

BISCAYNE BAY: TURN THE TIDE

AN INTEGRATED LANDSCAPE APPROACH FOR COASTAL RESTORATION IN BISCAYNE BAY THROUGH SPATIAL AND ECOLOGICAL INTERVENTIONS

P5 - IRIS VAN DRIEL (4158245)

Mentors dr.ing. Steffen Nijhuis and Yuka Yoshida

DELFT UNIVERSITY OF TECHNOLOGY - FACULTY OF THE BUILT ENVIRONMENT - LANDSCAPE ARCHITECTURE

ACADEMIC YEAR 2018 / 2019 - STUDIO FLOWSCAPES

"TO COMPLETELY CHANGE THE DIRECTION OF SOMETHING"

Cambridge dictionary of American idioms (2003)

INTRODUCTION TO THE MANGROVE LANDSCAPE	Ι	ΙV	MANGROVE DESIGN PRINCIP
A p p r o a c h	ΙI	۷	A NEW COASTLINE FOR BIS
UNDERSTANDING THE MANGROVE LANDSCAPE	III	VI	DISCUSSION AND CONCLUS

PLES

SCAYNE BAY

IONS

INTRODUCTION TO THE MANGROVE LANDSCAPE

I

SPATIAL STRUCTURE

WILD LIFE HABITAT

Edited map obtained via Mapchart. Retrieved on December 29 2018 from www.mapchart.net

Edited map obtained via Mapchart. Retrieved on December 29 2018 from www.mapchart.net

STUDY AREA

United States of America

Florida

BISCAYNE BAY

IMPRESSION OF THE NATURAL LANDSCAPE

MANGROVE LOSS IN SOUTH FLORIDA

MANGROVE DISTRIBUTION 1992

MANGROVE DISTRIBUTION 1900

Maps and data obtained via NASA. Retrieved on October 24 2018 from www.arthobservatory.nasa.gov

PROBLEM STATEMENT

Source: www.miamiherald.com

RESEARCH OBJECTIVE

IDENTIFY AND EXPLORE DESIGN STRATEGIES FOR THE DEVELOPMENT OF THE MANGROVE LANDSCAPE OF BISCAYNE BAY,

RESEARCH OBJECTIVE

IDENTIFY AND EXPLORE DESIGN STRATEGIES FOR THE DEVELOPMENT OF THE MANGROVE LANDSCAPE OF BISCAYNE BAY, IN ORDER TO **REDUCE FLOOD RISK** CAUSED BY TROPICAL STORMS AND SEA LEVEL RISE,

RESEARCH OBJECTIVE

IDENTIFY AND EXPLORE DESIGN STRATEGIES FOR THE DEVELOPMENT OF THE MANGROVE LANDSCAPE OF BISCAYNE BAY, IN ORDER TO REDUCE FLOOD RISK CAUSED BY TROPICAL STORMS AND SEA LEVEL RISE, AS WELL AS PROVIDE AESTHETIC, ECOLOGICAL AND FUNCTIONAL QUALITIES THAT CONTRIBUTES TO THE IDENTITY AND RESILIENCE OF

THIS COASTAL REGION.

I 30

How does the mangrove landscape function in South Florida and HOW DID IT CHANGE IN BISCAYNE BAY?

WHAT SPATIAL AND ECOLOGICAL DESIGN PRINCIPLES CAN PROVIDE CONDITIONS TO RESTORE AND IMPROVE THE MANGROVE LANDSCAPE IN ORDER TO LET IT FUNCTION AS COASTAL DEFENCE AND LET USERS RECONNECT WITH THE NATURAL LANDSCAPE.

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

WHAT LESSONS ARE LEARNED FROM USING THE MANGROVE LANDSCAPE IN A LANDSCAPE ARCHITECTURAL DESIGN FOR BISCAYNE BAY, IN ORDER TO REDUCE FLOOD RISK IN THE MIAMI METROPOLITAN AREA AND RECONNECTING INHABITANTS AND VISITORS TO ITS ORIGIN AND FUNCTION.

How does the mangrove landscape function in South Florida and HOW DID IT CHANGE IN BISCAYNE BAY?

WHAT SPATIAL AND ECOLOGICAL DESIGN PRINCIPLES CAN PROVIDE CONDITIONS TO RESTORE AND IMPROVE THE MANGROVE LANDSCAPE IN ORDER TO LET IT FUNCTION AS COASTAL DEFENCE AND LET USERS RECONNECT WITH THE NATURAL LANDSCAPE.

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

WHAT LESSONS ARE LEARNED FROM USING THE MANGROVE LANDSCAPE IN A LANDSCAPE ARCHITECTURAL DESIGN FOR BISCAYNE BAY, IN ORDER TO REDUCE FLOOD RISK IN THE MIAMI METROPOLITAN AREA AND RECONNECTING INHABITANTS AND VISITORS TO ITS ORIGIN AND FUNCTION.

How does the mangrove landscape function in South Florida and HOW DID IT CHANGE IN BISCAYNE BAY?

WHAT SPATIAL AND ECOLOGICAL DESIGN PRINCIPLES CAN PROVIDE CONDITIONS TO RESTORE AND IMPROVE THE MANGROVE LANDSCAPE IN ORDER TO LET IT FUNCTION AS COASTAL DEFENCE AND LET USERS RECONNECT WITH THE NATURAL LANDSCAPE.

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

WHAT LESSONS ARE LEARNED FROM USING THE MANGROVE LANDSCAPE IN A LANDSCAPE ARCHITECTURAL DESIGN FOR BISCAYNE BAY, IN ORDER TO REDUCE FLOOD RISK IN THE MIAMI METROPOLITAN AREA AND RECONNECTING INHABITANTS AND VISITORS TO ITS ORIGIN AND FUNCTION.

How does the mangrove landscape function in South Florida and HOW DID IT CHANGE IN BISCAYNE BAY?

WHAT SPATIAL AND ECOLOGICAL DESIGN PRINCIPLES CAN PROVIDE CONDITIONS TO RESTORE AND IMPROVE THE MANGROVE LANDSCAPE IN ORDER TO LET IT FUNCTION AS COASTAL DEFENCE AND LET USERS RECONNECT WITH THE NATURAL LANDSCAPE.

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

WHAT LESSONS ARE LEARNED FROM USING THE MANGROVE LANDSCAPE IN A LANDSCAPE ARCHITECTURAL DESIGN FOR BISCAYNE BAY, IN ORDER TO REDUCE FLOOD RISK IN THE MIAMI METROPOLITAN AREA AND RECONNECTING INHABITANTS AND VISITORS TO ITS ORIGIN AND FUNCTION.

LANDSCAPE AS A SYSTEM

DIMENSIONS

COMPONENTS

RELATION

és III

UNDERSTANDING THE MANGROVE LANDSCAPE

LANDSCAPE MORPHOLOGY

LAYERS OF THE MANGROVE LANDSCAPE

Landscape typologies

ELEMENTS OF THE BISCAYNE BAY COASTLINE

STRUCTURES

LAYERS OF THE MANGROVE LANDSCAPE

ELEMENTS OF THE BISCAYNE BAY COASTLINE

PROCESSES

STRUCTURES

LAYERS OF THE MANGROVE LANDSCAPE

ELEMENTS OF THE BISCAYNE BAY COASTLINE

PROCESSES

STRUCTURES

ACTORS

STRUCTURE MAP

EFFECTS

Increased flood risk

STRUCTURE MAP

EFFECTS

<u>((C</u>

Increased flood risk

Opposite discharge point

STRUCTURE MAP

EFFECTS

Increased flood risk

Opposite discharge point

Lack of sedimentation

POTENTIAL OF BISCAYNE BAY

HISTORICAL SITUATION

Mangrove Map based on data provided by Delft University of Technology URBAN

URBAN

RESIDENTIAL

ource: www.miamiluxuryliving.com

Agriculture Mangrove Map based on data provided by Delft University of Technology URBAN

RESIDENTIAL

NATURAL

SEA LEVEL RISE SCENARIOS

CURRENT KING TIDE AND 2100 PROJECTION

1. Sea level rise of 0,5 meter / 1,6 ft

3. Sea level rise of 3 meter / 9 ft

WATER LEVELS

Data based on the National Hurricane Center

EFFECTIVENESS OF A SEAWALL

WHAT SPATIAL AND ECOLOGICAL DESIGN PRINCIPLES CAN PROVIDE CONDITIONS TO RESTORE AND IMPROVE THE MANGROVE LANDSCAPE IN ORDER TO LET IT FUNCTION AS COASTAL DEFENCE AND LET USERS RECONNECT WITH THE NATURAL LANDSCAPE.

Restoration methods Conditions for reforestation

Spatial application Design experience

RESEARCH THROUGH DESIGN

RESEARCH ON DESIGN

PRINCIPLES AND STRATEGY

DESIGN PRINCIPLES

RECOVERY CONDITIONS

Support primary production

Enabling sedimentation.

RECOVERY CONDITIONS

Enabling sedimentation.

LAYERS AND BARRIERS

Flood reduction

Relocate barrier

DESIGN PRINCIPLES

RECOVERY CONDITIONS

LAYERS AND BARRIERS

** Flood reduction

VISUALIZATION OF CHANGE

<u>``</u>, Diachronic change Sychronic change

Relocate barrier

LAYERED STRATEGY

Desired: Three layers are continuous

LAYERED STRATEGY

Desired: Three layers are continuous

Feasible: Three layers are fragmented

LAYERED STRATEGY

SHIFTING TYPOLOGIES

Desired: Three layers are continuous

Feasible: Three layers are fragmented

Actions

LAYERED STRATEGY

SHIFTING TYPOLOGIES

Actions

Desired: Three layers are continuous

Feasible: Three layers are fragmented

Interwoven layers

SPATIAL APPLICATION

Dynamic borders

meadow

offshore expansion

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

WHAT ARE THE SPATIAL POSSIBILITIES TO CREATE THE NEEDED CONDITIONS AND RECONNECTION IN BISCAYNE BAY AND HOW CAN THEY BE MADE RESISTANT TO THREATS SUCH AS SEA LEVEL RISE AND TROPICAL STORMS?

REGIONAL PLAN

REGIONAL PLAN

RESTORATION LINE

Residential

Replace part of mangroves for wetland

Natural

Inland and offshore expansion

NATURAL ZONE

CURRENT SITUATION

CURRENT SITUATION OF FOCUS AREA ON LOCAL SCALE Map based on USGS The National Map (2019) and Google Earth

BREAKING BARRIERS

FILLING UP CANAL

RESTORED SHEET FLOW

DESIGN

LANDSCAPE SYSTEM

N° I

THE LAYERS

ROUTE THROUGH THE TRANSITION ZONE

ROUTE THROUGH THE TRANSITION ZONE

ROUTE THROUGH THE TRANSITION ZONE

CURRENT SITUATION

CURRENT SITUATION OF FOCUS AREA ON LOCAL SCALE Map based on USGS The National Map (2019) and Google Earth

MANGROVE ISLANDS

SEDIMENTATION DEVELOPMENT

MANGROVE DEVELOPMENT

DESIGN

DESIGN OF FOCUS AREA ON LOCAL SCALE

Routing	A C
Kayak zone	T O
Fairways	R S

Picnic place

View point

Observation tower

Kayak zone

Fishing spot

Boat dock

Sedimentation zone

Base structure

Basalt rock base

Silica sand and mud

Peat as top layer

BUILDING OF THE ISLAND

Detail 1:50

Rock structure Middle sea level Sedimentation zone Hard bottom

Elongated slope: 500 cm (196 inch)

DEVELOPMENT OF THE BARRIER ISLANDS

Red mangrove dominated shore line

DEVELOPMENT OF THE BARRIER ISLANDS

DEVELOPMENT OF THE BARRIER ISLANDS

shores

mangrove and lower shores by Red mangrove

MANGROVE ISLAND ROUTE

MANGROVE ISLAND ROUTE

BISCAYNE BAY: TURN THE TIDE | 109

MANGROVE ISLAND ROUTE

Planning	I
REGIONAL	Design
PLAN	ACTIONS

BISCAYNE BAY: TURN THE TIDE | 111

Planning	I
REGIONAL	Design
PLAN	ACTIONS

Planning	F	
REGI	ONAL	Design
ΡL	AN	ACTIONS

Planning	I
REGIONAL	Design
PLAN	ACTIONS

Planning I		I
REGIONAL	Design	Future
PLAN	ACTIONS	EFFECTS

CONTINUOUS LANDSCAPE PRIMARY COASTAL DEFENSE CLOSED BARRIER

CONCLUSIONS AND DISCUSSION

CAN WE COMPLETELY CHANGE THE DIRECTION OF SOMETHING?

TURN THE TIDE!

BISCAYNE BAY: TURN THE TIDE

AN INTEGRATED LANDSCAPE APPROACH FOR COASTAL RESTORATION IN BISCAYNE BAY THROUGH SPATIAL AND ECOLOGICAL INTERVENTIONS

THANK YOU FOR YOUR ATTENTION

DISTANCES

