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Abstract
Reliable hazard analysis is crucial in the flood risk management of river basins. For the 
floodplains of large, developed rivers, flood hazard analysis often needs to account for the 
complex hydrology of multiple tributaries and the potential failure of dikes. Estimating this 
hazard using deterministic methods ignores two major aspects of large-scale risk analy-
sis: the spatial–temporal variability of extreme events caused by tributaries, and the uncer-
tainty of dike breach development. Innovative stochastic methods are here developed to 
account for these uncertainties and are applied to the Po River in Italy. The effects of using 
these stochastic methods are compared against deterministic equivalents, and the methods 
are combined to demonstrate applications for an overall stochastic hazard analysis. The 
results show these uncertainties can impact extreme event water levels by more than 2 m at 
certain channel locations, and also affect inundation and breaching patterns. The combined 
hazard analysis allows for probability distributions of flood hazard and dike failure to be 
developed, which can be used to assess future flood risk management measures.

Keywords Flood risk · Hazard analysis · Dike breaching · Copula · System behaviour · 
Failure probabilities

1 Introduction

1.1  Flood risk analysis and research objective

Each year flooding causes the most damage of any natural disaster (Jongman et al. 2012) 
and, as such, many Flood Risk Management (FRM) strategies employ a risk-based 
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approach (Voortman et  al. 2009), where risk is the combination of exposure and hazard 
(with its associated probability). In analysing the hazard of large river systems, potential 
interactions between sub-catchments, dikes and other connected components become more 
relevant (Vorogushyn et al. 2017), and often require system wide models simulated using 
stochastic approaches.

Hydraulic models used to analyse flood hazard and other hydraulic aspects of protected 
river systems have been developed for the Elbe (Merz et al. 2016), the Rhine (Hegnauer 
et  al. 2014), the Mississippi (Remo et  al. 2012), and the Po River in Italy (Castellarin 
et al. 2011), amongst others. Such models are often used to calculate the location-specific 
hydraulic load associated with a given probability or return period (Vogel and Castellarin, 
2017). Hydrological boundary conditions provide the characteristics of the extreme event 
being modelled (e.g. a 1/200 year event), while the schematisation of the model dictates 
how that event is routed in the area of interest.

However, deterministic estimates of these two components are unlikely to provide suf-
ficient information for a reliable hazard analysis to be performed. Extreme events may 
originate from multiple tributary catchments, and can cause defence failures at various 
locations. Therefore, the present study proposes methods to include these sources of uncer-
tainty (catchment hydrology and dike breaching) in large-scale flood hazard (and thus risk) 
analyses. The effect of including each of these components is also analysed individually, by 
comparing it to its deterministic equivalent. The concepts behind these methods are given 
below, along with a general framework for their application and analysis. In the following 
sections they are applied to the Po River case study, and the results discussed.

1.2  Hydrological extremes

The concept of a return period discharge at a given location is much used in flood risk anal-
ysis (FRA). Extreme value theory can generate these discharge values, provided gauged 
locations with sufficiently long timeseries are available (Towler et  al. 2010). To see the 
effect of an extreme discharge on a complete river system, a ‘design hydrograph’ (Medi-
ero et al. 2010) can be applied as a boundary condition to a model. This hydrograph will 
generally have an associated probability represented either by the hydrograph itself or the 
resulting hydrographs at specific locations. The use of one or more design hydrographs to 
represent extreme events was formerly standard practice on the Dutch Rhine and Meuse 
systems (Van Der Most 2015) and is currently applied to the Po River system in Italy (Cas-
tellarin et al. 2011).

Applying a single design hydrograph to a river channel will not represent the variability 
in the shape of the floodwave. Recent studies have addressed this by developing multi-var-
iate distributions from which hydrographs can be sampled. As well as the peak discharge, 
these distributions can include other hydrological characteristic variables such as 30-day 
volume (Domeneghetti et al. 2013), 3-day volume (Liu et al. 2009), or the duration above a 
baseflow (Gräler et al. 2013).

The tool most commonly used to account for the dependence between multiple 
hydraulic variables, such as those listed above, is copulas (Favre et al. 2004; Salvadori 
and De Michele 2010, amongst others). A more detailed explanations of copulas are 
given by Renard and Lang (2007), but its principal function is to model the depend-
ence between variables while maintaining their marginal distributions. As well as the 
dependence between characteristics of a single hydrograph, copulas can also be used to 
model streamflow characteristics from multiple sites (Hao and Singh 2013), which may 
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be correlated due to rainfall patterns. Weather generators can be applied to produce 
hydrographs that are spatially and temporally coherent (Merz et al. 2016; Dunn et al. 
2016), but are not always readily available for many regions. In such situations, copu-
las can be used to model the dependence between multiple tributaries, for example in 
the Brisbane River catchment (Charalambous et al. 2013).

In the present study, a copula is developed to model both the dependencies of flood-
wave characteristics to each other and to characteristics at other tributary boundaries. 
The results from the use of the copula are compared against a model using determinis-
tic hydrological boundary conditions.

1.3  Dike breaching

As well as the catchment hydrology, river routing also introduces uncertainties when 
generating the hydraulic loads associated with return periods. Parameters such as 
roughness are part of this uncertainty (Pappenberger et al. 2005); however when rout-
ing extreme events in a protected river system, the breaching of defences may cause 
the greatest change in expected loads. Possible breaching mechanisms include overtop-
ping, piping and macrostability (Steenbergen et al. 2004), and the conditions required 
to trigger breaching are often highly complex and subject to uncertainty.

The interdependency of breaches on downstream flows is often called ‘system 
behaviour’ and has been shown to be highly influential in determining local and sys-
tem-wide hazards. System behaviour analyses that account for the uncertainty related 
to breaching include those by Apel et al. (2009), De Bruijn et al. (2016), Assteerawatt 
et al. (2016), Gouldby et al. (2012) Vorogushyn et al. (2010), and (Curran et al. 2019). 
As downstream loads are dependent on upstream breaches, the above methods all 
utilise large models that try to represent the entire system. These models are run in 
Monte-Carlo simulations, in which both the hydraulic loads and dike strengths are var-
ied per simulation.

In system behaviour analyses, the strength of the dike in resisting different breach-
ing mechanisms is often approximated using fragility curves (Wojciechowska et  al. 
2015), which define the failure probability as a function of the hydraulic load for a 
discretised section of dike. Breaching uncertainty for that section can then be quanti-
fied by sampling the strengths defined in these fragility curves as a stochastic thresh-
old for breaching in Monte Carlo simulations (De Bruijn et al. 2016b). Generally the 
fragility curves define failure probability as a function of water level (Bachmann et al. 
2013; Mazzoleni et al. 2014b); however advanced methods to include both water level 
and duration of exceedance for that water level have been applied by Vorogushyn et al. 
(2009) and Curran et al. (2018).

Once a breach is triggered in a hydraulic simulation, the breach growth is deter-
mined by several variables which are also subject to uncertainty. Empirical models 
have been developed to estimate this growth (Verheij and Van der Knaap 2002), but 
most studies use a distribution based on historical data, (Mazzoleni et al. 2014a; Voro-
gushyn et al. 2010; Domeneghetti et al. 2013).

In the present study, both the dike breach triggering and growth functions are devel-
oped and applied to multiple potential breach locations in a system behaviour analysis. 
This stochastic analysis is compared against the use of deterministic breach fragility 
estimates.
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2  General approach

The general approach proposed to account for the effects of the sources of uncertainty 
described above is given in the yellow-shaded section of Fig. 1. For each tributary in the 
system of interest, hydrological timeseries data are analysed, and distributions of rel-
evant variables are fit and used as inputs to a copula. Similarly, dike data are collected 
and analysed to (1) discretise and schematise the protection system into a hydraulic 
model, and (2) generate distributions of dike strength for each discretised section. Both 
the hydrological event copula and the sets of dike strength distributions are sampled as 
inputs for simulations of a hydraulic model in a stochastic analysis. This allows for a 
complete stochastic flood hazard analysis to be generated.

As well as this overall analysis, it is also interesting to see the individual effects 
on the system when including these uncertainties. These analyses are shown in the 
unshaded sections of Fig. 1. For the hydrology, a single extreme hydrological event is 
compared against the events aggregated from sampling the hydrological copula. In these 
comparisons dike breaching is not included. For the dike breaching uncertainty analysis, 
a single extreme hydrological event is repeatedly simulated in the system with variable 
dike strength thresholds sampled from the developed distributions, and the aggregation 
of these simulations is compared against a simulation using deterministic thresholds.

The application of this approach to the Po River is described in the following section, 
with more specific detail about the models and methods used (e.g. the data used, the rel-
evant hydrological variables, etc.). The results of each of the analyses proposed are then 
given and discussed, and concluding remarks are given in the final section.

Fig. 1  Yellow shaded area: Proposed approach for stochastic analysis of large-scale protected river sys-
tems with multiple tributaries. Unshaded areas show complementary analyses used to gauge the individual 
effects of including hydrological and dike breaching
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3  Case study and application

3.1  Study area and available data

The case study is the Po River basin in Italy, which has a catchment area of ~ 75,000 km2 
and is fed by tributaries from the Alps in the North and West, and the Apennines in the 
South, as shown in Fig. 2. The region is considered highly vulnerable to flooding, both eco-
nomically and with respect to loss-of-life (Domeneghetti et al. 2015), and thus the flood-
plain is compartmentalised using a dike protection system. ‘C-Buffer’ compartments are 
protected from the river by embankments with a safety standard of 1/200 years and may 
be situated directly beside the main channel of the river or to smaller ‘B-Buffer’ compart-
ments that lie inside the main embankments (see inset of Fig. 2). The C-Buffer boundaries 
relate to the maximum inundation extents of catastrophic floods (Adb-Po 2016), and at 
certain downstream locations extend beyond the catchment boundaries, as shown in Fig. 2 
(see Castellarin et  al. 2011, for more detail). The present study utilises four main data 
sources for the case study; dike profile data, a 30 year daily discharge dataset of the tribu-
taries, a hydraulic model of the main channel, and boundary conditions for that hydraulic 
model that represent a 1/500 year flood event. These data sources are discussed below and 
in the following sections.

The 1D HEC-Ras hydraulic model, representing a 370  km stretch of the main chan-
nel and selected tributaries, was schematised by Castellarin et al. (2011), and includes a 

Fig. 2  Top Po River catchment (inset) and subcatchments (main). Below River schematisation in HEC-Ras 
and connected quasi-2d compartments. Green compartments are ‘C-Buffer’ and orange compartments are 
‘B-Buffer’. Bottom inset shows a section of the river with selected breach locations and associated dike sec-
tions
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quasi-2D schematisation of the multiple protected compartments in the floodplain. The 
model was calibrated on water level stages from the October 2000 flood event (Castellarin 
et al. 2011), which is estimated to have a 1 in 50 year return period.

The deterministic boundary conditions used in this study are based on an empirical 
method to estimate synthetic design hydrographs (SDHs) for ungauged locations on the 
Po River by Maione et  al. (2003). The method was used to develop a set of 1/500 year 
SDHs for the major tributaries in a study by Consorzio Italcopo (2002) and was adapted 
for use in the HEC-Ras model. This set of SDHs is hereafter called Tr500. The SDHs are 
generated ensuring peak discharges and volumes at multiple locations along the main chan-
nel conform to the return period loads estimated by flood frequency analysis of historical 
data. SDHs have also been developed relating to a 1/200 year event (Tr200—Colucci et al. 
2003), but these were calibrated using an earlier version of the hydraulic model, and thus 
ignored in the present study.

3.2  Hydrology uncertainty estimation

Despite Tr200 and Tr500 having been used in many studies (Castellarin et al. 2011), they 
contravene the spatial and temporal variability of actual events present in the region. This 
can be seen in the study of Maione et  al. (2003), where historical events are compared 
against the return period Flow-Duration Frequency (FDF) curves that were used to develop 
Tr500. The Maione study demonstrates that historical floodwave events are not charac-
terised by the same return period at all locations. For example, the October 2000 event 
appears to be a ~ 1/35 year event at Pontelagoscuro and a ~ 1/60 year event at Borgoforte 
(see locations in Fig. 2). Therefore, the assumption of homogeneous return period loads all 
along the main channel is unrealistic. This is also the conclusion of Bianchi (2018), who 
highlights the role the various tributaries play in the inhomogeneity of return periods of 
hydraulic loads along the main river. The spatial and temporal hydrological uncertainty in 
load estimation caused by the tributaries to the Po River is addressed in the present study 
by simulating multiple events sampled from a copula.

The proposed hydrological method generates a long timeseries of annual maximum 
(AMAX) floodwaves in the main channel of the Po by routing multiple ‘yearly’ events, 
each of which is represented by a set of SDHs. Each SDH within an event is applied as 
a boundary condition for a tributary and has certain characteristics which come from 
sampling a Gaussian copula. This copula is chosen due to its simplicity, as more com-
plex versions might not be suitable for the short (30 year) timeseries available. A resulting 
limitation is that the copula cannot include more complicated dependence structures than 
correlation coefficients (Zhang and Singh 2019), such as tail dependency. The Gaussian 
copula takes as input an n*n correlation matrix, where n is the number of correlated vari-
ables, i.e. the total number of characteristics for all SDHs. The sample taken for each event 
is then an n*1 vector of correlated standard uniformly distributed random variables. These 
represent probabilities of non-exceedance for each of the characteristics and can be easily 
transformed into ‘real-world’ values using probability distributions. Three floodwave char-
acteristics were used to build SDHs on 16 tributaries, and therefore 48 probability distribu-
tions and a 48*48 correlation matrix are required.

As the goal of the sampling technique is to produce AMAX floodwaves in the main 
channel of the Po, using AMAX distributions for each tributary would likely over-estimate 
these events. Instead, timeseries of SDH characteristics are derived based on the tributary 
floodwaves that ‘contributed’ to events on the main channel, i.e. that occurred within a 
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certain time window of the AMAX floodwave on the main channel. Therefore, timeseries 
of concurrent discharges for the main channel and all tributaries are required. Historical 
timeseries of discharge data are available for many stations along the main channel and 
tributaries; however some locations are missing and some data are incomplete. Instead, a 
30 year daily discharge dataset from the SMHI (Swedish Meteorological and Hydrologi-
cal Institute) is used, based on historical weather data and the HYPE hydrological model 
(Lindström et  al. 2010). As this is hindcast data, it includes recent major events in the 
regions such as in October 2000.

Discharge data are obtained from the SMHI dataset for the outlets of the 16 tributaries 
whose sub-catchments shown in Fig. 2, as well as the discharge on the main channel at 
Pontelagoscuro. It is possible that using this single reference location would cause extreme 
events at that location alone but, in reality, the variability introduced by the copula prevents 
this. Five other tributaries are considered too small to develop SDHs and are therefore 
modelled as steady-state contributions. The annual maximum (AMAX) floodwaves at this 
reference are identified, and the peak discharge on each of the tributaries within a period 
from 20 days before to 10 days after this downstream peak is noted. These heuristic bounds 
simplify the hydrological and hydraulic processes involved, and may need to be addressed 
in future studies.

As well as peak discharge, two more floodwave characteristics are obtained from each 
the contributing floodwaves; duration above baseflow, and time lag with respect to the 
AMAX floodwave (Fig.  3). The latter is simply the time between main channel AMAX 
peak and contributing peak, which can also be ‘negative’, i.e. the tributary peak occurs 
after the AMAX downstream peak. For the ‘duration above baseflow’ characteristic, the 
baseflow for each tributary is estimated using a filtering algorithm (Arnold and Allen 
1999), so that periods of direct runoff for each peak can be calculated. For a single AMAX 
event, the red and blue lines in Fig. 3 show how the three characteristics are obtained for 
an example tributary floodwave. For the main channel floodwave (blue), the contributing 
tributary (red) has a peak flow of (5500  m3/s) which occurs two days previously, and is 

Fig. 3  Example of identifying floodwave characteristics (peak, duration and lag) of a tributary (red) con-
tributing to downstream flow (blue) for a single event of the 30 year timeseries. An SDH generated from 
these characteristics is shown in black
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above its baseflow for 10 days. The 30 year timeseries’ of these three floodwave character-
istics for all 16 tributaries provide the information used in the Gaussian copula (both the 
marginal distributions and correlation matrix).

Once the time-series of characteristics are obtained, the 48*48 correlation matrix can 
be generated. This matrix represents correlations between the three floodwave character-
istics of each tributary. Distributions are fit to each timeseries; however due to their short 
(30 year) time span, the selection of a best distribution fit to the data is in many cases trivial. 
For simplicity, the characteristics of each tributary use the same distributions, but different 
parameters. The distributions used are; log-normal (peak discharge), normal (time lag) and 
log-normal (duration above baseflow), and the parameters for each are given in Appendix A.

With the correlation matrix and distributions defined, events sampled from the copula 
be used to produce the set of SDH boundary conditions for the hydraulic model. An exam-
ple of an SDH generated from the three characteristics of the tributary in Fig. 3 is shown 
by the black triangular floodwave. When generating the SDHs, the rising and recessing 
limbs above the baseflow were considered to be 1/3 and 2/3 of the sampled duration time, 
respectively.

With sufficient samples, the water levels associated with specific return periods can 
then be estimated at any location. However, assumptions such as the contributing time 
period, the rising and recessing limbs ratios, and the reference main channel location sim-
plify hydrology of the region. One example effect is that floodwaves from tributaries that 
do not ‘contribute’ to an AMAX event at the reference location on the main channel are 
missed. As a validation for the method, the deterministic Tr500 boundary condition is used 
to directly compare water levels along the main channel. Despite a positive validation (see 
Sect. 4.1.1), these simplifications should be addressed in future studies.

3.3  Dike breaching uncertainty estimation

Research addressing the large-scale impact of uncertainty in dike breaching for the region 
(like the hydrological uncertainty) is limited. Although studies on stochastic breaching for 
subsections of the Po River have been performed by Mazzoleni et al. (2014a) and Dome-
neghetti et al. (2013), only the study of Castellarin et al. (2011) considers the entire river 
stretch linked to the C-Buffer, and thus the effect of breaches on the entire system. How-
ever, that study used deterministic breaching thresholds for overtopping based on dike 
heights. Mazzoleni et al. (2014a) include piping threshold uncertainty by developing fra-
gility curves, but these were only built for a 100 km stretch of the Po. Breach growth data 
are available from Turitto et al. (2010), who fit a lognormal distribution to 200 years of 
historical breach data in the region. The formation times of these breaches were considered 
deterministic at 0.1 h by Mazzoleni et al. (2014b), but sampled from a normal distribution 
with a mean of 2 h by Domeneghetti et al. (2013). In the present study, the uncertainties 
in breach triggering (due to overtopping and piping) and growth are estimated by sam-
pling probability distributions developed for discretised sections of the entire 370 km main 
channel.

As a first step in this process, dike sections are discretised to ensure each dike section 
is connected to at most one C-Buffer compartment on the floodplain side, and either the 
river or a B-Buffer compartment on the river side (see inset at bottom of Fig. 2). For 
each section, the starting point of a potential breach (red stars in Fig. 2) is identified at 
the location considered to be most vulnerable to overtopping. This is selected by com-
paring the model dike heights with the water levels observed in a steady-state flow. The 
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93 schematised breaches have a pre-defined bottom elevation equal to the connected 
compartment, while the width is a function of time (see Table 1).

The next step is to develop dike strength distributions to apply to these sections and 
the breach starting points. This allows a set of sampled values from these dike strength 
distributions to be used as failure thresholds in each simulation for the potential breach 
locations. For overtopping, Castellarin et  al. (2011) assumed a deterministic condi-
tion that if the water level exceeded the dike height at a breach location for 3 h, fail-
ure would occur. However, in most cases these dike heights are based on interpolations 
between cross sections, which are themselves based on surveyed or LIDAR data. While 
the underlying LIDAR data are reasonably accurate, the linear interpolation between 
sections introduces error. In the present study, the linearly interpolated values are com-
pared with ~ 6 km of dike for which the actual heights are known, and a normal distribu-
tion of the error was found to have a standard deviation of ~ 0.5 m. This was therefore 
applied as an uncertainty distribution to all locations.

While these distributions may over-estimate the uncertainty in some places, it is 
maintained at all sections to account for other uncertainties such as errors in the water 
levels calculated by the model, and errors in the LIDAR data. It should be noted that 
this method does not take account of the length effect in each section (i.e. the longer 
a section is, the higher the probability of overtopping at some location); however this 
limitation is mitigated by the selection of vulnerable breach locations within each dike 
section. The duration of water level exceedance required for overtopping is also made 
variable in the simulations, using a uniform distribution between 2 and 4 h, based on 
previous research (Domeneghetti et al. 2015).

For piping, fragility curves have been developed for each breach location using cross 
section data from the Po River basin authority and the limit state formulation of Maz-
zoleni et al. (2014a), in which failure is determined by:

where n is the porosity, ΔH is the water level and L is the critical length through which 
the pipe must form. The curves are developed by varying the n and L values according to 

Z = 0.237
1 − n

n
−

ΔH

L

Table 1  Deterministic and variable breach parameters

Variable Distribution Parameter for deterministic 
simulations

Data for variable 
simulations

Triggering Piping level Fragility curve Value of maximum likelihood 
from curve

Full fragility 
curve

Overtopping Normal Dike height at breach location Mu = Dike height 
at breach

SD = 0.5 m
Overtopping dura-

tion
Uniform 3 h Min = 2 h

Max = 4 h
Growth Final width Lognormal 91 m Mu = 91 m, 

SD = 21.7 m
(truncated)

Growth time Normal 2 h Mu = 2 h, 
SD = 1.5 h

(truncated)
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a triangular and uniform distribution, respectively. As with overtopping, the method does 
not take account of the length effect in each section. Hence, in the present study the curves 
are generated using the available cross section data immediately upstream and downstream 
of the potential breach location. The curves also do not include the duration required to 
induce piping failure. Given these limitations, the analysis of the effect of piping is kept 
separate in the present study, see Table 2.

In relation to breach growth, the final breach width and the time required to reach it 
are here considered fully dependent. Therefore, in each Monte Carlo simulation, a sin-
gle sampled exceedance probability is applied to distributions for both these variables. 
The final breach width is sampled from the truncated lognormal distribution developed 
by Govi and Turitto (2000) while the distribution of breach development time is taken 
from the truncated normal distribution suggested by Domeneghetti et  al. (2013). The 
growth is assumed to be linear in time towards this final width.

As a comparison for the breach triggering and growth uncertainties, deterministic 
events are also simulated. These simulations use the values of maximum likelihood 
from each distribution, and in the case of overtopping duration, the midpoint of the uni-
form distribution used, as shown in Table 1.

3.4  Analysis structure

Three analyses are conducted for this case study which reflect the general analysis structure 
given in Fig. 1. The effects of the hydrological and breaching uncertainty are quantified 
separately in the ‘Hyd’ and ‘Dike’ analyses described in Sects. 3.2 and 3.3, and the ‘All’ 
analysis evaluates hazard distributions generated by including the uncertainties of both 
components. The simulations compared within each analysis are also given a descriptive 
name (Table 2). These simulations use either the breachable (BREACHBL) or unbreach-
able (NOBREACH) implementations of the HEC-Ras model, and in both cases flow over 
the dike (here called ‘overflow’ to distinguish it from the breaching mechanism ‘overtop-
ping’) is implemented using the weir equation.

The ‘Hyd’ analysis evaluates the effect of the hydrological uncertainty by compar-
ing deterministic and variable boundary conditions. Twenty thousand simulations are 

Table 2  Analyses in the study

Analysis 
name

Overall simulation 
name

No. of simula-
tions

Boundary condi-
tions

Hydraulic 
model con-
figuration

Failure thresholds

Hyd Det_Hyd500 1 Tr500 NOBREACH None
Var_Hyd 20,000 Copula sampling NOBREACH None

Dike Det_DikeO500 1 Tr500 BREACHBL Overtopping (Det)
Det_DikeOP500 1 Tr500 BREACHBL Overtopping and 

piping (Det)
Var_DikeO500 6000 Tr500 BREACHBL Overtopping (Var)
Var_DikeOP500 6000 Tr500 BREACHBL Overtopping and 

piping (Var)
All Var_AllO 30,000 Copula sampling BREACHBL Overtopping (Var)

Var_AllOP 30,000 Copula sampling BREACHBL Overtopping and 
piping (Var)
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performed for Var_Hyd, which is a long enough timeseries to estimate extreme events. As 
discussed, in the ‘Dike’ analysis the influence of the simplified piping failure estimates is 
kept separate to the overtopping method. In both cases, 6000 simulations are performed for 
sampling the individual distributions in the ‘Var_Dike’ analyses. The ‘All’ analysis also 
separates the piping failure estimates, simulating 30,000 events for each. This is enough 
to get convergence of dike sections failure probabilities, accounting for the multiple 
sources of uncertainty. For future studies, efficiency in the number of simulations could be 
improved using methods such as importance sampling (Diermanse et al. 2014).

4  Results and discussion

4.1  Hydrological analysis (‘Hyd’)

The purpose of this analysis is to compare hydraulic loads under deterministic hydrological 
boundary conditions (Tr500) to those observed from the stochastic boundary conditions 
developed using the Gaussian copula and the SMHI data.

4.1.1  Return period water levels

For each breach location along the main channel, the maximum water levels from the 20,000 
Var_Hyd simulations at that location are ranked, allowing the expected levels for various 
return periods to be estimated. Combining these return period levels for each location along 
the main channel makes a ‘profile’ of return period water levels. It should be noted that this 
profile does not represent any single simulation from Var_Hyd. As the SDHs in the Tr500 
boundary condition are developed in such a way to reproduce the 500  year return period 
event at every point along the main channel, the water levels from the Det_Hyd500 simula-
tion can be directly compared to the 500 year return period water profiles from Var_Hyd. Fig-
ure 4 shows the locations and elevations of the return period profiles and the river chainage 
of the main tributary confluences. To see the results more clearly, the levels of these return 
period profiles relative to the elevations in the Det_Hyd500 simulation are also plotted.

The 500 year profile from Var_Hyd slightly under-estimates the levels given by Det_
Hyd500 by a maximum of 30 cm at a chainage of 340 km upstream. Further downstream, 
the levels match much more closely; however this is in large part due to overflow that often 
occurs during extreme events (see Fig. 5).

4.1.2  Return period inundation

Although breaches do not occur in the Var_Hyd analysis, the compartments experience 
flooding inundation due to overflow. The total maximum flood volume for each com-
partment from the 20,000 Var_Hyd simulations are ranked so that the expected volumes 
for various return periods can be estimated. Again, it should be noted that the Var_Hyd 
results do not represent any single simulation, but the combined results from each stor-
age area. Figure 5 shows how these volumes compare to those observed in the determin-
istic simulation.

For extreme events, many B-Buffer compartments are completely filled, and therefore 
show little change in volume between the simulations. However, a number of C-Buffer 
compartments are seen to experience a change in volume of over 0.1 Mm3, just from 
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overflow. The comparison highlights the error in assuming the Det_Hyd500 boundary 
conditions will cause 1/500  year inundation levels due to overflow. These results are 
further discussed below.

4.1.3  Event uncertainty

While the aggregation of the Var_Hyd simulations can show the expected return period 
values at various locations, the individual simulations represent realistic events and do 
not necessarily conform to a single return period load at every location. Figure 6 com-
pares 46 individual simulations from Var_Hyd with Det_Hyd500. The 46 Var_Hyd sim-
ulations are selected due to having an observed maximum water level at Pontelagoscuro 
that is within 10 cm of the level simulated in Det_Hyd500 at the same location. For this 
reason, the Var_Hyd simulations appear to converge at this downstream point, while the 
upstream levels in these simulations can differ largely to the deterministic simulation. 
For clarity, in the bottom part of the figure the Var_Hyd profiles are shown relative to 
DetHyd_500 profile.

Most of the deviation of these events occurs upstream, prior to the confluence of 
the Adda tributary, after which the contributions from tributaries are relatively small. 
Another reason the events are more similar downstream is that a large degree of over-
flow occurs in the region of the Oglio tributary (near Borgoforte), as can be seen in 
Fig. 5.

4.2  Dike Breaching analysis—‘Dike’

The purpose of this analysis is to compare the effects of deterministic and stochastic 
breaching simulations on the Po. As shown in Table 2, separate ‘overtopping’ and ‘overtop-
ping and piping’ analyses have been performed due to the simplified methods used for pip-
ing. The boundary conditions used are in all cases the Tr500 event. In the stochastic simu-
lations, the thresholds are sampled from the uncertainty estimates described in Sect. 3.2. In 
the deterministic simulations the values of maximum likelihood are used as the thresholds.

4.2.1  Water profile uncertainty

The water level profiles of the deterministic and variable simulations in which breaching 
occurs due to overtopping are shown in Fig.  7. The locations of breaches that occurred 
in Det_DikeO500 are highlighted in the top plot. For clarity, in the bottom plot variable 
profiles are shown relative to the deterministic one, and as ‘denser’ in locations where 
the 6000 profiles converge. As the boundary conditions are all the same, no deviation is 
seen before the first potential breach location at around 360 km upstream. In contrast to 
the hydrological analysis, the water level uncertainty due to dike breaching is more pro-
nounced downstream.

The same comparison can be made when the breaching occurs due to both overtopping 
and piping. The difference in the range of uncertainty surrounding the water level profile 
when piping is included is negligible, and is therefore not included.
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4.2.2  Breach and inundation uncertainty

The inundation volumes and breach locations resulting from Det_DikeO500 are shown at 
the top of Fig.  8. As a comparison, the averaged compartment inundation volumes and 
the percentage of breaches that occurred over the 6000 simulations of Var_DikeO500 are 
shown at the bottom of the figure.

As can be expected, breached sections of Det_DikeO500 have high corresponding 
breaching percentages in Var_DikeO500, and the compartments connected to those sec-
tions are also subject to a large degree of inundation. However, a number of other dike sec-
tions also appear to be vulnerable in the stochastic analysis, causing other compartments to 

Fig. 4  Return period water profiles from Var_Hyd and corresponding mapped locations. Top graph: abso-
lute elevations above sea level. Bottom graph: elevations relative to Det_Hyd500 (i.e. RP elevation profile 
from Var_Hyd –elevation profile from Det_Hyd500)

Fig. 5  Comparison of maximum inundation volumes (due to overflow) for DetHyd500 and the 500  year 
expected volumes for Var_Hyd. Areas with volumes < 0.1  Mm3 are shown in white. A ‘significant’ change 
in volume is considered to 0.1  Mm3
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experience significant inundation. Again, the results are similar when the thresholds for the 
piping mechanism are included, are therefore presented in Appendix D.

4.3  Overall Analysis—‘All’

This section shows two of the potential applications of using both sources of uncertainty 
in flood hazard analyses; dike failure probabilities and expected hazard distributions. 
From Figs. 5 and 8 it can be seen that the floodplain compartments upstream of Borgo-
forte are the most vulnerable to flooding and breach failures, and thus only this region is 
considered in this analysis (Fig. 9). As the Var_AllO and Var_AllOP simulations include 
both hydrological and dike breaching uncertainty, failure probabilities can be calculated 
from these scenarios. However, the differences between the scenarios are minor, and 
therefore only Var_AllO is plotted in Fig. 9. It can be seen that the calculated failure prob-
abilities for most sections conform to or surpass the protection standard for the region 
(1/200 year).

For the three stochastic simulations that sample annual hydrological boundary condi-
tion from a copula (Var_Hyd, Var_AllO, and Var_AllOP), the expected maximum inun-
dation volumes for various return periods can be calculated for each compartment. The 
calculated values for two of these C-Buffer compartments (A and B) of these are shown 
in Fig. 10.

In most cases, the return period inundation volumes expected in the compartments are 
lower for Var_Hyd as overflow is included, but dike failures are not. For the two com-
partments shown, dike breaching causes inundation to be seen in events as small as 1/50 
years. Some upstream compartments (such as A) have a smaller maximum capacity when 
a breach occurs (as flow can return to the river through the breach). This means that, for 
extreme events, these compartments can show higher inundation levels if breaching is not 
included.

Fig. 6  Individual simulation profiles from Var_Hyd that ‘match’ (± 10 cm) the elevation of DetHyd500 at 
Pontelagoscuro. The bottom graph shows the relative profiles (simulation profile from Var_Hyd – elevation 
profile from Det_Hyd500)
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4.4  Discussion

As a validation for the method of uncertainty estimation used in the Hyd analysis, the 
return period water levels calculated from Var_Hyd are compared against those from Det_
Hyd500 (Fig. 4). It should be noted that neither method provide the ‘true’ water levels but 
do allow for a benchmark of the variable analysis. The 500 year levels from the variable 
method agree closely with those from the deterministic boundary conditions, despite no 
historical water levels being utilised in their calculation. The levels are under-estimated 
upstream by about 20–30 cm, which is considered acceptable given the simplified methods 
through which the SDHs are created.

The Tr500 boundary conditions elicit the 500 year hydraulic load at every location along 
the main channel, based on flood-frequency analysis of historic data. However, they cannot 
be used to estimate 1/500 year inundation levels in the compartments, as seen in Fig. 5. The 
reason for this is the variability in water level profiles (± 2 m at their most extreme) observed 
in Fig. 6, which suggests that it is unlikely that an event matches the 1/500 year water levels 
at every location along the main channel, especially upstream. This is in agreement with 
the results of Maione et al. (2003), who demonstrated the same result for the October 2000 
event. Both the deterministic and stochastic methods depend on the principle of hydrologi-
cal stationarity, which may not be applicable in the catchment (Milly et al. 2005).

The methods through which dike breaching is analysed are simplified, and validation of 
the fragility of the current dike system based on real-world data is not feasible. However, 
the fact that most calculated failure probabilities conform to the standard of protection in 
the region (1/200 year) helps to validate the method. The vulnerable areas also conform to 
those predicted by Mazzoleni et al. (2014a, b). The results of the ‘Dike’ analysis indicate 
that downstream water levels may vary by as much a 1 m for an extreme event due to the 
possibility of breaches (Fig. 7). Furthermore, many sections of dike and connected storage 
areas are shown to be vulnerable to breaching when stochastic simulations are used instead 
of deterministic ones (Figs. 8, 9).

Fig. 7  Profile comparison for Det_DikeO500 and Var_DikeO500. Top elevations (masl) of profiles 
including location of breaches from Det_DikeO500. Bottom elevations of Var_DikeO500 relative to Det_
DikeO500, shown in terms of ‘density’
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Finally, including both sets of uncertainty in the ‘All’ analysis demonstrates some of 
the applications of stochastic analyses in the region, as well as insights that can be gained. 
Failure probabilities of most sections are estimated to conform to the standard of protection 
in the region (1/200  year), but the analysis highlights many sections that may need fur-
ther investigation (Fig. 9). Although the differences between the two breaching scenarios 
(‘Overtopping’ and ‘Overtopping and Piping’) appear minimal, the separation was neces-
sary due to the simplified approach used to estimate piping.

Including both sets of uncertainty also allows expected hydraulic loads in the storage 
areas to be calculated for different return periods. Ideally, damage models could be applied 
directly to water depths to estimate values such as Expected Annual Damage (EAD). How-
ever, the quasi-2D structure used in the model means the depths calculated are not always 
representative of actual flood events. Instead the maximum inundation volume experienced 
in each compartment is here shown (Fig. 10), which could also potentially be used in dam-
age estimates (Prettenthaler et al. 2010).

Fig. 8  (Top) Breaches and inundation caused by Det_DikeO500. (Bottom) Breach percentages and average 
inundation caused by Var_DikeO500

Fig. 9  Dike failure probabilities for the upstream region of the Po, for Var_AllO. Storage areas for which 
statistics are shown in Fig. 10 (Appendix D) are also highlighted
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5  Conclusions

Flood risk analysis in large protected river systems is highly dependent on uncertainties in 
the tributary hydrology and dike fragility. If the distributions and dependencies of these 
variables can be estimated, Monte Carlo (MC) simulations of events sampled from the dis-
tributions can be used to estimate hazard and thus risk. In comparison with deterministic 
events, the aggregated MC results may provide valuable information in terms of uncer-
tainty and probability. The presented research investigates the effect of hydrological and 
dike fragility uncertainty on flood hazard in the Po River region of Italy, compared against 
existing deterministic hazard analysis methods. Applications of combining these stochastic 
analyses for complete hazard analyses are also demonstrated.

Hydrological uncertainty is estimated using multiple Synthetic Discharge Hydrographs 
(SDHs) for each tributary, which are built by sampling floodwave characteristics from a 
copula dependence model. Dike breaching uncertainty is based on distributions represent-
ing dike fragility and breach growth rate. The validation of the hydrological results show 
close agreement with those from a prior flood frequency analysis (< 30 cm). Validation of 
the uncertainty in dike breaching is more difficult but, for most dike sections, failure prob-
abilities calculated from the method achieve or surpass the 1/200 year standard of protec-
tion in the region. Comparing deterministic methods against these uncertainty estimations 
demonstrates the inhomogeneity of return period flows along the river, due to tributary 
inflows (± 2 m upstream) and breach outflows (± 0.5 m downstream).

Combining these uncertainty estimation methods in a complete hazard analysis allows prob-
ability distributions of hydraulic loads in the compartments and river to be computed, as well as 
dike failure probabilities. From these results, the potential dynamics of the river-dike-floodplain 
system during extreme events can be observed, such as the possibility of reduced storage capaci-
ties upstream when breaches allow inundated compartments to flow back into the river. However, 
the simplifications and assumptions used in generating these results should be taken into account 
in future studies. For the hydrology, these include the probability distributions, the copula and the 
short (30 year) timeseries used to generate them both, while for the dike strengths they include 
the piping formulation and growth functions. Finally, the quasi-2D simulation method also limits 
the inundation hazard information that can be obtained from the analyses.

Fig. 10  Expected inundation volumes at different return periods (log-scale) for C-Buffer storage areas. The 
plots show the result for overflow (Var_Hyd—Overflow), overtopping (Var_AllO—Overtopping) and over-
topping and piping (Var_AllOP—Overtopping and Piping). See Fig. 9 for locations
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Nevertheless, the proposed approach provides useful hazard information in the system, 
which (in combination with a damage model) could be used in the assessments of expected 
annual damage or proposed measures. The availability of such information, together with 
the uncertainty estimations, is certain to be of benefit to flood management decision mak-
ers. The overall approach is likely to be applicable to various large-scale protected river 
systems worldwide, including the Elbe and Rhine (Germany), Mississippi (USA) and the 
Yellow River (China).
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Appendices

Appendix A: parameters for floodwave characteristics of SDHs

The parameters for the distributions used in the Hyd analysis are shown in Table 3. As men-
tioned, for the 16 tributaries the same distribution is used for each floodwave characteristic; 
log-normal (peak discharge), normal (time lag) and log-normal (surface runoff duration). The 
Nash–Sutcliffe efficiency resulting from the fitted distributions of the discharge peak is also 
shown. As well as the baseflow applied to each tributary. The original timeseries are available 
at https ://hypew eb.smhi.se/europ ehype /time-serie s/, accessed on 19/10/2018.

Appendix B: Correlation matrix for contributing peaks on all tributaries

A 48*48 correlation matrix is used in to model the dependencies between the 3 characteris-
tics of the floodwaves for the 16 tributaries. Tables 4 shows the correlation matrix obtained 
for the peak values.

http://creativecommons.org/licenses/by/4.0/
https://hypeweb.smhi.se/europehype/time-series/
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