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SUMMARY

The synergy between optimization and control is a long standing tradition. In fact, this
synergy is becoming more and more apparent because of the multi-disciplinary char-
acter of the most pressing, current engineering problems along with constant develop-
ments of these two fields. Historically, optimization methods have helped the control
community to achieve their design goals formalized in some sort of objective function.
On the other hand, control theory has provided a setting to interpret complicated as-
pects of optimization algorithms. In this thesis, we address three problem instances that
lie on the boundary of optimization and control. We employ tools from one field to ad-
dress a problem in the other field. Fundamentally, our proposed methods share a similar
character: their analysis techniques are trajectory-based. In simple words, our proposed
methods exploit the trajectories generated by the dynamics that represent each problem
instance.

The first problem focuses on a 2nd-order, damped differential equation (ODE). This
ODE along with its numerous variations have been used to develop or analyze various
optimization algorithms, known as fast methods. As an alternative to the existing meth-
ods, we first amend the underling ODE with two types of state-dependent inputs, and
then extend the resulting controlled dynamics to two hybrid control systems. Employ-
ing a trajectory-based analysis, both control laws are constructed to guarantee exponen-
tial convergence in a suboptimality measure. To show that the trajectories generated by
each hybrid control system are well-posed, we demonstrate Zeno-freeness of solution
trajectories in both cases. Furthermore, we propose a mechanism to determine a time-
discretization step-size such that the resulting discrete-time hybrid control systems are
exponentially stable.

Event-based implementation of control laws have received a lot of attention during
the past decade. The reason for this interest is the hope to reduce the conservatism in-
volved in the traditional periodic implementation. In the second problem of this thesis,
we introduce an event-based sampling policy for a constraint-tightening, robust model
predictive control (RMPC) method. The triggering mechanism is a sequence of hyper-
rectangles constructed around the optimal state trajectories. In particular, the trigger-
ing mechanism’s nature makes the proposed approach a suitable choice for plants with-
out a centralized sensory node. A key feature of the proposed method is its complete
decoupling from the RMPC method’s parameters, facilitating a meaningful comparison
between the periodic and aperiodic implementation policies. Furthermore, we provide
two types of convex formulations to design the triggering mechanism.

The last problem we focus on in this thesis is also related to the event-based imple-
mentation of a control law. However, the main aim here is to propose an entity that can
be utilized by a real-time engineer to schedule tasks in a networked structure. A common
entity provided in the literature related to event-triggering approaches is the minimal
inter-execution time (to show the avoidance of a Zeno behavior in the closed-loop sys-

ix



x SUMMARY

tem). Nonetheless, such a quantity is extremely conservative when used for scheduling
purposes. In this problem, we consider an L2-based triggering mechanism introduced
in the literature and propose a framework to construct a timed safety automaton that can
capture the triggering instants generated by this mechanism. In our analysis, we borrow
some tools from stability analysis of delayed systems along with reachability analysis to
construct the desired timed safety automaton.



SAMENVATTING

De synergie tussen optimalisatie en regeltechniek is er een met een lange traditie. Sterker
nog, deze synergie is onderweg om nog meer zichtbaar te worden door het multidisci-
plinaire karakter van de meest uitdagende van de huidige technische problemen, naast
de voortschrijdende ontwikkeling van deze twee vakgebieden. Historisch gezien hebben
methodes uit de wereld van de optimalisatie regeltechnici geholpen om hun doelen, die
vaak geformaliseerd in de vorm van een criteriumfunctie, te bereiken. Aan de andere
kant hebben theorieën uit de regeltechniek geholpen om ingewikkelde aspecten van op-
timalisatiealgoritmen te interpreteren. In deze these worden drie gevallen behandeld die
zich ergens op het snijvlak tussen optimalisatie en regeltechniek bevinden. Daarbij wor-
den handvatten uit het ene vakgebied gebruikt om problemen in het andere veld aan te
pakken. In de basis delen de in deze these voorgestelde methoden een gemeenschappe-
lijk karakter: de analysetechnieken die gebruikt worden zijn allen trajectorie-gebaseerd.
Samengevat: de voorgestelde methoden halen voordeel uit kennis van trajectories, die
voortkomt uit de dynamische vergelijkingen die het betreffende probleemgeval repre-
senteren.

In het eerste probleem dat behandeld wordt richten we ons op een tweede-orde, ge-
dempte ‘gewone differentiaalvergelijking’ (ODE). Deze differentiaalvergelijking, samen
met talrijke varianten hierop, zijn gebruikt om diverse optimalisatiealgoritmen - te we-
ten de zogenaamde ‘fast methods’ - te ontwikkelen en analyseren. Anders dan voor de
tot nu toe bestaande methoden, voegen we eerst aan de differentiaalvergelijking twee ty-
pen toestandsbepaalde ingangssignalen toe, waarna we de resulterende dynamica - met
de toegevoegde terugkoppelingssignalen - uitbreiden tot hybride regelsystemen. Deze
beide regelschema’s worden geconstrueerd, gebruikmakende van trajectorie-gebaseerde
analyse, zodanig dat exponentiële convergentie gegarandeerd wordt ten opzichte van
een bepaalde suboptimaliteitsmaatstaf. Om te laten zien dat de trajectories die door
beide hybride regelsystemen welgesteld zijn wordt voor beide gevallen aangetoond dat
er geen zogenaamd Zeno-gedrag voorkomt in de oplossingstrajectories. Daarbovenop
wordt een mechanisme voorgesteld om een stapgrootte voor de tijds-discretisatie te be-
palen zodanig dat de resulterende discrete-tijd hybride regelsystemen exponentieel sta-
biel zijn.

Gebeurtenisgebaseerde (event-based) implementaties van regelmechanismen heb-
ben het laatste decennium veel aandacht gegenereerd. Deze aandacht wordt getrok-
ken door de wens om het conservatisme in de reguliere periodieke implementatie van
regelmechanismen te verminderen. In het tweede probleemgeval in dat in deze these
besproken wordt introduceren we een gebeurtenisgebaseerd bemonsteringsbeleid voor
een robuust modelgebaseerd voorspellend regelsysteem (RMPC), waarbij de randvoor-
waarden verkrapt worden om robuustheid te garanderen (constraint tightening). Het
activeringsmechanisme voor het opnieuw bemonsteren bestaat uit een reeks van hyper-
rechthoeken die geconstrueerd zijn rondom de optimale toestandstrajectorie. In het bij-
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xii SAMENVATTING

zonder maakt deze hyperrechthoekige natuur van het activeringsmechanisme het mo-
gelijk om deze toe te passen op systemen zonder gecentraliseerd sensorknooppunt. Een
belangrijk kenmerk van de voorgestelde methode is dat deze compleet ontkoppeld is
van de parameters van het voorspellend regelsysteem, waardoor een betekenisvolle ver-
gelijking tussen het periodieke en gebeurtenisgebaseerde implementatiebeleid gemaakt
kan worden. Er worden voor deze methode twee typen convexe formuleringen voor het
bepalen van de hyperrechthoeken aangereikt.

Het laatste probleem waar we ons in deze these op richten is ook verbonden aan
het gebeurtenisgebaseerd implementeren van een regelmechanisme. Anders dan hier-
voor het geval ligt de focus hier op het voorstellen van een entiteit die gebruikt kan wor-
den door een realtime-ingenieur om taken in een netwerkstructuur in te plannen. Een
entiteit die in de literatuur vaak gevonden wordt in relatie tot gebeurtenisgeactiveerde
aanpakken is de minimale tijd tussen twee uitvoeringen van een taak (minimal interexe-
cution time), om te laten zien dat in het gesloten-lus systeem geen Zeno-gedrag voor-
komt. Daarentegen, zo’n grootheid is vaak extreem conservatief wanneer deze gebruikt
wordt voor planningstoepassingen. In dit laatste probleemgeval beschouwen we een L2-
gebaseerd activeringsmechanisme die in de literatuur geïntroduceerd is en stellen we
een kader voor om een afgeklokt veiligheidsautomaton te construeren. Voor dit auto-
maton is het mogelijk om de activeringstijdstippen van het mechanisme vast te leggen.
In onze analyse lenen we enkele instrumenten uit stabiliteitsanalyse van systemen met
vertragingen, samen met instrumenten uit de haalbaarheidsanalyse, om het gewenste
geklokte veiligheidsautomaton te construeren.
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1
INTRODUCTION

Questions related to dynamical systems represent a prominent element in many scien-
tific and technological fields. This prominence stems from the fact that our ability to
comprehend any phenomenon starts with a sensible object, the model. With regards to
a phenomenon, the model is in fact the entity that allows one to construct logical state-
ments, to interpret a specific behavior, or (if possible) to manipulate a certain aspect
of the phenomenon via the environment that the phenomenon is in interaction with.
In particular, this perspective enables us to categorize seemingly different phenomena
from diverse scientific disciplines in a unified manner. By virtue of this mindset, intuitive
conclusions from a certain discipline are carried over to another discipline. One is then
capable of interpreting difficult to grasp behaviors in a rather straightforward manner.

Generally speaking, the specific behavior of a phenomenon that one wishes to ana-
lyze or to regulate is some sort of a functional of dynamics (i.e., the states) and/or inputs
(if the phenomenon is excited by its surrounding environment). We shall call this specific
behavior, the performance measure. A principal class of analysis techniques in dynam-
ical systems is the so-called Lyapunov-based methodologies. These methodologies pro-
vide a simple universal approach to quantitatively study a performance measure. The
key properties that make these methodologies such an omnipotent tool are their natural
simplicity and physical intuitions. They are undeniably a corner-stone in the analysis of
dynamical systems. The evidence is their numerous extensions and their versatility in
a variety of fields, such as optimization, statistical analyses, verification, identification,
etc.

Despite the universality of Lyapunov-based methodologies, it is probable that the
application of such a generic notion will limit one’s ability to exploit subtle features of
a certain problem instance. This matter then becomes crucial when one seeks the best
possible outcome for the considered performance measure of a phenomenon. Let us
now elaborate on the above statement by providing an example. Consider an iterative
optimization algorithm. It is not difficult to see that the algorithm can be understood as
a discrete-time dynamical system xk+1 = f (k, xk ), where k denotes the iteration index,
xk ∈ Rn is the decision variable, and the map f : Z≥0 ×Rn → Rn represents the dynam-
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2 1. INTRODUCTION

ical system capturing the algorithm’s dynamics. Let us further call the best achievable
outcome for a certain performance measure of an algorithm, an “optimal" outcome.
Roughly speaking, most of the approaches in the literature that provide optimal perfor-
mance measures (e.g., iteration complexity, rate of convergence, etc.) heavily exploit the
trajectories generated by their corresponding map f . (Notice that there are some “op-
timal" methods in the literature that do possess equivalent Lyapunov-based reformula-
tions.) The difficulty of finding a Lyapunov function for a general nonlinear dynamical
system is a known fact in control theory. Most of the proposed trajectory-based algo-
rithms heavily depend on the problem instance that these algorithms deal with. As a
result, if not impossible, it requires a lot of effort to extend these results to other settings
while using sophisticated argumentation.

In this thesis we argue in the favor of such specifically tailored tools related to three
problem instances that are clearly different on the surface, namely, (i) a dynamical sys-
tem viewpoint to synthesize a fast optimization algorithm, (ii) an event-based policy to
implement a robust model predictive control approach, and (iii) a symbolic framework
that captures the timing behavior of perturbed linear time-invariant systems with an
event-triggered implementation. The three proposed approaches follow a fundamen-
tally similar concept: they exploit the underlying structure of the solution trajectories
generated by each problem instance. In what follows, we introduce these three prob-
lems and outline the proposed approaches to solve each problem, at a conceptual level.

Chapter 2: This chapter deals with the continuous-time counterpart of a class of iter-
ative optimization algorithms, the so-called fast gradient-based methods, as the under-
lying phenomenon. (The prefix fast refers to the fact that these methods have an order of
magnitude higher rate of convergence compared to non-fast methods.) The dynamical
system that models the counterpart is a generic, damped 2nd-order ordinary differential
equation (ODE).

The treatment of optimization methods as dynamical systems can be traced back
centuries ago. The motivations behind such a treatment relies on the following fact: the
ability to utilize tools from dynamical systems whether to interpret behaviors of existing
optimization methods or to design new optimization methods. Recently, it has been ob-
served that if the step size of Nesterov’s celebrated fast method is pushed toward zero,
his algorithm recovers a damped, 2nd-order ODE with a time-dependent damping term.
Prior to Nesterov and surprisingly, Polyak also based his celebrated momentum method
on a similar damped, 2nd-order ODE, instead with a constant damping term. The obser-
vation regarding Nesterov’s fast method along with its relationship to Polyak’s momen-
tum method have become the driving force in the algorithmic optimization community
to design new optimization methods inspired by damped, 2nd-order ODEs. Indirectly,
this mindset has also restored the interest in the application of numerical discretizations
not only on the damped, 2nd-order ODEs but also on gradient systems (which are 1st-
order ODEs). In other words, researchers have become curious about the beneficiary
impacts of more advanced temporal discretization methods in designing and/or inter-
preting optimization algorithms.

In the same vein as the recent dynamical system viewpoint, we propose two classes
of fast methods that are formulated as hybrid control systems. We focus on an uncon-
strained, smooth problem min

X∈Rn
f (X ), where X ∈ Rn is the decision variable, the func-
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tion f : Rn → R is the objective function with f ∗ denoting the minimum of the func-
tion f . The proposed frameworks accept a user-defined positive scalar α and guarantee
the exponential convergence rate O (e−αt ) in the suboptimality measure f (X (t ))− f ∗.
The reasoning behind extending the class of dynamical systems represented by ODEs
to the ones represented by a mixture of continuous-discrete dynamics (i.e., the hybrid
formulation) stems from approaches used in the literature to address an unwanted be-
havior of fast methods. Fast methods are not descent and to counteract such a behavior
most of the approaches employ some sort of restarting schemes. Evidently, one can con-
sider such optimization algorithms as dynamical systems with jumps. A natural choice
of modeling is then a hybrid formulation. Alternative to the existing fast methods in
which the damping term of the 2nd-order ODE is time-dependent, we dynamically syn-
thesize feedback controls in a state-dependent manner. The input synthesis approaches
are trajectory-based rather than Lyapunov-based. In the first proposed class, the damp-
ing term is viewed as the control input. In the second class, the amplitude with which
the gradient of the objective function impacts the dynamics serves as the controller.
Here, the damping term is constant. The objective function requires to satisfy a certain
sharpness criterion, the so-called Polyak–Łojasiewicz inequality. Moreover, we establish
that both hybrid structures possess Zeno-free solution trajectories. We finally provide
a mechanism to determine the discretization step size to attain an exponential conver-
gence rate. The materials presented in this chapter are previously reported in [1], [2],
and [3].

Chapter 3: In this cahpter, the considered phenomenon is a perturbed linear time-
invariant (LTI) system controlled with a certain robust model predictive control (RMPC)
method. The performance measure, we seek to study, is the possibility of reducing the
communication and/or computation loads of this control approach in a networked en-
vironment.

In recent trends of applications, multiple subsystems sometimes cooperatively and
other times competitively utilize shared resources in a networked structure. Two main
resources that are commonly present in such networked structures are communication
and computation components. During the last two decades, increased attention has
been devoted to such networked problems and the term “networked control systems"
was coined to refer to these problems. In early studies, the beneficiary properties of
implementing a control law in an aperiodic fashion, as opposed to a traditional peri-
odic (time-triggered) fashion, have been pointed out. Subsequently, Tabuada demon-
strated in his seminal paper that one can employ the principles of input-to-state stability
to intelligently implement a control action in an aperiodic way while guaranteeing the
closed-loop stability. As a result, one expects the possibility to reduce communication
and computation burdens on shared resources. His mindset then spread out in many
directions which can be identified by the term event-triggering control in the literature.
(It is worth mentioning that the responsible entity that dictates the time to close a con-
trol loop is also known as the triggering mechanism.) Interestingly enough, this spread
is not just limited to the problems that are of interest to control theory communities.
For example, consider an optimization problem in which multiple agents try to cooper-
atively minimize a global objective function. In such a context, a similar idea has been
employed in several methods in order to define a communication policy to exchange
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local information while guaranteeing convergence to the global minimum.

In control methodologies, the class of RMPC methods is a potent candidate to be
equipped with an event-based implementation. This statement is simply supported by
the fact that the predicted trajectories at a given sampling instant can be considered as
a basis to construct a triggering mechanism. In this chapter, an event-based sampling
approach is proposed for a constraint-tightening RMPC method in the literature. The
proposed approach is applicable to perturbed, LTI systems with polytopic input/state
constraints. In a geometrical sense, the triggering mechanism is a sequence of hyper-
rectangles constructed around the optimal state trajectory. We show that employing the
proposed event-based implementation, robust recursive feasibility and robust stability
are guaranteed. In particular, the triggering mechanism is applicable to plants without
a centralized sensory component (that collects and is aware of all states). This is simply
because the triggering mechanism can be evaluated locally at each individual sensor.
The design of the triggering mechanism is cast as a constrained parametric-in-set opti-
mization problem with the volume of set as the objective function. We establish that one
can reformulate the optimization problem of triggering mechanism’s design in terms of
vertices of the desired hyper-rectangles. By doing so, the design problem becomes a con-
vex nonlinear program. We further borrow some mathematical tools from the literature
to show that a linear program reformulation of the triggering mechanism’s design is also
possible. The materials presented in this chapter are previously reported in [4] and [5].

Chapter 4: The phenomenon encountered in this chapter is the class of perturbed
LTI systems controlled with an event-triggering implementation. The performance mea-
sure of interest is an object that formally captures the triggering instants generated by the
triggering mechanism.

In networked control systems, the application of event-triggering strategies in the
sampling process is expected to reduce the usage of network resources, such as com-
munication bandwidth. However, it is essential to bring to the reader’s attention the fol-
lowing two facts regarding event-triggering implementations. First, most of the studies
in the literature fall short of guaranteeing improvements by employing such aperiodic
implementations. The analysis provided by these studies usually lacks a mathematically
sound framework to compare event- and time-triggering implementations. Nonethe-
less, numerical and experimental case studies support the claim that event-triggering
approaches on average can outperform time-triggering counterparts for a certain be-
havior of the closed-loop system (e.g., the required average number of instants to sam-
ple the states). Another assertion regarding event-triggering implementations, that is
commonly claimed without a rigorous proof, is the possibility of improving the energy
consumption of communication components and/or the computational effort to derive
the control input. On the surface, such a claim seems rather logical. However, this claim
does not always hold on a practical level.

Let us clarify the previous statement regarding the energy consumption in a commu-
nication network. Generally speaking, two groups are involved in the design process of
real-time systems, in particular networked control systems: control engineers who de-
sign control laws, and real-time engineers who design schedulers to safely implement
tasks in the communication network. Suppose one considers a time-triggering imple-
mentation of the control law. The only piece of information that should be conveyed be-
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tween these two groups is simply a periodic or an aperiodic time period based on which
the control law is updated. Such a concept is referred to as the “separation of concerns"
in the scheduling community. Consider now an event-triggering implementation of the
control law. In this case, there is no such simple object (e.g., the time period) to be pro-
vided to real-time engineers for a proper task scheduling. This is due to the fact that the
next triggering instant is now implicitly determined by the triggering mechanism. (No-
tice that most of the event-triggering mechanisms are state-dependent functions.) Thus,
the aperiodic nature of sampling periods generated by event-triggering approaches hin-
der the schedulability of such networked control systems.

In this chapter, we propose a formal framework to construct a timed safety automa-
ton that captures the sampling behavior of an event-triggering approach for perturbed
LTI systems. The triggering mechanism is designed based on the L2 stability, introduced
in the literature. The term sampling behavior refers to all sequences of triggering instants
that can be generated by the triggering mechanism. The proposed framework consists
of two main stages in order to construct the time safety automaton. In the first stage, the
state-space is partitioned into a finite number of convex polyhedral cones. Each cone
represents a discrete mode in the abstracted automaton. Inspired by an approach intro-
duced in the literature, we then (i) adopt techniques from stability analysis of retarded
systems and (ii) use a polytopic embedding of time to construct several LMI conditions.
These LMI conditions enable us to characterize the sampling interval associated with
each region. This time interval denotes all the possible sampling periods that can be
generated by the triggering mechanism, assuming the state at the last triggering instant
lies inside the corresponding cone. In the second stage, we use reachability analysis to
derive all the transitions in the abstracted automaton. This leads to an object that can be
passed to real-time engineers for the scheduling purpose. The materials of this chapter
are previously reported in [6].

Chapter 5: In the final chapter, we conclude this thesis and provide several future
research directions for each of the three topics.





2
CONTINUOUS-TIME ACCELERATED

METHODS VIA A HYBRID CONTROL

LENS

7



2

8 2. CONTINUOUS-TIME ACCELERATED METHODS VIA A HYBRID CONTROL LENS

Inspired by the recent dynamical system viewpoint of Nesterov’s fast method, we pro-
pose two classes of fast optimization methods in this chapter. We formulate the dynam-
ics of these optimization methods in the framework of hybrid control systems. Alterna-
tive to the existing fast methods which are parametric-in-time second order differential
equations, we synthesize the feedback inputs in a state-dependent fashion. In the first
class, a damping term is viewed as the control input. In the second class, the ampli-
tude with which the gradient of the objective function impacts the dynamics serves as
the controller. The structures of the inputs are determined such that a pre-specified ex-
ponential convergence rate is guaranteed. The proposed methodologies require the ob-
jective function to satisfy a certain sharpness criterion, the so-called Polyak–Łojasiewicz
inequality. We further establish that both of the hybrid formulations possess Zeno-free
solution trajectories. In order to construct the discrete-time counterparts of the pro-
posed continuous-time hybrid control systems (that are the iterative optimization algo-
rithms), we finally provide a mechanism to determine the discretization step size such
that an exponential convergence rate can be attained. The materials presented in this
chapter are previously reported in [1], [2], and [3].

2.1. INTRODUCTION
There is a renewed surge of interest in gradient-based algorithms in many computa-
tional communities such as machine learning and data analysis. The following non-
exhaustive list of references indicates typical application areas: clustering analysis [7],
neuro-computing [8], statistical estimation [9], support vector machines [10], signal and
image processing [11], and networked-constrained optimization [12]. This interest pri-
marily stems from low computational and memory loads of these algorithms (making
them exceptionally attractive in large-scale problems where the dimension of decision
variables can be enormous). As a result, a deeper understating of how these algorithms
function has become a focal point of many studies.

One research direction that has been recently revitalized is the application of ordi-
nary differential equations (ODEs) to the analysis and design of optimization algorithms.
Consider an iterative algorithm that can be viewed as a discrete dynamical system, with
the scalar s as its step size. As s decreases, one can observe that the iterative algorithm in
fact recovers a differential equation, e.g., in the case of gradient descent method applied
to an unconstrained optimization problem minX∈Rn f (X ), one can inspect that

X k+1 = X k − s∇ f (X k )  Ẋ (t ) =−∇ f
(
X (t )

)
where f :Rn →R is a smooth function, X is the decision variable, k ∈Z≥0 is the iteration
index, and t ∈ R≥0 is the time. The main motivation behind this line of research has to
do with well-established analysis tools in dynamical systems described by differential
equations.

The slow rate of convergence of the gradient descent algorithm (O ( 1
t ) in continuous

and O ( 1
k ) in discrete time), limits its application in large-scale problems. In order to

address this shortcoming, many researchers resort to the following class of 2nd-order
ODEs, which is also the focus of this study:

Ẍ (t )+γ(t )Ẋ (t )+∇ f
(
X (t )

)= 0. (2.1)
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Increasing the order of the system dynamics interestingly helps improve the conver-
gence rate of the corresponding algorithms to O ( 1

k2 ) in the discrete-time domain or to

O ( 1
t 2 ) in the continuous-time domain. Such methods are called momentum, acceler-

ated, or fast gradient-based iterative algorithms in the literature. The time-dependent
function γ : R≥0 → R>0 is a damping or a viscosity term, which has also been referred to
as the asymptotically vanishing viscosity since limt→∞ γ(t ) = 0 [13].

Chronological developments of fast algorithms: It is believed that the application
of (2.1) to speed-up optimization algorithms is originated from [14] in which Polyak was
inspired by a physical point of view (i.e., a heavy-ball moving in a potential field). Later
on, Nesterov introduced his celebrated accelerated gradient method in [15] using the
notion of “estimate sequences" and guaranteeing convergence rate of O ( 1

k2 ). Despite
several extensions of Nesterov’s method [16–18], the approach has not yet been fully
understood. In this regard, many have tried to study the intrinsic properties of Nesterov’s
method such as [19–22]. Recently, the authors in [23] and in details [24] surprisingly
discovered that Nesterov’s method recovers (2.1) in its continuous limit, with the time-
varying damping term γ(t ) = 3

t .

A dynamical systems perspective: Based on the observation suggested by [23], sev-
eral novel fast algorithms have been developed. Inspired by the mirror descent approach
[25], the ODE (2.1) has been extended to non-Euclidean settings and to higher order
methods using the Bregman Lagrangian in [26]. Following [26], a “rate-matching" Lya-
punov function is proposed in [27] with its monotonicity property established for both
continuous and discrete dynamics. Recently, the authors in [22] make use of an inter-
esting semidefinite programming framework developed by [21] and use tools from ro-
bust control theory to analyze the convergence rate of optimization algorithms. More
specifically, the authors exploit the concept of integral quadratic constraints (IQCs) [28]
to design iterative algorithms under the strong convexity assumption. Later, the authors
in [29] extend the results of IQC-based approaches to quasi-convex functions. The au-
thors in [30] use dissipativity theory [31] along with the IQC-based analysis to construct
Lyapunov functions enabling rate analyses.

Restarting schemes: A characteristic feature of fast methods is the non-monotonicity
in the suboptimality measure f − f ∗, where f ∗ refers to the optimal value of function
f . The reason behind such an undesirable behavior can be intuitively explained in two
ways: (i) a momentum based argument indicating as the algorithm evolves, the algo-
rithm’s momentum gradually increases to a level that it causes an oscillatory behav-
ior [32]; (ii) an acceleration-based argument indicating that the asymptotically vanish-
ing damping term becomes so small that the algorithm’s behavior drifts from an over-
damped regime into an under-damped regime with an oscillatory behavior [24]. To pre-
vent such an undesirable behavior in fast methods, an optimal fixed restart interval is
determined in terms of the so-called condition number of function f such that the mo-
mentum term is restarted to a certain value, see e.g., [16, 18, 33–35]. It is worth mention-
ing that [32] proposes two heuristic adaptive restart schemes. It is numerically observed
that such restart rules practically improve the convergence behavior of a fast algorithm.

Regularity for exponential convergence: Generally speaking, exponential conver-
gence rate and the corresponding regularity requirements of the function f are two cru-
cial metrics in fast methods. In what follows, we discuss about these metrics for three



2

10 2. CONTINUOUS-TIME ACCELERATED METHODS VIA A HYBRID CONTROL LENS

popular fast methods in the literature. When the objective functions are strongly convex
with a constant σ f and their gradient is Lipschitz with a constant L f , [24] proposes the
“speed restarting" scheme

sup
{

t > 0 : ∀τ ∈ (0, t ),
d‖Ẋ (τ)‖2

dτ
> 0

}
,

to achieve the convergence rate of:

f
(
X (t )

)− f ∗ ≤ d1e−d2t‖X (0)−X ∗‖2.

The positive scalars d1 and d2 depend on the constants σ f and L f . Assuming the con-
vexity of the function f with a certain choice of parameters in their “ideal scaling" condi-
tion, [26] guarantees the convergence rate of O (e−ct ) for some positive scalar c. However,
in this general case, their approach requires to compute a matrix inversion in the Euler-
Lagrange equation in the form of:

Ẍ (t )+ c Ẋ (t )+ c2ect
(
∇2h

(
X (t )+ 1

c
Ẋ (t )

))−1∇ f
(
X (t )

)= 0,

where the function h is a distance generating function. Under uniform convexity as-
sumption with a constant ν f , it is further shown that

f
(
X (t )

)− f ∗ ≤
(

f
(
X (0)

)− f ∗
)
e−ν f

1
p−1 t ,

where p −1 is the order of smoothness of f . The authors in [27] introduce the Lyapunov
function

E (t ) = eβ(t )
(

f
(
X (t )

)− f ∗+ σ f

2
‖X ∗−Z (t )‖2

)
,

to guarantee the rate of convergence

E (t ) ≤ E (0)e−
∫
β̇(s)d s ,

where Z (t ) = X (t )+ 1
β̇(t )

Ẋ , Ż (t ) = −Ẋ (t )− 1
σ f
β̇(t )∇ f

(
X (t )

)
, and β(t ) is a user-defined

function.
Contribution: Much of the references reviewed above primarily deal with construct-

ing a time-dependent damping term γ(t ) that is sometimes tied to a Lyapunov func-
tion. Furthermore, due to underlying oscillatory behavior of the corresponding 2nd-
order ODE, researchers utilize restarting schemes to over-write the steady-state non-
monotonic regime with the transient monotonic regime of the dynamics. In general,
notice that these schemes are based on time-dependent schedulers.

Statement of hypothesis: With the above argument in mind, let us view an algorithm
as a unit point mass moving in a potential field caused by an objective function f under
a parametric (or possibly constant) viscosity, similar to the second order ODE (2.1). In
this view, we aim to address the following two questions: Is it possible to

I) synthesize the damping term γ as a state-dependent term (i.e., γ(X , Ẋ )), or
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II) dynamically control the magnitude of the potential force ∇ f (X ),

such that the underlying properties of the optimization algorithm are improved?
In this chapter, we answer these questions by amending the 2nd-order ODE (2.1) in

two ways as follows:

(I) Ẍ (t )+uI
(
X (t ), Ẋ (t )

)
Ẋ (t )+∇ f (X (t )) = 0,

(II) Ẍ (t )+ Ẋ (t )+uII
(
X (t ), Ẋ (t )

) ∇ f (X (t )) = 0,

where the indices indicate to which question each structure is related to in the above
hypothesis. Evidently, in the first structure, the state-dependent input uI replaces the
time-dependent damping γ in (2.1). While in the second structure, the feedback input
uII dynamically controls the magnitude with which the potential force enters the dy-
namics (we assume for simplicity of exposition that γ(t ) = 1, however, one can modify
our proposed framework and following a similar path develop the corresponding results
for the case γ(t ) 6= 1). Given a positive scalar α, we seek to achieve an exponential rate
of convergence O (e−αt ) for an unconstrained, smooth optimization problem in the sub-
optimality measure f

(
X (t )

)− f ∗. To do so, we construct the state-dependent feedback
laws for each structure as follows:

uI
(
X (t ), Ẋ (t )

)
:= α+ ‖∇ f (X (t ))‖2 −〈∇2 f

(
X (t )

)
Ẋ (t ), Ẋ (t )〉

〈∇ f
(
X (t )

)
,−Ẋ (t )〉 ,

uII
(
X (t ), Ẋ (t )

)
:= 〈∇2 f

(
X (t )

)
Ẋ (t ), Ẋ (t )〉+ (1−α)〈∇ f

(
X (t )

)
,−Ẋ (t )〉

‖∇ f (X (t ))‖2 .

Motivated by restarting schemes, we further extend the class of dynamics to hy-
brid control systems (see Definition 2.2.1 for further details) in which both of the above
ODE structures play the role of the continuous flow in their respective hybrid dynamical
extension. We next suggest an admissible control input range [umin,umax] that deter-
mines the flow set of each hybrid system. Based on the model parameters α, umin, and
umax, we then construct the jump map of each hybrid control system by the mapping(
X >,−β∇> f (X )

)> guaranteeing that the range space of the jump map is contained in
its respective flow set. Notice that the velocity restart schemes take the form of Ẋ =
−β∇ f (X ).

We now summarize the contributions of our proposed approaches in the context of
continuous-time, fast methods:

• We introduce system theoretic frameworks to synthesize state-dependent feed-
back inputs given a prescribed control input bound and a desired convergence
rate (Theorems 2.3.1 and 2.3.4). Notice that the state-dependent feature of our
proposed dynamical systems differs from commonly time-dependent methodolo-
gies in the literature.

• We derive a lower bound on the time between two consecutive jumps for each
hybrid structure. This ensures that the constructed hybrid systems admit the so-
called Zeno-free solution trajectories. It is worth noting that the regularity as-
sumptions required by the proposed structures are different (Theorems 2.3.2 and
2.3.5).
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• The proposed frameworks are general enough to include a subclass of non-convex
problems. Namely, the critical requirement is that the objective function f satis-
fies the Polyak–Łojasiewicz (PL) inequality (Assumption (A2)), which is a weaker
regularity assumption than the strong convexity that is often assumed in this con-
text.

• We utilize the forward-Euler method to discretize both hybrid systems (i.e., obtain
optimization algorithms). We further provide a mechanism to compute the step
size such that the corresponding discrete dynamics have an exponential rate of
convergence (Theorem 2.3.11).

The remainder of this chapter is organized as follows. In Section 2.2, the mathe-
matical notions are represented. The main results of the chapter are introduced in Sec-
tion 2.3. Section 2.4 contains the proofs of the main results. We introduce a numerical
example in Section 2.5. This chapter is finally concluded in Section 2.6.

Notations: The sets Rn and Rm×n denote the n-dimensional Euclidean space and
the space of m×n dimensional matrices with real entries, respectively. For a matrix M ∈
Rm×n , M> is the transpose of M , M Â 0 (≺ 0) refers to M positive (negative) definite, M º
0 (¹ 0) refers to M positive (negative) semi-definite, and λmax(M) denotes the maximum
eigenvalue of M . The n ×n identity matrix is denoted by In . For a vector v ∈ Rn and

i ∈ {1, · · · ,n}, vi represents the i -th entry of v and ‖v‖ :=
√
Σn

i=1 v2
i is the Euclidean 2-

norm of v . For two vectors x, y ∈ Rn , 〈x, y〉 := x>y denotes the Euclidean inner product.
For a matrix M , ‖M‖ :=

√
λmax(A>A) is the induced 2-norm. Given the set S ⊆ Rn , ∂S

and int(S) represent the boundary and the interior of S, respectively.

2.2. PRELIMINARIES
We briefly recall some notions from hybrid dynamical systems that we will use to develop
our results. Then, the problem statement is introduced along with some assumptions
related to the optimization problem to be tackled in this chapter. We adapt the following
definition of a hybrid control system from [36] that is sufficient in the context of this
chapter.

Definition 2.2.1 (Hybrid control system). A time-invariant hybrid control system H com-
prises a controlled ODE and a jump (or a reset) rule introduced as:{

ẋ = F
(
x,u(x)

)
, x ∈C

x+ = G(x), otherwise,
(H )

where x+ is the state of the hybrid system after a jump, the function u :Rn →Rm denotes a
feedback signal, the function F : Rn ×Rm → Rn is the flow map, the set C ⊆ Rn is the flow
set, and the function G : ∂C → int(C ) represents the jump map.

In hybrid dynamical systems, the notion of Zeno behavior refers to the phenomenon
that an infinite number of jumps occur in a bounded time interval. We then call a so-
lution trajectory of a hybrid dynamical system Zeno-free if the number of jumps within
any finite time interval is bounded. The existence of a lower bound on the time inter-
val between two consecutive jumps suffices to guarantee the Zeno-freeness of a solution
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trajectory of a hybrid control system. Nonetheless, there exist solution concepts in the
literature that accept Zeno behaviors, see for example [36–39] and the references therein.

Consider the following class of unconstrained optimization problems:

f ∗ := min
X∈Rn

f (X ), (2.2)

where f :Rn →R is an objective function. We now formally state the main problem to be
addressed in this chapter:

Problem 2.2.2. Consider the unconstrained optimization problem (2.2) where the objec-
tive function f is twice differentiable. Given a positive scalar α, design a fast gradient-
based method in the form of a hybrid control system (H ) withα-exponential convergence
rate, i.e. for any initial condition X (0) and any t ≥ 0 we have

f
(
X (t )

)− f ∗ ≤ e−αt
(

f
(
X (0)

)− f ∗
)
,

where {X (t )}t≥0 denotes the solution trajectory of the system (H ).

Assumption 2.2.3 (Regularity assumptions). We stipulate that the objective function f :
Rn →R is twice differentiable and fulfills the following:

• (Bounded Hessian) The Hessian of function f , denoted by∇2 f (x), is uniformly bounded,
i.e.,

−` f In ¹∇2 f (x) ¹ L f In , (A1)

where ` f and L f are non-negative constants.

• (Gradient dominated) The function f satisfies the Polyak-Łojasiewicz inequality
with a positive constant µ f , i.e., for every x in Rn we have

1

2

∥∥∇ f (x)
∥∥2 ≥µ f

(
f (x)− f ∗)

, (A2)

where f ∗ is the minimum value of f on Rn .

• (Lipschitz Hessian) The Hessian of the function f is Lipschitz, i.e., for every x, y in
Rn we have ∥∥∇2 f (x)−∇2 f (y)

∥∥≤ H f ‖x − y‖, (A3)

where H f is a positive constant.

Remark 2.2.4 (Lipschitz gradient). Since the function f is twice differentiable, Assump-
tion (A1) implies that the function ∇ f is also Lipschitz with a positive constant L f , i.e., for
every x, y in Rn we have ∥∥∇ f (x)−∇ f (y)

∥∥≤ L f ‖x − y‖. (2.3)

We now collect two remarks underlining some features of the set of functions that
satisfy (A2).
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Remark 2.2.5 (PL functions and invexity). The PL inequality in general does not imply
the convexity of a function but rather the invexity of it. The notion of invexity was first
introduced by [40]. The PL inequality (A2) implies that the suboptimality measure f − f ∗
grows at most as a quadratic function of ∇ f .

Remark 2.2.6 (Non-uniqueness of stationary points). While the PL inequality does not
require the uniqueness of the stationary points of a function (i.e., {x : ∇ f (x) = 0}), it ensures
that all stationary points of the function f are global minimizers [41].

We close our preliminary section with a couple of popular examples borrowed from
[42].

Example 1 (PL functions). The composition of a strongly convex function and a linear
function satisfies the PL inequality. This class includes a number of important problems
such as least squares, i.e., f (x) = ‖Ax − b‖2 (obviously, strongly convex functions also
satisfy the PL inequality). Any strictly convex function over a compact set satisfies the
PL inequality. As such, the log-loss objective function in logistic regression, i.e., f (x) =
Σn

i=1 log
(
1+exp(bi a>

i x)
)
, locally satisfies the PL inequality.

2.3. MAIN RESULTS
In this section, the main results of this chapter are provided. We begin with introduc-
ing two types of structures for the hybrid system (H ) motivated by the dynamics of
fast gradient methods [24]. Given a positive scalar α, these structures, indexed by I
and II, enable achieving the rate of convergence O (e−αt ) in the suboptimality measure
f
(
X (t )

)− f ∗. We then collect multiple remarks highlighting the shared implications of
the two structures along with a naive type of time-discretization for these structures. The
technical proofs are presented in Section 2.4. For notational simplicity, we introduce the
notation x := (x1, x2) such that the variables x1 and x2 represent the system trajectories
X and Ẋ , respectively.

2.3.1. STRUCTURE I: STATE-DEPENDENT DAMPING COEFFICIENT

The description of the first structure follows. We start with the flow map FI :R2n×R→R2n

defined as

FI
(
x,uI(x)

)= (
x2

−∇ f (x1)

)
+

(
0

−x2

)
uI(x). (2.4a)

Notice that FI(·, ·) is the state-space representation of a 2nd-order ODE. The feedback
law uI :R2n →R is given by

uI(x) =α+ ‖∇ f (x1)‖2 −〈∇2 f (x1)x2, x2〉
〈∇ f (x1),−x2〉

. (2.4b)

Next, the candidate flow set CI ⊂ R2n is characterized by an admissible input interval
[uI uI], i.e.,

CI =
{

x ∈R2n : uI(x) ∈ [uI, ,uI]
}
, (2.4c)
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where the interval bounds uI,uI represent the range of admissible control values. Notice
that the flow set CI is the domain in which the hybrid system (H ) can evolve continu-
ously. Finally, we introduce the jump map GI : R2n → R2n parameterized by a constant
βI

GI(x) =
(

x1

−βI∇ f (x1)

)
. (2.4d)

The parameter βI ensures that the range space of the jump map GI is a strict subset of
int(CI). By construction, one can inspect that any neighborhood of the optimizer x∗

1 has
a non-empty intersection with the flow set CI. That is, there always exist paths in the set
CI that allow the continuous evolution of the hybrid system to approach arbitrarily close
to the optimizer.

We are now in a position to formally present the main results related to the structure I
given in (2.4). This theorem provides a framework to set the parameters uI, uI, and βI in
(2.4c) and (2.4d) in order to ensure the desired exponential convergence rate O (e−αt ).

Theorem 2.3.1 (Continuous-time convergence rate - I). Consider a positive scalarα and
a smooth function f : Rn → R satisfying Assumptions (A1) and (A2). Then, the solution
trajectory of the hybrid control system (H ) with the respective parameters (2.4) starting
from any initial condition x1(0) satisfies

f
(
x1(t )

)− f ∗ ≤ e−αt
(

f
(
x1(0)

)− f ∗
)
, ∀t ≥ 0, (2.5)

if the scalars uI, uI, and βI are chosen such that

uI <α+β−1
I −L f βI, (2.6a)

uI >α+β−1
I +` f βI, (2.6b)

α≤ 2µ f βI. (2.6c)

The next result establishes a key feature of the solution trajectories generated by the
dynamics (H ) with the respective parameters (2.4), that the solution trajectories are in-
deed Zeno-free.

Theorem 2.3.2 (Zeno-free hybrid trajectories - I). Consider a smooth function f :Rn →R

satisfying Assumption 2.2.3, and the corresponding hybrid control system (H ) with the re-

spective parameters (2.4) satisfying (2.6). Given the initial condition
(
x1(0),−βI∇ f

(
x1(0)

))
the time between two consecutive jumps of the solution trajectory, denoted by τI, satisfies
for any scalar r > 1

τI ≥ log

max
{ a1

a2 +a3

∥∥∥∇ f
(
x1(0)

)∥∥∥ +1,r 1/δ
} , (2.7)
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where the constants involved are defined as

C :=
(uI −α)+

√
(uI −α)2 +4L f

2
, (2.8a)

δ :=C +max{uI,−uI}, (2.8b)

L f := max{` f ,L f }, (2.8c)

a1 := min{uI − (α+β−1
I +` f βI), (α+β−1

I −L f βI)−uI}, (2.8d)

a2 := r L f δ
−1(rβIC +1)+β−1

I + (r 2 + r +1)βIL f , (2.8e)

a3 := r 3β2
I H f δ

−1. (2.8f)

Consequently, the solution trajectories are Zeno-free.

Remark 2.3.3 (Non-uniform inter-jumps - I). Notice that Theorem 2.3.2 suggests a lower-
bound for the inter-jump interval τI that depends on ‖∇ f (x1)‖. In light of the fact that the
solution trajectories converge to the optimal solutions, and as such ∇ f (x1) tends to zero,
one can expect that the frequency at which the jumps occur reduces as the hybrid control
system evolves in time.

2.3.2. STRUCTURE II: STATE-DEPENDENT POTENTIAL COEFFICIENT
In this subsection, we first provide the structure II for the hybrid control system (H ).
We skip the details of differences with the structure I and differ it to Subection 2.3.3 and
Section 2.4. Consider the flow map FII :R2n ×R→R2n given by

FII
(
x,uII(x)

)= (
x2

−x2

)
+

(
0

−∇ f (x1)

)
uII(x), (2.9a)

and the feedback law uII :R2n →R given by

uII(x) = 〈∇2 f (x1)x2, x2〉+ (1−α)〈∇ f (x1),−x2〉
‖∇ f (x1)‖2 . (2.9b)

The candidate flow set CII ⊂ R2n is parameterized by an admissible interval [uII uII] as
follows:

CII =
{

x ∈R2n : uII(x) ∈ [uII,uII]
}

. (2.9c)

Parameterized in a constant βII, the jump map GII :R2n →R2n is given by

GII(x) =
(

x1

−βII∇ f (x1)

)
. (2.9d)

Theorem 2.3.4 (Continuous-time convergence rate - II). Consider a positive scalarα and
a smooth function f : Rn → R satisfying Assumptions (A1) and (A2). Then, the solution
trajectory of the hybrid control system (H ) with the respective parameters (2.9) starting
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from any initial condition x1(0) satisfies the inequality (2.5) if the scalars uII, uII, and βII

are chosen such that

uII <−` f β
2
II + (1−α)βII, (2.10a)

uII > L f β
2
II + (1−α)βII, (2.10b)

α≤ 2µ f βII. (2.10c)

Theorem 2.3.5 (Zeno-free hybrid trajectories - II). Consider a smooth function f :Rn →
R satisfying Assumptions (A1) and (A2), and the hybrid control system (H ) with the re-

spective parameters (2.9) satisfying (2.10). Given the initial condition
(
x1(0),−βII∇ f

(
x1(0)

))
the time between two consecutive jumps of the solution trajectory, denoted by τII, satisfies
for any scalar r ∈ (0,1)

τII ≥ min
{
rω−1,δ(b1 +b2)−1} , (2.11)

where the involved scalars are defined as

δ := min
{
uII − (L f β

2
II + (1−α)βII), (−` f β

2
II + (1−α)βII)−uII

}
,

U := max{uII,−uII},

L f := max{` f ,L f },

ω :=L f (β2
II +βIIU )

1
2 ,

b1 := 2L f βII
(
U +ω(βII +U )

)
(1− r )3 ,

b2 := |α−1| 2ωβII

(1− r )3 +|α−1|αβII(1+ r ).

Thus, the solution trajectories are Zeno-free.

Remark 2.3.6 (Uniform inter-jumps - II). Notice that unlike Theorem 2.3.2, the derived
lower-bound for the inter-jump interval τII is uniform in the sense that the bound is inde-
pendent of ‖∇ f (x1)‖. Furthermore, the regularity requirement on the function f is weaker
than the one used in Theorem 2.3.2, i.e., the function f is not required to satisfy the As-
sumption (A3).

Notice that the main differences between the structures (2.4), (2.9) lie in the flow
maps and the feedback laws. On the other hand, these structures share the key feature
of enabling an α-exponential convergence rate for the hybrid system (H ) through their
corresponding control inputs. The reason explaining the aforementioned points is de-
ferred until later in Section 2.4.

2.3.3. FURTHER DISCUSSIONS
In what follows, we collect several remarks regarding the common features of the pro-
posed structures. Then, we apply the forward-Euler method of time-discretization to
these structures of the hybrid control system (H ). The proposed discretizations guaran-
tee an exponential rate of convergence in the suboptimality measure f (xk

1 )− f ∗, where
k is the iteration index.
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Remark 2.3.7 (Weaker regularity than strong convexity). The PL inequality is a weaker
requirement than the strong convexity, which is often assumed in similar contexts [24, 26,
27]. It is worth noting that such a condition has also been used in the context of 1st-order
algorithms [42].

Remark 2.3.8 (Hybrid embedding of restarting). The hybrid frameworks intrinsically
capture restarting schemes through the jump map. The schemes are a weighted gradient
where the weight factor βI or βII is essentially characterized by the given data α, µ f , ` f ,
and L f . One may inspect that the constant βI or βII can be in fact introduced as a state-
dependent weight factor to potentially improve the performance. Nonetheless, for the sake
of simplicity of exposition, we do not pursue this level of generality in this chapter.

Remark 2.3.9 (2nd-order information). Although our proposed frameworks require 2nd-
order information, i.e., the Hessian ∇2 f , this requirement only appears in a mild form
as an evaluation in the same spirit as the modified Newton step proposed in [43]. Fur-
thermore, we emphasize that our results still hold true if one replaces ∇2 f (x1) with its
upper-bound L f In following essentially the same analysis. For further details we refer the
reader to the proof of Theorem 2.3.4.

Remark 2.3.10 (Fundamental limits on control input). An implication of Theorem 2.3.4

is that if the desired convergence rate α > ( 2µ f

2µ f +` f

)
, it is then required to choose uII < 0,

indicating that the system may need to receive energy through a negative damping. On
a similar note, Theorem 2.3.1 asserts that the upper bound requires uI > α, and if α >( 2µ fp

max{L f −2µ f ,0}

)
, we then have to set uI < 0.

2.3.4. DISCRETE-TIME DYNAMICS
In the next result, we show that if one applies the forward-Euler method on the two
proposed structures properly, the resulting discrete-time hybrid control systems pos-
sess exponential convergence rates. Suppose i ∈ {I,II} and let us denote by s the time-
discretization step size. Consider the discrete-time hybrid control system

Hd ,i :=
{

xk+1 = Fd ,i
(
xk ,ud ,i (xk )

)
, xk ∈Cd ,i

xk+1 =Gd ,i (xk ), otherwise,
(2.12)

where Fd ,i , Gd ,i , and Cd ,i are the flow map, the jump map, and the flow set, respectively.
The discrete flow map Fd ,i :R2n ×R→R2n is given by

Fd ,i
(
xk ,ud ,i (xk )

)= xk + sFi
(
xk ,ui (xk )

)
, i ∈ {I,II}, (2.13a)

where Fi and ui are defined in (2.4a) and (2.4b), or (2.9a) and (2.9b) based on the con-
sidered structure i . The discrete flow set Cd ,i ⊂R2n is defined as

Cd ,i := {
(xk

1 , xk
2 ) ∈R2n : c1‖xk

2 ‖2 ≤ ‖∇ f (xk
1 )‖2 ≤ c2〈∇ f (xk

1 ),−xk
2 〉

}
, (2.13b)

and, c1 and c2 are two positive scalars. The discrete jump map Gd ,i : R2n → R2n is given

by Gd ,i (xk ) = (
(xk )>,−β∇> f (xk )

)>.
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It is evident in the flow sets Cd ,i of the discrete-time dynamics that these sets are no
longer defined based on admissible input intervals. The reason has to do with the diffi-
culties that arise from appropriately discretizing the control inputs uI and uII. Nonethe-
less, the next result guarantees exponential rate of convergence of the discrete-time con-
trol system (2.12) with either of the respective structure I or II, by introducing a mecha-
nism to set the scalars c1, c2, and β.

Theorem 2.3.11 (Stable discretization - I & II). Consider a smooth function f : Rn → R

satisfying Assumptions (A1) and (A2). The solution trajectory of the discrete-time hybrid
control system (2.12) with the respective structure i ∈ {I,II} and starting from any initial
condition x0

1 , satisfies

f (xk+1
1 )− f ∗ ≤λ(s,c1,c2,β)

(
f (xk

1 )− f ∗)
, (2.14)

with λ(s,c1,c2,β) ∈ (0,1) given by

λ(s,c1,c2,β) := 1+2µ f
(− s

c2
+ L f

2c1
s2), (2.15)

if the parameters s, c1 ,c2, and β satisfy
p

c1 ≤ c2, (2.16a)

β2c1 ≤ 1 ≤βc2, (2.16b)

c2L f s < 2c1. (2.16c)

Remark 2.3.12 (Naive discretization). We would like to emphasize that the exponential
convergence of the proposed discretization method solely depends on the dynamics x1 and
the properties of the objective function f . Thus, we deliberately avoid labeling the scalars
c1, c2, and β by the structure index i . Crucially, the structures of the control laws do not
impact the relations (2.16) in Theorem 2.3.11, see Subsection 2.4.5 for more details. In light
of the above facts, we believe that a more in-depth analysis of the dynamics along with the
control structures may provide a more intelligent way to improve the discretization result
of Theorem 2.3.11.

Corollary 2.3.13 (Optimal guaranteed rate). The optimal convergence rate guaranteed by
Theorem 2.3.11 for the discrete-time dynamics is λ∗ := (

1− µ f

L f

)
and√

c∗1 = c∗2 = 1

β∗ = L f s∗.

The pseudocode to implement the above corollary is presented in Algorithm 1 using
the discrete-time dynamics (2.12) with the respective parameters I or II.

2.4. TECHNICAL PROOFS

2.4.1. PROOF OF THEOREM 2.3.1
We start with an explanation on why the chosen structure for uI(x) guarantees the de-
sired convergence rate α. Let us define the set

Eα :=
{

x ∈R2n :α
(

f (x1)− f ∗)< 〈∇ f (x1),−x2〉
}

.
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Algorithm 1 State-dependent fast gradient method

1: Input: data x0
1 , ` f , L f , µ f , α ∈R+, kmax ∈N+, i ∈ {I,II}

2: Set:
p

c1 = c2 =β−1 = L f s, x0
2 =−β∇ f (x0

1)
3: x0 = (x0

1 , x0
2)

4: for k = 1 to kmax do
5: if c1‖xk

2 ‖2 ≤ ‖∇ f (xk
1 )‖2 ≤ c2〈∇ f (xk

1 ),−xk
2 〉 then

6: xk+1 ← Fd ,i (xk )
7: else
8: xk+1 ←Gd ,i (xk )
9: end if

10: end for

In the first step, we argue that the objective function f decreases at the rate α (i.e., (2.5))
along any solution trajectory of the dynamical system (2.4a) that is contained in the
set Eα. To see this, observe that if

(
x1(t ), x2(t )

) ∈ Eα, we then have

d

d t

(
f
(
x1(t )

)− f ∗
)
= 〈∇ f

(
x1(t )

)
, x2(t )

〉≤−α(
f (x1)− f ∗)

.

The direct application of Gronwall’s inequality, see [44, Lemma A.1], to the above in-
equality yields the desired convergence claim (2.5). In light of the above observation, it
suffices to ensure that the solution trajectory does not leave the set Eα. Let us define the
quantity

σ(t ) := 〈∇ f
(
x1(t )

)
, x2(t )〉+α

(
f
(
x1(t )

)− f ∗
)
.

By definition, if σ(t ) < 0, it is then readily guaranteed that
(
x1(t ), x2(t )

) ∈ Eα. By virtue
of this implication, if σ̇(t ) ≤ 0 along the solution trajectory of (2.4a), we ensure that the
value of σ(t ) does not increase, and as such(

x1(t ), x2(t )
) ∈ Eα, ∀t ≥ 0 ⇐⇒ (

x1(0), x2(0)
) ∈ Eα.

To ensure non-positivity property of σ̇(t ), note that we have

σ̇(t ) = 〈∇2 f
(
x1(t )

)
x2, x2(t )〉+〈∇ f

(
x1(t )

)
, ẋ2(t )〉+α〈∇ f

(
x1(t )

)
, x2(t )〉

= 〈∇2 f
(
x1(t )

)
x2(t ), x2(t )〉−‖∇ f

(
x1(t )

)‖2 +
(
α−uI

(
x(t )

))〈∇ f
(
x1(t )

)
, x2(t )〉 = 0,

where the last equality follows from the definition of the proposed control law (2.4b). It is
worth noting that one can simply replace the information of the Hessian ∇2 f

(
x1(t )

)
with

the upper bound L f and still arrive at the desired inequality, see also Remark 2.3.9 with
regards to the 1st-order information oracle. Thus far, we have shown how the designed
feedback control preserves the α-rate of convergence along the continuous flow of the
hybrid system. Consider the initial state x2(0) =−β∇ f

(
x1(0)

)
. To ensure x(0) ∈ Eα, notice
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that

α
(

f
(
x1(0)

)− f ∗
)
≤ α

2µ f

∥∥∇ f
(
x1(0)

)∥∥2

= α

2µ f β
〈−x2(0),∇ f

(
x1(0)

)〉
≤ 〈∇ f

(
x1(0)

)
,−x2(0)〉,

where in the first line we use (A2), and in the last line the condition (2.6c) is employed.
Introducing the proposed x2(0) as the jump x+ one can see that the range space of the
jump map (2.4d) is indeed contained in the set Eα. Finally, we need to ensure that such
a jump policy is well-defined, that is the trajectory lands in the interior of the flow set CI

defined as in (2.4c), i.e., the control values also belong to the admissible set [uI,uI]. In
this view, we only need to take the initial control value into consideration, as the switch-
ing law is continuous in the states and serves the purpose by design. Suppose that x ∈CI,
we then have the sufficient requirements

uI <α+ ‖∇ f (x+
1 )‖2 −L f β

2‖∇ f (x+
1 )‖2

β‖∇ f (x+
1 )‖2 ≤ uI(x+) ≤α+ ‖∇ f (x+

1 )‖2 +` f β
2‖∇ f (x+

1 )‖2

β‖∇ f (x+
1 )‖2 < uI,

where the relations (2.4b) and (A1) are considered. Canceling the term ‖∇ f (x+
1 )‖2 con-

cludes the sufficient requirements in (2.6a) and (2.6b).

2.4.2. PROOF OF THEOREM 2.3.2
In this subsection, we first set the stage by providing two intermediate results regarding
the properties of dynamics of the hybrid control system (H ) with the respective param-
eters (2.4). We then employ these facts to formally state the proof of Theorem 2.3.2. The
next lemma reveals a relation between ∇ f (x1) and x2 along the trajectories of the hybrid
control system. In this subsection, for the sake of brevity we denote x1(t ) and x1(0) by x1

and x1,0, respectively. We adapt the same change of notation for x2 and x, as well.

Lemma 2.4.1 (Velocity lower bound). Consider the continuous-time hybrid control sys-
tem (H ) with the respective parameters (2.4) satisfying (2.6) where the function f satisfies
Assumptions (A1) and (A2). Then, we have∥∥∇ f (x1)

∥∥≤C‖x2‖, (2.17)

where C is given by (2.8a).

Proof. Notice that, by the definition of the control law and the upper bound condition
uI(x) ≤ uI, we have∥∥∇ f (x1)

∥∥2 −〈∇2 f (x1)x2, x2〉 ≤ (uI −α)〈∇ f (x1),−x2〉 ≤ (uI −α)
∥∥∇ f (x1)

∥∥ · ‖x2‖,

where the second inequality follows from the Cauchy-Schwarz inequality. Since the
function f satisfies Assumption (A1), one can infer that∥∥∇ f (x1)

∥∥2 −L f ‖x2‖2 ≤ (uI −α)
∥∥∇ f (x1)

∥∥ · ‖x2‖,
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which in turn can be reformulated into∥∥∇ f (x1)
∥∥2

‖x2‖2 − (uI −α)

∥∥∇ f (x1)
∥∥

‖x2‖
−L f ≤ 0. (2.18)

Defining the variable y := ∥∥∇ f (x1)
∥∥/‖x2‖, the inequality (2.18) becomes the quadratic

inequality y2 − (uI −α)y −L f ≤ 0. Taking into account that y ≥ 0, it then follows from
(2.17) that

y =
∥∥∇ f (x1)

∥∥
‖x2‖

≤
(uI −α)+

√
(uI −α)2 +4L f

2
=: C .

This concludes the proof of Lemma 2.4.1.

In the following, we provide a result that indicates the variation of norms x1 and x2,
along the trajectories of the hybrid control system, are bounded in terms of time while
they evolve according to the continuous mode. Since the hybrid control system is time-
invariant, such bounds can be generalized to all inter-jump intervals.

Lemma 2.4.2 (Trajectory growth rate). Suppose that the same conditions as specified in
Lemma 2.4.1 hold, and the hybrid control system (H ), (2.4) starts from the initial condi-
tion

(
x1,0,−βI∇ f (x1,0)

)
for some x1,0 ∈Rn . Then

‖x1 −x1,0‖ ≤ δ−1‖x2,0‖
(
eδt −1

)
, (2.19a)

‖x2 −x2,0‖ ≤ ‖x2,0‖
(
eδt −1

)
, (2.19b)

where δ is given by (2.8b).

Proof. Using the flow dynamics (2.4a) we obtain

d

d t
‖x2‖ ≤

∥∥∥ d

d t
x2

∥∥∥≤ ∥∥∇ f (x1)
∥∥+∣∣uI(x)

∣∣·‖x2‖ ≤ (C+max{uI,−uI})‖x2‖ = δ‖x2‖. (2.20)

The inequality (2.20) implies that

‖x2‖ ≤ ‖x2,0‖eδt . (2.21)

Furthermore, notice that

d

d t
‖x1 −x1,0‖ ≤

∥∥∥ d

d t
(x1 −x1,0)

∥∥∥= ‖x2‖.

Integrating the two sides of the above inequality leads to

‖x1 −x1,0‖ ≤
∫ t

0

∥∥x2(s)
∥∥ d s ≤

∫ t

0
‖x2,0‖eδs d s = ‖x2,0‖

δ

(
eδt −1

)
,

in which we made use of (2.21). Hence, the inequality (2.19a) in Lemma 2.4.1 is con-
cluded. Next, we shall establish the inequality (2.19b). Note that

d

d t
‖x2 −x2,0‖ ≤

∥∥∥ d

d t
(x2 −x2,0)

∥∥∥=
∥∥∥ d

d t
x2

∥∥∥≤ δ∥∥x2
∥∥

≤ δ‖x2 −x2,0‖+δ‖x2,0‖.
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Applying Grownwall’s inequality [44, Lemma A.1] then leads to the inequality (2.19b).
The claims in Lemma 2.4.2 follow.

Proof of Theorem 2.3.2: The proof comprises five steps, and the key part is to guar-
antee that during the first inter-jump interval the quantity

∣∣uI(x)−uI(x,0)
∣∣ is bounded

by a continuous function φ
(
t ,

∥∥∇ f (x1,0)
∥∥)

, which is exponential in its first argument and

linear in its second argument. Then, it follows from the continuity of the function φ that
the solution trajectories of the hybrid control system are Zeno-free.

Step 1: Let us define g (t ) := 〈∇ f (x1),−x2〉. We now compute the derivative of g (t )
along the trajectories of the hybrid control system (H ), (2.4) during the first inter-jump
interval, i.e.,

d

d t
g (t ) = 〈∇2 f (x1)x2,−x2〉+〈∇ f (x1),uI(x)x2 +∇ f (x1)〉

=−〈∇2 f (x1)x2, x2〉+
∥∥∇ f (x1)

∥∥2 +uI(x)〈∇ f (x1), x2〉
=−α〈∇ f (x1),−x2〉 =−α g (t ).

According to the above discussion and considering the initial state x2,0 =−βI∇ f (x1,0), it
follows that

〈∇ f (x1),−x2〉 =βI
∥∥∇ f (x1,0)

∥∥2e−αt . (2.22)

Step 2: The quantity
∣∣∣eαt

∥∥∇ f (x1)
∥∥2 −∥∥∇ f (x1,0)

∥∥2
∣∣∣ is bounded along the trajectories

of the hybrid control system (H ) with the respective parameters (2.4) during the first
inter-jump interval, i.e.,∣∣∣eαt ∥∥∇ f (x1)

∥∥2 −∥∥∇ f (x1,0)
∥∥2

∣∣∣= ∣∣∣eαt ∥∥∇ f (x1)
∥∥2 − (eαt −eαt +1)

∥∥∇ f (x1,0)
∥∥2

∣∣∣
(i)≤ eαt

∣∣∣∥∥∇ f (x1)
∥∥2 −∥∥∇ f (x1,0)

∥∥2
∣∣∣+ (eαt −1)

∥∥∇ f (x1,0)
∥∥2

= eαt
∣∣∣〈∇ f (x1)−∇ f (x1,0),∇ f (x1)+∇ f (x1,0)

〉∣∣∣
+ (eαt −1)

∥∥∇ f (x1,0)
∥∥2

(ii)≤ eαt ∥∥∇ f (x1)−∇ f (x1,0)
∥∥ ·∥∥∇ f (x1)+∇ f (x1,0)

∥∥
+ (eαt −1)

∥∥∇ f (x1,0)
∥∥2

(iii)≤ eαt L f ‖x1 −x1,0‖ ·
(
βICeδt +1

)‖x2,0‖
βI

+ (
eαt −1

)‖x2,0‖2

β2
I

(iv)≤ eαt L f
(
eδt −1

)‖x2,0‖
δ

· (βICeδt +1
)‖x2,0‖

βI

+ (
eαt −1

)‖x2,0‖2

β2
I

=
(

L f

δβI
eαt (βICeδt +1

)(
eδt −1

)+ 1

β2
I

(
eαt −1

))‖x2,0‖2,
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where we made use of the triangle inequality in the inequality (i), the Cauchy-Schwarz
inequality in the inequality (ii), Assumption (A1) and its consequence in Remark 2.2.4
along with the triangle inequality in the inequality (iii), and the inequality (2.19a) in the
inequality (iv), respectively.

Step 3: Observe that∣∣eαt 〈∇2 f (x1)x2, x2〉−〈∇2 f (x1,0)x2,0, x2,0〉
∣∣

=
∣∣∣eαt 〈[∇2 f (x1)−∇2 f (x1,0)+∇2 f (x1,0)

]
x2, x2

〉
− (

eαt −eαt +1
)〈∇2 f (x1,0)x2,0, x2,0〉

∣∣∣
=

∣∣∣eαt 〈[∇2 f (x1)−∇2 f (x1,0)
]
x2, x2

〉
+eαt 〈∇2 f (x1,0)x2, x2〉−eαt 〈∇2 f (x1,0)x2, x2〉
+ (

eαt −1
)〈∇2 f (x1,0)x2,0, x2,0〉

∣∣∣
(i)≤ eαt

∣∣∣〈[∇2 f (x1)−∇2 f (x1,0)
]
x2, x2

〉∣∣∣
+eαt

∣∣∣〈∇2 f (x1,0)x2, x2〉−〈∇2 f (x1,0)x2,0, x2,0〉
∣∣∣

+ (
eαt −1

)∣∣∣〈∇2 f (x1,0)x2,0, x2,0〉
∣∣∣

(ii)≤ eαt H f ‖x1 −x1,0‖ ·‖x2‖2

+eαt
∣∣∣〈∇2 f (x1,0)

[
x2 −x2,0

]
, x2 +x2,0

〉∣∣∣
+L f ‖x2,0‖2(eαt −1

)
,

where the inequality (i) follows from the triangle inequality, and the inequality (ii) is an
immediate consequence of Assumptions (A3) and (A1), recalling L f = max{` f ,L f }. Ac-
cording to the above analysis, one can deduce that∣∣eαt 〈∇2 f (x1)x2, x2〉−〈∇2 f (x1,0)x2,0, x2,0〉

∣∣
(i)≤ eαt H f

‖x2,0‖
δ

(
eδt −1

) ·e2δt‖x2,0‖2

+eαt L f ‖x2 −x2,0‖ ·‖x2 +x2,0‖+
(
eαt −1

)
L f ‖x2,0‖2

(ii)≤ H f

δ
e(α+2δ)t ∥∥x2(0)

∥∥3 · (eδt −1)

+eαt L f
(
eδt −1

)‖x2,0‖ ·
(
eδt +1

)‖x2,0‖
+L f ‖x2,0‖2(eαt −1

)
=

(
(H f /δ) e(α+2δ)t‖x2,0‖ ·

(
eδt −1

)
+L f

(
e(α+δ)t +eαt )(eδt −1

)+L f (eαt −1)
)
‖x2,0‖2,

where we made use of the inequality (2.19a), the inequality (2.19b), and the triangle in-
equality in the inequality (i), and the inequality (2.19b) and the triangle inequality in the
inequality (ii), respectively.
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Step 4: We now study the input variation
∣∣uI(x)−uI(x,0)

∣∣ along the solution trajecto-
ries of the hybrid control system (H ), (2.4) during the first inter-jump interval. Observe
that∣∣uI(x)−uI(x,0)

∣∣
=

∣∣∣∥∥∇ f (x1)
∥∥2 −〈∇2 f (x1)x2(t ), x2〉
〈∇ f (x1),−x2〉

−
∥∥∇ f (x1,0)

∥∥2 −〈∇2 f (x1,0)x2,0, x2,0〉
〈∇ f (x1,0),−x2,0〉

∣∣∣
=

∣∣∣ ∥∥∇ f (x1)
∥∥2

βI
∥∥∇ f (x1,0)

∥∥2e−αt
− 〈∇2 f (x1)x2, x2〉
βI

∥∥∇ f (x1,0)
∥∥2e−αt

−
∥∥∇ f (x1,0)

∥∥2

βI
∥∥∇ f (x1,0)

∥∥2 + 〈∇2 f (x1,0)x2,0, x2,0〉
βI

∥∥∇ f (x1,0)
∥∥2

∣∣∣
(i)≤ 1

βI
∥∥∇ f (x1,0)

∥∥2

∣∣∣eαt ∥∥∇ f (x1)
∥∥2 −∥∥∇ f (x1,0)

∥∥2
∣∣∣

+ 1

βI
∥∥∇ f (x1,0)

∥∥2

∣∣∣eαt 〈∇2 f (x1)x2, x2
〉−〈∇2 f (x1,0)x2,0, x2,0〉

∣∣∣
(ii)= βI

‖x2,0‖2

∣∣∣eαt ∥∥∇ f (x1)
∥∥2 −∥∥∇ f (x1,0)

∥∥2
∣∣∣

+ βI

‖x2,0‖2

∣∣∣eαt 〈 ∇2 f (x1)x2, x2〉−〈∇2 f (x1,0)x2,0, x2,0〉
∣∣∣,

where we made use of the triangle inequality in the inequality (i) and the relation (2.22)
in the equality (ii), respectively. Based on the above discussion, we then conclude that

∣∣uI(x)−uI(x,0)
∣∣ (i)≤ βI

‖x2,0‖2

(
L f

δβI
eαt (βICeδt +1

)(
eδt −1

)+ 1

β2
I

(
eαt −1

))‖x2,0‖2

+ βI

‖x2,0‖2

(
H f

δ
e(α+2δ)t‖x2,0‖ ·

(
eδt −1

)
+L f

(
e(α+δ)t +eαt )(eδt −1

)+L f
(
eαt −1

))‖x2,0‖2

(ii)≤ L f

δ
eδt (βICeδt +1)(eδt −1)+ 1

βI
(eδt −1)

+βI

(
βIH f δ

−1 ·e3δt ∥∥∇ f (x1,0)
∥∥ · (eδt −1

)
+L f

(
e2δt +eδt )(eδt −1

)+L f
(
eδt −1

))
=

(
L f δ

−1 ·eδt (βICeδt +1)+ 1

βI
+ β2

I H f

δ
e3δt ∥∥∇ f (x1,0)

∥∥
+βIL f (e2δt +eδt )+βIL f

)(
eδt −1

)
=:φ

(
t ,

∥∥∇ f (x1,0)
∥∥)

,

where the inequality (i) follows from the implications of Steps 2 and 3, and the equality
(ii) is an immediate consequence of the relationα< δ and the equality x2,0 =−βI∇ f (x1,0).

Step 5: Consider a1 defined in (2.8d) and recall that uI(x,0) by design lies inside the
input interval [uI,uI]. The quantity a1 is a lower bound on the distance of uI(x,0) to the
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boundaries of the interval [uI,uI]. Thus, the inter-jump interval τI satisfies

τI ≥ max
{

t ≥ 0 :
∣∣uI(x)−uI(x,0)

∣∣≤ a1
}≥ max

{
t ≥ 0 : φ

(
t ,

∥∥∇ f (x1,0)
∥∥)

≤ a1

}
,

where the second inequality is implied by the analysis provided in Step 4. Consider a
positive constant r > 1. One can infer for every t ∈ [

0,δ−1logr
]

that

φ
(
t ,

∥∥∇ f (x1,0)
∥∥)

≤
(
r L f δ

−1(rβIC +1)+β−1
I + r 3β2

I H f δ
−1∥∥∇ f (x1,0)

∥∥
+ (r 2 + r )βIL f +βIL f

)
(eδt −1)

=
(
a2 +a3

∥∥∇ f (x1,0)
∥∥)

(eδt −1)

=:φ′
(
t ,

∥∥∇ f (x1,0)
∥∥)

,

where the constants a2 and a3 are defined in (2.8e), (2.8f), respectively, and the inequal-
ity eδt < r is used. Suppose now τ′ is the lower bound of the inter jump in (2.7). Then

φ′
(
τ′,

∥∥∇ f (x1,0)
∥∥)

= a1, where the constant a1 is defined in (2.8d). It is straightforward to

establish the assertion made in (2.7).
In the second part of the assertion, we should show that the proposed lower bound

in (2.7) is uniformly away from zero along any trajectories of the hybrid system. To this
end, we only need to focus on the term ‖∇ f

(
x1(t )

)‖. Recall that Theorem 2.3.1 effectively
implies that limt→∞ ‖∇ f

(
x1(t )

)‖ = 0, possibly not in a monotone manner though. This
observation allows us to deduce that M := supt≥0 ‖∇ f

(
x1(t )

)‖ < ∞. Using the uniform
bound M , we have a minimum non-zero inter-jump interval, giving rise to a Zeno-free
behavior for all solution trajectories.

2.4.3. PROOF OF THEOREM 2.3.4
The proof follows a similar idea as in Theorem 2.3.1 but the required technical steps are
somewhat different, leading to another set of technical assumptions. In the first step,
we begin with describing on how the chosen input uII(x) in (2.9b) ensures achieving

the desired exponential convergence rate O
(
e−αt

)
. Let us define the set Eα :=

{
x ∈ R2n :

α
(

f (x1)− f ∗) < 〈∇ f (x1),−x2〉
}

. We demonstrate that as long as a solution trajectory of

the continuous flow (2.9a) is contained in the set Eα, the function f obeys the exponen-
tial decay (2.5). To this end, observe that if

(
x1(t ), x2(t )

) ∈ Eα,

d

d t

(
f
(
x1(t )

)− f ∗
)
= 〈∇ f

(
x1(t )

)
, x2(t )

〉≤−α(
f (x1)− f ∗)

.

The direct application of Gronwall’s inequality, see [44, Lemma A.1], to the above in-
equality yields the desired convergence claim (2.5). Hence, it remains to guarantee that
the solution trajectory renders the set Eα invariant. Let us define the quantity

σ(t ) := 〈∇ f
(
x1(t )

)
, x2(t )〉+α

(
f
(
x1(t )

)− f ∗
)
.

By construction, if σ(t ) < 0, it follows that
(
x1(t ), x2(t )

) ∈ Eα. As a result, if we synthesize
the feedback input uII(x) such that σ̇(t ) ≤ 0 along the solution trajectory of (2.9a), the
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value of σ(t ) does not increase, and as such(
x1(t ), x2(t )

) ∈ Eα, ∀t ≥ 0 ⇐⇒ (
x1(0), x2(0)

) ∈ Eα.

To ensure non-positivity property of σ̇(t ), note that we have

σ̇(x) = 〈∇2 f (x1)x2, x2〉+〈∇ f (x1), ẋ2〉+α〈∇ f (x1), x2〉
= 〈∇2 f (x1)x2, x2〉+〈∇ f (x1),−x2 −uII(x)∇ f (x1)〉+α〈∇ f (x1), x2〉
= 〈∇2 f (x1)x2, x2〉+〈∇ f (x1),−x2〉−uII(x)‖∇ f (x1)‖2 −α〈∇ f (x1),−x2〉
= 〈∇2 f (x1)x2, x2〉+ (1−α)〈∇ f (x1),−x2〉−uII(x)‖∇ f (x1)‖2 = 0,

where the last equality follows from the definition of the proposed control law (2.9b). It is
worth noting that one can simply replace the information of the Hessian ∇2 f

(
x1(t )

)
with

the upper bound L f and still arrive at the desired inequality, see also Remark 2.3.9 with
regards to the 1st-order information oracle. Up to now, we showed that the structure
of the control feedback guarantees the α-exponential convergence. It then remains to
ensure that x(0) ∈ Eα. Consider the initial state x2(0) =−βII∇ f

(
x1(0)

)
. Notice that

α
(

f
(
x1(0)

)− f ∗
)
≤ α

2µ f

∥∥∇ f
(
x1(0)

)∥∥2

= α

2µ f βII
〈−x2(0),∇ f

(
x1(0)

)〉
≤ 〈∇ f

(
x1(0)

)
,−x2(0)〉,

where in the first line we use (A2), and in the last line the condition (2.10c) is employed.

Suppose
(
x>

1 (0), x>
2 (0)

)> as the jump state x+. It is evident that the range space of the
jump map (2.9d) lies inside the set Eα. At last, it is required to show that the jump pol-
icy is well-defined in the sense that the trajectory lands in the interior of the flow set
CI (2.9c), i.e., the control values also belong to the admissible set [uII,uII]. To this end,
we only need to take into account the initial control value since the switching law is con-
tinuous in the states and serves the purpose by design. Suppose that x+ ∈ CII, we then
have the sufficient requirements

uII <
−` f β

2
II‖∇ f (x+

1 )‖2 + (1−α)βII‖∇ f (x+
1 )‖2

‖∇ f (x+
1 )‖2

≤ uII(x+) ≤
L f β

2
II‖∇ f (x+

1 )‖2 + (1−α)βII‖∇ f (x+
1 )‖2

‖∇ f (x+
1 )‖2 < uII,

where the relations (2.9b) and (A1) are considered. Factoring out the term ‖∇ f (x+
1 )‖2

leads to the sufficiency requirements given in (2.10a) and (2.10b). Hence, the claim of
Theorem 2.3.4 follows.

2.4.4. PROOF OF THEOREM 2.3.5
In order to facilitate the argument regarding the proof of Theorem 2.3.5, we begin with
providing a lemma describing the 2-norm behaviors of 〈∇ f (x1),−x2〉, x2, and ∇ f (x1).
For the sake of brevity, we employ the same notations used in Subsection 2.4.2, as well.
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Lemma 2.4.3 (Growth bounds). Consider the continuous-time hybrid control system (H )
with the respective parameters (2.9) satisfying (2.10) where the function f satisfies As-
sumptions (A1) and (A2). Suppose the control system is initiated from

(
x1,0,βII∇ f (x1,0)

)
for some x1,0 ∈Rn . Then,

〈∇ f (x1),−x2〉 =βIIe−αt‖∇ f (x1,0)‖2, (2.23a)

‖x2‖ ≤ D(t )‖∇ f (x1,0)‖, (2.23b)

η(t )‖∇ f (x1,0)‖ ≤ ‖∇ f (x1)‖ ≤ η(t )‖∇ f (x1,0)‖, (2.23c)

with the time-varying scalars D, η, and η given by

D(t ) :=
(
β2

IIe−2t +βIIU
(
1−e−2t )) 1

2
, (2.24a)

η(t ) := 1−L f (β2
II +βIIU )

1
2 t , (2.24b)

η(t ) := 1+L f (β2
II +βIIU )

1
2 t , (2.24c)

respectively, where U := max{uII,−uII} and L f := max{` f ,L f }.

Proof. Considering the flow dynamics (2.9a) and the feedback input (2.9b), one obtains

d

d t
〈∇ f (x1),−x2〉 = 〈∇2 f (x1)x2,−x2〉+〈∇ f (x1),−ẋ2〉

= 〈∇2 f (x1)x2,−x2〉+〈∇ f (x1), x2 +uII(x)∇ f (x1)〉
= 〈∇2 f (x1)x2,−x2〉+〈∇ f (x1), x2〉+uII(x)‖∇ f (x1)‖2

= 〈∇2 f (x1)x2,−x2〉+〈∇ f (x1), x2〉+〈∇2 f (x1)x2, x2〉− (1−α)〈∇ f (x1), x2〉
=−α〈∇ f (x1),−x2〉,

and as a result given the initial state
(
x1,0,−βII∇ f (x1,0)

)
, the equality given in (2.23a) is

valid. We next turn to establish that (2.23b) holds. Let us define h(t ) = ‖x2‖2. Hence,

d

d t
h(t )

(i)= 2〈x2,−x2 −uII(x)∇ f (x1)〉
=−2‖x2‖2 +2uII(x)〈∇ f (x1),−x2〉
(ii)= −2h(t )+2uII(x)βIIe−αt‖∇ f (x1,0)‖2

≤−2h(t )+2UβII‖∇ f (x1,0)‖2,

where we made use of the flow dynamics (2.9a) in the inequality (i) and the equation (2.23a)
in the equality (ii). We then use the Gronwall’s inequality to infer that

‖x2‖2 ≤ e−2t‖x2,0‖2 +
∫ t

0
e−2(t−τ)2UβII

∥∥∇ f (x1,0)
∥∥2dτ

= e−2tβ2
II

∥∥∇ f (x1,0)
∥∥2 +e−2t 2UβII

∥∥∇ f (x1,0)
∥∥2

∫ t

0
e2τdτ

= e−2t ∥∥∇ f (x1,0)
∥∥2

(
β2

IIe−2t +βIIU
(
1−e−2t ))

=: D2(t )
∥∥∇ f (x1,0)

∥∥2,
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where D(t ) is defined in (2.24a). As a result, the claim in (2.23b) holds. The argument

to show the last claim in Lemma 2.4.3 is discussed now. Let us define g (t ) := ∥∥∇ f (x1)
∥∥2.

Observe that

d

d t
g (t ) = 2〈∇2 f (x1)x2,∇ f (x1)〉,

and as a result∣∣∣∣ d

d t
g (t )

∣∣∣∣ (i)≤ 2L f ‖x2‖ ·
∥∥∇ f (x1)

∥∥= 2L f ‖x2‖
√

g (t )
(ii)≤ 2L f D(t )

∥∥∇ f (x1,0)
∥∥√

g (t ),

where the inequalities (i) and (ii) are implied by Assumption (A1) and the inequality (2.23b),
respectively. Hence, we deduce that

d

d t
g (t ) ≥−2L f D(t )

∥∥∇ f (x1,0)
∥∥√

g (t ),

and as a consequence

d g (t )√
g (t )

≥−2L f D(t )
∥∥∇ f (x1,0)

∥∥d t .

Integrating the two sides of the above inequality results in

√
g (t )−√

g (0) ≥−L f
∥∥∇ f (x1,0)

∥∥∫ t

0
D(τ)dτ

=−L f
∥∥∇ f (x1,0)

∥∥∫ t

0

(
β2

IIe−2τ+βIIU
(
1−e−2τ)) 1

2
dτ

≥−L f
∥∥∇ f (x1,0)

∥∥∫ t

0

(
β2

II +βIIU
) 1

2 dτ

=−L f
∥∥∇ f (x1,0)

∥∥(
β2

II +βIIU
) 1

2 t .

Based on the above analysis and the definition of g (t ), it follows that∥∥∇ f (x1)
∥∥≥ η(t )

∥∥∇ f (x1,0)
∥∥,

where η(t ) is given in (2.24b). Proceeding with a similar approach to the one presented
above, one can use the inequality

d

d t
g (t ) ≤ 2L f D(t )

∥∥∇ f (x1,0)
∥∥√

g (t ),

and infer that ∥∥∇ f (x1)
∥∥≤ η(t )

∥∥∇ f (x1,0)
∥∥,

where η(t ) is defined in (2.24c). Thus, the last claim in Lemma 2.4.3 also holds.
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Proof of Theorem 2.3.5: We are now in a position to formally state the proof of The-
orem 2.3.5. Consider the parameter δ as defined in Theorem 2.3.5. Intuitively, this quan-
tity represents a lower bound on the distance of uII(0) from the endpoints of the flow set
interval. Thus, one can obtain a lower bound on the inter-jump interval τII as follows

τII ≥ sup {t > 0 : |uII(t )−uII(0)| ≤ δ}. (2.25)

On the other hand, given the structure of uII in (2.9b),

− ` f ‖x2‖2

‖∇ f (x1)‖2 + (1−α)
βIIe−αt‖∇ f (x1,0)‖2

‖∇ f (x1)‖2

≤ uII(t ) ≤
L f ‖x2‖2

‖∇ f (x1)‖2 + (1−α)
βIIe−αt‖∇ f (x1,0)‖2

‖∇ f (x1)‖2 ,

since the function f satisfies Assumption (A1). In light of Lemma 2.4.3 and considering
the above relation, one can infer that for α≤ 1, we name Case(i),

e(t ) :=−` f D(t )2

η(t )2 + (1−α)
βIIe−αt

η(t )2

≤ uII(t ) ≤
L f D(t )2

η(t )2 + (1−α)
βIIe−αt

η(t )2 =: e(t ), (2.26a)

and that for α> 1, we denote by Case (ii),

p(t ) :=−` f D(t )2

η(t )2 + (1−α)
βIIe−αt

η(t )2

≤ uII(t ) ≤
L f D(t )2

η(t )2 + (1−α)
βIIe−αt

η(t )2 =: p(t ). (2.26b)

According to the above discussion, we employ (2.26) to obtain a lower bound τII instead
of using (2.25). Consider a time instant t◦ such that t◦ < 1/ω where ω is defined in Theo-
rem 2.3.5.
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Case (i) (α≤ 1): Let us denote supt∈[0,t◦] ė(t ) by b1. Observe that

ė(t ) = 2L f βIIe−2t (−βII +U )(1−ωt )2 +2ω(1−ωt )L f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

+ (1−α)
−αβIIe−αt (1−ωt )2 +2ω(1−ωt )βIIe−2t

(1−ωt )4

≤ 2L f βIIU e−2t (1−ωt )2 +2ω(1−ωt )L f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

+ (1−α)
2ω(1−ωt )βIIe−2t

(1−ωt )4

≤ 2L f βII
(
U +ω(βII +U )

)
(1−ωt )3 + (1−α)

2ωβII

(1−ωt )3

≤ 2L f βII
(
U +ω(βII +U )

)
(1−ωt◦)3 + (1−α)

2ωβII

(1−ωt◦)3 =: b1,

considering (2.26a). Hence, e(t ) ≤ b1t +e(0) and as a result

τII ≥ max{t ∈ (0, t◦] : b1t +e(0)−e(0) ≤ δ} = min{t◦,δ/b1}, (2.27)

by virtue of the fact that b1t + e(0) is a monotonically increasing function that upper
bounds uII(t ). Now, let us define b2 := inft∈(0,t◦] ė(t ). Notice that

ė(t ) = 2` f βIIe−2t (βII −U )(1−ωt )2 −2ω(1−ωt )` f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

+ (1−α)
−αβIIe−αt (1+ωt )2 −2ω(1+ωt )βIIe−2t

(1+ωt )4

≥ −2` f βIIe−2tU (1−ωt )2 −2ω(1−ωt )` f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

− (1−α)
αβIIe−αt (1+ωt )2 +2ω(1+ωt )βIIe−2t

(1+ωt )4

≥−2` f βII
(
U +ω(βII +U )

)
(1−ωt◦)3 − (1−α)

αβII(1+ωt◦)+2ωβII

1
=: −b2.

Thus, e(t ) ≥−b2t +e(0) and as a consequence

τII ≥ max{t ∈ (0, t◦] : e(0)− (−b2t +e(0)
)≤ δ} = min{t◦,δ/b2}, (2.28)

because the function−b2t+e(0) is a monotonically decreasing function that lower bounds
uII(t ).

Case (ii) (α> 1): Much of this case follows the same line of reasoning used in Case (i).
We thus provide only main mathematical derivations and refer the reader to the previous
case for the argumentation. Define b3 := supt∈(0,t◦] ṗ(t ). One can deduce from (2.26b)
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that

ṗ(t ) = 2L f βIIe−2t (−βII +U )(1−ωt )2 +2ω(1−ωt )L f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

+ (1−α)
−αβIIe−αt (1+ωt )2 −2ω(1+ωt )βIIe−2t

(1+ωt )4

≤ 2L f βII
(
U +ω(βII +U )

)
(1−ωt◦)3 + (α−1)

αβII(1+ωt◦)+2ωβII

1
=: b3.

Hence, p(t ) ≤ b4t +p(0) and as a result

τ≥ min{t◦,δ/b3}. (2.29)

Finally, define ṗ(t ) := inft∈(0,t◦] p(t ) from which it follows that

ṗ(t ) = 2` f βIIe−2t (βII −U )(1−ωt )2 −2ω(1−ωt )` f βII
(
βIIe−2t +U (1−e−2t )

)
(1−ωt )4

+ (1−α)
−αβIIe−αt (1−ωt )2 +2ω(1−ωt )βIIe−2t

(1−ωt )4

≥−2` f βII
(
U +ω(βII +U )

)
(1−ωt◦)3 − (α−1)

2ωβII

(1−ωt◦)3 =: −b4,

considering (2.26b). Now, since p(t ) ≥−b4t +p(0), it is implied that

τII ≥ min{t◦,δ/b4}. (2.30)

Notice that based on the relations derived in (2.28)-(2.30),

τII ≥ min
{

t◦,
2L f βII

(
U +ω(βII +U )

)
(1−ωt◦)3 +|α−1| 2ωβII

(1−ωt◦)3 +|α−1|αβII(1+ωt◦)
}

.

Suppose now for some scalar r ∈ (0,1), t◦ is chosen such that t◦ ≤ r
ω . It is evident that

τII ≥ min
{ r

ω
,δ

/(2L f βII
(
U +ω(βII +U )

)
(1− r )3 +|α−1| 2ωβII

(1− r )3 +|α−1|αβII(1+ r )
)}

.

It turns out that the relation (2.11) in Theorem 2.3.5 is valid and this concludes the proof.

2.4.5. PROOF OF THEOREM 2.3.11
In what follows, we provide the proof for the structure II and refer the interested reader
to [1, Theorem 3.7] for the structure I. We emphasize that the technical steps to establish
a stable discretization for both structures are similar.

According to the forward-Euler method, the velocity ẋ1 and the acceleration ẋ2 in the
dynamics (H ) with (2.9) are discretized as follows:

xk+1
1 −xk

1

s
= xk

2 , (2.31a)

xk+1
2 −xk

2

s
=−ud ,II(xk )∇ f (xk

1 )−xk
2 , (2.31b)
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where the discrete input ud ,II(xk ) = uII(xk ). Now, observe that the definition of the flow
set Cd ,II (2.13b) implies

c1‖xk
2 ‖2 ≤ ‖∇ f (xk

1 )‖2 ≤ c2〈∇ f (xk
1 ),−xk

2 〉 ≤ c2‖∇ f (xk
1 )‖ ·‖xk

2 ‖,

where the extra inequality follows from the Cauchy-Schwarz inequality (∀ a,b ∈ Rn ,
〈a,b〉 ≤ ‖a‖ · ‖b‖). In order to guarantee that the flow set Cd ,II is non-empty the relation

(2.16a) should hold between the parameters c1 and c2 since
p

c1 ≤ ‖∇ f (xk
1 )‖

‖xk
2 ‖

≤ c2. Suppose

next that the parameters c1, c2, and β satisfy (2.16b). Multiplying (2.16b) by ‖∇ f (xk
1 )‖,

observe that the range space of the jump map Gd ,II(xk ) = (
(xk )>,−β∇> f (xk )

)> is inside
the flow set Cd ,II (2.13b). From the fact that the discrete dynamics (2.12) evolves respect-
ing the flow set Cd ,II defined in (2.13b), we deduce

f (xk+1
1 )− f (xk

1 ) ≤ 〈∇ f (xk
1 ), xk+1

1 −xk
1 〉+

L f

2
‖xk+1

1 −xk
1 ‖2

≤−s〈∇ f (xk
1 ),−xk

2 〉+
L f s2

2
‖xk

2 ‖2

<− s

c2
‖∇ f (xk

1 )‖2 + L f s2

2c1
‖∇ f (xk

1 )‖2

= (− s

c2
+ L f

2c1
s2)‖∇ f (xk

1 )‖2

≤ 2µ f
(− s

c2
+ L f

2c1
s2)( f (xk

1 )− f ∗)
,

where we made use of the relation (2.3), the definition (2.31a), the relation (2.13b), and
the assumption (A2), respectively. Then, considering the inequality implied by the first
and last terms given above and adding f (xk

1 )− f ∗ to both sides of the considered in-
equality, we arrive at

f (xk+1
1 )− f ∗ ≤λ(s,c1,c2,β)

(
f (xk

1 )− f ∗
)

where λ(s,c1,c2,β) is given by (2.15). As a result, if the step size s is chosen such that
s < 2c1

c2L f
then λ(s,c1,c2,β) ∈ (0,1). The claim of Theorem 2.3.11 follows.

2.5. NUMERICAL EXAMPLES
In this section a numerical example illustrating the results in this chapter is represented.
The example is a least mean square error (LMSE) problem f (x1) = ‖Ax1 − b‖2 where
x ∈ R5 denotes the decision variable, A ∈ R50×5 with L f = 2λmax(A>A) = 136.9832 and
µ f = 2λmin(A>A) = 3.6878, and b ∈ R50. Since the LMSE function is convex (in our case,
this function is strongly convex), we take ` f = 0. In what follows, we compare the behav-
iors of the proposed structures I and II (denoted by Struct I and Struct II, respectively)
along with Nesterov’s fast method with the speed restarting scheme proposed by [24]
(denoted by NSR). We begin with providing the results concerning the continuous-time
case. Then, the discrete-time case’s results are shown where we employ Algorithm 1 for
Struct I and Struct II.
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Continuous-time case: The corresponding parameters of Struct I and Struct II are
as follows: αI = 0.2, βI = 0.1356, uI = −14.352, uI = 15.1511; αI I = 0.2, βI I = 0.0298,
uII = −0.1861, uII = 5.7457. In Figure 2.1a, the behaviors of the suboptimality measure
f
(
x1(t )

)− f ∗ of Struct I, Struct II, and NSR are depicted. With regards to Theorem 2.3.2,
observe that the length of inter-jump intervals is small during the early stages of simu-
lation. As time progresses and the value of ∇ f (x1) decreases, the length of inter-jump
intervals relatively increases (echoing the same message conveyed in Theorem 2.3.2).
The corresponding control inputs are represented in Figure 2.1b. Furthermore, in the
case of Struct I where uI plays the role of damping, the input uI admits a negative range
unlike most of the approaches in the literature.

Discrete-time case: Figure 2.2a shows the discrete-time counterparts of the previ-
ously mentioned continuous-time dynamics in Figure 2.1. It is evident that the discrete
counterparts of our proposed structures perform poorly compared to the NSR’s discrete
counterpart, reinforcing the assertion of Remark 2.3.12 calling for a smarter discretiza-
tion technique. The results depicted in Figure 2.2a correspond to the standard parame-
ters involved in each of the algorithm, i.e., the step size s = 1/L f for the proposed meth-
ods in Corollary 2.3.13, and the parameter kmin = 1 in NSR. However, these parameters
can also be tuned depending on the application at hand. In case of NSR, the role of
the parameter kmin is to prevent unnecessary restarting instants that may degrade the
overall performance. On the other hand, setting kmin > 1 may potentially cause the algo-
rithm to lose its monotonicity property. In Figure 2.2b, we illustrate the best behavior of
the three methods with respect to these parameters for this numerical example.

Finally, Figure 2.3a shows how changing kmin affects the performance. The best per-
formance is achieved by setting kmin = 19 and the algorithm becomes non-monotonic
for kmin > 19. With regards to our proposed methods we observe that if one increases
the step size s, the performance improves, see Figure 2.3b for Struct I and Figure 2.3c
for Struct II. Moreover, it is obvious that the discrete-time couterparts of Struct I and
Struct II behave in a very similar fashion that has to do with the lack of a proper dis-
cretization that can fully exploit the properties of the corresponding feedback input, see
Remark 2.3.12.

2.6. CONCLUSIONS
Inspired by a control-oriented viewpoint, we proposed two hybrid dynamical structures
to achieve exponential convergence rates for a certain class of unconstrained optimiza-
tion problems, in a continuous-time setting. The distinctive feature of our methodol-
ogy is the synthesis of certain inputs in a state-dependent fashion compared to a time-
dependent approach followed by most results in the literature. Due to the state de-
pendency of our proposed methods, the time-discretization of continuous-time hybrid
dynamical systems is in fact difficult (and to some extent even more involved than the
time-varying dynamics that is commonly used in the literature). In this regard, we have
been able to show that one can apply the the forward-Euler method to discretize the
continuous-time dynamics and still guarantee exponential rate of convergence. Thus, a
more in-depth analysis is due. We expect that because of the state dependency of our
methods a proper venue to search is geometrical types of discretization.
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Figure 2.1: Continuous-time dynamics of Struct I, Struct II, NSR.
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Figure 2.2: Discrete-time dynamics of Struct I, Struct II, NSR.
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Figure 2.3: Discrete-time dynamics under different tuning parameters.
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In this chapter, we introduce an event-based approach to implement a robust MPC
method. The proposed approach is applicable to perturbed, linear time-invariant plants
with polytopic constraints. The triggering mechanism is a sequence of hyper-rectangles
surrounding the optimal state trajectory. The design of the triggering mechanism is cast
as a constrained optimization problem with the volume of each hyper-rectangle as the
objective function. We show that the design problem accepts convex nonlinear program
and linear program reformulations. On a more practical note, the triggering mechanism
suits plants without a centralized sensory node since the triggering mechanism can be
evaluated locally at each individual sensor. The materials presented in this chapter are
previously reported in [4] and [5].

3.1. INTRODUCTION
Nowadays, applications of networked control systems (NCSs) generally demand an array
of compatibility and efficiency measures from control design methods, such as utiliza-
tion under shared resources, applicability to mobile tasks, and compatibility with digital
communication infrastructures. The survey paper [45] and the references therein pro-
vides an overview of these emerging challenges. Event-based policies to execute control
laws are a class of strategies that aim to systematically address the efficiency problem
in the context of communication and computation. In event-based control, the under-
lying dynamics determine the time at which it is required to update the control action
(contrary to the traditional case in which the control action is updated in a periodic fash-
ion) [46]. There are two options to implement such an event-based logic in the design:
embedded in the sensory system, the so-called event-triggering control [47] and [48], or
embedded in the controller, the so-called self-triggering control [49] and [50]. The re-
sponsible entity to determine the update times is known as the triggering mechanism.
In this regard and at least in a pure theoretical sense, an area of control theory that has
witnessed an increased level of interest to employ event-based policies is the class of
model predictive control (MPC) methods [51]. There are multiple reasons that encour-
age such a level of interest ranging from inherent properties of MPC methods to practical
advantages. The process of computing the control action is (often) a heavily involved,
computational task in MPC methods. One thus hope by employing an event-based im-
plementation to reduce this computational burden. In addition, the predictions that are
usually discarded in a standard MPC method can provide one with an object to base the
triggering mechanism on.

MPC methods are a class of on-line optimization-based control approaches. In a
discrete-time setting, the decision variables are the states xk and the inputs uk of the
considered plant xk+1 = f (xk ,uk , wk ), where wk denotes possible unknown uncertain-
ties such as exogenous disturbances. (The specific term robust MPC (RMPC) is used in
the literature when wk 6= 0.) The objective function is a measure of performance we in-
tend to optimize over a finite time horizon N in the future. We base the predictions on
an available, nominal model xk+1 = f (xk ,uk ,0) over the horizon, where xk denotes the
nominal state. It is evident that a set of constraints originates from the fact that the nom-
inal states and the inputs are subject to the model dynamics. Furthermore, other types of
constraints are possibly added due to physical limitations of the underlying plant (such
as bounded inputs) or some additional requirements that should be satisfied (such as
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the closed-loop stability of the plant or the feasibility of the corresponding optimization
problem). The outcomes of the corresponding optimization problem are the input and
state trajectories over the horizon (which are referred to as the optimal input and state
trajectories in the literature). In a standard setting of an MPC method, the correspond-
ing optimization problem is solved at each sampling instant. Then, the first element of
the computed, optimal input trajectory is applied to the plant and the remaining en-
tries of the optimal input trajectory are discarded. We refer the interested reader to the
survey papers [52] and [53] that discuss about different aspects of MPC. The computa-
tional aspect of MPC methods is alone a major factor in hindering their usage in practice
(by demanding more-advanced processing units or inability to handle plants with fast
dynamics). But on a positive note, as a by product of control law computations, an edu-
cated guess about the possible future behavior of dynamics with its corresponding input
trajectory is available. This extra information can be viewed as a basis to design a trigger-
ing mechanism. It is worth mentioning that the idea of exploiting the computed optimal
trajectories (from a computational savings perspective) is not entirely new in the MPC
literature. The basic idea, the so-called warm start, is to properly shift the optimal in-
put and state trajectories calculated in the previous instant. Then, one considers these
shifted trajectories as the initial guess at the current instant to solve the optimization
problem. By doing so, one can speed up the process of finding the optimal decision vari-
ables [54]. On a practical note, there is also a big incentive to exploit the computed op-
timal trajectories. Particularly in wireless sensor/actuator networks (WSANs), the single
most important concern is the energy efficiency. Roughly speaking, the energy deple-
tion source in a wireless node (e.g., placed on a sensor, actuator, or controller) is either
from the micro-controller (responsible for logical/mathematical computations) or from
the transceiver (responsible for sending and receiving data). The main source of energy
depletion is however the transceiver. This observation is a key motivation to aggregate
the data into a single packet (if possible) and transmit only the resulting packet over the
communication network [55] and [56]. Thus, it becomes clear that an event-based policy
to implement an MPC approach is naturally compatible with this nature of WSANs. For a
detailed discussion on this subject, we refer the reader to [57] and the references therein
(see [57, Subsection IV.B] for the energy efficiency topic). According to the above discus-
sion, the combination of MPC methods with event-based implementation policies is in
fact a (relevant) venue to explore.

Statement of contribution: In this chapter, an event-based sampling of an RMPC
method is proposed for perturbed linear time-invariant (LTI) systems. The RMPC method
is inspired by a constraint-tightening RMPC approach introduced in [58]. One key fea-
ture of the event-based method is its applicability on systems with decentralized sensing
units. By the term decentralized sensing, we refer to systems where the sensory units are
spatially dispersed. Although the sensory components’ information can be collected on
a single centralized node to place a triggering mechanism, we make the general assump-
tions that (i) the extra burden on the communication component is undesirable, and
(ii) the complications that arise from the non-collocation of the triggering mechanism
with the sensory components reduce the practicality of the triggering mechanism. No-
tice that these restrictions commonly occur in WSANs. Another important feature of our
event-based implementation policy is the fact that the triggering mechanism’s design is
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decoupled from the design of the underlying RMPC method. In fact, the triggering mech-
anism is built upon the intrinsic robustness of the RMPC method. The core idea behind
our method is to construct a sequence of hyper-rectangles around the optimal trajecto-
ries available from solving the RMPC problem (notice that these hyper-rectangles can
be viewed as a certain type of weighted `∞ norms, see Definition 3.2.7). Then, these
hyper-rectangles will be sent to the sensors and the optimal input trajectory will also be
transmitted to the actuators. As soon as the observed states at the sensory units leave
these hyper-rectangles, a triggering happens and the states at the triggering instant will
be transmitted to the controller. Then, the process is repeated in a sampled-data fash-
ion. The decentralized nature of the triggering mechanism stems from the fact that the
Euclidean coordinate axes are normal (or perpendicular) to the faces of the constructed
hyper-rectangles. Thus, the event-triggering mechanism can decide based on the local
information, available at each individual sensor, whether to trigger or not. The main
contributions of this chapter are summarized as follows.

• Decoupled recursive feasibility and stability: Given an RMPC method in place,
we propose a set-theory-based triggering approach that preserves robust recur-
sive feasibility and robust stability. Unlike the existing literature, the proposed
approach is decoupled from the control synthesis process and does not require
additional assumptions, such as extra conditions on eigenvalues of weighting ma-
trices in the cost function or the need to define user-specified thresholds for the
triggering mechanism (Theorems 3.4.3 & 3.4.4).

• Decentralized nature: The proposed approach enjoys a decentralized triggering
mechanism that only requires local sensory information (Algorithm 2).

• Tractable convex program reformulation: We show that a certain type of non-
convex volume-maximization problem with set-based constraints that is deployed
to design the triggering mechanism admits a finite tractable convex program (CP)
reformulation (Theorem 3.4.6).

• Suboptimal linear program relaxation: Motivated by an approach in the litera-
ture, we further show that a linear program (LP) relaxation of the CP reformulation
is possible (Theorem 3.4.7).

Literature review: In what follows, we first review several approaches that are closely
related to the problem considered in this chapter. We then give an account of algorithmic-
oriented approaches in the literature that reduce the computational complexity of their
MPC methods with customized algorithms.
Related works: In order to avoid repetition of terms (unless the contrary is mentioned
otherwise), let us first mention the shared properties of the references below: linear
discrete-time models, event-triggering mechanisms, constrained MPC methods, min-
imal (to none) coupling of the parameters of the triggering mechanism and the con-
sidered MPC method, and a computationally viable approach to design the triggering
mechanism. Let us now elaborate the reasoning behind the last two properties. First, in
an ideal case, one seeks the possibility of a complete decoupling between the parameters
of triggering mechanism and of the considered MPC method. (By doing so, a fair com-
parison between the performances of the event-based and standard implementations
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of an MPC method will be possible.) After all, our main goal is to provide an implemen-
tation policy for an MPC method with the awareness of communication issues. Hence,
we only mention the approaches that have minimal to no inter-connections between
the two sets of design parameters. Second, we also do not consider event-triggering
approaches that are computationally more expensive compared to the underlying MPC
problem (e.g., approaches that require to solve some type of an integer program). As
mentioned above, the prohibitive computational requirement of MPC methods is the
main factor that limits their application in practice. Thus, the viability of such compli-
cated event-triggering designs becomes questionable in practice. The review of related
works follows.

To deal with practical issues such as a band-limited communication channel, a novel
design approach for NCSs is proposed in [59]. They employ the notion of moving hori-
zon [60] to design the estimator and controller. A remarkable character of their approach
is its ability to decide on-the-fly which input channel should be updated (i.e., a certain
type input-channel event-triggering control). In case of collocated controller and actu-
ator units, an event-based estimator with a bounded covariance matrix is designed in
[61]. While the estimator receives data via a Lebesgue sampling approach, it periodically
updates the controller’s information regarding the disturbances with a polytopic over-
approximation of covariance matrix. The authors of [62] propose an interesting trans-
mission strategy for wireless sensor/controller communications with practical energy-
aware provisions (the controller is collocated with the actuator system). Using some
predefined thresholds for each state’s sensor (i.e., an `1-type triggering mechanism), the
controller is computed offline using an explicit MPC approach [63]. Based on a pre-
scribed 2-norm ball around the optimal state trajectory, the authors in [64] propose a
triggering mechanism for WSANs. They show that the approach is robustly stable to
a set that is a function of the radius of threshold ball and the maximal 2-norm of dis-
turbance. For linear, continuous-time dynamical systems affected by a Wiener process,
a co-design method (i.e., simultaneous design of the scheduler and the controller) is
proposed in [65]. The main idea is inspired by the notion of rollout from dynamic pro-
gramming [66]. More importantly, the authors show that under some mild conditions an
event-based control approach outperforms a traditional control approach in the sense
of closed-loop performance/average transmission rate. (Notice that for most of the ap-
proaches in the literature including this chapter such a guarantee is not provided.) A set
theoretic triggering mechanism is introduced in [67] for systems with collocated con-
troller and sensory units. The approach is inspired by the tube-based MPC proposed in
[68]. By exploiting the known probability distribution of disturbance, they also guaran-
tee an average sampling rate. However, their tube-contraction method requires a certain
type of realization of a discrete-time system, see [67, Remark 8]. Demirel et al., introduce
a sensor/actuator event-triggering mechanism for control systems with limited number
of control messages (i.e., communication and computation resources are scarce) [69].
They relax the original combinatorial problem into a convex one by an appropriate def-
inition of event thresholds.
Algorithmic viewpoint: The reasoning behind this algorithmic viewpoint is as follows.
An MPC optimization problem is computationally expensive by itself (the evidence is
the substantial body of work that has been done to customize algorithms to MPC prob-
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lems). Hence, the merit of an event-based policy of implementation would be lost if the
mechanism demands a drastically higher computational effort compared to the underly-
ing MPC problem. We should highlight that all the approaches discussed next are related
to linear time-invariant (LTI) systems. Dunn and Bertsekas in [70] exploit the structure
of their considered optimization problem to reduce the cost of Newton’s step in their dy-
namic programming approach. They show that the arithmetic cost of a Newton step in
their approach scales as a linear function of the horizon length N instead of as a cubic
function of it. In [71], the authors use the primal barrier interior-point method with a
specific type of ordering of decision variables. By doing so, they show that the underlying
problem possesses a desirable sparse structure that decreases the computational cost
significantly to compute the control action. The authors in [72] employ the celebrated
Nesterov’s accelerated method to solve the underlying optimization problem. Inherited
from Nesterov’s method (that is a gradient-based algorithm), their approach possesses a
simple implementation requirement. More importantly, they also provide a priori com-
putational complexity certificate. There is also another class of MPC approaches in the
literature that can be computed offline and employed for systems with fast dynamics,
the so-called explicit MPC methods [63]. Here, the solution of the MPC problem is con-
structed as a function of the initial state in a form of a lookup table. This lookup table is
then utilized in an online fashion. However, since the size of this table is exponentially
dependent on the decision variables’ dimension and the horizon length, this method’s
applicability is limited to low dimensions.

The layout of the chapter is as follows. The mathematical notions used in the chapter
are outlined in Section 3.2. Section 3.3 is devoted to the considered RMPC method. The
main results regarding the event-based implementation policy are introduced in Sec-
tion 3.4. Section 3.5 contains the technical proofs. A numerical example is presented
in Section 3.6 to evaluate the effectiveness of theoretical results. Finally, the chapter is
concluded in Section 3.7.

Notation: the set of non-negative integers is denoted by Z≥0. Given positive in-
tegers m and n, Rm and Rm×n represent the m-dimensional Euclidean space and the
space of m ×n matrices with real entries, respectively. Given a positive integer r , the
sets of positive integers and non-negative integers less than or equal to r are denoted
by N[r ] and Z[r ], respectively. Given a vector v ∈ Rn , v i represents the i -th entry of v .
For any pairs of vectors a,b ∈ Rn , the inequality a < (≤)b is realized in a component-
wise manner, i.e., ai < (≤)bi , for all i ∈ N[n]. Given a matrix M ∈ Rm×n , Mi j denotes
the i -th row, j -th column entry of M . Moreover, the matrix M+ ∈ Rm×n is the matrix
with entries of M+

i j := max{0, Mi j }. A positive definite matrix M is denoted by M Â 0.

The n ×n identity matrix is denoted by In . Given a vector v ∈ Rn and a scalar p ≥ 1,

‖v‖p denotes the p-norm
(∑n

i=1 (v i )p
)1/p . The function sign(·) represents the stan-

dard sign function. Given a set S ⊂ Rn and a matrix M ∈ Rm×n , the set MS denotes
the set {c ∈ Rm : there exist s ∈ S such that M s = c}. Given two sets A and B in Rn ,
A /B := {x ∈A : x ∉B}.
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3.2. PRELIMINARIES
In what follows, we begin with a brief review of the mathematical preliminaries used in
the rest of the chapter. The section is divided to two parts: RMPC related notions and Set
theory related notions.

RMPC related notions: We first review some notions that the RMPC method is based
on.

Definition 3.2.1 (Point-to-set weighted distance). Given a matrix M Â 0, the squared
weighted distance of a point r ∈Rn from a set S ⊂Rn is defined as

d(r,S , M) := min
s∈S

||r − s||2M = min
s∈S

(r − s)>M(r − s).

When S is singular, i.e., S = {s}, the distance is

d(r, {s}, M) = ||r − s||2M = (r − s)>M(r − s).

Definition 3.2.2 (Pontryagin difference and Minkowski sum). Given sets C and D, the
Pontryagin difference C ∼D and the Minkowski sum C ⊕D are defined as

C ∼D := {c : c +d ∈C , for all d ∈D},

C ⊕D := {c +d : for all c ∈C , for all d ∈D}.

The following result will be used extensively in the development of the triggering
mechanism.

Lemma 3.2.3 ([58]). Let a be a vector inRn , B and C be two compact sets inRn , and M be
a positive definite matrix in Rn×n . Then, using the distance function given in Definition
3.2.1, we have

d(a + c,B, M) ≤ d(a,B ∼C , M), for all c ∈C .

We next introduce a procedure to compute a certain type of gains that play an essen-
tial role in the constraint-tightening approach proposed in [58].

Definition 3.2.4 (M-Step nilpotent LQR controller [58]). Given two positive definite ma-
trices Q and R, and two positive integers M and N such that M ≤ N − 1. Consider the
controllable LTI system ξk+1 = Aξk +Bνk , where ξ ∈ Rn and ν ∈ Rm . The following back-
ward recursion produces as output a set of linear state feedback gains K = {Ki }N−1

i=0 that
drives the state of the nominal system (3.4) to the origin in M steps, and remains there
until step N .

1. Set K j = 0m×n , for all j ∈ {M , . . . , N −1}.

2. Set PM = 0n×n , SM = In .
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3. Compute in backward for j ∈ {M −1, M −2, . . . ,0},

K j =−(
Im 0m×n

)
H †

j+1

(
B>P j+1

S j+1

)
A,

H j+1 =
(

(R + (B>P j+1B)) B>S j+1

S j+1B 0n×n

)
,

S j = (A+BK j )>S j+1(A+BK j ),

P j =Q +K >
j RK j + (A+BK j )>P j+1(A+BK j ).

Set theory related notions: We now recall some notions from convex analysis (see
e.g., [73, Section 2] for a compact exposition of the subject).

Definition 3.2.5 (Support function). Given a set S ⊂Rn , the support function of S eval-
uated at η ∈Rn is

hS (η) = sup
s∈S

〈η, s〉.

The domain KS on which the support function is defined is a convex cone pointed
at the origin. If S is bounded, then KS = Rn . Given a matrix M ∈ Rn×m and a vector
v ∈Rn such that G>v ∈KS ,

hMS (v) := hS (M>v).

Suppose S ⊂Rn is closed and convex. Then,

S := {s ∈Rn : 〈η, s〉 ≤ hS (η), for all η ∈KS },

i.e., the intersection of its supporting half spaces.

Definition 3.2.6 (Polyhedron). A set S ⊂Rn is called a polyhedron, if

S := {s ∈Rn : AS s ≤ bS }, AS ∈Rm×n , bS ∈Rm .

If the polyhedron S is bounded, the set is also called a polytope and the representa-
tion given in Definition 3.2.6 is known as the H-representation. Furthermore, the support
function hS (η) is the solution of the LP,

hS (η) = max
s

〈η, s〉
s.t. AS s ≤ bS .

Given the H-representation of a polytope, we employ the notations ai ,S ∈ R1×n and
aS , j ∈Rm×1 to denote the i -th row and the j -th column of AS , respectively.

Consider the polyhedron S given by Definition 3.2.6 and a set V ⊂ Rn . Assuming
hV (a>

i ,S ) is well-defined for all i ∈N[m]. Then,

S ∼ V := {z ∈Rn : 〈a>
i ,S , z〉 ≤ bi ,S −hV (a>

i ,S ), for all i ∈N[m]}, (3.1)

where ai ,S and bi ,S are the i -th row of AS and the i -th entry of bS , respectively.
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Definition 3.2.7 (Full-dimensional hyper-rectangle). For any vector-pairs l ,u ∈ Rn such
that l < u, the full-dimensional convex polytope

B(l ,u) := {x ∈Rn : l ≤ x ≤ u}

= {x ∈Rn : ABx ≤ bB}

is called a hyper-rectangle, where AB := [In − In]> and bB = [u> − l>]>.

3.3. RMPC METHOD
In this section, we introduce the class of constrained dynamical systems considered in
this chapter, followed by the description of the RMPC method. The description con-
tains the main ingredients of the RMPC method which play crucial roles in the design
of the decentralized event-triggering mechanism. At last, we formally state the problem
addressed in this chapter.

3.3.1. SYSTEM DESCRIPTION
Consider an LTI system with bounded additive perturbations given by

xk+1 = Axk +Buk +wk , for all k ∈Z≥0, (3.2)

where the state, input and disturbance signals satisfy the (hard) constraints

xk ∈X⊂Rnx , uk ∈U⊂Rnu , wk ∈W ⊂Rnx . (3.3)

The nominal system associated with (3.2) is

x̄k+1 = Ax̄k +Buk , for all k ∈Z≥0. (3.4)

The RMPC method is designed such that the state xk and the input uk converge to some
target sets Tx ⊂ Rnx and Tu ⊂ Rnu as k →∞, respectively, while the constraints (3.3) are
satisfied at all instants.

Assumption 3.3.1 (System & set properties). Consider the dynamics (3.2) with the con-
straints (3.3). We suppose that the following conditions hold.

• (Nominal controllablity) The pair (A,B) is controllable.

• (Polytopic sets) The constraint sets X and U, the target sets Tx and Tu , and the
disturbance set W are all convex, compact polytopes containing their underlying
spaces’ origin in their interior.

3.3.2. RMPC FORMULATION
We start with introducing two types of feedback gains which are essential to the RMPC
method and the construction of the triggering mechanism, as well.

1) Nominal feedback gain: The first item in Assumption 3.3.1 implies that the dis-
crete algebraic Riccati equation [74]

P = A>PA− (A>PB)(R +B>PB)−1(B>PA)+Q,
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associated with the nominal system (3.4) attains a unique solution P Â 0, where the pos-

itive definite matrices Q and R are properly chosen (i.e., the pair (A,Q
1
2 ) is detectable).

One can then employ P to find a stabilizing state-feedback gain

F =−(R +B>PB)−1B>A. (3.5)

2) Disturbance feedback gains: Let integer N be the horizon length of the RMPC
method and positive integer M be given, where N ≥ nx + 1 and nx ≤ M ≤ N − 1. In
the RMPC method, the tightening approach is based on a set of disturbance gains K =
{Ki }N−1

i=0 . We employ the procedure introduced in Definition 3.2.4 to construct the set K.

Remark 3.3.2 (Roles of feedback gains). The state-feedback gain F is related to the states
that lie inside the terminal set of the RMPC method. This gain plays an active role in the
proofs of robust recursive feasibility and robust stability (see the second ingredient of the
RMPC method introduced below). On the other hand, there exists a model mismatch be-
tween the perturbed system (3.2) and the nominal system (3.4). Thus, the constructed state
trajectories using the nominal system (3.4) suffer from prediction errors in the RMPC prob-
lem. By means of these gains, the RMPC method takes into account the effect of unknown
disturbances. As a result, the method can guarantee the predicted trajectories satisfy the
constraints of the RMPC problem (see the first ingredient of the RMPC method introduced
below).

Ingredients of RMPC: We now present concise descriptions of three involved ingre-
dients of the RMPC method: the constraint tightening mechanism, the terminal set, and
the cost function. Suppose k ∈ Z≥0 is the instant at which the RMPC problem, denoted
by P (xk ), is solved. Let the positive integer N be the length of the finite horizon. Con-
sider the nominal feedback gain F given in (3.5) and the disturbance gains K computed
based on Definition 3.2.4, both for the nominal dynamics (3.4).

(1) Constraint tightening mechanism: The following rule of constraint tightening is
applied to the input, state, input target, and state target sets, for all i ∈Z[N−2],

U0 =U, Ui+1 =Ui ∼ Ki Li W , (3.6a)

X0 =X, Xi+1 =Xi ∼ Li W , (3.6b)

Tu,0 =Tu , Tu,i+1 =Tu,i ∼ Ki Li W , (3.6c)

Tx,0 =Tx , Tx,i+1 =Tx,i ∼ Li W , (3.6d)

where

L0 = Inx , Li+1 = (A+BKi )Li . (3.6e)

(2) Terminal set: Let R be a robust control invariant set under the disturbances
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LN−1W such that if x ∈R 1,

(A+BF )x +LN−1w ∈R, for all w ∈W , (3.7a)

x ∈XN−1, (3.7b)

x ∈Tx,N−1, (3.7c)

F x ∈UN−1, (3.7d)

F x ∈Tu,N−1. (3.7e)

The terminal state set is then

X f =R ∼ LN−1W ⊂Rnx . (3.8)

Assumption 3.3.3. The terminal set X f is non-empty.

(3) Cost function: Let us denote the input trajectory {uk+i |k }N−1
i=0 and the state trajec-

tory {xk+i |k }N
i=0 by Uk|k and Xk|k , respectively. The cost function of the RMPC problem

is

J (xk ,Uk|k ) =
N−1∑
i=0

d(x̄k+i |k ,Tx,i ,Q)+d(uk+i |k ,Tu,i ,R), (3.9)

where d is the weighted distance function introduced in Definition 3.2.1.
We are now in a position to introduce the RMPC problem.
RMPC formulation: The optimization problem P (xk ) for a finite horizon N at the

instant k reads as follows:

P (xk ) : J (xk ,U∗
k|k ) = min

Xk|k ,Uk|k
J (xk ,Uk|k ) (3.10a)

subject to

x̄k = xk (3.10b)

x̄k+i+1|k = Ax̄k+i |k +Buk+i |k , for all i ∈Z[N−1] (3.10c)

uk+i |k ∈Ui , for all i ∈Z[N−1] (3.10d)

x̄k+i |k ∈Xi , for all i ∈Z[N−1] (3.10e)

x̄k+N |k ∈X f , (3.10f)

where U∗
k|k := {u∗

k+i |k }N−1
i=0 and X∗

k|k := {x∗
k+i |k }N

i=0 represent the optimal input and state
trajectories of P (xk ), respectively.

In what follows, we state the preliminary results of this chapter concerning robust
recursive feasibility and robust convergence of the RMPC method.

Theorem 3.3.4 (Robust Recursive Feasibility). Consider the perturbed LTI dynamics (3.2)
subject to the constraints and the disturbances given in (3.3). Suppose that for some initial
state x0 ∈ Rnx , P (x0) has a feasible solution. Then, (i) the following optimization prob-
lems P (xk ) have feasible solutions for all k ∈Z≥0. Additionally, (ii) the trajectories of the
system (3.2) satisfy the constraints in (3.3).
1Notice that when the disturbance feedback gains K render the system nilpotent in less than N − 1 steps, it

follows that LN−1 = 0. Hence, the conditions on the terminal set X f become less restrictive, i.e., see (3.8) in
this regard.
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Theorem 3.3.5 (Robust convergence). Consider the perturbed LTI dynamics (3.2) subject
to the constraints and the disturbances given in (3.3). Suppose that for some initial state
x0 ∈Rnx , P (x0) has a feasible solution. Then, the state and input trajectories are such that
xk →Tx and uk →Tu , as k →∞.

The proofs of Theorems 3.3.4 and 3.3.5 are provided in Subsections 3.5.1 and 3.5.2,
respectively. The main problem addressed in this chapter is now introduced.

Problem 3.3.6 (Formal statement). Consider the perturbed LTI dynamics (3.2) with the
constraints (3.3). Suppose now the sensory units are decentralized (in the sense that there
is no centralized unit outside the controller unit that collects all the states). Under As-
sumptions 3.3.1 and 3.3.3, the controller unit synthesizes an optimal input trajectory U∗

k|k ,
where k ∈Z≥0 is the last instant at which the optimization problem (3.10) is solved.

Devise a triggering mechanism to determine the next triggering instant ktrig > k in the
form of

ktrig := k +min{ j ∈N[N−1] : xx+ j ∉ x∗
k+ j |k ⊕E j ,k }, (3.11)

such that

• the actuator units employ the control action uk+ j = u∗
k+ j |k , for all j ∈Z[ktrig−k];

• the closed-loop dynamics (3.2) with the above control law does not violate the con-
straints (3.3);

• the states xk →Tx and the inputs uk →Tu , as k →∞,

where xk+ j is the observed state at the sensory units and the sequence of hyper-rectangle
sets Ek := {E j ,k }N−1

j=1 ought to be determined.

Remark 3.3.7 (Standard vs event-based implementation policies). In a standard RMPC
setting, such as the problem (3.10), the optimal control problem is solved at all instants
k ∈Z≥0. The first element of U∗

k|k , that is u∗
k|k , is then applied to the plant via the actuator

nodes at every instant k. While in an event-based setting, the triggering mechanism gen-
erally exploits the optimal trajectories U∗

k|k and X∗
k|k to provide sufficient conditions under

which robust stability and robust recursive feasibility are satisfied.

Remark 3.3.8 (Iteration Complexity of RMPC). An RMPC problem with linear dynamics,
a quadratic cost function, and polytopic constraints is a quadratic program (QP) (the cost
function is quadratic in decision variables and constraints are given by linear equalities or
inequalities in terms of decision variables). Interestingly, dedicated solvers can provide the
complexity per iteration O (N (nx +nu)3) by exploiting the structure of the corresponding
QP [71]. Notice that a common approach to solve QPs is the interior-point method [75]
which can guarantee the complexity per iteration O (N 3(nx +nu)3). It is however worth
noting that because of the type of the cost function (3.9), the resulting QP has the complex-
ity per iteration O (N (2nx +2nu)3).
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3.4. MAIN RESULTS
We provide the event-based implementation policy of the RMPC method (3.10) in this
section. We first describe a certain type of constrained optimization problems. The out-
come of these optimization problems is a sequence of hyper-rectangles Ek := {E j ,k }N−1

j=1 .

Based on these constructed sets, we then state the main results of this chapter.

3.4.1. CONSTRUCTION OF HYPER-RECTANGLES Ek
We introduce the framework to construct each hyper-rectangle E j ,k which includes: the
chosen type of parameterization of each E j ,k , the required quantities to cast the prob-
lem of finding E j ,k as an optimization problem, followed by the optimization problem
itself. Suppose k is the last instant at which the problem P (xk ) has been solved. Let
j ∈N[N−1] denote a time instant following k. Notice that j indicates the instant at which
the triggering mechanism is being evaluated. Define the prediction error

ek+ j |k = xk+ j −x∗
k+ j |k , (3.12)

due to the mismatch between the perturbed dynamics and the nominal dynamics. For
all p ∈ N[nx ], xp

k+ j is the p-th element of the state vector xk+ j , observed by the p-th lo-

cal sensor. For all j ∈ N[N−1] and p ∈ N[nx ], consider some positive scalars ep
j ,k and ep

j ,k
defining (N −1) hyper-rectangles

E j ,k := {
ε ∈Rnx : −ep

j ,k ≤ εp ≤ ēp
j ,k , for all p ∈N[nx ]

}⊂Rnx ,

where εp is the p-th element of ε. In simple words, each hyper-rectangle E j ,k is pa-

rameterized in 2nx parameters ep
j ,k and ep

j ,k . In the next step, we introduce a set-based

optimization problem to find each set E j ,k such that if ek+ j |k ∈ E j ,k , then, the three re-
quirements in Problem 3.3.6 are fulfilled. Based on the error definition (3.12), one can
reformulate the triggering mechanism (3.11) as ktrig := k+min{ j ∈N[N−1] : ek+ j |k ∉ E j ,k }.

First, let us introduce the quantities involved in the derivation of the sets E j ,k . Recall
that U∗

k|k = {u∗
k+i |k }N−1

i=0 and X∗
k|k = {x∗

k+i |k }N
i=0 are available from solving P (xk ).

(1) Construction of optimal input and state trajectories: We now aim to construct
the following (with some abuse of notation) optimal trajectories U∗

k+ j |k := {u∗
k+ j+i |k }N−1

i=0 ,

and X∗
k+ j |k := {x∗

k+ j+i |k }N
i=0. The term abuse of notation refers to the fact that we have

only access to u∗
k+ j+i |k for j + i ≤ N −1 and x∗

k+ j+i |k for j + i ≤ N from solving P (xk ). We

adopt the convention

u∗
k+ j+i |k = F (A+BF ) j+i−N x∗

k+N |k , for j + i ≥ N , (3.13a)

x∗
k+ j+i |k = (A+BF ) j+i−N x∗

k+N |k , for j + i ≥ N +1, (3.13b)

to construct unavailable “optimal" input and state trajectories based on the solution of
P (xk ).

(2) Construction of minimal distance target points: Let us now introduce two new
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sets of quantities

s∗x,k+ j+i |k = argmin
sx∈Tx, j+i

‖x∗
k+ j+i |k − sx‖2

Q , for j + i ≤ N , (3.14a)

s∗u,k+ j+i |k = argmin
su∈Tu, j+i

‖u∗
k+ j+i |k − su‖2

R , for j + i ≤ N −1. (3.14b)

Observe that the points s∗x,k+ j+i |k and s∗u,k+ j+i |k represent the points on the boundary

of the target sets that have the smallest distance to x∗
k+ j+i |k and u∗

k+ j+i |k , respectively.

These parameters are already at hand as a by product of solving P (xk ). We next define

s∗x,k+ j+i |k = x∗
k+ j+i |k , for j + i ∈Z[N+ j ]/Z[N ] (3.15a)

s∗u,k+ j+i |k = u∗
k+ j+i |k , for j + i ∈Z[N+ j−1]/Z[N−1], (3.15b)

for all i ∈ Z[N−1]. The convention introduced in (3.13) implies that u∗
k+ j+i |k ∈ Tu,i and

x∗
k+ j+i |k ∈Tx,i , for j + i > N −1 (since they are state-feedback extensions of the terminal

state x∗
k+N |k ). In light of this fact, d(x∗

k+ j+i |k ,Tx,i ,Q) = d(u∗
k+ j+i |k ,Tu,i ,R) = 0 and hence,

the choice made in the definition (3.15) becomes apparent.
(3) Adopted feedback gains and transition matrices: We finally adopt the feedback

gains K̃i and the state-transition matrices L̃i defined as2

K̃0 = 0nu×nx , K̃i+1 = Ki , for all i ∈Z[N−2], (3.16a)

L̃0 = Inx , L̃i+1 = (A+BK̃i )L̃i , for all i ∈Z[N−1]. (3.16b)

These gains and transition matrices enable us to construct candidate input and state
trajectories at instant k + j based on the optimal solution trajectories of P (xk ). We then
utilize these candidate trajectories to prove the main results (see Subsections 3.5.3 and
3.5.4).

Construction of E j ,k : Let us first provide two definitions for the volume of E j ,k , that
are

vol1(E j ,k ) := Π
p∈[nx ]

(ep
j ,k +ep

j ,k ), (3.17a)

vol2(E j ,k ) := Π
p∈[nx ]

(ep
j ,k ×ep

j ,k ). (3.17b)

Notice that the definition (3.17a) is the standard definition of the volume for E j ,k in Rnx .
As it will be discussed later on, the constructed hyper-rectangles E j ,k based on vol1(E j ,k )
are highly asymmetric with respect to the origin although these sets have the maximum
possible volume. (This asymmetry in turn implies that the triggering mechanism has
no robustness in certain error directions.) The non-standard definition (3.17b) of the
volume is introduced to handle the asymmetry issue and to promote a more symmet-
ric construction of E j ,k around the origin compared to the construction based on the
definition (3.17a). The discussion regarding the importance of this point is provided in

2Notice that L̃1 = A: the error evolves in open-loop for one time step.
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Remark 3.4.9. The optimization problem to find the hyper-rectangle E j ,k follows:

max
e

p
j ,k ,e

p
j ,k

volq (E j ,k ) (3.18a)

subject to

ep
j ,k ≥ 0, ēp

j ,k ≥ 0, for all p ∈N[nx ], (3.18b)

x∗
k+ j+i |k ∈Xi ∼ L̃i E j ,k , for all i ∈Z[N−1], (3.18c)

u∗
k+ j+i |k ∈Ui ∼ K̃i L̃i E j ,k , for all i ∈Z[N−1], (3.18d)

s∗x,k+ j+i |k ∈Tx,i ∼ L̃i E j ,k , for all i ∈Z[N−1], (3.18e)

s∗u,k+ j+i |k ∈Tu,i ∼ K̃i L̃i E j ,k , for all i ∈Z[N−1], (3.18f)

where q ∈ {1,2} determines which type of the volume definition in (3.17) is chosen. At
the triggering instant k, all the required data to solve the problem (3.18) is available after
solving the RMPC problem (3.10), for all j ∈N[N−1].

Remark 3.4.1 (Non-convexity and parametric-in-set constraints). The problem (3.18)
simply seeks to find the maximum volume hyper-rectangles E j ,k that satisfy the set-based
constraints (3.18c)-(3.18f). It is evident that the objective function volq (E j ,k ) is a nonlin-
ear, non-convex function that makes the problem (3.18) difficult to solve by itself. Despite
this non-convexity, we show that the problem remains practically solvable. We show that:
(i) the set-based constraints (3.18c)-(3.18f) are effectively representable by linear inequal-
ities (i.e., polytopic inequalities) in Theorems 3.4.6 & 3.4.7, (ii) the cost function volq (E j ,k )
of the problem (3.18) has a CP counterpart in Theorem 3.4.6 , and (iii) the problem (3.18)
admits an LP relaxation in Theorem 3.4.7.

3.4.2. EVENT-BASED DECENTRALIZED IMPLEMENTATION

The theoretical results of this chapter are now introduced. We first present an algo-
rithmic implementation of the RMPC method using the outcome of the optimization
problem (3.18) (In Theorems 3.4.6 & 3.4.7, we will show how to solve the problem (3.18)
efficiently). Then, we show that robust recursive feasibility and robust stability are guar-
anteed under the utilization of such an implementation policy. In simple words, if the
incurred prediction errors caused by the model mismatch between two consecutive trig-
gering instants are inside the hyper-rectangles Ek , then, the decentralized, event-based
implementation of the RMPC is both robustly recursively feasible and robustly stable.
Finally, we discuss that the non-convex problem (3.18) to construct the hyper-rectangles
Ek has a CP reformulation and an LP relaxation, and therefore can be solved in practice.

Algorithm 2 provides the event-based implementation policy of the RMPC method
of this chapter.
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Algorithm 2 Event-based implementation policy of RMPC

1: Calculate F according to (3.5), and Ki according to Definition 3.2.4, with M < N −1.
2: Initialize by setting k = 0, j = 0.
3: Measure x0.
4: loop
5: Collect measurement xk+ j from sensors.
6: k ← k + j , j ← 0. .Update
7: Solve P (xk ).
8: Solve Problem (3.18) for j ∈N[N−1] using Theorem 3.4.6 or 3.4.7.
9: Send the input sequence U∗

k|k to the actuators.

10: Send bounds x∗,p
k+ j |k − ep

j ,k and x∗,p
k+ j |k + ep

j ,k to the corresponding sensors, for all

j ∈N[N−1].
11: Apply uk = u∗

k|k from the solution of P (xk ).
12: j ← j +1,
13: if j > N −1 then
14: Go to 6 .Update triggered
15: end if
16: for p ∈N[n] do
17: Measure xp

k+ j .

18: if xp
k+ j < x∗,p

k+ j |k −ep
j ,k or xp

k+ j > x∗,p
k+ j |k +ep

j ,k then

19: Go to 6 .Update triggered
20: end if
21: end for
22: Apply uk = u∗

k+ j |k from the solution of P (xk ).

23: Go to 12 .No update triggered
24: end loop

Remark 3.4.2 (Transmission protocol). We assume that all communication units on sen-
sors, controller and actuators are clock-synchronized (by doing so, one can effectively re-
duce the listening time and conserve energy). At each instant k that the RMPC prob-
lem (3.10) is solved, the controller node sends: (i) U∗

k|k to the actuator nodes and (2) the

state individual bounds x∗,p
k+ j |k −ep

j ,k and x∗,p
k+ j |k +ep

j ,k to the corresponding sensory nodes,

for all j ∈ N[N−1]. We further assume that the nx sensor units declare a triggering instant
to each other, through a cost-efficient short-range transmission. Each individual sensor
then declares its observed state to the controller.

Theorem 3.4.3 (Event-based robust recursive feasibility). Consider the perturbed LTI dy-
namics (3.2) subject to the constraints and the disturbances given in (3.3). Suppose that
for some initial state x0 ∈ Rnx , P (x0) has a feasible solution. Then, the state and input
trajectories of the dynamics (3.2) controlled by Algorithm 2 satisfy the constraints (3.3), for
all k ∈Z≥0, i.e., robust recursive feasibility.

Theorem 3.4.4 (Event-based robust convergence). Consider the perturbed LTI dynam-
ics (3.2) subject to the constraints and the disturbances given in (3.3). Suppose that for
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some initial state x0 ∈Rnx , P (x0) has a feasible solution. Then, the state and input trajec-
tories of dynamics (3.2), controlled by Algorithm 2, are such that xk →Tx and uk →Tu , as
k →∞, i.e., robust convergence.

The proofs of Theorems 3.4.3 and 3.4.4 are provided in Subsections 3.5.3 and 3.5.4,
respectively.

Remark 3.4.5 (Difference with standard analysis). In standard implementations of RMPC
methods (including the RMPC method of this chapter), one is asked to guarantee that the
application of u∗

k|k on the plant does not render its following optimal control problem in-
feasible, recursively. Alternatively in an event-based implementation policy, one should
ensure feasibility not only at the triggering instants but also between two consecutive trig-
gering instants.

The successful usage of the above results is conditioned upon the premise that there
exist computationally tractable methods to construct the sets {E j ,k }N−1

j=1 . We now revisit

the optimization problem (3.18) to show that such a premise is valid by providing two
frameworks: one in a CP form and another one in an LP form. Both of the frameworks are
based on the same basis: the parametric-in-set constraints (3.18b)-(3.18f) can be refor-
mulated into a new set of linear inequalities in terms of the vertices of each set E j ,k . We
shall call the polytope represented by the derived linear inequalities, the principal poly-
tope S̄ . Both frameworks try to find a maximum-volume hyper-rectangle E j ,k inscribed
(or contained) in the principal polytope such that 0 ∈ E j ,k . This problem is closely re-
lated to a well-studied problem in the literature known as “inradius" of a polytopic set
with respect to the polytopal norm induced by a hyper-rectangle with fixed (related to
the LP form) or variable (related to the CP form) edge ratios. ( See e.g., [76] and [77] for
a detailed discussion on such problems.) In the LP framework, we partly employ some
results from [77], see Subsection 3.5.5. We avoid reiterating the proofs of material bor-
rowed from [77].

Theorem 3.4.6 (Volume maximization - CP reformulation). Consider a vector ξ ∈ Rp , a
matrix M ∈ Rp×k , and a polytope S = {s ∈ Rp : AS s ≤ bS } containing the origin where
AS ∈ Rm×p and bS ∈ Rm . The maximum volume hyper-rectangle B(l ,u) ⊂ Rk that con-
tains the origin and satisfies ξ ∈ S ∼ MB(l ,u) is B(−v∗, v∗) where v∗ and v∗ are the
optimal solutions of the problem

min
v ,v

fq
(
v , v

)
s.t. 〈w i , [v> v>]>〉 ≤ bi ,S −ai ,S ξ, for all i ∈N[m], v ≥ 0, v ≥ 0,

(3.19)

where for q ∈ {1,2}

f1
(
v , v

)
:=− Σ

j∈N[k]

log
(
v j + v j ), (3.20a)

f2
(
v , v

)
:=− Σ

j∈N[k]

log
(
v j

)+ log
(
v j ), (3.20b)
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and for all j ∈N[k]

w i
j =

{(
M>a>

i ,S

)
j , if ŵ i

j = 1,

0, otherwise,
(3.21a)

w i
k+ j =

{ − (
M>a>

i ,S

)
j , if ŵ i

j =−1,

0, otherwise,
(3.21b)

with ŵ i := sign(M>a>
i ,S ), for all i ∈N[m].

Theorem 3.4.7 (Volume maximization - LP relaxation). Suppose the hypotheses in Theo-
rem 3.4.6 hold.

• (q = 1) The maximum volume r -constrained hyper-rectangle B(l ,u) ⊂Rk that con-
tains the origin and satisfies ξ ∈S ∼ MB(l ,u) is B(z∗, z∗+λ∗r ) for which z∗ ∈Rk

and λ∗ ∈R are the optimal solution of the problem

max
z,λ

λ

s.t. AS M z + (AS M)+rλ≤ bS − AS ξ

z +λr ≥ 0, z ≤ 0,

(3.22)

where for all j ∈N[k], the j -th entry of r is defined as

r j := max
z,ω

ω

s.t. AS M z ≤ bS − AS ξ

AS M(z +ωe j ) ≤ bS − AS ξ

z +ωe j ≥ 0, z ≤ 0,

(3.23)

where e j ∈Rk is the unit vector in the j -th direction and the polytope S̄ is

S̄ := {z ∈Rk : AS M z ≤ bS − AS ξ}.

• (q = 2) The maximum volume r -constrained hyper-rectangle B(l ,u) ⊂Rk that con-
tains the origin and satisfies ξ ∈ S ∼ MB(l ,u) is B(−λ∗r1,λ∗r2) for which λ∗ ∈ R
is the optimal solution of the problem

max
λ

λ

s.t. (W )+rλ≤ B ,
(3.24)

where r = (
r>

2 ,r>
1

)> and for all j ∈N[2k], the j -th entry of r is defined as

r j := max
ω

ω

s.t. W ′(ωe j ) ≤ B ′,
(3.25)
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where e j ∈R2k is the unit vector in the j -th direction,

W = (
w1, · · · , wm)>, W ′ =

 W

− Ik 0k×1

0k×1 −Ik

 ,

B = bS − AS ξ, B ′ = (
B>,01×2k

)>,

and for all i ∈N[m], w i are defined in (3.21).

Recall that the derived hyper-rectangle B using the CP or LP framework and the con-
straints ξ ∈S ∼ MB(l ,u) represent the hyper-rectangle E j ,k and the constraint (3.18b)-
(3.18f), respectively. We should emphasize that although Theorem 3.4.6 or 3.4.7 provides
a method to construct a set E j ,k with the maximal volume, the derived set is not unique
(the cost functions related to both of the approaches are not strictly convex to guarantee
the uniqueness of the optimal decision variables). In the remainder of this chapter, we
denote the construction approach based on the CP (3.19) with q = 1 and q = 2 by CP1

and CP2, respectively. Furthermore, LP1 represents the LP relaxation (3.22)-(3.23) of CP1

and LP2 denotes the LP relaxation (3.24)-(3.25) of CP2.
Computational complexity: Consider the convex program (CP) {min f0(η), s.t. fi (η) ≤

0, for all i ∈ N[nc ]} with the decision variable η ∈ Rnd , where the constraint functions
fi : Rnd → R are convex. The computational effort to solve this convex program (or
any optimization problem for that matter) depends on (i) the problem instance (i.e., the
types of f0 and the constraint functions fi ), (ii) the utilized algorithm (e.g., interior-point
methods [75]), and (iii) the prescribed accuracy of the solution ε ∈R>0 (i.e., f0(x)− f ∗ ≤ ε
where f ∗ is the optimal value). Assuming these three items are set, one can then use
the arithmetic complexity to provide a measure for the computational effort. In sim-
ple words, the arithmetic complexity provides an upper bound on the number of ba-
sic mathematical operations (that is called flops) required to attain an ε-close solution
to the optimal value. (See e.g., [78] for an in-depth treatment of the complexity sub-
ject.) In what follows, we mainly concentrate on interior-point methods. These algo-
rithms are a typical choice to solve moderate-size, smooth, convex problems by ap-
plying Newton’s method [79, Chapter 9] to a sequence of equality constrained prob-
lems. (We strongly recommend the reader to consult with [79, Appendix C] and the
references therein, which are specifically tailored for the complexity analysis of New-
ton’s method.) Let us begin with providing the arithmetic complexity of a general LP
{maxc>η : Aη≤ b} where A ∈ Rnc×nd and b ∈ Rnc . One can use for example the interior-
point method proposed by Renegar [80] and achieve the total arithmetic complexity
O

(
(nc +nd )1.5n2

d ln( 1
ε )

)
. Suppose now nd ¿ nc , the arithmetic complexity then becomes

O
(
n1.5

c n2
d ln( 1

ε )
)
. One can even take a step further and use the mechanism introduced in

[75, Subsection 3.4] and achieve the complexity O
(
nc n2

d ln( 1
ε )

)
. Now consider a general

CP {min f0(x) : fi (x) ≤ bi , i ∈N[nc ]} where fi are convex concordant functions [75, Chap-
ter 2], for all i ∈Z[nc ]. Assume further that (i) f0 and the barrier functionφ associated with
the constraints are closed and self-concordant, (ii) the Hessian of t f0 +φ is positive def-
inite everywhere (see [79, Page 586]). One can use the barrier method introduced in [79,
Subsection 11.3]. As a result, the arithmetic complexity of the algorithm is O

(p
nc ln( 1

ε )
)
.
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It is important to remind the reader that this type analysis is in fact conservative. Roughly
speaking, the actual behavior of the applied algorithm is highly affected by the structural
properties of the constraints and the objective function. Nesterov and Nemirovski have
used the notion of self-concordance functions to properly capture these properties [75,
Chapter 2]. By doing so, they have been able to provide a unified framework for interior
point methods.

Let us now explain what is the arithmetic complexity of the approaches proposed in
Theorems 3.4.6 & 3.4.7. We adopt the following notion of an oracle to represent the con-
vex problems in this paper. By doing so, one can provide the arithmetic complexity of
the problems in Theorems 3.4.6 & 3.4.7 independent of the approach used. More pre-
cisely, we denote (i) by lp(nc ,nd ) the oracle complexity for solving max

η
{c>η : Aη ≤ b}

where A ∈ Rnc×nd , c ∈ Rnd and b ∈ Rnc , and (ii) by cp(nc ,nd ) the oracle complexity for
solving max

η
{ f (η) : Aη ≤ b} where the concave function f : Rnd → R, A ∈ Rnc×nd , and

b ∈Rnc . Based on the adopted complexity notion, we now provide the complexity of the
approaches in Theorems 3.4.6 & 3.4.7.

Remark 3.4.8 (Oracle complexity). CP reformulations: The oracle complexity of prob-
lem (3.19) is cp(m + 2k,2k). LP1 relaxation (q=1): The complexity of problem (3.23) is
k × lp(2m+2k,k +1). Moreover, lp(m+2k,k +1) represents the oracle complexity of prob-
lem (3.22). LP2 relaxation (q=2): The complexity of problem (3.25) is 2k × lp(m +2k,1).
Furthermore, lp(m,1) represents the oracle complexity of problem (3.24).

A geometrical measure of sensitivity: As mentioned in Remark 3.4.1, we use Theo-
rem 3.4.6 or 3.4.7 to solve the optimization problem (3.18), and find the hyper-rectangle
E j ,k . Suppose now E j ,k is found using either of the approaches proposed in Theorem 3.4.6
or 3.4.7. Two points of clarification are now in order. The first one has to do with the fact
that a large volume of E j ,k and as a matter of fact even a large width of E j ,k along a co-

ordinate axis p (that is ep
j ,k +ep

j ,k ) can be misleading. In doing so, let us define two types

of 2-norm balls. Suppose that the polytope that represents the constraint (3.18b)-(3.18f)
is denoted by S ⊂ Rnx . We denote by B2

c,S
(xc,rc) the maximal 2-norm ball that fits in-

side S . The center xc is the so-called Chebychev center of the polytope S . (See e.g.,
[79, Chapters 4&8] for more details on the Chebychev center of a polyhedron.) Hence,
B2

c,S
:= {xc+y ∈Rnx : ‖y‖ ≤ rc} ⊆S . We further denote by B2

◦,S
(r◦) the maximal 2-norm

ball that is centered at the origin and B2
◦,S

(r◦) ⊆ S . Thus, B2
◦,S

(r◦) := {y ∈ Rnx : ‖y‖ ≤
r◦} ⊆S . We now introduce the measure rc

r◦ of S that characterizes an important feature
of the derived hyper rectangle E j ,k using the frameworks proposed in Theorems 3.4.6

& 3.4.7. It is worth mentioning that (i) this property of S is inherited from the con-
straints (3.18b)-(3.18f), and (ii) the ratio rc

r◦ ≥ 1 (the equality case happens if S is sym-
metric with respect to the origin). The second point of clarification is related to the fact
that the hyper-rectangles constructed based on the approaches CP2 and LP2 are more
symmetric with respect to the origin compared to the ones constructed based on the
approaches CP1 and LP1.

Remark 3.4.9 (Directional sensitivity to prediction errors). Well-shaped case: If the ra-
tio rc

r◦ ∼ 1, then, the optimal hyper-rectangle E j ,k derived based on Theorem 3.4.6 or 3.4.7
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is relatively symmetric with respect to the origin. As a result, the difference between the
lower-bound ep

j ,k and the upper-bound ep
j ,k is not significant (i.e., the triggering mecha-

nism shows a similar behavior irrespective of the direction of error mismatch that occurs
along the p-th coordinate). See Figure 3.1a. Ill-shaped case: If the ratio rc

r◦ À 1, then, the
optimal hyper-rectangle E j ,k derived based on Theorem 3.4.6 or 3.4.7 is relatively asym-

metric with respect to the origin. As a result, the difference between the lower-bound ep
j ,k

and the upper-bound ep
j ,k can become significant (i.e., the triggering mechanism shows

an extreme level of sensitivity to the direction of the prediction error along the coordinate
p ∈N[nx ] with a large |ep

j ,k −ep
j ,k |). See Figure 3.1b.

3.5. TECHNICAL PROOFS

3.5.1. PROOF OF THEOREM 3.3.4
(Proof by induction) It is postulated by the theorem that there is a feasible solution for
P (x0). For any k ≥ 1, we then have to show that given a feasible solution for P (xk ) and
applying the first element of the sequence U∗

k|k , there exits a feasible candidate solution
for the subsequent problem P (xk+1), for all wk ∈W . The proof of claim (ii) immediately
follows from this feasibility result. Because feasible solutions for P (xk ) imply the satis-
faction of the constraints on xk and uk in (3.3), through (3.10d) and (3.10e) with i = 0.

Suppose k is the instant at which the problem P (xk ) has been solved, with its corre-
sponding optimal input and state trajectories U∗

k|k and X∗
k|k , respectively. Evidently, the

constraints (3.10c)-(3.10f) are satisfied. Define Acl := (A +BF ). At the instant k +1, it is
trivial to show that the disturbance can be derived from the most recent measurement,
i.e., wk = xk+1 −x∗

k+1|k . Then, a candidate control sequence Ûk+1|k+1 is
ûk+1|k+1

ûk+2|k+1
...

ûk+N−1|k+1

ûk+N |k+1

=



u∗
k+1|k

u∗
k+2|k

...
u∗

k+N−1|k
F x∗

k+N |k

+


K0L0

K1L1
...

KN−2LN−2

F LN−1

wk , (3.26a)

which results into the candidate state trajectory X̂k+1|k+1
x̂k+1|k+1

x̂k+2|k+1
...

x̂k+N |k+1

x̂k+N+1|k+1

=



x∗
k+1|k

x∗
k+2|k

...
x∗

k+N |k
Aclx̂k+N |k+1

+


L0

L1
...

LN−1

0

wk . (3.26b)

We now establish that the candidate trajectories in (3.26) satisfy the constraints (3.10b)-
(3.10f). This in turn implies that Ũk+1|k+1 is a feasible solution for P (xk+1), if xk+1 is
given by the system dynamics (3.2).

It simply holds that x̂k+1|k+1 = x∗
k+1|k + L0wk = x∗

k+1|k + wk = xk+1|k+1. Hence, the
initial state constraint (3.10b) is satisfied. Making use of the linearity of dynamics and
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(a) Well-shaped polytope example, rc
r◦ = 1.0861.
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(b) Ill-shaped polytope example, rc
r◦ = 8.0669.

Figure 3.1: Comparison of the CP and LP approaches in Theorems 3.4.6 & 3.4.7 to compute an inner hyper-
rectangle E j ,k inside a given polytope S . (Well-shaped example) In Figure 3.1a, the Chebychev center xc is

relatively close to the origin (the area of S is distributed in a somewhat uniform manner around the origin). All
the four approaches provide close behaviors. As a result, the directional sensitivity of E j ,k for all approaches

is low. (Ill-shaped example) Contrary to the previous case, the Chebychev center xc of S is relatively far from
the origin in Figure 3.1b. The hyper-rectangles E j ,k derived based on the approaches CP2 and LP2 provide a
more symmetric result compared to the ones computed based on the approaches CP1 and LP1.
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the definition (3.6e), we have for the states further in the sequence

x̂k+2|k+1 = A (x∗
k+1|k +L0wk )︸ ︷︷ ︸

=x̂k+1|k+1

+B (u∗
k+1|k +K0L0wk )︸ ︷︷ ︸

=ûk+1|k+1

= x∗
k+2|k + L1︸︷︷︸

=(A+BK0)L0

wk ,

x̂k+3|k+1 = A (x∗
k+2|k +L1wk )︸ ︷︷ ︸

=x̂k+2|k+1

+B (u∗
k+2|k +K1L1wk )︸ ︷︷ ︸

=ûk+2|k+1

= x∗
k+3|k + L2︸︷︷︸

=(A+BK1)L1

wk ,

. . . .

We lastly need to show that the terminal state of X̂k+1|k+1 satisfies the nominal system
dynamics. To do so,

x̂k+N+1|k+1 = A (x∗
k+N |k +LN−1wk )︸ ︷︷ ︸

=x̂k+N |k+1

+BF (x∗
k+N |k +LN−1wk )︸ ︷︷ ︸

=x̂k+N |k+1

= Acl x̂k+N |k+1.

As a result, the dynamics constraints (3.10c) are satisfied by Ûk+1|k+1 and X̂k+1|k+1.

Since U∗
k|k is a feasible solution for P (xk ), u∗

k+i+1|k ∈Ui+1, ∀i ∈Z[N−2]. We also have
Ui+1 = Ui ∼ Ki Li W by the relation (3.6a). Using Definition 3.2.2, i.e., the Pontryagin
difference, it thus follows that ûk+i+1|k+1 = u∗

k+i+1|k +Ki Li wk ∈Ui , ∀i ∈Z[N−2]. We next
need to show that ûk+N |k+1 ∈ UN−1. Considering x∗

k+N |k ∈ X f , the relation (3.8) im-
plies that x̂k+N |k+1 = x∗

k+N |k +LN−1wk ∈ R. We then have from the relation (3.7d) that
ûk+N |k+1 = F x̂k+N |k+1 ∈UN−1. As a result, ûk+i+1|k+1 ∈Ui , for all i ∈ Z[N−1] and thereby
the candidate input trajectory satisfies the constraints (3.10d).

With a similar argument, one can show that the state predictions resulting from the
candidate trajectory are also inside their respective sets. From x∗

k+i+1|k ∈ Xi+1, ∀i ∈
Z[N−2] and the definition of the Pontryagin difference, x̂k+i+1|k+1 = x∗

k+i+1|k + Li wk ∈
Xi ,∀i ∈ Z[N−2]. Since x∗

k+N |k ∈X f , the relation (3.8) gives x̂k+N |k+1 ∈R. Then, the rela-
tion (3.7b) implies that x̂k+N |k+1 ∈ XN−1. Hence, x̂k+i+1|k+1 ∈ Xi , ∀i ∈ Z[N−1]. The con-
straints (3.10e) are satisfied by the candidate solution. Lastly, we are required to show
that the terminal state x̂k+N+1|k+1 ∈ X f , i.e., the satisfaction of the relation (3.10f). This
simply follows from the previous observations and the relation (3.7a),

x̂k+N |k+1 ∈R ⇒
(3.7a)

Acl x̂k+N |k+1 +LN−1wk ∈R,∀wk ∈W ⇒
(3.8)

x̂k+N+1|k+1 ∈X f .

The proof of claim (i) and as a result the proof of claim (ii) are concluded.

3.5.2. PROOF OF THEOREM 3.3.5
Recall the candidate trajectories Ûk+1|k+1 and X̂k+1|k+1 as defined in (3.26a) and (3.26b),
respectively, for P (xk+1). In a nutshell, this proof consists of deriving a positive upper
bound for J (xk ,U∗

k|k )−J (xk+1,Ûk+1|k+1) that decreases as k →∞. Notice that the optimal
solution for P (xk+1) has a cost that is smaller than or equal to the cost of the candidate
solution , i.e., J (xk+1,U∗

k+1|k+1) ≤ J (xk+1,Ûk+1|k+1).
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By virtue of Lemma 3.2.3, one can observe that, for all i ∈Z[N−2] and for all wk ∈W ,

d(ûk+i+1|k+1,Tu,i ,R) ≤ d(u∗
k+i+1|k ,Tu,i ∼ Ki Li W ,R)

= d(u∗
k+i+1|k ,Tu,i+1,R),

d(x̂k+i+1|k+1,Tx,i ,Q) ≤ d(x∗
k+i+1|k ,Tx,i ∼ Li W ,Q)

= d(x∗
k+i+1|k ,Tx,i+1,Q).

Notice that x∗
k+N |k ∈X f from (3.10f). The relation (3.7c) implies that x̂k+N |k+1 ∈Tx,N−1.

Moreover, from (3.7e) it follows that ûk+N |k+1 ∈ Tu,N−1. Thus, the costs associated to
x̂k+N |k+1 and ûk+N |k+1 become zero for the candidate sequences. This last observation
enables us to determine an upper bound for the cost related to the candidate solution as
follows,

J (xk+1,Ûk+1|k+1) =
N−1∑
i=0

d(x̂k+i+1|k+1,Tx,i ,Q)+d(ûk+i+1|k+1,Tu,i ,R)

≤
N−2∑
i=0

d(x∗
k+i+1|k ,Tx,i+1,Q)+d(uk+i+1|k ,Tu,i+1,R)

= J (xk ,U∗
k|k )−d(x∗

k|k ,Tx,0,Q)−d(u∗
k|k ,Tu,0,R),

as well as an upper bound on the optimal cost for the optimization performed at k +1,
that is

J (xk+1,U∗
k+1|k+1) ≤ J (xk+1,Ûk+1|k+1)

≤ J (xk ,U∗
k|k )−d(x∗

k|k ,Tx,0,Q)−d(u∗
k|k ,Tu,0,R).

Since the distance function d is nonnegative, it holds that J (xk ,Uk|k ) ≥ 0. It follows from
the above relation that J (xk ,U∗

k ) decreases with increasing k and converges to a steady
value. This fact in turn implies d(x∗

k|k ,Tx,0,Q)+ d(u∗
k|k ,Tu,0,R) → 0, as k → ∞, from

which we can conclude that xk →Tx and uk →Tu as k →∞. The claim is proved.

3.5.3. PROOF OF THEOREM 3.4.3
Consider k denotes the last instant at which the optimization problem P (xk ) is solved.
Let j ∈ N[N−2]. Suppose without loss of generality that the mechanism is enabled at the
instant k + j +1, i.e., ek+ j+1|k ∉ E j+1,k . Hence, for all j ∈N[ j ], ek+ j |k ∈ E j ,k .

(Inter-event feasibility) We first define the candidate input and state trajectories

Ũk+ j |k+ j := {ũk+ j+i |k+ j }N−1
i=0 ,

X̃k+ j |k+ j := {x̃k+ j+i |k+ j }N
i=0,

as follows,

ũk+ j+i |k+ j :=
{

u∗
k+ j+i |k + K̃i L̃i ek+ j |k , for i ∈Z[N− j−1],

F (A+BF )( j+i−N )x∗
k+N |k + K̃i L̃i ek+ j |k , for i ∈Z[N−1]/Z[N− j−1],

(3.27a)
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x̃k+ j+i |k+ j :=
{

x∗
k+ j+i |k + L̃i ek+ j |k , for i ∈Z[N− j ],

(A+BF )( j+i−N )x∗
k+N |k + L̃i ek+ j |k , for i ∈Z[N ]/Z[N− j ],

(3.27b)

where the prediction error ek+ j |k , the disturbance gains K̃i , and the transition matri-
ces L̃i are given in (3.12), (3.16a), and (3.16b), respectively. We now establish that these
candidate trajectories satisfy the constrains (3.10b)-(3.10f). By doing so, xk+ j ∈X for all
j such that ek+ j |k ∈ E j ,k , i.e., the state xk+ j does not violate the constraint (3.3). Ob-
serve that x̃k+ j |k+ j = xk+ j and ũk+ j |k+ j = u∗

k+ j |k are the actual, applied input and the

actual, observed state at the instant k + j , respectively. It is not difficult to see that
the equality constraints (3.10b)-(3.10c) are satisfied given the initial state x̃k+ j |k+ j and
the candidate input trajectory Ũk+ j |k+ j (3.27a) (simply by successive application of the
nominal dynamics(3.4)). We next deduce that the constraints (3.10d)-(3.10e) are satis-
fied. Since ek+ j |k ∈ E j ,k , the constraints (3.18c)-(3.18d) imply that x∗

k+ j+i |k ∈Xi ∼ L̃i E j ,k

and u∗
k+ j+i |k ∈ Ui ∼ K̃i L̃i E j ,k , for all i ∈ Z[N−1]. By virtue of (3.27) for all i ∈ Z[N−1] and

the definition of the Pontryagin difference (see Definition 3.2.2), x̃k+ j+i |k+ j = x∗
k+ j+i |k +

L̃i ek+ j |k ∈ Xi and ũk+ j+i |k+ j = u∗
k+ j+i |k + K̃i L̃i ek+ j |k ∈ Ui (where the convention (3.13)

is used to simplify the notation). At last, we show that the constraint (3.10f) holds. The
disturbance gains Ki are designed to render the nominal dynamics (3.4) nilpotent in
M steps where M < N − 1 steps. This nilpotency in turn implies that LN−1 = 0n×n .
Thus, X f =R from the terminal set definition (3.8) and the final transition matrix L̃N =
LN−1 · A = 0nx×nx is implied by the construction (3.16b). Considering the relation (3.7a)
and LN−1 = 0nx×nx , we arrive at (A +BF ) j x∗

k+N |k ∈ R = X f . As a result, x̃k+ j+N |k+ j =
(A+BF ) j x∗

k+N |k +L̃N ek+ j |k ∈X f , i.e., the constraint (3.10f) is respected by the candidate
solution x̃k+ j+N |k+ j . Based on the arguments provided above, we established that (i)
the state xk+ j ∈ X if ek+ j |k ∈ E j ,k , and (ii) there exist the candidate trajectories Ũk+ j |k+ j

and X̃k+ j |k+ j that satisfy all the constraints (3.10b)-(3.10f) of the RMPC. In other words,

we showed that the input sequence {u∗
k+i |k } j

i=1 and the state sequences {xk+i } j
i=1 both

remain feasible if ek+i |k ∈ Ei ,k , for all i ∈N j .
(Event recursive feasibility) In the next step, we should guarantee the optimization

problem P (xk+ j+1) is feasible in the case a triggering is enabled at the instant k + j +1.
To this end, we employ the introduced candidate trajectories to show the Problem (3.10)
is feasible at the triggering instant k+ j+1. We now define two new candidate trajectories
Ûk+ j+1|k+ j+1 := {ûk+ j+1+i |k+ j+1}N−1

i=0 and X̂k+ j+1|k+ j+1 := {x̂k+ j+1+i |k+ j+1}N
i=0,

ûk+ j+1+i |k+ j+1 :=
{

ũk+ j+1+i |k+ j +Ki Li wk+ j , for i ∈Z[N−2],

F x̃k+ j+N |k+ j +F LN−1wk+ j , for i = N −1,
(3.28a)

x̂k+ j+1+i |k+ j+1 :=
{

x̃k+ j+1+i |k+ j +Li wk+ j , for i ∈Z[N−1],

(A+BF )x̂k+ j+N |k+ j , for i = N ,
(3.28b)

where wk+ j ∈W is the perturbation at the instant k + j .
We now show that the candidate trajectories Ûk+ j+1|k+ j+1 and X̂k+ j+1|k+ j+1 satisfy

the constraints (3.10b)-(3.10f), i.e., the feasibility of P (xk+ j+1). Recall that x̃k+ j |k+ j =
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xk+ j and ũk+ j |k+ j = u∗
k+ j |k . Then, xk+ j+1 = Axk+ j +Bu∗

k+ j |k +wk+ j can be rewritten as

xk+ j+1 = Ax̃k+ j |k+ j +Bũk+ j |k+ j +wk+ j . Observe that x̃k+ j+1|k+ j = Ax̃k+ j |k+ j +Bũk+ j |k+ j

and also that L0 = Inx from the definition (3.6e). Since xk+ j+1 = x̃k+ j+1|k+ j +L0wk+ j , the
constraint (3.10b) holds. Moreover, it follows that the remaining entries in X̂k+ j+1|k+ j+1

respect the equality constraints(3.10c) given the initial state x̂k+ j+1|k+ j+1 and the input
trajectory Ûk+ j+1|k+ j+1. We next study the satisfaction of the constraints (3.10d)-(3.10e).
Recall that x̃k+ j+1+i |k+ j ∈ Xi+1, for all i ∈ Z[N−2]. Considering the constraint tighten-
ing (3.6b) (Xi+1 =Xi ∼ Li W ), it is not difficult to see that x̂k+ j+1+i |k+ j+1 = x̃k+ j+1+i |k+ j +
Li wk+ j ∈Xi , for all i ∈Z[N−2]. For i = N−1, we have x̃k+ j+N |k+ j ∈X f . Moreover, X f =R

since LN−1 = 0nx×nx (from the nilpotency). Hence, x̃k+ j+N |k+ j ∈ XN−1, and as a result,
x̂k+ j+N |k+ j+1 = x̃k+ j+N |k+ j +LN−1wk+ j ∈ XN−1. For all i ∈ Z[N−2], ũk+ j+1+i |k+ j ∈ Ui+1

where Ui+1 =Ui ∼ Ki Li W from the constraint tightening (3.6a). Thus, ûk+ j+1+i |k+ j+1 =
ũk+ j+1+i |k+ j +Ki Li wk+ j ∈ Ui , for all i ∈ Z[N−2]. It remains to show that ûk+ j+N |k+ j+1 ∈
UN−1. Notice that x̃k+ j+N |k+ j ∈X f . Considering LN−1 = 0nx×nx (i.e., the nilpotency con-
dition) and the relation (3.7d), it follows that ûk+ j+N |k+ j+1 = F x̃k+ j+N |k+ j ∈ UN−1. As a
result, the conditions (3.10d)-(3.10e) hold. Lastly, it needs to be shown that the terminal
state x̂k+ j+1+N |k+ j+1 ∈ X f , i.e., the terminal constraint (3.10f). We have x̂k+ j+N |k+ j+1 ∈
XN−1. Thus, x̂k+ j+1+N |k+ j+1 = (A +BF )x̂k+ j+N |k+ j+1 ∈ R = X f (since LN−1 = 0nx×nx ).
The claim of the theorem holds.

3.5.4. PROOF OF THEOREM 3.4.4
In the first phase (inter-triggering cost function decay), we show that one can utilize the
trajectories Ũk+ j |k+ j and X̃k+ j |k+ j , given in (3.27), to define the cost J (xk+ j ,Ũk+ j |k+ j )
such that J (xk+ j ,Ũk+ j |k+ j ) ≤ J (xk ,U∗

k|k ). In the second phase (triggering cost function

decay), we demonstrate that one instead use the secondary trajectories Ûk+ j+1|k+ j+1 and
X̂k+ j+1|k+ j+1, given in (3.28), to define the cost

J (xk+ j+1,Ûk+ j+1|k+ j+1),

such that J (xk+ j+1,Ûk+ j+1|k+ j+1) ≤ J (xk ,U∗
k|k ).

(Inter-triggering cost function decay) Recall that for all i ∈ Z[N ] and for all j ∈ N[N−1]:
(i) using the convention (3.14) for j + i ∈ N[N−1], s∗x,k+ j+i |k and s∗u,k+ j+i |k are the points

inside the target sets Tx, j+i and Tu, j+i that have the minimal distance to x∗
k+ j+i |k and

u∗
k+ j+i |k , respectively; and (ii) using the convention (3.15) for j + i ∈ N[N−1+ j ]/N[N−1],

s∗x,k+ j+i |k = x∗
k+ j+i |k and s∗u,k+ j+i |k = u∗

k+ j+i |k . Let k + j be the instant at which the trig-

gering mechanism is being evaluated where j ∈ N[N−1]. In a nutshell, we show that if
ek+ j |k ∈ E j ,k , then, J (xk+ j ,Ũk+ j |k+ j )− J (xk ,U∗

k|k ) ≤ 0.

The definition (3.27b) implies that

d(x̃k+ j+i |k+ j ,Tx,i ,Q) = d(x∗
k+ j+i |k + L̃i ek+ j |k ,Tx,i ,Q).

Observe that ek+ j |k ∈ E j ,k is provided by the triggering mechanism. A direct applica-
tion of Lemma 3.2.3 leads to d(x̃k+ j+i |k+ j ,Tx,i ,Q) ≤ d(x∗

k+ j+i |k ,Tx,i ∼ L̃i E j ,k ,Q). Fur-

thermore, the relation (3.18e) guarantees that the point s∗x,k+ j+i |k ∈Tx,i ∼ L̃i E j ,k , hence,
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d(x∗
k+ j+i |k ,Tx,i ∼ L̃i E j ,k ,Q) ≤ d(x∗

k+ j+i |k , s∗x,k+ j+i |k ,Q). All in all,

d(x̃k+ j+i |k+ j ,Tx,i ,Q) ≤ d(x∗
k+ j+i |k , s∗x,k+ j+i |k ,Q). (3.29)

a) Suppose now j + i ∈ N[N−1]. From the definition (3.14), d(x∗
k+ j+i |k , s∗x,k+ j+i |k ,Q) =

d(x∗
k+ j+i |k ,Tx, j+i ,Q). Thus, we conclude that

d(x̃k+ j+i |k+ j ,Tx,i ,Q) ≤ d(x∗
k+ j+i |k ,Tx, j+i ,Q).

One can follow a similar path and arrive at, for all j + i ∈ Z[N−1], d(ũk+ j+i |k+ j ,Tu,i ,R) ≤
d(u∗

k+ j+i |k ,Tu, j+i ,R). Up until this point, we demonstrated that

N−1− j∑
i=0

d(x̃k+ j+i |k+ j ,Tx,i ,Q)+d(ũk+ j+i |k+ j ,Tu,i ,R) ≤
N−1− j∑

i=0
d(x∗

k+ j+i |k+ j ,Tx, j+i ,Q)+d(u∗
k+ j+i |k ,Tu, j+i ,R). (3.30)

b) Suppose next j + i ∈ N[N−1+ j ]/N[N−1]. Notice that we use the convention (3.15)
for s∗x,k+ j+i |k and s∗u,k+ j+i |k , for j + i ≥ N . Based on the relation (3.29), it is not diffi-

cult to infer that d(x̃k+ j+i |k+ j ,Tx,i ,Q) = 0. In a similar fashion, one can deduce that
d(ũk+ j+i |k ,Tu,i ,R) = 0. We then have

N−1∑
i=N− j

d(x̃k+ j+i |k ,Tx,i ,Q)+d(ũk+ j+i |k ,Tu,i ,R) = 0. (3.31)

Considering the relations (3.30) and (3.31),

J (x̃k+ j ,Ũk+ j |k+ j ) ≤
N−1− j∑

i=0
d(x∗

k+ j+i |k ,Tx, j+i ,Q)+d(u∗
k+ j+i |k ,Tu, j+i ,Q)

=
N−1∑
i= j

d(x∗
k+i |k ,Tx,i ,Q)+d(u∗

k+i |k ,Tu,i ,Q)

≤
N−1∑
i= j

d(x∗
k+i |k ,Tx,i ,Q)+d(u∗

k+i |k ,Tu,i ,Q)

+
j−1∑
i=0

d(x∗
k+i |k ,Tx,i ,Q)+d(u∗

k+i |k ,Tu,i ,R)︸ ︷︷ ︸
6=0 if J (x∗

k|k ,U∗
k|k )6=0

= J (x∗
k|k ,U∗

k|k ).

Thus far, we showed that J (xk ,U∗
k|k )− J (xk+ j ,Ũk+ j |k+ j ) ≤ 0 if ek+ j |k ∈ E j ,k .

(Triggering cost function decay) In next step, we show that when a triggering is oc-
curred, the cost function (3.9) decreases with respect to the previous triggering instant.
To this end, let the triggering condition be enabled at k+ j+1, i.e., either ek+ j+1|k ∉ E j+1,k
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for j ∈N[N−2] or j = N −1. Consider the sequences Ûk+ j+1|k+ j+1 and X̂k+ j+1|k+ j+1, given
in (3.28), as the candidate solutions for the problem P (xk+ j+1). In a nutshell, this part
amounts to deriving a non-negative lower bound on J (xk ,U∗

k|k )− J (xk+ j+1,U∗
k+ j+1|k+ j+1)

that decreases as k →∞. One can observe that, for all i ∈Z[N−2] and for all wk ∈W :

d(ûk+ j+1+i |k+ j+1,Tu,i ,R) ≤ d(ũk+i+1|k+ j ,Tu,i ∼ Ki Li W ,R)

= d(ũk+i+1|k+ j ,Tu,i+1,R), (3.32a)

d(x̂k+ j+1+i |k+ j+1,Tx,i ,Q) ≤ d(x̃k+i+1|k+ j ,Tx,i ∼ Li W ,Q)

= d(x̃k+i+1|k+ j ,Tx,i+1,Q), (3.32b)

where the above inequalities are an immediate consequence of the definition (3.28) and
Lemma 3.2.3. We also have x̂k+ j+N |k+ j+1 = x̃k+ j+N |k+ j +LN−1wk+ j and ûk+ j+N |k+ j+1 =
F ũk+ j+N |k+ j+1 +F LN−1wk+ j based on the definition (3.28). Recall that LN−1 = 0nx×nx

(from the nilpotency) and we have also shown that x̃k+ j+N |k+ j ∈X f =R in the proof of
Theorem 3.4.3. It follows that x̂k+ j+N |k+ j+1 ∈Tx,N−1 from (3.7c), and that ûk+ j+N |k+ j+1 ∈
Tu,N−1 from (3.7e). Thus, the costs associated to x̂k+ j+N |k+ j+1 and ûk+ j+N |k+ j+1 become
zero for the candidate sequences. This last observation along with the inequalities given
in (3.32) lead to

J (xk+ j+1,Ûk+ j+1|k+ j+1) =
N−1∑
i=0

d(x̂k+ j+1+i |k+ j+1,Tx,i ,Q)+d(ûk+ j+1+i |k+ j+1,Tu,i ,R)

≤
N−2∑
i=0

d(x̃k+ j+1+i |k+ j ,Tx,i+1,Q)+d(ũk+ j+1+i |k+ j ,Tu,i+1,R)

= J (x̃k+ j |k+ j ,Ũk+ j |k+ j )−d(x̃k+ j |k+ j ,Tx,0,Q)−d(ũk+ j |k+ j ,Tu,0,R).

(3.33)

As a result,

J (xk+ j+1,U∗
k+ j+1|k+ j+1)

(i)≤ J (xk+ j+1,Ûk+ j+1|k+ j+1)

(ii)≤ J (x̃k+ j |k+ j ,Ũk+ j |k+ j )−d(x̃k+ j |k+ j ,Tx,0,Q)−d(ũk+ j |k+ j ,Tu,0,R)

(iii)= J (xk+ j ,Ũk+ j |k+ j )−d(xk+ j ,Tx,0,Q)−d(u∗
k+ j |k+ j ,Tu,0,R)

(iv)≤ J (xk ,U∗
k|k )−d(xk+ j ,Tx,0,Q)−d(u∗

k+ j |k+ j ,Tu,0,R),

where the inequality (i) follows from the optimality, the derivation (3.33) implies the in-
equality (ii), the equality (iii) follows from the facts that x̃k+ j |k+ j = xk+ j and ũk+ j |k+ j =
u∗

k+ j |k+ j (see the proof of Theorem 3.4.3), and finally, the conclusion made in the first

part (Inter-triggering cost function decay) leads to the inequality (iv). Notice that the
amount of reduction in the cost function J is d(xk+ j ,Tx,0,Q)+d(u∗

k+ j |k+ j ,Tu,0,R). Since

the cost function J ≥ 0, the above analysis guarantees that J (xktrig ,U∗
ktrig|ktrig

) converges to

a steady value as the triggering instant ktrig →∞. This in turn implies d(xk+ j ,Tx,0,Q)+
d(u∗

k+ j |k+ j ,Tu,0,R) → 0, as k →∞, from which we can infer that xk → Tx and uk → Tu

as k →∞. This concludes the proof.
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3.5.5. PROOF OF THEOREMS 3.4.6 & 3.4.7
We first begin with a preliminary argument that is shared between both theorems. We
then carry on with the proof of each case in an orderly fashion. Notice that ξ ∈ S ∼
MB(l ,u) and S is a polytope by the theorems’ hypothesis. By virtue of the relation (3.1),
one can infer that

〈a>
i ,S ,ξ〉 ≤ bi ,S −hMB(a>

i ,S ), for all i ∈N[m].

Next, observe that B(l ,u) ⊂Rk is a polytope (and as a result bounded), the domain KB

on which the support function hB is defined is the whole space, i.e., KB = Rk . Hence,
hMB(a>

i ,S ) = hB(M>a>
i ,S ), and as a consequence

〈a>
i ,S ,ξ〉 ≤ bi ,S −hB(M>a>

i ,S ), for all i ∈N[m].

Rearranging the above inequality, we arrive at

hB(M>a>
i ,S ) ≤ bi ,S −〈a>

i ,S ,ξ〉, for all i ∈N[m],

where the only unknown entity is hB(M>a>
i ,S ) with M>a>

i ,S ∈ Rk . It follows from the

definition of the support function that 〈M>a>
i ,S , z〉 ≤ hB(M>a>

i ,S ) for all z ∈Rk . Thus,

〈M>a>
i ,S , z〉 ≤ bi ,S −〈a>

i ,S ,ξ〉, for all i ∈N[m], for all z ∈B. (3.34)

Let us now define for all i ∈N[m]

a>
i ,S̄

:= M>a>
i ,S ,

bi ,S̄ := bi ,S −〈a>
i ,S ,ξ〉,

and the convex polytope (which we referred to as the principal polytope in the paragraph
before Theorem 3.4.6)

S̄ := {s ∈Rk : 〈a>
i ,S̄

, s〉 ≤ bi ,S̄ , for all i ∈N[m]}

= {s ∈Rk : AS̄ s ≤ bS̄ },
(3.35)

where AS̄ := [a>
1,S̄

, · · · , a>
m,S̄

]> = (M>A>
S

)> = AS M and bS̄ := [b1,S̄ , · · · ,bm,S̄ ]> = bS −
AS ξ. Now, one can deduce from the inequalities (3.34) and the definition (3.35) that the
convex polytope S̄ contains the hyper-rectangle B(l ,u), i.e., B(l ,u) ⊆ S̄ . Notice that
B(l ,u) is parametric in the variables l and u.

Theorem 3.4.6: In the CP framework, we propose a convex nonlinear program to
compute the hyper-rectangle B(l ,u) ⊆ S̄ such that its volume is maximized. Suppose
B(l ,u) is parameterized as l :=−v = [−v1, · · · ,−vk ]> and u := v = [v1, · · · , vk ]> such that
for all i ∈ N[k], v i and v i are positive scalars (the positiveness condition has to do with
the fact that the resulting hyper-rectangle should contain the origin). Recall the inequal-
ity (3.34), that is 〈M>a>

i ,S , z〉 ≤ bi ,S −ai ,S ξ, for all i ∈N[m], for all z ∈B. In what follows,
we show that although the hyper-rectangle B(l ,u) = B(−v , v) is parametric, one can
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provide a closed-form for its support function evaluated at M>a>
i ,S . By definition of a

support function,

hB(M>a>
i ,S ) = max

z
〈M>a>

i ,S , z〉
s.t. ABz ≤ bB ,

(3.36)

where AB = [Ik − Ik ]> and bB = [v> v>]>. The above problem is an LP with a bounded
feasible set. Thus, the optimal solution lies on the boundary of the hyper-rectangle to
which the normal M>a>

i ,S points toward. Let us define, for all i ∈ [m], ŵ i := sign(M>a>
i ,S ),

where the sign operator is applied entry-wise. (Notice that this vector simply shows to
which orthant(s) the vector M>a>

i ,S points to and ŵ i ∈ Rk .) It then becomes clear the

vectors w i ∈R2k , as defined in (3.21), enable us to express the optimal solution of (3.36)
in terms of a linear combination of the vertices of B, i.e.,

hB

(
M>a>

i ,S

)= 〈w i , [v> v>]>〉, for all i ∈N[m].

Based on the above relation, the inequality (3.34) simplifies to

〈w i , [v> v>]>〉 ≤ bi ,S −ai ,S ξ, for all i ∈N[m],

in which the vectors v , v ∈ Rk are the decision variables. Intuitively, the above inequal-
ities represents the linear constraints that the vertices of the hyper-rectangle B(−v , v)
should satisfy in order to guarantee ξ ∈S ∼ MB(−v , v).

Based on the chosen definition of volume for B(−v , v) in (3.17), we intend to find a
hyper-rectangle B(−v , v) that possesses the maximal volume. Unfortunately, regardless
of the definition choice for the volume, the resulting objective function is non-convex
and becomes unsuitable for optimization. Interestingly enough, one can simply use the
logarithmic mapping for the volume definitions in (3.17) to obtain the objective func-
tions suggested in (3.20), that are monotonic nonlinear concave functions. Then, it fol-
lows that a maximum hyper-rectangle B that contains the origin and satisfies ξ ∈ S ∼
MB is the solution of the CP (3.19).

Theorem 3.4.7: In the LP framework, we follow the procedure proposed in [77] with
which one is able to cast the problem as a linear program. We first provide the proof for
the LP relaxation of the problem (3.19) with q = 1. Let us denote the maximum length of
a line segment containing the origin, parallel to the j -th coordinate axis, and contained
in S̄ by r j . It follows from [77, Proposition3] that one can use (3.23) to find r j , for all
j ∈ N[k]. It is worth nothing that in the LP (3.23), the constraints z ≤ 0 and z +ωe j ≥ 0
are two extra regularity conditions that we placed on the line segment compared to [77,
Proposition3]. These conditions ensure that the origin lies inside this line segment. Now,
define the strictly positive vector r ∈ Rk by r j = ω j for all j ∈ N[k]. Then, it follows from
[77, Proposition2] that a maximum r -constrained inner hyper-rectangular B of S̄ that
contains the origin is given by B(z∗, z∗+λ∗r ) where z∗ and λ∗ are the optimal solutions
of (3.22). Here, we also emphasize the fact that we have introduced the extra constraints
z ≤ 0 and z+λr ≥ 0 with respect to [77, Proposition2]. By doing so, the LP (3.22) is forced
to find a hyper-rectangular B such that it contains the origin. Then, the claim for the LP
case follows.
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We now present a sketch of proof for the LP relaxation of the problem (3.19) with
q = 2. Observe that the polytope S̄ ′ := {

s ∈ R2k : W ′s ≤ B ′} is the matrix representation
of the constraints in the CP (3.19), where W ′ and B ′ are defined in Theorem 3.4.7. We
seek to find a hyper-rectangle that fits inside this lifted polytope as follows. In the first
step, we place a vertex of the hyper-rectangle at the origin. We then find the width of the
line segment along each coordinate that is inside the lifted polytope and contains the
origin using (3.25). In the second step, we use (3.24) to find a scaling factor λ such that
the λ-scaled hyper-rectangle constructed based on the first step fits inside the polytope
S̄ ′. This concludes the proof.

3.6. NUMERICAL EXAMPLES
In this section, we provide a numerical example to study the results presented in Sec-
tion 3.4. Consider the perturbed LTI system

xk+1 =
(

1 0.1

0 1

)
xk +

(
0.005

0.1

)
uk +wk ,

where the states and input constraint sets areX= {x ∈R2 : |x1| ≤ 5, |x2| ≤ 3} andU= {u ∈
R : |u| ≤ 5}, respectively. The disturbance set is defined as W = {w ∈ R2 : w1 = 0, |w2| ≤
0.1}. The state and input target sets areTx = {x ∈R2 : ‖x‖∞ ≤ 1} andTu = {u ∈R : |u| ≤ 3},
respectively. The horizon length N in the optimization problem (3.10) is set to 25. The
weight matrices in the cost function (3.9) are

Q =
(

1 0

0 0.001

)
and R = 10.

Finally, the terminal set X f = {x ∈R2 : ‖x‖∞ ≤ 0.1}.
At some triggering instant k ∈ Z≥0, let us first compare the four construction frame-

works for the sequence of hyper-rectangles {E j ,k }N−1
j=1 provided in Theorems 3.4.6 & 3.4.7.

Figure 3.2 depicts a subset of the constructed hyper-rectangles {E j ,k }N−1
j=1 . We now argue

in the support of Remark 3.4.9 regarding the directional sensitivity of the constructed
hyper-rectangles and the fact that using the volume definition (3.17b) instead of the
standard definition of the volume (3.17a) will reduce the level of directional sensitiv-
ity in the constructed hyper-rectangles. For example, consider the instant k + 12 (i.e.,
j = 12). The (green) filled polytope constructed around x∗

k+12|k represents the principal

polytope S̄12,k , i.e., the polytope that represents the constraints (3.18b)-(3.18f). More-
over, the hyper-rectangles E12,k constructed around x∗

k+12|k using CP1, LP1, CP2, and LP2

are depicted in (green) dash-dotted, dashed, dotted, solid rectangles, respectively. The
constructed hyper-rectangles based on CP1 and LP1 are extremely sensitive to the direc-
tion of the prediction error ek+12|k = xk+12 − x∗

k+12|k along the x1 and x2 axes. On the
other hand, it is evident that the level of directional sensitivity is reduced in the hyper-
rectangles that are constructed based on CP2 and LP2. Another matter that should be
highlighted in Figure 3.2 is as follows. As the inter-event instant j → N −1 ( j ∈ N[N−1]),
the principal polytopes S̄ j ,k (and as a result, the constructed hyper-rectangles E j ,k ) be-
come more symmetric with respect to x∗

k+ j |k . In terms of Remark 3.4.9, the constructed

hyper-rectangles E j ,k thus become less directionally sensitive as j → N −1.
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Figure 3.2: Comparison of the CP and LP frameworks of Theorems 3.4.6 & 3.4.7 to construct the hyper-
rectangles {E j ,k }N−1

j=1 . The optimal state trajectory X∗
k|k = {x∗k+i |k }N

i=0 is depicted by the (gray) solid/cross line.

For several instant over the horizon N = 25, the (colored) dash-dotted, dashed, dotted, solid rectangles repre-
sent the hyper-rectangles E j ,k using CP1, LP1, CP2, and LP2, respectively. For some j ∈ N[N−1], the (colored)

filled polytopes constructed around x∗k+i |k represent the principal polytopes S̄ j ,k .

We next consider two types of disturbance realizations by employing the results of
Theorems 3.4.6 & 3.4.7. We also use Algorithm 2 to control the considered perturbed LTI
system. The first case deals with a uniform disturbance (|w2| ≤ 0.1), see Figure 3.3, while
the second case assumes a worst-case disturbance (w2 ∈ {±0.1}), see Figure 3.4.

First of all, it is evident that the input and state trajectories do not violate the con-
straint sets Tx and Tu , respectively, in the both cases of the disturbance realizations.
Moreover, the state xk and the input uk converge to the target sets Tx and Tu , respec-
tively. Nonetheless, the standard implementation in both cases of disturbance realiza-
tions converges to a smaller subset of the target setTx compared to the four event-based
implementations. Furthermore, as it has been claimed, the event-based implementa-
tions reach the target set Tx with a smaller number of triggering instants compared to
the time-triggered standard implementation: the CP1, LP1, CP2, LP2, and standard im-
plementations require 13, 13, 6, 6, and 21 number of triggering instants, respectively.
However, in the case of worst-case disturbance, the number of triggering instants re-
quired is almost the same in all four cases. It is also interesting to note that the event-
based implementations exhibit an almost limit-cyclic behavior inside the target set Tx

in the worst-case disturbance realization.
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3.7. CONCLUSIONS
In this chapter, we proposed an approach to apply an RMPC method to constrained, per-
turbed LTI systems in an event-based fashion. The procedure to design the triggering
mechanism is decoupled from the controller design. Furthermore, we introduced two
theoretical frameworks to construct the triggering mechanism as a volume maximiza-
tion problem. One framework is a general nonlinear convex program while the other
framework is a linear program. In particular, we proposed a non-standard definition of
volume to address the limitations that occur in the case of using the standard definition
of the volume in the process of designing the triggering mechanism. For each choice
of the volume definition, our numerical experiments showed that the theoretical frame-
works provide a similar behavior at the price of the convex program framework being
more computationally expensive compared to the linear program framework. On the
other hand, the linear and convex program frameworks based on the non-standard def-
inition of the volume outperform the linear and convex program frameworks based on
the standard definition of the volume. There are multiple directions that one can pursue
to extend the results in this chapter. First, it is interesting to investigate the impact of dis-
turbance gains {Ki }N−1

i=0 on the sparsity pattern of the convex programs in Theorems 3.4.6
& 3.4.7. By doing so, one can customize the solver to speed up the triggering mechanism’s
design. Second, we have shown in the proof of Theorem 3.4.4 that the performance cost
per average transmission in the event-triggered implementation is smaller than the one
in the standard implementation (notice that our setting is deterministic). It would be in-
teresting to investigate how this observation is related to the few studies in the literature
(e.g., [65] which is in a stochastic setting) that guarantee superiority of an event-based
implementation with respect to a standard implementation.
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Figure 3.3: (Uniform case disturbance) Comparison of the CP and LP construction approaches of the event-
based implementation along with the standard time-triggered implementation. The (blue) dash-dotted/circle,
(green) dashed/cross, (red) dotted/diamond, (purple) solid/plus, and (gray) thin lines are associated with the
event-based implementation using the CP1, LP1, CP2, and LP2 construction methods, and the standard time-
triggered implementation, respectively. (Top) Phase portrait. (Middle) Input sequence. (Bottom) Cost func-
tion.
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Figure 3.4: (Worst case disturbance) Comparison of the CP and LP construction approaches of the event-
based implementation along with the standard time-triggered implementation. The (blue) dash-dotted/circle,
(green) dashed/cross, (red) dotted/diamond, (purple) solid/plus, and (gray) thin lines are associated with the
event-based implementation using the CP1, LP1, CP2, and LP2 construction methods, and the standard time-
triggered implementation, respectively. (Top) Phase portrait. (Middle) Input sequence. (Bottom) Cost func-
tion.





4
TIMING ABSTRACTION OF AN

EVENT-TRIGGERING MECHANISM

75



4

76 4. TIMING ABSTRACTION OF AN EVENT-TRIGGERING MECHANISM

In networked control systems, the introduction of event-triggering strategies in the sam-
pling process has led to possible usage reductions in certain network capacities, such as
the communication bandwidth. However, these possible beneficiary properties come
at a price. Due to the aperiodic nature of sampling periods generated by these strate-
gies, the schedulability problem becomes much more demanding compared to the tra-
ditional, periodic strategy. This chapter is an attempt to address this issue by using tools
from formal verification. We focus on perturbed linear time-invariant systems with an
L2-based triggering mechanism. Inspired by an approach in the literature, we introduce
a framework to construct a timed safety automaton that captures the aperiodic sampling
behavior of the considered class of control systems. In this framework, the state-space is
partitioned into a finite number of convex polyhedral cones, each of which represents a
discrete mode in the abstracted automaton. Adopting techniques from stability analysis
of retarded systems accompanied with a polytopic embedding of time, LMI conditions
to characterize the sampling interval associated with each cone are derived. We then use
some tools from reachability analysis of linear systems to derive all the transitions in the
abstracted automaton. The materials presented in this chapter are previously reported
in [6].

4.1. INTRODUCTION
Wireless networked controlled systems (WNCSs) represent a class of spatially distributed
control systems in which feedback loops are closed via shared communication compo-
nents. Several advantages of WNCSs, such as the ease of maintenance and the flexibility
of implementation, make them an attractive choice in industrial environments. Mean-
while, WNCSs are burdened with shortcomings, such as limited battery life and commu-
nication bandwidth. Under these circumstances, the resource over-utilization caused by
(traditional) periodic implementations, the so-called time-driven control (TDC), makes
such implementations less appealing for WNCSs.

To address the above issues, control researchers have proposed event-driven control
(EDC) strategies that are aperiodic, such as event-triggering control (ETC) [47] and self-
triggering control (STC) [81]. In EDC strategies, the core idea is as follows. The dynamics
of the control system determine the next sampling instant in the hope of attenuating the
usage of resources. In these strategies, control task executions only happen when a pre-
specified condition is violated. This condition is called the triggering mechanism (TM). It
is derived based on stability and/or performance of the closed-loop system. On the other
hand, the schedulability of ETC strategies, due to their aperiodic nature, is more ardu-
ous compared to TDC strategies. In fact, in TDC strategies, the control and scheduler
designs are naturally decoupled via the (pre-defined) fixed sampling period. This phe-
nomenon is called the separation-of-concerns in the real-time systems community [82].
It is worth mentioning that ETC strategies are almost always equipped with a minimum
inter-execution time (MIET) to prevent the occurrence of Zeno behavior in the sampling
process. This quantity can be technically used in the synthesis of a task scheduler. How-
ever, it is a conservative approximation of the lower bound on all the possible generated
sampling periods. Thus, such synthesis does not make use of the beneficiary character-
istics of ETC strategies in an efficient manner. To address this shortcoming, researchers
have proposed another class of approaches, the so-called co-design approaches. In this
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class, the problem of controller and scheduler syntheses for real-time systems are tack-
led in a unified framework, see e.g., feedback modification to task attributes [83], [84],
[85], [86], anytime controllers [87], [88], and event-based control and scheduling [89],
[90].

Recently, alternative to the unified frameworks mentioned above, [91], [92] have pro-
posed a decoupling framework to capture the sampling behavior of linear time-invariant
(LTI) systems with ISS-based TMs using timed safety automata (TSAs). Generally speak-
ing, TSA is a simplified version of timed automaton (TA) [93], [94]. It is a powerful tool to
model the timing behavior of real-time systems for scheduling purposes since its reach-
ability analysis is decidable [95], [96]. In this chpater, following the same path as in [91],
[92], we propose a framework to capture the sampling behavior of perturbed LTI systems
with the L2-based TM proposed by [97]. We show that the derived TSA ε-approximately
simulates the sampling behavior of the L2-based ETC system. It is evident that such
characterizations can be analyzed independently from a scheduling perspective, thus
providing a scalable and versatile framework to design event-triggering WNCSs.

The rest of this chapter is organized as follows. The preliminary notions are intro-
duced in Section 4.2. The abstraction of the considered ETC approach is presented in
Section 4.3. Section 4.4 provides the technical proofs of the main results. A numerical
example to validate the results of this chapter is given in Section 4.5. The chapter is con-
cluded in Section 4.6.

Notations: Rn and R>0 denote the n-dimensional Euclidean space and the positive
reals, respectively. N is the set of positive integers, R≥0 represents the set of nonnega-
tive reals, and IR+ is the set of all closed intervals [a,b] such that a,b ∈ R>0 and a ≤ b.
For any set S, 2S denotes the set of all subsets of S, i.e. the power set of S. Sm×n and
Sn are the set of all m ×n real-valued matrices and the set of all n ×n real-valued sym-
metric matrices, respectively. For a matrix M , M ¹ 0 (or M º 0) means M is a negative
(or positive) semidefinite matrix and M ≺ 0 (M Â 0) indicates M is a negative (positive)
definite matrix. Also, M> is the transpose of M . S +

n is the cone of all n ×n symmet-
ric positive definite matrices. bxc indicates the largest integer not greater than x ∈ R.
|y | and ‖M‖ denote the Euclidean norm of a vector y ∈ Rn and the Frobenius norm of
a matrix M ∈ Sm×n , respectively. For a matrix M ∈ Sn , λ(M) and λmax(M) denote the
set of eigenvalues and the largest eigenvalue of M . Consider two sets X ,Y ⊆ Rn , their
Minkowski sum is given by X ⊕Y := {x + y |x ∈ X and y ∈ Y }.

4.2. PRELIMINARIES

We recall some notions that are employed in the remainder of this chapter. We begin
with collecting some results from convex analysis. We next describe the considered ETC
system. Followed by that, a concise review of some notions from formal verification is
provided. Then, the notion of TSA as a tool that can capture the triggering behavior of
ETC systems is presented. Finally, the considered problem addressed in this chapter is
formally stated.

We state the following known results that will be used in Subsection 4.2.1.

Lemma 4.2.1. ([98, Lemma 6.2]) For any real matrices E, G and real symmetric positive
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definite matrix P, with compatible dimensions,

EG +G>E> ¹ EPE>+G>P−1G .

Lemma 4.2.2. ([99, Section 2]) For all A ∈Sn×n , if µ(A) = max{µ ∈R|µ ∈λ
(

A>+A
2

)
}, then,

|e At | ≤ eµ(A)t .

Proposition 4.2.3. (Jensen Inequality [98, Proposition B.8]) For any matrix M ∈S +
m with

constant entries, scalar γ > 0, vector function ω : [0,γ] → Rm such that the integrations
concerned are well defined, then,

γ

∫ γ

0
ω>(β)Mω(β)dβ≥

(∫ γ

0
ω(β)dβ

)>
M

∫ γ

0
ω(β)dβ.

4.2.1. L2-BASED ETC SYSTEM
In this subsection, an overview of the ETC strategy proposed by [97] along with a new
result (see Theorem 4.2.4) are presented. Consider a sampled-data system

ξ̇(t ) = Aξ(t )+Bν(t )+Eω(t ),∀t ∈ [0,τ(x)),
ξ(0) = x,

(4.1)

where ξ(t ) ∈ Rn , ν(t ) ∈ Rm , ω(t ) ∈ Rp , τ(x) denotes the sampling period associated with
ξ(0), and the matrices A, B , and E have compatible dimensions. The control law

ν(t ) =−K x, (4.2)

is implemented in a sample-and-hold manner. Furthermore, assume that the distur-
bance ω is a vanishing type disturbance [97], i.e.,

there exists W ≥ 0 such that |w(t )|2 ≤W |x|2, for all t ∈ [0,τ(x)). (4.3)

Denote by ε, the error signal endured by the system (4.1)-(4.2), ε(t ) = x −ξx (t ) where
ξx (t ) is the solution of (4.1). Reformulating (4.1), the evolution of state and error signals
can be rewritten in the compact form

ξx (t ) =Λ(t )x +Ω(t ), (4.4a)

and

ε(t ) = (
I −Λ(t )

)
x −Ω(t ), (4.4b)

where

Λ(t ) = I +
∫ t

0
e As d s(A−BK ), Ω(t ) =

∫ t

0
e A(t−s)Eω(s)d s. (4.5)

Assume that there exists a quadratic Lyapunov function V (ξ) = ξ>Pξ such that P is
the solution to the Algebraic Riccati Equation (ARE)

PA+ A>P −Q +R = 0, (4.6a)
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where

Q = PBB>P, R = 1

γ2 PEE>P, γ> 0. (4.6b)

Notice that the existence of V guarantees that the system (4.1) with the full-state feed-
back ν(t ) = −K ξ(t ) = −B>Pξ(t ) is finite-gain L2 stable from ω to (x>,u>) with an in-
duced gain less than γ [97].

The authors of [97] proposed the state-dependent TM

τ(x) := inf
{

t > 0 : ε>(t )Mε(t ) ≥ x>N x
}
, (4.7)

where

M = (1−β2)I +PBB>P, N = 1

2
(1−β2)I +PBB>P,

and β> 0 is a user-defined scalar related to the TM (4.7).
In what follows, we provide a certain type of LMI conditions with which a lower

bound on the inter-sample time can be derived.

Theorem 4.2.4 (Inter-sample lower bound). Consider the system (4.1)-(4.2) with the trig-
gering mechanism (4.7). Assume that there exist a scalarµ and a symmetric matrixΨ such
that

µ≥ 0, ΨÂ 0, M +Ψ¹µI , (4.8a)

Φ(t ) º 0, (4.8b)

where

Φ(t ) =
[
Φ1(t )Φ2(t )

Φ3(t )Φ4(t )

]
, (4.8c)

Φ1(t ) = (
Λ(t )− I

)>M
(
Λ(t )− I

)+ tWµλmax
(
E>E

)
dA(t )I −N ,

Φ2(t ) =Φ>
3 (t ) = (

Λ(t )− I
)>M>,

Φ4(t ) =−Ψ,

are satisfied. Then, the sampling period τ(x) generated by (4.7) is lower bounded by

τ′(x) := inf
{

t > 0 : Φ(t ) º 0
}
. (4.9)

Proof. Let us first rewrite the TM (4.7) into a more suitable from. Substitute (4.4b) into
(4.7). The TM (4.7) can be reformulated into

τ(x) = inf
{

t > 0 : Fω(x, t ) ≥ 0
}
, for all x ∈Rn , (4.10)

where

Fω(x, t ) = x>
[(
Λ(t )− I

)>M
(
Λ(t )− I

)−N
]

x

+x>(
Λ(t )− I

)>MΩ(t )+Ω>(t )M
(
Λ(t )− I

)
x +Ω>(t )MΩ(t ),



4

80 4. TIMING ABSTRACTION OF AN EVENT-TRIGGERING MECHANISM

with Λ(t ) and Ω(t ) as defined in (4.5). Let λA
max denote λmax(A + A>) for the sake of

compactness. Consider the terms in Fω(x, t ) that are dependent on both of x and Ω(t ).
We employ Lemma 4.2.1 to decouple these terms, i.e.,

x>(
Λ(t )− I

)>MΩ(t )+Ω>(t )M
(
Λ(t )− I

)
x ≤

Ω>(t )ΨΩ(t )+x>(
Λ(t )− I

)>MΨ−1M
(
Λ(t )− I

)
x,

for any matrixΨ=Ψ> Â 0. Hence,

Fω(x, t ) ≤ x>
[(
Λ(t )− I

)>(
M +MΨ−1M

)(
Λ(t )− I

)−N
]

x +Ω>(t )(M +Ψ)Ω(t ).

Observe that

Ω>(t )(M +Ψ)Ω(t ) ≤µ
(∫ t

0
e A(t−s)Eω(s)d s

)>(∫ t

0
e A(t−s)Eω(s)d s

)
(assuming M +Ψ¹µI and µ≥ 0)

≤ tµ
∫ t

0
e(t−s)λA

maxω>(s)E>Eω(s)d s

(using Lemma 4.2.2 and Propostion 4.2.3)

≤ tWµλmax
(
E>E

)(∫ t

0
eλ

A
max(t−s)d s

)
|x|2

(using (4.3))

= tWµλmax
(
E>E

)
dA(t )x>x,

where

dA(t ) =


1

λA
max

(
eλ

A
maxt −1

)
, λA

max 6= 0,

t , λA
max = 0.

Based on the aforementioned procedure, one concludes

Fω(x, t ) ≤ x>Θ(t )x, (4.11)

where

Θ(t ) = (
Λ(t )− I

)>(
M +MΨ−1M

)(
Λ(t )− I

)+ tWµλmax
(
E>E

)
dA(t )I −N . (4.12)

Then, we employ the Schur complement in order to transform (4.12) into (4.8c). (No-
tice that the matrix Ψ appears in a nonlinear manner in the equality (4.12) while the
equality (4.8c) is linearly dependent on Ψ.) Considering the inequality (4.11) and the
fact that Φ(t ) º 0 implies x>Θ(t )x ≥ 0, it follows that τ(x) ≥ τ′(x) where τ and τ′ are de-
fined in (4.10) and (4.9), respectively. This concludes the proof.

Remark 4.2.5 (Role of Theorem 4.2.4). Theorem 4.2.4 helps us to conservatively simplify
the impacts of the unknown perturbation ω(t ) in studying the behavior of the sampling
function (4.7). However, it is still intractable to employ the definition (4.9) in order to study
the sampling behavior since this definition has to be checked for an infinite number of
instants t . In addition, this definition lacks any insight on how the state x at the sampling
instant affects the sampling period τ(x).
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4.2.2. SYSTEMS AND RELATIONS
In what follows, we review some notions from the field of system theory to formally char-
acterize the outcome of our framework. Let Z be a set and Q ⊆ Z ×Z be an equivalence
relation on Z . Then, [z] denotes the equivalence class of z ∈ Z and Z /Q denotes the set
of all equivalence classes. A metric (or simply a distance function) d : Z ×Z → R∪ {+∞}
on Z satisfies, for all x, y, z ∈ Z : (i) d(x, y) = d(y, x), (ii) d(x, y) = 0 ↔ x = y , and (iii)
d(x, y) ≤ d(x, z)+d(y, z). The ordered pair (Z ,d) is said to be a metric space.

Definition 4.2.6. (Hausdorff Distance [100]) Assume X and Y are two non-empty subsets
of a metric space (Z ,d). The Hausdorff distance d(X ,Y ) is

max
{
sup
x∈X

inf
y∈Y

d(x, y),sup
y∈Y

inf
x∈X

d(x, y)
}
.

It follows that the ordered pair (IR+,dH ) is a metric space. We next introduce some
concepts from system theory, in particular a modified notion of quotient system adopted
from [91], see e.g., [101] for the traditional definition.

Definition 4.2.7 (System [101]). A system is a sextuple (X , X0,U , - ,Y , H) consisting
of

• a set of states X ,

• a set of initial states X0 ⊆ X ,

• a set of inputs U ,

• a transition relation - ⊆ X ×U ×X ,

• a set of outputs Y ,

• an output map H : X → Y .

When the set of outputs Y of a system is endowed with a metric, it is called a metric
system. An autonomous system is a system for which the cardinality of its input set is at
most one.

Definition 4.2.8 (Approximate Simulation Relation [101]). Consider two metric systems
Sa = (Xa , Xa0,Ua ,

a
- ,Ya , Ha) and Sb = (Xb , Xb0,Ub ,

b
- ,Yb , Hb) with Ya = Yb , and

let ε ∈R≥0. A relation R ⊆ Xa ×Xb is an ε-approximate simulation relation from Sa to Sb

if the following conditions

1. for all xa0 ∈ Xa0, there exists xb0 ∈ Xb0 such that (xa0, xb0) ∈ R,

2. for all (xa , xb) ∈ R, we have d(Ha(xa), Hb(xb)) ≤ ε,

3. for all (xa , xb) ∈ R, (xa ,ua , x ′
a) ∈ -

a
in Sa , there exits (xb ,ub , x ′

b) ∈ -
b

in Sb

satisfying (x ′
a , x ′

b) ∈ R,

are satisfied. We say that Sb ε-approximately simulates Sa , denoted by Sa ¹ε
S

Sb , if there
exists an ε-approximate simulation relation R from Sa to Sb .
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Definition 4.2.9 (Power Quotient System [91]). Let S = (X , X0,∅, - ,Y , H) be an au-
tonomous system and R be an equivalence relation on X . The power quotient of S by R,
denoted by S/R , is the autonomous system (X/R , X/R,0,∅,

/R
- ,Y/R , H/R ) consisting of

• X/R = X /R,

• X/R,0 = {x/R ∈ X/R |x/R ∩X0 6=∅},

• (x/R ,u, x ′
/R ) ∈

/R
- if there exists (x,u, x ′) ∈ - with x ∈ x/R and x ′ ∈ x ′

/R ,

• Y/R ⊂ 2Y ,

• H/R (x/R ) = ∪
x∈x/R

H(x).

Lemma 4.2.10 ([91]). Let S be an autonomous metric system, R be an equivalence relation
on X , and let the autonomous metric system S/R be the power quotient system of S by R.
For any

ε≥ max
x∈x/R

x/R∈X /R

d(H(x), H/R (x/R )),

with d the Hausdorff distance over the set 2Y , S/R ε-approximately simulates S, i.e. S ¹ε
S

S/R .

Now, we appropriately modify Definition 4.2.9 and Lemma 4.2.10 for the case that
one can construct an over approximation of the power quotient system, namely S̄/R .

Definition 4.2.11. (Approximate Power Quotient System [92]) Let S = (X , X0,U , - ,Y , H)
be a system, R be an equivalence relation on X , and S/R = (X/R , X/R,0,U/R ,

/R
- ,Y/R , H/R )

be the power quotient of S by R. An approximate power quotient of S by R, denoted
by S̄/R , is a system (X/R , X/R,0,U/R ,

/̄R
- , Ȳ/R , H̄/R ) such that, →̄

/R
⊇→

/R
, Ȳ/R ⊇ Y/R , and

H̄/R (x/R ) ⊇ H/R (x/R ), for all x/R ∈ X/R .

Corollary 4.2.12 ([92]). Let S be a metric system, R be an equivalence relation on X , and
let the metric system S̄/R be the approximate power quotient system of S by R. For any

ε≥ max
x∈x/R

x/R∈X/R

d(H(x), H̄/R (x/R )),

with d the Hausdorff distance over the set 2Y , S̄/R ε-approximately simulates S, i.e. S ¹ε
S

S̄/R .

4.2.3. TIMED SAFETY AUTOMATON
In what follows, we present a formal definition for TSA. A TSA [95] is a directed graph ex-
tended with real-valued variables (called clocks) that model the logical clocks. We define
C as a set of finitely many clocks. Clock constraints are used to restrict the behavior of
the automaton. A clock constraint is a conjunctive formula of atomic constraints of the
form x ./ n or x−y ./ n for x, y ∈C ,./∈ {≤,<,=,>,≥} and n ∈N. We use B(C ) to denote
the set of clock constraints.
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Definition 4.2.13. (Timed Safety Automaton [94]) A timed safety automaton TSA is a
sextuple (L,`0,Act,C ,E , Inv) where

• L is a set of finitely many locations (or vertices),

• `0 ∈ L is the initial location,

• Act is the set of actions,

• C is a set of finitely many real-valued clocks,

• E ⊆ L×B(C )×Act×2C ×L is the set of edges,

• Inv : L →B(C ) assigns invariants to locations.

The location invariants are restricted to constraints of the form: c ≤ n or c < n, where
c is a clock and n is a natural number.

4.2.4. PROBLEM STATEMENT
We now state the main problem considered in this chapter. Consider the system S =
(X , X0,∅, - ,Y , H) where

• X =Rn ,

• X0 =Rn ,

• (x, x ′) ∈ - iff ξx
(
τ(x)

)= x ′ given by (4.1)-(4.2), and (4.7),

• Y ⊂R>0,

• H :Rn →R+ where H(x) = τ(x).

The output of the above system generates all possible sequences of inter-sample inter-
vals of the concrete system (4.1)-(4.2) with the TM (4.7).

Problem 4.2.14. Provide a construction of power quotient systems S/P of systems S as
defined above.

Based on Definition 4.2.9, we propose to construct the system

S/P = (X/P , X/P ,0,∅, -
/P

,Y/P , H/P )

where

• X/P =Rn
/P := {R1, . . . ,Rq },

• X/P ,0 =Rn
/P ,

• (x/P , x ′
/P ) ∈ -

/P
if there exists x ∈ x/P , there exists x ′ ∈ x ′

/P such that ξx (H(x)) =
x ′ as determined by (4.1)-(4.2),
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• Y/P ⊂ 2Y ⊂ IR+, where IR+ represents the set of closed intervals [a,b] such that
0 < a ≤ b,

• H/P (x/P ) = [
min

x∈x/P
H(x), max

x∈x/P
H(x)

]
:= [

τx/P
, τ̄x/P

]
.

The equivalence relation P onRn partitions the state space of S (i.e., the ETC system)
into the set X/P with a finite cardinality. However, since the exact construction of S/P is
in general impossible, we construct instead S̄/P (see Definition 4.2.11). Later on, it will
be shown that the constructed S̄/P is equivalent to a TSA.

4.3. ABSTRACTION
In this subsection, we introduce the required steps in our framework to solve Prob-
lem 4.2.14 in the following order: (i) a suitable definition of the equivalence relation P

on Rn , (ii) a tractable approach to compute the output map H̄/P and its corresponding
output set Ȳ/P , and (iii) a reachability-based analysis to derive the discrete transitions
among abstract states x/P .

4.3.1. STATE SET
The approach to construct the state set mainly relies on an intuitive observation from
the inequality (4.11).

Remark 4.3.1 (Conic construction of state set). Consider that the right-hand side of
(4.11) is used to analyze the sampling behavior of the definition (4.10). The sampling
periods of all states, located on a line that passes through the origin excluding the origin
itself, are lower bounded by the same quantity, i.e., τ′(x) = τ′(λx), for all λ 6= 0.

It is not difficult to see that a proper approach to abstract the state space is via par-
titioning it into a finite number of convex polyhedral cones Rs (which are pointed at
the origin), where s ∈ {1, . . . , q},

⋃q
s=1 Rs = Rn , and q is the cardinality of the state set.

This state space abstraction technique is proposed by [102], dividing each of the angular
spherical coordinates of x ∈Rn : θ1, . . . ,θn−2 ∈ [0,π], θn−1 ∈ [−π,π] into m̄ (not necessarily
equidistant) intervals resulting in q = m̄(n−1) conic regions. Furthermore, since the term
x>Θ(t )x is quadratic in x, it is sufficient to only analyze half of the state space (e.g., by
taking θn−1 ∈ [0,π]). Thus, the equivalence relation P to construct the abstraction is

(x, x ′) ∈P ⇔ there exists s ∈ {1, . . . , q} such that x, x ′ ∈Rs ,

where q is the number of equivalence classes. In simple words, the equivalence classes of
P are defined by polyhedral cones pointed at the origin given by Rs =

{
x ∈R2 : x>Qs x ≥

0
}
, Qs ∈S2 whenever n = 2 or Rs =

{
x ∈Rn : Es x ≥ 0

}
, Es ∈Sn×p otherwise.

4.3.2. OUTPUT MAP

In this subsection, we present the approach to construct the output map H̄/P and the
output set Ȳ/P . Recall that for all x ∈Rs , the output y/P ∈ Ȳ/P where y/P = H̄/P (x) sim-
ply denotes the time interval [τs , τ̄s ]. This time interval in turn implies that the sampling
period τ(x) ∈ [τs , τ̄s ]. Our approach is inspired by the polytopic embedding technique
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proposed in [103]. An intuitive description of this technique follows. Consider the space
of real matrices. This technique construct a sequence of convex polytopes around the
matrix Φ(t ). Notice that each vertex is a matrix here. (We shall denote the set of these
vertices Φκ,s in the following.) By doing so, one replaces the evaluation of (4.9), which
has to be done at infinitely many instants t , with the evaluation of Φκ,s , which has to be
done at finitely many verticesΦκ,s .

Assume the existence of a scalar σ > 0 that denotes a time instant for which the
TM (4.7) is enabled in the whole state space, i.e.,Φ(t ) º 0. Consider Nconv+1 is the num-
ber of vertices employed to define the polytope containing Φ(t ) in a given time interval,
and `≥ 1 denotes the number of time subdivisions considered in the time interval [0,σ].

Lemma 4.3.2 (Lower bound of inter-sample interval). Let s ∈ {1, . . . , q}. Consider a time
instant τs ∈ (0,σ], a scalar µ and a symmetric matrixΨ satisfying (4.8a).

If Φ(i , j ),s ¹ 0 holds for all (i , j ) ∈ Ks = ({
0, . . . , Nconv

}× {
0, . . . ,b τs`

σ c}), it follows that
Φ(t ) ¹ 0 for all t ∈ [0,τs ], withΦ defined in (4.8c) and

Φ(i , j ),s = Φ̃(i , j ),s +ηI

Φ̃(i , j ),s =


Σi

k=0Φ̂(i , j ),s

(σ
`

)k , for j <
⌊τs`

σ

⌋
Σi

k=0Φ̂(i , j ),s

(
τs − j

σ

`

)k , for j =
⌊τs`

σ

⌋
,

(4.13a)

Φ̂(0, j ),s =
[

L0, j Π̌>
j M>

MΠ̌ j −Ψ
]

, Φ̂(k≥1, j ),s =
[

Lk, j Π̂>
j

(Ak−1)>
k ! M>

M Ak−1

k ! Π̂ j 0

]
, (4.13b)

and
L0, j = Π̌>

j MΠ̌ j −N + L̃0, j (4.13c)

with

L̃0, j =


Wµ

λmax

(
E>E

)
λA

max

(
j σ`

)(
eλ

A
max j σ

` −1
)
I , for λA

max 6= 0,

Wµ
λmax

(
E>E

)
λA

max

(
j σ`

)2I , for λA
max = 0,

(4.13d)

L1, j = Π̌>
j MΠ̂ j + Π̂>

j MΠ̌ j + L̃1, j (4.13e)

with

L̃1, j =


Wµ

λmax
(
E>E

)
λA

max

[(
j
σ

`

)
eλ

A
max j σ

` λA
max +eλ

A
max j σ

` −1
]

I , for λA
max 6= 0,

Wµ(2 j
σ

`
)λmax

(
E>E

)
I , for λA

max = 0,

(4.13f)

L2, j = Π̌>
j M

A

2!
Π̂ j + Π̂>

j
A>

2!
MΠ̌ j + Π̂>

j MΠ̂ j + L̃2, j (4.13g)

with

L̃2, j =


Wµ

λmax
(
E>E

)
λA

max

[(
j
σ

`

)
eλ

A
max j σ

`
(λA

max)2

2!
+eλ

A
max j σ

` λA
max

]
I , for λA

max 6= 0,

Wµλmax
(
E>E

)
I , for λA

max = 0,

(4.13h)
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Lk≥3, j = Π̌>
j M

Ak−1

k !
Π̂ j + Π̂>

j
(Ak−1)>

k !
MΠ̌ j + Π̂>

j

(
Σk−1

i=1
(Ai−1)>

i !
M

Ak−i−1

(k − i )!

)
Π̂ j + L̃k, j

(4.13i)

with

L̃k≥3, j =


Wµ

λmax
(
E>E

)
λA

max

[(
j
σ

`

)
eλ

A
max j σ

`
(λA

max)k

k !
+eλ

A
max j σ

`
(λA

max)k−1

(k −1)!

]
I , for λA

max 6= 0,

0, for λA
max = 0,

(4.13j)

Π̌ j = F̌ j (A−BK ), Π̂ j = F̂ j (A−BK ),

F̌ j =
∫ j σ

`

0
e As d s, F̂ j = AF̌ j + I ,

(4.13k)

and

η≥ max
t ′∈[0, σ

`
],r∈{0,...,`−1}

λmax

(
Φ(t ′+ r

σ

`
)−ΣN

k=0Φ̂k,r (t ′)k
)

. (4.14)

Then, using the S-procedure, the following theorem provides an approach to region-
ally reduce the conservatism involved in the estimates τs obtained from Lemma 4.3.2.

Theorem 4.3.3 (Regional lower bound of inter-sample interval). Consider a scalar τs ∈
(0,σ], a scalar µ and a symmetric matrixΨ satisfying (4.8a), and matricesΦκ,s , κ= (i , j ) ∈
Ks , defined as in Lemma 4.3.2.

If there exist scalars ακ,s ≥ 0 (for n = 2) or symmetric matrices Uκ,s with nonnegative
entries (for n ≥ 3) such that for all κ ∈Ks the LMIs

Φ(i , j ),s +
[
α(i , j ),sQs 0

0 0

]
¹ 0, for n = 2,

Φ(i , j ),s +
[

E T
s U (i , j ),s Es 0

0 0

]
¹ 0, for n ≥ 3,

(4.15)

hold, the inter-sample interval (4.7) of the system (4.1)-(4.2) is then regionally bounded
from below by τs , for all x ∈Rs .

One can follow a similar approach to find the upper bounds τ̄s on the inter-sample
times that is outlined in Lemma 4.3.4 and Theorem 4.3.5.

Lemma 4.3.4 (Upper bound of inter-sample interval). Let s ∈ {1, . . . , q}. Consider a time
instant τ̄s ∈ [τs ,σ], a scalar µ and a matrix Ψ satisfying the LMI conditions given in
Lemma 4.3.2.

If Φ̄(i , j ),s ¹ 0 holds for all (i , j ) ∈Ks =
({

0, . . . , Nconv
}×{b τ̄s`

σ c, . . . ,`−1
})

, then, it follows
thatΦ(t ) º 0 for all t ∈ [τ̄s ,σ], withΦ defined in (4.8c) and

Φ̄(i , j ),s =− ¯̃Φ(i , j ),s −ηI ,
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¯̃Φ(i , j ),s =


i∑

k=0
Lk, j

( ( j +1)σ

`
− τ̄s

)k
, for j =

⌊ τ̄s`

σ

⌋
,

i∑
k=0

Lk, j
(σ
`

)k , for j >
⌊ τ̄s`

σ

⌋
,

where Lk, j are given by (4.13c)-(4.13k) and η is defined in (4.14).

Theorem 4.3.5 (Regional upper bound of inter-sample interval). Consider a scalar τ̄s ∈
[τs ,σ], a scalar µ and a symmetric matrix Ψ satisfying (4.8a), and matrices Φ̄κ,s , κ =
(i , j ) ∈Ks , defined as in Lemma 4.3.4.

If there exist scalars ᾱκ,s ≥ 0 (for n = 2) or symmetric matrices Ūκ,s with nonnegative
entries (for n ≥ 3) such that for all κ ∈Ks the LMIs

Φ̄(i , j ),s −
[
ᾱ(i , j ),sQs 0
0 0

]
¹ 0, for n = 2,

Φ̄(i , j ),s −
[

E T
s Ū(i , j ),s Es 0

0 0

]
¹ 0, for n ≥ 3,

(4.16)

hold, the inter-sample interval (4.7) of the system (4.1)-(4.2) is then regionally bounded
from above by τ̄s ,for all x ∈Rs .

4.3.3. TRANSITION RELATIONS

We next introduce the approach to find the transitions in S̄/P . To this end, it is required
to compute the reachable set of each cone Rs over the time interval [τs , τ̄s ]. In the sequel,
we present how one is able to compute an over-approximation of the reachable set of
each cone by the Minkowski sum of two sets.

Recall that the evolution of states over the time interval [τs , τ̄s ] is given by ξx (τ) =
Λ(τ)x +Ω(τ). Let X0,s be the set that the initial states lie in. Denote by X[τs ,τ̄s ](X0,s ) the
reachable set of X0,s during the time interval [τs , τ̄s ], i.e.,{

x ′ ∈Rn : there exists x ∈ X0,s , there exists τ ∈ [τs , τ̄s ], x ′ = ξx (τ)
}
.

Furthermore, define

X 1
[τs ,τ̄s ](X0,s ) := {

x ′ ∈Rn : there exists x ∈ X0,s , there exists τ ∈ [τs , τ̄s ], x ′ =Λ(τ)x
}
,

X 2
[τs ,τ̄s ](X0,s ) := {

x ′ ∈Rn : there exists x ∈ X0,s , there exists τ ∈ [τs , τ̄s ], x ′ =Ω(τ)
}
.

Thus,

X[τs ,τ̄s ](X0,s ) :=X 1
[τs ,τ̄s ](X0,s )

⊕
X 2

[τs ,τ̄s ](X0,s )

A suitable approach to define the initial set X0,s is now introduced. In [91, Section
III.B.3], it has been shown that it is enough to consider subsets X0,s ⊂ Rs being convex
polytopes with each vertex placed on each of the extreme rays of Rs (excluding the ori-
gin) to compute X 1

[τs ,τ̄s ](X0,s ). Then, one can effectively compute an over-approximation
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of the reachable set of a polytope under LTI dynamics, denoted by X̂ 1
[τs ,τ̄s ](X0,s ), see e.g.,

[104]. Furthermore, one has

‖Ω(τ)‖ = ‖
∫ τ

0
e A(τ−s)Eω(s)d s‖

≤
∫ τ

0
‖e A(τ−s)Eω(s)‖d s

≤
∫ τ

0
‖e A(τ−s)‖‖E‖|ω(s)|d s

≤W |x|‖E‖
∫ τ

0
|eµ(A)(τ−s)|d s

= ρ(τ)|x|,

where ρ(τ) =W ‖E‖∫ τ
0 |eµ(A)(τ−s)|d s. As a result, X 2

[τs ,τ̄s ](X0,s ) can be over-approximated

by a second order cone

X̂ 2
[τs ,τ̄s ](X0,s ) := {

x ′ ∈Rn : there exists x ∈ X0,s , there exists τ ∈ [τs , τ̄s ], |x ′| ≤ ρ(τ̄s )|x|}.

To compute the transitions in S̄/P , it thus suffices to derive the intersection between
the over-approximation

X̂[τs ,τ̄s ](X0,s ) := X̂ 1
[τs ,τ̄s ](X0,s )

⊕
X̂ 2

[τs ,τ̄s ](X0,s )

and all the conic regions Rt where t ∈ {1, . . . , q}. To the compute transitions, it is required
to check whether the convex feasibility problem

Rt ∩X̂[τs ,τ̄s ](X0,s ) 6=∅, (4.17)

for each conic region Rt hold, which can be solved by existing convex analysis tools.
There exists a transition from abstract state Rs to Rt in S̄/P in the case that (4.17) is
satisfied.

4.3.4. TIMED SAFETY AUTOMATA REPRESENTATION
In this subsection, we first point out the connection between an abstract state x/P ∈ X/P

and its corresponding output y/P ∈ Ȳ/P [91]. The system S̄/P

1. remains at x/P during the time interval [0,τx/P
),

2. possibly leaves x/P during the time interval [τx/P
, τ̄x/P ), and

3. is forced to leave x/P at the time instant τ̄x/P .

Thus, the semantics of S̄/P is equivalent to a timed safety automaton

TSA= (L,`0,Act,C ,E , Inv),

where
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• L = X ¯/P ,

• `0 :=Rs such that ξ(0) ∈Rs ,

• Act= {∗} is an arbitrary symbol,

• C = {c},

• E is given by all tuples (Rs , g , a,r,Rt ) such that (Rs ,Rt ) ∈
¯/P
- , g = {

c : c ∈
[τs , τ̄s ]

}
, a =∗, and r is given by c := 0,

• Inv(Rs ) := {
c : c ∈ [0, τ̄s ]

}
, for all s ∈ {1, . . . , q}.

Remark 4.3.6 (Drawback of construction technique). Although the construction tech-
nique presented in this section is offline, it is exponentially dependent on n−1 (where n is
the number of states). Hence, the proposed construction technique becomes computation-
ally expensive for higher-order systems.

4.4. TECHNICAL PROOFS

4.4.1. PROOF OF LEMMA 4.3.2
We first divide the time interval [0,σ] into ` subintervals. The reason behind this sub-
division is to reduce the conservatism in polytopic embedding. Let the instant t ∈ [0,σ].

Define t = t ′+ j σ` where t ′ ∈ [0,χ], with χ = σ
` for j < ⌊ τs`

σ

⌋
and χ = τs − j σ` otherwise.

DenoteΛ(t )− I by X (t ). One has

X (t ) =
[∫ j σ

`

0
e As d s +

∫ t ′

0
e As d s

(
A

∫ j σ
`

0
e As d s + I

)]
(A−BK ).

Rewrite the above equality in a more compact form

X (t ) = Π̌ j +
∫ t ′

0
e As d sΠ̂ j .

Substitute the compact form of X (t ) into (4.8c) and as a result,

Φ11(t ) = Π̌>
j MΠ̌ j + Π̌>

j M
(∫ t ′

0
e As d s

)
Π̂ j + Π̂>

j

(∫ t ′

0
e As d s

)>
MΠ̌ j

+ Π̂>
j

(∫ t ′

0
e As d s

)>
M

(∫ t ′

0
e As d s

)
Π̂ j + tWµλmax

(
E>E

)
dA(t )I −N ,

Φ12(t ) = Π̌>
j M + Π̂>

j

(∫ t ′

0
e As d s

)>
M ,

Φ21(t ) =Φ>
12(t ),

Φ22(t ) =−Ψ.

We next use the polytopic embedding approach proposed by [103] to abstract away
t in (4.8c). In the polytopic embedding approach, the underlying idea is as follows. We
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first approximate the matrix functionals tWµλmax
(
E>E

)
dA(t )I and

∫ t ′
0 e As d s in Φ(t ) by

their Nconv-th order Taylor series expansions.
In the case of tWµλmax

(
E>E

)
dA(t )I , notice that the matrices Li , j represents the Tay-

lor expansion’s terms, where (i , j ) ∈ ({
0, . . . , Nconv

}×{b τ̄s`
σ c, . . . ,`−1

})
. Also, notice that∫ t ′

0
e As d s 'ΣNconv

i=1

Ai−1

i !
(t ′)i .

As a result of these approximations, we take into account the introduced error. Let η
be an upper bound on this error. The procedure to find η follows. The exact Taylor
expansion of Φ(t ) is given by Σ∞

k=0Φ̂k, j (t ′)k where Φ̂k, j is given in (4.13b). However,

we consider the Nconv-th order expansion of Φ(t ) and denote it by Φ̃(Nconv, j )(t ′), i.e.,

Φ̃(Nconv, j )(t ′) =ΣNconv
k=0 Φ̂k, j (t ′)k . The error introduced by the approximation is

R(Nconv, j )(t ′) =Φ(t )− Φ̃(Nconv, j )(t ′)

which is a symmetric matrix. One is able to derive an upper bound on R(Nconv, j )(t ′) ≤ ηI

where the scalar η is given by (4.14). Observe that Φ̃(Nconv, j )(t ′)+ηI ¹ 0 implies Φ(t ) ¹ 0.

The function Φ̃(Nconv, j )(·)+ηI is a polynomial function in its argument.
Next, we use the convex embedding technique in [103] to show that Φ(i , j ),s ¹ 0, for

all (i , j ) ∈Ks , with Φ(i , j ),s =
∑i

k=0 Lk, jχ
k +ηI implies (Φ̃Nconv, j (σ′)+ηI ) ¹ 0. As discussed

above, (Φ̃Nconv, j (σ′)+ηI ) ¹ 0 leads toΦ(t ) ¹ 0, for all t ∈ [0,τs ]. This concludes the proof.

4.4.2. PROOF OF THEOREM 4.3.3
Consider scalars α(i , j ),s for n = 2 (or matrices U (i , j ),s for n ≥ 3) satisfying LMI conditions
given in (4.15) for s ∈ {1, . . . , q}. By the virtue of Schur complement and Lemma 4.3.2,
it follows that Φ(t )+α(i , j ),sQs ¹ 0 for n = 2 (or Φ(t )+E>

s U (i , j ),s Es ¹ 0 for n ≥ 3). Then,

since for all x ∈ Rs , {x ∈ R2 : x>Qs x ≥ 0} for n = 2 (or {x ∈ Rn : Es x ≥ 0} for n ≥ 3), the S-
procedure implies that x>Φ(t )x ≤ 0, for all t ∈ [0,τs ]. Finally, Theorem 4.2.4 guarantees
that for all x ∈Rs , the inter-sample time τ(x) is lower bounded by τs .

4.4.3. SKETCHES OF PROOFS OF LEMMA 4.3.4 & THEOREM 4.3.5
A sketch of proof is given. The polytopic embedding according to time of−Φ(t ) enable us
to show that −Φ(t ) ¹ 0 (orΦ(t ) º 0) if Φ̄κ,s ¹ 0, for all κ ∈Ks . Then, by applying the Schur
complement on −Φ(t ), it follows −Θ(t ) ¹ 0 (or Θ(t ) º 0) and as a result −x>Θ(t )x ≤ 0.
Furthermore, considering (4.11) in Theorem 4.2.4, i.e., −Fω(x, t ) ≥−x>Θ(t )x, the claims
in Lemma 4.3.4 and Theorem 4.3.5 follow.

4.5. NUMERICAL EXAMPLE
We illustrate the effectiveness of the theoretical results of this chapter in a numerical
example. Consider an LTI system, used as an example in [47], and add a perturbation
term ω(t ),

ξ̇(t ) =
[

0 1
−2 3

]
ξ(t )+

[
0
1

]
ν(t )+

[
0
1

]
ω(t ), (4.18)
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Figure 4.1: (Left) Upper bounds on regional inter-sample times. (Right) Lower bounds on regional inter-sample
times.

where the perturbation bound W = 0.001. We set the scalars associated with L2-based
TM as follows: γ= 100 and β= 0.25, see (4.6) and (4.7). Then, solving the ARE associated
with L2 stability, the control update law (implemented in a sample-and-hold fashion) is
computed, that is

ν(t ) =−K ξ(tk ) =−[0.2361 6.2367]ξ(tk ), for all t ∈ [tk , tk+1),

where tk denotes the sampling instants and k ∈ N∪ {0}. We set the order of polyno-
mial approximation Nconv = 7, the number of polytopic subdivisions ` = 800, the up-
per bound of the inter-sample intervals σ= 8, and the number of angular sub-divisions
m̄ = 10, thus, q = 2×10(2−1) = 20. Applying the results from Section 4.3.2, we get the pre-
cision of abstraction ε = 6.100. This precision is relatively large with respect to the one
derived in [92], that is ε= 0.119. The reason for such a large value for the perturbed case
is as follows. The possible stabilizing effect of disturbance on the dynamics (4.1) can in
fact enhance the stability of control system between two, consecutive triggering instants.
As a result, the derived τ̄s possesses a relatively larger value compared to the one in the
unperturbed case. In Figure 4.1, the derived lower and upper bounds are depicted. It is
evident that the regional lower bounds τs are less conservative compared to the minimal
inter-sample time. One can effectively employ these lower bounds as less conservative
measures for scheduling purposes. Figure 4.2 represents the conic regions s and the as-
sociated τs and τ̄s . In addition, Figure 4.3 depicts the simulation of the control system
for a simulation time of 15sec. It is clear that the bounds derived by the analysis given in
Section 4.3.2 have been respected by the sampling periods generated by the control sys-
tem. Figure 4.4 finally depicts the result of applying the procedure introduced in Section
4.3.3 to derive all the transitions in the TSA.

4.6. CONCLUSIONS
Most of the existing ETC strategies are equipped with a quantity, the so-called minimum
inter-sample time, that indicates the maximum utilization of communication bandwidth.
Despite the fact that such a quantity can practically be used in scheduling of ETC feed-
back loops, it does not allow us to exploit the beneficiary features of ETC strategies in
the context of scheduling. In this chapter, we presented an approach to capture the
sampling behavior of perturbed LTI systems with L2-based triggering mechanisms by
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Figure 4.2: Polar representation of bounds. The radial distance from the origin of each asterisk indicates the re-
gional lower bound of the indexed cone. Furthermore, in the case of circles, the distance indicates the regional
upper bound of the indexed cone minus 6.2sec, i.e., τ̄s −6.2sec (for the sake of clarity of the figure).

timed safety automata. We formally established that the derived timed automaton ε-
approximately simulates the ETC system under investigation. As a result of such a deriva-
tion, an object is constructed that can be used to synthesize scheduling policies for ETC
feedback loops (i.e., the main contribution of this chapter).

In what follows, we list several future research directions to extend the results of
this chapter. Exploiting already available tools for the synthesis of timed automata, one
can employ the above results to synthesize conflict-free policies in WNCSs, see e.g., [91]
which proposed a centralized scheduling of feedback policies. Another promising direc-
tion to follow is to find a fully decentralized approach instead of the centralized approach
proposed in [91]. The next research direction concerns decentralized ETC strategies in
the literature. In these studies, the existence of a minimum inter-sample time among
different subsystems is commonly absent (to the best of author’s knowledge), see e.g.,
[105]. The lack of such a quantity forces scheduler designers to add extra provisions in
the scheduling policy. It is thus interesting to investigate the possibility of deriving cross-
subsystem inter-sample times by modifying the framework used in this chapter. A suc-
cessful answer to this research hypothesis basically guarantees conflict-free triggering
instants generated by multiple subsystems. We finally remark a modification that is re-
lated to the regional upper bounds derived in Section 4.3.4. In the numerical example, it
has been observed that the upper bounds are relatively large because of possible stabiliz-
ing effects of perturbations on the error dynamics. These large upper bounds may result
in a timed automaton with a huge number of transitions. As a consequence, the schedu-
lability of such an abstraction becomes a demanding task. To circumvent this issue, one
can arbitrate a user-defined upper bound on the triggering mechanism to facilitate the
scheduling process. For example in the case of WNCSs, this type of assumption is closely
related to periodic-ETC strategies, see e.g., [106]. Moreover, the assumed bound can be
seen as a sort of network heartbeat that forces ETC feedback loops to be updated.
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Figure 4.3: Validation of the derived lower bounds during the simulation. The solid line (dashed line) rep-
resents the derived lower bounds on inter-sample intervals (the generated inter-sample intervals by the ETC
system during the simulation).

Figure 4.4: Schematic representation of all the edges in the timed automaton generated by the ETC system.
Each circle at the coordinate (i , j ) denotes an edge from location i to location j .





5
CONCLUSIONS

In this dissertation, three problems have been addressed that lie within the contexts of
optimization and control. In the sequel, we summarize the proposed approaches for
each problem instance followed by possible future research directions. We then provide
two research directions that are motivated by the cross-chapter relations.

First problem:
Summary: Inspired by the recent viewpoint to optimization algorithms, we regarded an
optimization algorithm as a controlled dynamical system. In this context, we set the
desired performance measure to be an exponential rate of convergence. Two hybrid
control frameworks were proposed to achieve the desired performance. The core idea
behind the synthesis is based on a trajectory-based analysis under the assumption that
the objective function satisfies the Polyak–Łojasiewicz inequality. In order to construct
iterative algorithms, we next employed the forward-Euler method as the temporal dis-
cretization method. The conditions on the discretization step-size to guarantee an ex-
ponential convergence are further derived.

Future research directions: There are multiple directions in which the proposed ap-
proaches can be extended or modified.

• (Modification of discretization) As it has been pointed out in Chapter 2, the pro-
posed discretization is naive, in the sense that it does not exploit the structure of
the proposed input signals. We thus expect that the employment of a more ad-
vanced discretization method is a logical avenue to explore.

• (Extension to other settings) It is interesting to investigate the possibility of apply-
ing a similar type of analysis for other optimization settings, such as constrained
or distributed cases.

Second problem:
Summary: The second problem considers the possibility of event-based implementa-
tion of an RMPC method. The principal idea of the proposed methodology is to exploit
the optimal state and input trajectories computed at the last triggering instant. With this

95
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mindset, we proposed two convex optimization formulations to identify a sequence of
hyper-rectangles around the optimal state trajectories. This sequence of sets is then de-
fined as the triggering mechanism in the following sense: as long as deviations of actual
states, observed at sensory units and caused by model mismatches, are confined to this
sequence, robust feasibility and stability of the closed-loop system are guaranteed. A
distinctive feature of the proposed approach to design the triggering mechanism is its
complete separation from the control synthesis part.

Future research directions: There are multiple directions that can be explored to ex-
tend the results of the proposed approach.

• (Handling directional sensitivity) One interesting extension is addressing the di-
rectional sensitivity of the proposed approach. At the moment, we assess two pos-
sibilities to address this issue. First, one can study the impacts of the nilpotent
gains on the directional sensitivity with the hope of reducing the level of asym-
metrical behavior. Motivated by threshold approaches in the literature, another
possibility is to employ directionally-aware thresholds in the design process of the
triggering mechanism.

• (Extension to other settings) One of the most interesting questions that comes to
one’s mind is to approach other types of RMPC methods with a similar viewpoint.
Other types of straightforward extensions, such as considering a distributed set-
ting, are also of interest.

Third problem:
Summary: To address the over-conservatism involved in the traditional (periodic) im-
plementation of control actions, event-triggering control approaches provide a theoret-
ically sound alternative. However, this alternative generally leads to a complicated sam-
pling behavior that is difficult to be realized by real-time system engineers. In the third
problem, we sought to construct a formal framework to translate the triggering behavior
of perturbed LTI systems with an event-triggering implementation. To do so, an object,
i.e., a timed safety automaton, is constructed which can be used to efficiently schedule
event-triggering control tasks in a networked system. We used tools from stability analy-
sis of delayed systems and reachability analysis of linear systems to construct the timed
safety automaton.

Future research directions: There are multiple paths that can be followed to extend
the derived results.

• (Simplification of automaton) Due to the perturbed nature of the model, it is
highly probable that certain discrete states in the derived automaton possess a
large number of out-going transitions. (This large number of out-going transi-
tions stems from the fact that the upper-bounds of inter-execution times for the
considered discrete states are relatively large.) Generally speaking, the occurrence
of such a case is undesirable since the required scheduler becomes complicated.
One possibility to circumvent this issue is to force a predefined upper-bound on
the inter-execution times of all the discrete states.

• (Extension to other settings) A next natural step is the extension of the proposed
approach to more general settings, such as nonlinear systems (that is already un-
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der investigation by other researchers). In particular, the nonlinear systems, that
have tractable reachability analysis, are the most suitable candidates for such an
extension.

Inspired by cross-chapter relations, we next mention several research directions to
extend the results of this dissertation.

• (Dynamical systems view for optimization-based controllers) As we have already
discussed in Chapter 2, optimization algorithms are dynamical systems. As a re-
sult, one can view an online optimization-based control strategy as a dynamic
controller. This controller is inter-connected to the plant via the feedback loop.
In order to tackle complications that arise in such controllers, such a mindset pro-
vides us with tools from singular perturbation theory and passivity theory to hope-
fully propose a more unified approach.

• (Timing abstraction of event-triggering MPC methods) Following a similar ap-
proach proposed in Chapter 4, it is interesting to provide an object that can cap-
ture the timing behavior of event-triggering MPC methods. The main issue that
can prevent us in doing so is the unavailability of the control law in a closed form.
As a result, the reachability analysis becomes a rather difficult (if not impossible)
task to do. On the other hand, set-based optimization methods are prime candi-
dates to be equipped with this kind of timing behavior.
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