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Abstract
Algorithmic differentiable ray tracing is a new paradigm that allows one to solve the
forward problem of how light propagates through an optical system while obtaining
gradients of the simulation results with respect to parameters specifying the optical
system. Specifically, the use of algorithmically differentiable non-sequential ray trac-
ing provides an opportunity in the field of illumination engineering to design complex
optical system. We demonstrate its potential by designing freeform lenses that project
a prescribed irradiance distribution onto a plane. The challenge consists in finding a
suitable surface geometry of the lens so that the light emitted by a light source is redis-
tributed into a desired irradiance distribution. We discuss the crucial steps allowing
the non-sequential ray tracer to be differentiable. The obtained gradients are used to
optimize the geometry of the freeform, and we investigate the effectiveness of adding
a multi-layer perceptron neural network to the optimization that outputs parameters
defining the freeform lens. Lenses are designed for various sources such as colli-
mated beams or point sources, and finally, a grid of point sources approximating an
extended source. The obtained lens designs are finally validated using the commercial
non-sequential ray tracer LightTools.
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1 Introduction

In the field of illumination optics, optical engineers design optical elements to transport
the light from a source, which can be an LED, laser, or incandescent lamp, to obtain a
desired irradiance (spatial density of the luminous flux) or intensity (angular density
of the luminous flux) (Grant 2011). To transport the light from the source to the target,
the optical engineer can construct a system consisting of various optical elements such
as lenses, mirrors, diffusers, and light guides (John 2013). One particular type of optic
used in automotive and road lighting applications is the freeform lens, a lens without
any form of symmetry (Falaggis et al. 2022; Mohedano et al. 2016). Designing these
lenses is a complex problem and is often solved using the assumption that the source
has zero-étendue, thus using point sources and collimated beams. Under this assump-
tion, the problem of finding a suitable geometry of a freeform lens or mirror which
redistributes the light from the source to the target can be formulated as a Monge–
Kantorovich mass transport problem. The geometry of the lens can then be obtained
by solving theMonge–Ampere equation (Ries andMuschaweck 2002;Wu et al. 2013;
Prins et al. 2015) or by solving the Monge–Kantorovich problem through optimiza-
tion (Doskolovich et al. 2018) such as the supporting quadratic method (Fournier et al.
2010; Oliker et al. 2015). Alternatively, ray mapping methods (Feng et al. 2013; Bösel
and Gross 2018) can be used, which first construct a mapping determining where the
ray leaving the source ends up on the target and then uses this mapping to calculate
the geometry of the lens. An in-depth discussion of the listed methods is given by
Wu et al. (2018) and Romijn (2021, Chapter 5). Great effort is involved in extend-
ing these methods to account for varying amounts of optical surfaces (Anthonissen
et al. 2021), Fresnel losses (Van Roosmalen et al. 2022), surface scattering (Kronberg
et al. 2023), volume varying properties (Lippman and Schmidt 2020), or solving the
problem for finite étendue source such as LED’s (Tukker 2007; Fournier et al. 2009;
Wester et al. 2014; Sorgato et al. 2019; Wei et al. 2021; Zhu et al. 2022; Muschaweck
2022). However, combining multiple of these effects still remains a major challenge.

The performance of an illumination system is evaluated using ray tracing, which
is the process of calculating the path of a ray originating from a source through the
optical system. Sequential ray tracers such as Zemax (Ansys 2023) and Code V (Syn-
opsys 2023), primarily used in the design of imaging optics, trace a small number of
rays to determine the quality of the image. Non-sequential ray tracers such as Light-
Tools (Synopsis 2023) and Photopia (ltioptics 2023) use many rays to simulate the
optical flux through the system and share similarities with the rendering procedures
in computer graphics (Pharr et al. 2016), with the main difference being that the rays
are traced from source to detector.

Algorithmically differentiable ray tracing, a generalization of differential ray trac-
ing (Feder 1968; Stone and Forbes 1997; Oertmann 1989; Chen and Lin 2012), is a
tool that is being developed for both sequential (Volatier et al. 2017; Sun et al. 2021;
Wang et al. 2022; Nie et al. 2023) and non-sequential (Nimier-David et al. 2019; Jakob
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Gradient descent-based freeform optics design…

et al. 2022) ray tracing. Differential ray tracing obtains system parameter gradients
using numerical or algebraic differentiation. The gradient can be calculated numeri-
cally using numerical differentiation or the adjoint method (Givoli 2021), requiring the
system to be ray traced twice, once for its current state and once with perturbed system
parameters. Analytic expressions for the gradient can be obtained by tracing the rays
analytically through the system, calculating where the ray intersects the system’s sur-
faces and how the ray’s trajectory is altered. However, these expressions can become
long and complicated depending on the system. In addition, the method is limited to
optics described by conics as finding analytic ray surface intersection with surfaces of
higher degrees becomes complicated or even impossible. Algorithmic differentiable
ray tracing can handle these issues by obtaining the gradients with one single for-
ward simulation without limitations on the number or type of surfaces. In addition,
it can be seamlessly integrated into gradient-descent-based optimization pipelines. A
modern framework for this is Physics Informed Machine Learning (Karniadakis et al.
2021), where a neural network is trained to approximate the solution to a physics prob-
lem formulated using data, a set of differential equations, or an implemented physics
simulation (or a combination of these).

We investigate the reliability of designing freeform lenses with B-spline surfaces
(Piegl and Tiller 1996) using algorithmically differentiable non-sequential ray tracing
and gradient-based optimization to redirect the light of a light source into a prescribed
irradiance distribution. The source models will be the collimated light source, point
source, and finally, sources with a finite extent. The results are validated using the
commercial ray trace program LightTools (Synopsis 2023). In addition, we investigate
the effectiveness of optimizing a network to determine the optimal B-spline control
points as proposed in Möller et al. (2021) and Gasick and Qian (2023), and compare
it to optimizing the control points directly and seeing the possible speed-up.

2 Gradient-based freeform design

The overall structure of our pipeline is depicted in Fig. 1. A freeform surface is defined
by the parameters P ∈ P , where P is the set of permissible parameter values. This
surface is combined with a flat surface to create a lens, and an irradiance distribution I
is produced by tracing rays through the lens onto a screen. The irradiance distribution
is compared to a target Iref yielding a loss L (P, Iref). The optimization problem we
are trying to solve can then be formulated as

min
P∈P

L (P, Iref), (1)

which we solve by using gradient descent.
The freeform surface of the lens is defined in terms of a B-spline surface. From a

manufacturing standpoint, this is convenient since B-spline surfaces can be chosen to
be C1 smooth (in fact, B-spline surfaces can be Cn smooth for arbitrarily large n).
From an optimization perspective, B-spline surfaces have the property that the control
points that govern the shape of the surface and which will be optimized have a local
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Fig. 1 Overview of our learning-based freeform design pipeline

influence on the surface geometry, which in turn has a local influence on the resulting
irradiance distribution.

2.1 The lens model using a B-spline surface

We define a lens as in Fig. 2 as the volume between a flat surface and a B-spline
surface, with a uniform refractive index. A B-spline surface S in R

3, see Fig. 3, is
given by Piegl and Tiller (1996, Eq. (3.11)):

S(u, v) =
n1∑

i=0

n2∑

j=0

Ni,p(u)N j,q(v)Pi, j , (u, v) ∈ [0, 1]2. (2)

The size of the control net grid of control points is defined using n1 and n2, which are
positive integers and Pi, j ∈ R

3 and Ni,p and N j,q are univariate B-spline basis func-
tions of degree p and q and are recursively defined by the Cox–de Boor formula (Piegl
and Tiller 1996, Eq. (2.5)). The basis functions are p-degree piece-wise polynomials
defined using knots ui which are non-decreasing real numbers in [a, b] collected in a
knot vector (Piegl and Tiller 1996, Eq. (2.13)):
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Fig. 2 The used lens type: a volume enclosed between a flat surface and a freeform surface with a uniform
refractive index

Fig. 3 A B-spline surface of
degrees (p, q) = (3, 3) with
indicated directions of the u and
v parameters. The control points
are shown in black

V =
⎛

⎜⎝0, . . . , 0︸ ︷︷ ︸
p+1

, u p+1, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

⎞

⎟⎠ ∈ R
r+1. (3)

The interior knots are chosen to be equispaced, i.e.

ui = i − p

n1 − p + 1
, i = p, . . . , n1 + 1. (4)

2.1.1 Linearizing the B-spline parametrizations

The volume V ⊂ R
3 of themodeled lens has a rectangular extent [−rx , rx ]×[−ry, ry]

in the (x, y)-planewith 2rx and 2ry being thewidth and height of the lens, respectively.
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The lens volume is enclosed on one side by a B-spline surface

S(u, v) = (X(u, v),Y (u, v), Z(u, v)), (5)

where X ,Y , Z are the individual coordinate parameterizations, for instance

X(u, v) =
n1∑

i=0

n2∑

j=0

Ni,p(u)N j,q(v)Px
i, j , (6a)

Y (u, v) =
n1∑

i=0

n2∑

j=0

Ni,p(u)N j,q(v)Px
i, j . (6b)

For simplicity of calculations on ray-sampling and ray-intersection (Sect. 2.2), it is
helpful to define the mapping (u, v) �→ (X(u, v),Y (u, v)) in a way that it is analyt-
ically invertible. Therefore the coordinates of the control points are chosen such that
the parametrizations X and Y are linear:

X : u �→ (2u − 1)rx ∈ [−rx , rx ], (7a)

Y : v �→ (2v − 1)ry ∈ [−ry, ry]. (7b)

In general, X and Y are degree p and q piece-wise polynomials, respectively, and thus
not linear. Linearity can be achieved by making use of the nodal representation of the
B-spline basis functions (Cohen et al. 2010, Eq. (23)):

u =
n1∑

i=0

u∗
i,pNi,p(u), u ∈ [0, 1], u∗

i,p = ui+1 + · · · + ui+p

p
, (8)

which provides a specific knot vector-dependent linear combination of the basis func-
tions that yields the identity function on the domain [0, 1]. The values u∗

i,p are called
the Greville abscissae (Farin 2002, Sect. 8.6).

We assume that the Px
i, j are independent of j , and choose j = 0 as a representative.

Then we obtain by the definition of X :

X(u, v) =
n1∑

i=0

n2∑

j=0

Px
i, j Ni,p(u)N j,q(v) (9a)

=
n1∑

i=0

Px
i,0Ni,p(u)

∑n2

j=0
N j,q(v)

︸ ︷︷ ︸
=1

, (9b)

where
∑n

i=0 Ni,p(u) = 1 by the partition of unity property of the basis functions (Piegl
and Tiller 1996, P2.4). Now we see that if we define Px

i, j := u∗
i,p then X(u) = u.
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Thus if we apply the mapping u �→ (2u − 1)rx to both sides of Eq. (8), we obtain

(2u − 1)rx =
n1∑

i=0

(2u∗
i,p − 1)rx Ni,p(u). (10)

This equality can be understood by expanding the 1 into the sum over all Ni,p(u) by
again exploiting the partition of unity property. Thus if we define Px

i, j := (2u∗
i,p−1)rx

and equivalently Py
i, j := (2v∗

j,q − 1)ry , then Eqs. 7a and 7b and are satisfied.

The lens is then defined as the volume in R
3 enclosed by the B-spline surface S

and the flat surface given by z = zin on [−rx , rx ] × [−ry, ry]:

V =
{
(x, y, z) ∈ R

3 | zin ≤ z

≤ Z
(
X−1(x),Y−1(y)

)
, |x | ≤ rx , |y| ≤ ry

}
. (11)

For the arguments of Z(u, v) the inverses of X and Y are used:

X−1(x) = 1

2

(
x

rx
+ 1

)
, Y−1(y) = 1

2

(
y

ry
+ 1

)
. (12)

2.1.2 Lens constraints

To let the lens be well-defined the surfaces of the lens should not intersect:

zin < Z(u, v), (u, v) ∈ [0, 1]2. (13)

By the convex hull property of B-spline surfaces (Piegl and Tiller 1996, P3.22) it
suffices that

Pz
i, j > zin ∀(i, j). (14)

Manufacturing can require that the lens has some minimal thickness δ, so that the
constraint is stronger:

Pz
i, j ≥ δ + zin ∀(i, j). (15)

2.2 Differentiable ray tracer

Our implementation traces rays from a source through the flat lens surface and the
freeform lens surface to the detector screen as depicted in Figs. 4 and 5. Other ray
paths, e.g., total internal reflection at lens surfaces, are not considered and it is assumed
that the contribution of these to the resulting irradiance distribution is negligible.
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Fig. 4 Schematic of the ray
tracing with a collimated beam

Fig. 5 Schematic of the ray
tracing with a point source

2.2.1 Sources and ray-sampling

Non-sequential ray tracing is a Monte-Carlo approximation method of the solution to
the continuous integration formulation of light transport through an optical system.
For a detailed discussion of this topic, see Pharr et al. (2016, Ch. 14). Thus to perform
ray tracing, the light emitted by a source must be discretized into a finite set of rays

l : t → o + d̂t, (16)

where o is the origin of the ray and d̂ its normalized direction vector. Both collimated
beam and point sources will be considered, see Figs. 4 and 5, respectively.

Tracing rays from a collimated beam can be understood from Fig. 4. The path of
all rays from the source plane to the B-spline surface is a line segment parallel to the
z-axis. Therefore, we can sample the incoming rays directly on the B-spline surface,
with d̂ = (0, 0, 1)
. By the linearity of X and Y sampling on the B-spline domain
[0, 1]2 is analogous to sampling on the lens extent [−rx , rx ] × [−ry, ry] in terms of
distribution. Rays are sampled in a (deterministic) square grid on [0, 1]2.
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For a point source, each ray starts at the location of the source, and the direction
vector d̂ is sampled over the unit sphere S2. More precisely, d̂ is given by

d̂ = (cos θ sin φ, sin θ sin φ, cosφ)
 , (17)

with θ ∈ [0, 2π) and φ ∈ [0, φmax] for some 0 ≤ φmax < π
2 , see Fig. 5. φmax is

chosen as small enough to minimize the number of rays that miss the lens entrance
surface but large enough such that the whole surface is illuminated. For instance, if the

source is on the z-axis, then φmax = arctan

(√
r2x+r2y
zin−zs

)
where zin is the z-coordinate

location of the entrance surface and zs the z-coordinate of the source. To uniformly
sample points on this sphere segment, θ is sampled (non-deterministically) uniformly
in [0, 2π) and φ is given by

φ = arccos (1 − (1 − cosφmax)a) (18)

where a is sampled (non-deterministically) uniformly in [0, 1]. This sampling is used
to produce the results in Sect. 3.

For the point source, the calculation of the intersection of a ray with the B-spline
surface is non-trivial. This calculation comes down to finding the smallest positive
root of the p + q degree piece-wise polynomial function

f (t) = Z

((
ou
ov

)
+
(
du
dv

)
t

)
− dzt − oz, (19)

if such a root exists and yields a point in the domain of Z . Here the subscripts u and
v denote that the ray is considered in (u, v, z) space instead of (x, y, z) space, so for
instance

ou = X−1(ox ) = 1

2

(
ox
ry

+ 1

)
, dv = dy

2ry
. (20)

The roots of Eq. (19) cannot generally be found analytically for p + q > 4, and thus
an intersection algorithm is implemented, which is explained in the next section.

2.2.2 B-spline surface intersection algorithm

The intersection algorithm is based on constructing a triangle mesh approximation of
the B-spline surface and computing intersections with that mesh.

Triangle mesh intersection phase 1: bounding boxes
Checking every ray against every triangle for intersection is computationally expen-
sive, so it is helpful to have bounding box tests that provide rough information about
whether the ray is even near some section of the B-spline surface. B-spline theory
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Fig. 6 Triangles and
corresponding bounding box for
a few knot span products of a
spherical surface

provides a tool for this: the strong convex hull property, which yields the bounding
box

Bi0, j0 = [ui0 , ui0+1
)× [v j0 , v j0+1

)×
[
zmin
i0, j0 , z

max
i0, j0

]
(21)

where zmin
i, j and zmax

i, j are the minimum and maximum z-values of the control points

that affect the B-spline surface on the knot span product
[
ui0 , ui0+1

) × [v j0 , u j0+1
)
,

hence those with indices i0 − p ≤ i ≤ i0, j0 − q ≤ j ≤ j0. Formulated in terms of
Z(u, v) this yields

zmin
i0, j0 ≤ Z(u, v) ≤ zmax

i0, j0 , (u, v) ∈ [ui0 , ui0+1
)× [v j0 , v j0+1

)
. (22)

Examples of such bounding boxes are shown in Fig. 6.
There are two steps in applying the bounding boxes in the intersection algorithm.

First, a test for the entire surface (in (u, v, z)-space):

[0, 1]2 ×
[
min
i, j

Pz
i, j ,max

i, j
Pz
i, j

]
. (23)

Second, a recursive method where, starting with all knot span products, each rectangle
of knot span products is divided into at most 4 sub-rectangles for a new bounding box
test until individual knot span products are reached.

Triangle mesh intersection phase 2: (u, v)-space triangle intersectionEach non-trivial
knot spanproduct [ui0 , ui0+1)×[v j0 , v j0+1) is divided into a grid ofnu bynv rectangles.
Thus we can define the boundary points

ui0,k =ui0 + k�ui0 , �ui0 = ui0+1 − ui0
nu

, k = 0, . . . , nu, (24a)

vi0,� =v j0 + ��v j0 , �v j0 = v j0+1 − v j0

nv

, � = 0, . . . , nv. (24b)
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Fig. 7 Example of which
triangles are candidates for a
ray-surface intersection with the
ray plotted in red, based on their
u, v-domain

Each rectangle is divided into a lower left and an upper right triangle, as demon-
strated in Fig. 7. In this figure it is shown for a ray projected onto the (u, v)-plane in
some knot span which triangles are candidates for an intersection in (u, v, z)-space.
This is determined by the following rules:

• A lower left triangle is intersected in the (u, v)-plane if either its left or lower
boundary is intersected by the ray;

• An upper right triangle is intersected in the (u, v)-plane if either its right or upper
boundary is intersected by the ray.

The intersection of these boundaries can be determined by finding the indices of
the horizontal lines at which the vertical lines are intersected:

�k =
⌊
ov + (ui0,k − ou)

dv

du
− v j0

�v j0

⌋
, (25)

and analogously k�.

Triangle mesh intersection phase 3: u, v, z-space triangle intersection A lower left
triangle can be expressed by a plane

T (u, v) = Au + Bv + C (26)

defined by the following linear system:

⎛

⎝
ui0,k v j0,� 1
ui0,k+1 v j0,� 1
ui0,k v j0,�+1 1

⎞

⎠

⎛

⎝
A
B
C

⎞

⎠ =
⎛

⎜⎝
[1.75]z j0,�i0,k

z j0,�i0,k+1

z j0,�+1
i0,k

⎞

⎟⎠ . (27)
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Here we use the following definition:

z j0,�i0,k
= Z(ui0,k, v j0,�). (28)

This yields the plane

T (u, v) = z j0,�i0,k
+ nu

(
z j0,�i0,k+1 − z j0,�i0,k

) u − ui0,k
ui0+1 − ui0

(29)

+ nv

(
z j0,�+1
i0,k

− z j0,�i0,k

) v − v j0,�

v j0+1 − v j0
. (30)

Note that to define this triangle, the B-spline basis functions are evaluated at fixed
points in [0, 1]2 independent of the rays or the Pz

i, j . This means that for a lens that
will be optimized these basis function values can be evaluated and stored only once
rather than in every iteration, for computational efficiency.

Computing the intersection with the ray r̃(t) = õ+ ˜̂dt is now straight-forward, and
yields

tint = −C + 〈õ,n〉
〈 ˜̂d,n〉

, n =
⎛

⎝
0
1

∂uT

⎞

⎠×
⎛

⎝
1
0

∂vT

⎞

⎠ =
⎛

⎝
A
B

−1

⎞

⎠ , (31)

where n is a normal vector to the triangle, computed using the cross product. This also

explains why 〈 ˜̂d,n〉 = 0 does not yield a well-defined result: in this situation the ray
is parallel to the triangle.

The last thing to check is whether l̃(tint) lies in the (u, v)-domain of the triangle,
which can be checked by three inequalities for the three boundaries of the triangle:

ou + dutint ≥ ui0,k (32a)

0 ≤ ov + dvtint − v j0,� <
nu
nv

v j0+1 − v j0

ui0+1 − ui0
(ui0,k+1 − (ou + dutint)). (32b)

The computation for an upper right triangle is completely analogous. The upper
triangle has a closed boundary, whereas the lower triangle has an open one and vice
versa, which means that the (u, v) domains of the triangles form an exact partition
of [0, 1]2. Thus the triangle mesh is ‘water-tight’, meaning that no ray intersection
should be lost by rays passing in between triangles.

2.3 Image reconstruction

The ray tracing produces an irradiance distribution in the form of an image matrix
I ∈ R

nx×ny
≥0 , where the elements correspond to a grid of rectangles called pixels

that partition the detector screen positioned at z = zscreen > maxi, j P
z
i, j . The screen
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resolution (nx , ny) and the screen radii (Rx , Ry) together yield the pixel size

(wx , wy) =
(
2Rx

nx
,
2Ry

ny

)
. (33)

For reasons explained later in this section, sometimes a few ‘ghost pixels’ are added,
so the effective screen radii are

R∗
x := Rx + νx − 1

2
wx , R∗

y := Ry + νy − 1

2
wy, (34)

and the effective screen resolution is (nx + νx − 1, ny + νy − 1) where νx and νy are
odd positive integers whose meaning will become clear later in this section.

Producing the irradiance distribution from the rays that intersect the detector screen
is called image reconstruction (Pharr et al. 2016, Sect. 7.8). The way that a ray con-
tributes to a pixel with indices i, j is governed by a reconstruction filter

Fi, j : [−Rx , Rx ] × [−Ry, Ry] → R≥0, (35)

yielding for the irradiance distribution

Ii, j =
N∑

k=1

ωk Fi, j (xk), (36)

for a set of ray intersections {xk}Nk=1 with corresponding final rayweights {ωk}Nk=1. The
ray weights are initialized at the sampling of the ray at the source. They are slightly
modified by the lens boundary interactions as a small portion of the light is reflected
rather than refracted. The amount by which the ray weights are modified is governed
by the Fresnel equations (Fowles 1989, Sect. 2.7.1). In our implementation, the Fresnel
equations are approximatedbySchlick’s approximation (Schlick1994,Eq. (24))which
allows us to approximate the specular reflection coefficient of unpolarized light where
R0 = ((η1 − η2)/(η1 + η2))

2 is the reflection coefficient at normal incidence and η1,
η2 are the refractive indices of the material before and after the surface respectively.
Depending on the ratio E = η1/η2, the factor cos θx is either the incidence angle with
respect to the surface normal θx = θi or the transmitted angle θx = θt :

R =
{
R0 + (1 − R0)(1 − cos θi)

5 if η1/η2 < 1,

R0 + (1 − R0)(1 − cos θt)
5 if η1/η2 > 1.

(37)

The transmission coefficient is then given by T = 1−R. The transmission coefficients
are shown in Fig. 8 for both cases. In the current implementation, all ray weights are
initialized equally. The precise value does not matter since the relationship between
the initial and final weights is linear. The loss function (Sect. 2.5) compares scaled
versions of the produced and target irradiance distribution.
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Fig. 8 (Top) Transmission coefficient for E < 1 with η1 = 1 and η2 = 1.5; (Bottom) Transmission
coefficient for E > 1 with η1 = 1.5 and η2 = 1

In the simplest reconstruction case, the value of a pixel is given by the sum of the
weights of the rays that intersect the detector screen at that pixel (called box recon-
struction in Pharr et al. 2016, Sect. 7.8.1). In this case the reconstruction filter of pixel
i, j is simply the indicator function of the pixel [(i − 1)wx , iwx )×

[
( j − 1)wy, jwy

)
.

To obtain a ray tracing implementation where the irradiance I is differentiable
with respect to geometry parameters of the lens, say, the parameter θ , the irradiance
distributionmust vary smoothlywith this parameter. The dependency on this parameter
is carried from the lens to the screen by the rays through the screen intersections
xk = xk(θ). Thus to obtain a useful gradient ∂I

∂θ
the filter function Fi, j should be

at least C1, see Fig. 9 which is achieved by introducing a filter function that spreads
out the contribution of a ray over a kernel of pixels of size (νx , νy) centered at the
intersection location. For the conservation of light, we require that

∑
i, j Fi, j (x) ≡ 1.

Therefore, the Gaussian reconstruction function is introduced, based on the iden-
tically named one described in Pharr et al. (2016, Sect. 7.8.1). This filter function is
based on the product

F̃i, j (x, y;α, νx , νy) := f xi (x;α, νx ) f
y
j (y;α, νy), (38)

where

f xi0 (x;α, νx ) =
⎧
⎨

⎩
e
−α
(
x−cxi0

)2
− e−α( νxwx

2 )
2

if |x − cxi | < νxwx
2 ,

0 otherwise.
(39)
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Fig. 9 x(θ) in the left plot shows the intersection location of a ray with the screen, dependent on a lens
geometry parameter θ . The right plot then shows the reconstruction filter value for the green pixel in the
left plot dependent on θ . In order to obtain a useful gradient of the pixel value with respect to θ , a smooth
reconstruction filter is needed

The centers of the pixels are given by

(cxi , c
y
j ) := ((i + 1

2

)
wx − Rx ,

(
j + 1

2

)
wy − Ry

)
. (40)

Note that the support of F̃i, j is of size νxwx by νywy , the size of the kernel on the
detector screen. The normalized reconstruction filter is then given by

Fi, j (x, y;α, νx , νy) = F̃i, j (x, y;α, νx , νy)∑
i ′, j ′ F̃i ′, j ′(x, y;α, νx , νy)

. (41)

The function Fi, j is plotted in Fig. 10. Note that the function is not differentiable at the
boundary of its support. However, in our numerical experiments we have not observed
any problems in the optimization loop.

Gaussian image reconstruction is shown in Fig. 11 for various values of νx = νy .
There is a trade-off here since the larger νx , and νy are the blurrier the resulting image
is, and the larger the computational graph becomes, but also the larger the section of
the image is that is aware of a particular ray which yields more informative gradients.

Up to this point, this section has discussed the ray tracing part of the pipeline, the
next subsections will discuss the role of the neural network and the optimization.

2.4 Multi-layer perceptron as optimization accelerator

Several neural network architectures are considered, all with a trivial input of 1, mean-
ing that the neural networks will not, strictly speaking, be used to approximate a
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Fig. 10 Gaussian reconstruction filter Fi0, j0 for α = 1 and (νx , νy) = (3, 3)

Fig. 11 Image reconstruction based on a small set of ray-screen intersections, for bincount and various
reconstruction filter sizes and α = 1

function since the considered domain is trivial. Non-trivial network inputs of system
parameters like the source location will probably be part of follow-up research.

In this configuration, the neural network can be considered a transformation of the
space over which is optimized: from the space of trainable neural network parameters
to the space of control point z-coordinate values. The goal of choosing the network
architecture is that optimizing the trainable neural network parameters of this archi-
tecture yields better training behavior than optimizing the control point z-coordinate
values directly. The used networks are multi-layer perceptrons (MLPs), feed-forward
networks consisting of several layers of neurons, as depicted in Fig. 12. The considered
architectures are:

1. No network at all.
2. A sparseMLPwhere the sparsity structure is informedby the overlap of theB-spline

basis function supports on the knot spans. In other words: this architecture aims
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Fig. 12 The dense multi-layer
perceptron architecture based on
the size of the control net
(n1 + 1) × (n2 + 1)

to precisely let those control points ‘communicate’ within the network that share
influence on some knot span product on the B-spline surface, yielding a layer with
the same connectivity as a convolutional layer with kernel size (2p + 1, 2q + 1).
However, each connection has its own weight and each kernel its own bias, instead
of only having a weight per element of the convolution kernel and one single bias
for all kernels.

3. Larger fully connected architectures are also considered, with 3 layers of control
net size. Note that two consecutive such layers yield many weight parameters: n4

for a square control net with ‘side length’ n.

The hyperbolic tangent was chosen as the activation function for all neurons because
it flattens out when the input values are high. This enables it to restrict the control
points’ movement to a specific domain. This is further discussed in Sect. 2.4.1.

2.4.1 Control point freedom

Control over the range of values that can be assumed by the control point z-coordinates
is essential to make sure that the systems stays physical (as mentioned in Sect. 2.1.2),
but also to be able to take into account restrictions imposed on the lens as part of
mechanical construction in a real-world application. Note that the restriction Pz

i, j >

zin for the control points being above the lens entrance surface is not critical for a
collimated beam simulation since, the entrance surface can be moved arbitrarily to the
−z direction without affecting the ray tracing.

Since the final activation function tanh has a finite range (−1, 1), this can easily be
mapped to a desired interval (zmin, zmax):

yi, j �→ zmin + 1
2 (yi, j + 1)(zmax − zmin), (42)

which can even vary per control point if desired. Here yi, j denotes an element of the
total output Y of the network. The above can also be used as an offset from certain
fixed values:

yi, j �→ f
(
Px
i, j , P

y
i, j

)
+ zmin + 1

2 (yi, j + 1)(zmax − zmin). (43)

The resulting B-spline surface approximates the surface given by f (x, y)+ 1
2 (zmax +

zmin) if Y ≈ 0 can be used to optimize a lens that is globally at least approximately
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convex/concave. The choice of the hyperbolic tangent activation function accom-
modates this: since this activation function is smooth around its fixed point 0 when
initializing the weights and biases of the network close to 0, there is no cumulative
value-increasing effect in a forward pass through the network so that indeed Y ≈ 0 in
this case.

For comparability, in the case without a network, the optimization is not performed
directly on the control point z-coordinates. Instead, for each control point, a new
variable for optimization is created, which is passed through the activation function
and the correction as in Eqs. (42) or (43) before being assigned to the control point.

2.5 The optimization

The lens is optimized such that the irradiance distribution I projected by the lens
approximates a reference image Iref, where I, Iref ∈ R

nx×ny
≥0 . The loss function used

to calculate the difference between the two uses the normalized matrices:

Î = I
∑nx ,ny

i, j Ii, j
and Îref = Iref∑nx ,ny

i, j Iref,i, j
. (44)

The loss function is given by

L(I; Iref) = 1√
nxny

∥∥Î − Îref
∥∥
F , (45)

where ‖ · ‖F is the Frobenius matrix norm, which is calculated as follows:

‖A‖F =
√∑nx

i

∑ny

j
|ai, j |2. (46)

Figure1 shows the conventional stopping criterion of the loss value being smaller than
some ε > 0, but in our experiments, we use a fixed number of iterations.

The neural network parameters (weights and biases) are updated using the Adam
optimizer (Kingma and Ba 2014) by back-propagation of the loss to these parameters.

3 Results

Several results produced with the optimization pipeline discussed in the previous
sections are displayed and discussed in this section. The implementation mainly uses
PyTorch, a Python wrapper of Torch (Collobert et al. 2002) and run on a HP ZBook
Power G7 Mobile Workstation with a NVIDIA Quadro T1000 with
Max-Q Design GPU.

Most of the results have been validated with LightTools (Synopsis). Lens designs
were imported as a point cloud, then interpolated to obtain a continuous surface, and
all simulations were conducted using 106 rays.
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Units of length are mostly unspecified since the obtained irradiance distributions
are invariant under uniform scaling of the optical system. This invariance to scaling is
reasonable as long as the lens details are orders ofmagnitude larger than thewavelength
of the incident light such that diffraction effects do not play a role. Furthermore, the
irradiance distributions are directly proportional to the scaling of all ray weights and
thus the source power, so the source and screen power also need no unit specification.
Note that relative changes have anon-trivial effect, like changes to the power proportion
between sources or the distance proportions of the optical system.

3.1 Irradiance derivatives with respect to a control point

This section gives a simple first look at the capabilities of the implemented differen-
tiable ray tracer: computing the derivative of an irradiance distribution with respect
to a single control point. Figure13 shows the derivative of an irradiance distribution
produced by a collimated ray bundle through a flat lens for various B-spline degrees
and reconstruction filter sizes, and Fig. 14 shows what one of these systems looks
like. The overall ‘mountain with a surrounding valley’ structure can be understood as
follows: as one of the control points rises, it creates a local convexity in the otherwise
flat surface. This convexity has a focusing effect, redirecting light from the negative
valley region toward the positive mountain region.

Noteworthy of these irradiance derivatives is also their total sum: (a) −1.8161 ×
10−8, (b) 3.4459 × 10−8, (c) 9.7095 × 10−5. These are small numbers with respect
to the total irradiance of about 93 and therefore indicate conservation of light; as the
control point moves out of the flat configuration, at first, the total amount of power
received by the screen will not change much. This is expected from cases (a) and (b),
where the control point does not affect rays that reach the screen on the boundary
pixels. However, in all cases, all rays intersect the lens at right angles. Around θ = 0,
the slope of Schlick’s approximation is very shallow, indicating a small decrease in
refraction in favor of reflection.

Fig. 13 Gradients of an irradiance distribution of a collimated beam through a flat lens (parallel sides), with
respect to the z-coordinate of one control point. The zeros are masked with white to show the extend of
the influence of the control point. These irradiation distributions differ by: a degrees (3, 3), reconstruction
filter size (3, 3), b degrees (3, 3), reconstruction filter size (11, 11), c degrees (5, 3), reconstruction filter
size (3, 3)
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Fig. 14 Demonstration of how one control point influences the irradiance distribution in the case of a flat
lens with B-spline degrees (3, 3) and a collimated beam

3.2 Sensitivity of the optimization to initial state and neural network architecture

As with almost any iterative optimization procedure, choosing a reasonable initial
guess of the solution is crucial for reaching a good local/global minimum. For training
neural networks, this comes down to how the network weights and biases are initiated.
In this section, we look at three target illuminations: the circular top hat distribution
(Fig. 15), the TU Delft logo (Fig. 16), and an image of a faceted ball (Fig. 17). We
design lenses to produce these distributions from a collimated ray beam, given various
neural network architectures (introduced in Sect. 2.4) and parameter initializations.
Circular top hat distribution from collimated ray beam Figure18 shows the progress
of the loss over 1000 iterations, with each iteration taking 2.5 s. Learning rates of 10−3,
10−4 and 10−5 were used for different network architectures: random sparse (RS), no
network (NN), uniform sparse (UN), and uniform dense (UD). In this context, uniform
implies that the initial trainable parameter values are sampled from a small interval:
U
([−10−4, 10−4

])
, except for the no-network case; this is initialized with all zeros.

Figures19, 20, 21, 22 and 23 depict the freeform surfaces and irradiance distributions
obtained throughout optimization using a learning rate of 10−4. More information
about the initial parameters used in these simulations can be found in Table S1 in
the supplementary materials. The figures depicting the irradiance distributions and

Fig. 15 The circular top hat
target illumination
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Fig. 16 The TU Delft flame
target illumination

Fig. 17 The faceted ball target
illumination

Fig. 18 Loss progress over the iterations for the pipeline-setups: random sparsely connected (RS), no
network (NN), uniform sparsely connected (US), and uniform densely connected (UD) using learning rates
10−3, 10−4, and 10−5 for forming a top hat distribution from a collimated beam
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Fig. 19 The lens height field after initialization (n = 0), and n = 50, 100 and 1000 iterations respec-
tively, using a learning rate of 10−4 and different network architectures (Sect. 2.4) and network parameter
initializations (Sect. 3.2)

Fig. 20 Irradiance distributions and pixel-wise errors in the optimization progress of a lens with a random
sparse network and a learning rate of 10−4 towards a circular top hat illumination
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Fig. 21 Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens without a
network and a learning rate of 10−4 towards a circular top hat illumination

Fig. 22 Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens with a sparse
network and a learning rate of 10−4 towards a circular top hat illumination
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Fig. 23 Irradiance distributions and pixel-wise errors in the optimization progress of a flat lens with a dense
network and a learning rate of 10−4 towards a circular top hat illumination

surfaces for the other learning rates can be found in Figs. 1–12 of the supplementary
materials.

The first notable difference between randomly and uniformly initialized sparse
neural networks is that the uniformly initialized converge loss values are much lower
than the randomly initialized, regardless of the chosen learning rate. There are two
possible explanations for why this is the case. First, due to the random initialization of
the network, the lens is also randomly initialized, leading the optimizer to converge to
a different local minimum than the uniform initialized networks, as shown in Fig. 19.
Second, as the parameter values are randomly initiated, the influence of certain nodes
on certain control points might be unbalanced, resulting in some control points having
a much higher contribution throughout the optimization than other control points.

When comparing the different learning rates of the optimizations done using no
network, US, and UD, we see that when using a learning rate of 10−3, all three cases
converge to a loss of 5×10−7 in roughly 600 iterations as shown inFig. 18.At a learning
rate of 10−4, the uniform dense network initially decreases slower but catches up to
the other networks using a learning rate of 10−3 at around 400 iterations, eventually
converging to a similar loss value of 5×10−7.While the uniform sparse network takes
longer to reach the same loss value, it still manages to do so after 1000 iterations.When
decreasing the learning rate to 10−5, none of the cases fully converge. However, we
observe the same behavior of the uniform dense network, converging faster than the
uniform sparse network, which again converges faster than the no networks case.

Another property of the uniformly initialized cases is their preservation of symmetry
in these setups. As Fig. 19 shows, this leads to much simpler lenses, which are likely
less sensitive to manufacturing errors due to their relative lack of small detail. It is
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Fig. 24 Loss progress for the various magnifications and target distributions

interesting to note that if the sparse network is initialized with all parameters set to 0,
the result is identical to the no-network case, as only the biases in the last layer achieve
non-zero gradients.

We also repeated the optimization for a different target irradiance distribution:
the flame of the TU Delft logo (Fig. 16), the results of which can be seen in
Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29 of the
supplementary materials. Despite the more complex target, we observed the same
convergence behavior for all the network types.

No rigorous investigation has been conducted to the extent that this behavior of
increased convergence speed carries over to other target distributions and system con-
figurations and what the optimal hyper-parameters are. A thorough investigation of
the hyper-parameter space that defines a family of network architectures could reveal
where in the increase of the architecture complexity, diminishing returns for optimiz-

Fig. 25 Implementation and LightTools irradiance distributions of the TU flame target from the final lens
design of the optimization
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Fig. 26 Implementation and LightTools irradiance distributions of the faceted ball target from the final lens
design of the optimization

Fig. 27 The lens designs for the different magnifications and two target distributions

ing these lenses arises. However, based on these initial findings the uniform dense
network is used for all the following optimizations in the results.

TU flame and faceted ball from collimated beam In what follows, we consider complex
target distributions: the TU Delft flame (for a complex shape) and a faceted ball (for
a target with various brightness levels). Here we still use the collimated beam, but
lenses are nowoptimized for variousmagnifications; see Table 1. Thesemagnifications
are defined as the scaling of the screen size with respect to the smallest screen size
(0.64, 0.64). Both optimizations ran for 2000 iterations with a constant learning rate of
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Fig. 28 25 × 25 traced rays through the final lens designs for the different magnifications and two target
distributions

Fig. 29 The final irradiation distribution of the lens optimizations with point sources and the corresponding
LightTools validations. The extended source is not implemented in our ray tracer, but is approximated by
the point source grid, the difference in irradiance is checked in LightTools Fig. 30 in the supplementary
material

Table 1 The screen size and control point offset function f used per magnification in the TU flame and
faceted ball optimizations (distances in centimeters)

Magnification Screen size f (x, y) Starting shape type

1 (0.64, 0.64) 1
2 Flat

3 (1.92, 1.92) 1
2 + 8 −

√
82 − x2 − y2 Concave

5 (3.20, 3.20) 1
2 + 4 −

√
42 − x2 − y2 Concave
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10−5, each iteration took about 4 s each. The other parameters of these optimizations
are shown in Table S2 of the supplementary materials.

The final irradiance distributions and corresponding LightTools results are shown
in Figs. 25 and 26, respectively. These figures show that the optimization pipeline can
handle these more complex target illuminations well. The validation in LightTools
shows some artifacts in the obtained irradiance. Which are most notable in the TU
flame magnification 1 case (Fig. 25), where lines can be seen flowing through the
distribution. However, these artifacts are absent in the distribution obtained using the
differentiable ray tracer. The cause of this difference lies in the Gaussian ray blurring,
which filters out these detailed artifacts, resulting in a much more uniform result.
By visual inspection, based on the LightTools results, one would probably rate these
results in the exact opposite order than as indicated by the losses shown in Fig. 24.

A potential explanation of the increase in loss with the magnification factor in
Fig. 24 is that the bigger the screen is: the rays require higher angles to reach the edges
of the screen, which is apparent in the cases of magnification 3 and 5 Fig. 28. This
results in a larger sensitivity of the irradiance to the angle with which a ray leaves the
screen. This in turn gives larger gradients of the irradiance with respect to the control
points. Therefore the optimization takes larger steps in the neural network parameter
space, possibly overshooting points that result in a lower loss.

For the magnification, 3 and 5, the irradiance distributions from LightTools show
artifacts at the screen boundaries. A possible explanation for this is that the way the
B-spline surfaces are transferred to LightTools is inaccurate at the surface boundaries.1

This is because surface normals are inferred from fewer points on the B-spline surface
at the boundary than in the middle of the surface by LightTools.

Furthermore, a significant amount of rays are lost during optimization because the
target illuminations are black at the borders, so rays near the screen boundary will
be forced off the screen by the optimization. Once rays are off the screen, they no
longer contribute to the loss function. Once a ray misses the screen, the patch on the
B-spline surface these rays originate from does not influence the irradiance and, thus,
the loss function. However, this does not mean that this patch is idle for the rest of
the optimization, as this patch can be in support of a basis function that corresponds
to a control point that still affects rays that hit the screen. Therefore, the probability
of getting idle lens patches with this setup decreases with the B-spline degrees since
these determine the size of the support of the B-spline basis functions but might, in
some cases, lead to oscillatory behavior, with rays alternating between hitting and
missing the screen.

Figure 27 shows the optimized B-spline lens surface height field. A densely varying
color map is chosen since the deviations from a flat or smooth concave shape are quite
subtle,which is due to the large lens exit angle sensitivity of the ray-screen intersections
since the ratio lens size to screen size is largewith respect to the ratio lens size to screen
distance.

1 Assuming only rays from the B-spline surface boundaries reach the screen boundary area.
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3.3 Optimization with a point source and a grid of point sources

We now consider an optimization that uses the B-spline intersection algorithm. First,
we design a lens with one point source at (0, 0,−5) with 5 × 105 rays to form the
TU flame. After 200 iterations, we change the source to an equispaced grid of 25 ×
25 point sources with 103 rays each on [−1, 1] × [−1, 1] × {−5}, approximating a
source of non-negligible size. The learning rate was kept constant at 10−3 throughout
the whole optimization procedure. The target irradiance is blurred using a Gaussian
kernel, as creating sharp irradiance distributions is very challenging for finite etendue
sources. The other (hyper-) parameters of this optimization can be found in Table S3 of
the supplementary materials. Due to the additional B-spline intersection procedures,
each iteration takes approximately 50s. The resulting final irradiance distribution and
LightTools validation can be seen in Fig. 29. The final irradiance distribution is similar
to that obtained by LightTools, indicating that ray tracing with the implemented B-
spline intersection algorithm works correctly. The irradiance is blurred due to the
reconstruction filter. The single-source point optimization performs well, although
the illumination is less uniform than in the collimated beam case (Figs. 25 and 26).
The non-uniformity can be attributed to the Gaussian reconstruction filter used during
optimization, as it smoothes out the small uniformities.

Finding a lens design that redirects light from a source of non-negligible size into
a desired irradiance distribution is a complex problem for which it is hard to indicate
how good the optimal irradiance distribution can become. The progress of the loss,
as seen in Fig. 32, shows that the optimization can still improve the loss, even after
the transition to the grid of point sources. Interestingly, looking at Fig. 29 again, the
optimization seems to adopt the coarse strategy of filling up the target distribution
with images of the source square, as shown in Fig. 30. This strategy does hinder the
possible quality of the final irradiance distribution as the image of the source on the
target is larger than the fine details in the desired irradiance. This issue can potentially
be resolved by optimizing both the front and back surfaces of the freeform, as this will
cause the image of the source to change shape depending on where it ends up on the
target screen (Figs. 31 and 32).

Fig. 30 Indication of images of the source square in the irradiance distribution obtained by LightTools
using the point source grid
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Fig. 31 Height fields of the lenses optimized for the TU flame with point sources

Fig. 32 Loss over the iterations optimizing for the TU flame. The system is initiated with a point source,
and after ∼ 200 iterations the point source is replaced by an equispaced grid of 25 × 25 point sources

4 Conclusion

We demonstrated that non-sequential differentiable ray tracing is a viable tool for
designing freeform lenses for collimated beams, points, and extended sources. Using
a B-spline allows for the design of a continuous surface, which is desirable for man-
ufacturing, and its control point allows for locally altering the irradiance distribution.
For both cases, collimated and point source lens designs were found that could accu-
rately project the desired irradiance distribution in both the differentiable ray tracer
and in commercial software LightTools. To address the discrepancies between the dif-
ferentiable ray tracer results and the LightTools validations, which were most apparent
when optimizing for a collimated beam, the ray blur can gradually be decreased during
optimization. This approach can maintain stable gradient calculation and also allow
the discrepancies to be detected during optimization.

For the source with a finite extent, the optimizer improved upon the design obtained
for a point source. However, the final irradiance distribution was made up of images
of the source, which hinders the minimum that can be obtained as the source image is
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larger than the details in the desired irradiance distribution. This issue can be resolved
by optimizing multiple surfaces simultaneously, as the image of the source on the
target plane can then be optimized to vary with location.

Using a neural network to remap the optimization space provides an interestingway
to increase the convergence speed of the optimization. However, further investigation
is required to see whether this generally holds and what the effect is on other network
architectures. Furthermore, the implementation transfer learning can transfer knowl-
edge from past optimizations to new optimization scenarios, potentially reducing the
time required for optimization.

The developed ray tracing implementation is currently a proof of concept and
needs to be optimized for speed. The B-spline intersection algorithm, in particular,
adds roughly a factor of 10 to the computation time. A significant speedup can be
achieved here by leveraging efficient lower-level GPU programming languages, such
as CUDA.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11081-023-09841-9.
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