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Abstract
To validate the results of a medical trial, there must
be an overlap between the treatment and control
groups. This implies the crucial need for good
evaluation methods. This study, therefore, aimed to
evaluate the overlap between causal classes using
the Nearest Neighbours’ methods.

Firstly, a case study was built around the common
failures of those methods (i.e. dependencies on
hyper-parameters and sensitivity to increasing
features, samples, and outliers). Secondly, a com-
parison of the Nearest Neighbours to other already
existing approaches was made, to determine if they
vary from the standard solution.

The results demonstrated that the methods can be
used to assess overlap but had too much depen-
dency on hyper-parameters, no drastic sensitivity
to increasing sample and feature, and varied per-
formance to outliers depending on their position.
Additionally, the set of Nearest Neighbours meth-
ods predicted a smaller overlapping area compared
to the established methods, emphasizing the cau-
tion with which the forecasts should be taken into
account.

1 Introduction
In many medical disciplines, such as discovering the under-
lying mechanisms of a disease or estimating the effectiveness
of a treatment, causal inference is essential. This process
consists of evaluating if a treatment was the “cause” of the
effect observed. Usually, this is achieved by creating two
groups: one exposed to the treatment (experimental) and
one not (controlled). If the effect were to be observed in
the experimental group, possible conclusions could be made
about the treatment. However, in order for the two testing
groups to be comparable, they must be similar enough by
sharing multiple characteristics (such as age or gender).

The implications of having overlap between classes are
drastic. For example, when researchers publish the findings
of a clinical trial, they also share the cohort statistics in order
to characterize the similarity of study subjects [1]. These
statistics give the writers an assurance that the outcomes are
valid, and allow other researchers the means to come up with
the same conclusion.

Therefore, elaborating new methods to evaluate overlap
would help the researchers assess the validity of the output
of clinical studies. Additionally, these new insights may be
helpful in other areas besides the medical field, such as ma-
chine learning, where the degree of overlap between various
classes affects how challenging a classification assignment
is [2]. Those new methods could be the set of Nearest
Neighbours algorithms, since they have already been used as
solutions to density evaluation, a closely related problem [3].

However, no public paper has made this connection yet. For
this reason, this paper will attempt to give new insights into
this problem and contribute to its solution.

The first goal of this study is to evaluate overlap in causal
inference using the Nearest Neighbors algorithms. The sec-
ond is to compare those algorithms to other approaches (i.e.
rule-based categorization, density estimators, and propensity
score procedures) and evaluate the common predictions. The
following sub-questions will be discussed in further detail:

• Are the Nearest Neighbors algorithms sensitive to their
hyper-parameters for a given dataset?

• How do those methods perform as the number of fea-
tures and samples increases in the dataset?

• Are the Nearest Neighbors algorithms sensitive to out-
lier data points?

In order to achieve both objectives, a comprehensive de-
scription of the issue will be provided in the Problem De-
scription. The Related Works will go into further detail on
discoveries in this area. Next, the Methodology of the study
will be discussed. The Results and Discussion section will in-
clude a debate outlining the advantages and disadvantages of
the Nearest Neighbours methods and a comparison with the
other algorithms will be presented in section 6. The section
about Responsible Research will then begin and, finally, the
study’s findings, as well as recommendations for future re-
search, will be explained in the Conclusions and Future Work
section.

2 Problem Description
The division of the tasks specified in the introduction will
enable us to assess the common pitfalls of the Nearest
Neighbors algorithms on the specific overlap problem [4]. In
addition, we will compare them to well-established methods
to determine if they vary from the standard solution. As a
result, this division will cover the major theme of this study:
how to apply the Nearest-Neighbors methods to evaluate
overlap in causal inference.

Overlap describes the extent to which the range of data is
the same across treatment groups [5]. In other words, given
some data X and group labels y the overlapping criterion be-
comes:

P (X|y) ≥ ϵ (1)

The formula (1) introduces the concept of threshold ϵ; in
fact, it is not enough to have overlap across treatment groups
concerning a single individual, but there must be more than
a specific number of people in the overlapping zone. The
probability P (X|y) will be tackled by creating density
distributions for the two testing groups and determining
whether both density functions are greater than the threshold.

The Nearest Neighbors’ methods are a class of algorithms
that use proximity to make predictions about the grouping of
an individual data point [6]. The general pseudo-code that
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returns the data points in the overlapping regions using those
methods is stated in Algorithm 1.

Algorithm 1 Nearest Neighbours

1: function ESTIMATE OVERLAP(X , y, ϵ, params):
2: overlapping region← []
3: for point p in X do
4: all overlap← True
5: proximityPoints ← get promixity points(p,

params)
6: for class c in y do
7: dens ← estimate density(proximityPoints

in c)
8: if dens < ϵ then:
9: all overlap← False

10: end if
11: end for
12: if all overlap then:
13: overlapping region← p
14: end if
15: end for
16: return overlapping region
17: end function

The algorithm requires as input the data points X , their
class y, threshold ϵ, and the parameters params specific
to each Nearest Neighbours model (line 1). For each point
p in X , it gets the set of points that are in the immediate
proximity of p (lines 3-5). Those points are then grouped
together per class y, and used to estimate the density of each
group around point p (line 7). If all the densities are above
the threshold ϵ, then point p is added to a list (lines 8-13).
This list returns all the points in the overlapping region (line
16).

The main difference between each Nearest Neigh-
bours method is the estimate density and the
get promixity points functions. The former will be
explained in the Related Works section. For the latter, given
a point p from X, the methods differ in the following way:

1. Radius Neighbours: Given parameter r and p it returns
all the points within a radius r of p.

2. K-Nearest Neighbours (K-NN): Given parameter k and
p it returns the k closest amount of points to p.

3. Local Outlier Probabilities (LoOP): Given parameter
k and p it uses a K-NN to evaluate the surrounding of p
and returns the probability of p being an outlier.

Those two models were selected as the K-NN is by far the
most researched Nearest Neighbour model due to its intuitive
use and its longevity. As a result, plenty of work relating to
our topic has already been made using it. In contrast, research
on the radius neighbours has been far less focused. However,
as the definition suggests, the radius neighbours can easily be
assimilated to the K-NN, we will attempt to bridge this gap
in the following sections.

3 Related Works
This section will open a discussion on the density estimators
and the hyper-parameters, introducing some foundations be-
hind the intuition used in this paper.

3.1 Density estimate
Regarding the density estimators, in Guilherme O. Campos’
work [7] to evaluate outliers (i.e. an observation that deviates
from its density distribution [8]), three estimators make usage
of the K-NN model:

1. The Local Reachability Density (LRD) [9]:

lrd(p) := 1

/∑
o∈kNN(p) reach-distk(p←o)

|kNN(p)|
(2)

2. A simplified version of the Local Outlier Factor (LOF)
[10]:

dens(p) =
1

k-dist(p)
(3)

3. The Local Outlier Probability (LoOP) estimate [11]:

LoOP-dens(p) = 1

/√√√√ 1

|kNN(p)|
∑

o∈kNN(p)

d(o, p)2

(4)

Those estimates are closely related to our problem, as they
estimate P (X|y) for one distribution (|y| = 1), instead of
multiple distributions (|y| > 1). However, the predictions
of estimates (2) and (3) are not normalised between zero
and one, but rather from zero to infinity, with a value bigger
than one signifying a ”somewhat” outlier [12]. Those values
become problematic when comparing them to the threshold
ϵ mentioned in section two, which is fixed between zero and
one.

A normalised formula (5), used several times before [13,
14], can be found in Sanjoy Dasgupta’s work [15]. The idea
is identical to dens(p) (3) as it only considers the distance to
the k’th point. The lrd(p) formula (2) will be changed in a
similar way in order to have less fluctuation since it takes the
average sum of k points.

pknn(p) = (k/n) ∗ 1/(Vd ∗Rk(p)) (5)

where Vd = πd/2/γ(d/2 + 1) is the volume of a unit
d-dimensional ball, γ(x) is the Gamma function, d represents
the number of dimensions and, Rk(p) denotes the distance
from p to it’s k’th nearest neighbour point.
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3.2 Hyper-parameters
As mentioned in the Problem Description, this set of meth-
ods is particularly sensitive to the parameters selected. A
common approach is to perform hyperparameter tuning on
a given dataset, resulting in the “best possible choice of pa-
rameters” according to a true overlap metric [16]. However,
this strategy would not be favoured since, in the majority of
cases, the dataset does not contain any true overlap measure,
as the true distribution is unknown.

This leads to the use of estimates, which try to approxi-
mate the best parameters, given information about the distri-
bution of data (i.e. the size, standard deviation, mean etc.).
We will next provide the estimates that were employed in this
research.

K-NN: The parameter k
Sanjoy Dasgupta’s [15] suggests using the following esti-
mate:

k = C0 ∗ n4/5 (6)

For some constant C0, he guarantees an optimal convergence
rate. Finding this parameter will be done in the Results and
Discussion section. Additionally, regarding the k of the LoOP
model, it will be implemented using the module’s recommen-
dation: k =

√
n, where n is the number of samples [17].

Radius Neighbours: The radius r
Although this parameter influences the model significantly
[18], no public paper has been published to estimate density
with this method. Some insights could be taken from the
program MatchIT [19], which uses the Radius Neighbours
to make matches between causal classes. However, it is not
explained why r = 1. Having a fixed radius makes this
model sensitive to the standard deviation of the distributions.
Therefore, to solve those types of edge cases, and due to the
lack of information about this model, it will be presented as
the most “out of the box” method in the later sections.

4 Methodology
The methodology of this study will be broken down into five
sections: the metrics used to assess overlap, an overview of
the experiments, the dataset production, parameters used for
the experiment and the final estimates per model.

4.1 Metrics
Concerning the metrics, Intersection over Union (IoU) is go-
ing to be the main focus. This is a metric used to assess the
overlap between two areas ranging between zero (no overlap)
and one (full overlap) [20], of which two variants exist:

IoUarea = Area of Overlap/Area of Union (7)

where Area of Overlap represents the estimated over-
lap intersected with the true overlapping region, and
Area of Union represents both areas combined.

IoUpoint = True Positives/(True Positives

+False Positives+ False Negatives)
(8)

A new boolean feature is created for this. If a point is
in the overlapping region, it will have a True value and
vice-versa. Accordingly, the True Positives, False Positives
and False Negatives can then be evaluated by comparing the
prediction of the model and this new feature.

Note that as the number of dimensions increases, the over-
lapping area transforms into an N-dimensional space, making
it difficult to determine the shape of the boundary between the
overlapping and non-overlapping region. As a result, it gets
exponentially harder to find IoUarea. A solution concerns us-
ing IoUpoint; it is less accurate but, when enough data points
are selected, it can approximate IoUarea as some of the points
will lie close to this overlapping boundary.

4.2 Experiments
In order to evaluate the reliability of the estimators and an-
swer each sub-question, the following processes are built:

1. Optimisations: A graph representing an increase of ϵ
with respect to the IOU will assess how those estimates
perform with high density. This process will be per-
formed for multiple different overlapping cases (fully,
partially and no overlap regions), but also with differ-
ent distributions (uniformly, normal and low variance-
distributed data).

2. Increase of samples and dimensions: A graph showing
the time spent and a graph showing the IOU of a partially
overlapping distribution will be constructed to achieve
both the sample and the dimension case. The sample
case will also graph a scenario in which the classes are
imbalanced.

3. Outliers: A zero to five percent outlier data sample will
be added to establish when the estimators fail to ignore
those points. This will be plotted by representing the
density estimators compared to the true overlapping re-
gion.

4. Comparison: The Iris Dataset will be used to com-
pare the Nearest Neighbors models against more con-
ventional approaches, and a plot for each model’s pre-
diction will be shown.

4.3 Dataset Production
Regarding the creation of the datasets, they will be produced
utilizing numpy.random.normal() function, an n-dimensional
Numpy distribution technique returning a specifiable amount
of random samples from a specific distribution [21]. This can
be tuned to implement different Normal, Poisson and Uni-
form distributions. Additionally, those distributions will con-
tain outliers, skewness and imbalance [22] to address some
of the sub-questions. The true overlap will then be evalu-
ated using stats.norm.pdf() from the SciPy library [23], from
which given the distribution and the samples from Numpy, it
will return the P (X|y) (probability density) per point which
is displayed in Figure 1.
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Figure 1: Density values of a set of points sampled from two
normally distributed functions: x1 (blue) and x2 (orange)1. The

overlapping points, which represent the minimum density of both
distributions, are established by taking the density of x1 and x2 and

asserting if both are above epsilon.

4.4 Parameters

Regarding the parameters, the k from the K-NN will be se-
lected according to Related Works section 3.2, while the
choice of the radius r will be presented next.

Radius Neighbour: Parameter r
The estimate used to approximate r will variate per point and
will be based on the distance to the decision boundary [24].
In terms of overlapping regions, this is the region where the
overlap between classes is the highest according to the Ra-
dius Neighbours model. As a result, the radius we would like
to take into account is higher for a point that is close to this
border, since it is more likely to be in the overlapping area.
This is due to the fact that, if fewer points were taken into ac-
count, a more varied (dependent on the neighbouring points)
density estimate would be produced. For points further away
from the decision boundary, the radius should not be constant,
as this would result in considering points that are too far away
and potentially close to the overlapping region, ineffectively
increasing the density estimate. The radius should, instead,
be reduced as follows:

radius = min(a, b)

a = ( min
d1,...,dT

X + dX)/2

b = 1/(
√
#X ∗ |dboundary|)

(9)

Factor a is a constant that ensures a certain maximum
radius and it represents the average between the minimum
(mind1,...,dT

X) and the average distance (dX ) between all
points. Factor b represents the inverse of the distance to the
decision boundary, it is multiplied by the amount of data
points (#X), to ensure that a limited amount of points are
considered (the more points the smaller the radius).

1x1 has mu=0, sigma=1 and n=1000, and x2 has mu=2, sigma=1
and n=1000

4.5 Density estimates
Refering back to Algorithm 1, per model, the details of the
estimates function (estimate density(proximityPoints)) are the
following:

pknn(p) = (kc/nc) ∗ 1/(Vd ∗Rk(p)) (10)

1. K-NN: The equation (10) is taken from the related work
section (5) and displayed in Appendix Figure 11. The
(Vd∗Rk(p)) indicates an n-dimensional sphere (Vd) cen-
tered around point p, with a radius equal to the k’th near-
est neighbour’s distance (Rk(p)). The intuition behind
this formula is that the furthest away this k’th point is,
the lower the density, as this implies that the points are
further apart. Additionally, the spherical part of the for-
mula and the kc/nc, which is common to all estimates
and explained later on, guarantee that the overall value
is lowered to approximate P (X|y) [13].

adapted lrd(p) := kc/nc ∗ 1

/∑pointsc
i=0 d(p,i)∗Vd∗2

k

(11)

2. K-NN: In contrast to formula (10), which only takes into
account the k’th distance for the radius, formula (11),
shown in Appendix Figure 11, considers, for a class,
the average all distances of points in the vicinity of p

(
∑pointsc

i=0 d(p, i)/k). Then, using the factor 2 (assum-
ing that the average distance is roughly half the maxi-
mum distance), this average distance is scaled up to the
maximum distance matching (10). Since this formula
depends on all sets of points within k rather than only
the k’th point, the intention is to reduce variability.

radius density(p) =

kc ∗ (1−
pointsc∑
i=0

d(p, i)/

points∑
i=0

d(p, i))/nc

(12)

3. Radius Neighbours: Equation (12), shown in Appendix
Figure 12, evaluates the sum of distances from a class
(
∑pointsc

i=0 d(p, i)) compared to the total sum of distances
(
∑points

i=0 d(p, i)). This is preferred over the k’th dis-
tance as it is fixed by the radius itself. In other terms,
the smaller the sum between the points from a class, the
higher the density.

4. LoOP: As mentioned in Problem Description, this
model returns a probability between 0 and 1 of each
point being an outlier. This is scaled according to
the maximum histograms density estimate from the
Freedman-Diaconis rule [25]:

Binwidth = 2 ∗ IQR(x)/
3
√
N (13)

where IRQ(x) is the interquartile range of the data and
N is the number of observations in sample x.
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The scaling kc/nc factor in all formulas denotes the pro-
portion of points from a class that is close to point p (kc), di-
vided by the total number of points from the class (nc). There
is no requirement for class separation in section 3 (k/n from
(5)), since this is done for one distribution. However, in our
case, we specifically differentiate between the two because
we wish to estimate each class’s density individually (assum-
ing they are independent).

5 Results and Discussion
This section will display the findings for the three following
sub-questions: first, the sensitivity to parameters, second, the
analysis of whether the models scale with an increase of sam-
ples and features and, third, the sensitivity to outliers.

5.1 Parameter Sensitivity
The hyper-parameter k from the K-NN
As noted in Section 3, this parameter is anticipated to be the
most important regarding the estimators. Figure 15 and Fig-
ure 16 show how k affected the density estimate. Addition-
ally, as anticipated, the lrd formula exhibits less volatility
than the pknn formula because fewer data points are far from
the red points (Appendix Figure 11), supporting the assertion
from the Related Works.

(a) Normal Distribution2

(b) Uniform Distribution3

Figure 2: Contour plot for two different distributions. The x-axis
displays the C0 factor while the y-axis shows the size of the

distribution. The lighter areas represent values that have a better
IOUpoint metric, showing a different trend for both distributions:
the normal has it for high C0, while the uniform for low C0. The

black points are the data points tested to showcase the graph.

Regarding the best C0 (Related Works section:
k = C0 ∗ n4/5), none has been found to tackle the
overlapping problem. As displayed in Figure 2, the best IOU
score depends on the type of distribution, as its tendency
switches between types. Furthermore, both show that,
regardless of the C0, the IOU improves as the number of
samples rises. This is in contrast to what is claimed in the
study, although it is not clear what ”|x| is very large” implies
[15].

This results highlight the major flaw of this family of
methods: despite occasionally producing decent results, it is
extremely difficult to anticipate C0, or more generally, k, in
advance [15].

The radius parameter from the Radius Neighbours

As explained in section four, the radius parameter is already
tuned to be adaptive with regard to the decision boundary.
It is interesting to note what the implications are on the
performance of the model.

Firstly, this model performs well in evaluating the points
that are next to the boundary line. In other words, for spe-
cific cases where the true overlap is close to this boundary the
resulting performance will be high (Figure 3).

Figure 3: Radius Neighbours Performance on two overlapping
distributions: x1 (blue) and x2 (orange)4. The true Overlap (Blue
Area) and the Estimated Overlap (Red Area) combine to form the

(Purple Area), from which the IOUarea is evaluated
IOUarea = 0.92

2x1 has mu=0 and sigma=1, and x2 has mu=2 and sigma=1 with
ϵ = 0.1

3x1 has mu=0 and sigma=3, and x2 has mu=1 and sigma=2 with
ϵ = 0.1

4x1 has mu=0, sigma=1 and n=1000, and x2 has mu=1, sigma=1
and n=1000 with ϵ = 0.22
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(a) Radius Values (b) Density Values

Figure 4: Radius Neighbours performance on an overlapping
distribution (Figure 14) where two decision boundaries can be

observed. This results in the density values being wrong for the left
side of the predictions, as the blue points (estimated density) are

deviating much more from the red points (true density), resulting in
a drop of the IOUpoint

IOUpoint = 0.77

Secondly, however, some edge cases can be drawn in which
this model would perform poorly. In the case where one dis-
tribution is contained within the range of the other distribu-
tion (Figure 14), then, as displayed in Figure 4, there exist
two decision boundaries. As a result, the radius values are not
representative of the points within the two boundaries. This
has the consequence of bringing down the IOU metric (per
point), as all the points within those 2 boundaries are inaccu-
rate. Additionally, if the epsilon is low, the decision boundary
is too far away from the distribution to have a positive impact.

Performance
The graphs shown in Appendix B compare the performance
of all three Nearest Neighbours models to three different
types of cases (fully, partially, and no overlap regions), but
also divided into separate distributions (evenly, normally, and
light-tailed distributed data).

In general, the increase in threshold causes the IOU to
drop drastically. This is mostly due to the density estimators,
as they have more variability as this epsilon increases,
leading to erroneous predictions. However, this highlights a
limitation of the metrics. As the normal distribution has the
shape of a bell curve, there are fewer representative points as
the density increases, which results in limited True Positives
to evaluate.

It can also be noted that the IOUarea has greater variability
than the IOUpoint, since it only considers the minimum and
maximum points, while IOUpoint considers all overlapping
points. This is particularly true when there is only one data
point (the highest density possible), in which case the area is
zero because the min and max values are the same.

For the set of uniformly distributed data, the LoOP
algorithm performs best, primarily since its estimator has a
flat top (Figure 13) which fits the uniform distributions. The
LoOP method does poorly at detecting non-overlapping data,
which may be because the outlier score is not discriminate
enough when taking distance into account.

For the set of low standard deviation data, the IOU de-
creases dramatically. This is primarily due to the fact that
when the points come closer to one another, their estimations
of density rise significantly, leading to misspecification. This
could be solved by switching to the Mahalanobis distance
metric, which considers the variation of the datasets [26].

5.2 Scalability
The LoOP algorithm has not been used in relation to the
growth in dimensions because of the run time taken and its
failure to multi-dimensional distributions [27].

Figure 5: Performance of the models (y-axis representing
IOUpoint) as the number of dimensions increase (x-axis). The

distributions were adapted for each dimension such that 30% of the
points were always in the overlapping region5

.

Looking at Figure 5, due to the high dimensions, multiple
decision boundaries are created by the radius neighbours al-
gorithm, resulting in poor performance for this problem (sim-
ilarly to Figure 4). The pknn (LOF) performs well, although it
should be noted that the k requires a better tunning for multi-
dimensions. The lrd on the other hand seems to perform quite
poorly. Since the standard deviation was increased per dimen-
sion to keep a similar overlap between distributions, it could
have resulted in the ”assuming that the average distance is
approximately half of the maximum distance” from section 4
being false. A possible solution could be adding the standard
deviation to this factor.

(a) Time taken in seconds (b) Performance IOUpoint

Figure 6: Performance and time taken with respect to a progressive
increase of samples (y-axis) for two overlapping distributions6.

5x1 has a constant mean=0 and x2 has an adapted mean of 2.5,
1, 0.65, 0.5, 0.43 and 0.39 for each dimension. Both have a stan-
dard deviation of 1, 1, 0.5, 0.33, 0.25 and 0.2 as the dimensions
increase, this was evaluated on a total of 1000 samples (500 each)
and epsilon=0.05
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With regards to Figure 6, most techniques function effec-
tively as the number of data points increases. However, for
a small number of data points (between 1 and 30), the per-
formance suffers due to the lack of nearby points to analyze,
yielding a decrease in graph b. Regarding the time taken, in
graph a, the Radius Neighbors and K-NN algorithms perform
fast compared to the input size O(n ∗ log(n)) [28], while the
LoOP methods take an O(n3) amount of time because they
require comparing each point to all distributions.

Figure 7: Performance IOUpoint with respect to a decrease in
imbalance samples, in other terms, x1 was always kept at 200

samples while x2 was progressively increased (from 25 to 200)
representing the y-axis7.

Dealing with imbalanced samples, in Figure 7, all algo-
rithms perform at a constant rate, because the kc/nc factor
present in all density estimators takes into account the total
quantity of samples from that class (nc). If the amount of
samples is low, it would increase the kc/nc factor. This fur-
ther explains why, the LoOP not having this factor, has gen-
erally worse performance than the other models.

5.3 Outliers

Regarding outliers, mentioned in section 3, an increasing
amount (from 1% to 5%) is added to the tail of distribution
x1, then the true overlap is evaluated ignoring those point to
assess if compared to the prediction, the outliers have an im-
pact on the models. Two edge cases can be identified: a high
and a low epsilon. The reason for this distinction is that the
outliers influence the extent to which the density varies. As
a result, it is expected that the models are less sensitive when
epsilon is high than when it is low.

6x1 has a mean=0 and an std=1 while x2 has a mean=2 and an
std=1. The size was increased from 10 data points to 360 and kept
equal for both distributions, ϵ = 0.125

7x1 has a mean=0 and and std=1 while x2 has a mean=2 and an
std=1.ϵ = 0.125

(a) Distribution (b) Performance: IOUpoint for
1 to 5% outliers added (x-axis)

Figure 8: Performance of Nearest Neighbours models on
distribution a for ϵ = 0.1

(a) Distribution (b) Performance: IOUpoint for
1 to 5% outliers added (x-axis)

Figure 9: Performance of Nearest Neighbours models on
distribution a for ϵ = 0.05

Figure 8 and Figure 9 demonstrate this expectation, as the
performance of Figure 8 is less affected by the increase of
outlier samples than the performance graph in Figure 9.

(a) Distribution (b) Performance: IOUpoint for
1 to 5% outliers added (x-axis)

Figure 10: Performance of Nearest Neighbours models on
distribution a for ϵ = 0.05

Additionally, referring to Figure 10, it is interesting to note
that, even when epsilon is low, if the outliers are too far from
both distributions, the algorithms are not impacted by them.
This is because the model’s predictions are based on the prox-
imity of points.

6 Comparison
The efficiency of the Nearest Neighbours models can be
evaluated by contrasting them with commonly employed
techniques, including rule-based classification, density
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estimators and propensity score methods. To make this com-
parison, the well-known Iris dataset [29] was used because
its unknown distribution makes it impossible to favor any
model over others. Since stats.norm.pdf() requires selecting
the distribution type, there is no true overlap. To compare
the differences between the models, it is still interesting to
plot all of the predictions, but it should be remembered that
no conclusion about the ”best model” can be drawn from this.

Appendix C displays how the models perform with a
low epsilon (Figure 26-27) and high epsilon (Figure 28-29).
This distinction is necessary since the Nearest Neighbors
models perform worse as the epsilon grows (as explained in
Performance section from subsection 5.1).

It can generally be noticed that, compared to the other
models, the Nearest Neighbours models predict fewer points
in the overlapping area. This is most likely due to the few
amount of samples (50 per class) linking to the observation
from Figure 6, in which the performance significantly
dropped for a sample size below 50.

Additionally, compared to Figure 28, the Nearest Neigh-
bours models in Figure 29 have no precise area of overlapping
points showcasing the variability of the models. This is most
likely because the estimate k =

√
N = 7 implies that each

point is too dependent on its neighbouring points, resulting
in such unpredictable results.

Overall, this showcases the limitation of this study, as no
similar results can be found yet to more commonly used
methods. This is mostly caused by the variability of the es-
timates and dependence on parameters. Perhaps, a better ap-
proach would be to, first, tune the hyperparameters on one
of the established models (assuming it returns true overlap).
Then use the Nearest Neighbours models to output the results
leading to faster run time.

7 Responsible Research
Responsible research is essential to uphold ethical standards,
ensure data integrity, and promote unbiased analysis, thus
fostering trust and credibility in research findings. Regarding
this study, the responsible research can be divided into two
parts: reproducibility and applications to the medical sector.

7.1 Reproducibility
In order to confirm the results displayed in this paper, ensur-
ing that the data generation and the algorithms yield the same
outcomes is crucial. To this effect, the numpy.seed(0) was
utilised for the generation of the data. Regarding the models,
only deterministic ones were employed, meaning that given
an input from the distribution the output would be identical.
Additionally, the code base is available here8 in order to assist
with the model creation and plotting functions.

8https://github.com/JortVincenti/
Using-Nearest-Neighbors-to-Evaluate-Overlap

The time taken in Figure 6 depends on the hardware of the
computer but, the conclusions regarding the time complexity
remain the same.

7.2 Application to the medical sector
Although this study displays valid results, it is still incom-
plete regarding real-life cases. The data is randomly gener-
ated within ranges that do not represent any feature (i.e. age,
gender, etc.) nor does it represent actual groups of patients.
This proves that the presented models are not tuned correctly
to evaluate overlap for clinical studies. Instead, we recom-
mend taking this as a basis to improve further before applying
it to real-life problems.

8 Conclusions and Future Work
Overall, this research paper aimed to analyse the usage of the
nearest Neighbours’ methods to evaluate the overlap between
causal classes. This was further broken down into examining
the impact of the hyper-parameters on the overall outcomes
and attempting to develop estimators for them, by testing an
increased number of samples and features on the output, and
investigating the impact of outliers.

This demonstrated that the Nearest Neighbours’ methods
can be used to assess overlap, but their predictions are too
reliant on the hyper-parameters. Although estimated solu-
tions can be obtained, optimality could not be achieved for
all circumstances since this fluctuates too much depending
on the distribution. Regarding the samples, the Radius
Neighbors and K-NN showed some good time performance.
The K-NN performed the best as the number of features
expanded but, as they did, it became clear that k needed to
be adjusted. Outliers don’t appear to have an impact on the
models for high epsilon but given specific edge cases, the
density estimates would be greatly impacted.

Concluding results for the particular causal inference
problem were not obtained as they differed too much from
standard solutions. However, those models could be applied
to fields with fewer implications. For instance, removing
the overlapping region in order to improve machine learning
models. In that scenario, their performance metrics could be
checked and, if no improvement can be distinguished, the
process is reversed.

The following are the primary areas that need improvement
in this study, ranked by estimated difficulty:

• To evaluate the effectiveness of the density, additional
metrics like RMSE could be considered. This could be
achieved by retrieving each point’s density and compar-
ing it to the true density.

• Perform a majority voting procedure per point for all
models. In other terms, run each model on a given dis-
tribution and combine their predictions together.

• Regarding adapted lrd formula (11), the 2 factor could
be replaced by a factor representing the standard devia-
tion. This would effectively resolve cases in which dis-
tributions are skewed.
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• Although the density estimators from the K-NN already
contain a factor to account for an increase in features
(the Vd factor in (10) and (11)), this was concluded to
be insufficient. As a result, this factor could be further
improved and perhaps made more discriminatory.

• To resolve misspecification, points that are predicted in
the overlapping region but too far away from other pre-
dicted points can be removed using outlier detection.
This would open a broader discussion on how to detect
and deal with model misspecification when using those
methods.

• Finding solutions to evaluate the IOUarea in multiple
dimensions.

• An SVC from Sklearn evaluates the Radius Neighbors
algorithm’s distance from each point to the decision
boundary. To further enhance the predictions, this may
be modified to take into account the real Radius Neigh-
bors’ decision boundary.
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A Graph of Density Estimators

Figure 11: K-NN density estimates for the pknn(p) (LOF) and the adapted lrd(p) (LRD) formula for the distribution of the leftmost
Figure 9

Figure 12: Radius and density estimates for the Radius Neighbours model based on the distributions of the leftmost Figure 9

Figure 13: Density Estimate for the LoOP − dens(p) estimate for the leftmost Figure 9

9x1 (np.random.normal(mu=0, sigma=1, n=200)) and x2 (np.random.normal(mu=2, sigma=1, n=200))

11



Figure 14: Radius Neighbours performance on the overlapping distribution in the leftmost Figure 10

IOUpoint = 0.77

Figure 15: adaptive lrd density estimates of an overlapping distribution 11 with k=25,100 and 275

Figure 16: pknn(p) density estimate of an overlapping distribution 11 with k=25,100 and 275

10x1 = (mu=0, sigma=1, n=1000) and x2 (mu=0, sigma=2, n=1000) with ϵ = 0.1
11x1 (np.random.normal(mu=0, sigma=1, n=200)) and x2 (np.random.normal(mu=2, sigma=1, n=200))
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B Overall Performance

For all graphs presented below, the leftmost figure represents the density distribution, the middle figure represents the IOUarea,
and the rightmost figure represents the IOUpoint.

Figure 17: Performance of all models for the density distribution in the left-most figure (a normal distribution with overlap)

Figure 18: Performance of all models for the density distribution in the left-most figure (a normal distribution with two overlapping
boundaries)

Figure 19: Performance of all models for the density distribution in the left-most figure (a normal distribution with no overlap)
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Figure 20: Performance of all models for the density distribution in the left-most figure (a uniform distribution with overlap)

Figure 21: Performance of all models for the density distribution in the left-most figure (a uniform distribution with 2 overlapping
boundaries)

Figure 22: Performance of all models for the density distribution in the left-most figure (two uniform distributions with no overlap)
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Figure 23: Performance of all models for the density distribution in the left-most figure (two normal distributions with a low standard
deviation and with overlap)

Figure 24: Performance of all models for the density distribution in the left-most figure (two normal distributions with a low standard
deviation and with two overlapping boundaries)

Figure 25: Performance of all models for the density distribution in the left-most figure (two normal distributions with a low standard
deviation and with no overlap)
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C Comparison

(a) Distribution (b) Propensity Score

(c) Rule based (d) Kernel Density Estimate

Figure 26: Comparison of established models on the Iris Dataset
with epsilon=0.1

(a) Distribution (b) K-NN: pknn

(c) K-NN: lrd (d) Radius Neighbours

Figure 27: Comparison of the Nearest Neighbours models on the
Iris Dataset with epsilon=0.1

(a) Distribution (b) Propensity Score

(c) Rule based (d) Kernel Density Estimate

Figure 28: Comparison of established models on the Iris Dataset
with epsilon=0.05

(a) Distribution (b) K-NN: pknn

(c) K-NN: lrd (d) Radius Neighbours

Figure 29: Comparison of the Nearest Neighbours models on the
Iris Dataset with epsilon=0.05
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