-provisioning accuracy aO
is defined as the average fraction by which the supply exceeds the demand. Both
metrics can be computed as:

aU =
1

T ·R

T
∑

t=1

(dt − st)
+, (4.1)

4.3. Performance Metrics for Autoscalers

4

67

aO =
1

T ·R

T
∑

t=1

(st − dt)
+, (4.2)

where T is the time horizon of the experiment expressed in time steps, R is
the total number of resources available in the current experimental setup, and
(x)+ = max(x, 0), i.e., only the positive values of x. The intuition behind the
two accuracy metrics is shown in Figure 4.2. Under-provisioning accuracy aU
is equivalent to summing the areas U where the resource demand exceeds the
supply normalized by the duration of the measurement period T . Similarly, the
over-provisioning accuracy metric aO is the sum of areas O where the resource
supply exceeds the demand.

It is also possible to normalize the metrics by the actual resource demand,
obtaining therefore a normalized, and more fair indicator. In particular, the two
metrics can be modified as:

aU =
1

T

T
∑

t=1

(dt − st)
+

max(dt, ε)
, (4.3)

aO =
1

T

T
∑

t=1

(st − dt)
+

max(dt, ε)
, (4.4)

with ε > 0; in our setting we selected ε = 1. The normalized metrics are particularly
useful when the resource demand has a large variance over time, and it can assume
both large and small values. In fact, under-provisioning of 1 resource unit when
2 resource units are requested is much more harmful than under-provisioning 1
resource unit when 1000 resource units are requested. Therefore, this type of
normalization allows a more fair evaluation of the obtainable performance.

Since under-provisioning results in violating SLOs, a customer might want to
use a platform that minimizes under-provisioning ensuring that enough resources
are provided at any point in time, but at the same time minimizing the amount
of over-provisioned resources. The defined separate accuracy metrics for over-
and under-provisioning allow providers to better communicate their autoscaling
capabilities and customers to select an autoscaler that best matches their needs.
In the context of workflows, over-provisioning accuracy can also be represented in
the number of idle resources (i.e., the resources which were excessively provisioned
and currently are not utilized).

In ideal situation when an autoscaler perfectly follows the demand curve, there
should be no idle resources as the system will always have enough eligible tasks to
run. Although, intuitively it seems that over-provisioned resources should always
be idle, in situations when the actual demand exceeds the estimated demand (from
the autoscaler’s perspective), the over-provisioned resources may not necessarily be
idle. Since aO and aO metrics do not particularly distinguish the amount of idle
resources in the system, we present an additional over-provisioning accuracy metric
mU which measures the average number of idle resources during the experiment
time. If ut is the number of idle resources at time t, mU can be defined as:

mU =
1

T ·R

T
∑

t=1

ut, (4.5)

4

68 4. An Experimental Performance Evaluation of Autoscalers

4.3.3. Wrong-Provisioning Timeshare
The accuracy metrics do not distinguish cases when the average amount of under- or
over-provisioned resources results from a few large deviations between demand
and supply or rather by a constant small deviation. To address this, the following
two metrics provide insights about the fraction of time in which under- or over-
provisioning occurs. As visualized in Figure 4.2, the following metrics tU and
tO are computed by summing the total amount of time spent in an under- A or
over-provisioned B state normalized by the duration of the measurement period.
Letting sgn (x) be the sign function of x, the overall timeshare spent in under- or
over-provisioned states can be computed as:

tU =
1

T

T∑
t=1

(sgn (dt − st))
+, (4.6)

tO =
1

T

T∑
t=1

(sgn (st − dt))
+. (4.7)

4.3.4. Instability of Elasticity
Although the accuracy and timeshare metrics characterize important aspects of
elasticity, platforms can still behave differently while producing the same metric
values for accuracy and wrong-provisioning timeshare. We define two instability
metrics k and k′ which capture this instability and inertia of the autoscalers.
A low stability increases adaptation overheads and costs (e.g., in case of instance-
hour-based pricing), whereas a high level of inertia results in a decreased SLO
compliance.

Letting Δdt = dt − dt−1, and Δst = st − st−1, the instability metric k which
shows the average fraction of time of over-provisioning trends in the system is
defined as:

k =
1

T − 1

T∑
t=2

�sgn(Δst)>sgn(Δdt), (4.8)

where � denotes the set indicator function, and where by over-provisioning trends
we mean situations when supply increases while demand is stable or when supply
increases while demand decreases or when supply is stable while demand decreases.
Similarly, we define k′ which shows the average fraction of time of under-provisioning
trends:

k′ =
1

T − 1

T∑
t=2

�sgn(Δst)<sgn(Δdt), (4.9)

where under-provisioning trends are situations when demand increases while supply
is stable or when demand increases while supply decreases or when demand is
stable while supply decreases.

Both metrics k and k′ do not capture neutral situations when both supply and
demand move in the same direction (have the same sign) or both stay stable. Thus,
if supply follows demand perfectly then both instability metrics are equal to zero.

4.3. Performance Metrics for Autoscalers

4

69

4.3.5. User-oriented Metrics

To assess the performance of autoscaling policies from the time perspective, we
employ the (average) elastic slowdown as a main user metric together with a set of
traditional metrics. In this chapter, we use capital letters for user- and cost-oriented
metrics to distinguish them from the elasticity metrics.

The definition of the elastic slowdown relies on the definition of response time
from Sections 2.2.2 and 3.2.2, denoted here by Tr. The execution time of a workflow
is denoted here by Te, and the workflow makespan is denoted by Tm. The elastic
slowdown Se of a workflow is its response time in a system which uses an autoscaler
(where the workflow runs simultaneously with other workflows) normalized by its
response time T ′

r in a system of the same size without an autoscaler (where the
workflow runs simultaneously with the same set of other workflows and where a
certain amount of resources is constantly allocated): Se = Tr / T

′
r. In the ideal

situation, where jobs do not experience slowdown due to the use of an autoscaler, the
optimal value for Se is 1. When Se is less than 1, then the workflow is accelerated by
the autoscaler. Additionally, we use the slowdown metric as defined in Section 3.2.2,
but in this chapter we refer to this metric as Schedule Length Ratio (SLR) [29], to
better distinguish it from the elastic slowdown Se.

We also calculate the average task throughput T which is defined as the number
of tasks processed per time unit. For each workflow, we define its deadline proximity
ratio Dp as Dp = Tr/D, where Tr is the completion time of a workflow and D is
the deadline. Dp is calculated for each workflow after the completion of its last
task.

4.3.6. Cost-oriented Metrics

We define the average number of allocated resources V as:

V =
1

T

T
∑

t=1

st, (4.10)

which reflects the gain of using an autoscaler. Though V expresses the average
resource consumption, it does not show the incurred costs in relation to common
cloud pricing models.

Therefore, we introduce special metrics to measure consumed CPU hours.
When calculating the CPU hours, we distinguish between accounted CPU hours
and charged CPU hours. Figure 4.3 illustrates this difference, where the light
orange blocks represent the charged CPU hours and the light green blocks represent
the accounted CPU hours. The accounted CPU hours Hj for VM j we define as:

Hj =

T
∑

t=1

st,j , (4.11)

where st,j is the number of supplied resources at time t for VM j. Hence, Hj

4

70 4. An Experimental Performance Evaluation of Autoscalers

Time (hours)

R
es

ou
rc

es

Charged CPU hours

Accounted CPU hours

1
2

3
n ci,j

hi,j

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cn,1
hn,1

c3,1
h3,1

c2,1 c2,2 c2,3
h2,1 h2,3h2,2

c1,1 c1,2
h1,1 h1,2

..
.

..
.

Figure 4.3: The difference between accounted and charged CPU hours.

represents the effective number of used CPU hours. We also compute the average
accounted CPU hours per VM that is defined as:

H =
1

R

R
∑

j=1

Hj , (4.12)

where R is the number of VMs. Accordingly, we define the accounted saving H̃ as
H̃ = Ha/Hn, where Ha is the average number of CPU hours when all the resources
are running throughout the experiment and Hn is the average number of accounted
CPU hours when using an autoscaler. If H̃ is greater than 1, the autoscaler saves
CPU hours, otherwise it uses the same or higher number of CPU hours than the
no autoscaling scenario.

In contrast to the accounted CPU hours, the cost of charged CPU hours Cj

represents the opened CPU hours that have to be paid for VM j. The charged cost
Cj for VM j is defined as:

Cj =

T
∑

t=1

⌈

∆t,j

Pt,j

⌉

Kt,j , (4.13)

where T is the number of scaling events, ∆t,j is the time elapsed between two
events t and t− 1 for VM j, Pt,j is the charge period for VM j, Kt,j is the charged
cost for VM j, and ⌈x⌉ denotes the ceiling function of a real number x. Notice that
Pt,j and Kt,j can vary over time, but here we consider them as constants for the
sake of simplicity. In the following, we selected Pt,j = 60 minutes, and Kt,j = 1.
The average charged CPU hours per VM we calculate as:

C =
1

R

R
∑

j=1

Cj , (4.14)

where R is the number of VMs. Similarly to the accounted saving H̃, we compute
the charged saving C̃ as C̃ = Ca/Cn, where Ca is the average charged cost when
all the resources are running throughout the experiment and Cn is the average
charged cost when using an autoscaler. If C̃ is greater than 1 the autoscaler reduces
costs, otherwise it leads to equal or higher costs than the no autoscaling scenario.

4.4. Autoscaling Policies

4

71

Source of Information
Timeliness of Information

Long-term Current/Recent
Server (General) Hist, Reg, ConPaaS React, Adapt
Job (WF-specific) Plan Token

Table 4.1: The two-dimensional taxonomy of the considered autoscalers.

4.4. Autoscaling Policies
For evaluation, we select five representative general autoscalers and propose two
workflow-specific autoscalers. We classify them using a taxonomy along two di-
mensions and summarize the survey of common autoscaling policies across these
dimensions in Table 4.1. The taxonomy allows us to ensure the proper coverage of
the design space. We identify four groups of autoscalers, which differ in the way
they treat the workload information. The first group consists of general autoscalers
Hist, Reg, and ConPaaS which require server-specific information and use historical
data to make their predictions. The second group consists of React and Adapt
autoscalers which also require server-specific information for their operation but do
not use history to make autoscaling decisions. The last two groups use job-specific
information (e.g., structure of a workflow) and also differ in a way they deal with
the historical data: Plan needs detailed per task information while Token needs far
less historical data and only requires a runtime estimate for the whole job. Further,
we present all the autoscalers in more detail. When introducing each autoscaler we
additionally indicate in the title of its section to which dimensions of the taxonomy
it belongs.

4.4.1. General Autoscaling Policies
As different autoscalers exhibit varying performance, five existing general autoscalers
have been selected. By a general autoscaler, we refer to autoscalers that have been
published for more general workloads including multi-tier applications, but that
are not designed particularly for workflow applications. The five autoscalers can
be used on a wide range of scenarios with no manual tuning. We implement four
state-of-the-art autoscalers that fall in this criteria. In addition, we acquire the
source codes of one open-source state-of-the-art autoscaler. The selected methods
have been published in the following years 2008 [157] (with an earlier version
published in 2005 [156]), 2009 [42], 2011 [87], 2012 [26, 25], and 2014 [64]. The
selected autoscalers are well-cited representatives of the autoscaler groups identified
in the extensive survey by Lorido-Botran et al. [110].

General Autoscalers for Workflows
All of the chosen general autoscalers have been designed to control performance
metrics that are still less commonly used for workflow applications, namely, request-
response time, and throughput. The reason is that historically, workflow appli-
cations were rather big or were submitted in batches [152]. However, emerging
workflow types require quick system reaction such as the usage of workflows in
areas where they were less popular, e.g., for complex web requests, making the use
of general autoscalers more promising.

4

72 4. An Experimental Performance Evaluation of Autoscalers

The autoscalers aimed to control the response time are designed such that they
try to infer a relationship between the response time, request arrival rates, and
the average number of requests that can be served per VM per unit time. Then,
based on the number of request arrivals, infer a suitable amount of resources. This
technique is widely used in the literature [68, 110] due to the non-linearity in the
relationship between the response time and allocated resources.

A similarity does exist though between workflows and other cloud workloads. A
task in a workflow job can be considered as a long running request. The number of
tasks becoming eligible can be considered as the request arrival rate for workflows.
Therefore, we have adapted the general autoscalers to perform the scaling based
on the number of task arrivals per unit time.

The React Policy (Server, Current)
Chieu et al. [42] present a dynamic scaling algorithm for automated provisioning
of VM resources based on the number of concurrent users, the number of active
connections, the number of requests per second, and the average response time
per request. The algorithm first determines the current web application instances
with active sessions above or below a given utilization. If the number of overloaded
instances is greater than a predefined threshold, new web application instances
are provisioned, started, and then added to the front-end load balancer. If two
instances are underutilized with at least one instance having no active session, the
idle instance is removed from the load balancer and shutdown from the system. In
each case the technique Reacts to the workload change. For the remainder of this
chapter, we refer to this technique as React. The main reason we are including
this algorithm in the analysis is that this algorithm is the baseline algorithm in
our opinion since it is one of the simplest possible workload predictors. We have
implemented this autoscaler for our experiments.

The Adapt Policy (Server, Recent)
Ali-Eldin et al. [26, 25] propose an autonomous elasticity controller that changes the
number of VMs allocated to a service based on both monitored load changes and
predictions of future load. We refer to this technique as Adapt. The predictions are
based on the rate of change of the request arrival rate, i.e., the slope of the workload,
and aim at detecting the envelope of the workload. The designed autoscaler Adapts
to sudden load changes and prevents premature release of resources, reducing
oscillations in the resource provisioning. Adapt tries to improve the performance in
terms of number of delayed requests, and the average number of queued requests,
at the cost of some resource over-provisioning.

The Hist Policy (Server, Long-term)
Urgaonkar et al. [157] propose a provisioning technique for multi-tier Internet
applications. The proposed methodology adopts a queuing model to determine how
many resources to allocate in each tier of the application. A predictive technique
based on building Histograms of historical request arrival rates is used to determine
the amount of resources to provision at an hourly time scale. Reactive provisioning
is used to correct errors in the long-term predictions or to react to unanticipated
flash crowds. The authors also propose a novel datacenter architecture that uses

4.4. Autoscaling Policies

4

73

VM monitors to reduce provisioning overheads. The technique is shown to be able
to improve responsiveness of the system, also in the case of a flash crowd. We refer
to this technique as Hist. We have implemented this autoscaler for our experiments.

The Reg Policy (Server, Long-term)
Iqbal et al. [87] propose a regression-based autoscaler (hereafter called Reg). The
autoscaler has a reactive component for scale-up decisions and a predictive compo-
nent for scale-down decisions. When the capacity is less than the load, a scale-up
decision is taken and new VMs are added to the service in a way similar to React.
For scale-down, the predictive component uses a second order regression to predict
future load. The regression model is recomputed using the complete history of the
workload when a new measurement is available. If current load is less than the
provisioned capacity, a scale-down decision is taken using the regression model.
This autoscaler was performing badly in our preliminary experiments due to two
factors; first, building a regression model for the full history of measurements for
every new monitoring data point is a time consuming task. Second, distant past
history becomes less relevant as time proceeds. After contacting the authors, we
have modified the algorithm such that the regression model is evaluated for only
the past 60 monitoring data points.

The ConPaaS Policy (Server, Long-term)
ConPaaS, proposed by Fernandez et al. [64]. The algorithm scales a web application
in response to changes in throughput at fixed intervals of 10 minutes. The predictor
forecasts the future service demand using standard time series analysis techniques,
e.g., Linear Regression, Auto Regressive Moving Average (ARMA), etc. The code
for this autoscaler is open source. We downloaded the authors’ implementation.

4.4.2. Workflow-Specific Autoscaling Policies
In this section, we present two workflow-specific autoscalers designed by us. Their
designs are inspired by previous work in this field and adapted to our situation.
The presented autoscalers differ in a way they use workflow structural information
and task runtime estimates.

The Plan Policy (Job, Long-term)
This autoscaler makes predictions by constructing and analyzing a partial execution
Plan of a workflow. Thus, it uses the workflow structure and workflow task runtime
estimates. The idea is partially based on static workflow schedulers [23]. On each
call, the policy constructs a partial execution plan considering both workflows
with running tasks and workflows waiting in the queue. The maximal number of
processors which are used by this plan is returned as a prediction. The time duration
of the plan is limited by the autoscaling interval. The plan is two-dimensional,
where one dimension is time and another is processors (VMs).

The policy employs the same task placement strategy as the scheduler. In our
case, the jobs from the main job queue are processed in the FCFS order and the
tasks are prioritized in ascending order of their identifier. Each task of a workflow
is supposed to be assigned with a unique numeric identifier using the classical
breadth-first search algorithm, where the identifier of the entry task is 0. For

4

74 4. An Experimental Performance Evaluation of Autoscalers

0 3 1 4

2 4

3 6 4 4

6 14 7 7

0 2

2 2 3 31 4

4 7 5 3

6 10

5 3

AB

(a) Job queue.

0 5 10 15

B:0 B:1

B:2

B:3

A:2

B:5

B:4

A:3

A:4

B:6

A:7

A:6

A:5

Time

P
ro

ce
ss

o
rs

A:1

A:0

(b) Unlimited partial plan.

0 5 10 15

B:0

B:2

B:3

A:2

B:5

B:4

A:3

A:4

B:6

A:7

A:6

A:5

Time
P

ro
ce

ss
o
rs

A:0

B:1

A:1

(c) Limited partial plan.

Figure 4.4: The Plan autoscaling algorithm.

already running tasks, the runtimes are calculated as a remaining time to their
completion. The algorithm operates as follows. On each call it initializes an empty
plan with start time 0. Then it sequentially tries to add tasks in the plan in such
as their starting times are minimal. The algorithm adds a task to the plan only if
it is eligible or its parents are already in the plan. The plan construction lasts until
there are no tasks which can be added in the plan or until the minimal possible
task start time equals or exceeds the planning threshold (which is equal to the
autoscaling interval), or until the processor limit is reached. If the processor limit
is reached then this is returned as the prediction. Otherwise, the prediction is
calculated as the maximal number of processors ever used by the plan within the
planning interval.

Figure 4.4 shows an example of the operation of the algorithm. In Figure 4.4a,
we show the job queue at the moment when the autoscaler is called. The queue
contains two workflows A and B, where A is at the head of the queue. Each
workflow task is represented by a circle with an identifier within it and runtime
in time units on the right. Tasks A:0 and A:1 are already running, finished tasks
are not shown. The autoscaling interval (a threshold) is equal to 15 time units
and is represented by a vertical red dashed line. Figure 4.4b shows an example
of an unlimited plan where the processor limit is not reached. In this case, the
maximal number of processors used within the 15 time units interval is 5 which
equals to the number of green rectangles in the figure (A:0, A:1, B:1, B:2, B:3).
Figure 4.4c shows a plan where the number of available processors is limited by 4
(the horizontal red dashed line). In this case, the algorithm stops constructing the
plan after placing task B:2 and returns the prediction, which simply equals to the
maximal number of available processors (i.e., 4).

4.5. Experimental Evaluation

4

75

The Token Policy (Job, Recent)
The Token policy uses structural information of a DAG and does not directly
consider task runtimes to make predictions and instead requires an estimated
execution time of the whole workflow. It uses tokens to estimate the Level of
Parallelism (LoP) of a workflow by simulating an execution “wave” through a DAG,
as described in Section 2.3.1. The algorithm processes the workflows in the queue
in the FCFS order. For each workflow, the number of token propagation steps is
limited by a certain depth δ, which is defined as δ = (∆t ·N)/L, where ∆t is the
autoscaling interval, N is the number of tasks on the critical path of the workflow,
and L is the total duration of the tasks on the critical path of the workflow. Thus,
the intuition is to evaluate the number of “waves” of tasks (future eligible sets) that
will finish during the autoscaling interval. When δ or the final task of a workflow is
reached, the largest recorded number of tokenized nodes is the approximated LoP
value. The algorithm stops when the prediction value exceeds the maximal total
number of available processors or when the end of the queue is reached. The final
prediction is the sum of all of the separate approximated LoPs of the considered
workflows.

The token-based algorithm does not guarantee the correct estimation of the
LoP. The quality of the estimation depends on the DAG structure. In Figure 2.1a
the estimated LoP of 3 is lower than the maximal possible LoP of 4 in Figure 2.1b.
However, in Section 2.3.1, we show that this method provides meaningful results
for popular workflow structures.

4.5. Experimental Evaluation
In this section, we present the workloads and the configuration of the cloud in-
frastructure we use for the experimental evaluation of the unified cloud system
introduced in Section 4.2. To design our workloads, we use a set of representative
scientific workflows. We take an experimental approach to evaluate chosen autoscal-
ing algorithms with an extensive set of experiments in a virtualized environment
deployed on our multi-cluster system.

4.5.1. Setup of Workflow-based Workloads
We choose three popular scientific workflows from different fields, namely Montage,
LIGO, and SIPHT. The main reason for our choice is the existence of validated
models for these workflow types. Montage [90] is used to build a mosaic image of the
sky on the basis of smaller images obtained from different telescopes. LIGO [22] is
used by the Laser Interferometer Gravitational-Wave Observatory (LIGO) to detect
gravitational waves. SIPHT [108] is a bioinformatics workflow used to discover
bacterial regulatory RNAs.

We generate synthetic workflows using the workflow generator by Bharathi
et al. [16, 38]. Each workflow is represented by a set of task executables and a
set of input files. We use two workloads: a primary Workload 1 and a secondary
Workload 2 each consisting of 200 workflows of different sizes in the range from
30 to 600. Each workload contains an equal mixture of all of the three considered
workflow types. As with many other workloads in computer systems, in practice,
workflows are usually small, but very large ones may exist too [132]. Therefore,

4

76 4. An Experimental Performance Evaluation of Autoscalers

0 100 200 300 400 500 600

Workflow size

0.0

0.2

0.4

0.6

0.8

P
ro
b
ab

il
it
y

101

102

103

104

105

J
ob

ex
ec
.
ti
m
e
(s
)

Workload 1 job exec. times

Workload 2 job exec. times

Figure 4.5: The distribution of job sizes in the workloads (histogram, left vertical axis) and the
dependency between the job size and its execution time (points, right vertical axis). The right
vertical axis is in log scale.

Property Workload 1 Workload 2
Mean task runtime 33.52 s 33.29 s
Median task runtime 2.15 s 2.65 s
σ of task runtime 65.40 s 87.19 s
Mean job execution time 2,325 s 2,309 s
Median job execution time 1,357 s 1,939 s
σ of job execution time 3,859 s 1,219 s
Total task runtime 465,095 s 461,921 s
Mean workflow size 69 tasks
Median workflow size 35 tasks
σ of workflow size 98 tasks
Total number of tasks 13,876 tasks

Table 4.2: Statistical characteristics of the workloads, σ stands for standard deviation.

in our experiments we distinguish small, medium, and large workflows, which
constitute fractions of 75%, 20%, and 5% of the workload. The size of the small,
the medium, and the large workflows is uniformly distributed on the intervals
[30, 39], [40, 199], and [200, 600], respectively. The distribution of the job sizes
in the workloads is presented in Figure 4.5. Figure 4.6 shows the distribution
of task runtimes. Figure 4.7 shows the distribution of job execution times Te in
the workloads. Note, that the histogram of job execution times shows the total
execution time of a job which is the sum of all the job’s task runtimes. The job
will be running this amount of time if and only if all of its tasks are executed
sequentially. However, normally workflows have both parallel and sequential parts.
Thus the job execution times reported in Figure 4.7 should not be confused with
the actual observed makespans Tm of workflows running in a parallel system.

For Workload 1, we use the original job execution time distribution from
the Bharathi generator. For Workload 2, we keep the same job structures as in
Workload 1, but change the job execution times using a two-stage hyper-Gamma
distribution derived from the model presented by Lublin and Feitelson [112]. The
shape and scale parameters (α, β) for each Gamma distribution are set to (5.0,
323.73) and (45.0, 88.291), respectively. Their proportions in the overall distribution
are 0.7 and 0.3. Table 4.2 summarizes the properties of both workloads.

4.5. Experimental Evaluation

4

77

0 100 200 300 400 500 600 700

100

10−2

10−4

Workload 1

0 500 1000 1500 2000

100

10−2

10−4

Workload 2

0.0 0.2 0.4 0.6 0.8 1.0

Task runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab

il
it
y

Figure 4.6: The distribution of task runtimes in the workloads (the horizontal axes have different
scales, and the vertical axes are in log scale).

0 5000 10000 15000 20000 25000 30000
0.0

0.2

0.4

0.6
Workload 1

0 1000 2000 3000 4000 5000 6000
0.00

0.05

0.10

0.15
Workload 2

0.0 0.2 0.4 0.6 0.8 1.0

Job execution time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab

il
it
y

Figure 4.7: The distribution of job execution times in the workloads (all the axes have different
scales).

4.5.2. Setup of the Private Cloud Deployment

To schedule and execute workflows, we use the experimental setup in Figure 4.1
(Section 4.2). The Koala scheduler is used for scheduling workflow tasks [62]
on the DAS-4 [35] cluster deployed at TU Delft. Our cluster consists of 32
nodes interconnected through QDR InfiniBand with 8-core 2.4 GHz CPU and
24 GB of RAM each. As a cloud middleware, OpenNebula 5.4.6 is used to
manage VM deployment, and configuration. The implementation and the VM
images are available upon request. The REST interface between the scheduler and
general autoscalers in our architecture makes it extendable and allows to use other
autoscaling policies. The workflow-specific autoscalers are implemented within
Koala, though other custom policies can also be added.

The execution environment for a single workflow consists of a single head VM
and multiple worker VMs. The head VM uses a single CPU core and 4 GB of
RAM, while each worker VM uses a single core and 1 GB of RAM. Tasks are then
scheduled on the VMs. The workload generator and the workflow runners run on
a dedicated node. The workflow runner coordinates the workflow execution by
following the task placement commands from the scheduler. The runner is also
responsible for copying files (task executables, input and output files) to and from
the VMs in the virtual cluster. For data storage and transfer, we use Network File
System (NFS). This implies that if the head VM and worker VM are located on

4

78 4. An Experimental Performance Evaluation of Autoscalers

the same physical node, the data transfer time between them is negligible. In other
cases, data transfer delays occur. The measured mean NFS write speed for 10
tests of transferring 1 GB is 280 MB/s. We use this value to calculate critical path
lengths for the SLR metric.

Compared to job execution times, file transfer delays and the scheduling over-
heads are negligible. All tasks write their intermediate results directly to the shared
storage reducing data transfer delays for all workflows. A task can run as soon as
all of its dependencies are satisfied. The runner copies all input files for a workflow
to the virtual cluster before starting the execution. Thus, the impact from file
transfer delays between tasks on performance is negligible. Tasks are scheduled
using greedy backfilling as it has been shown to perform well when task execution
times are unknown a priori (Chapter 2). During the experiment, only the autoscaler
has access to the information about job execution times and task runtimes. Note,
that for all considered autoscalers, we do not perform any task preemption. If an
autoscaler requires to stop a certain number of VMs, the scheduler only releases
those VMs which are idle. The scheduler first releases the VMs which are idle the
longest.

4.5.3. Experiment Configuration
To configure the general autoscalers we use the average number of tasks a single
resource (VM) is able to process per autoscaling interval (hereafter called service
rate). The autoscaling interval, or the time between two autoscaling actions, is set
to 30 seconds for all of our experiments.

We test with three different configurations in our experiments, where we change
the value of the service rate parameter or the VM provisioning latency. The
service rate in a request-response system is usually the average number of requests
that can be served per VM. This parameter is either estimated online, e.g., using
an analytical model to relate response time, as the one used in Hist [156], or
offline [68, 56]. For a task-based workload, there are multiple options including
using the mean task service time, the median task service time, or something in
between.

In the first configuration, we assume that a VM serves on average 1 task per
autoscaling interval, i.e., 2 tasks per minute. We derive this value by rounding
the service rate calculated based on the mean task runtimes to the nearest integer
(Table 4.2). This service rate allows us to perform additional comparison between
general and workflow-specific autoscalers as the demand curves have the same
dimension. In the second configuration, we use the median task runtime of Work-
load 1 which gives a service rate equal to 14 (also rounding to the nearest integer)
tasks per autoscaling interval, i.e., 28 tasks per minute. The general autoscalers
using the second configuration are marked with a star (⋆) symbol. While in the
first two configurations we guarantee that all the provisioned VMs are booted at
the moment when the autoscaler is invoked, in the third configuration the VM
booting time of 45 s exceeds the autoscaling interval of 30 s. This configuration
is also used to test workflow-specific autoscalers. The autoscalers using the third
configuration are marked with a diamond (⋄).

For all the configurations and for both workloads the workload player periodically

4.5. Experimental Evaluation

4

79

submits workflows to Koala to impose the average load on the system about 40%.
The workflows submitted to the system arrive according to a Poisson process.
The mean inter-arrival interval is 117.77 s which results into arrival rate of 30.57
workflows per hour. Thus, the minimal duration of each experiment is approximately
6.5 h. If the autoscaler tends to under-provision resources or the provisioning time
in the system is rather large then the experiment can take longer. We choose this
relatively low utilization level on purpose to decrease the number of situations
when the demand exceeds the maximum possible supply ceiling. Additionally, as
workflow scheduling is non-work-conserving the system can saturate even at low
utilizations. Thus, low utilization allows us to see better the dynamic behavior of
the autoscalers by minimizing the number of extreme cases.

We are aware that in computing clouds the job arrivals are often affected by the
time of the day and various external influences resulting in burstiness [63]. Even
for a datacenter which serves requests from all around the globe the intensity of
job arrivals could vary as the distribution of world population is not even across
different time zones, etc. We leave the experiments with other job arrival patterns
to future work. However, the arrival of workflow tasks is non-Poissonian and
depends on the workflow structure and on the distribution of task runtimes within
a workflow. Thus, the diversity of the workflow structures, workflow sizes, and
task runtime distributions which we use, allows us to suppose that our setup is
representative. Furthermore, for the considered duration of the experiment of
approximately 6.5 h, we can simply claim that our emulated system serves requests
from multiple independent users.

4.5.4. Experiment Results

The main findings from our experiments are the following:

1. Workflow-specific autoscalers perform slightly better than general-autoscalers
but require more detailed job information.

2. General autoscalers show comparable performance but their parametrization
is crucial.

3. Autoscalers reduce the average number of used resources, but slow down the
jobs.

4. Although autoscalers tend to reduce the accounted resource CPU hours, the
charged time can easily be higher compared to not using autoscaling.

5. Long VM booting times negatively affect the performance of the autoscalers,
and mostly affect small and medium job sizes.

6. Over-provisioning could partially contribute for better fairness between dif-
ferent job sizes.

7. Autoscalers with better autoscaling metrics show higher variability of deadline
violations.

8. No autoscaler outperforms all other autoscalers with all configurations and/or
metrics.

4

80 4. An Experimental Performance Evaluation of Autoscalers

Type AS
aU aO aU aO tU tO k k′ mU

% % % % % % % % %

General

React 2 6 5 50 15 84 20 32 7
React⋄ 6 5 13 40 32 64 21 32 6
Adapt 4 4 8 27 23 51 21 34 5
Hist 1 60 1 737 2 97 17 43 60
Reg 3 8 6 51 17 51 20 31 8
ConPaaS 2 33 5 273 11 76 20 40 34
React⋆ 0 19 0 179 2 98 19 64 0
Adapt⋆ 0 16 1 150 4 96 19 63 0
Hist⋆ 0 25 1 463 5 95 20 60 1
Reg⋆ 0 12 1 78 5 94 20 62 0
ConPaaS⋆ 0 44 1 1092 1 98 21 45 7

WF-specific
Plan 3 4 7 24 20 43 20 32 5
Plan⋄ 7 3 16 17 35 33 20 34 4
Token 3 6 7 35 16 53 20 33 7

None No AS 0 73 0 869 0 100 17 43 73

Table 4.3: Calculated autoscaling metrics for the main set of experiments with Workload 1.
The diamond symbol (⋄) marks the experiments where the VM booting time is longer than the
autoscaling interval and service rate parameter is set to 1.0. The star symbol (⋆) marks general
autoscalers configured with service rate 14.0. All the other general autoscalers are configured with
service rate 1.0. Best values in each column are highlighted in bold, except the No AS case.

Analysis of Elasticity

To show the trade-offs between the autoscalers, we use the metrics described in
Section 4.3. While calculating the system-oriented metrics, we exclude periods
where the demand exceeds 50 VMs, the total number of available VMs. Since
system-oriented metrics are normalized by time, this approach does not bias the
results.

The aggregated metrics for all experiments are presented in Table 4.3, Table 4.4,
and Table 4.5. Considering the cases where VMs are booting faster than the
autoscaling interval, Table 4.3 shows that the autoscalers under-provision between
1% (using Hist) and 8% (using Adapt) less resources from the demand needs. Hist’s
superior under-provisioning with respect to others comes at the cost of on average
provisioning 7 times the actual demand, compared to 24% over-provisioning for
Plan.

The React⋄ and Plan⋄ policies with longer booting VMs in Table 4.3 show
slightly different results compared to the runs with faster booting VMs. We picked
only these two policies to have one from each group of autoscalers. Both React⋄ and
Plan⋄ tend to under-provision more when the VM provisioning time is longer. The
job slowdowns in Table 4.4 are also higher. From Figure 4.8 we can clearly see that
for (⋄) autoscalers the supply curve is always lagging behind the demand. Thus,
we can conclude that longer provisioning times decrease the number of available
resources for the workload. We can also notice that the average number of idle VMs
decreases for React⋄ and for Plan⋄ as the tasks more fully utilize provisioned VMs.

For the general policies configured with service rate 1.0 and for workflow-specific

4
.5

.
E

x
p
erim

en
tal

E
valu

ation

4

81

Type AS
Se Se (S) Se (M) Se (L) SLR T V H C H̃ C̃

frac. frac. frac. frac. frac. tasks/h VMs CPU · h CPU · h frac. frac.

General

React 1.23 1.24 1.20 1.21 3.71 2,071 23.89 3.30 36.68 2.02 0.19
React⋄ 1.57 1.60 1.52 1.33 4.59 2,066 24.01 3.56 33.38 1.87 0.21
Adapt 1.28 1.32 1.20 1.15 3.82 2,071 22.86 3.22 48.14 2.00 0.15
Hist 1.05 1.05 1.04 1.02 3.17 2,076 44.81 6.21 9.90 1.08 0.71
Reg 1.29 1.32 1.20 1.11 3.89 2,071 24.42 3.36 38.08 1.98 0.18
ConPaaS 1.18 1.22 1.07 1.06 3.5 2,071 34.50 4.72 41.28 1.42 0.17
React⋆ 17.32 20.69 8.76 4.06 45.66 2,011 20.13 2.91 5.06 2.30 1.38
Adapt⋆ 20.06 23.25 12.26 6.08 52.74 2,026 20.49 3.14 7.54 2.13 0.92
Hist⋆ 12.93 15.30 7.00 3.24 34.88 2,016 20.87 3.15 7.14 2.12 0.92
Reg⋆ 25.57 30.04 14.38 7.22 69.84 1,997 20.11 2.93 5.76 2.29 1.21
ConPaaS⋆ 2.11 2.12 2.26 1.25 5.90 2,061 25.15 3.70 41.20 1.81 0.17

WF-specific
Plan 1.27 1.29 1.23 1.11 3.77 2,071 23.34 3.51 44.26 1.90 0.16
Plan⋄ 1.48 1.54 1.35 1.15 4.3 2,066 22.13 3.38 38.04 1.98 0.18
Token 1.25 1.28 1.20 1.20 3.71 2,071 23.88 3.31 46.34 2.02 0.15

None No AS 1.00 1.00 1.00 1.00 3.07 2,076 50.00 6.68 7.00 1.00 1.00

Table 4.4: Calculated user-oriented and cost-oriented metrics for the main set of experiments with Workload 1. The diamond symbol (⋄) marks the
experiments where the VM booting time is longer than the autoscaling interval and service rate parameter is set to 1.0. The star symbol (⋆) marks
general autoscalers configured with service rate 14.0. All the other general autoscalers are configured with service rate 1.0. The metric Se as well
presented for small (S), medium (M), and large (L) job sizes. Best values in each column are highlighted in bold, except the No AS case.

4

82
4.

A
n

E
x
p
er

im
en

ta
l
P
er

fo
rm

an
ce

E
va

lu
at

io
n

o
f
A

u
to

sc
a
le

rs

Type AS
aU aO aU aO tU tO k k′ mU Se Se (S) Se (M) Se (L) T V
% % % % % % % % % frac. frac. frac. frac. tasks/h VMs

General
React 2 7 4 36 17 81 21 32 7 1.11 1.08 1.19 1.21 1,905 22.83
Hist 1 46 1 338 5 94 19 41 46 1.05 1.03 1.10 1.16 1,905 40.82

WF-specific Plan 3 4 7 13 22 39 21 32 4 1.12 1.10 1.18 1.13 1,905 21.32
None No AS 0 66 0 563 0 100 19 41 66 1.00 1.00 1.00 1.00 1,910 50.00

Table 4.5: Calculated autoscaling and user-oriented metrics for the additional set of experiments with Workload 2. The metric Se as well presented for
small (S), medium (M), and large (L) job sizes. Best values in each column are highlighted in bold, except the No AS case.

4.5. Experimental Evaluation

4

83

policies in Table 4.4 and Table 4.5 job elastic slowdowns show low variability. We
can conclude that the resources either significantly over-provisioned (Hist and
ConPaaS) or already provisioned resources are underutilized (React, Adapt, Reg,
Plan, and Token). The non-zero values of mU metric in these cases confirm our
assumption.

The Influence of Different Workloads
The difference is also visible between the two used workloads. While Workload 1
has the majority of short jobs, Workload 2 has a more equal distribution of job
execution times and is thus less bursty. Elastic job slowdowns in both tables confirm
this tendency. For Workload 2 they slightly increase (the Plan policy in Table 4.5 is
an exception) while going from small to large job sizes. We do not run Workload 2
with service rate different from 1.0 as we expect that the trend will be the same as
for Workload 1.

The system-oriented metrics do not vary much between the workloads. For
example, compare React in Table 4.3 and Table 4.4 with React in Table 4.5. Only
Hist over-provisions less while running with Workload 2 as can be explained by
lower burstiness of the workload.

The Dynamics of Autoscaling
Figure 4.8 shows the system dynamics for each autoscaling policy while executing
Workload 1. Some of the autoscalers have a tendency to over-provision resources
(Hist and ConPaaS). The other policies appear to be following the demand curve
more or less closely. Note, that the demand curve has different shape for each
autoscaler as the autoscaling properties affect the order in which workflow tasks
become eligible.

The workflow-specific Plan policy follows the demand curve quite well and
shows results similar to general autoscalers React, Adapt, and Reg running with
service rate of 1.0. However, if a policy follows the demand too close that increases
job slowdowns, as seen in Table 4.4. This trade-off is intuitive. The best policy
when it comes to reducing slowdown is to always have more capacity than needed
as this will allow any task to run as soon as it becomes eligible.

The Influence of Service Rate Parameter on the Autoscaling Dynamics
The most noticeable differences in the results are between general autoscalers
running with service rate 1.0 and with service rate 14.0, based on mean and median
workload task runtimes, accordingly. Figure 4.9 shows general autoscalers running
with the same Workload 1 as in Figure 4.8. The demand curves in these two figures
look very different, except for ConPaaS and ConPaaS⋆. In addition, the supply
curves do not follow the demand curves closely anymore. Although the service
rate chosen is the median-based, it does not reflect the temporal properties of the
workload when it comes to the length of running tasks. If longer jobs occur in
parallel, a queue of tasks will build up resulting in enormous system slowdowns.
This is clear from Table 4.4 where the slowdown between the two service rates is
10 to 15 times larger when using a larger service rate. The k′ metric also increases
for service rate 14.0 as the autoscalers need to estimate more while computing the
next predicted supply value and thus the curves are not so well synchronized. On

4

84 4. An Experimental Performance Evaluation of Autoscalers

0

25

50 React

Demand (VMs) Supply (idle and busy VMs) Queue length (jobs)

0

25

50 React⋄

0

25

50 Adapt

0

25

50 Hist

0

25

50

N
u
m
b
er

of
V
M
s
/
Q
u
eu
ed

jo
b
s

Reg

0

25

50 ConPaaS

0

25

50 Plan

0

25

50 Plan⋄

0 1000 2000 3000 4000 5000 6000 7000

Wall clock time (s)

0

25

50 Token

Figure 4.8: The experimental dynamics of five general autoscaling policies (Workload 1, service
rate 1.0) and two workflow-specific policies during the cropped period of 7,000 s. The horizontal
dashed line indicates the resource limit of 50 VMs. The diamond symbol (⋄) marks the experiments
where the VM booting time is longer than the autoscaling interval.

the one hand, using a larger service rate significantly reduces the average charged
CPU hours, potentially reducing the costs of operations for a user to almost one
sixths of running with lower service rate.

The Trade-off Between Resource Usage and Performance
Here, we study the influence of the number of used VMs on the throughput. We
evaluate only two user-oriented metrics: the throughput degradation in tasks per
hour compared with the no autoscaler case and the number of used resources (VMs).
The values of these metrics are plotted in Figure 4.10. For example, for React the
throughput degradation of –24 tasks per hour contributes only to 1.16% of the
hourly throughput. In Figure 4.10, we can see that T is definitely affected by V .
The variation of T depends on the properties of the workload such as task durations,
the total number of tasks in the workload, and the number of tasks per job.

From these results we can conclude the following. Hist over-provisions quite

4.5. Experimental Evaluation

4

85

Figure 4.9: The experimental dynamics of all the five considered general autoscaling policies
(Workload 1, service rate 14.0) during the cropped interval of 7,000 s. The horizontal dashed line
indicates the resource limit of 50 VMs.

0 10 20 30 40 50

Number of used VMs
(VMs)

No AS
Hist

ConPaaS
ConPaaS⋆

Reg
React⋄
React
Token
Plan

Adapt
Plan⋄
Hist⋆

Adapt⋆
React⋆
Reg⋆

A
u
to
sc
al
er

−80−60−40−200

Throughput degradation
(tasks/hour)

Figure 4.10: The average number of used VMs during the experiment and the average throughput
degradation (compared with the no autoscaler case). All results are given for Workload 1.

a lot and achieves low throughput degradation. ConPaaS also over-provisions
but the throughput is not much affected because its supply curve is very volatile.
ConPaaS⋆ over-provisions less than ConPaaS as it “supposes” that the system
needs less active VMs to process the same workload. Accordingly, the throughput
degradation for ConPaaS⋆ is also bigger. Reg, React, and Adapt configured with
service rate 1.0 as well as Token and Plan show almost similar results. Plan
and Token policies show good balance between the number of used VMs and the
throughput. Parametrization with the service rate of 14.0 decreases the performance
by allocating less VMs. We can also see that longer booting VMs (React⋄ and
Plan⋄) negatively affect the throughput.

4

86 4. An Experimental Performance Evaluation of Autoscalers

4.5.5. Performance of Enforced Deadline-based SLAs

In this section, we analyze how enforced deadline-based SLAs perform for the
considered autoscalers. We use Workload 1 and configure the general autoscalers
with service rate 1.0. We look at two cases. In the first case, the deadlines for
each workflow are set on per-workload basis, in the second case the deadlines for
each workflow are calculated individually, thus set on per-workflow basis. In both
cases, we use response times of workflows in a system without an autoscaler as the
reference.

In the first case, for all the workflows we assign the same deadline which is based
on the statistical characteristics of the whole workload. This approach imitates
a situation where only high level statistics of the workload profile are available
for calculating the deadlines. Although, in our case we use the whole workload,
in other situations the size of the observed period (or the number of considered
workflows) could be different and limited by the practicability, e.g., when the
execution statistics are not available a priori and should be collected automatically
on-the-fly [48]. We use three scenarios to assign per-workload-based deadlines:

1. The longest response time of a workflow in the system without an auto-
scaler (1,247 s).

2. The mean response time of workflows in the system without an autosca-
ler (459 s).

3. The median response time of workflows in the system without an auto-
scaler (295 s).

Figure 4.11a shows deadline proximity ratios for all the three scenarios of
enforced per-workload deadlines. Figure 4.11b shows the variability of deadline
proximity ratios for small, medium, and large workflows for two selected autoscalers:
React and Plan.

In the second case, we use per-workflow deadlines. Each workflow is assigned
with a unique deadline which is equal to its response time in a system without an
autoscaler. We vary the per-workflow deadlines by multiplying them by a certain
error factor which we select from the following list of values [0.8, 0.9, 0.95, 1.0,
1.05, 1.1, 1.2, 1.3]. Note, that for the error factor 1.0 the deadline proximity ratio
coincides with the elastic slowdown. By altering the deadlines, we can observe how
the incorrectly set deadlines, due to inaccuracies in estimation methods [43, 63],
affect deadline violations.

Figure 4.12 shows the variability of deadline proximity ratios for all the workflows
in Workload 1. Figure 4.13 shows the variability of deadline proximity ratios between
three considered groups of workflow sizes for React and Plan policies.

Varying per-workload deadlines using the similar approach as for per-workflow
deadlines does not show significant difference in the results. Interestingly, Fig-
ure 4.11a shows low variability between different autoscalers within the same
deadline type. The main reason is that the majority of jobs in Workload 1 are
rather short. Thus, when the per-workload deadline is applied to each separate
workflow, it leaves enough free space to allow the workflow to meet its deadline
(despite the possible negative effects of elastic slowdown). Comparing different

4.5. Experimental Evaluation

4

87

Mean Median Longest

Per-workload deadline type

0

1

2

3

4

5

6

D
p

React

Adapt

Hist

Reg

ConPaaS

Plan

Token

Mean values

(a) All autoscalers and all workflows.

Mean Median Longest

Per-workload deadline type

0

1

2

3

4

5

6

D
p

React (S)

React (M)

React (L)

Plan (S)

Plan (M)

Plan (L)

Mean values

(b) React and Plan autoscalers, (S) small, (M) medium,
and (L) large workflow sizes.

Figure 4.11: The deadline proximity ratio for the three types of enforced per-workload deadlines
for Workload 1.

scenarios of per-workload deadlines, we can definitely see that the per-workload
deadline which is based on the longest response time, allows almost all workflows to
finish before the deadline. The mean-based per-workload deadline also shows good
results since mean deadline violation ratio is very close to 1. The median-based
per-workload deadline is not the best solution as it increases deadline violations,
shifts median deadline proximity ratio up to 1 and leads to higher variability in
the deadline violations.

Comparing the deadline violations between React and Plan autoscalers in Fig-
ure 4.11b we can see that for the same job sizes, e.g., React (S) and Plan (S)
deadline proximity ratios are almost identical. We can conclude that for per-
workload deadlines the influence of autoscalers is less pronounced because each
workflow has enough time to meet the deadline even despite the elastic slowdown.

4

88 4. An Experimental Performance Evaluation of Autoscalers

0.8 0.9 0.95 1.0 1.05 1.1 1.2 1.3

Error factor

0.0

0.5

1.0

1.5

2.0

D
p

React Adapt Hist Reg ConPaaS Plan Token

Mean values

Figure 4.12: The effect of changing enforced per-workflow deadlines on the deadline proximity
ratio (for all workflows in Workload 1).

0.8 0.9 0.95 1.0 1.05 1.1 1.2 1.3

Error factor

0.0

0.5

1.0

1.5

2.0

D
p

React (S) React (M) React (L) Plan (S) Plan (M) Plan (L)

Mean values

Figure 4.13: The effect of changing enforced per-workflow deadlines on the deadline proximity
ratio for React and Plan autoscalers plotted separately for (S) small, (M) medium, and (L) large
workflow sizes in Workload 1.

The general trend between different scenarios in Figure 4.11b is similar to Fig-
ure 4.11a, i.e., the Longest deadline scenario shows the best results and Median
the worst. Table 4.6 additionally shows numerical variability characteristics for the
selected per-workload and per-workflow scenarios, also for (⋄) and (⋆) autoscaler
configurations.

Intuitively, the further the deadline, the lower the deadline violation ratio.
Figure 4.12 confirms this proposition and indicates how varying per-workflow
deadlines affects the deadline proximity ratio. Notably, the considered autoscalers
show different variability in deadline proximity ratios. Comparing error factors
0.8 and 1.3, the variability increases when more deadlines are violated. However,
the difference in variability of deadline proximity ratios between the autoscalers
stays stable. For example, we can see that for all the error factors Adapt stably
shows slightly higher variability in deadline violations and shows comparable to
Reg mean deadline proximity ratios. Hist and ConPaaS which over-provision more
exhibit better deadline proximity ratios.

Comparing Figure 4.13 with Figure 4.11b we can notice that with per-workload
deadlines more medium and large jobs do not meet deadlines while with per-
workflow deadlines more smaller jobs do not meet their deadlines. This is due to
the method for calculating per-workflow deadlines. Workload 1 has the majority of

4.6. Analysis of Performance Variability

4

89

Figure 4.14: Variability of elastic slowdowns for all the workflows in Workload 1. Values in wider
parts of shaded areas are more probable than those in narrower parts. The horizontal axes have
different scales.

small workflows. Smaller workflows get smaller “safety margin” after multiplying
their response time in a system without an autoscaler by the error factor.

4.6. Analysis of Performance Variability
We analyze in more detail the performance variability of user metrics and focus
only on Workload 1 since Workload 2 does not show significant differences in the
results.

4.6.1. Overall
Figure 4.14 shows variability of elastic slowdowns for all the workflows in Workload 1.
From the shape of the violin plots we can conclude that all the distributions are
long-tailed. For autoscalers configured with service rate 1.0 the distributions are
unimodal, and for autoscalers React⋆, Adapt⋆, Hist⋆, and Reg⋆ the distributions
have second small peak on the right side of the Se axis. Interestingly, heavy over-
provisioning by Hist decreases elastic slowdown variability. Policies configured with
service rate 14.0 show significantly higher variability and for this reason are plotted
separately. ConPaaS, which over-provisions 2–3 times less than Hist, but still
more than all the other autoscalers within the same configuration, shows variability
comparable to e.g., React and Token. Increased VM booting time not only increases
the mean value of the elastic slowdown but also doubles the variability. Adapt and
Reg, while showing almost identical mean slowdowns, differ in the values which are
below 1. Reg speeds up more workflows than Adapt does. The reason is probably
related to the smoother downturns in the supply curve after demand decreases
(Figure 4.8).

Additionally, in Table 4.6 we report numerical variability characteristics for all
the policies with Workload 1: standard deviation (σ), skewness (γ1), and kurtosis
(γ2) for Se and for Dp for both deadline cases. For per-workload Dp we report only
values for the scenario when the per-workload deadline is set based on the mean

4

90
4.

A
n

E
x
p
er

im
en

ta
l
P
er

fo
rm

an
ce

E
va

lu
at

io
n

o
f
A

u
to

sc
a
le

rs

Type AS
Se

Dp Dp

per-workload, mean scenario per-workflow, err. factor 1.0
σ γ1 γ2 mean σ γ1 γ2 mean σ γ1 γ2

General

React 0.42 2.93 9.13 1.06 0.77 0.63 –0.79 1.23 0.42 2.93 9.13
React⋄ 1.12 3.65 14.85 1.17 0.77 0.56 –0.8 1.57 1.12 3.65 14.85
Adapt 0.55 3.65 16.14 1.08 0.78 0.63 –0.77 1.28 0.55 3.65 16.14
Hist 0.14 4.2 20.6 1.01 0.77 0.62 –0.82 1.05 0.14 4.2 20.6
Reg 0.59 3.3 11.04 1.08 0.77 0.61 –0.81 1.29 0.59 3.3 11.04
ConPaaS 0.49 5.19 31.85 1.06 0.8 0.66 –0.75 1.18 0.49 5.19 31.85
React⋆ 34.75 2.81 6.76 4 1.56 0.08 –0.77 17.32 34.75 2.81 6.76
Adapt⋆ 25.12 2.64 5.75 4.65 1.48 –0.6 0.18 20.06 38.67 2.51 4.92
Hist⋆ 38.67 2.51 4.92 3.23 1.18 –0.45 –0.15 12.93 25.12 2.64 5.75
Reg⋆ 45.91 2.13 2.99 5.46 1.32 0.17 –0.43 25.57 45.91 2.13 2.99
ConPaaS⋆ 3.43 7.47 62.58 1.27 0.79 0.44 –0.89 2.11 3.43 7.47 62.58

WF-specific
Plan 0.47 2.84 7.82 1.08 0.78 0.63 –0.79 1.27 0.47 2.84 7.82
Plan⋄ 0.96 5.05 36.26 1.15 0.78 0.58 –0.77 1.48 0.96 5.05 36.26
Token 0.44 3.04 11.28 1.08 0.79 0.67 –0.69 1.25 0.44 3.04 11.28

None No AS 0 0 –3 1 0.77 0.64 –0.81 1 0 0 –3

Table 4.6: Additional variability characteristics of Se and Dp metrics for per-workload and per-workflow cases for Workload 1. Best values in each
column are highlighted in bold, except the No AS case. σ is standard deviation, γ1 is skewness and γ2 is kurtosis.

4.6. Analysis of Performance Variability

4

91

Figure 4.15: Variability of elastic slowdowns for (S) small, (M) medium, and (L) large workflow
sizes in Workload 1. Means are marked with ×. The horizontal axes have different scales.

response time in a system without an autoscaler (Mean scenario, Section 4.5.5). For
per-workflow Dp we present the situation when the error factor is 1.0. For both Dp

cases we additionally report their mean values for all the policies with Workload 1.
Note, that Se means are reported in Table 4.4. Skewness allows us to see how
symmetric the distribution is. The sign of skewness shows in which direction the
distribution is tilted. Comparing slowdowns in Table 4.6 with Figure 4.14, we can
observe that positive skewness basically means that the tail of the distribution is
located on the right from its mean. Higher kurtosis shows that the distribution has
infrequent extreme outliers. Negative kurtosis means that the distribution is more
“flat” and has “thinner tails”, e.g., a uniform distribution.

4.6.2. Performance Variability per Workflow Size

Figure 4.15 depicts variability of elastic slowdowns per size group for (S) small, (M)
medium, and (L) large workflows in Workload 1. We do not show the distributions
in Figure 4.15 as it is long-tailed and similar to Figure 4.14. To better show the
interquartile ranges we do not plot the outliers.

For all the autoscalers configured with service rate 1.0 large workflows show the
lowest elastic slowdown variability, while small workflows suffer more. This trend
is similar to the differences in deadline violation ratios between the same groups of
job sizes in Figure 4.11b and Figure 4.13.

For longer booting VMs (⋄) the variability of elastic slowdowns for large jobs
is comparable to similar configurations with shorter VM booting times. Small-
and medium-sized jobs are more affected by the longer booting VMs. General
autoscalers with service rate 14.0 (⋆) show much worse results and have many
outliers which shift the mean values to the right. This confirms the importance of
looking into the variability of elastic slowdowns when comparing the autoscalers.

4

92 4. An Experimental Performance Evaluation of Autoscalers

Rea
ct

Rea
ct
⋄

Ada
pt Hist Reg

Con
Paa

S
Rea

ct
⋆

Ada
pt

⋆

Hist
⋆

Reg
⋆

Con
Paa

S
⋆

Plan Plan
⋄

Tok
en

Autoscalers

0
1
2
3
4
5
6
7
8

C
P
U
·h

Cost per VM

Means

Figure 4.16: Accounted cost in CPU hours for all the considered autoscalers running Workload 1.
For each policy, per VM costs are displayed with a slight random horizontal shift to avoid excessive
superimposing.

Rea
ct

Rea
ct
⋄

Ada
pt Hist Reg

Con
Paa

S
Rea

ct
⋆

Ada
pt

⋆

Hist
⋆

Reg
⋆

Con
Paa

S
⋆

Plan Plan
⋄

Tok
en

Autoscalers

0

10

20

30

40

50

60

C
P
U
·h

Cost per VM

Means

Figure 4.17: Charged cost in CPU hours for the autoscalers running Workload 1. For each policy,
per VM costs are displayed with a slight random horizontal shift to avoid excessive superimposing.

4.7. Autoscaler Configuration and Charging Model
Configuring autoscalers in public clouds is key to cost savings. Understanding
the pricing model and how an autoscaler can affect the total costs is important.
To give an example, we compare accounted CPU hours, where the actual resource
usage is paid for, and hourly-charged CPU hours that have a constant hourly,
fixed-price scheme, e.g., like the one used by Amazon AWS for on-demand instances.
Figure 4.16 shows accounted cost for each autoscaler and Figure 4.17 shows charged
cost for each autoscaler.

Besides the average accounted and charged cost per VM, in Table 4.4 we analyze
the accounted saving H̃ and charged saving C̃ in comparison to the scenario without
autoscaling. While comparing average accounted CPU hours per VM H of the
different autoscalers from Figure 4.16, it can be concluded that each autoscaling
policy reduces the average accounted CPU hours per VM, i.e., the autoscalers
e.g., React, Adapt, Reg, Plan, and Token have values between 3 and 4 CPU·h,
whereas the no autoscaling scenario has 6.68 CPU·h. This result is more clear
when we compute H̃. Here, the autoscalers Token and React use 2.02 times less
VMs compared to the scenario where all VMs are running throughout the whole
experiment. As the (⋆) autoscalers adapt the system based on another resource
demand, these autoscalers use less VMs than the others. Indeed, the achieved user
metrics are worse compared to the other autoscalers.

Following the hourly pricing scheme, where the autoscalers start and stop VMs
with no regard to the per-hour billing model, all autoscalers use more average
charged CPU hours per VM C than the no autoscaling scenario (7 CPU·h), see
Figure 4.17 or Table 4.4. This shows the danger of misconfiguring an autoscaler on

4.8. Which Policy is the Best?

4

93

a public cloud. One can end up paying between 50% to 600% more than when not
using an autoscaler at all.

4.8. Which Policy is the Best?
Considering all the computed metrics and all the autoscalers, there are many trade-
offs when picking an autoscaler. Comparing, for example, only the average number
of virtual machines V and average throughput T metrics could be insufficient.
Definitely, there is no single best and the final choice of a policy depends on many
factors: application choice, optimization goals, etc. In this section, we try to
show some possible procedures to allow the comparison of autoscalers in such a
multilateral evaluation. For all the assessments presented in this section, we use
the set of experiments with Workload 1. To include all the computed metrics into
consideration, we utilize two ranking methods based on pairwise and fractional
difference comparisons. Additionally, we aggregate elasticity and user metrics to
scores normalized to a reference as done in benchmarking contexts.

4.8.1. Pairwise Comparison

In this section, we rank the autoscalers using the pairwise comparison method [50].
In this method, for each algorithm we pairwise compare the value of each metric
with the value of the same metric of all the other autoscalers. When a smaller value
of a metric is better, for a pair of autoscalers A and B, autoscaler A accumulates
one point if the value of this metric is lower than the value for autoscaler B. In
case when bigger is better, autoscaler B gets the point. If both values are equal
then both autoscalers get half point each. This method provides some ranking of
the autoscalers, but its results do not fully capture the trade-offs as an autoscaler
can get a point for being marginally better than another autoscaler in one metric,
while being considerably worse than all of them in another metric.

We consider system metrics (aU , aO), (tU , tO), (k, k′), and user metrics Se,
the standard deviation of Se, and H. T and Dp are excluded since they correlate
with Se. We do not consider aU and aO, as well as mU due to redundancy with
the selected accuracy metrics. The usage of H allows us to exclude V from the
consideration. For all the metrics smaller value is better. The results of the
comparison are given in Table 4.7. The bigger the number of points the better.
The maximal number of points which each autoscaler can ever obtain is limited
by the product of the number of considered metrics and the number of compared
autoscalers.

4.8.2. Fractional Difference Comparison

In this section, we rank the autoscalers using the fractional difference method
comparing all the autoscalers with an ideal case. For ideal case, we construct an
empirical ideal system that achieves the best performance for all the metrics we
consider. Note, this system does not exist in practice. Thus, the ideal system is
a system which compiles all the optimal values for the considered metrics (here
we use the same metrics as for Pairwise Comparison in Section 4.8.1), including
the no autoscaler case. For each metric mi, we compute its best value bi which is

4

94 4. An Experimental Performance Evaluation of Autoscalers

AS
Pairwise Fractional Elasticity User Overall
points frac. si ui oi

React 79.5 2.46 2.20 1.28 1.68
React⋄ 49 5.30 1.99 1.09 1.47
Adapt 63.5 3.5 2.38 1.27 1.74
Hist 69.5 2.83 1.07 1.01 1.04
Reg 69 2.89 2.26 1.24 1.67
ConPaaS 61 3.12 1.34 1.10 1.21
React⋆ 59 30.45 1.41 0.36 0.72
Adapt⋆ 60 23.22 1.49 0.33 0.7
Hist⋆ 53.5 33.62 1.3 0.4 0.73
Reg⋆ 54.5 40.28 1.65 0.3 0.7
ConPaaS⋆ 44 4.69 1.15 0.93 1.03
Plan 75 2.96 2.67 1.22 1.81
Plan⋄ 61 5.42 2.28 1.16 1.62
Token 74 2.6 2.37 1.27 1.74
No AS 72.5 2.89 1 1 1

Table 4.7: The pairwise and fractional comparison, the aggregated elasticity and user metrics.
The winners in each category (except No AS) are highlighted in bold.

either minimum or maximum value from the set of metric’s values, depending on
the metric (e.g., among our metrics only for T the biggest value is the best). For
each autoscaler the score p for the metric j is computed as following:

pj =
M
∑

i=1

|mi − bi|
max(bi, ε)

, (4.15)

where M is the total number of considered metrics, and ε > 0, which is here set
to ε = 1. The final score of an autoscaler is the average of all the individual pj
scores. The final score shows the fraction by which the autoscaler differs from the
empirically established ideal system. Thus, the smaller the final score the better.
The results of the comparison are given in Table 4.7.

4.8.3. Elasticity and User Metrics Scores
In this section, we aggregate elasticity and user metrics to scores as proposed by
Fleming et al. [66]. As commonly done in the benchmarking domain, we first select
a baseline as reference to compute metric ratios and then compute the averages of
the metrics using an unweighted geometric mean. We choose the metric results
with no active autoscaler as baseline. The unitless scores allow for a consistent
ranking of autoscalers with 1 as a reference value. The larger the score, the better
the rating. The scoring could be extended by user-defined weights.

For each autoscaler i we group the set of elasticity metrics based on the covered
aspects into three groups: (i) accuracy as ai = aU,i + aO,i, (ii) wrong provisioning
timeshare ti = tU,i + tO,i, and (iii) instability κi = ki + k′i. For the elasticity scores,

4.9. Threats to Validity

4

95

we do not consider aU and aO, and mU metrics to avoid redundancy in elasticity
aspects. The user score comprises the average accounted CPU time of VM instances
Hi and the elastic slowdown Se,i as metric ratios for each autoscaler i. The average
throughput T is not considered as it is inversely dependent on the elastic slowdown
Se.

The elasticity scores si and user scores ui are computed with respect to the
baseline no autoscaler case b for each autoscaler i. The overall score oi is the
geometric mean of elasticity scores si and user scores ui:

si =

(

ab
ai

· tb
ti

· κb

κi

)1/3

, (4.16)

ui =

√

Hb

Hi

· Se,b

Se,i
, (4.17)

oi =
√
si · ui. (4.18)

The resulting ranking is presented in Table 4.7. Using the described metric
aggregation approach and concerning the elasticity si and overall oi scores, Plan
outperforms the general autoscalers. The React policy shows the best results from
a user perspective in ui, while our Token policy and the general Adapt policy follow
React with a small score difference of 0.01. Hist and ConPaaS perform slightly
better than a system without an autoscaler in this context. Strong impact on the
autoscalers has the service rate parameter (⋆), a smaller impact can be observed
for the experiments with longer provisioning time (⋄).

4.9. Threats to Validity
The limitations of the study are mainly expressed in the constrained number of
considered job types and autoscalers. Improvements can be achieved by adding
extra workloads with different characteristics to ideally consider wider spectrum
of major job types that benefit from autoscaling. For example, data analytics
workflows, streaming workflow applications, and workflows requiring quick reaction
time [161]. Additionally, it is possible to report the job slowdown per workflow
type. To make the study more applicable to cloud environments, one can extend
the set of workflow-related autoscalers with algorithms which consider job deadlines
and costs [118, 47].

One interesting aspect is the possible interpretations of the metric values. While
our metrics are application-agnostic, their interpretation is not. They can be viewed
as raw metrics which, in a proper service-level agreement, can be assigned with
certain thresholds and interpretation.

The experimental setup used in this chapter could also be improved. Despite the
fact that our private OpenNebula environment is rather representative, the number
of concurrent users in Amazon EC2 or Microsoft Azure is much higher than in our
case. Thus, it would be beneficial to consider public clouds to capture possible
performance effects which could arise there. In addition, avoiding interval-based
autoscaling in real setups could improve the quality of predictions by reacting to
changes in the demand more quickly. We parametrize general autoscalers (computed

4

96 4. An Experimental Performance Evaluation of Autoscalers

service rate parameter) using the statistical properties of the whole workload as
we have an access to this information. However, in the case when the workload
properties are unknown different demand estimation methods can be used [147].
We do not analyze CPU utilization and RAM usage as for the considered workloads
CPU and RAM information has low value as we primarily assign one task per VM
and focus on performance characteristics from the perspective of job execution
times.

The fractional difference comparison does not have upper bound for its scores.
The comparison method can be improved by, for example, normalizing the set of
values for the single metric by the maximum value from that set, but this could
make the results incomparable with results obtained in other environments in
the future. Another issue is related to the selection of metrics for tournaments
to have a proper balance between autoscaling-, user-, and cost-oriented metrics
within a single competition. The same stands for using the weights for prioritizing
the considered metrics. The choice of metrics and weights solely depends on the
goals which should be achieved. For this reason, since we are performing general
comparison of diverse autoscalers and we are not inclined towards certain metrics,
we use multiple types of tournaments. It depends on the reader’s preferences how
the metrics and tournament results will be interpreted.

4.10. Related Work
This chapter provides the first comprehensive comparative experimental study of
autoscaling for workflows. We are unaware of any similar study in terms of the
methodology taken, the number of policies compared, the number of performance
metrics, and the size of experiments run. The importance of comparing different
autoscaling algorithms has been recently discussed in the literature but mostly from
a theoretical point of view [110, 133]. One exception is a tool that tries to utilize the
differences between different autoscaling policies to achieve better QoS for customers
by selecting a policy based on the workload [27]. That work, nevertheless, does not
include any experimental comparison or deep analysis between the performance of
the autoscalers as we do in this chapter.

The problem of scaling workflows has been studied in the literature with a focus
on designing new autoscaling policies. Malawski et al. [115] discuss the scheduling
problem of ensembles of scientific workflows in clouds while considering cost- and
deadline-constraints. Mao et al. [119] optimize the performance of cloud workflows
within budget constraints. They propose two algorithms, namely, Scheduling-First
and Scaling-First. Cushing et al. [47] deal with prediction-based autoscaling of
scientific data-centric workflows. Buyn et al. [40] try to achieve cost-optimized
provisioning of elastic resources for workflow applications. The authors use the
Balanced Time Scheduling (BTS) algorithm to calculate the minimal required
number of resources which will allow to execute the workflow within a given
deadline. Dörnemann et al. [60] consider scheduling of Business Process Execution
Language (BPEL) workflows in the Amazon EC2 cloud. Their main findings include
the methods to automatically schedule workflow tasks to underutilized hosts and
to provide additional hosts in peak situations. The proposed load balancer uses
the overall system load to take scaling decisions in contrast to other systems where

4.11. Conclusion

4

97

the throughput is more important. Heinis et al. [71] propose a design and evaluate
the performance of a workflow execution engine with self-tuning capabilities.

4.11. Conclusion
In this chapter, we propose a comprehensive method for comparing autoscalers
when running workflow-based workloads in cloud environments. Our method
includes a model for elastic cloud platforms, a set of over 15 relevant metrics for
evaluating autoscalers, a taxonomy and survey of exemplary general and workflow-
specific autoscalers, and experimental and analysis steps to conduct the comparison.
Using our method, we evaluate 7 general and workflow-specific autoscalers, and
several autoscaler variants, when used to control the capacity for a workload of
workflows running in a realistic cloud environment. Our results across the diverse
metrics highlight the trade-offs of using the different autoscalers. At the best of
our knowledge, the efficiency of general autoscalers was previously unknown for
workflows. We show that although workflow-specific autoscalers have the privilege
of knowing the workflow structure in advance, it is possible for properly configured
general autoscalers to achieve similar performance. Our results demonstrate that
a correct parametrization of general autoscalers is very important. In our case,
the service rate parameter is not the only one to affect the performance of general
autoscalers. In particular, VM booting times and the choice of the autoscaling
interval are also crucial, as many general autoscalers are designed to stably operate
when VM booting times do not exceed a certain threshold. Finding optimal values
for parameters could be even impossible (as they could be implementation-related)
and will probably require more experiments. Remarkably, our workflow-specific
Plan autoscaler shows comparable results to the general React autoscaler and wins
2 out of 5 competitions while providing a good balance between operational costs
and performance. The correct choice of an autoscaler is important but significantly
depends on the application type. Thus, no single universal solution exists. In such
a situation, the multilateral ranking methods which we use gain more importance.

5

Performance-Feedback

Autoscaling for

Workloads of Workflows

T
he growing popularity of workflows in the cloud domain promoted the develop-
ment of sophisticated autoscaling policies that allow automatic allocation and

deallocation of resources. However, many state-of-the-art autoscaling policies for
workflows are mostly plan-based or designed for batches (ensembles) of workflows.
This reduces their flexibility when dealing with workloads of workflows, as the work-
loads are often subject to unpredictable resource demand fluctuations. Moreover,
autoscaling in clouds almost always imposes budget constraints that should be
satisfied. The budget-aware autoscalers for workflows usually require task runtime
estimates to be provided beforehand, which is not always possible when dealing with
workloads due to their dynamic nature. To address these issues, we propose a novel
Performance-Feedback Autoscaler (PFA) that is budget-aware and does not require
task runtime estimates for its operation. Instead, it uses the performance-feedback
loop that monitors the average throughput on each resource type. We implement
PFA in the popular Apache Airflow workflow management system, and compare
the performance of our autoscaler with other two state-of-the-art autoscalers, and
with the optimal solution obtained with the Mixed Integer Programming approach.
Our results show that PFA outperforms other considered online autoscalers, as it
effectively minimizes the average job slowdown by up to 47% while still satisfying
the budget constraints. Moreover, PFA shows by up to 76% lower average runtime
than the competitors.

5.1. Introduction
Workflows have been introduced to cloud workloads over a decade ago [53]. To-
day, the variety of workflow structures observed in modern cloud workloads and
the diversity of cloud resource types require much more sophisticated resource

99

5

100 5. Performance-Feedback Autoscaling

management and scheduling techniques [167, 52, 6]. Autoscalers [118] must not
only allocate resources but also deallocate them, delivering results in time without
resource waste and without exceeding preallocated budgets. They must further
operate online, fulfilling dynamic requirements for multiple types of resources
from a stream of multi-user requests. Meeting such demanding and dynamic
Service-Level Agreements (SLAs) is not trivial, and poses important challenges to
traditional single-workflow [101, 155] and multi-workflow [170, 24] schedulers, offline
autoscalers for workflow ensembles [116, 33, 164], and online autoscalers [40, 119].
Online autoscalers have better performance scalability, but currently they often
produce low quality demand estimations and thus could waste cloud resources [119],
as we showed earlier in Chapter 4. Offline approaches use sophisticated planning
techniques to produce high quality schedules and demand estimations, but lack
the performance scalability needed to operate online in cloud settings [160, 82]. In
this chapter, we aim to combine the qualities and avoid the drawbacks of previous
approaches. To this end, we design and evaluate experimentally the Performance-
Feedback Autoscaler (PFA), which we aim to make highly scalable while producing
high-quality estimations.

Previously, the problem of autoscaling for workflows has been seen often from
the perspective of just a single user who submits to the cloud a batch (an ensemble)
of workflows. Usually, the workflows in the batch have previously known task
runtimes, or good estimates obtained through code analysis, simulation, or from
running on a reference system. This approach has been successfully adopted for
executing batches of scientific workflows [155, 170, 116], which are well-studied [92]
and have rather fixed patterns of execution [16], but can be too rigid for workflows in
non-scientific domains [165]. Moreover, task runtime estimates have not been shown
to be robust for batches in cloud settings, e.g., under multi-tenancy effects [91] and
performance variability [120].

A more general approach assumes that the user submits a workload of workflows
of different types as, for example, if the user runs an application serving many
other, diverse customers. Many cloud-based services, such as Airbnb (rentals),
Twitter (communication), and Netflix (video streaming), use this approach [131].

Autoscaling workloads of workflows is fundamentally different from autoscaling
batches of workflows. Normally, for both the cloud user has a budget, to be used
to run the workflows before their individual deadline. This is challenging because
cloud resources are heterogeneous, have different costs, and act as performance
black boxes. But autoscaling workloads does not typically aim to minimize the
average makespan, as autoscaling batches typically does. Because, in a workload,
workflows arrive in the system dynamically as a stream, it is important to minimize
the workflow slowdown, as this leads to predictable service performance. Further,
to keep their service sustainable under varying workload demand, cloud users are
very interested to reduce resource waste and thus reduce operational costs.

Many existing autoscalers for workflows operate offline [116, 33, 164]. Given a
batch of workflows, they create full autoscaling and task placement plans, which are
then executed by the workflow management system. Online autoscalers, for when
workflows stream over time forming a workload, are relatively rare [40, 119]; the
few online autoscalers mostly use a plan-based approach, as they create a partial

5.2. Problem Statement

5

101

plan to follow during an entire autoscaling interval. Although online plan-based
approaches have showed promise in the past decade, we know now that they lead
to unscalable time complexity when applied to workloads of workflows [160].

Autoscalers that do not scale well with the workload can negatively affect the
stability of the system. Shorter autoscaling intervals, that are more in line with
the current trend of fine-grained billing [140], further complicate the problem,
leaving even less time for making autoscaling decisions. Moreover, plan-driven
task placement may slow down the execution of newly arrived workflows, as new
tasks wait to be added to the plan. In this case, the plan-based, computationally
intensive autoscalers are not beneficial and should be substituted by simpler and
faster, dynamic approaches.

We envision further improving autoscaling for workloads of workflows by com-
bining concepts inherent to general autoscalers [26] and to workflow-aware au-
toscalers [119]. From general autoscalers, we aim to adopt the principle of
performance-feedback, to derive and analyze runtime statistics during the exe-
cution. For example, instead of deriving task runtime estimates [43], we can use
task throughput, which is easier to observe. From workflow-aware autoscalers,
we can adopt token-based techniques for estimating the expected resource demand,
which are less computationally intensive (Chapters 2 and 4). Overall, the main re-
search questions addressed in this chapter, and our contributions toward answering
them, are:

1. How to minimize workflow slowdowns within the budget constraint with un-
known in advance task runtime estimates when autoscaling cloud resources
for workloads of workflows? We propose in Section 5.3.3 a novel, online,
dynamic Performance-Feedback Autoscaler (PFA) that uses the resource task
throughput information and a token-based estimator.

2. Does the autoscaling policy found when answering Question 1 has lower time
complexity than the state-of-the-art plan-based online autoscalers? In Sec-
tion 5.5, through real-world experiments, we show that PFA answers this
question favourably by outperforming two state-of-the-art, plan-based, online
autoscalers.

3. How far is the performance and scalability of the policy found in Question 1
from the optimal solution? We compare in Section 5.6 all the considered
autoscalers with the optimal solution obtained from a Mixed Integer Pro-
gramming model.

5.2. Problem Statement
This section presents the model for the problem of autoscaling for workloads
of workflows. The section also presents a set of metrics we use to evaluate the
performance of the workloads and the performance of the studied autoscalers.

5.2.1. Autoscaling Model
We consider a public cloud computing system which is a subject to an arriving
workload of workflows. The workflow model is the same as in the previous chapters.

5

102 5. Performance-Feedback Autoscaling

The workload consists of multiple independent sub-workloads each belonging to
an independent user.

The cloud computing system allows every user to dynamically allocate and
deallocate computing resources of various types, where each resource type has a
specific cost. Each resource can be in either of the following four states: down,
idle, busy, or booting. The resource is down when it is deallocated and it is not
reserved for any user. The resource is idle when it is allocated, reserved for a
certain user, but has no currently assigned task. The resource is busy when it has
a task assigned. The resource is booting when it is in the transition state between
the down and idle states.

Once the resource is allocated, the user is charged and the resource is reserved
for the user until the end of the resource billing period, where the billing period
is the minimal time for which the cloud resource can be reserved for a particular
user. Each user has a certain operational budget per autoscaling interval, and
the total cost of all the resources reserved for the user on the autoscaling interval
cannot exceed the user budget. After the allocation, the resource spends some
time in the booting state, while already being reserved for the user, without being
able to execute any user tasks. At the end of the billing period, the resource
can be deallocated or its reservation can be prolonged for the next billing period.
In our model, the duration of the billing period equals to the duration of the
autoscaling period. Before transitioning into the down state for deallocation, the
resource should always pass the idle state first. The resource deallocation happens
instantaneously. The system size is the maximal resource capacity which is available
for the system users.

Since the number of eligible tasks from each user varies over time, the system
employs an autoscaler to automatically control the number of allocated resources
on a per-user basis. The separate scheduler is responsible for placing tasks onto the
allocated resources. In this chapter, as well as in Chapter 4, we focus on periodic
autoscaling, so that the autoscaler is invoked at fixed intervals by the workflow
management system and monitors the controlled cloud environment. Accordingly,
the autoscaling interval is the time between any two invocations of the autoscaler.

Despite that the system has resources of different types, we assume that there is
no direct dependency between the cost of a resource type and the execution speeds
of tasks running on it. Our motivation is based on the assumption that while some
tasks can benefit from additional CPU cores, other tasks can be sequential in their
nature and, thus, can show better performance on resources with fewer cores but
with higher CPU frequency. Similar assumptions can be made for different RAM
or storage requirements, etc.

The autoscaler and the scheduler operate in tandem with the goal to minimize
workflow response time within the budget constraint. This can be achieved by
allocating enough resources and finding an appropriate resource profile which
guarantees required performance. By resource profile we understand a specific
combination of resource types within the set of resources currently allocated for the
user. Additionally, the autoscaler can have a goal to achieve fairness among multiple

5.2. Problem Statement

5

103

users. Since the resources are reserved for each user until the end of their billing
period, during that period each resource can execute only tasks from the reserving
user. This implies that the scheduler is not able to control the fairness among the
users as it is only allowed to place tasks belonging to a certain user to the resources
that are reserved for the same user. Thus, the only way to control fairness, by which
in this chapter we understand maintaining average task throughput proportional
to the user budget, is by controlling the number of allocated resources within the
resource profile. Thus, if the autoscaler is fairness-aware, it should consider in
addition to the budget constraint also the fairness constraint.

We do not include deadlines in this study as, in contrast to the offline approach,
in the dynamic workload scheduling deadlines can only be roughly estimated. Fur-
thermore, for workloads the deadline compliance depends on the system utilization,
thus, the deadlines that were derived previously at a certain utilization level can
be easily invalid for other utilizations. The dynamic nature of autoscaling for
workloads makes the response time minimization and the stability of the system
more important goals rather than the deadline compliance. It is also reasonable to
assume that the response time minimization usually increases the number of met
deadlines. Additionally, in our model we allow users to assign numeric priorities
to workflows so that they can indicate which workflows are more important and
should be processed faster.

5.2.2. Performance Metrics

The system is constantly monitored by its users and operators, who assess its
performance for a set of metrics commonly used in autoscaling settings. In this
chapter, we mostly rely on metrics defined earlier in previous chapters.

User- and System-Oriented Metrics

As a main user-oriented metric we use slowdown which is defined in the same way
and using the same notations as in Section 3.2.2. We also consider the monetary
cost per autoscaling interval as a user-oriented metric. By monetary cost we
understand the total cost of allocated resources during any autoscaling interval.
As a system-oriented metrics we use the percentage of busy resources throughout
the experiment and the percentage of allocated resources per autoscaling interval.

Elasticity-Oriented Metrics

To evaluate the performance of the considered autoscalers, we take the elasticity
into account. We extend the system model from Chapter 4, where we allow each
resource to run only a single workflow task at a time. Thus, we rely on the same
demand and supply definitions as in Section 4.3, and use the same under- and over-
provisioning accuracy metrics aU , aO, and under- and over-provisioning timeshare
metrics tU , tO. However, since in this chapter we consider multiple users, the supply
and demand are additionally defined per user. From the resource heterogeneity
perspective, we do not define the demand per resource type, as we suppose that
task resource preferences are unknown a priori to the scheduler.

5

104 5. Performance-Feedback Autoscaling

5.3. Autoscalers
This section explains in detail two state-of-the-art budget-aware autoscalers, that
require task runtime estimates for their operation, and presents our novel autoscaler,
which, in contrast, operates without explicitly provided task runtime estimates. The
considered state-of-the-art autoscalers were proposed by Mao and Humphrey [119]
and designed specifically for workloads of workflows. The relevance of these
autoscalers is supported by the recent survey [111].

5.3.1. Planning-First Autoscaler
The Planning First (PLF) [119] autoscaling policy uses currently eligible tasks to
allocate resources within a budget constraint. Even though the name of the policy
in the original paper is Scheduling First, further we refer to it as Planning First, as
this policy basically creates an execution plan for the tasks within the autoscaling
interval. The autoscaler consists of six steps which are executed on every policy
invocation, i.e., for every autoscaling interval:

1. Distribute the user budget among the workflows based on their priority.

2. Perform initial supply prediction by determining the number of each resource
type to allocate within the budget constraint.

3. Consolidate the budget left after the initial supply prediction.

4. Allocate the resources according to the predicted supply.

5. Create an execution plan for the upcoming autoscaling interval.

6. Deallocate idle resources which do not have any tasks planned and are
approaching the end of their billing period.

In the first step, the policy computes the cost of already allocated resources,
deducts their cost from the user budget, and distributes the remaining budget
to individual workflows proportionally to their priority, so that higher priority
workflows get bigger budgets.

In the second step, the policy iterates through the eligible tasks of the workflow,
sorted in the descending order of their workflow priorities, and for each task, while
there is enough budget, it finds the resource type allowing to finish the task in the
shortest time. The tasks are not assigned to the resources, only the number of
resources of each type is determined. If the budget is over, the autoscaler proceeds
to the third step—the budget consolidation. In the original paper, the loop break
condition depends on the cost of the cheapest resource in the system so that already
after the second step the policy can overspend the budget (for each workflow) by
the cost difference between the fastest resource and the cheapest one. To avoid
this, we modify the policy and use the cost of the fastest resource for the currently
processed workflow task instead.

In the third step, the policy performs budget consolidation, as some budget
can be left by individual workflows after the initial demand estimation. There
are two reasons why the initially distributed budget may not be fully spent: some
workflows could have not enough eligible tasks, or some workflows could have
remaining budget smaller than the cost of the fastest resource. So that these

5.3. Autoscalers

5

105

remaining per-workflow budgets can be redistributed among the workflows from
the same user to include more fastest resources in the allocation plan. This allows
to determine fastest resource types for the remaining higher priority eligible tasks
that were not processed in the second step. After this step, the autoscaler produces
the final predicted number of instances of each type which should be allocated. It
also specifies for some or all eligible tasks on which resource types they should run.
Some eligible tasks belonging to lower priority workflows still could be without
assigned resource types, as the cost of their fastest resources did not fit within the
budget constraint.

In the fourth step, the policy allocates the resources according to the predicted
supply.

In the fifth step, the policy performs so-called resource consolidation which
basically means the creation of an execution plan on the already allocated (at
the moment of the autoscaler invocation) and newly allocated resources (after the
fourth step) for the upcoming autoscaling interval. For that, the policy determines
actual resources (not just the resource types) for each workflow task and tries to
fill the resources in the plan with tasks until the end of the autoscaling interval.
This is necessary, as after the third step only (a subset of) eligible tasks get the
resource type assigned—those, that were used to predict the supply. Accordingly,
the number of resources in the plan equals the number of running tasks and the
number of tasks that have the resource type assigned after the third step.

Finally, in the sixth step, the resources that did not get any tasks assigned in
the previous steps and that are approaching the end of their billing period are
deallocated.

As the original paper [119] relies on simulations, many very important details,
that are crucial when implementing the policy in a real system, are missing or
imprecise. Further, we provide our interpretation of the resource consolidation step.
When constructing the execution plan, PLF processes workflows in a random order.
The newly allocated resources are considered as booting, thus, the planner takes
into account the allocation delay which is supposed to be known in advance. The
execution plan is initialized with tasks that are already running at the moment
of the autoscaler invocation. Then the policy adds in the plan the eligible tasks
that got the resource type assigned during the second or third autoscaling steps.
The eligible tasks with known resource types are first assigned to idle resources
of that type. If there are no idle resources, the planner checks the booting and
busy resources of the same type, which of those will become available earlier, and
places the eligible tasks on the earliest one. After that, all the resources in the plan
should have at least one task assigned. Finally, all the remaining eligible and not
yet eligible tasks are processed while maintaining the precedence constraints, i.e., a
task is added to the plan if all of its parents are already in the plan. Each task
is placed on the resource which is at the moment of task placement provides the
minimal earliest possible start time. The planning process continues until there are
no tasks that can start their execution before the end of the autoscaling interval.

5

106 5. Performance-Feedback Autoscaling

5.3.2. Scaling-First Autoscaler
The Scaling First (SCF) [119] autoscaling policy first creates for each workflow an
individual execution plan (without considering resource allocation constraints), and
then scales the plan so that it fits within the user budget constraint. The policy
consists of five major steps:

1. Perform initial supply prediction by creating a per-workflow execution plan
without limiting the number of resources.

2. Scale the initial prediction to fit within the budget constraint, and consolidate
the remaining budget.

3. Allocate the resources according to the predicted supply.

4. Create an execution plan for the upcoming autoscaling interval.

5. Deallocate idle resources in the same way as in the PLF policy.

In the first step, the policy creates an independent (from other workflows)
per-workflow plan neither considering the system resource allocation limits nor
considering the budget constraint. Thus, the number of resources in each plan can
be bigger than the actual number of maximally available resources in the system.
Since the original paper does not clearly explain this step, we present our detailed
interpretation of the procedure for creating the per-workflow plan which uses similar
logic as the resource consolidation step. First, the policy selects all the already
running tasks of the current workflow and places all of them in the plan. Their
resource types are already known, as well as the expected finish times. Second,
the policy selects all the eligible tasks and places them on their fastest resource
types, calculating the appropriate expected finish time. Third, all the other not
yet eligible tasks are placed in the plan on their fastest resources (if those required
fastest resources are not yet in the plan then they are added) so that the earliest
possible start time for each task is minimized at the moment of its addition to the
plan. Similarly to the resource consolidation step of PLF, a task is added to the
plan only if all of its parents are already in the plan. The final number of resources
for each resource type that should be supplied is calculated as the rounded up sum
of the runtimes of planned tasks on each resource type, divided by the length of
the autoscaling interval.

In the second step, for each resource type the policy proportionally scales the
initially predicted supply by multiplying it by the factor calculated as the fraction
of the user budget and the total cost of initially predicted resources. Since the
number of resources is integer, some remaining budget can be left after scaling the
initial supply. This remaining budget is used to allocate more resources, if possible.
For that the policy iterates in a round robin manner through the predicted in the
first step resource types until even the resource of the cheapest type cannot be
allocated.

In the third step, the policy allocates the resources according to the predicted
supply.

In the fourth step, the policy performs resource consolidation, which for SCF
also means the creation of an execution plan on the allocated resources for the
upcoming autoscaling interval. We modify the resource consolidation approach

5.3. Autoscalers

5

107

described in the original paper for SCF, as it is does not mention the situation when
the number of resources of a certain type after the scaling step is zero. Instead, we
use the approach similar to our interpretation of the resource consolidation for the
PLF policy. There are two differences between SCF and PLF. First, in PLF, before
the resource consolidation step, some (or all) eligible tasks have the resource type
already assigned, while in SCF the information on the preferred resource types
from the first step is completely discarded. Second, in SCF the tasks are added to
the plan in the order of their workflow priorities, so that higher priority tasks are
added to the plan earlier.

The fifth step of the SCF policy is identical to the resource deallocation step
of PLF.

5.3.3. Performance-Feedback Autoscaler

In this section, we present our novel Performance-Feedback Autoscaler (PFA), which
we developed considering the limitations of the state-of-the-art workflow-specific
autoscalers. We based the idea of PFA on observations on the performance of
general and workflow-specific autoscalers from the literature [116, 160] and on our
own observations from the previous chapters.

We expect PFA to achieve better elasticity performance, as it constantly moni-
tors the historical resource throughputs to derive faster resource types, and relies on
a low complexity workload approximator to predict the future demand. Moreover,
the dynamic task placement, used together with PFA, is expected to further reduce
task waiting times and increase the resource utilization. The PFA autoscaler
consists of the following six steps:

1. Determine the resource type ratios from historical throughputs.

2. Determine the number of resources (the supply) that can be allocated within
the user budget with the obtained ratios.

3. Estimate future resource demand using the token propagation approach and
historical throughput information.

4. Scale down or inflate the profile-based supply to match the token-predicted
demand.

5. Allocate the predicted number of resources.

6. Deallocate idle resources that are staying idle the longest and approaching
the end of their billing period.

We detail steps 1–6 of PFA in the remainder of this section. Table 5.1 summarizes
all the symbols used in the description of the autoscaler. To explain the algorithms
employed by each PFA stage, we use a symbolic notation rather than pseudocode,
because pseudocode descriptions are known to under-specify (obscure) explanations
to the point where schedulers cannot be reproduced in practice [122].

5

108 5. Performance-Feedback Autoscaling

Inputs
t The autoscaling interval, t ∈ Z≥0, where t = 0 corresponds to the

earliest autoscaling interval
m The lookup depth for MA and TBA, m ∈ [0, t]
α The EWMA smoothing factor, α ∈ [0, 1)
R The set of resource types, i ∈ R
U The set of users, j ∈ U
qi The resource cost on any single autoscaling interval
bj The user budget for a single autoscaling interval

System Measurables
τi,j(t) The average throughput
ci,j(t) The number of completed tasks
ni,j(t) The number of allocated resources

Derived Values
ρ̂i,j(t) The instant resource type ratio
ρi,j(t) The smoothed resource type ratio
νi,j(t) The budget fraction available for the resource type
ζj(t) The lookup depth for the token-based approximator
θj(t) The number of tasks in the visited future eligible sets
λj(t) The token-approximated LoP
σj(t) The token-approximated demand for all resource types
µ̂i,j(t) The throughput-based number of resources to allocate
µ̃j(t) The total throughput-based number of resources to allocate
µi,j(t) The final corrected number of resources to allocate
Pi,j(t) The history of non-zero total resource ratios for MA
Tj(t) The history of non-zero total throughputs for MA used with TBA

Table 5.1: Symbols used for the PFA autoscaler.

Determining the Resource Profile
The first two steps of the autoscaler, based on historical task throughputs and user
budgets, derive for each user the initial resource profile: the resource type ratio and
the number of resources of each type. PFA relies on two alternative mechanisms
for smoothing out possible short-term throughput fluctuations: Moving Average
(MA) and Exponentially Weighted Moving Average (EWMA).

In the first step, on autoscaling interval t for each resource type i and each user
j we define the average resource throughput τi,j(t) as:

τi,j(t) =

{

ci,j(t)
ni,j(t)

, if ni,j(t) 6= 0,

0, otherwise,
(5.1)

where ci,j(t) is the number of completed tasks on the interval, and ni,j(t) is the
number of allocated resources on the interval. This allows to compute the instant
throughput-based resource type ratios:

ρ̂i,j(t) =

τi,j(t)
∑

r∈R

τr,j(t)
, if

∑

r∈R

τr,j(t) 6= 0,

0, otherwise,

(5.2)

5.3. Autoscalers

5

109

where R is the set of all the resource types in the system. MA uses resource type
ratios that are not zero for all the resource types:

Pi,j(t) =

{

ρ̂i,j(t− k) :
∑

r∈R

ρ̂r,j(t− k) > 0, ∀k ∈ [0,m]

}

. (5.3)

The MA-smoothed resource ratios over m previous observations are computed as:

ρi,j(t) =

1
|Pi,j(t)|

· ∑

k∈Pi,j(t)

k, if
∑

k∈Pi,j(t)

k > 0,

1
|R| , otherwise,

(5.4)

where |X | denotes the cardinality of a set X . If any resource has zero historical
throughput then all the resource types, instead, get an equal share. This allows the
system to collect the throughput history for all the resource types. For the EWMA
smoothing method, the smoothed resource ratios are computed as:

ρi,j(t) =

{

α · ρi,j(t− 1) + (1− α) · ρ̂i,j(t), if ρ̂r,j(t) > 0, ∀r ∈ R,
1

|R| , otherwise,
(5.5)

with α ∈ [0, 1) being the smoothing factor. The parameter α represents the degree
of weighting decrease of the past values of ρi,j . A small value of α (close to 0)
corresponds to the non-averaged value of ρi,j , i.e., ρ̂i,j , while a high value (close
to 1), corresponds to a smoother signal over time.

In the second step, based on the resource ratio produced in the first step, we
calculate the number of resources of each type that can be allocated with the user
budget. For that, we define the fraction νi,j(t) of the user budget that we can
spend on each resource type according to the resource ratio, knowing the cost qi of
each resource type i:

νi,j(t) =
qi · ρi,j(t)

∑

r∈R

(

qr · ρr,j(t)
) . (5.6)

Accordingly, for each user j the number of resources of type i that can be allocated
with the user budget bj is calculated as:

µ̂i,j(t) =

⌊

bj · νi,j(t)
qi

⌋

, (5.7)

supposing that the budget is large enough to allocate at least one instance of each
resource type, where ⌊x⌋ denotes the floor function of a real number x. Summing
up the µ̂i,j(t) values for all the resource types, we calculate the total resource
supply that can be achieved with the obtained resource profile:

µ̃j(t) =
∑

r∈R

µ̂r,j(t). (5.8)

5

110 5. Performance-Feedback Autoscaling

Token-based Demand Prediction
In the third step, the resource demand σj(t) is predicted using the Token-based
Approximator (TBA), similar to the one described in Sections 2.3.1 and 4.4.2. For
that, TBA considers all the submitted and not yet finished workflows of the user as
a single workflow, excluding finished tasks, and places tokens in all the tasks that
either have no parents or whose parents have already finished. Then, in successive
steps, TBA moves these tokens to all the tasks all of whose parents already hold a
token or were earlier tokenized. TBA records the total number of token movements
and, after each step, the number of tokenized nodes.

The intuition is to evaluate the number of “waves” of tasks (future eligible sets)
that will finish only during the autoscaling interval. When the lookup depth ζj(t)
or the final task of the joint workflow is reached, the largest recorded number of
tokenized nodes gives the approximated LoP λj(t), and the total number of token
movements θj(t) gives the total number of tasks in the visited future eligible sets.
To limit the TBA lookup depth ζj(t), we use the average historical task throughput
among all the resource types smoothed either with MA over m previous autoscaling
intervals, or with EWMA. For MA, the set of historical average throughputs for all
the resource types with skipped intervals with zero total throughput is defined as:

Tj(t) =

{

τi,j(t− k) :
∑

r∈R

τr,j(t− k) > 0, ∀k ∈ [0,m], ∀i ∈ R
}

, (5.9)

With MA, the TBA lookup depth is computed as:

ζj(t) =

⌈

1
|Tj(t)|

· ∑

k∈Tj(t)

k
⌉

, if
∑

k∈Tj(t)

k > 0,

∞, otherwise,
(5.10)

where ⌈x⌉ denotes the ceiling function of a real number x. Accordingly, the resource
demand σj(t) with MA is computed as:

σj(t) =

⌈

θj(t) · |Tj(t)| ·
(

∑

k∈Tj(t)
k
)−1

⌉

, if
∑

k∈Tj(t)

k > 0,

λj(t), otherwise.

(5.11)

With EWMA, the TBA lookup depth is computed as:

ζj(t) =

⌈

α · ζj(t− 1) + (1− α) ·
∑

r∈R

τr,j(t)

|R|

⌉

, if
∑

r∈R

τr,j(t) > 0,

∞, otherwise.

(5.12)

And the resource demand σj(t) with EWMA is computed as:

σj(t) =

⌈

θj(t) · |R| ·
(

∑

r∈R

τr,j(t)
)−1⌉

, if
∑

r∈R

τr,j(t) > 0,

λj(t), otherwise.
(5.13)

5.4. Experiment Setup

5

111

Scaling Down or Inflating the Profile

In the fourth step, we scale down or inflate, if necessary, the profile-based resource
supply to match the predicted resource demand σj(t) and produce corrected
values µi,j(t). Scaling down prevents allocation of potentially idle resources, and
gives space to other users to utilize the resources. Inflating the profile, despite
creating possible imbalance in the throughput-based resource ratio, helps to cope
with sudden demand surges by increasing the total throughput. If µ̃j(t) exceeds
the predicted demand σj(t), we proportionally scale down µ̂i,j(t) to produce the
corrected values µi,j(t):

µi,j(t) =

⌈

σj(t)

µ̃j(t)
· µ̂i,j(t)

⌉

. (5.14)

However, if µ̃j(t) is lower than the token-predicted demand σj(t), we instead
inflate the resource profile as follows: (i) Sort the resources in the ascending order
of their resource type cost. (ii) For each resource type i, except the most expensive
one, try to add to the original resource profile µ̂i,j(t) as many resources of that
type as possible, until there is no budget available or until µ̃j(t) reaches σj(t).
This produces the inflated corrected µi,j(t) values. (iii) If σj(t) is not yet reached,
starting from the second cheapest resource k, try to remove one instance of it from
µk,j(t) and, instead, add a number of instances to the previous cheapest resource
type µk−1,j(t). This does not increase the total cost of the resource profile, but
increases µ̃j(t). Continue, until the total number of resources in the profile reaches
σj(t) or no more such exchanges are possible.

Allocating and Deallocating Resources

In the fifth step, the predicted number of resources is allocated according to the
µi,j(t) values while taking into account the already allocated resources and the
physical system constraints. In the sixth step, PFA de-allocates at maximum the
number of idle resources that exceeds the predicted supply. When de-allocating the
idle resources, PFA gives priority to those that approach the end of their billing
interval.

Task Placement

The PFA autoscaler can operate with various independent task placement policies.
Both state-of-the-art autoscalers considered in this work, PLF and SCF, employ
user-defined workflow priorities, and both have embedded task placement policies
which construct an execution plan. Thus, for comparability purposes, together
with PFA we use dynamic task placement policy which also considers user-defined
workflow priorities. Our task placement policy assigns eligible tasks according to
the priority of their workflows to the first available idle resource of any type.

5.4. Experiment Setup
This section describes the setup we used to conduct the experiments and the
synthetic workloads of workflows.

5

112 5. Performance-Feedback Autoscaling

6. Airlow

 Scheduler

9. Redis

5. Celery Workers

4. NFS Shared Directory
2c. Input Files

2a. Airlow

DAG Files

3. Airlow DAGs

Directory

2b. Arrivals

8. PostgreSQL

DBMS

7. Autoscaler

 1. Workload Player

Figure 5.1: System architecture.

5.4.1. Apache Airflow Deployment and Configuration

Our setup is based on the Apache Airflow [2] workflow management system (v1.9.0)
which we extended by adding an autoscaling component with a resource manager.
We choose Airflow since it is open source, it is written in Python, and it uses
Python-based workflow descriptors, making it rather easy to integrate our code using
the existing Airflow codebase. Airflow has reasonable performance for running
workloads of workflows and for the autoscaler evaluation purposes. Moreover,
Google provides Airflow as its Cloud Composer service [11]. The architecture of our
system is presented in Figure 5.1. All the components of the system are deployed
on the DAS-4 supercomputer [35] with the following characteristics. Head node:
Intel Xeon X5650 @ 2.67 GHz CPU, 49 GB RAM, 18 TB HDD. 32 compute nodes:
Intel Xeon E5620 @ 2.40 GHz CPU, 24 GB RAM, 2 TB HDD. The cluster employs
the QDR InfiniBand interconnect and 1 Gbit/s Ethernet at the compute nodes
and 10 Gbit/s Ethernet on the head node. All the nodes are running CentOS
(v7.4.1708). The average measured Network File System (NFS) access speed is
550 MB/s.

The Workload Player (Component 1 in Figure 5.1) emulates the Poisson workflow
arrivals by sequentially copying workflow descriptors (Component 2a) to the Airflow
DAGs directory (Component 3) according to the interarrival times which are read
from the Arrivals file (Component 2b). The interarrival times are pre-generated
knowing the average total workflow execution time in the workload and the size
of the system, so that the imposed average system utilization is kept around 20%.
We choose this relatively low imposed utilization to better evaluate the considered
autoscalers as it minimizes the amount of time when the demand significantly
exceeds the maximal achievable supply. When a descriptor appears in the Airflow
DAG directory, the Workload Player issues the ‘trigger_dag’ Airflow command
to start the workflow execution. In each workflow descriptor we define an identifier
of the user who owns the workflow. Together with the workflow descriptor, the
Workload Player copies the required input files (Component 2c) to a shared directory
in the Network File System (NFS) (Component 4) which is accessible to all the
cluster nodes. The Airflow system does not provide specific interface for accessing

5.4. Experiment Setup

5

113

workflow files, thus, the workflow code is responsible for file access operations. Each
task can start its execution when all of its input files are read. Similarly, each task
is considered as finished when all of its output files are written. The minimal delay
between any two dependent tasks is equal to the sum of these two values.

All the Airflow components communicate through the central Airflow database
which is in our setup deployed in the PostgreSQL database management system
(Component 8). Our setup uses the Celery [7] distributed task queue (version
4.1.1) with Redis [18] (Component 9) in-memory database (version 4.0.10) for
sending tasks to the worker nodes. Each worker node runs 8 Celery workers
(Component 5)—one per CPU core. In total we deploy 64 Celery workers on 8
worker nodes.

The Airflow Scheduler (Component 6) is responsible for placing eligible tasks
for execution to the resources (Celery workers). The default Airflow scheduler is an
online dynamic scheduler as it simply sends the eligible tasks in the order of their
priority to the single Celery queue which is monitored by the worker processes. Even
though, Airflow supports pools of workers, it does not have functionality to monitor
the status of each individual worker, and does not support assigning workers to
users. To implement this functionality, we introduce individual Celery queues for
each worker (resource) and guarantee that no new task is placed in the resource’s
queue if the queue is not empty, so that the queue can hold one task at maximum.
We add a table in the central Airflow database which, for each queue (i.e., resource),
stores the information on its current status and the identifier of the user who
reserved the resource. Such an approach is required since PLF and SCF autoscalers
are not only responsible for the resource allocation, but also partially take the work
from the scheduler by constructing a tasks placement plan for the whole autoscaling
interval. Thus, for PLF and SCF autoscalers our Airflow Scheduler simply places
tasks to the idle resources just according to the plan. However, since our PFA
autoscaler does not create any plan, the modified Airflow Scheduler, when working
in tandem with PFA, makes its own task placement decisions by sending eligible
tasks according to their workflow priority and task priority to the first idle resource.
In all the cases, the modified Airflow Scheduler only places tasks that belong to a
specific user to the resources that are reserved for the same user.

The Autoscaler (Component 7) is a novel independent component which is
implemented from scratch but heavily relies on the existing Airflow codebase. The
Autoscaler implements all the three considered autoscaling policies which can be
configured through the main Airflow configuration file. The Autoscaler monitors the
status of resources and changes their status through the central Airflow database.

The Workload Player, Airflow Scheduler, and Autoscaler are running on indi-
vidual worker nodes. The PostgreSQL database management system is co-located
with the Redis in-memory database on the head node.

5.4.2. Billing Setup
We configure the system with two resource types: Small and Large, that have
different costs. Further, we use the generic currency sign ¤ when referring to
monetary costs. An instance of the Small resource type costs 1¤ per billing interval,
while a Large instance costs 5¤ per billing interval. The system is configured to

5

114 5. Performance-Feedback Autoscaling

0 2000 4000 6000

Job execution time (s)

100

10−2

10−4

10−6P
ro
b
ab

il
it
y

0 50 100 150

Task runtime (s)

100

10−2

10−4

10−6

(a) Workload I.

0 2000 4000 6000

Job execution time (s)

100

10−2

10−4

10−6P
ro
b
ab

il
it
y

0 50 100 150

Task runtime (s)

100

10−2

10−4

10−6

(b) Workload II.

Figure 5.2: Statistical characteristics of the workloads. The vertical axes have a log scale.

allocate at maximum 64 resources of which 32 of type Small and 32 of type Large.
Accordingly, the maximal budget that all the users can spend per autoscaling
interval is 192¤. If both users have joint budget which allows to purchase more
resources than the system can provide, the users will be competing between each
other. We shuffle the users before executing the autoscalers for each of them. In
the simple case when the system would have only a single resource type, any of
the considered autoscalers would not make sense as each user would simply get
the number of instances which its budget allows to allocate at maximum. We use
autoscaling interval of one minute to be in line with the current trend on fine-grained
billing [140]. Since we report the imposed system utilization, we believe that the
same behavior should be observed for shorter or longer autoscaling intervals, if the
utilization will be accordingly adjusted.

5.4.3. Workloads

We use two workloads Workload I and Workload II, each consisting of 600 work-
flows divided in three sets with 200 workflows each. That allows us to perform
three repetitions of each experiment. Both workloads use the same 600 workflow
structures, but differ in the task runtime characteristics. We choose three popular
scientific workflows from different fields, namely Montage, LIGO, and SIPHT. The
main reason for our choice is the existence of validated models for these workflow
types. Montage [90] is used to build a mosaic image of the sky on the basis of
smaller images obtained from different telescopes. LIGO [22] is used by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) to detect gravitational
waves. SIPHT [108] is a bioinformatics workflow used to discover bacterial reg-
ulatory RNAs. We take the workflow structures, the task runtime distributions
and file sizes from the Bharathi generator [16, 38]. We scale down the original
task runtimes and file sizes to reduce the total execution time of the workloads by
dividing the original values from the generator by 30 and rounding them to the

5.5. Experiment Results

5

115

Property WL I WL II
Total workflows in all three sets 600
Total tasks in all three sets 44,340
Mean number of tasks in a workflow 74
Median number of tasks in a workflow 38
Standard deviation of number of tasks in a workflow 95
Mean job execution time [s] 467 508
Median job execution time [s] 276 303
Standard deviation of job execution times [s] 692 761
Mean task runtime (averaged for both resource types) [s] 6.3 6.9
Median task runtime (averaged for both resource types) [s] 1.5 1.5
Standard deviation of task runtimes (averaged for both resource types) [s] 13.7 15.4
Mean task runtime on the Small resource [s] 6.3 8.2
Mean task runtime on the Large resource [s] 6.3 5.5
Total task runtime (averaged for both resource types) [ks] 280 305
Mean task input data size [MB] 578
Median task input data size [MB] 138
Standard deviation task input data size [MB] 1,364
Mean task output data size [MB] 213
Median task output data size [MB] 9
Standard deviation task output data size [MB] 2,224
Total task input data size (including read duplicates*) [TB] 25,6
Total task output data size [TB] 9,4

* When different tasks read the same file.

Table 5.2: Characteristics of Workloads I and II.

nearest integer. We guarantee that the minimal task runtime is 1 second and the
minimal files size is 1 KB. Since we have two resource types in our model, for each
task we take its scaled down runtime and generate one extra task runtime using
the uniform distribution. For Workload I the maximal deviation for the second
task runtime from the original task runtime is 50%, and the original and new
task runtimes are randomly assigned to the resource types. For Workload II the
maximal deviation from the original task runtime is 100%, and the new generated
task runtime is always assigned to the second resource type. In both workloads
each workflow has a randomly assigned priority in the range from 0 to 9. Figure 5.2
presents task runtime and job runtime distributions of the workload. The details
of each workload are summarized in Table 5.2.

5.5. Experiment Results
In this section, we present our experiment results. We first analyze the runtimes of
the considered autoscalers obtained during the experiments. Then we investigate
how varying the budget affects the workload performance and how it differs between
the users. Finally, we analyze the system-oriented, and elasticity metrics. We
report two experiment configurations, where we assign either equal budgets (eq.)
to both users or different budgets (diff.) for each user. The sets of experiment
configurations with regard to the experiment results sections are summarized in
Table 5.3. The full set of software and computational artifacts used to obtain
the presented results is available online [81, 80]. Our results show that our PFA

5

116 5. Performance-Feedback Autoscaling

Section Budget Configuration PFA Configuration WL
§ 5.5.2 eq. 60¤, 80¤, 100¤, 120¤; diff. 120¤ & 80¤ m = 10, 20, 30; α = 0.7, 0.8, 0.9 I
§ 5.5.3 eq. 60¤, 100¤, 120¤; diff. 120¤ & 80¤ m = 10; α = 0.7 I
§ 5.5.4 eq. 60¤, 100¤, 120¤; diff. 120¤ & 80¤ m = 10; α = 0.7 I
§ 5.5.5 eq. 120¤ m = 10 I
§ 5.5.2 eq. 100¤ m = 10; α = 0.7 II

Table 5.3: Experiment configurations.

0 1000 2000 3000 4000 5000 6000

Total algorithm runtime (ms)

PLF

SCF

PFA 75875

Means

Outliers

Figure 5.3: Variability of total runtimes for all the considered autoscalers.

0 10 20 30 40 50 60 70 80 90 100

Average autoscaling step duration (%)

PLF
SCF
PFA

2 4 5 6 ← 1, 3

1 3 4 5← 2

1 3 5 6 ← 2, 4

Create plan
Allocate

Consolidate res.
Deallocate

Get res. speeds
Token predictor

Other
< 1%

Figure 5.4: Average duration of each algorithm step within the total algorithm runtime for each
considered autoscaler. The superimposed numbers represent corresponding algorithm steps.

autoscaler shows up to 76% lower average algorithm runtime when given the same
workload as PLF and SCF, while reducing by up to 47% the average job slowdowns.

5.5.1. Algorithm Performance
Figure 5.3 shows the variability of total algorithm runtimes executed at every
autoscaler invocation. The runtime data were collected using the setup described
in Section 5.4. The runtime of the algorithm varies depending on the number of
workflows that are currently in the system and depending on their characteristics.
We can also see that both plan-based autoscalers PLF and SCF have 3–4 times longer
average runtimes and show higher runtime variability than our PFA autoscaler.
Moreover, SCF autoscaler has one large outlier when it was running for 76 seconds,
thus, exceeding the length of the autoscaling interval and delaying the workload!
Such behavior is very unfavourable, as it can negatively affect the stability of a
workflow management system during sudden demand surges.

Figure 5.4 shows the average duration of each autoscaling stage as a percentage
of the average total algorithm runtime. For PLF and SCF autoscalers the planning
and the resource consolidation steps take up 95% of their total execution time.
Resource consolidation is basically responsible for making the task placement plan.
For our PFA autoscaler the token-based demand prediction takes on average 50%
of the total execution time.

5.5. Experiment Results

5

117

PLF

SCF

PFA MA10

PFA EWMA0.7E
q
.
b
u
d
g
et
s
6
0
¤

PLF

SCF

PFA MA10

PFA EWMA0.7E
q
.
b
u
d
g
et
s
8
0
¤

PLF

SCF

PFA MA10

PFA MA20

PFA MA30

PFA EWMA0.7

PFA EWMA0.8

PFA EWMA0.9

E
q
.
b
u
d
g
et
s
1
0
0
¤

0 5 10 15 20

Job slowdown

PLF

SCF

PFA MA10

PFA EWMA0.7

E
q
.
b
u
d
g
et
s
1
2
0
¤

Figure 5.5: Variability of job slowdowns for
all the studied autoscalers with equal budgets
of 60¤, 80¤, 100¤, and 120¤ when running
WL I. PFA autoscaler was executed with dif-
ferent smoothing methods. Means are marked
with ×.

PLF

SCF

PFA MA10

PFA MA20

PFA MA30

PFA EWMA0.7

PFA EWMA0.8

PFA EWMA0.9

U
se
r
1
,
b
u
d
g
et

1
2
0
¤

0 5 10 15 20

Job slowdown

PLF

SCF

PFA MA10

PFA MA20

PFA MA30

PFA EWMA0.7

PFA EWMA0.8

PFA EWMA0.9

U
se
r
2
,
b
u
d
g
et

8
0
¤

Figure 5.6: Variability of job slowdowns for all
the studied autoscalers with different budgets for
each user when running WL I. PFA autoscaler
was executed with different smoothing methods.
Means are marked with ×.

0 5 10 15 20

Job slowdown

PLF

SCF

PFA MA10

PFA EWMA0.7

E
q
.
b
u
d
g
et
s
1
0
0
¤

Figure 5.7: Variability of job slowdowns for all
the studied autoscalers with equal budgets for
both users when running WL II. PFA autoscaler
was executed with MA depth 10 and EWMA
with pole value 0.7. Means are marked with ×.

5

118 5. Performance-Feedback Autoscaling

T

L

S PLF

Equal budgets 60¤

T

L

S SCF

T

L

S PFA MA10

0 50 100

T

L

S PFA EWMA0.7

PLF

Equal budgets 100¤

SCF

PFA MA10

0 50 100

Allocated cost (¤)

PFA EWMA0.7

PLF

Equal budgets 120¤

SCF

PFA MA10

0 50 100

PFA EWMA0.7

Figure 5.8: Variability of monetary cost for allocated
resources per billing interval for User 1 for the stud-
ied autoscalers with equal budgets of 60¤, 100¤, and
120¤ when running WL I. For Small and Large resource
types, and in Total. Means are marked with ×.

T

L

S PLF

User 1, budget 120¤

PLF

User 2, budget 80¤

T

L

S SCF SCF

T

L

S PFA MA10 PFA MA10

0 50 100

T

L

S PFA EWMA0.7

0 50 100

PFA EWMA0.7

0.0 0.2 0.4 0.6 0.8 1.0

Allocated cost (¤)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Variability of monetary cost
for allocated resources per billing inter-
val for each user for the studied au-
toscalers with different budgets when
running WL I. For Small and Large re-
source types, and in Total. Means are
marked with ×.

aU
aO
tU
tO

PLF

Equal budgets 60¤

aU
aO
tU
tO

SCF

aU
aO
tU
tO

PFA MA10

0 50 100

aU
aO
tU
tO

PFA EWMA0.7

PLF

Equal budgets 100¤

SCF

PFA MA10

0 50 100

Metric value (%)

PFA EWMA0.7

PLF

Equal budgets 120¤

SCF

PFA MA10

0 50 100

PFA EWMA0.7

Figure 5.10: Elasticity metrics for User 1 for the studied
autoscalers with equal budgets of 60¤, 100¤, 120¤ when
running WL I. For all the metrics lower values are better.

aU
aO
tU
tO

PLF

User 1, budget 120¤

aU
aO
tU
tO

SCF

aU
aO
tU
tO

PFA MA10

0 50 100

aU
aO
tU
tO

PFA EWMA0.7

PLF

User 2, budget 80¤

SCF

PFA MA10

0 50 100

PFA EWMA0.7

Metric value (%)

Figure 5.11: Elasticity metrics for each
user for the studied autoscalers with dif-
ferent budgets 120¤ and 80¤ when run-
ning WL I. For all the metrics lower
values are better.

5.5. Experiment Results

5

119

5.5.2. Workload Performance
Further, we analyze the job slowdowns to investigate how the considered autoscalers
affect the workload performance from the end-user perspective. Figure 5.5 shows
the variability of job slowdowns in two configurations where both users are assigned
with equal budgets of 60¤, 80¤, 100¤, or 120¤, accordingly. In this figure, we
can see a clear trend where higher budgets decrease the average job slowdown as
well as decrease the slowdown variability. We use the configuration with equal
budgets 100¤ as a baseline, as then each user can at maximum allocate 52% of the
system resources. With 100¤, the PFA policy is executed with various MA history
depths m of 10, 20, and 30, and with EWMA α values of 0.7, 0.8, and 0.9. We
can observe that PFA in any of the considered configurations shows lower average
job slowdowns, as well as lower slowdown variability than PLF and SCF. Different
PFA smoothing methods do not significantly affect the PFA performance.

Figure 5.6 shows job slowdown variability when User 1 has higher budget
120¤ than User 2 with budget 80¤. We can conclude, that all the considered
autoscalers guarantee that the user with the higher budget gets better performance,
since User 1 has lower average job slowdowns and lower slowdown variability. PFA
autoscaler for both users shows better workload performance than PLF and SCF.

Figure 5.7 presents job slowdowns for the configuration with equal budgets
100¤ for Workload II. The observed trend is the same as in Figures 5.5 and 5.6.
The tasks in WL II on average run faster on the Large resource type than on the
Small resource type (see Table 5.2). Thus, we can conclude, that all the considered
autoscalers can successfully operate with workloads where tasks “prefer” a specific
resource type.

From Figures 5.8 and 5.9 we can see that no autoscaler exceeds the budget
constraint for the configurations with equal and different budgets. SCF on average
spends more budget than PLF and PFA. Our PFA autoscaler shows comparable
mean costs to PLF, but lower median costs at higher budgets. Moreover, for PFA,
when the budget is large enough, the distribution of allocated costs skews towards
lower values. For all the autoscalers most of the cost comes from the Large resource
type, as it is more expensive. Further, when presenting the results, we do not plot
some experiment configurations if these configurations show no significant difference.
E.g., from Figure 5.8 we omit the results with the equal budgets 80¤, and from
Figure 5.9 we omit the results for PFA with the configurations MA m = 20, 30,
and α = 0.8, 0.9.

5.5.3. Elasticity Performance
Figure 5.10 shows the considered elasticity metrics for the configurations with equal
budgets of 60¤, 100¤, and 120¤ for User 1. We do not report values for User 2,
as we do not observe significant difference between the users. Figure 5.11 shows
elasticity metrics for both users for the configuration with different budgets of
120¤ and 80¤ for User 1 and User 2, accordingly. When calculating the elasticity
metrics, we skip the periods where demand exceeds the maximal resource number
of 64. The resource demand can vary significantly even at relatively low utilization
of 20%, as it depends on the structure and LoP of the workflows.

In Figure 5.10, we can see that for budgets 100¤ and 120¤, SCF shows in all

5

120 5. Performance-Feedback Autoscaling

the plots the worst values for aO and tO, it also has the best values for aU and tU .
In other words, SCF tends to over-provision. For example, in the configuration
with equal budgets 100¤, SCF over-provisions for almost 75% of the time with on
average 18% too many resources and has in 24% of the time on average 5% too few
resources. At lower equal budgets 60¤, SCF spends less time over-provisioning,
but still shows on average the worst over-provisioning accuracy of 8.5%.

In contrast, PLF with equal budgets 100¤ has in 42% of the time on average
11% too few resources. Thus, PLF tends to under-provision the system and has
the worst values for aU (except for equal budgets 60¤, where SCF is the worst),
tU and only the best values for tO.

Our PFA autoscaler shows the best values for aO. Further, PFA has the second
best values for aU with budgets 100¤ and 120¤. For equal budgets 60¤, PFA
shows the best value for aU , tU , but the words value for tO, which is, however,
compensated by low aO. In general, PFA is more accurate than the other two
autoscalers, as it has the lowest summed up aU and aO accuracy values. Moreover,
spending more time under- or over-provisioning with higher accuracy is more
favourable than spending less time under- or over-provisioning with lower accuracy.
The same trends can be observed for the configuration with different budgets in
Figure 5.11. From this we conclude that our approach is more likely to satisfy the
user SLOs, which is also confirmed by the workload performance results. Although,
PFA does not use known in advance task runtime estimates, it is more accurate
when applied to workloads of workflows than the plan-based autoscalers.

5.5.4. System-Oriented Performance
We look at the percentage of busy and allocated resources throughout the exper-
iment to evaluate the system-oriented performance, as these metrics show how
effectively the resources are utilized, and how many resources are actually allocated.
Figure 5.12 presents the percentage of busy resources for the configurations with
equal budgets of 60¤, 100¤, and 120¤ for User 1. Figure 5.14 shows the variability
of allocated resources for the same configuration and the same user. We do not
report values for User 2, as we do not observe significant difference between the
users.

Figure 5.13 shows the percentage of busy resources for both users for the
configuration with different budgets of 120¤ and 80¤ for User 1 and User 2,
accordingly. Figure 5.15 shows the percentage of allocated resources for different
budgets also for both users.

SCF shows lowest average number of busy resources, which correlates with the
elasticity results, as SCF tends to over-provision more. PFA shows higher and also
more balanced use of the resources. We can also see that the variability of busy
resources increases together with the budget. Looking at the variability of allocated
resources, we observe that PLF and SCF on average allocate more resources than
PFA, this correlates with the results on monetary costs from Section 5.5.2. For
higher budgets, PFA tends to spend more time allocating less resources than the
other two autoscalers. For lower budgets, the difference between the autoscalers
decreases. Thus, we can conclude, that, in contrast to PLF and SCF, PFA allocates
and uses the resources more efficiently, while given the same budget.

5.5. Experiment Results

5

121

T

L

S PLF

Equal budgets 60¤

T

L

S SCF

T

L

S PFA

MA10

0 50 100

T

L

S PFA

EWMA0.7

PLF

Equal budgets 100¤

SCF

PFA

MA10

0 50 100

Busy resources (%)

PFA

EWMA0.7

PLF

Equal budgets 120¤

SCF

PFA

MA10

0 50 100

PFA

EWMA0.7

Figure 5.12: Variability of busy resources for User 1 for
the studied autoscalers with equal budgets of 60¤, 100¤,
120¤ when running WL I. For Small and Large resource
types, and in Total. Means are marked with ×.

T

L

S PLF

User 1, budget 120¤

PLF

User 2, budget 80¤

T

L

S SCF SCF

T

L

S PFA

MA10

PFA

MA10

0 50 100

T

L

S PFA

EWMA0.7

0 50 100

PFA

EWMA0.7

0.0 0.2 0.4 0.6 0.8 1.0

Busy resources (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.13: Variability of busy re-
sources for each user with different bud-
gets 120¤ and 80¤ when running WL I.
For Small and Large resource types, and
in Total. Means are marked with ×.

T

L

S PLF

Equal budgets 60¤

T

L

S SCF

T

L

S PFA

MA10

0 50 100

T

L

S PFA

EWMA0.7

PLF

Equal budgets 100¤

SCF

PFA

MA10

0 50 100

Allocated resources (%)

PFA

EWMA0.7

PLF

Equal budgets 120¤

SCF

PFA

MA10

0 50 100

PFA

EWMA0.7

Figure 5.14: Variability of allocated resources for User 1
for the studied autoscalers with equal budgets of 60¤,
100¤, 120¤ when running WL I. For Small and Large
resource types, and in Total. Means are marked with ×.

T

L

S PLF

User 1, budget 120¤

PLF

User 2, budget 80¤

T

L

S SCF SCF

T

L

S PFA

MA10

PFA

MA10

0 50 100

T

L

S PFA

EWMA0.7

0 50 100

PFA

EWMA0.7

0.0 0.2 0.4 0.6 0.8 1.0

Allocated resources (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.15: Variability of allocated re-
sources for each user with different bud-
gets 120¤ and 80¤ when running WL I.
For Small and Large resource types, and
in Total. Means are marked with ×.

5

122 5. Performance-Feedback Autoscaling

0

25

50

75
PLF

Supply Busy Demand Resource limit

0

25

50

75

N
u
m
b
er

o
f
re
so
u
rc
es

SCF

0 500 1000 1500

Wall clock time (s)

0

25

50

75
PFA MA10

Figure 5.16: The dynamics of autoscaling on a cropped interval of 1,800 seconds for both users
with equal budgets 120¤. Vertical lines indicate workflow arrivals.

5.5.5. Autoscaling Dynamics

We further study the dynamics of the obtained Airflow traces to better under-
stand the performance differences between the autoscalers. Figure 5.16 shows the
snapshots of autoscaling dynamics on a cropped interval of 1,800 seconds for both
users with equal budgets of 120¤. We rely on the configuration with 120¤ as
it shows higher supply variability. We can see that PLF and SCF autoscalers
have higher demand values—the number of waiting eligible tasks. Both PLF and
SCF show lower resource utilization (the number of busy resources) as in between
the autoscaler invocations the tasks are waiting for being included in the plan.
Moreover, we can see how PLF makes wrong predictions, e.g., at the time around
1,350 seconds, as PLF makes its predictions using the tasks that are eligible at
the moment it is invoked. Similar-looking spikes can be observed for PFA, e.g.,
the spike at the time around 1,425 seconds which is, however, caused by a double
workflow arrival within the autoscaling interval. We can also observe different
shapes of demand curves in each plot, as the number of eligible tasks depends on
the throughput, that, in turn, depends on the number of allocated resources and
the efficiency of the task placement policy utilized by the scheduler. This is exactly
what makes the autoscaling for workflows that challenging. Interestingly, for PFA
on the interval 350–450 seconds the allocated resources are not fully utilized, even
though the demand exceeds the resource ceiling. The reason for this is the latency
caused by the Airflow system.

The phases of the autoscaling intervals are slightly drifting between the plots, as
we did not set a goal to deliberately synchronize the phases of different autoscalers.
The drifting is caused by possible internal delays in the Airflow system during the
demand surges, and by occasional delays in the autoscalers, e.g., when SCF runs
for too long, as shown in Figure 5.3. That is why, to minimize the possible effect of
such drifting, we run three independent subsets of workflows within the workload.

5.6. The Optimal Solution

5

123

T The set of time slots T = {1, 2, . . . , T}
W The set of workflows W = {1, 2, . . . ,W}
S The set of workflows tasks S = {1, 2, . . . , S}
M The set of billing intervals M = {1, 2, . . . ,M}
V The set of resources V = {1, 2, . . . , V }
L Number of time slots per billing interval
B Budget per billing interval
Aw Arrival time of workflow w
Cw Critical path length of workflow w
Dw Earliest possible completion time for workflow w
Rj,k Runtime of task j on resource k
Pk Cost of running resource k on a billing interval
li,j Equals one if task i depends on task j
hw(t) The value of workflow w finishing at time t
xt
j,k Binary variable, equals one if task j starts at time t on resource k

ymk Binary variable, equals one if resource k is active on billing interval m
zmk Integer variable, determines the number of active time slots for resource

k on billing interval m
ut
w Binary variable, equals one if workflow w finishes at time t

Table 5.4: Symbols used for the MIP model.

5.6. The Optimal Solution
In this section, to validate the performance of the considered policies, we compare
the results obtained from the Airflow system with the optimal solution obtained
from solving the optimization problem represented as a Mixed Integer Programming
(MIP) model. For that, we modify the MIP model proposed by Wang et al. [164] to
incorporate budget constraints, while following the similar notation, and implement
the model in the Gurobi [14] solver (v. 8.0.1). The symbols used for describing
the MIP model are presented in Table 5.4. The goal of the solver is to find the
optimal plan which, under the budget and resource constraints, finds the task
placement plan and determines the number of resources of each type that should be
allocated on each autoscaling interval, so that the response time of each workflow
is minimized.

5.6.1. Mixed Integer Programming Model

The MIP model presents time as a set T = {1, 2, . . . , T} of discrete time slots of
equal duration, where T is the furthest time horizon. The time slots are grouped
into M billing intervals. Each billing interval consists of L time slots. The set of
billing intervals is denoted by M = {1, 2, . . . ,M}, and T is divisible by L, so that
M = T/L. The budget B is given per billing interval and should not be exceeded.
The input of the problem is a set of workflows W = {1, 2, . . . ,W}, where each
workflow contains tasks. All the tasks in all the workflows are represented by the
set S = {1, 2, . . . , S}, where each task can belong to a single workflow only. The
task precedence constraints are represented by a binary matrix (li,j), ∀i, j ∈ S,
where li,j = 1 if task i depends on task j, i.e., i can start only after j has finished,

5

124 5. Performance-Feedback Autoscaling

and li,j = 0 otherwise. By convention, each li,i = 0. Each workflow w has an arrival
time Aw, known in advance length Cw of its critical path, and earliest possible
completion time Dw, so that Dw = Aw + Cw − 1. The model also defines a set of
computing resources V = {1, 2, . . . , V }.

If a task is scheduled on a resource, it runs on it exclusively until completion. To
represent the task assignment, we use binary decision variables xt

j,k, where xt
j,k = 1

if task i is scheduled to run on resource k starting at time slot t, and xt
j,k = 0

otherwise. Each task should start only once, which we specify as follows:

∑

k∈V

∑

t∈T

xt
j,k = 1, ∀j ∈ S. (5.15)

Let the integer variable 0 ≤ zmk ≤ L denote the number of active time slots on each
resource k on billing interval m. This requires the following constraints:

m·L
∑

t=(m−1)·L+1

∑

j∈S

t
∑

r=max(1,t−Rj,k+1)

xr
j,k = zmk , ∀k ∈ V, ∀m ∈ M. (5.16)

Let the binary variable ymk denote the active/idle state of each resource k on billing
interval m, with ymk = 1 if some tasks are assigned on the resource, and ymk = 0
otherwise. If the resource has no tasks scheduled, it is considered deallocated,
however, if even a single task is assigned to the resource, it is considered active.
Accordingly, we define the following constraints:

ymk = min(1, zmk), ∀k ∈ V, ∀m ∈ M. (5.17)

The tasks are not allowed to overlap, i.e., for each time slot and each resource
at most one task is allowed to occupy the time slot on that resource. Let Rj,k

denote the running time of task j on resource k which is known in advance. The
non-overlapping constraints are specified as follows:

∑

j∈S

t
∑

r=max(1,t−Rj,k+1)

xr
j,k ≤ 1, ∀k ∈ V, ∀t ∈ T . (5.18)

The precedence constraints are formulated as follows:
(

∑

k∈V

∑

t∈T

t · xt
i,k −

∑

k∈V

∑

t∈T

(t+Rj,k) · xt
j,k

)

· li,j ≥ 0,

∀i, j ∈ S.
(5.19)

Further, we formulate the constraints that no task of any workflow can be scheduled
to start before its arrival time:

∑

k∈V

∑

t∈T

t · xt
j,k ≥ Aw, ∀w ∈ W, ∀j ∈ w. (5.20)

Since the optimization goal is to minimize the workflow response time within the
given budget, we represent it as a profit maximization problem where higher profit

5.6. The Optimal Solution

5

125

corresponds to a shorter response time. For that, let hw : {1, 2, . . .} → R be a
non-increasing value function, where hw(t) represents the value gained depending
on the time slot t where the workflow w is finished:

hw(t) =

{

1, if t ≤ Dw,

Dw − t, otherwise.
(5.21)

For each workflow w and each time t we define a binary variable ut
w, where ut

w = 1
if workflow w is completed at time t. Since each workflow can finish only once, we
formulate the following constraints:

∑

t∈T

ut
w = 1, ∀w ∈ W. (5.22)

The completion time of the workflow can be written as
∑

t∈T t · ut
w. Accordingly,

the constraints that all the tasks of a workflow w are completed by the workflow
completion time can be formulated as follows:

∑

k∈V

∑

t∈T

(t+Rj,k − 1) · xt
j,k ≤

∑

t∈T

t · ut
w, ∀w ∈ W, ∀j ∈ w. (5.23)

Let Pk be the cost of resource k, then the budget constraints are defined as follows:

∑

k∈V

Pk · ymk ≤ B, ∀m ∈ M. (5.24)

Finally, we can formulate the profit maximization objective:

max
∑

w∈W

∑

t∈T

hw(t) · ut
w

s.t. (5.15)(5.16)(5.17)(5.18)(5.19)(5.20)(5.22)(5.23)(5.24).

(5.25)

5.6.2. Heuristics vs. the Optimal Solution
We use three subsets of five workflows each from Workload I, submitted with a
fixed interval of 30 seconds in a system with 16 resources (vs. 64 resources in other
experiments) of two types with 8 resources in each. For this reason, the maximal
budget required to allocate all the system resources is 48¤. The first group of five
workflows consists of one Montage, one SIPHT, and three LIGO workflows, with 183
tasks in total. The second group contains one Montage, two SIPHT and two LIGO
workflows, with 241 tasks in total. The third group contains two Montage, one
SIPHT, and two LIGO workflows with 199 tasks in total. Further, we refer to these
15 workflows as the MIP workload. We limit the number of considered workflows
and limit the number of resources due to much higher expected computational effort
for finding the optimal solution versus the considered heuristic approaches. To make
the workflows compatible with the MIP model, we round their task runtimes to 5
seconds, which is the duration of the time slot in the MIP model, and set the sizes
of all the exchanged files to zero to make the comparison more fair. We configure
the MIP model with 16, 18, or 19 billing intervals (depending on the workload

5

126 5. Performance-Feedback Autoscaling

0.0 0.5 1.0
×105

Subset 1
Subset 2
Subset 3

Budget 10¤

0 50 100

Solver runtime (s)

Budget 30¤

0 50 100

Budget 40¤

Figure 5.17: Solver runtimes for all three subsets of workflows with different budget constraints.
In the left plot the x axis has much larger scale than in the other two plots.

PLF

SCF

PFA MA5

PFA EWMA0.7

MIPB
u
d
g
et

1
0
¤

PLF

SCF

PFA MA5

PFA EWMA0.7

MIPB
u
d
g
et

3
0
¤

0 1 2 3 4 5 6 7 8 9

Job slowdown

PLF

SCF

PFA MA5

PFA EWMA0.7

MIPB
u
d
g
et

4
0
¤

Figure 5.18: The variability of job slowdowns for different budgets for Airflow-based and MIP
results.

subset) and set the length of each billing interval to 3 time slots. Accordingly, we
set the Airflow autoscaling interval to 15 seconds. We use a single user only, and
find the optimal solutions with three different budgets of 10¤, 30¤, and 40¤.

Figure 5.17 shows solver runtimes for all three groups of workflows with different
budget constraints. Note, that the lower the budget constraint the more time the
solution takes. For budget 10¤ finding the solution takes up to 88,592 seconds (24.5
hours)! This confirms that the solution time does not scale linearly as it highly
depends on parameterization of the model, for example, on the chosen number
of slots. Moreover, the Gurobi solver has more than 40 MIP-related internal
parameters [13] that can significantly affect the performance of the solver. To
somehow automate this process, Gurobi even provides a parameter tuning tool [12].
Since in our MIP model we add the budget constraints, they increase the total
runtime for finding the optimal solution, compared to the runtimes reported in
the paper by Wang et al. [164]. Even in the paper by Wang et al. the number
of considered workflows used with the MIP solver was much higher (500), those
workflow structures were very simple, and the model did not have budget constraints.
From this we can conclude that the MIP approach is not suitable for autoscaling
workloads of workflows.

In Figure 5.18, we compare the slowdowns of the workflows from the optimal
plan with the slowdown obtained from running the same workflows in our Airflow
setup with all the three considered autoscalers. We configure PFA with m = 5 for

5.7. Related Work

5

127

MA due to the low number of autoscaling intervals in the MIP model, for EWMA
we use α = 0.7. We do not use violin plots in Figure 5.18 for the distributions, as
for each run there we have only 15 samples—the total number of executed workflows
in all the three MIP workload subsets. We can clearly see that the slowdowns
obtained from the Airflow system are up to 8 times higher than the slowdowns from
the MIP solution. Note, that the slowdowns from the Airflow experiments also
include the slowdown caused by the workflow management system itself. However,
the general trend is similar to Figures 5.5, and 5.6 where our PFA autoscaler shows
better workload performance than the plan-based autoscalers.

5.7. Related Work
In this section, we overview specialized autoscaling policies for workflows that focus
on the resource allocation problem.

The Dynamic Scaling Consolidation Scheduling (DSCS) [118], Partitioned
Balanced Time Scheduling (PBTS) [40], IaaS Cloud Partial Critical Paths (IC-
PCP) [24], Deadline Constrained Critical Path (DCCP) [33], Dyna [171], and
Partition Problem-based Dynamic Provisioning and Scheduling (PPDPS) [146]
autoscalers combine scheduling and allocation approaches, and, in contrast to the
approach used in this chapter, have the goal to minimize the operational cost under
unlimited budget and meet (soft) workflow deadlines. DSCS, PBTS, and Dyna
are online plan-based autoscalers, while IC-PCP, DCCP, and PPDPS are offline
autoscalers. The Dynamic Provisioning Dynamic Scheduling (DPDS) [116] is an
offline dynamic autoscaler for ensembles of scientific workflows that supports a
single resource type only. The autoscaler is threshold-based, the cost- and deadline-
constraints should be provided for the whole ensemble. The Static Provisioning
Static Scheduling (SPSS) [116] is an offline autoscaler that creates a plan for
each workflow in the ensemble, and rejects workflows that exceed the deadline or
budget. BAGS [140] is a plan-based offline autoscaler that partitions workflows
into bags-of-tasks and then applies a MIP-based approach to make the allocation
plan. The majority of the considered works perform simulations when evaluating
the proposed algorithms. Versluis et al. [160] perform comprehensive analysis of
different autoscalers for workloads of workflows. Overall, this study emphasizes
the need for autoscalers that can cope with workloads of workflows, but neither
proposes the autoscalers that support cost constraints and multiple resource types,
nor assess the time taken by autoscalers to make decisions or evaluate the scalability.
The recent survey [111] on cost and makespan-aware workflow scheduling in cloud
provides a good overview of the current scheduling and autoscaling trends for
workflows.

5.8. Conclusion
We presented the novel Performance-Feedback Autoscaler (PFA) for workloads of
workflows. To make autoscaling decisions, PFA analyzes historical task throughput
and uses current workflow structural information, instead of relying on task runtime
estimates. This makes PFA easier to use, as observing task throughput normally
requires less effort than obtaining task runtime estimates.

5

128 5. Performance-Feedback Autoscaling

Overall, PFA has lower time-complexity and effectively minimizes workflow
slowdowns, compared to two state-of-the-art online plan-based autoscalers. Our
real-world experiments with the Apache Airflow workflow management system show
that PFA, compared to other two autoscalers, has better applicability potential
due to its good scalability when dealing with possible demand surges, and good
end-user and system-oriented characteristics.

6

Conclusion

I
n this dissertation, we have studied the problem of online scheduling of workloads
of stochastically arriving workflows, both from the task placement and the re-

source allocation perspectives. We have mostly focused on designing new scheduling
policies, but we have also adapted existing state-of-the-art policies designed for
scheduling a single workflow or batches of workflows to the case of online workflow
scheduling. For new policies, we have kept their implementation effort and their
applicability in production systems in mind. Our research methods include a wide
set of simulation-based and real-world experiments on the DAS-4 multicluster to
thoroughly evaluate the studied policies. Additionally, we have used a mixed integer
programming approach to validate our real-world experimental results versus the
optimal solution. Below we present our conclusions, and our suggestions for future
work.

6.1. Conclusions
We present the following conclusions based on the three workflow scheduling
challenges (Section 1.2) and the four research questions addressed in this dissertation
(Section 1.7):

1. Greedy backfilling is the best policy for scheduling workloads of workflows
with unknown task runtimes compared to policies that employ processor
reservation for workflows in the queue (Chapter 2). Any form of processor
reservation for workflows without runtime estimates only decreases the overall
system performance, leading to low maximal achievable utilizations.

2. Under realistic system utilizations backfilling-based policies allow achieving
good performance even without task runtime estimates (Chapters 2 and 3).
More complex scheduling policies are beneficial only at extremely high system
utilizations and for scheduling batches of workflows.

3. Inaccurate runtime estimates negatively affect the slowdowns experienced by
the workflows in the workload, but their effect is more substantial with the

129

6

130 6. Conclusion

increase of the imposed system utilization (Chapter 3). In general, at high
system utilizations the knowledge of task runtime estimates allows to achieve
significant improvements in the average workflow slowdowns.

4. The performance-feedback mechanism used by our novel Fair Workflow Pri-
oritization (FWP) task placement policy to monitor workflow slowdowns
helps to achieve a fairer distribution of slowdowns among workflows in the
workload (Chapter 3). FWP shows a lower standard deviation of the workflow
slowdowns compared to the state-of-the-art policies without the feedback
mechanism. The order in which the workflows are processed by a task place-
ment policy is very important, as an incorrectly chosen prioritization method
can easily destabilize the system (Chapter 3).

5. When adapted to a plan-based online scenario, the relatively simple offline
HEFT scheduling policy underperforms (Chapter 3). We believe that even
more complex policies [142] would also suffer from this problem. In general,
online plan-based policies are more vulnerable to scalability issues during
workload surges, and are harder to implement and parallelize compared to
dynamic online policies with similar performance.

6. It is possible to realistically estimate the resource demand of a workflow
in terms of the number of required processors when the task runtimes are
unknown by using our novel token-based algorithm for approximating the
level of parallelism (Chapters 2, 4, and 5). We have thoroughly evaluated the
algorithm both in simulations and in real-world experiments, and it shows its
effectiveness when applied to popular scientific workflow structures.

7. Although workflow-specific autoscalers have the privilege of knowing the
workflow structure in advance, it is possible for properly configured general
autoscalers without such knowledge to achieve similar performance (Chap-
ter 4). The correct choice of an autoscaler and its parameters significantly
depends on the application type. To assist the end-user in choosing an au-
toscaler and its parameters, we have proposed comprehensive multilateral
ranking methods for comparing autoscalers which showed their applicability
for comparing general and workflow-specific autoscalers.

8. The novel feedback-based online dynamic Performance-Feedback Autoscaler
(PFA) that uses task throughput and the workflow structure to make re-
source allocation decisions outperforms online plan-based policies for online
scheduling of workflows (Chapter 5). PFA has better applicability potential
due to its good scalability when dealing with possible demand surges, and
good end-user and system-oriented characteristics compared to the plan-based
state-of-the-art policies. The feedback mechanism in the novel autoscaler
analyzes historical task throughput. Observing task throughput normally
requires less effort than obtaining task runtime estimates, while allowing for
fairly accurate estimation of resource speeds when dealing with workloads
with a long-tailed task runtime distribution.

9. Obtaining an optimal solution for a workflow scheduling problem with a
mixed integer programming approach can be used to find how much the

6.2. Suggestions for Future Work

6

131

results obtained with other methods, e.g., real-world experiments, differ from
the optimal solution (Chapter 5). However, the mixed integer programming
approach has a high time complexity, a large number of parameters, and un-
predictable performance, which makes it not suitable for scheduling workloads
of workflows.

6.2. Suggestions for Future Work
Scheduling workloads of workflows still has many open questions that need to be
addressed. In this section, we present some future research directions.

1. In Chapter 2, we have reserved resources for each workflow based on its
expected level of parallelism with a manually set lookup depth. This method
did not show substantial performance benefits. It was expected that at
lower system utilizations processor reservation would help to reduce workflow
slowdowns, as the system would have enough resources to compensate for
capacity losses due to reservations. However, taking into consideration the
results obtained with the feedback-based autoscaler in Chapter 5, it would
be beneficial to study the effect of other reservation methods, for example,
by dynamically adjusting the lookup depth of the token-based parallelism
approximator on a per-workflow basis.

2. In Chapter 3, we have proposed a workflow scheduling policy that targets
fairness and uses historical slowdowns for making task placement decisions.
We have defined fairness as the minimization of the slowdown variability
among the workflows in the workload. As future work, while using the
same fairness definition, it would be interesting to investigate other workflow
prioritization methods to allow even short and extremely parallel workflows to
experience comparable slowdowns. Additionally, the fairness can be redefined,
for example, to link the expected slowdowns to certain job types or user-
defined priorities.

3. As we have shown in Chapter 3, the performance of task placement policies
that rely on task runtime estimates depends on the type of the runtime
estimation error and the system utilization. For this reason, it would be
interesting to consider other error types, for example, by assuming more error
variability for shorter tasks, as has been observed by Feitelson [63]. Moreover,
the effect of incorrect task runtime estimates on the studied dynamic policies
can additionally be validated in a real computing environment with different
system utilizations.

4. With all the autoscaling policies in Chapters 4 and 5, we have used greedy
backfilling as a task placement policy. The main reason for this choice
was our focus on the autoscaling performance which we did not want to
contaminate with the effects caused by different task placement policies.
However, there could be potential performance benefits from using different
combinations of task placement and resource allocation policies that can be
further investigated. Moreover, the metrics proposed in Chapter 4 can be
extended to address the effects of task placement policies.

6

132 6. Conclusion

5. In Chapter 5, we used a pre-configured history lookup depth and smoothing
factor for the exponentially weighted moving average of historical throughputs.
For future work, to make the proposed Performance-Feedback Autoscaler
even more autonomous, it would be useful to automatically configure the
signal smoothing. To add support for various application types, it seems
reasonable to consider, instead of task throughput, other application-specific
metrics.

6. In this dissertation, we have focused on computationally intensive workflows
and, thus, we have only considered processors as the type of system resources
that can be controlled by the scheduler. However, many other workflow types
are currently evolving that require other resource types for their operation.
Therefore, it would be logical to continue this work by assessing the per-
formance of I/O-intensive and memory-bound workflows and develop the
appropriate scheduling policies. Besides that, in all the chapters, we have
used Poisson arrivals for the workflow jobs within the workload. Alternatively,
other arrival patterns can be investigated. Furthermore, to investigate the
workflow scheduling problem from another perspective, various workload
modifications can be explored (e.g., the modification of arrival patterns)
that would help to achieve better performance results without changing the
scheduling policy. Finally, various scheduling parallelization attempts can
be made to investigate the possible performance benefits of decentralizing
scheduling decisions.

Bibliography

[1] Amazon Lambda. https://aws.amazon.com/lambda.

[2] Apache Airflow. https://airflow.apache.org.

[3] Apache Hadoop. https://hadoop.apache.org.

[4] Apache Taverna. https://taverna.incubator.apache.org.

[5] Azure Functions. https://azure.microsoft.com/en-us/services/functions.

[6] Camunda BPM: Workflow and decision automation platform.
https://camunda.com.

[7] Celery: Distributed task queue. http://docs.celeryproject.org.

[8] COMMIT IV-e: e-Infrastructure Virtualization for e-Science applica-
tions. https://www.commit-nl.nl/projects/e-infrastructure-virtualization-
for-e-science-applications.

[9] Dask: Scalable analytics in Python. https://dask.org.

[10] e-Science Central. https://www.esciencecentral.org.

[11] Google Cloud Composer: A fully managed workflow orchestration service
built on apache airflow. https://cloud.google.com/composer.

[12] Gurobi reference manual: Parameter tuning tool. https://www.gurobi.com/
documentation/8.1/refman/parameter_tuning_tool.html.

[13] Gurobi reference manual: Parameters. https://www.gurobi.com/documentation/
8.1/refman/parameters.html.

[14] Gurobi: The state-of-the-art mathematical programming solver.
http://www.gurobi.com.

[15] IBM Cloud Functions. https://cloud.ibm.com/functions.

[16] Pegasus: Synthetic workflow generators. https://github.com/pegasus-
isi/WorkflowGenerator.

[17] Pegasus workflow management system. http://pegasus.isi.edu.

[18] Redis: In-memory data structure store. https://redis.io.

[19] Updated workflows for new LHC. http://newscenter.lbl.gov/2016/02/22/updated-
workflows-for-new-lhc.

133

https://aws.amazon.com/lambda
https://airflow.apache.org
https://hadoop.apache.org
https://taverna.incubator.apache.org
https://azure.microsoft.com/en-us/services/functions
https://camunda.com
http://docs.celeryproject.org
https://www.commit-nl.nl/projects/e-infrastructure-virtualization-for-e-science-applications
https://www.commit-nl.nl/projects/e-infrastructure-virtualization-for-e-science-applications
https://dask.org
https://www.esciencecentral.org
https://cloud.google.com/composer
https://www.gurobi.com/documentation/8.1/refman/parameter_tuning_tool.html
https://www.gurobi.com/documentation/8.1/refman/parameter_tuning_tool.html
https://www.gurobi.com/documentation/8.1/refman/parameters.html
https://www.gurobi.com/documentation/8.1/refman/parameters.html
http://www.gurobi.com
https://cloud.ibm.com/functions
https://github.com/pegasus-isi/WorkflowGenerator
https://github.com/pegasus-isi/WorkflowGenerator
http://pegasus.isi.edu
https://redis.io
http://newscenter.lbl.gov/2016/02/22/updated-workflows-for-new-lhc
http://newscenter.lbl.gov/2016/02/22/updated-workflows-for-new-lhc

134 Bibliography

[20] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. A. Khalek, A. A. Abdelalim,
O. Abdinov, R. Aben, B. Abi, M. Abolins, et al. Observation of a new particle
in the search for the Standard Model Higgs boson with the ATLAS detector
at the LHC. Physics Letters B, 716:1–29, 2012.

[21] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al. GW170817: Obser-
vation of gravitational waves from a binary neutron star inspiral. Physical
Review Letters, 119:161101, 2017.

[22] B. P. Abbott, R. Abbott, R. Adhikari, J. Agresti, P. Ajith, B. Allen, R. Amin,
S. B. Anderson, W. G. Anderson, M. Arain, et al. Search for gravitational
waves from binary inspirals in S3 and S4 LIGO data. Physical Review D,
77:062002, 2008.

[23] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema. Cost-driven scheduling
of grid workflows using partial critical paths. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 23:1400–1414, 2012.

[24] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds. Future
Generation Computer Systems (FGCS), 29:158–169, 2013.

[25] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient provisioning of
bursty scientific workloads on the cloud using adaptive elasticity control. In
ACM Workshop on Scientific Cloud Computing (ScienceCloud), 2012.

[26] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elastic-
ity controller for cloud infrastructures. In IEEE Network Operations and
Management Symposium (NOMS), 2012.

[27] A. Ali-Eldin, J. Tordsson, E. Elmroth, and M. Kihl. Workload classification
for efficient auto-scaling of cloud resources. Technical report, Ume̊a University,
Lund University, 2013.

[28] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Gold-
ing, A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An
automated resource provisioning tool for large-scale storage systems. ACM
Transactions on Computer Systems (TOCS), 19:483–518, 2001.

[29] H. Arabnejad and J. Barbosa. Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems. In IEEE International Symposium on
Parallel and Distributed Processing with Applications (ISPA), 2012.

[30] H. Arabnejad and J. G. Barbosa. Multi-workflow QoS-constrained scheduling
for utility computing. In IEEE International Conference on Computational
Science and Engineering (CSE), 2015.

[31] H. Arabnejad and J. G. Barbosa. Multi-QoS constrained and profit-aware
scheduling approach for concurrent workflows on heterogeneous systems.
Future Generation Computer Systems (FGCS), 68:211–221, 2017.

Bibliography 135

[32] H. Arabnejad, J. M. G. Barbosa, and F. Suter. Fair resource sharing for
dynamic scheduling of workflows on heterogeneous systems. In IEEE Inter-
national Conference on High Performance Computing, Data and Analytics
(HiPC), 2014.

[33] V. Arabnejad, K. Bubendorfer, and B. Ng. Scheduling deadline constrained
scientific workflows on dynamically provisioned cloud resources. Future
Generation Computer Systems (FGCS), 75:348–364, 2017.

[34] ASKALON Team and T. Fahringer. ASKALON grid environment: User
guide. http://www.askalon.org/documents/ASKALONUserGuide-final.pdf,
2015.

[35] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff. A medium-scale distributed system for computer
science research: Infrastructure for the long term. IEEE Computer, 49:54–63,
2016.

[36] R. Barga and D. Gannon. Scientific versus business workflows. In Workflows
for e-Science, Scientific Workflows for Grids, pages 9–16. Springer, 2007.

[37] L. S. Baumann and R. D. Coop. Automated workflow control: A key to office
productivity. In National computer conference, 1980.

[38] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su, and K. Vahi.
Characterization of scientific workflows. In Workshop on Workflows in Support
of Large-Scale Science, 2008.

[39] I. Bird. Computing for the large hadron collider. Annual Review of Nuclear
and Particle Science, 61:99–118, 2011.

[40] E. Byun, Y. Kee, J. Kim, and S. Maeng. Cost optimized provisioning of
elastic resources for application workflows. Future Generation Computer
Systems (FGCS), 27:1011–1026, 2011.

[41] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle.
Managing energy and server resources in hosting centers. ACM SIGOPS
Operating Systems Review, 35:103–116, 2001.

[42] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal. Dynamic scaling of
web applications in a virtualized cloud computing environment. In IEEE
International Conference on e-Business Engineering (ICEBE), 2009.

[43] A. M. Chirkin, A. S. Z. Belloum, S. V. Kovalchuk, M. X. Makkes, M. A.
Melnik, A. A. Visheratin, and D. A. Nasonov. Execution time estimation
for workflow scheduling. Future Generation Computer Systems (FGCS),
75:376–387, 2017.

[44] W. Clark, W. N. Polakov, and F. W. Trabold. The Gantt chart: A working
tool of management. Ronald Press Company, 1922.

http://www.askalon.org/documents/ASKALONUserGuide-final.pdf

136 Bibliography

[45] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[46] E. D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens, and
B. Dhoedt. Dynamic auto-scaling and scheduling of deadline constrained
service workloads on IaaS clouds. Journal of Systems and Software (JSS),
118:101–114, 2016.

[47] R. Cushing, S. Koulouzis, A. S. Z. Belloum, and M. Bubak. Prediction-based
auto-scaling of scientific workflows. In ACM International Workshop on
Middleware for Grids, Clouds and e-Science (MGC), 2011.

[48] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny. Online task
resource consumption prediction for scientific workflows. Parallel Processing
Letters, 25:1541003, 2015.

[49] G. B. Dantzig and M. N. Thapa. Linear programming 1: Introduction.
Springer, 2006.

[50] H. A. David. Ranking from unbalanced paired-comparison data. Biometrika,
74:432–436, 1987.

[51] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. ACM Communications, 51:107–113, 2008.

[52] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. S. Vetter. The
future of scientific workflows. The International Journal of High Performance
Computing Applications (IJHPCA), 32:159–175, 2018.

[53] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing
science on the cloud: The Montage example. In ACM/IEEE Conference on
High Performance Computing Networking, Storage and Analysis (SC), 2008.

[54] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. C. Laity, J. C. Jacob, and D. S.
Kat. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13:219–237, 2005.

[55] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, and R. K. Wenger. Pegasus,
a workflow management system for science automation. Future Generation
Computer Systems (FGCS), 46:17–35, 2015.

[56] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware
cluster management. ACM SIGPLAN Notices, 49:127–144, 2014.

[57] Y. Demchenko, C. Blanchet, C. Loomis, R. Branchat, M. Slawik, B. I. Zilci,
M. Bedri, J. Gibrat, O. Lodygensky, M. Zivkovic, and C. de Laat. Cyclone:
A platform for data intensive scientific applications in heterogeneous multi-
cloud/multi-provider environment. In IEEE International Conference on
Cloud Engineering Workshop (IC2EW), 2016.

Bibliography 137

[58] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics, 51:161–166, 1950.

[59] Q. Dishan, H. Chuan, L. Jin, and M. Manhao. A dynamic scheduling method
of earth-observing satellites by employing rolling horizon strategy. The
Scientific World Journal, page 304047, 2013.

[60] T. Dornemann, E. Juhnke, and B. Freisleben. On-demand resource pro-
visioning for BPEL workflows using Amazon’s elastic compute cloud. In
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2009.

[61] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlip-
nig, J. Qin, M. Siddiqui, H. L. Truong, A. Villazón, and M. Wieczorek.
ASKALON: A development and grid computing environment for scientific
workflows. In Workflows for e-Science, Scientific Workflows for Grids, pages
450–471. Springer, 2007.

[62] L. Fei, B. Ghit,, A. Iosup, and D. H. J. Epema. KOALA-C: A task allocator for
integrated multicluster and multicloud environments. In IEEE International
Conference on Cluster Computing (Cluster), 2014.

[63] D. G. Feitelson. Workload Modeling for Computer Systems Performance
Evaluation. Cambridge University Press, 2015. pp. 399-489.

[64] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling web applications in
heterogeneous cloud infrastructures. In IEEE International Conference on
Cloud Engineering (IC2E), 2014.

[65] R. Ferreira da Silva, T. Glatard, and F. Desprez. Controlling fairness and
task granularity in distributed, online, non-clairvoyant workflow executions.
Concurrency and computation: Practice and experience (CCPE), 26:2347–
2366, 2014.

[66] P. J. Fleming and J. J. Wallace. How not to lie with statistics: The correct
way to summarize benchmark results. ACM Communications, 29:218–221,
1986.

[67] J. Frey. Condor DAGMan: Handling inter-job dependencies. Technical report,
Department of Computer Science, University of Wisconsin, 2002.

[68] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch. Autoscale:
Dynamic, robust capacity management for multi-tier data centers. ACM
Transactions on Computer Systems (TOCS), 30:14:1–14:26, 2012.

[69] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow
management: From process modeling to workflow automation infrastructure.
Distributed and parallel Databases, 3:119–153, 1995.

138 Bibliography

[70] T. Hegeman, B. Ghit,, M. Capota, J. Hidders, D. Epema, and A. Iosup. The
BTWorld use case for big data analytics: Description, MapReduce logical
workflow, and empirical evaluation. In IEEE International Conference on
Big Data, 2013.

[71] T. Heinis, C. Pautasso, and G. Alonso. Design and evaluation of an autonomic
workflow engine. In IEEE International Conference on Autonomic Computing
(ICAC), 2005.

[72] N. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. In International Conference on Autonomic
Computing (ICAC), 2013.

[73] N. Herbst, R. Krebs, G. Oikonomou, G. Kousiouris, A. Evangelinou, A. Iosup,
and S. Kounev. Ready for rain? A view from SPEC research on the future of
cloud metrics. Technical report, arXiv:1604.03470, SPEC Research Group,
Cloud Working Group, 2016.

[74] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda. BUNGEE: An elastic-
ity benchmark for self-adaptive IaaS cloud environments. In International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2015.

[75] H. Hiden, P. Watson, S. Woodman, and D. Leahy. e-Science Central: Cloud-
based e-Science and its application to chemical property modelling. Technical
report, CS-TR-1227, School of Computer Science, Newcastle University, 2011.

[76] A. Hirales-Carbajal, A. Tchernykh, R. Yahyapour, J. L. González-Garćıa,
T. Röblitz, and J. M. Ramı́rez-Alcaraz. Multiple workflow scheduling strate-
gies with user run time estimates on a grid. Journal of Grid Computing,
10:325–346, 2012.

[77] C.-C. Hsu, K.-C. Huang, and F.-J. Wang. Online scheduling of workflow
applications in grid environments. Future Generation Computer Systems
(FGCS), 27:860–870, 2011.

[78] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and
T. Oinn. Taverna: A tool for building and running workflows of services.
Nucleic acids research, 34:729–732, 2006.

[79] S. Ikiz and V. K. Garg. Online algorithms for Dilworth’s chain partition.
Technical report, Parallel and Distributed Systems Laboratory, Department
of Electrical and Computer Engineering, University of Texas at Austin.

[80] A. Ilyushkin, A. Bauer, A. V. Papadopoulos, E. Deelman, and A. Io-
sup. Computational Artifacts for Performance Feedback Autoscal-
ing Experiments with Workloads of Workflows in Apache Airflow.
https://doi.org/10.5281/zenodo.2635573, 2019.

https://doi.org/10.5281/zenodo.2635573

Bibliography 139

[81] A. Ilyushkin, A. Bauer, A. V. Papadopoulos, E. Deelman, and
A. Iosup. Software Artifacts for Performance Feedback Autoscal-
ing Experiments with Workloads of Workflows in Apache Airflow.
https://doi.org/10.5281/zenodo.2635571, 2019.

[82] A. Ilyushkin and D. Epema. The impact of task runtime estimate accuracy on
scheduling workloads of workflows. In IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2018.

[83] A. Ilyushkin, B. Ghit,, and D. Epema. Scheduling workloads of workflows
with unknown task runtimes. In IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2015.

[84] A. Iosup, O. Sonmez, and D. Epema. DGSim: Comparing grid resource
management architectures through trace-based simulation. In European
Conference on Parallel Processing (Euro-Par), 2008.

[85] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema, and M. Livny. Inter-
operating grids through delegated matchmaking. Scientific Programming,
16:233–253, 2008.

[86] A. Iosup, N. Yigitbasi, and D. Epema. On the performance variability
of production cloud services. In IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2011.

[87] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future
Generation Computer Systems (FGCS), 27:871–879, 2011.

[88] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,
A. Neumann, and A. Abdelnur. Oozie: Towards a scalable workflow manage-
ment system for Hadoop. In ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies (SWEET), 2012.

[89] D. Jackson, Q. Snell, and M. Clement. Core algorithms of the Maui scheduler.
In Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
2001.

[90] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity, E. Deelman,
C. Kesselman, G. Singh, M. Su, T. A. Prince, and R. Williams. Montage:
A grid portal and software toolkit for science-grade astronomical image
mosaicking. International Journal of Computer Sciences and Engineering
(IJCSE), 4:73–87, 2009.

[91] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, and C. Kim. EyeQ:
Practical network performance isolation for the multi-tenant cloud. In
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), 2012.

[92] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi.
Characterizing and profiling scientific workflows. Future Generation Computer
Systems (FGCS), 29:682–692, 2013.

https://doi.org/10.5281/zenodo.2635571

140 Bibliography

[93] L. V. Kantorovich. Moi put’ v nauke (My way in science). Uspehi Matem-
aticheskih Nauk, 42:183–213, 1987.

[94] L. V. Kantorovich. Mathematical-Economic Articles. Nauka: Novosibirsk,
2011.

[95] J. E. Kelley Jr and M. R. Walker. Critical-path planning and scheduling. In
IRE-AIEE-ACM computer conference, 1959.

[96] A. Kembhavi. Big data in astronomy and beyond. In Data Science Landscape,
pages 59–66. Springer, 2018.

[97] M. A. Khan. Scheduling for heterogeneous systems using constrained critical
paths. Parallel Computing, 38:175–193, 2012.

[98] D. K. Krishnappa, M. Zink, and R. K. Sitaraman. Optimizing the video
transcoding workflow in content delivery networks. In ACM International
Conference on Multimedia Systems (MMsys), 2015.

[99] M. Kuhnemann, T. Rauber, and G. Runger. A source code analyzer for
performance prediction. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

[100] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors. IEEE Transactions
on Parallel and Distributed Systems (TPDS), 7:506–521, 1996.

[101] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. Journal of Parallel and Distributed Computing
(JPDC), 59:381–422, 1999.

[102] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys, 31:406–471, 1999.

[103] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are user runtime
estimates inherently inaccurate? In Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), 2004.

[104] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. Fernandes, and G. Mehta.
Adaptive workflow processing and execution in Pegasus. Concurrency and
Computation: Practice and Experience, 21:1965–1981, 2009.

[105] P. Leitner and J. Cito. Patterns in the chaos—a study of performance
variation and predictability in public IaaS clouds. ACM Transactions on
Internet Technology (TOIT), 16:15:1–15:23, 2016.

[106] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice Hall PTR, 2000.

[107] D. A. Lifka. The ANL/IBM SP scheduling system. In Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 1995.

Bibliography 141

[108] J. Livny. Bioinformatic discovery of bacterial regulatory RNAs using SIPHT.
Bacterial Regulatory RNA: Methods and Protocols, 905:3–14, 2012.

[109] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum. Stateful bulk
processing for incremental analytics. In ACM symposium on Cloud computing
(SoCC), 2010.

[110] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of auto-
scaling techniques for elastic applications in cloud environments. Journal of
Grid Computing, 12:559–592, 2014.

[111] P. Lu, G. Zhang, Z. Zhu, X. Zhou, J. Sun, and J. Zhou. A review of cost and
makespan-aware workflow scheduling in clouds. Journal of Circuits, Systems
and Computers, 28:1930006, 2018.

[112] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs. Journal of Parallel and Distributed
Computing (JPDC), 63:1105–1122, 2003.

[113] S. Ma, A. Ilyushkin, A. Stegehuis, and A. Iosup. ANANKE: A Q-learning-
based portfolio scheduler for complex industrial workflows. In IEEE Interna-
tional Conference on Autonomic Computing (ICAC), 2017.

[114] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski. Scheduling
multilevel deadline-constrained scientific workflows on clouds based on cost
optimization. Scientific Programming, page 680271, 2015.

[115] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Cost-and deadline-
constrained provisioning for scientific workflow ensembles in IaaS clouds.
In ACM/IEEE Conference on High Performance Computing Networking,
Storage and Analysis (SC), 2012.

[116] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in IaaS
clouds. Future Generation Computer Systems (FGCS), 48:1–18, 2015.

[117] G. Malewicz, I. Foster, A. L. Rosenberg, and M. Wilde. A tool for prioritizing
DAGMa jobs and its evaluation. Journal of Grid Computing, 5:197–212,
2007.

[118] M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet appli-
cation deadlines in cloud workflows. In ACM/IEEE Conference on High
Performance Computing Networking, Storage and Analysis (SC), 2011.

[119] M. Mao and M. Humphrey. Scaling and scheduling to maximize applica-
tion performance within budget constraints in cloud workflows. In IEEE
International Symposium on Parallel and Distributed Processing (IPDPS),
2013.

[120] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, R. Ricci,
and A. Klimovic. Taming performance variability. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018.

142 Bibliography

[121] E. R. Marsh. The harmonogram of Karol Adamiecki. Academy of management
Journal, 18:358–364, 1975.

[122] J. T. Meehean. Towards Transparent CPU Scheduling. PhD thesis, University
of Wisconsin-Madison, 2011.

[123] D. Milojičić, I. M. Llorente, and R. S. Montero. OpenNebula: A cloud
management tool. IEEE Internet Computing, 15:11–14, 2011.

[124] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 12:529–543, 2001.

[125] S. Murray, V. Bahyl, G. Cancio, E. Cano, V. Kotlyar, D. F. Kruse, and
J. Leduc. An efficient, modular and simple tape archiving solution for LHC
Run-3. In Journal of Physics: Conference Series, volume 898, page 062013,
2017.

[126] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan. Osmotic flow:
Osmotic computing + IoT workflow. IEEE Cloud Computing, 4:68–75, 2017.

[127] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Kon-
stantinou, and S. Sioutas. Dependable horizontal scaling based on probabilistic
model checking. In IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2015.

[128] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic control
for heterogeneous networks. IEEE/ACM Transactions On Networking (TON),
16:396–409, 2008.

[129] N. M. O’boyle, A. L. Tenderholt, and K. M. Langner. Cclib: A library
for package-independent computational chemistry algorithms. Journal of
computational chemistry, 29:839–845, 2008.

[130] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A
not-so-foreign language for data processing. In ACM SIGMOD International
Conference on Management of Data, 2008.

[131] M. Oppitz and P. Tomsu. Cloud computing. In Inventing the Cloud Century,
pages 267–318. Springer, 2018.

[132] S. Ostermann, R. Prodan, T. Fahringer, A. Iosup, and D. Epema. On the
characteristics of grid workflows. In CoreGRID Symposium Euro-Par, 2008.

[133] A. V. Papadopoulos, A. Ali-Eldin, K. Årzén, J. Tordsson, and E. Elmroth.
PEAS: A performance evaluation framework for auto-scaling strategies in
cloud applications. Tail response time modeling and control for interactive
cloud services. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 1:15:1–15:31, 2016.

[134] H. P. Patil. On the structure of k-trees. Journal of Combinatorics, Information
and System Sciences (JCISS), 11:57–64, 1986.

Bibliography 143

[135] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A performance model
to estimate execution time of scientific workflows on the cloud. In IEEE
Workshop on Workflows in Support of Large-Scale Science (WORKS), 2014.

[136] M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell. Supporting
on-demand elasticity in distributed graph processing. In IEEE International
Conference on Cloud Engineering (IC2E), 2016.

[137] M. Rahman, X. Li, and H. Palit. Hybrid heuristic for scheduling data analytics
workflow applications in hybrid cloud environment. In IEEE International
Symposium on Parallel and Distributed Processing Workshops (IPDPSW),
2011.

[138] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algorithm
for scheduling scientific workflow applications on global grids. In IEEE
International Conference on e-Science and Grid Computing (e-Science), 2007.

[139] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,
K. Blackburn, D. Meyers, and M. Samidi. Scheduling data-intensive work-
flows onto storage-constrained distributed resources. In IEEE International
Symposium on Cluster Computing and the Grid (CCGrid), 2007.

[140] M. A. Rodriguez and R. Buyya. Budget-driven scheduling of scientific
workflows in IaaS clouds with fine-grained billing periods. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 12:5:1–5:22, 2017.

[141] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan. Scheduling of
parallel jobs in a heterogeneous multi-site environment. In Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 2003.

[142] R. Sakellariou and H. Zhao. A hybrid heuristic for DAG scheduling on
heterogeneous systems. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

[143] A. Shade and T. K. Teal. Computing workflows for biologists: A roadmap.
PLoS biology, 13:e1002303, 2015.

[144] E. Shmueli and D. G. Feitelson. Backfilling with lookahead to optimize
the packing of parallel jobs. Journal of Parallel and Distributed Computing
(JPDC), 65:1090–1107, 2005.

[145] G. Singh and E. Deelman. The interplay of resource provisioning and work-
flow optimization in scientific applications. Concurrency and Computation:
Practice and Experience, 23:1969–1989, 2011.

[146] V. Singh, I. Gupta, and P. K. Jana. A novel cost-efficient approach for deadline-
constrained workflow scheduling by dynamic provisioning of resources. Future
Generation Computer Systems (FGCS), 79:95–110, 2018.

[147] S. Spinner, G. Casale, F. Brosig, and S. Kounev. Evaluating approaches to
resource demand estimation. Performance Evaluation, 92:51–71, 2015.

144 Bibliography

[148] F. Suter and S. Hunold. DAGGen: A synthetic task graph generator.
https://github.com/frs69wq/daggen.

[149] D. Talby and D. G. Feitelson. Supporting priorities and improving utilization
of the IBM SP scheduler using slack-based backfilling. In IEEE International
Parallel Processing Symposium and Symposium on Parallel and Distributed
Processing (IPPS/SPDP), 1999.

[150] D. Talia. Clouds for scalable big data analytics. IEEE Computer, 46:98–101,
2013.

[151] F. W. Taylor. Scientific management. The Sociological Review, 7:266–269,
1914.

[152] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields. Workflows for
e-Science, Scientific Workflows for Grids. Springer, 2007.

[153] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in prac-
tice: The Condor experience. Concurrency and computation: Practice and
experience (CCPE), 17:323–356, 2005.

[154] S. Tilloo. Running arbitrary DAG-based workflows in the cloud.
http://www.ebaytechblog.com/2016/04/05/running-arbitrary-dag-based-
workflows-in-the-cloud, 2017.

[155] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 13:260–274, 2002.

[156] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In ACM
SIGMETRICS Performance Evaluation Review, 2005.

[157] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier internet applications. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 3:1:1–1:39, 2008.

[158] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Ut,ă, and A. Iosup. Serverless
is more: From PaaS to present cloud computing. IEEE Internet Computing,
22:8–17, 2018.

[159] J. van Helden. Regulatory sequence analysis tools. Nucleic Acids Research,
31:3593–3596, 2003.

[160] L. Versluis, M. Neacsu, and A. Iosup. A trace-based performance study of au-
toscaling workloads of workflows in datacenters. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2018.

[161] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz.
A duplication based algorithm for optimizing latency under throughput
constraints for streaming workflows. In IEEE International Conference on
Parallel Processing (ICPP), 2008.

https://github.com/frs69wq/daggen
http://www.ebaytechblog.com/2016/04/05/running-arbitrary-dag-based-workflows-in-the-cloud
http://www.ebaytechblog.com/2016/04/05/running-arbitrary-dag-based-workflows-in-the-cloud

Bibliography 145

[162] P. Waibel, S. Videnov, M. Borkowski, C. Hochreiner, S. Schulte, and
J. Mendling. Process simulation for machine reservation in cloud manufactur-
ing. In IEEE International Conference on Industrial Informatics (INDIN),
2018.

[163] Y. Wang, S. Cao, G. Wang, Z. Feng, C. Zhang, and H. Guo. Fairness
scheduling with dynamic priority for multi workflow on heterogeneous systems.
In IEEE International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), 2017.

[164] Y. Wang, Y. Xia, and S. Chen. Using integer programming for workflow
scheduling in the cloud. In IEEE International Conference on Cloud Com-
puting (CLOUD), 2017.

[165] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos. Fog
orchestration for Internet of Things services. IEEE Internet Computing,
21:16–24, 2017.

[166] J. R. Wieland, R. Pasupathy, and B. W. Schmeiser. Queueing-network
stability: Simulation-based checking. In Winter Simulation Conference, 2003.

[167] F. Wu, Q. Wu, and Y. Tan. Workflow scheduling in cloud: A survey. The
Journal of Supercomputing, 71:3373–3418, 2015.

[168] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon. The Magellan report
on cloud computing. Technical report, LBNL-5376E, U.S. Department of
Energy, Washington D.C., USA, 2011.

[169] Z. Yu and W. Shi. A planner-guided scheduling strategy for multiple workflow
applications. In IEEE International Conference on Parallel Processing-
Workshops (ICPP-W), 2008.

[170] H. Zhao and R. Sakellariou. Scheduling multiple DAGs onto heterogeneous
systems. In IEEE International Parallel and Distributed Processing Sympo-
sium, 2006.

[171] A. C. Zhou, B. He, and C. Liu. Monetary cost optimizations for hosting
workflow-as-a-service in IaaS clouds. IEEE Transactions on Cloud Computing,
4:34–48, 2016.

Summary

A workflow is a universal abstraction for representing complex activities consisting of
multiple interconnected tasks. Workflows are often used to describe and orchestrate
computations at different scales. The growing applicability of such computing
workflows has led to the development of appropriate algorithms designed for
scheduling and executing workflows efficiently. Workflow scheduling can be seen
from the task placement and resource allocation perspectives, where task placement
controls the mapping of tasks to computing resources, and resource allocation
controls the number of dynamically available computing resources. Due to the
usage patterns of earlier workflow applications in clusters and grids, most of the
existing workflow scheduling algorithms were designed to process statically present
sets of workflows. Such offline algorithms often fail to address the challenges
introduced by modern online applications of workflows, for example, in computing
clouds where diverse workflows from different users arrive stochastically forming
a workload. This provides a variety of opportunities for the development of new
scheduling policies to meet the challenges of online scheduling.

In this dissertation, we identify and address three key challenges that are char-
acteristic to the online scheduling of workloads of workflows in modern distributed
computing systems, such as clusters and clouds. The first challenge is realistic
estimation of the resource demand of a workflow, as it is important for both task
placement and resource allocation. Second, is the efficient placement of workflow
tasks to minimize average workflow slowdown while achieving fairness. A wrongly
chosen task placement policy can easily degrade the performance and negatively
affect the fair access of workflows to computing resources. Third, is the automatic
allocation (autoscaling) of computing resources for workflows while meeting dead-
line and budget constraints. Computing clouds make it possible to easily lease and
release resources. Such decisions should be made wisely to minimize slowdowns and
deadline violations, and to efficiently use the leased resources to reduce incurred
costs.

To address these challenges, we propose novel online scheduling policies and
investigate applicability of relevant state-of-the-art workflow scheduling policies
to the online scenario. For new policies, we keep in mind their implementation
effort and their suitability for production systems. We experimentally evaluate
these workflow scheduling policies by conducting a wide set of simulation-based
and real-world experiments on a private multicluster computer. Additionally, we
use a Mixed Integer Programming (MIP) approach to validate our real-world
experimental results versus the optimal solution obtained with a MIP solver.

In Chapter 1, we summarize workflow scheduling approaches and identify main
workflow scheduling challenges from both task placement and resource allocation
perspectives. We also provide an overview of state-of-the-art workflow scheduling
policies and modern workflow managements systems. Furthermore, we present

147

148 Summary

research questions that aim to address the identified workflow scheduling challenges,
the research methods used in this dissertation, the dissertation outline, and our
key contributions.

In Chapter 2, we address the problem of online scheduling of workloads of
workflows with unknown task runtime estimates. For this we propose a family of
four novel online workflow scheduling policies which differ in to what extent they
reserve processors for the workflows towards the head of the queue. To be able
to make processor reservations, we propose a method for the realistic estimation
of workflow level of parallelism. Our results show that even at moderate imposed
utilizations, the greedy backfilling policy leads to lower average workflow slowdowns
compared to the policies which use processor reservation.

In Chapter 3, we focus on scheduling workloads of workflows with varying accu-
racy of task runtime estimates that are available to the scheduler. We implement
four state-of-the-art online dynamic workflow scheduling policies, and propose two
novel online dynamic policies, one of which addresses fairness, and the other one
adapts a popular offline plan-based policy for the online plan-based scenario. In
our results, we can clearly see that the knowledge of task runtime estimates gives
significant performance improvement in the average job slowdown, but only at
extremely high utilizations. At moderate utilizations, simpler backfilling-based poli-
cies outperform more advanced policies. The plan-based online policy demonstrates
poor performance compared to dynamic online policies. Our fairness-oriented policy
effectively decreases the variance of job slowdown and thus achieves fairness.

In Chapter 4, we experimentally evaluate five state-of-the-art general autoscalers
and propose two novel workflow-specific autoscalers. Moreover, we present and refine
performance metrics endorsed by the Standard Performance Evaluation Corporation
(SPEC) for assessing autoscalers, and define three approaches for comparing the
autoscalers using the considered metrics. The experimental results show that
general autoscalers can demonstrate comparable performance to workflow-specific
autoscalers, if the former have access to workload statistics. The workflow-specific
autoscalers, in turn, require task or workflow runtime estimates. We additionally
investigate the effect of autoscaling on meeting workflow deadlines. Our results
highlight the trade-offs between the suggested policies, their impact on meeting
the deadlines, and their performance in different operating conditions.

In Chapter 5, we propose a novel online dynamic autoscaler that employs a
feedback mechanism for making autoscaling decisions. For that our autoscaler
analyzes historical task throughput and uses the not yet finished part of the workflow,
instead of relying on task runtime estimates, as analyzing the task throughput
requires less effort than obtaining task runtime estimates. Our approach shows
lower time complexity and effectively minimizes workflow slowdowns compared to
two state-of-the-art autoscalers. The usage of historical throughput information
provides fairly accurate estimation of resource speeds when dealing with workloads
with a representative long-tailed task runtime distribution. We additionally validate
the experimental results by comparing the workflow slowdowns obtained from an
actual workflow management system with an optimal solution.

Finally, in Chapter 6, we present the main conclusions of this dissertation and
we provide suggestions for several future directions.

Samenvatting

Een workflow is een universele abstractie voor het weergeven van complexe activi-
teiten die bestaan uit meerdere onderling verbonden taken. Workflows worden vaak
gebruikt om berekeningen op verschillende schaal te beschrijven en te organiseren.
De groeiende toepasbaarheid van zulke workflows heeft geleid tot de ontwikkeling
van geschikte algoritmen om ze efficiënt uit te voeren. Workflow scheduling kan
vanuit twee perspectieven worden bestudeerd: Ten eerste vanuit task placement,
waarbij taken zo geschikt mogelijk aan computer resources worden gekoppeld, en
ten tweede vanuit resource allocatie, waarbij men dynamisch computer resources
beschikbaar stelt. Aangezien in het verleden workflow applicaties voornamelijk
waren gericht op clusters en grids, zijn de scheduling algoritmes uit deze tijd gericht
op statische verzamelingen workflows. Zulke zogenaamde offline algoritmes zijn
niet altijd even geschikt voor gebruik in de moderne online toepassing van work-
flows, bijvoorbeeld in cloud netwerken. Daarin starten de diverse workflows van
verschillende gebruikers op verschillende tijdstippen, en vormen zo een stochastische
workload van workflows. Dit biedt de mogelijkheid om nieuwe scheduling policies
te ontwikkelen die in staat zijn om te gaan met de uitdaging van online scheduling.

In dit proefschrift worden drie sleuteluitdagingen gëıdentificeerd en behandeld
die karakteristiek zijn voor workloads van workflows in moderne gedistribueerde
computersystemen, zoals clusters en clouds. De eerste uitdaging is het realistisch
inschatten van de resource-eisen van een workflow. Dit is belangrijk voor zowel
task placement als resource allocatie. De tweede uitdaging is het efficiënt plaatsen
van workflow-taken met als doel het minimaliseren van de gemiddelde slowdown
van workflows en het eerlijk verdelen van de resources. Een verkeerd gekozen task
placement policy kan de prestaties sterk bëınvloeden en kan een nadelig effect
hebben op hoe eerlijk de computer resources verdeeld worden onder de verschillende
workflows. De derde uitdaging is het automatisch toewijzen van computer resources
(“autoscaling”) bij een beperkt budget en met de aanwezigheid van deadlines.
Computer clouds maken het mogelijk om gemakkelijk computer resources te huren
en weer vrij te geven. Zulke beslissingen moeten op een verstandige manier worden
gemaakt om de slowdown en het aantal schendingen van deadlines te minimaliseren,
en om de computer resources efficiënt te huren zodat de kosten binnen de perken
blijven.

Om deze uitdagingen aan te gaan worden nieuwe online scheduling policies voor-
gesteld, en wordt de geschiktheid van relevante moderne workflow scheduling policies
voor het online scenario onderzocht. Voor de voorgestelde nieuwe policies wordt
de moeite om ze te implementeren en hun geschiktheid voor productiesystemen
in acht genomen. De workflow scheduling policies worden experimenteel getoetst
met een breed scala van simulaties, en met echte experimenten op een multicluster
computersysteem. We gebruiken mixed integer programming om de experimentele
resultaten te vergelijken met een theoretisch gezien optimale oplossing.

149

150 Samenvatting

In hoofdstuk 1 vatten we workflow scheduling methoden samen en identificeren
we uitdagingen voor workflow scheduling vanuit het perspectief van task placement
en resource allocation. Ook wordt er een overzicht gepresenteerd van state-of-the-art
workflow scheduling policies en moderne workflow management systemen. Boven-
dien worden de onderzoeksvragen geformuleerd om de gëıdentificeerde uitdagingen
aan te gaan, en worden de in dit proefschrift gebruikte methoden, een overzicht
van het proefschrift, en de belangrijkste bijdragen gepresenteerd.

In hoofdstuk 2 wordt het probleem behandeld van de online scheduling van
workloads van workflows zonder de beschikbaarheid van schattingen van de execu-
tietijd van taken. Hiervoor worden vier nieuwe online workflow scheduling policies
gepresenteerd die verschillen in de mate waarin ze processoren reserveren voor de
workflows vooraan in de wachtrij. Om in staat te zijn processoren te reserveren
wordt een methode voorgesteld die een realistische inschatting kan maken van het
niveau van parallellisme in workflows. De resultaten hiervan laten zien dat zelfs
bij een matige bezettingsgraad de greedy backfilling policy leidt tot een lagere
gemiddelde workflow slowdown in vergelijking met de policies die gebruik maken
van processorreservering.

In hoofdstuk 3 ligt de focus op de scheduling van workloads van workflows met
gebruik van schattingen van de executietijden van taken van variërende precisie.
Hier worden vier state-of-the-art online dynamische workflow scheduling policies
gëımplementeerd, en worden twee nieuwe online dynamische policies voorgesteld.
Eén daarvan richt zich op eerlijke toewijzing, de tweede is gëınspireerd op populaire
offline plan-based policies voor het online plan-based scenario. In de resultaten
kan duidelijk worden gezien dat beschikbaarheid van informatie over de lengte
van taken een significante prestatieverbetering tot gevolg heeft in de gemiddelde
job slowdown, maar alleen bij extreem hoge bezettingsgraden. Bij matig gebruik
presteren simpele backfilling-based policies beter dan dynamische online policies.
De eerlijkheid-georiënteerde policy reduceert de variantie in job slowdown en is dus
inderdaad eerlijker.

In hoofdstuk 4 worden er vijf state-of-the-art generieke autoscalers geanalyseerd
en worden er twee nieuwe workflow-specifieke autoscalers voorgesteld. Daarnaast
worden de prestatiemetrieken aanbevolen door de Standard Performance Evaluation
Corporation (SPEC) voor het beoordelen van autoscalers beschreven en verfijnd.
Ook worden er drie manieren voorgesteld om autoscalers te vergelijken aan de hand
van deze metrieken. De experimentele resultaten laten zien dat generieke autoscalers
ongeveer hetzelfde presteren als workflow-specifieke autoscalers indien deze laatste
toegang hebben tot workload-statistieken. De workflow-specifieke autoscalers
vereisen schattingen van de executietijden van taken van workflows. Daarnaast
wordt het effect van autoscaling op het behalen van workflow deadlines onderzocht.
De resultaten laten goed de trade-offs tussen de verschillende policies, hun impact
op het behalen van deadlines, en de prestaties in verschillende omstandigheden
zien.

In hoofdstuk 5 wordt een nieuwe online dynamische autoscaler gëıntroduceerd
die gebruik maakt van een terugkoppelingsmechanisme. Deze autoscaler analyseert
historische doorvoersnelheden van taken in plaats van gebruik te maken van schat-
tingen van de executietijden van taken. Dit is voordelig, aangezien het minder

Samenvatting 151

moeite kost om doorvoersnelheden te analyseren dan vooraf voor elke taak een
schatting van zijn executietijd te maken. Deze benadering van het probleem heeft
een lagere tijdscomplexiteit en minimaliseert de workflow slowdown in vergelijking
met twee state-of-the-art autoscalers. Het gebruik van historische doorvoersnelhe-
den biedt een redelijk accurate inschatting van resource snelheden bij workloads
met een representatieve lange-staart verdeling van de executietijden van taken.
Hiernaast worden de experimentele resultaten gevalideerd door de workflow slow-
down verkregen met een hedendaags workflow management systeem te vergelijken
met een optimale oplossing.

Tot slot worden in hoofdstuk 6 de algemene conclusies van dit proefschrift
gepresenteerd en worden er suggesties gedaan voor vervolgonderzoek.

Acknowledgements

This dissertation would never happen without the help and support of numerous
people who surrounded me through all these years.

First, I would like to thank my promotor Dick Epema for trusting me and
giving the opportunity to do science. Dick, I extremely appreciate your patience,
discipline, and high standards for research. Among your many lessons, you taught
me how to be a clear communicator and an independent researcher. It was a
great pleasure working with you while sharing a broader view on solving applied
problems.

I am grateful to my second promotor Alexandru Iosup. Alexandru, you inspired
me to work with autoscalers and greatly expanded my scientific network by in-
troducing me to the SPEC research activities. Our meetings within the AtLarge
team helped me to learn from other peer researchers—that was extremely useful
for making this dissertation done.

I am also thankful to Henk Sips, as he was involved in my admission to the PDS
group. Henk, even though we did not work together, thank you for your support
during the PhD process and your advice on research in general.

I would like to thank the defense committee members: Koen Langendoen, Paola
Grosso, Boudewijn Haverkort, Ewa Deelman, Radu Prodan, and Eelco Visser, for
spending time on reading and evaluating my dissertation. Your useful comments
and suggestions helped to improve this work.

I was extremely lucky working together with Bogdan Ghit,. Bogdan, I really
appreciate that you significantly helped me at the early stages of my PhD in both
technical and textual parts of my papers.

Special thanks go to Ahmed Ali-Eldin, Alessandro Vittorio Papadopoulos,
Nikolas Herbst, André Bauer, and Samuel Kounev for our fruitful cooperation
through the SPEC research group. Our joint activities enriched this dissertations
and gave me valuable experience working on large projects together.

I greatly enjoyed working with Alexandru Ut, ă, Laurens Versluis, Sietse Au,
and Shenjun Ma, our collaborations helped me to explore new topics in resource
autoscaling. I additionally thank Laurens for pointing me out to the MIP paper
which gave me new ideas for one of the dissertation chapters.

Johan Pouwelse, your endless enthusiasm has always inspired me. I am very
grateful for your help in my career and all the conversations we had at our group.

I am thankful to Yuri Demchenko for giving me the opportunity to join the
Cyclone project at the SNE group of the University of Amsterdam.

To my office mates Riccardo Petrocco, Adele Lu Jia, Erwin van Eyk, Akbar
Mostafavi, Amin Rezaeian, and Vadim Bulavintsev, thank you for the great working
atmosphere and for all the nice chats.

To my colleagues, Otto Visser, Ana Varbanescu, Vincent van Beek, Dimitra
Gkorou, Lucia d’Acunto, Jie Shen, Niels Zeilemaker, Mihai Capotă, Elric Milon,

153

154 Acknowledgements

Lipu Fei, Ernst van der Hoeven, Paul Brussee, Martijn de Vos, Giorgos Oikonomou,
Tim Hegeman, Jesse Donkervliet, Stefan Hugtenburg, and Maria Voinea, thank
you for contributing to the social side of my days at the (P)DS group. I will never
forget all the countless pizza evenings and game nights we had together.

I would like to thank Aleksandra Kuzmanovska for sharing her insights on
research with me and the moral support. It was also a great time we spent in the
USA with the VU guys at CCGrid. I wish you all the best in your career.

Kees Verstoep, Paulo Anita, and Munire van der Kruyk, thank you for the ex-
cellent technical support. Without your help, many experiments in this dissertation
simply would not happen. I am also grateful to all the secretaries Ilse Oonk, Rina
Abbriata, Shemara van der Zwet, and Kim Roos for the administrative support.

I would probably never have come to the Netherlands to complete this disserta-
tion if Ilia Vialshin would not have decided to start his own PhD in Nijmegen. Ilia,
I am very happy knowing you for so many years and thank you for being such a
great friend and crazy chemist.

Valĺın Garćıa Cruz, you are my first friend in the Netherlands, and you definitely
made my PhD time here unforgettable. Thank you for having such a good heart
and for always being willing to help.

Gleb Polevoy, I really enjoyed all our profound philosophical conversations that
gave me insight into many topics from a completely new perspective. Your ideas
helped me to shape this dissertation and enriched my stay in the Netherlands.

Dmitry and Yulia Kononchuk, it has been a great pleasure knowing you, and
thank you a lot for making this PhD time in the Netherlands full of nice gatherings
with great thorough discussions.

I would like to thank all the Russian-speaking friends whom I met in Delft:
Natalia Vtyurina, Maria Zamiralova, Emil Gallyamov, Irina Gallyamova, Alexander
Nagui, Ivan Koryakovskiy, Mikhail Belonosov, Nick Gaiko, Sergey Bezrukavnikov,
Inna Medvedeva, Mikhail Davydenko, Aleksandra Uuemaa, Tatiana Kozlova, Oleg
Guziy, Nikita Lenchenkov, Vladimir Kovalenko, and Ilya Popov, for making my
PhD journey so bright and full of amazing memories.

Dear Natalia Vdovenko, Polina Platonova, Evgenia Platonova, Ekaterina Bala-
banyuk, Nikita Dubov, and Tatiana Kosovets: The way I met all of you is simply
incredible, and I truly enjoyed spending time with you. Thank you a lot for your
positive energy and your warm characters.

Many thanks go to Delfts Studenten Muziekgezelschap Krashna Musika for all
the great music performances we had together. Even though the word “krashna”
does not exist in any Slavic language, somehow the official legend still says that it
means beautiful. Let’s believe so. It was indeed a great pleasure to be a part of
such a beautiful society while making beautiful music.

Dena Kasraian, I promised that you will be the first in the Krashna list, and you
have definitely deserved that, being the first person to introduce me to the group.
I genuinely appreciate it, and wish you all the best in your professorship! Jaime
Junell, thank you for coping with me and for all the lovely musical collaborations we
had together. Ranko Tošković, I appreciate your directness and your Montenegrin
sense of humour. Daan van Dijk, I am so happy knowing you and being able to
discuss various scientific topics with you. Moreover, thank you for translating

Acknowledgements — Благодарности 155

the summary of this dissertation. Christina Widmer, you are simply the cherry
on the top of the Krashna cake, I am glad meeting you there. Arturo Alvarado
Briasco, thank you for your support, patience and understanding for many years.
Susana Pedraza de la Cuesta, thank you for sharing with me your excitement about
fishkeeping and various forms of automation. Jay van der Berg, thank you for
all the intricate dance moves. Encarna Micó Amigo, I adore your sunny nature
and your positive attitude to everything. Tommaso Mannucci, Maarten Gramsma,
Nathan Zuiderveld, Joris Jonk, Sophie Armanini and many more, I really appreciate
that I met all of you. I am grateful for all the music experiences we had together.

Tanya Tsui, thank you for being a great example of work-life balance and for
being such an amazing housemate. I always enjoy philosophizing on science and life
with you, which helped me to reflect on the last years of my PhD. Fabian Geizer
and Kristen David, I am glad meeting you and spending time together. David
Méndez Sevillano and Jelle Duijndam, thank you for being so open-minded and
for all the exciting discussions we had. Matija Lovrak, Rohit Kacker, Christopher
Rose, and Javier Fernández de la Fuente, our PhD Start-up group has added lots
of bright moments to my PhD life. Guido Sluijsmans, I am thankful for the Dutch
life crash-course. Peter Novák, thank you for all your scientific ideas, views on life
and politics, and for introducing me to Apache Airflow.

Maria Vostrikova, you are simply my best university friend ever, and I am
really happy having such a great soulmate. Alexandra Novikova, Andrey Andreev,
Alexandra Vanchurina, Anna Fishbein, Maria Yarovaya, Ekaterina Melnikova, Elena
Gorina, Dmitriy Paramoshkin, Olesia Paramoshkina, Dmitry Vdovkin, and Ilia
Moltyaninov, thank you for being such great friends through all these years. I really
appreciate your support that helped me to complete this work. Special thanks
go to Andrey for creating the cover art for this dissertation. Many thanks to
Elena Vadimovna Syulaeva and Ekaterina Petrovna Karpova (Mescheryakova) for
teaching me English.

Fortunately, not all the people in this world speak English, so the rest of the
acknowledgements are in Russian.

Благодарности

В первую очередь я хотел бы выразить сердечную благодарность родителям,
сестре Арине и всей семье за безусловную и полную поддержку на протяжении
всей моей жизни. Без вашей помощи я бы никогда не написал эту работу.

Кроме того, я очень благодарен своему школьному учителю информатики
Татьяне Степановне Игнатьевой за доброту и привитый интерес к алгорит-
мам и программированию. Отдельное спасибо Галине Анатольевне Солодовой,
научившей меня математике. Также я хотел бы отдать должное своим уни-
верситетским преподавателям, в частности, Наталье Алексеевне Валиулловой,
Ольге Анатольевне Шевченко, Светлане Дмитриевне Николайчук и Юлии
Николаевне Копрянцевой за отличное образование, послужившее, по-сути,
основой для этой диссертации.

Я особенно признателен Сергею Владимировичу Шибанову, который, бла-
годаря своему бесконечному энтузиазму, стал моим проводником в науку.

Curriculum Vitae

Alexey Sergeyevich Ilyushkin (Алексей Сергеевич Илюшкин) was born in Kuznetsk,
Penza oblast, USSR, on 21 January 1988. He graduated cum laude with an MSc
degree in Software Engineering (Software for Computing Machinery and Automated
Systems) from Penza State University, Russia, in 2009. In his thesis, supervised by
Dr. Sergey Shibanov, Alexey focused on designing and implementing a complex
application server for a distributed statistics-processing automated information
system. During the whole period of his studies at Penza State University, Alexey
was the recipient of the federal scholarship of the Russian Federation. From 2007 he
has been participating in the research at the Department of Software Engineering
and Computer Applications of Penza State University, which led to a number of
publications in Russian. Alexey also co-supervised several undergraduate students.

After his graduation, Alexey worked as a software engineer in the Scientific
Production Company Krug in Penza, where he obtained experience designing
and implementing industrial Supervisory Control and Data Acquisition (SCADA)
systems. After that, he worked in the Moscow-based SaaS company Moe Delo

where he was a part of the team that developed a custom search engine.
In 2013, Alexey joined the Distributed Systems group of Delft University of

Technology as a PhD candidate. His research focused on workflow scheduling and
autoscaling of resources in large computing systems like clusters, multiclusters, and
clouds, and was guided by Prof. Dick Epema and Prof. Alexandru Iosup. During his
PhD studies, Alexey collaborated with researchers from Ume̊a University, Sweden,
University of Würzburg, Germany, and Mälardalen University, Sweden through the
Cloud Research Group of the Standard Performance Evaluation Corporation.

In 2015, Alexey received the best poster award at the ICT.OPEN conference.
His papers were published in a number of international scientific conferences, and
two of his papers were nominated for the best paper award in 2017 at ACM/SPEC
ICPE and in 2018 at IEEE/ACM CCGrid conferences. Alexey was selected to
participate at the 4th Heidelberg Laureate Forum in 2016. At Delft University of
Technology, Alexey was also involved in teaching activities as an assistant in Cloud
Computing, Distributed Computing Systems, and Distributed Algorithms courses.

In 2017, for half a year Alexey worked as a postdoctoral researcher at the
Systems and Networking group of University of Amsterdam in the Horizon 2020
EU Cyclone project, which resulted in one co-authored publication. In 2018,
Alexey joined as an evaluation committee member of the Artifact Evaluation track
of the ACM/SPEC ICPE conference.

Alexey is currently employed as a scientific software engineer for Science and
Technology B.V. in Delft, which he joined in 2018. One of the major projects where
Alexey is at this moment involved is the development of prototype data processors
for the ESA Sentinel-5 Earth observation satellite.

157

List of Publications

1. A. Ilyushkin, A. Bauer, A. Papadopoulos, E. Deelman, A. Iosup, Performance-
Feedback Autoscaling with Budget Constraints for Cloud-based Workloads of
Workflows. Under review.

2. A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, S. Kounev, Chamulteon:
Coordinated Auto-Scaling of Micro-Services. In Workshop on Data Science of the
39th IEEE International Conference on Distributed Computing Systems (ICDCS),
Dallas, Texas, USA, 2019.

3. A. Ilyushkin, and D. Epema, The Impact of Task Runtime Estimate Accuracy
on Scheduling Workloads of Workflows. In Proceedings of the 18th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing (CCGrid), Wash-
ington D.C., USA, 2018.

4. A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Bauer, A. Papadopoulos, D. Epema,
A. Iosup, An Experimental Performance Evaluation of Autoscalers for Complex
Workflows. In ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS), Vol. 3, No. 2, 2018.

5. A. Ut
,
ă, S. Au, A. Ilyushkin, A. Iosup, Elasticity in Graph Analytics? A Bench-

marking Framework for Elastic Graph Processing. In Proceedings of the 20th IEEE
International Conference on Cluster Computing (CLUSTER), Belfast, UK, 2018.

6. A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Papadopoulos, B. Ghit
,
, D. Epema,

A. Iosup, An Experimental Performance Evaluation of Autoscaling Policies for
Complex Workflows. In Proceedings of the 8th ACM/SPEC International Conference
on Performance Engineering (ICPE), L’Aquila, Italy, 2017.

7. M. Slawik, C. Blanchet, Y. Demchenko, F. Turkmen, A. Ilyushkin, C. de Laat,
C. Loomis, CYCLONE: The Multi-Cloud Middleware Stack for Application Deploy-
ment and Management. In Proceedings of the 9th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Hong Kong, 2017.

8. S. Ma, A. Ilyushkin, A. Stegehuis, A. Iosup, Ananke: a Q-Learning-Based Portfolio
Scheduler for Complex Industrial Workflows. In Proceedings of the 14th IEEE
International Conference on Autonomic Computing (ICAC), Columbus, Ohio, USA,
2017.

9. A. Ali-Eldin, A. Ilyushkin, B. Ghit
,
, N. Herbst, A. Papadopoulos, and A. Iosup,

Which Cloud Auto-Scaler Should I Use for my Application?: Benchmarking Auto-
Scaling Algorithms. In Proceedings of the 7th ACM/SPEC International Conference
on Performance Engineering (ICPE), Delft, the Netherlands, 2016. Poster paper.

159

160 List of Publications

10. A. Ilyushkin, B. Ghit
,
, and D. Epema, Scheduling Workloads of Workflows with

Unknown Task Runtimes. In Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid), Shenzhen, China,
2015.

11. A. Ilyushkin, and D. Epema, Towards a Realistic Scheduler for Mixed Workloads
with Workflows. In Doctoral Symposium of the 15th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid), Shenzhen, China,
2015.

12. Шибанов С.В., Мезенков А.А., Шевченко О.А., Илюшкин А.С., Принципы
организации и функционирования активных пакетов для обмена информацией
и конфигурирования распределенных приложений. Известия высших учебных
заведений. Поволжский регион. Технические науки. 5–18, 2013.

13. Илюшкин А.С., Мезенков А.А., Шибанов С.В., Павлов А.С., Применение тех-
нологии плагинов в активных информационных системах, Международный
сборник научных трудов «Математическое и программное обеспечение систем
в промышленной и социальной сферах» I, 65–71, 2011.

14. Шибанов С.В., Илюшкин А.С., Мезенков А.А., Скоробогатько А.А., Программ-
ная платформа для построения адаптивных приложений информационных
систем, Труды Международного симпозиума «Надежность и качество» I,
267–272, 2011.

15. Шибанов С.В., Илюшкин А.С., Шевченко О.А., Макарычев П.П., Обмен ин-
формацией в распределённых информационных системах с использованием
активного пакета, Труды Международного симпозиума «Надежность и каче-
ство» I, 288–292, 2010.

16. Илюшкин А.С., Шибанов С.В., Шевченко О.А., Концепция активного пакета
для распространения данных в распределенных системах, Материалы конфе-
ренции «Технологии Майкрософт в теории и практике программирования»,
158–160, 2010.

17. Илюшкин А.С., Шибанов С.В., Шевченко О.А., Система исполнения активного
пакета в узлах распределенной системы, Материалы конференции «Технологии
Майкрософт в теории и практике программирования», 165–167, 2010.

18. Шибанов С.В., Казакова Е.А., Апаров М.И., Илюшкин А.С., Архитектура
метаданных в автоматизированной информационной системе «Прокуратура-
статистика» как основа разработки и сопровождения, Труды Международного
симпозиума «Надежность и качество» II, 298–301, 2008.

A.S. ILYUSHKIN

S CHEDUL ING
WORKLOADS OF WORKFLOWS
IN CLUSTERS AND CLOUDS

A
.S.ILY

U
SH

K
IN

S
C
H
E
D
U
L
IN

G
W

O
R
K
L
O
A
D
S
O
F
W

O
R
K
FL

O
W

S
IN

C
L
U
ST

E
R
S
A
N
D
C
L
O
U
D
S

9 789463 662284

ISBN 978-94-6366-228-4

This dissertation addresses three key challenges that are characteristic to the online
scheduling of workloads of workflows in modern distributed computing systems.

The first challenge is the realistic estimation of the resource demand of a
workflow, as it is important for making good task placement and resource alloca-
tion decisions. Usually, workflows consist of segments with different parallelism
and different interconnection types between tasks which affect the order how the
tasks become eligible. Moreover, realistic task runtime estimates are not always
available.

The second challenge is the efficient placement of workflow tasks on com-
puting resources for minimizing average workflow slowdown while achieving
fairness. A wrongly chosen task placement policy can easily degrade the per-
formance and negatively affect the fair access of workflows to computing resources.

The third challenge is the automatic allocation (autoscaling) of computing re-
sources for workflows while meeting deadline and budget constraints. Computing
clouds make it possible to easily lease and release resources. Such decisions should
be made wisely to minimize slowdowns and deadline violations, and to efficiently
use the leased resources to reduce incurred costs.

To address these challenges, this dissertation proposes novel scheduling poli-
cies for workloads of workflows and investigates the applicability of relevant
state-of-the-art policies to the online scenario. For new policies, implementation
effort and suitability for production systems are kept in mind. The considered
workflow scheduling policies are experimentally evaluated by conducting a wide
set of simulation-based and real-world experiments on a private multicluster
computer. Additionally, a Mixed Integer Programming (MIP) approach is used to
validate the obtained real-world experimental results versus the optimal solution
from a MIP solver.

A
.S.ILY

U
SH

K
IN

S
C
H
E
D
U
L
IN

G
W

O
R
K
L
O
A
D
S
O
F
W

O
R
K
FL

O
W

S
IN

C
L
U
ST

E
R
S
A
N
D
C
L
O
U
D
S

Presentation: 14:30

Defense Ceremony: 15:00

Thursday, 19 December 2019

Senaatszaal

TU Delft Auditorium

Mekelweg 5, Delft

The Netherlands

Propositions

accompanying the dissertation

Scheduling Workloads of Workflows
in Clusters and Clouds

by

Alexey Sergeyevich Ilyushkin

1. Dynamic online scheduling of workflows has lower complexity while delivering
better end-user and system performance compared to plan-based online
scheduling (this thesis).

2. Feedback mechanisms in scheduling workloads of workflows yield performance
improvements (this thesis).

3. When scheduling workloads of workflows, task runtime estimates are only
useful at extremely high system utilizations (this thesis).

4. The combination of general-purpose and workflow-specific autoscaling meth-
ods gives better performance than using these approaches separately (this
thesis).

5. Algorithm designers should think more of the engineers who will implement
their ideas.

6. Blindly following popular trends in the society for obtaining funds and
attracting attention to research unnecessarily contributes to the growth of
undesirable trends.

7. A less formal approach to scientific publications would help to conduct
research faster and to reduce unnecessary costs.

8. The intangibility of software hides not only its beauty and complexity but
also the resource and energy consumption it induces.

9. The time required for doing a PhD project has remained surprisingly stable
over many decades despite all modern tools and equipment.

10. Low-hanging fruit becomes overripe faster.

These propositions are regarded as opposable and defendable,
and have been approved as such by the promotors

Prof. dr. ir. D.H.J. Epema and Prof. dr. ir. A. Iosup.

	Front Cover
	Dissertation
	Introduction
	Workflow Scheduling Approaches
	Workflow Scheduling Challenges
	Workflow Applications
	Workflow Task Placement Policies
	Workflow Resource Allocation Policies
	Workflow Management Systems
	Problem Statement
	Research Methods
	Dissertation Outline and Contributions

	Scheduling with Unknown Task Runtimes
	Introduction
	Problem Statement
	The Model
	Performance Metrics

	Scheduling Policies
	Calculating the Level of Parallelism
	Queue Management and Task Selection
	The Strict Reservation Policy
	The Scaled LoP Policy
	The Future Eligible Sets Policy
	The Backfilling Policy

	Experiment Setup
	Experiment Results
	Related Work
	Conclusion

	The Impact of Task Runtime Estimate Accuracy
	Introduction
	Problem Statement
	The Model
	Performance Metrics

	Scheduling Policies
	The Upward Rank Computation
	Greedy Backfilling
	Critical Path Prioritization
	Online Workflow Management
	Fairness Dynamic Workflow Scheduling
	Hybrid Rank
	Fair Workflow Prioritization
	Workload HEFT

	Experiment Setup
	Workloads
	Simulation Environment
	System Stability Validation

	Experiment Results
	Performance of Dynamic Policies
	Effects of Heterogeneity
	Performance of Plan-based WHEFT
	Performance of a Batch Submission
	Fairness

	Related Work
	Conclusion

	An Experimental Performance Evaluation of Autoscalers
	Introduction
	A Model for Elastic Cloud Platforms
	Requirements
	Architecture Overview
	Workflow Applications and Deadlines

	Performance Metrics for Autoscalers
	Supply and Demand
	Accuracy
	Wrong-Provisioning Timeshare
	Instability of Elasticity
	User-oriented Metrics
	Cost-oriented Metrics

	Autoscaling Policies
	General Autoscaling Policies
	Workflow-Specific Autoscaling Policies

	Experimental Evaluation
	Setup of Workflow-based Workloads
	Setup of the Private Cloud Deployment
	Experiment Configuration
	Experiment Results
	Performance of Enforced Deadline-based SLAs

	Analysis of Performance Variability
	Overall
	Performance Variability per Workflow Size

	Autoscaler Configuration and Charging Model
	Which Policy is the Best?
	Pairwise Comparison
	Fractional Difference Comparison
	Elasticity and User Metrics Scores

	Threats to Validity
	Related Work
	Conclusion

	Performance-Feedback Autoscaling
	Introduction
	Problem Statement
	Autoscaling Model
	Performance Metrics

	Autoscalers
	Planning-First Autoscaler
	Scaling-First Autoscaler
	Performance-Feedback Autoscaler

	Experiment Setup
	Apache Airflow Deployment and Configuration
	Billing Setup
	Workloads

	Experiment Results
	Algorithm Performance
	Workload Performance
	Elasticity Performance
	System-Oriented Performance
	Autoscaling Dynamics

	The Optimal Solution
	Mixed Integer Programming Model
	Heuristics vs. the Optimal Solution

	Related Work
	Conclusion

	Conclusion
	Conclusions
	Suggestions for Future Work

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	List of Publications

	Back Cover
	Propositions

