
Delft Center for Systems and Control

Economic Engineering & Statis-
tical Physics
Linking Microeconomics and Macroeconomics using Sta-
tistical Physics

Oseï Fränkel

M
as

te
ro

fS
cie

nc
e

Th
es

is





Economic Engineering & Statistical
Physics

Linking Microeconomics and Macroeconomics using Statistical
Physics

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Oseï Fränkel

September 1, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Economic Engineering & Statistical Physics

by
Oseï Fränkel

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: September 1, 2022

Supervisor(s):
Dr.ir. M.B. Mendel

Reader(s):
Prof.dr. J.M. Thijssen



Abstract

Economic engineering models individual agents as inertia elements and can be viewed as a
microeconomic theory based on analogs with classical mechanics. In this thesis the economic
engineering concept of modeling individual agents is used to model economic systems con-
sisting of many agents, e.g. an entire country. This is done using classical statistical physics.
In statistical physics the microscopic movement of individual gas particles as described by
classical mechanics and the macroscopic properties of gases as described by thermodynamics
are linked. Using this insight, microeconomics and macroeconomics are linked within the
economic engineering framework.

The critical contribution of this thesis is finding the analog of Gibbs’ interpretation of entropy,
calling it the amount of diversification. This is done as follows. A thermodynamic system in
equilibrium is seen as the analog of a Pareto optimal economy or macroeconomic equilibrium.
The 2nd law of thermodynamics guarantees the existence of thermodynamic equilibrium and
it follows that the entropy is maximized in equilibrium. Clausius interpreted the entropy as
an “arrow of time” that pushes the system towards equilibrium. In this thesis Adam Smith’s
invisible hand is then viewed as an economic analog of Clausius’ entropy. Gibbs gives a
statistical interpretation to entropy. By calling the amount of diversification the analog of
the Gibbs entropy, it follows that a Pareto optimal economy is fully diversified. The amount
of diversification contains both the distribution of economic rent over agents and the portfolio
diversification of agents for different goods.

Based on the diversification analog, the thesis develops several further analogs. The analog
of the partition function is called the opportunity function and gives the opportunities for
extracting profits from an economic system by trading. From this the economic engineering
analog of the free energy follows. The temperature and chemical potential are given economic
engineering analogs as well, namely the level of welfare and the disposable income per capita
respectively. The thesis is finalized with applications of the theory developed.
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“One often meets his destiny on the road he takes to avoid it.”
— Master Oogway (Kung Fu Panda) & Shannon Sharpe (Undisputed)

Quote slightly adapted from the original quote by Jean de La Fontaine (1621-1695). I choose
the quote by fictional character Master Oogway & NFL Hall of Famer Shannon Sharpe because
they introduced me to it.
The quote is applicable to me and this thesis, because of my history with statistical physics.
After completing my BSc. in applied physics, the statistical physics course was one of the
main reasons for not wanting to do a masters in applied physics and choosing for systems
& control instead. It is only fitting then, that my thesis subject in economic engineering is
about statistical physics and relating it to economic engineering.





Chapter 1

Introduction

1-1 Economic engineering

Economic engineering [6] models individual agents as inertia elements, where each agent
is modeled as a separate inertia element. Economic engineering can thus be viewed as a
microeconomic theory. Current economic engineering theory models economic systems based
on first principles. Analogs between microeconomics and classical mechanics are used to
model economic systems in the same way an engineer would model mechanical systems.
Once the economic system is modeled, the well-known methods within engineering to predict
the behaviour of mechanical systems are applied to the economic system and interpreted
economically. Scenario analysis and control can then be performed on the economic system,
where both the inputs and disturbances, as well as the outputs of the system are economically
interpretable.

For simple economic systems consisting of only a few agents, this method of modeling is very
feasible. However, it becomes increasingly difficult to model economic systems consisting
of many agents using this approach. Since economic engineering is based on analogs with
Newtonian mechanics, Newton’s equation of motion needs to be solved for every agent within
the system to find the progression of their reservation price(s). For economic systems with
many agents this becomes prohibitively difficult.

In this thesis economic systems consisting of many agents and many distinct goods are con-
sidered. Instead of modeling a small number of agents, an entire economy is modeled. To do
this statistical physics is used.

1-2 Statistical Physics

Statistical physics provides a framework for relating the microscopic properties of individual
gas particles to the macroscopic properties of gases. Classical mechanics explains the micro-
scopic movement of gas particles, while thermodynamics explains the macroscopic properties
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2 Introduction

of gases. Initially these branches of physics were not connected and no method existed for
deriving thermodynamic relations from Newtonian mechanics. Statistical physics solved this
problem and became the bridge between physics on microscopic and physics on macroscopic
scale. Statistical physics thus explains thermodynamics as a natural result of statistics, clas-
sical mechanics, and quantum mechanics at the microscopic level.In this thesis, quantum
mechanics is ignored and only classical statistical physics is used.

In statistical physics thermodynamic state variables like entropy and temperature are given
a statistical or microscopic interpretation. By showing how these macroscopic variables are
given a microscopic interpretation, physics on the micro and macro scale are connected.

As economic engineering is based on classical mechanics, statistical physics is used in this the-
sis to connect microeconomics and macroeconomics within the economic engineering frame-
work. This thesis thus develops a macroeconomic theory of economic engineering. Throughout
this thesis, analogs are found for the quantities derived in statistical physics and are given
economic interpretation. Following these analogies results are interpreted economically as
well and conclusions are made.

1-3 Microeconomics & Macroeconomics

Microeconomics is a branch of economics that studies the behavior of individuals and firms
in making decisions regarding the allocation of scarce resources and the interactions among
these individuals and firms [7]. Microeconomics focuses on the study of individual markets,
sectors, or industries. Macroeconomics on the other hand is a branch of economics dealing
with performance, structure, behavior, and decision-making of an economy as a whole [8].
While microeconomics focuses on firms and individuals, macroeconomics focuses on the sum
total of economic activity, dealing with the issues of growth, inflation, and unemployment
and with national policies relating to these issues.

Currently, microeconomics and macroeconomics are two separate branches of economics and
no clear connection exists between the two. This disconnect is comparable to the disconnect
that existed in physics between classical mechanics and thermodynamics before the invention
of statistical physics. Using statistical physics, these branches of economics are connected
within the economic engineering framework in this thesis.

Oseï Fränkel MSc. Thesis



1-4 Thesis Outline 3

1-4 Thesis Outline

This thesis is structured as follows.

Chapter 2 provides the assumptions, definitions and analogs used throughout this thesis.
Two approaches can be taken when reading this thesis. The reader can either read this
chapter to become familiar with the terminology, assumptions and analogies used in this
thesis or choose to skip this chapter initially and look these up when needed.

Chapter 3 contains literature on economics and economic engineering, as well as thermoeco-
nomics.
In Section 3-1 literature on economic engineering is given. It is also shown how this relates to
microeconomic literature. Readers familiar with economic engineering can skip this section.
In Section 3-2 basic literature on macroeconomics is provided. Readers familiar with the
basics of macroeconomics can skip this section.
In Section 3-3 previous attempts to link thermodynamics and economics are shown. The
content of this section is not needed to understand the rest of the thesis.

Chapter 4 contains literature on the kinetic theory of gases and statistical physics. Readers
familiar with these subjects can skip this chapter.

Chapter 5 is the main contribution of this thesis and uses the framework of statistical physics
to derive a macroeconomic theory of economic engineering.

Section 6-1 connects the results obtained in Chapter 5 with thermodynamics and macroe-
conomics. The link between microeconomics and macroeconomics is thus completed in this
chapter.
Furthermore, applications of the theory developed in this thesis are given in Sections 6-2 and
6-3.

Finally, in Chapter 7 a summary of the thesis is given, the contributions of this thesis are
highlighted in the conclusions section and recommendations for future research are given.

MSc. Thesis Oseï Fränkel
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Chapter 2

Assumptions, Definitions & Analogies

The definitions used and main assumptions made in this thesis are given in this chapter, as
well as the analogies found between economics and (statistical) physics and the economic
engineering interpretation of mathematical functions and operations.

The goal of this chapter is to provide the reader with the necessary background to easily
understand the contents of this thesis.

Two approaches can be taken when reading this thesis. The reader can either read this
chapter to become familiar with the terminology, assumptions and analogies used in
this thesis or choose to skip this chapter initially and look these up when needed.

The analogies between economics and (statistical) physics found in this thesis, as well as the
analogies found in earlier economic engineering research [6] are given in Section 2-1.

Section 2-2 gives the definitions used in this thesis. These are either used in current economic
engineering theory [6], current economics literature, current physics literature or newly defined
based on analogs from economics and physics.

Section 2-3 contains the main assumptions made to link microeconomics and macroeconomics
using analogies with statistical physics.

Finally, the (economic engineering) interpretation of mathematical functions and operations
is given in Section 2-4.

MSc. Thesis Oseï Fränkel



6 Assumptions, Definitions & Analogies

2-1 Analogies Between Economics & Physics

In this section the analogies used in this thesis from current economic engineering literature
as well the ones found in this thesis between economics and statistical physics are given.

Using these analogies, this thesis should be understandable to readers who are familiar with
either (statistical) physics or economic engineering literature.

Analogies for Section 3-1.

Economics Physics Symbol
Inventory level Position q

Quantity demanded (supplied) Velocity q̇

Period Costs Action S
Running Costs (Disutility) Lagrangian L

Variable Costs Kinetic Co-Energy T ∗

Economic Surplus Kinetic Energy T

Potential Surplus Potential Energy Φ
Allocated Economic Rent Hamiltonian H

Reservation price Momentum p

Price elasticity of demand (supply) Inverse inertia E
Economic desire (want) Force F

Table 2-1: Analogs found between economics and statistical physics relevant for Section 3-1,
namely for quantities demanded, inventory, different types of costs and surplus, price, desire and
the price elasticity.

Analogies for Subsections 5-2-1 and 5-2-2.

Economics Physics Symbol
Number of distinct goods Number of dimensions D

Number of agents Number of particles N

Reservation price Momentum p

Quantity demanded Velocity q̇

Stock (Inventory) level Position q

Price elasticity of demand Inverse inertia E
Price-Quantity Space Phase Space Γ

Table 2-2: Analogs found between economics and statistical physics relevant for Subsections
5-2-1 and 5-2-2, namely for agents, goods, prices, quantities demanded, inventory, price elasticity
and the price-quantity space.

Oseï Fränkel MSc. Thesis



2-1 Analogies Between Economics & Physics 7

Analogies for Subsection 5-2-3.

Economics Physics Symbol
Economic Surplus Kinetic Energy T

Potential Surplus Potential Energy Φ
Allocated Economic Rent Hamiltonian H

Running Costs (Disutility) Lagrangian L

GDP Internal Energy U

Economic Rent Dissipation Energy Dissipation D

Indifference to goods Isotropic Gas
Level of Welfare Temperature Θ

Table 2-3: Analogs found between economics and statistical physics relevant for Subsection 5-
2-3, namely for surplus, economic rent, utility, GDP and the level of welfare.

Analogies for Section 5-3.

Economics Physics Symbol
Level of Welfare Temperature Θ
Level of Poverty Inverse Temperature β

Disposable Income per Capita Chemical Potential υ,µ
Macroeconomic Equilibrium Thermodynamic Equilibrium
Amount of Diversification Entropy S

1st fundamental theorem of welfare economics Existence of thermodynamic equilibrium
2nd fundamental theorem of welfare economics 2nd law of thermodynamics
International Trade Exchange of Heat
Migration Exchange of Particles

Table 2-4: Analogs found between economics and statistical physics relevant for Section 5-3,
namely for the level of welfare, poverty, disposable income, equilibrium, information, the funda-
mental theorems of welfare, international trade and migration.
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8 Assumptions, Definitions & Analogies

Analogies for Subsection 5-4-3.

Economics Physics Symbol
Price-Quantity Space Probability Density Phase Space Probability Density ϱ

Macroeconomic Equilibrium Thermodynamic Equilibrium
1 Cent Planck’s Constant ¢ , ℏ
Price-Quantity Space Value Phase Space Volume ω̃

Possible Distribution of Wealth Microstate
Options Available for Diversification Multiplicity Ω
Amount of Diversification Entropy S

Autonomous Economy Isolated System

Table 2-5: Analogs found between economics and statistical physics relevant for Subsection
5-4-3, namely for the probability density function, equilibrium, the quantization of money, value
and the amount of diversification.

Analogies for Subsections 5-4-4 and 5-4-5.

Economics Physics Symbol
Constant Economic Rent Ensemble Microcanonical Ensemble
Constant Level of Welfare Ensemble Canonical Ensemble
Equal Disposable Income Ensemble Grand Canonical Ensemble
Opportunity function Partition Function Z

Economic Heat Capacity Heat Capacity C
Free Economic Rent Free Energy F

Table 2-6: Analogs found between economics and statistical physics relevant for Subsections
5-4-4 and 5-4-5, namely for different ensembles, the opportunity function, the economic heat
capacity and the free economic rent.

Oseï Fränkel MSc. Thesis
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2-2 Definitions Used for Linking Economics & Statistical Physics

This section contains the definitions used in this thesis. These are either used in current
economic engineering theory [6], current economics literature, current physics literature or
newly defined based on analogs from economics and physics.

The terms defined in this section are used throughout this thesis. The reader of this thesis is
advised to become familiar with these terms as some of these might be unknown to readers
unfamiliar with classical mechanics, statistical physics or economics literature.

The definitions of the terminology used is given next in alphabetical order. Words written in
cursive are defined as well.

List of Definitions

1. Action: Time integral of the Lagrangian. The time evolution of a physical system is
along the path of stationary action [9].
The action (3-1) is the economic engineering analog of the total period costs, which a
rational agent seeks to minimize.

2. Autonomous Economy: Economy where no financial aid is given or received.

3. Bit: A logical state with one of two possible values, used in information theory. A unit
of information [10].

4. Closed Economy: Economic system where agents are allowed to trade with other
economies but migration is not allowed.

5. Complete Information: Every agent in a market knows exactly the reservation price
and quantity demanded (supplied) of every other agent [11].

6. Complete Market: A market of perfect competition where each agent has complete
information of the entire market [11].

7. Conjugate Variables: Pair of variables, one intensive and the other extensive, that
when multiplied give a unit of energy (economic rent).

8. Chemical Potential: The energy that can be absorbed or released due to a change of
the particle number of the given species. Particles move from higher chemical potential
to lower chemical potential, which reduces the free energy.

9. Degree of Freedom (economics): An independent method of acquiring a surplus
available to an agent. Number of degrees of freedom is equal to number of distinct
goods for agents who can only acquire a surplus through trade.

10. Degree of Freedom (physics): An independent motion available to a particle. Num-
ber of degrees of freedom is equal to number of dimensions for monatomic gas particles.
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10 Assumptions, Definitions & Analogies

11. Diversification, Amount of (economic): Amount of possible allocations of the
total allocated economic rent within an economic system. Depends on value of the total
allocated economic rent, the number of agents and the number of distinct goods within
the economic system.

12. Diversification, Product: Increasing the number of distinct goods within an economy
that can be traded and used to acquire a surplus.

13. Discounting (time): Process of determining the present value of a payment or a
stream of payments that is to be received in the future [12].
Time discounting was the original application of the Laplace transform in economic
engineering [6], [13]. In this thesis discounting over the economic rent and population
size is introduced.

14. Disposable Income: The part of an agents’ income that is available for spending after
his fixed expenses have been deducted [14].
A rational agent operating in an open economy will migrate to the economic system
that allows him to maximize his disposable income.
The disposable income per capita in an economic system is the microeconomic inter-
pretation of the analog of the chemical potential in a thermodynamic system.

15. Disutility: Inverse of the utility. Economic engineering analog of the Lagrangian (3-2).

16. Economic Driving Force: Want (desire) on a macroeconomic scale. Something that
changes the behaviour of rational agents in such a way that macroeconomic equilibrium
is reached.

17. Economic Rent: Those payments to a factor of production that are in excess of the
minimum payment necessary to have that factor supplied [15].
The total economic rent is the sum of the allocated economic rent and the dissipated
economic rent (3-21) and is the economic engineering analog of the total energy. The
total energy is the sum of the dissipated energy and the Hamiltonian of the system.

18. Economic Rent (Allocated): Part of the total economic rent that either makes up
the surplus of an agent or can do so in the future.
The allocated economic rent is the economic engineering analog of the Hamiltonian.

19. Economic Rent (Dissipated): Part of the total economic rent that can no longer be
used to generate a surplus.
The dissipated economic rent is the economic engineering analog of the dissipated energy.

20. Ensemble: A collection of systems that are in different microstates but are macroscop-
ically (macroeconomically) identical.

21. Ensemble, Stationary: Ensemble that does not change over time and is thus in
macroscopic (macroeconomic) equilibrium.

22. Equilibrium, Economic: Aggregate demand equals aggregate supply [15]. There is no
economic growth, no net migration and the economy is autonomous. Further economic
diversification is not possible.
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23. Equilibrium, Thermodynamic: There is no net flow of matter or energy (from
one system to another). Entropy is maximized [16], and the (relevant) thermodynamic
potential is minimized.

24. Extensive Property: Property that scales with the amount of particles (agents) within
the thermodynamic (economic) system.

25. Free Economic Rent: Portion of the GDP that can be extracted as profits at a
constant level of welfare.
The free economic rent is the Legendre transform of the GDP.

26. Free Energy: Portion of the internal energy available to perform thermodynamic work
at constant temperature [17].
The free energy is a thermodynamic potential and is the Legendre transform of the
internal energy.

27. Growth, Economic: Increase or improvement in the inflation-adjusted market value
of the goods and services produced by an economy over a certain period of time. Increase
in the (real) GDP.

28. Heat Capacity (economics): The amount of change of the GDP of an economy
required to produce an (arbitrarily chosen) unit change in its level of welfare.

29. Heat Capacity (physics): The amount of heat to be supplied to an object to produce
a unit change in its temperature.

30. Incentive for Diversification: Total desire felt by the agents of an economic system
to be more diversified.
The incentive for diversification in an economic system is the macroeconomic interpre-
tation of the analog of the temperature in a thermodynamic system.

31. Incentive for Migration: Total desire felt by the agents of an open economic system
to migrate.
The incentive for migration in an open economic system is the macroeconomic interpre-
tation of the analog of the chemical potential in an open thermodynamic system.

32. Intensive Property: Property that does not scale with the amount of particles
(agents) within the thermodynamic (economic) system.

33. Inventory level: The amount of a certain good an agent has in storage.

34. Isolated Economy: Economic system where trading with other economies and migra-
tion are not allowed.

35. Lagrangian: A function that describes the state of a dynamic (mechanical) system
in terms of position coordinates and their time derivatives and that is equal to the
difference between the kinetic co-energy and potential energy (3-2) [9].
Taking the time integral of the Lagrangian produces the action, which needs to be
stationary throughout the time evolution of the system (3-1).
The Lagrangian is the analog of the running costs in economic engineering.

36. Level of Poverty: Inverse of the level of welfare.
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37. Level of Welfare: Expectation value of the revenue of a random agent of an economic
system. Describes the prosperity of an economic system.
The level of welfare in an economic system is the microeconomic interpretation of the
analog of the temperature in a thermodynamic system.

38. Marginal Costs: The change in the total cost that arises when the quantity produced
is incremented; the cost of producing additional quantity.
In economic literature [15] the marginal cost is equal to the reservation price of the
producer.

39. Microstate (economics): A possible configuration of all reservation prices and in-
ventory levels of agents within an economic system. A microstate is a single point in
the price-quantity space and is of dimension 2ND.

40. Microstate (physics): A possible configuration of all momenta and positions of par-
ticles in a thermodynamic system. A microstate is a single point in the phase space [17]
and is of dimension 6N in 3-Dimensional space.

41. Multiplicity: Amount of accessible microstates for a given macrostate of a thermody-
namic equilibrium. Gives the amount of unique ways the internal energy of a system can
be distributed among the particles, where each particle has a position and a momentum
coordinate in each dimension.

42. Open Economy: Economic system where agents are allowed to trade with other
economies and are allowed to migrate to other economic systems.

43. Opportunity Function: Dimensionless function describing the statistical properties
of a system in macroeconomic equilibrium. Gives the (weighted) expected value of the
options available for diversification. The economic engineering interpretation of the
Laplace transform was used to find its economic meaning, namely the opportunities for
extracting profits from an economic system by trading.
The opportunity function is the economic engineering analog of the partition function.

44. Options Available for Diversification: Amount of accessible economic microstates
for a given macrostate of a macroeconomic equilibrium. Gives the amount of unique
ways the GDP of an economic system can be distributed among the agents, where each
agent has an inventory and a quantity demanded (supplied) for each distinct good.

45. Pareto Optimality: A situation where no individual can be made better off without
making at least one individual worse off [11].

46. Partition Function: Dimensionless function describing the statistical properties of a
system in thermodynamic equilibrium.
The partition function is the economic engineering analog of the opportunity function.

47. Perfect Competition: A market with a large number of agents who are all rational,
where there are no transaction costs [15] and where the supply for all goods exactly
matches the demand.
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48. Period Costs: Total costs a producer makes in a given period of time. A rational
agent will seek to minimize his period costs.
The action as known in analytical mechanics is the economic engineering analog of the
period costs.

49. Phase Space: 6N -Dimensional space of which the (momentum and position) coor-
dinate dimensions represent the variables required to specify the phase or state of a
physical (thermodynamic) system [17].

50. Price Elasticity (of demand): A measurement of the change in the quantity de-
manded of a good by a consumer in relation to a change in its price [15].
The inverse of the price elasticity of demand is the 2nd derivative of the running disutility
w.r.t. the quantity demanded (3-7).

51. Price Elasticity (of supply): A measurement of the change in the quantity supplied
of a good by a producer in relation to a change in its price [15].
The inverse of the price elasticity of supply is the 2nd derivative of the running costs
w.r.t. the quantity supplied (3-7).

52. Price-Quantity Space: 2ND-Dimensional space of which the (reservation price and
inventory level) coordinate dimensions represent the variables required to specify the
state of an economic system.

53. Probability Density Function: A probability distribution function giving the distri-
bution of accessible microstates in the phase space (price-quantity space).
The probability density function depends on the constraints on the system.

54. Quantity demanded (supplied): The total amount of a goods demanded (supplied)
by a consumer (producer) in a given period of time.
The quantity demanded is the opposite of the quantity supplied in economic engineering
and is analogous to the velocity of a particle.

55. Rational Agent: A rational agent is a person that always aims to perform optimal
actions based on given premises and information, where the goal in a given period of
time is to maximize his total period utility (consumer) or minimize his total period costs
(producer). A rational agent is a cost minimizing agent.
The optimal decisions made by the rational agent and the optimal path taken by a
particle in analytical mechanics given by the principle of stationary action are analogs
in economic engineering.
The Lagrangian of a particle is the analog of the running costs or disutility of the rational
agent, which is given in (3-2).

56. Reservation Price: The minimum amount that a seller will accept or the highest
price a buyer is willing to pay for a good or service.
The reservation price is the change in the running costs w.r.t. the quantity supplied
(3-4), also known as the marginal costs in economic literature [15].

57. Reversible Process (economics): A change in an economic system from an initial
to a final state carried out in infinitesimal transactions which, when reversed returns
both the economic system and the external economies to their respective initial states.
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58. Reversible Process (physics): A change in a thermodynamic system from an initial
to a final state carried out in infinitesimal steps which, when reversed returns both the
system and the environment to their respective initial states [16].

59. Running Costs: Difference between the variable costs and the benefits of ownership
of the producer.
The Lagrangian of a particle is the analog of the running costs or disutility of the rational
agent, which is given in (3-2).

60. Social Welfare: The total well-being of society. In an economy with rational agents
the social welfare is maximized. This is stated by the 2nd fundamental theorem of
welfare economics [11], which is the analog of the 2nd law of thermodynamics.

61. Surplus, Consumer: The monetary gain obtained by consumers because they are
able to purchase a product for a price that is less than the highest price that they would
be willing to pay.

62. Surplus, Producer: The amount that producers benefit by selling at a market price
that is higher than the least that they would be willing to sell for; this is roughly equal
to profit.

63. System (economics): An idealized economic “body” which is further restricted in
that all endogenous economic conditions can be discriminated [18]. The system can
thus be isolated from external economies.

64. System (physics): An idealized body which is further restricted in that it can be
isolated from everything else [16].

65. Thermodynamic Potential (Energy): A scalar quantity used to represent the ther-
modynamic state of a system. Constraints on the system determine the most useful
thermodynamic potential. Expressions of all thermodynamic potentials (e.g. free en-
ergy) can be derived using a Legendre transform from an expression of the internal
energy U .

66. Utility: The usefulness or enjoyment a consumer can get from a service or good [15].
The running utility is to the consumer what the running costs are to the producer.

67. Want (Desire): Desire felt by an agent to change his quantity demanded (supplied).
A force is the economic engineering analog of a want (desire) as given in (3-8).
The change in the running costs with respect to the inventory level.
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2-3 Assumptions Made for Linking Economics & Statistical Physics

The assumptions made in this thesis to link microeconomics and macroeconomics using the
framework of statistical physics are given here.

Unless specifically stated otherwise, the assumptions given next are used throughout this
thesis.

List of Assumptions

1. All agents are rational [15], [14].
All choices an agent makes are to minimize his running costs or maximize his utility.
This is analogous to a particle in a thermodynamic system whose movement is along
the path of stationary action as known in analytical mechanics [9].

2. Agents are identical.
All agents within the economic system have the same price elasticity of demand. As a
result agents are indistinguishable. Swapping the inventory levels and reservation prices
of two agents does not change the economic microstate.

3. Agents can only trade.
Trading is the only means of acquiring a surplus available to agents. This is analogous
to point particles in a thermodynamic system, where they can only have translational
kinetic energy. No rotations of a particle around its axis are considered.

4. Constant Price Elasticity of Demand.
The price elasticity of demand of an agent is independent of his quantity demanded.
This is consistent with current economic engineering literature where the inertia is the
analog of the price elasticity.
In classical mechanics the inertia of a body is constant and independent of its veloc-
ity. In the theory of relativity the inertia is a function of the velocity. The velocity
dependency is however only relevant for relativistic velocities, so for magnitudes of the
velocity approaching the speed of light.
In economics literature the price elasticity is not necessarily constant; it can be a func-
tion of the quantity demanded [15].
It is thus assumed that the quantities demanded are sufficiently low, so that all “rela-
tivistic” effects are negligible. The price elasticity is constant.
The assumption of sufficiently low particle velocities is also made in statistical physics
literature.

5. No “Economic Freezing”.
The quantity demanded of agents is sufficiently high, so no “economic freezing” occurs.
The level of welfare within the economy is high enough to ensure economic activity at
all times.
This is analogous to the temperature of a gas being sufficiently high so quantum mechan-
ical effects are negligible. This assumption is also made in statistical physics literature.

6. Economy in a Market of Perfect Competition.
See the definition of a market with perfect competition: a large number of rational
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agents are considered where no transaction costs are taken for trading. There is thus
no economic rent dissipation when agents trade or interact. Furthermore, the supply
and demand for all goods are perfectly matched, meaning that agents have no desire to
hold an inventory.
This is analogous to an ideal gas. Particles interact or collide elastically, meaning that
no kinetic energy is dissipated. The inter-molecular forces between particles are also
neglected.

7. Money is Quantized.
Transactions are always rounded to the nearest smallest quanta of money. For trans-
actions involving physical goods the smallest quanta is usually one cent (1¢). This
quantization is used in this thesis.
In physics literature the reduced Planck’s ℏ constant is chosen as the smallest quanta
of action.

Oseï Fränkel MSc. Thesis



2-4 Interpretation of Mathematical Operations 17

2-4 Interpretation of Mathematical Operations

In this section the (economic engineering) interpretation of mathematical functions and op-
erators used in this thesis is given.
This is done to make mathematical expressions more insightful and to fully understand the
meaning of a mathematical operation in economic engineering.

List of Mathematical Operations and their Interpretations

1. Laplace Transform
In physics and engineering the Laplace transform is often presented as a tool to solve
differential equations. In economic engineering literature a more applied interpretation
exists [6], [13], namely to find the present value of future payments. Future payments
are discounted over time to give the present value of the payment. The present value is
a function of the (complex) discount rate.
The Laplace transform is used in this thesis not to discount future payments over
time, but to discount options over values of the economic rent. The Laplace transform
returns the (weighted) expected value of the options if the discount factor is seen as an
exponential probability distribution function.

2. Legendre Transform
Just like the Laplace transform, the Legendre transform is often introduced in physics
and engineering classes as a mathematical tool, where the power and elegance of the
Legendre transform is omitted. The paper by Zia, et al. [19] does a good job to provide
the reader with a better understanding of the Legendre transform.
The interpretation given to the Legendre transform in [19] is used in this thesis, where
the “tool” is used to as an alternative way to provide information, for example how
much profits can be made from trading with an economic system.

3. Logarithm
In physics literature the logarithm is rarely given an actual interpretation. Instead, it
is viewed as a mathematical function, the inverse of the exponent. In economic engi-
neering the logarithm is given an actual (economic) interpretation, using information
theory.
In information theory the base-2 log gives the amount of choices that need to be made to
extract information from a sequence, where in each choice 2 options of equal probability
are presented. This information is given in the unit of bits.
In this thesis the logarithm is taken over the base-e log or natural logarithm. This thus
gives the amount of choices that need to be made to extract information from a “se-
quence”, where in each choice e ≈ 2.71828... options of equal probability are presented.
The logarithm function is thus interpreted as the function providing the amount of
choices available or the amount of choices that need to be made.

4. Z-Transform
The Z-transform is to discrete time signals what the Laplace transform is to continuous
time signals. The interpretation given to the Laplace transform also holds for the Z-
transform.
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In this thesis the Z-transform is used to discount options over the population size of
an economy, instead of discounting future payments over time as is usually done in
economic engineering.
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Chapter 3

Economic and Economic-Engineering
Literature

This chapter provides an overview of current economic literature, as well as literature of the
fields of economic engineering and thermoeconomics.
The economic literature presented will be about microeconomics and macroeconomics.

Economic engineering is a new field of study in which economic systems are modelled using
first principles. Current literature of the economic engineering theory of supply and demand,
based on microeconomics laws, will be given.
To fully highlight the analogs between the microeconomic laws of supply and demand and
the economic engineering theory of supply and demand, literature on these two subjects will
be presented simultaneously.

The economic engineering theory of supply and demand will be at the basis of this thesis
research, which is to link microeconomics and macroeconomics within economic engineering.

Finally, literature on attempts to connect economics and thermodynamics will be discussed.
This field of study was coined thermoeconomics. The inconsistencies in the approaches taken
to match economics and thermodynamics will be highlighted here. A past attempt to connect
thermodynamics and economics within the field of economic engineering will be discussed here
as well.
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3-1 Microeconomics & Economic Engineering

Microeconomics is the most well-known branch of economics and focuses on the behaviour
of individuals. More elaborately, microeconomics is the study of what is likely to happen
when individuals make choices in response to changes in incentives, prices, resources, and/or
methods of production. Individual actors are often grouped into microeconomic subgroups,
such as buyers and sellers. These groups create the supply and demand for resources from
which the well-known laws of supply and demand are derived [7].

Economic engineering is a new field of study in which economic systems are modelled using
first principles. The economic systems are modelled based on economic laws in the same way
that physical systems are modelled using the laws of physics. Analogs are found between
economic systems and physical systems and based on these analogs, the economic systems
are modelled identically to how physical systems would be modelled in engineering. These
models can then be presented in a domain-neutral environment, e.g. using Bond Graphs and
can be controlled to exhibit desired behaviour [6], [13].
The economic engineering theory presented in this chapter is the work of Dr. Ir. M. Mendel
and his economic engineering group at the Delft University of Technology (TU Delft) [6]. The
group is a sub-part of the Delft Center for Systems and Control (DCSC) in the department
of Mechanical, Maritime and Materials Engineering (3mE).

The economic engineering theory of supply and demand is based on the microeconomic theory
of supply and demand. Analogs found between the laws of supply and demand and Newto-
nian physics allow for the modelling of microeconomic systems using the tools well-known in
mechanical engineering.

3-1-1 Stock Level, Quantity Demanded & Quantity Supplied

The law of supply and demand explains the interaction between the sellers of a resource and
the buyers for that resource. Although these resources are not necessarily physical goods, it
is assumed in this thesis that physical goods are being traded. A typical interaction consists
of a supplier selling (a part of) his inventory of goods to a demander.

In economic engineering, the stock level or inventory level is given by the symbol q, where
[q] = #. The demander can also have an inventory, but is looking to increase his inventory
level while the supplier is looking to decrease his inventory.

The quantity demanded (supplied) is given by q̇, where [q̇] = #
day , #

week , #
year , etc. In economic

literature the term quantity is usually reserved for the quantity demanded (supplied), meaning
that the quantity is measured in units of the good over a given time interval [20].
Because economists use the term quantity and are often looking at predefined periods of time,
many graphs in economic literature will plot the quantity in # instead of #

year and give this
quantity the symbol Q. The economic engineering notation is used in this thesis. The symbol
q thus indicates the stock or inventory levels. The quantity demanded (supplied) as often
given in economic literature with the symbol Q will be the time derivative of q and thus
indicated by q̇.

In economic engineering physical systems are given economic interpretation. The interaction
between a supplier and a demander is replaced in economic engineering by two massive bodies
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interacting. Just as in economics, both the supplier and demander can have an inventory level.
Economic engineering states that the inventory level is the analog of position. The symbol
q is also common in analytical mechanics for a position variable.

Velocity is the time derivative of position and is thus also the analog of the quantity
demanded q̇. When considering translational motion in Newtonian mechanics, the most
common unit of q is: [q] = m. From this it follows that [q̇] = m

s .

A mass with a positive (negative) velocity corresponds to a supplier (demander), or agent
in general. Just like velocities in Newtonian physics, quantities demanded are relative. A
supplier might become a demander when a trades with an even bigger supplier [6].

3-1-2 (Dis)utility and Costs

The goal of the producer (otherwise known as the supplier) is to minimize his costs over a
given time period. The consumer (also known as the demander) on the other hand wishes to
maximize his utility over a given period of time [15].
These objectives are analogous to the stationary action principle approach taken in analytical
mechanics [6],[9].

Consider a system considered in analytical mechanics consisting of a particle with a certain
position q1 at time t1 and a position q2 at time t2. The path γ taken by the particle between
times t1 and t2 from q1 to q2 is the one for which the action S(γ) is stationary:

δS = δ

∫
γ

L (q, q̇, t) dt = δ

∫ t2

t1
L (q, q̇, t) dt = 0, (3-1)

where L is the Lagrangian of the mechanical system:

L = T ∗ − Φ, (3-2)

with T ∗ being the kinetic co-energy of the system and Φ the potential energy. For energy
conserving systems, it holds that L (q, q̇, t) = L (q, q̇), i.e. ∂L

∂t = 0.

Economically the Lagrangian L is interpreted as the disutility from the point of view of
the consumer and as the running costs of the producer. The natural units of the running
costs are $

day , $
week , $

year , etc. depending on the period of time considered.

The action S is the analog of the total period costs and thus has units $. An agent going
from an inventory level q1 to q2 at times t1 and t2 respectively will do so along the “path”
that minimizes the period costs as shown in (3-1). Such an agent is called rational.

The running costs (disutility) of the producer (consumer) depend on his inventory level q,
the quantity supplied q̇ and the amount of time t that has passed, i.e. L = L (q, q̇, t). In
an economic system where no goods are being consumed, value is not depreciated and no
external surplus is acquired (no free lunch) the running costs do not explicitly depend on
time: L = L (q, q̇).
The running costs L are calculated as shown in (3-2), where T ∗ are the variable costs and Φ
are the benefits of ownership, the economic engineering analogs of the kinetic co-energy
and the potential energy respectively.
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3-1-3 Price, Price Elasticity & Economic Desire

Price

Working out the variation in (3-1) leads to the Euler-Lagrange equation [9]:

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (3-3)

Noether’s theorem states that for a mechanical system that is invariant under translations in
space, the momentum is conserved [9]. If ∂L

∂q = 0 it follows from (3-3) that:

p := ∂L

∂q̇
, (3-4)

where p is the momentum of the particle associated with translational motion in the direction
of q. Momentum is thus defined to be the change if the Lagrangian w.r.t. the generalized
velocity.
The expression in (3-4) is given an economic interpretation as well. The change in the running
costs w.r.t. the quantity supplied is known in economic literature as the marginal cost of the
producer [15]. Economic literature defines the reservation price to be the marginal cost. The
reservation price is thus the economic engineering analog of momentum and is given in
units $

# .
Economists define the reservation price of the demander as the maximum willingness to pay
for a good, while the reservation price of the supplier is the lowest price he is willing to accept
in a trade for a good [15]. From this it is concluded that the reservation price is agent specific,
just how the momentum is specific to each particle or body in a mechanical system.
Noether’s theorem applied to the economic system then states that the reservation price
remains constant when considering economic systems that are invariant to stock level changes.
This means that the reservation prices remain constant when no benefit is obtained from
holding an inventory, a conclusion that is in correspondence with economic literature.

Price Elasticity

Taking the 2nd derivative of the Lagrangian w.r.t. the generalized velocity gives the inertia
of the particle, which is a measure of how much the particle opposes a change in its velocity:

I := ∂2L

∂q̇2 = ∂p

∂q̇
> 0, (3-5)

where I is the inertia of the particle and is always positive.
The inertia is given economic meaning as well. Economic literature states that the price elas-
ticity of supply (demand) is the percentage change in quantity supplied (demanded) divided
by the percentage change in price [21]. In other words, the elasticity of supply (demand) of
a good is determined by how much the supply (demand) of the good changes as the price
changes: (This is not used in Economic Engineering!)

e = dQ

dp

p

Q
, (3-6)
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where e is the price elasticity of supply (demand) as used in economic literature, p is the
price as defined in (3-4) and Q is the notation used in economic literature for the quantity
supplied (demanded) q̇. Comparing (3-6) and (3-5), it is concluded that the price elasticity
of supply (demand) is the inverse of the inertia, up to a factor p

q̇ . The definition of the price
elasticity E used in economic engineering is thus:

E :=
(

∂2L

∂q̇2

)−1

=
(

∂p

∂q̇

)−1
> 0, (3-7)

which is the inverse of the inertia in as given in (3-5). The law of diminishing marginal
returns (utility) states that indeed the price elasticity should be positive [15].

Economic Desire

Substituting the definition of momentum found in (3-4) into (3-3), we find that:

dp

dt
= ∂L

∂q
, (3-8)

meaning that the change in momentum of the particle w.r.t. time is equal to the change of
the Lagrangian w.r.t. translations. For systems of constant inertia the left-hand side of (3-8)
is the force F acting on the particle. For a free particle it holds that ∂L

∂q = 0, meaning that
F = 0 and the momentum is a constant, as discussed above.

Economically this means that whenever the running costs are independent of the inventory
level prices remain constant. This means that there is no economic desire or want felt by the
agent to change his quantity supplied (demanded). Whenever there is a benefit to ownership,
the reservation price of the agent will change as shown in (3-8), giving the desire to change
the quantity supplied (demanded). The economic desire F is thus the analog of the force
and given in units $

#·day , where any period of time can be used instead of “day”.

3-1-4 Supply Curves & Demand Curves

According to the law of demand the higher the price of a good is, the fewer people will demand
that good if all other factors remain equal. In other words, the higher the price, the lower the
quantity demanded. The inverse is true for the law of supply, where a higher price corresponds
with a higher quantity supplied. As a result, demand curves are typically downward sloping,
while supply curves typically slope upwards. Figure 3-1a shows a typical graph of a supply
and demand curve. The slopes of the curves shown in Figure 3-1a are constant, which is often
assumed in literature but not a requirement. The slope of the supply (demand) curve is the
inverse price elasticity of supply (demand).

In physics the relation between momentum p and velocity v is given by p = Iv, where I is
the inertia as defined in (3-5). An increase in momentum for a body of constant inertia thus
results in an increased velocity of that body. The inertia is thus the slope of a p − v diagram,
as shown in Figure 3-1b.

The demand curve has a “negative inertia” since a quantity demanded is interpreted as a
negative quantity supplied and thus a velocity in the opposite direction.
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Although the inertia of a body is considered constant and positive in Newtonian mechanics,
the relation between momentum and velocity in Einstein’s relativity theory becomes nonlinear
[22], corresponding with nonlinear slopes of demand and supply curves in economics.

3-1-5 Economic Surplus and Economic Rent

A surplus describes the amount of an asset or resource that exceeds the portion that’s actively
utilized. A surplus can refer to a host of different items, including income, profits, capital,
and goods. There are two types of economic surplus, namely consumer surplus and producer
surplus.
It is assumed that all individuals (or agents) within an economy are rational. Rational agents
will minimize their running costs (maximize their utility) as explained in subsection 3-1-2.
As such, all agents will seek to maximize their surplus. The surplus T and the variable costs
T ∗ are related via:

T = pq̇ − T ∗, (3-9)

where pq̇ is the revenue generated. The surplus and variable costs are defined as:

T :=
∫

q̇(p)dp, (3-10)

and
T ∗ :=

∫
p(q̇)dq̇, (3-11)

The surplus is the economic engineering analog of the kinetic energy. Readers familiar
with the harmonic oscillator know that the kinetic energy of the harmonic oscillator is given
as:

THO = 1
2I

p2, (3-12)

where q̇(p) = p
I was used in (3-10). For constant inertia the kinetic energy and kinetic

co-energy are equal, with the latter being:

T ∗
HO = 1

2I q̇2. (3-13)

In subsection 3-1-2 it was mentioned that ∂L
∂t = 0 for energy conserving systems. Taking the

total derivative of L w.r.t. time yields:

dL

dt
= ∂L

∂q
q̇ + ∂L

∂q̇
q̈. (3-14)

Replacing ∂L
∂q with d

dt

(
∂L
∂q̇

)
in accordance with the Euler-Lagrange equation (3-3) yields:

dL

dt
= d

dt

(
∂L

∂q̇

)
q̇ + ∂L

∂q̇
q̈ = d

dt

(
q̇

∂L

∂q̇

)
. (3-15)

It thus holds for energy conserving systems that:

d
dt

(
q̇

∂L

∂q̇
− L

)
= 0. (3-16)
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Since energy conservation means that Ė = 0, the total energy E is:

E := q̇
∂L

∂q̇
− L. (3-17)

Since the total energy E remains constant during the motion of the system, it is an integral
of motion.
The expression given in (3-17) is the Legendre transform of the Lagrangian L(q̇, q) as a
function of q̇ and produces the Hamiltonian of the system. For energy conserving systems it
thus holds that the total energy E is equal to the Hamiltonian H.

Combining (3-2), (3-4) and (3-17) yields the expression for the Hamiltonian of an energy
conserving system:

H = T (p, q) + Φ(q). (3-18)

The potential energy Φ = Φ(q) of the harmonic oscillator is:

ΦHO = 1
2Cq2, (3-19)

where C is the compliance. The Hamiltonian of the harmonic oscillator is:

HHO = 1
2I

p2 + 1
2Cq2. (3-20)

In economic engineering the harmonic oscillator is the analog of an agent that both trades and
has an inventory. The Hamiltonian is the economic engineering analog of the allocated
economic rent.
In the Hamiltonian description (given in (3-18)) the economic engineering analog of the po-
tential energy is the potential surplus, since goods in inventory can be traded at a later
time to increase the surplus. This is comparable to a mechanical system where the potential
energy can be converted into kinetic energy in the future.

For energy conserving systems, the total energy E is equal to the Hamiltonian. For dissipative
systems however, the total energy E and Hamiltonian H are related as:

E = H + D, (3-21)

where D is the dissipated energy and H as given in (3-18).

The total energy is the economic engineering analog of the total economic rent, while
the dissipated energy is the analog of the economic rent dissipation [6].

Hamilton’s Equations

The Euler-Lagrange equation (3-3) can now be formulated in terms of the Hamiltonian H
given in (3-18) [9]:

q̇ = ∂H

∂p
, (3-22)

ṗ = −∂H

∂q
, (3-23)
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where q̇ is the quantity demanded and ṗ is the change in the reservation price, which was
shown to be the economic desire F.

The Hamilton’s equations ((3-22) & (3-23)) are completely equivalent to the Euler Lagrange
equation. For systems with D degrees of freedom, the Euler Lagrange equations give D
second order differential equations w.r.t. time, while Hamilton’s equations yield 2D first
order differential equations.

The Hamiltonian formalism will prove to be convenient in this thesis, since the time evolution
of prices and inventories can easily be found separately.

Consumer & Producer Surplus

A consumer surplus occurs when the price for a product or service is lower than the highest
price a consumer would willingly pay. The area shaded pink in Figure 3-1a is the consumer
surplus [23].

A producer surplus on the other hand occurs when goods are sold at a higher price than the
lowest price the producer was willing to sell for. The area shaded blue in Figure 3-1a is the
producer surplus [23].

In physics, the kinetic energy is the area shaded in purple in Figure 3-1b. This corresponds
with the producer surplus.

(a) Graph of a supply and demand curve typically found
in economic literature. The quantities supplied and de-
manded shown on the horizontal axis are measured in units
of the good over a given time interval [24] [20].

(b) Graph of the relation between momentum and velocity
for a body of Inertia m in Newtonian physics. The area
shaded in purple is known as the kinetic energy and is the
economic engineering analog of the producer surplus [6].
The area shaded in pink is the kinetic co-energy and is
known in economic engineering as the variable costs.

Figure 3-1: Graphs of supply and demand curves in economics and the momentum-velocity
relation in physics and economic engineering.
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3-2 Macroeconomics

Microeconomics is the study of of the behaviour of the economy as a whole. It examines the
forces that affect firms, consumers, and workers in the aggregate. Macroeconomics studies
economy-wide phenomena such as inflation, price levels, rate of economic growth, national
income, gross domestic product (GDP), and changes in unemployment [8]. It contrasts with
microeconomics, which studies individual prices, quantities, and markets.

3-2-1 Macroeconomic Objectives & Policy

Samuelson [14] identifies three main objectives of macroeconomics:

• a high level and rapid growth of outputs,

• a high level of employment with low involuntary unemployment,

• stable prices.

The government of a nation has two major policies that can be used to pursue its macroeco-
nomic goals, namely fiscal policy and monetary policy [14]. Fiscal policy is primarily used to
effect long-term economic growth.

Fiscal policy consists of government expenditure and taxation.
Government expenditure can be in two forms, the first of which is in the form of government
purchases on goods and services, e.g. construction of roads, salaries for judges, etc. The
other form of government expenditure is transfer payments to increase the income of targeted
groups.
Taxation reduces the disposable income of individuals and effects private savings and invest-
ments.

Monetary policy is conducted by the central bank and determines short-run interest rates. It
therefor effects credit conditions, asset prices and exchange rates [14]. Monetary value has an
important effect on GDP.

3-2-2 Gross Domestic Product & Disposable Income

Gross Domestic Product

The Gross Domestic Product (GDP) is the most comprehensive measure of a nation’s total
output of goods and services. The GDP is the sum of consumption (C), gross investments
(I), government purchases of goods and services (G) and net imports (X) per year:

GDP = C + I + G + X, (3-24)

where [GDP] = $
year . GDP is used mainly to measure the overall output of an economy.

Economists measure GDP either by the flow op product approach or the income approach.
The GDP using the flow of product approach is calculated as the sum of the flow of final
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goods produced times the price, as shown in (3-24).
The income approach to calculate GDP takes the sum of all earnings (due to wages, interest,
rent and profit). These two approaches are identical [14].
In this thesis the income approach will be used to calculate GDP since it most naturally fits
with the approach taken in economic engineering.

Income can be generated in a variety of ways. The four major factors of production are
assumed to be the means through which agents earn an income. The factors of production
and their reward are [25]:

• land — rent

• labor — wage

• capital — interest

• entrepreneurship — profit

Disposable Income

Economists define the Disposable Income (DI) as the amount of income households have
available to spend. Rational agents will seek to maximize their disposable income, which is
calculated as [14]:

DI = GDP − T − D, (3-25)

where T are the taxes payed to the government and D is the depreciation of capital. The
National Income (NI) is defined as the difference between GDP and the depreciation.
In Chapter 5 it is argued that the disposable income is the economic engineering analog of
the free energy as known in statistical physics and thermodynamics.

3-2-3 Income Distribution

In subsection 3-2-1 it was mentioned that main objectives of a government are maintaining
a high level of economic growth and a high level of employment. A major benchmark in
determining the success of a government in reaching those goals is a fair distribution of
income [14].
Important theoretical and policy concerns include the balance between income inequality and
economic growth, and their often inverse relationship [26].

In current macroeconomic literature, the distribution of income is analyzed using the Lorenz
Curve, see Figure 3-2 [1]. The Lorenz Curve shows the proportion of overall income or wealth
assumed by the bottom x% of the people of a nation. In an economy with a perfectly equal
distribution of income the Lorenz Curve coincides with the “Line of equality”.

The income distribution is measured using the Gini coefficient. The Gini coefficient is found
by taking the ratio of the area between the line of perfect equality and the observed Lorenz
curve to the area between the line of perfect equality and the line of perfect inequality [27].
The line of perfect inequality is the line the Lorenz Curve would lie on if one individual
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Figure 3-2: Lorenz Curve used in macroeconomic literature to analyze the income distribution
within an economy [1].

possessed all the wealth in a nation.
In Figure 3-2 the Gini coefficient G is thus:

G = A

A + B
. (3-26)

A more formal calculation of the Gini coefficient can be made if given a mathematical descrip-
tion of the Lorenz Curve L(u), where u ∈ [0, 1] and L(u) is the proportion of the total income
of the economy that is received by the bottom 100u% of income receivers [27]. Formally the
Gini coefficient is:

G = 1 − 1
µ

∫ y∗

0
(1 − F (y))2 dy, (3-27)

where y is the income, F (y) denotes the proportion of the population that receives incomes
no greater than y, meaning that it is the cumulative probability distribution of income. µ is
the mean or average income and y∗ is the upper limit of income, which may be infinite.

In Chapter 5 the amount of diversification is derived. This quantity is proposed to be the
analog of entropy S and gives the dispersion of economic rent (surplus) within the economy
over the population size N and the portfolio distribution of a single agent over the available
D distinct goods.
The amount of diversification thus contains all information about the income distribution
within an economy and is used in this thesis instead of the Gini coefficient and the Lorenz
Curve.

3-2-4 General Equilibrium Theory

General equilibrium theory is a macroeconomic theory that attempts to explain the behaviour
of supply, demand and prices in a whole economy, where markets for goods interact with one
another [28].
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General equilibrium theory differs from the partial equilibrium approach taken in microe-
conomics where it is assumed that markets do not interact. The microeconomic theory of
supply and demand is based on the theory of partial equilibrium. In partial equilibrium,
economic equilibrium occurs when the supply and demand match in individual markets. Sec-
tion 3-1 shows the microeconomic theory of supply and demand in the economic engineering
framework.

The general equilibrium theory tries to explain the economy from a “bottom-up” approach,
starting with individual markets for goods and agents and adding complexity to the system
until the desired number of markets and agents are modelled [28]. As such, the general
equilibrium theory is an attempt within current economic literature to link microeconomics
and macroeconomics.

A major liability of the general equilibrium approach is that it is often not feasible to be
applied to an entire economy. Applying the general equilibrium approach to an entire economy
requires exact knowledge of the supply function for all goods as well as the demand functions
of all agents for all goods within the economy [28]. This data is then used to compute the
equilibrium prices for all goods.

The equilibrium prices are calculated using complex algorithms and solvers that require a lot
of computational power [29], [30]. For large numbers of goods and agents, these equilibria
cannot always be found.

In Chapter 5 a statistical approach to finding the macroeconomic equilibrium is proposed,
that is based on statistical physics.
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3-3 Thermoeconomics

Various attempts to link economics and thermodynamics have previously been made. The
field of thermoeconomics is a school of economics that attempts to find analogies between
thermodynamic and economic systems. A major problem within this field is the lack of
consistency across literature for certain analogies. Some of these inconsistencies will be high-
lighted in this chapter.

This thesis will attempt to link thermodynamics and economics as well. This will be done
using the economic engineering framework. The main difference between the thermoeconomics
approaches known in literature and the economic engineering approach proposed here is that
the economic engineering theory of supply and demand will be used. By using this theory
as a basis careful and consistent analogies are made to arrive at the macroeconomic relations
that have thermodynamic analogies.

In Subsection 3-3-2 a previous attempt in economic engineering titled “Thermodynamics
of Economic Engineering” to find analogies between thermodynamics and economics [18] is
analyzed. It will be shown in chapter 5 that an entirely different approach is taken in this
thesis.

3-3-1 Thermoeconomic literature

Examples of thermoeconomic research done previously are that of Dragulescu [31], Saslow
[32], Yegorov [33] and Rashkovskiy [34].

Dragulescu [31] considers money to be the analog of internal energy U and price to be the
analog of temperature T . Economic engineering [6] shows that price cannot be the analog of
temperature, since price should have a momentum variable as its analog and temperature is
an effort variable.
The requirement for price needing to be a momentum variable is straightforward: economic
equilibrium is achieved when prices do not change; likewise Newton showed that in mechanical
equilibrium the momentum of a body remains constant.

Saslow [32] considers utility to be the economic engineering analog of the internal energy U and
surplus to be the analog of TS, the product of temperature and entropy. He calls temperature
the level of economic development and proposes entropy to be a level of economic variety.
This definition of temperature does not match well with the statistical physics definition that
temperature is the average kinetic energy per particle.
Furthermore, Saslow calls the chemical potential µ the analog of price. This cannot be correct
for the same reason that Dragulescu’s [31] analogy cannot be correct, namely that the chemical
potential is an effort variable and not a momentum variable.

Consistent with the economic engineering definition, Yegorov [33] did consider income to be
the analog of internal energy. He however had a more philosophical approach and considered
the inverse of pressure p to be the economic freedom f . High economic freedom could be
compared to a democracy, while a system with low economic freedom is seen as a dictatorship.
These philosophical and qualitative definitions are not used in economic engineering.

Finally, Rashkovskiy [34] also considered money to be the analog of the internal energy.
His definition of temperature: the average amount of money per individual is consistent
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with the statistical physics definition but incorrect as a result of his incorrect definition
of money. Furthermore, Rashkovskiy considered pressure to be the analog of price, which
cannot be correct since price is a momentum variable and pressure, like chemical potential
and temperature, is an effort variable.

Upon review of thermoeconomic literature, I conclude that 2 major mistakes are made:

• Money is seen as an analog of energy,

• Price is given an effort variable as analog.

The realization that economists implicitly consider a quantity demanded as an amount of
stock over time instead of just an amount of stock leads to fixing the first mistake. It is then
shown that income is the analog of energy and money is the analog of the action.

The mistake to consider price as an effort variable is the result of the desire to link eco-
nomics and thermodynamics without realizing that no momentum variables exist in the field
of thermodynamics. Individual prices thus cannot be considered when comparing economics
and thermodynamics. An analogy between microeconomics and thermodynamics thus cannot
exist. Only in the field of macroeconomics can analogs with thermodynamics be found. The
realization that thermodynamics is actually to Newtonian physics what macroeconomics is
to microeconomics solves this conundrum.

3-3-2 Thermodynamics of Economic Engineering

A previous attempt to find analogies between thermodynamics and economic engineering was
made by Manders [18]. In his work, Manders’ goal was to model economic growth using
analogies with thermodynamics.
The goal of this thesis is more general, namely to derive macroeconomic laws using the eco-
nomic engineering theory of supply and demand. Instead of basing his work on the economic
engineering supply and demand model, Manders independently sought analogies between eco-
nomics and the field of thermodynamics that was previously unexplored from an economic
engineering point of view.

In his work [18], Manders also made the analogy between temperature and prices, as fre-
quently done within the field of thermoeconomics. As explained earlier, this is inconsistent
with the economic engineering view, where temperature is an effort variable and price is a
momentum variable.
Manders defined entropy to be the analog of human capital, explaining it as the effects unmea-
sured by the factors of production. He explains that in thermodynamics entropy is interpreted
as the “one aggregate variable for the unexamined degrees of freedom”.
In this thesis, the statistical definition of entropy will be given economic interpretation.
Macroeconomic behaviour will be explained by a good understanding of economic behaviour
on the micro scale.
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Chapter 4

Kinetic Theory of Gases & Statistical
Physics

In this chapter relevant literature on the kinetic theory of gases & statistical physics is sum-
marized.
The kinetic theory of gases is a part of statistical physics and perhaps the most intuitive for
readers that are familiar with Newtonian mechanics but do not have a pure physics back-
ground. Historically, the kinetic theory of gases was the first explicit exercise of the ideas of
statistical physics.

The field of statistical physics connects two branches of physics that for a long time had
a disconnect [35]. The invention and subsequent use of steam engines, which lead to the
industrial revolution, lead to much research being done on the behaviour of gases [36]. From
this, the field of thermodynamics was born. Although physicists at the time were quite
successful in modelling and predicting the behaviour of gases it was unknown at the time how
this new branch of physics was related to the “well-known” branch of Newtonian mechanics.
Statistical physics serves as the bridge between these two branches of physics and makes it
possible to derive the macroscopic state variables and relations known in thermodynamics
from Newtonian models and statistical tools.

The blueprint laid out by statistical physics to connect Newtonian physics and thermody-
namics will be summarized in this chapter. This will serve as the foundation to do the same
for microeconomics and macroeconomics.
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4-1 Motivation for a Statistical Approach

A classical gas is considered, where the gas particles are seen as point particles and their
collisions are elastic [37]. Furthermore, it is assumed that the gas is sufficiently dilute and the
temperature is high enough to avoid quantum effects but low enough to neglect relativistic
effects.

Knowing the exact position and velocity (or momentum) of each particle in a system would
provide complete information of the system. Even when ignoring the fact that quantum
mechanics tells us that this is impossible, two difficulties arise:

• There is too much information. A typical gas contains in the order of 1023 particles.

• The system is sensitive to tiny perturbations of the initial conditions.

Because of this, statistical models are used to describe the state of the system.
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4-2 Kinetic Theory of Gases

The derivations of the kinetic theory of gases equations taken in this section follow the lectures
of Richard Feynman [38], [39] and graduate level university readers on statistical physics [4],
[37], [17].

4-2-1 Position, Velocity, Momentum & Phase Space

A classical gas is considered, as mentioned in section 4-1.
At each point in time every particle in the system has a position coordinate qα and a mo-
mentum pα for each dimension, where α ∈ {1, 2, . . . , D}. The state of the system is defined
by the positions and momenta of all N particles of the system.
In 3-dimensional space every particle thus has 3 position coordinates and 3 momentum co-
ordinates. A system of N particles can thus be described by 6N coordinates. All possible
states of the system are represented by these 6N coordinates. This is called the phase space
of the system.
In a D-dimensional world the phase space is thus given by:

Γ = {qDN , pDN }, (4-1)

meaning that for N particles in D dimensions the phase space Γ consists of DN position
coordinates and DN momentum coordinates [4].
It holds that the momentum, position and velocity of each particle in each dimension are
expressed as:

pi =


pi,1
pi,2

...
pi,D

 , qi =


qi,1
qi,2
...

qi,D

 , q̇i =


q̇i,1
q̇i,2
...

q̇i,D

 , (4-2)

where pi,α indicates the momentum of particle i in direction α, qi,α is the position coordinate
of particle i in direction α and q̇i,α is the velocity of particle i in direction α.

4-2-2 Energy & Mass

Total Energy

The total energy of the system, also known as the Hamiltonian H, is the sum of the energies
of all individual particles [40]. The energy of the particles consists of their kinetic energy,
as well as the potential energy due to interactions between particles. The expression for the
total energy is [40]:

H =
N∑

i=1

[
pT

i

(
2Mi

)−1
pi

]
+ 1

2

N∑
i=1

N∑
j ̸=i

Φij

(
qi, qj

)
, (4-3)

where pi and qi are as given in (4-2) and Mi is the mass matrix of particle i.

pT
i

(
2Mi

)−1
pi is the kinetic energy of a single particle.
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Φij

(
qi, qj

)
= Φij

(∣∣∣qi − qj

∣∣∣) is the potential energy due to interaction between particles i

and j, which only depends on the distance between the 2 particles. The fraction 1
2 in front

of the double summation in (4-3) is to avoid double counting of potential energy terms.
The expression given in (4-3) is the most general expression of the total energy, where it is
not assumed that space is isotropic and that the particles are identical. In (4-3) it is not
assumed that the interaction between the particles is negligible, as is done for ideal gases.

Mass Matrix

The mass matrix of particle i is of the form:

Mi =


m11 m12 . . . m1D

m21
. . . ...

... . . . ...
mD1 . . . . . . mDD


i

, (4-4)

which is a square symmetric matrix of dimension D.
Since the particles considered are monatomic, they are seen as point particles. As a result,
there are no “cross-directional effects”. This means that a change in momentum in one
direction (e.g. the x−direction) cannot effect a change in velocity in any other direction (e.g.
the y−direction). As a result the mass matrix is a diagonal matrix.
It is shown in subsection 5-2-3 that the analog of this matrix in economic engineering is not
necessarily diagonal. This corresponds with particles consisting of multiple atoms, where
rotations can occur.
Each entry of the mass matrix gives the inertia of the particle in the corresponding direction.
For clarity, the mass matrix of particle i in 3 dimensions is given:

Mi =

mxx 0 0
0 myy 0
0 0 mzz


i

. (4-5)

For an isotropic gas it holds that all entries on the diagonal of (4-5) are equal. The mass
matrix Mi in (4-3) can then be replaced by the scalar mass mi, which is usually found in
literature, where mi is the entry for all non-zero elements of matrix (4-5).

Internal Energy

The kinetic theory of gases states that if the expectation value of the energy of a single particle
is ⟨E1⟩, then the total energy as given in (4-3) is approximated as:

H ≈ U = N ⟨E1⟩ , (4-6)

for large N . This approximation is known in literature as the thermodynamic limit [37], [41].
The expectation value of any variable X is calculated as follows:

⟨X⟩ =
∑

s

X (s) P (s) , (4-7)
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i.e. a summation over all possible states where ⟨X⟩ indicates the expectation value of the
variable of interest, X (s) is the value of X in state s and P (s) is the probability of state s
occurring.

To summarize: the total energy of the system is approximated by multiplying the number of
particles with the expectation value of the energy of a single particle.
The approximated total energy U is known in statistical physics and thermodynamics litera-
ture as the internal energy of the system.

4-2-3 Temperature

In his kinetic theory of gases lectures, Feynman states that thermal equilibrium between two
systems exists when the average kinetic energy of the particles of the two systems is equal
[38].
From this the term temperature is introduced and the two systems are said to have the same
temperature. A direct relation thus exists between the temperature of a gas and the average
kinetic energy.

A straightforward relation between the temperature and expectation value of the kinetic
energy would be to define the two to be equal: (This definition is not used in physics
literature!)

Θ := ⟨Ti⟩ , (4-8)

where Θ is the temperature of the gas, Ti is the kinetic energy of a single (randomly chosen)
particle and ⟨Ti⟩ is the expectation value of the particle’s kinetic energy. From (4-3) it follows
that the kinetic energy Ti of a randomly chosen particle i is:

Ti = pT
i

(
2Mi

)−1
pi, (4-9)

and where the thermodynamic limit states that ⟨Ti⟩ is a good approximation of Ti for all
particles.

For historical reasons however, the temperature and kinetic energy are related via the equipar-
tition theorem [38]:

⟨Ti⟩ = f

2 kΘ, (4-10)

where f is the amount of degrees of freedom available to the particles of the system, k is the
Boltzmann constant and Θ is the temperature of the gas. For monatomic gas particles in
D-dimensions it holds that f = D, since monatomic particles have only translational degrees
of freedom.
When particles made up of multiple atoms are considered, f = D + r + ϑ, where r is the
amount of rotational degrees of freedom and ϑ is the amount of vibrational degrees of freedom,
which are only activated at high temperatures [42].

For an ideal gas, it holds that the potential energy terms of (4-3) are negligible. As such, it
holds that Ei = Ti, i.e. the energy of a single particle is only its kinetic energy.
For an ideal gas, equations (4-6) and (4-10) can be combined. This yields:

U = N
f

2 kΘ, (4-11)
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which is the well-knows expression for the internal energy of an ideal gas in thermodynamics.

The expressions given in (4-10) and (4-11) hold for all systems of which the mass matrices
Mi of the particles are diagonal. As a result, the temperature and internal energy of non-
isotropic systems and systems consisting of monatomic particles with different mass can also
be calculated using these expressions.

Since the temperature is independent of the interactions between particles, the relation be-
tween the expected value of the kinetic energy and the temperature given in (4-10) holds for
any real gas consisting of monatomic gas particles.
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4-3 Statistical Physics & Thermodynamics

4-3-1 Maxwell’s Demon, Entropy & The 2nd Law of Thermodynamics

Maxwell’s Demon

Using the definitions and macroscopic relations defined in section 4-2, Maxwell’s Demon
argument can now be analyzed.

Carnot [2] showed that it is possible to perform (mechanical) work W when heat flows from
a high temperature reservoir ΘH (or a system of high temperature) to a low temperature
reservoir ΘC (or a system of low temperature), as shown in Figure 4-1.

ΘH ΘC

W

QH QC

Figure 4-1: Simple view of the principles of a Carnot Engine [2].

In section 4-2 the temperature of a system was shown to be the expectation value of the
kinetic energy of a single particle (4-10). Maxwell [43], [38] shows that when two systems of
different temperature are connected, thermal equilibrium will eventually be reached.

Maxwell’s Demon [3] is a thought experiment in which a small “demon” is able to infinitely
fast open and close a partition separating two connected subsystems A and B, see Figure 4-2.
No work is performed when operating the partition of negligible mass.
Allowing selective particles to pass from one subsystem to the other, the demon is able to
collect particles with a large velocity in subsystem B and those with a small velocity in
subsystem A, effectively increasing the temperature of subsystem B. The demon is thus able
to create a temperature difference between two subsystems that were initially in thermal
equilibrium. The temperature difference can then be used to perform (mechanical) work as
explained by Carnot [2].

The Maxwell’s Demon thought experiment is a violation of the 2nd law of thermodynamics,
since the demon is able to create a flow of heat from a low temperature to a high temperature
without performing work.

Entropy

Consider a single molecule in a system consisting of two chambers (e.g. the system considered
in Maxwell’s Demon Figure 4-2 when the partition is opened). A molecule that can roam
through both chambers A and B has twice as many possible positions as a molecule confined
to a single chamber. If there were two molecules in the two-chamber setting, each molecule
would have twice as many possible positions as it would have in the single chamber case,
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Figure 4-2: View of the Maxwell’s Demon thought experiment, where a demon, shown in green,
is able to distinguish fast (red) and slow (blue) particles. The demon can operate the partition
without performing work and as such is able to create a temperature difference between two
subsystems that were initially at thermal equilibrium. Maxwell’s Demon is a violation of the 2nd

law of thermodynamics [3].

meaning the system as a whole as four times as many possible configurations. The amount
of possible configurations (accessible states) available to a system of N molecules is 2N times
as high when two chambers are accessible compared to the single chamber case.
The entropy (4-12) of a system is defined as the logarithm of the number of states accessible
to the system [4], [3].
In subsection 4-2-1 it was shown that the states accessible to the system “live” in the phase
space (4-1), consisting of the particles positions and momentum. Since a one-to-one relation
between momentum and velocity exists, one can also say that the accessible states of the
system depends on the range of allowed particle positions and velocities.
The entropy thus increases when the volume increases or when the temperature increases,
where the former corresponds with more positions accessible and the latter corresponds with
more accessible momenta. Increasing the number of particles also means increasing the num-
ber of possible configurations of the system and thus the entropy.
For historical reasons the entropy S at fixed internal energy U , fixed system shape and volume
V and fixed number of particles N is expressed as:

S = k ln (Ω (U, N, V )) , (4-12)

where Ω is the number of states available to the system and is called the multiplicity of the
system.
Looking at the definitions of phase space (4-1) and entropy (4-12) it follows that the entropy
is the dispersion of energy through a system. The energy dispersal increases for both a
higher temperature (more momenta available) or by considering higher dimensional systems,
allowing the phase space to expand due to more positional availability’s.
Entropy is a macroscopic state variable. Clausius [16] found that for reversible processes it
holds that:

dS =
(dQ

Θ

)
rev

, (4-13)

where dS is the change in entropy of the system during the process, dQ is the incoming heat
flow during the process and Θ is the temperature. A flow of heat is thus always accompanied
by a change of entropy.
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A heat flow carries an amount of entropy proportional to the quantity of heat flowing divided
by the temperature at which the flow takes place. Hence a flow from a hot body to a cold
body raises the entropy of the cold body more than it lowers the entropy of the hot one. A
heat flow from a hot to a cold body thus raises the entropy of the universe.
Looking again at the Maxwell’s Demon thought experiment, we can conclude that the demon
violates the 2nd law of thermodynamics because he is lowering the entropy of room A by a
greater amount than it is increasing the entropy of room B. The total entropy of the universe
would thus decrease [3].

4-3-2 State Counting & Partition Functions

To determine the entropy using its statistical definition as given in (4-12), the multiplicity Ω
needs to be found. Following the definitions, the most straightforward way to determine the
number of states available to a system is by taking the quotient of the (hyper)volume of the
system in phase space by the volume of a single microstate. Heisenberg [4] showed that the
volume of a single microstate in 1-D is bounded fundamentally by:

∆x∆p ≥ h, (4-14)

where h is Planck’s constant.
The multiplicity for a D-dimensional system is then found to be [44]:

Ω = 1
N !

1
hDN

∫
Vol

N∏
i=1

dDxidDpi, (4-15)

where the 1
N ! prefactor is necessary if all N particles are indistinguishable.

Explicitly calculating Ω using (4-15) is usually a daunting task and can only be done in
practice for extremely simple systems.
For complicated systems, physicists have developed a powerful tool called the “partition
function” that is easier to calculate and is related to the multiplicity via the Laplace transform
[19]:

Z (β) =
∫

Ω (E) exp (−βE) dE, (4-16)

where Z (β) is the partition function, β = 1
kΘ is the inverse temperature and E is a possible

energy level the system can be in.
The multiplicity Ω is found by taking the inverse Laplace transform of the partition function.
Consider a system whose temperature Θ is imposed by an external heat bath, see Figure 4-3.
Energy can freely be exchanged between the system and the heat bath, also known as the
environment. At all times it holds that the sum of the energy of the system and the energy
of the environment is constant.
The probability of finding the system in a certain microstate s of the phase space Γ is [4],[44]:

Ps = exp (−βEs)
Z (β) , (4-17)

where it must hold that
∑

s Ps = 1, from which it is concluded that:

Z (β) =
∑

s

exp (−βEs) . (4-18)
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Figure 4-3: A system whose temperature Θ is imposed by an external heat bath [4].

The partition function given in (4-18) is known as the canonical partition function as is used
for systems of constant temperature.

The average value of any physical quantity A which assumes the value As in state s can now
be determined [4]:

⟨A⟩ =
∑

s As exp (−βEs)
Z

. (4-19)

The average energy, earlier defined to be the internal energy of the system, thus becomes:

U = ⟨E⟩ =
∑

s Es exp (−βEs)
Z

= −∂ ln (Z (β))
∂β

, (4-20)

4-3-3 Free Energies & Thermodynamic state variables

Now that the partition function has been defined, it is useful to define a quantity closely
related function called the “Helmholtz free energy” F :

F (β) = −kΘ ln (Z (β)) . (4-21)

The Helmholtz free energy is a thermodynamic potential, just like the internal energy U .

Whenever a thermodynamic potential is a function of natural variables, all thermodynamic
properties of the system can be obtained by partial differentiation [45]. The natural variables
of a system are the variables that describe the current state of a system.
The natural variables of the internal energy U are the entropy S, the volume V and the
number of particles N . It thus holds that:

U = U (S, V, N) . (4-22)

For any variation in the internal energy it holds that:

dU =
(

∂U

∂S

)
V,N

dS +
(

∂U

∂V

)
S,N

dV +
(

∂U

∂N

)
S,V

dN, (4-23)

where S, V and N are all extensive variables. In general it holds for U that:

U = U (X1, X2, . . . , XN ) , (4-24)
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with Xi the i-th natural variable for a system of N natural variables and all Xi being extensive.
The variation of U then becomes:

dU =
N∑

i=1

(
∂U

∂Xi

)
Xi ̸=Xj

dXi. (4-25)

For a regular thermodynamic system with only S, V and N as natural variables of U , the
differentials shown in (4-23) are:(

∂U

∂S

)
V,N

= Θ ;
(

∂U

∂V

)
S,N

= −P ;
(

∂U

∂N

)
V,S

= µ, (4-26)

where Θ is the temperature, P is the pressure and µ is the chemical potential as defined in
classical thermodynamics.

Thermodynamic Potentials

As mentioned above in this subsection the Helmholtz free energy F is a thermodynamic
potential, just like the internal energy U . These two are related via a Legendre transform
with respect to Θ:

F = U [Θ] = U − ΘS. (4-27)

As indicated by the square brackets, Θ is a natural variable of the Helmholtz free energy.
This is often done since Θ is an easier variable to keep track of than its conjugate S. It thus
holds that F = F (Θ, V, N).

A Legendre transform is thus a mathematical tool to convert the internal energy U into a
thermodynamic potential that is convenient to work with. The free energy is the amount of
energy available to the system to perform useful work.

For systems where pressure and temperature are convenient natural variables (e.g. chemical
reactions) it is useful to take a Legendre transform w.r.t. Θ and P . We then define a new
thermodynamic potential called the Gibbs free energy G, where G = G (Θ, P, N):

G = U [Θ, P ] = U − ΘS + PV. (4-28)

The conjugate variables of the natural variables of F can easily be determined using the total
differential method shown in (4-26).

Different system configurations and constraints can lead to many different free energy expres-
sions. The relevant free energy always gives the amount of energy available to the system to
perform useful work.

4-3-4 Entropy & Information

In information theory the entropy of a random variable is a measure for the level of uncertainty
inherent to the variable’s possible outcomes. The entropy definition in information theory
is closely related to that of statistical physics. Shannon [10] showed that the entropy of
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a random variable X with possible outcomes x1, x2, . . . , xn and corresponding probability
P(x1), P(x2), . . . , P(xn) in information theory is:

S (X) = −
N∑

i=1
P (xi) log (P (xi)) . (4-29)

Applying Shannon’s definition of entropy to a thermodynamic system, it follows that the
entropy is the result of the uncertainty in the momenta and positions of all particles in a
system. A system of which the state of each particle is known exactly thus has zero entropy.
From this it is concluded that the term TdS in the expressions for thermodynamic potentials
such as (4-25) gives the incremental increase of energy “unaccounted for”.

r
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Chapter 5

Deriving Macroeconomics from
Microeconomics Using Economic
Engineering & Statistical Physics

This chapter serves as the major contribution of this thesis, namely to derive economic vari-
ables that have a macroeconomic interpretation using the framework of statistical physics.
Literature on statistical physics is given in Chapter 4.
Starting from the economic engineering theory of supply and demand, which is based on
microeconomic theories, these macroeconomic variables are derived.

The variables derived in this chapter are given a macroeconomic interpretation in Chapter 6.
The link between microeconomics and macroeconomics can then be made.

The macroeconomic variables derived from microeconomics in this chapter are the GDP, the
level of welfare, the amount of diversification, the disposable income per capita and
the free economic rent.

The macroscopic economic variables based on economic engineering derived in this chapter
are not necessarily limited to macroeconomic applications. Any economic system containing
an unmanageable amount of degrees of freedom can be modeled using the macroeconomic
laws derived.
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5-1 Motivation for Using the Statistical Physics Approach

In this section the motivation for linking microeconomics and macroeconomics using statistical
physics is given.

Currently, the fields of microeconomics and macroeconomics are considered separately in
economic literature, as explained in Chapter 3. In this chapter the link between microeco-
nomics and macroeconomics in economic-engineering will be made using the tools of statistical
physics.

In the introduction of Chapter 4 it was explained that a similar disconnect existed between
Newtonian physics and thermodynamics.
Chapter 4 provided an overview as to how physicist were able to derive macroscopic thermo-
dynamic relations by developing the field of statistical physics.

In this chapter it is shown how the economic-engineering model of supply and demand is used
to derive macroscopic economic relations by following the steps taken in statistical physics.

The definitions of- and the analogs between- the physical and economic terminology
used in this section to argue the need for a statistical approach to link microeconomics
and macroeconomics are given in Chapter 2.

In practice their are two main reasons why a statistical approach to link microeconomics and
macroeconomics is useful. These are:

• A lack of computational power & information,

• Money is quantized, so transactions are always rounded.

Elaboration on these points is given next.

Computational Power & Information

For economic systems consisting of a small number of agents and goods, the total allocated
economic rent can easily be found since the reservation prices and inventory levels of all agents
can be monitored. For systems consisting of many agents and goods however, this becomes
prohibitively difficult.
Monitoring the reservation prices and inventory levels of all agents means that every single
transaction within an economy must be known. Even if the desire to do this were present, a
lack of processing and computational power would render this approach practically impossible.

These difficulties are analogous to the ones encountered in physics. For systems consisting
of many particles, the equations of motion for all particles cannot be solved due to a lack
of computational power. Due to the lack of computational power, a statistical approach is
proposed in physics literature to arrive at macroscopic thermodynamic relations [37]. The
same argument is thus made for an economic system.
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Quantization of Money

The exact knowledge of an agent’s reservation price and quantity demanded cannot be gained
from the information his transactions provide.
In practice money is quantized and transactions are rounded. In a regular business transaction
one will often round a the amount to be paid to the nearest $0.01 = 1¢, while stocks on the
stock market and foreign currencies on the foreign exchange market are often rounded to even
smaller fractions of a dollar. In this thesis it is assumed that $0.01 = 1¢ is the smallest quanta
of money.
If the actual reservation price of an agent is not an integer times ¢, there is no way to exactly
know his reservation price for a good using the information of a transaction for 1 unit of that
good.

Similarly, there is no way of knowing what the actual quantity demanded of an agent is, since
goods can only bought in quantized units. An agent demanding 1.9 bottles of water per day
will most likely register a transaction for 2 bottles of water on a given day, suggesting he
demands 2 bottles of water. There is no way of knowing the actual quantity demanded of the
agent using the information of the transactions the agent makes.

In physics, Heisenberg’s uncertainty principle [46] states that it is not possible to know the
exact values of both the momentum and position of a particle. The uncertainty in momentum
∆p and uncertainty in position ∆q are related as ∆p∆q ≳ ℏ, where ℏ is the reduced Planck’s
constant. This is the smallest “volume” in the phase space that can be measured.
In the economic engineering analogy, ℏ has the units of money and can thus be seen as the
economic engineering analog of ¢, the smallest possible measurable “volume” in the in the
price-quantity space or the smallest unit of money. By taking the product of a price and an
inventory level, it follows that a “volume” element in the price-quantity space must have the
units of money.

Conclusion of the Motivation

In conclusion, the difficulties in modelling large economic systems are analogous to the diffi-
culties found in physics to model systems of many particles.
The statistical approach taken in physics to derive the macroscopic laws of thermodynamics
from microscopic laws of Newtonian mechanics can thus also be used to derive macroeconomic
laws in economics from microeconomic laws. This is done using economic engineering [6].
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5-2 Kinetic Theory Approach for Deriving Macroeconomics from
Microeconomics

The steps taken in this section to derive the macroscopic economic relations are analogous to
those of Section 4-2.
Analogies introduced in Subsections 5-2-1 and 5-2-2 are given in Table 2-2.

5-2-1 Agents, Goods & Resources

In the economic engineering theory of supply and demand [6], interactions are between a
buyer of goods or resources and a seller. In this proposal, both buyers and sellers are often
grouped together in the term economic agents. Any interaction is thus between two economic
agents, or agents for brevity.

Examples of goods traded between a buyer and seller are shoes, mobile phones and bread.
Examples of resources are labour, capital and land. For each good or resource, each agent
has his own reservation price and quantity demanded (supplied).
Similarly, each particle has a component of momentum and velocity in each dimension. Unless
otherwise stated, it is assumed that agents are the analogs of monatomic point particles. This
means that surplus can only be obtained by trading goods or services.
In this thesis no economic analog of the rotation of a (diatomic) molecule around its axis
considered, meaning that there is no economic engineering analog of the rotational kinetic
energy.

Since stock level and quantity demanded are the economic engineering analogs of posi-
tion and velocity respectively, it is proposed that a dimension in physical space corresponds
with a good or resource.
An economy consists of many different goods and resources. In general we thus consider agents
in a D−dimensional economy, meaning an economy of D different goods and resources, that
corresponds with gas particles in D−dimensional space.

In total there are N agents within the economy, consistent with the kinetic theory of gases
approach where there are N gas particles in the system.
These N particles need not necessarily be identical [38].
Since the inverse of price elasticity of demand (supply) is the economic engineering
analog of the inertia, agents being identical means that the price elasticity of all agents is
the same. In this thesis this is assumed to be the case.

5-2-2 Stock Level, Quantity Demanded, Price & Price-Quantity Space

At each point in time every agent has a stock level qα and a reservation price pα for each
good or service α, where α ∈ {1, 2, . . . , D}.
In a D-dimensional economy, each agent thus has D stock level coordinates and D reserva-
tion price coordinates. An economy consisting of N agents can thus be described by 2ND
coordinates. All possible states of the economy are represented by these 2ND coordinates
and are called economic microstates.
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Each possible economic microstate corresponds to a unique point in the price-quantity
space, which is the economic engineering analog of the phase space. The price-quantity
space consists of all possible values of stock level and reservation price of a good or resource.
The price-quantity space in a D-dimensional economy is given by:

Γ = {qDN , pDN }, (5-1)

meaning that for N agents and D goods and resources the phase space Γ consists of DN stock
levels and DN reservation prices. This is consistent with the approach taken in statistical
physics, as shown in Section 4-2.
The quantity demanded of good or service α, as known in the microeconomic theory of supply
and demand, is simply the change in the stock level of good α w.r.t. time.
The reservation price, stock level and quantity demanded for each good of agent i are thus:

pi =


pi,1
pi,2

...
pi,D

 , qi =


qi,1
qi,2
...

qi,D

 , q̇i =


q̇i,1
q̇i,2
...

q̇i,D

 , (5-2)

where pi,α indicates the reservation price of agent i for good α, qi,α is the stock level of agent
i for good α and q̇i,α is the quantity demanded of agent i for good α.
The reservation price of an agent is the economic engineering analog of the momentum
of a particle.

Analogies between Economics and Physics

Table 2-2 shows the analogs between economics and physics introduced in Subsections 5-2-1
and 5-2-2.

5-2-3 Economic Rent, GDP & Price Elasticity

The analogs between economics and physics introduced in this subsection are given in Table
2-3.

Economic Rent

Consistent with current economic engineering literature [6], the allocated economic rent
of an agent is seen as the analog of the Hamiltonian of a particle. From this it follows that
the total allocated economic rent of all N agents within the economy is the Hamiltonian of
the entire system, as shown for a gas in (4-3). For our economic system this becomes:

H = 1
2

N∑
i=1

[
pT

i Eipi

]
+ 1

2

N∑
i=1

N∑
j ̸=i

Φij

(
qi, qj

)
, (5-3)

where pi and qi are as given in (5-2) and Ei is the price elasticity of demand (supply) matrix
of agent i.
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The term 1
2pT

i Eipi gives the surplus of agent i, which is the economic engineering analog of
the kinetic energy.
Φij

(
qi, qj

)
= Φij

(∣∣∣qi − qj

∣∣∣) is the benefit of ownership or potential surplus and depends
on the difference in stock levels of the interacting agents. The potential surplus is the
economic engineering analog of the potential energy. The fraction 1

2 in front of the double
summation in (5-3) is to avoid double counting of potential surplus terms.
In an economic system where the agents do not care about their inventory levels, the potential
surplus is neglected. In a perfect market the quantity supplied for every good equals the
demand for that good. Agents operating in a perfect market thus have no desire to hold an
inventory, meaning that the potential surplus is negligible.
This is the economic engineering analog of an ideal gas, where the potential energy due to
particle interaction is neglected.
In (5-3) it is assumed that no economic rent dissipation occurs. The total economic rent
within the economy is thus equal to the allocated economic rent and constant over time. This
is the analog of a mechanical system where no damping occurs. The relation between the
total economic rent and the allocated economic rent was given in (3-21).

Price Elasticity Matrix

The price elasticity of demand (supply) matrix of agent i is of the form:

Ei =


E11 E12 . . . E1D

E21
. . . ...

... . . . ...
ED1 . . . . . . EDD


i

, (5-4)

which is a square symmetric matrix of dimension D.
In economics, complementary and substitution goods exist [15]. As a result, price changes
in one good can cause the quantity demanded for another good to change. As a result, the
off-diagonal terms of the price elasticity matrix (5-4) are non-zero.
Complementary goods have negative cross-price elasticity while, substitution goods have pos-
itive cross-price elasticity. Negative (positive) entries of the price elasticity matrix Ei thus
correspond with complementary (substitution) goods.
Goods are called independent of they are neither substitutes nor complementary. The cross-
price elasticity of independent goods is zero.
The price elasticity matrix in an economy consisting of 3 independent goods thus becomes:

Ei =

E11 0 0
0 E22 0
0 0 E33


i

. (5-5)

If an agent has the same price elasticity for all goods, we say that the agent is indifferent
to the goods. This is the analog of an isotropic gas, where the gas particle has the same
inertia in each dimension.
The entries on the diagonal of the elasticity matrix are equal if the agent is indifferent to the
goods. In that special case the price elasticity of demand (supply) of the agent can be given
by a scalar, similar to how the mass of a particle is a scalar for isotropic gases.
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GDP

In Subsection 4-2-2 it is shown that the Hamiltonian of an ideal gas system is approximated
by multiplying the number of particles with the expectation value of the energy of a single
particle (4-6). This approximation holds because the potential energy term in the expression
for the Hamiltonian is neglected for ideal gases. The total Hamiltonian is thus equal to the
total kinetic energy.
In macroeconomic literature, the total surplus of an economy is called the Gross Domestic
Product (GDP) [14]. The GDP is thus proposed as the economic engineering analog of the
total kinetic energy T in this thesis.
In this thesis a perfect market is assumed unless otherwise specified. A perfect market is
identified as the analog of an ideal gas. For an economic system with a perfect market the
internal energy U is thus the analog of the GDP.
The GDP is thus found to be:

H ≈ GDP = N ⟨Hi⟩ , (5-6)
where ⟨Hi⟩ is the expectation value of the economic rent of a single agent in an economy
consisting of N agents.
In general H is a random variable since the reservation prices pi are random variables. For
isolated economic systems in a perfect market H is constant and exactly equal to the GDP.
For non-isolated systems the approximation given in (5-6) holds for large N , which is also
assumed in the definition of a perfect market, see sections 2-2 and 2-3.
The approach taken here to determine the GDP matches the one taken in macroeconomic
literature using the income approach [14] as shown in Subsection 3-2-2.
When not considering an entire economy but rather a large, arbitrary collection of economic
agents the economic engineering analog of the internal energy is not called the GDP, but
rather the total allocated economic rent. The approximation of (5-6) however still holds.

5-2-4 Level of Welfare

In Subsection 4-2-3 it was shown that the temperature of a gas is the product of the expec-
tation value of the kinetic energy of a single particle and a constant.
Because the surplus is the economic engineering analog of the kinetic energy, it is argued
that the economic engineering analog of the temperature and the expectation value of the
surplus of a single agent should be related as:

⟨Ti⟩ = C · Θ, (5-7)

where C is some constant. Ti is the surplus of a single (randomly chosen) agent and ⟨Ti⟩ is
the expectation value of that agent’s surplus.
Θ is found to be the economic engineering analog of the temperature and is called the level
of welfare.
From (5-3) it follows that Ti is given as:

Ti = 1
2pT

i Eipi, (5-8)
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with Ti and T related as:

T =
N∑

i=1
Ti. (5-9)

Similarly to how each degree of freedom in a gas adds a factor 1
2kΘ to the expectation value

of the kinetic energy, each economic degree of freedom adds factor of 1
2Θ to the expectation

value of the surplus. An economic degree of freedom is an independent method of acquiring
a surplus available to an agent.

The level of welfare and surplus of a single agent are thus related as:

⟨Ti⟩ = f

2 Θ, (5-10)

where f is the amount of economic degrees available to the agent. For agents that can only
generate a surplus through trading goods, it holds that f = D.
Adding more degrees of freedom to an economy means that the (product) diversification of
the economy is increased.

In Subsection 5-3-2 it is argued that the difference in the level of welfare between two
economies is the driving force behind trade between economies.

Following the analogy with statistical physics, the level of welfare is independent of the
potential surplus of the agents. This is also consistent with current economics literature.
Although having an inventory does give an agent the potential for increasing his surplus in
the future, it is only the actual surplus he enjoys that dictates his level of satisfaction [14].
In Subsection 4-2-3 it was mentioned that the temperature is independent of the potential
energy of the particles. The temperature only depends on the kinetic energy of the particles.
The analogy between the level of welfare and temperature is thus further highlighted.

Rearranging terms in (5-10) yields:

Θ = 2 ⟨Ti⟩
D

=

〈
pT

i qi

〉
D

, (5-11)

where it is used that Eipi = qi.
The term pT

i qi is known in economic literature as the revenue.
The numerator of the right-hand side of equation (5-11) is thus the expected value of the
revenue of a single agent.

Assuming a perfect market the level of welfare is also given as:

Θ =
∑N

i=1

〈
pT

i qi

〉
ND

= 2GDP
ND

(5-12)

where equations (5-6) and (5-9) were used to rewrite (5-11).∑N
i=1

〈
pT

i qi

〉
is the expected value of the total revenue of all agents within the economy,

which is two times the GDP.
I propose to interpret the denominator of equation 5-12 as the “size of the economy” ND.

The level of welfare in an economic system increases when either the GDP (or total expected
revenue) increases or when the economy decreases in “size”.
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The meaning of the “size of the economy” used here is differs from the one commonly used in
economic literature [14], where the GDP is meant by the size of the economy. In this thesis,
the size of the economy is the product of the population size N and the number of distinct
goods D.

The expression given for the level of welfare (5-11) holds for all economic systems without
substitution and complementary goods, so whenever the price elasticity matrix given in (5-4)
is diagonal.

Equation 5-12 gives the expression of the level of welfare derived from microeconomic vari-
ables. In Chapter 6 this is compared to its macroeconomic interpretation.

Analogies between Economics and Physics

Table 2-3 shows the analogs between economics and physics introduced in Subsection 5-2-3.
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5-3 Trading and Migration between Economies

In this section the driving forces behind trade and migration between economies are analyzed.
Furthermore the fundamental theorems of welfare economics are matched to thermodynamics.

Note: This section uses concepts from thermodynamics, welfare economics and
macroeconomics and could have been placed earlier in the thesis or in Chapter 6.
It is not placed earlier, because the it was not necessary in the derivations of Section
5-2. The concepts introduced in this section are however fundamental for the deriva-
tions of Section 5-4. As a result, I have chosen to include this section in this chapter.
In Chapter 6 the findings of this section are connected to the findings of Section 5-4
and the link between microeconomics and macroeconomics is made.

The level of welfare Θ is the analog of the temperature. In thermodynamics literature a
temperature difference is the driving force behind the exchange of heat between two (closed)
systems [16].
The difference in the level of welfare of two economies is thus identified as the driving force
behind trade between (closed) economies.

The disposable income per capita is found to be the analog of the chemical potential.
A difference in the chemical potential is the driving force behind the exchange of particles
between two open systems [16].
The difference in the disposable income per capita is thus identified as the driving force behind
migration.

To define and give economic interpretation to the driving forces behind trade and migration,
the economic engineering analog of entropy S, which is the amount of diversification,
needs to be well-defined and interpreted economically.

In section 2-2 the definition of the amount of diversification S used in this thesis is given,
while the full derivation and economic interpretation is given in Subsection 5-4-3.
Readers unfamiliar with the statistical interpretation of entropy may find it useful to read
Subsection 5-4-3 before reading this subsection.

5-3-1 Theorems of Welfare & Laws of Thermodynamics

In this subsection the analogs between thermodynamics and the fundamental theorems of
welfare economics are found.

The 1st fundamental theorem of welfare economics states that in economic equilibrium, a set
of complete markets, with complete information, and in perfect competition, will be Pareto
optimal.
The 1st fundamental theorem thus states the existence of a Pareto optimal macroeconomic
equilibrium.

In thermodynamic equilibrium, the entropy is maximized [16] (for a given level of the internal
energy of the system) and no macroscopic changes occur.
Figure 5-1 shows the internal energy-entropy curve of a thermodynamic system, indicating
the stable equilibria of the system.
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The 1st law of thermodynamics states that points on the US-curve are “Pareto optimal” since
no particle can gain energy without another particle losing energy.
I propose to view the US-curve as the analog of the Pareto frontier [15] as known in economic
literature, where it is used to find the optimal allocation of resources. Each point on the curve
of the Pareto frontier is Pareto optimal.

The 1st fundamental theorem of welfare economics states the existence of macroeco-
nomic equilibrium, where the amount of economic diversification is maximized.
The 1st law of thermodynamics ensures that this equilibrium is Pareto optimal.

Figure 5-1: Energy, Entropy Curve of a thermodynamic system. For a macroeconomic system
this curve shown the possible macroeconomic equilibria. The amount of diversification of an
economic system that is initially in point A will spontaneously increase. The system will follow
the path AC until macroeconomic equilibrium is reached.

The 2nd law of thermodynamics states that the entropy of a system cannot decrease sponta-
neously. A system that is not initially in equilibrium (point A in Figure 5-1 will spontaneously
move along the “path” AC until thermodynamic equilibrium is reached. The entropy will thus
increase until equilibrium is reached.

The 2nd fundamental theorem of welfare economics states that all Pareto optimal outcomes
can in principle be reached through market mechanisms [11]. However, since agents are
rational, the reached optimum state is the one that maximizes the total social welfare.
Furthermore it is assumed that agents are rational and look to maximize their utility, as
argued in Subsection 3-1-2. As a result it is argued that the amount of diversification within
an economy does not spontaneously decrease.

The 2nd fundamental theorem of welfare economics is interpreted as to be describing the
macroeconomic “invisible hand”[47] that drives the economic system to equilibrium.
The macroeconomic invisible hand is discussed in more detail in the segment “Macroeconomic
Invisible Hand” of section 6-1.

Both the 2nd fundamental theorem of welfare economics and the 2nd law of thermodynamics
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state that an optimal equilibrium will be reached. In this thesis it is argued that an economy
that maximizes its social welfare is fully diversified, since it is Pareto optimal.

From the analogies between the 2nd fundamental theorem of welfare economics and the
2nd law of thermodynamics it is concluded that an economic system that is initially
not in equilibrium will be “pushed” to a Pareto optimal equilibrium by increasing the
amount of diversification.

5-3-2 Driving Force in Trade Between Economies

In this subsection the driving force behind trade between two economic systems is analyzed.
The difference in the level of welfare (poverty) is identified as the driving force in trade
between economies.
Next, consider economic systems that are closed but not isolated. The definitions of closed
and isolated economic systems is given in Section 2-2. Closed economic systems that trade
with one another are found to be analogous to two thermodynamic systems that can exchange
heat, but do not exchange particles reaching a thermodynamic equilibrium.
Figure 5-2 shows a schematic view of two closed economies trading.

Total System
A B

Trade

Figure 5-2: Schematic view of two economies A and B that are isolated from the rest of the
world, but allowed to trade between themselves. Migration is not allowed. Eventually both
economies reach macroeconomic equilibrium with the same level of welfare Θ.

In Subsection 5-3-1 it is argued that the amount of diversification of a economic system cannot
spontaneously decrease and is maximized in macroeconomic equilibrium.
It holds for the amount of diversification of the total system (economy A and B) that:

S = SA + SB, (5-13)

where S = ln (Ω (U, N, D)) = ln (Ω (GDP, N, D)) as given in (5-41).
The definition of a closed economy implies that the number of agents is constant. I assume
that the number of distinct goods D is also constant.
The amount of diversification in economies A and B thus only depends on the the GDP in
each nation. Since the total allocated economic rent H = HA + HB is fixed and GDP = ⟨H⟩
it holds for the total GDP that:

GDP = GDPA + GDPB = constant, (5-14)
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and
∆GDPA = −∆GDPB. (5-15)

Combining equation (5-13) and the fact that S is maximized in macroeconomic equilibrium
yields:

∂S

∂ GDPA
= ∂SA

∂ GDPA
+ ∂SB

∂ GDPA
= 0, (5-16)

where it was used that D and N are kept constant.
Substitution of (5-15) in (5-16) yields:

∂SA

∂ GDPA
= ∂SB

∂ GDPB
. (5-17)

The expression given in (5-17) is the condition for macroeconomic equilibrium between
economies A and B. Since the total amount of diversification cannot decrease, economies
that trade with one another eventually reach equilibrium.

The term ∂Si
∂ GDPi

I propose to call the level of poverty of economy i.
In an economy with a low level of poverty, the amount of diversification barely increases with
an increasing GDP. An economy with a high level of poverty on the other hand will gain a
substantial amount of diversification options with an increase in the GDP.

The level of poverty of an economy is the analog of the inverse temperature β of a
thermodynamic system:

β = 1
Θ = ∂S

∂ GDP , (5-18)

where Θ is the level of welfare, the analog of temperature.

Economies that have a differing level of welfare (poverty) are not in equilibrium. A net flow
of economic rent is thus present. Once equilibrium has been reached the net flow of economic
rent is zero and the level of welfare (poverty) is equal in both economies.

I propose to view the difference in the level of welfare (poverty) as the driving force of
trade between economies.

How long it takes before macroeconomic equilibrium is reached is an unanswered question in
this thesis. To answer this question the analogs between economics and statistical physics
must be extended to the domain of non-equilibrium statistical mechanics [48].

5-3-3 Driving Force behind Migration

In this subsection the driving force behind migration is analyzed. The difference in the
disposable income per capita is identified as the driving force behind migration.
It is shown that two economies that are allowed to trade with one another and have open
borders eventually reach a macroeconomic equilibrium. This is found to be analogous to
two thermodynamic systems that can exchange heat and particles reaching a thermodynamic
equilibrium.

Consider economic systems that are open, meaning they are allowed to trade with one another
and agents are allowed to migrate from one economic system to another.
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Figure 5-3 shows a schematic view of two open economies A and B trading and exchanging
agents. The two economic systems are open with respect to each other but isolated from the
rest of the world, meaning that they do no trade with or have open borders for any other
economy.
The definitions of isolated and open economic systems are given in Section 2-2.

Total System
A B

Trade

Migration

Figure 5-3: Schematic view of two economies A and B that are isolated from the rest of the
world, but are allowed to trade between themselves and have open borders. Migration is thus
allowed. Eventually both economies reach macroeconomic equilibrium with the same level of
welfare Θ and disposable income per capita υ.

In Subsection 5-3-1 it is argued that the amount of diversification of a economic system in
maximized in macroeconomic equilibrium.
Subsection 5-3-2 argues that two economies that are allowed to trade will eventually reach
the same level of welfare (poverty) upon reaching macroeconomic equilibrium.

As is the case for open economic systems the total amount of diversification S is the sum of
the amount of diversification in systems A and B respectively (5-13) and with S as defined
in (5-41).

In open economies the agents are allowed to migrate from one economic system to the other.
Together, economies A and B form an isolated system. From the definition of isolated systems
it follows that:

N = NA + NB = constant, (5-19)

and
∆NA = −∆NB. (5-20)

Equations (5-14) and (5-15) also hold for the open economies A and B.
It is assumed that the number of distinct goods D is a constant.

The amount of diversification S in each economy depends on the GDP and the number of
agents of each economy.
The dependence of S on the GDP is shown in subsection 5-3-2.

Analogous to the derivation of the driving force in trade between two economies, as shown in
subsection 5-3-2, maximization of the amount of diversification means that:

∂S

∂NA
= ∂SA

∂NA
+ ∂SB

∂NA
= 0, (5-21)
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which results in:
∂SA

∂NA
= ∂SB

∂NB
. (5-22)

This means that the term ∂S
∂N is equal in economies that are in equilibrium. The change in

the amount of economic diversification w.r.t. the change in population size of both economies
must thus be equal in macroeconomic equilibrium.
In physics literature the chemical potential is defined as:

µ

Θ := − ∂S

∂N
, (5-23)

where Θ is the temperature and µ is the chemical potential. Since it is known that the
temperature Θ is equal in equilibrium, it must hold that the chemical potential in systems A
and B is the same in equilibrium.
As is the case with gravitational potential, particles flow from a high to a low chemical
potential and reach equilibrium when no potential gradient exists.
Following the analogy between economics and statistical physics, the economic engineering
analog of the chemical potential µ of economies A and B must be equal in macroeconomic
equilibrium.
Similar to how particles move from a system with a higher to a system with a lower chemical
potential when a potential gradient exists, economic agents will move from an economy with
a high “economic chemical potential” to a low “economic chemical potential”, thus resulting
in migration.
Economic literature [49] states that agents migrate for political, environmental, demographic,
social and economic reasons. In this only the economic motivation for migration is considered.
In Subsection 3-1-5 it is mentioned that agents are assumed to be rational. It was then argued
that the trading decisions agents make are based on the principle of maximizing their utility
or minimizing their running costs. Rational agents were found to maximize their surplus T .
In an open economy agents are allowed to both trade and migrate. A rational agent seeking
to maximize his utility will not necessarily seek to maximize his surplus. Instead, he will seek
to maximize his disposable income.
The disposable income is the part of an agents’ income that is available for spending after his
fixed expenses have been deducted [14].
A rational agent will thus seek to maximize his disposable income and migrate to the
economy that allows him to do so. This is analogous to a particle looking to minimize its
chemical potential.
Once the disposable income per capita of both economies is equal, macroeconomic equilibrium
has been reached and the net migration of agents is zero.

The disposable income per capita is the proposed analog of the negative of the chemical
potential of a thermodynamic system. The difference in the disposable income per
capita of the economies is identified as the driving force behind migration.

The disposable income per capita is given the symbol υ, where υA = υB in equilibrium. From
(5-22) it follows that:

υ

Θ := ∂S

∂N
, (5-24)
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where (5-24) is the economic engineering analog of (5-23).
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5-4 Statistical Approach for Deriving Macroeconomics from Mi-
croeconomics

In this section macroeconomic variables are derived from microeconomics using a statistical
approach. This is done by deriving the distribution of economic microstates ϱ of an economic
system. Once ϱ is found, the relevant macroeconomic variables of the economic system can
be derived.

The constraints on the economy determine the form of the distribution of microstates in the
price-quantity space. This distribution is called the probability density function.

In Subsection 5-4-1 the probability density function is introduced.

In Subsection 5-4-2 the conditions the probability density function must adhere to in order
to achieve macroeconomic equilibrium are given.

In Subsection 5-4-3 the probability density function is derived for isolated economic systems.
The analog of the entropy S is also derived in this subsection. This is the major contribution
of this thesis for the field of economic engineering.

In Subsection 5-4-4 the probability density function for closed economic systems is derived.
The analogs of free energy F and the heat capacity C are derived and given an economic
interpretation in this subsection.

In Subsection 5-4-5 the probability density function for open economic systems is derived.
Furthermore, the expected population size of an economy is derived, as well as how this is
related to the disposable income per capita υ and the level of welfare Θ.

5-4-1 Probability Density Function for Economic Systems

The probability density function gives the distribution of accessible economic microstates in
the price-quantity space. The definitions of the price-quantity space and economic microstates
are given in Section 2-2.

The determination of the probability density function is the fundamental problem of
the statistical approach. Depending on the constraints on the economic system, a
suitable probability density function is found, from which the macroeconomic state of
the economy is found.

To set the stage for deriving a probability density function, some background and mathemat-
ical prerequisites are given in the current and following subsection.

In Subsection 3-1-5 the expressions found in literature for the time evolution of the reservation
prices and inventories are given. It is shown in Subsection 5-2-2 that pi,α indicates the
reservation price of agent i for good α while qi,α is the stock level of agent i for good α.
To find the time evolution of the prices and inventories of all N agents in an economic system
consisting of D goods, Hamilton’s equations must consist of 2ND first order equations:

q̇i,α = ∂H

∂pi,α
, (5-25)
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ṗi,α = − ∂H

∂qi,α
, (5-26)

where H is the total allocated economic rent as given in (5-3).
Hamilton’s equations give the time evolution of the economic system in the price-quantity
space for any given initial state, where the initial state is a single point in the price-quantity
space from where the trajectory starts [4].
If the reservation prices and stock levels of all agents are known precisely, the exact state of
the economic system can be determined. Since agents can only acquire a surplus through
trade, the prices and stock levels provide sufficient information to specify the state of the
economic system.
Subsection 5-1 argues however that knowing the reservation price and inventory level of all
agents becomes prohibitively difficult for large N and D. Furthermore, solving these 2ND
differential equations requires a prohibitive amount of computational power.
Instead, the probability of finding an economic system in a particular economic microstate
(q, p) is of interest. The goal is thus to find a distribution function that shows how the
possible microstates are distributed in the price-quantity space. This distribution function is
called the “probability density function” and and represents the “density” of the probability
distribution in the price-quantity space.
The probability density function ϱ shows the distribution of the economic microstates in the
price-quantity space and the microstates consists of reservation prices and inventory levels of
all agents. It can thus be concluded that ϱ must be a function of the inventory levels and the
reservation prices. This is also consistent with the statistical physics analogy.
The probability density function must also depend on time, since the time evolution of ϱ
provides information on how the economy evolves over time. It must thus hold that:

ϱ = ϱ(q, p; t), (5-27)

where q and p are:

q =


q1
q2
...

qN

 , p =


p1
p2
...

pN

 , (5-28)

with qi and pi as given in (5-2). The price vector pi and inventory level vector qi are thus
both of length DN .
The probability of finding an economic system at time t where the stock levels are inside a
DN -dimensional “box” dDq1dDq2 . . . dDqN ≡ dDN q and the reservation prices in a similar
box dDp1dDp2 . . . dDpN ≡ dDN p is:

ϱ (q, p; t) dDq1dDq2 . . . dDqN · dDp1dDp2 . . . dDpN = ϱ (q, p; t) dDN qdDN p. (5-29)

The mathematical form and dependency of the probability density function is analyzed in
Subsection 5-4-2.
In this thesis the proposed solution to the difficulties encountered in the general equilibrium
approach taken in current economic literature is finding a suitable probability density func-
tion based on the constraints on the economic system.
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To find the economic equilibrium using the general equilibrium theory requires a lot of com-
putational power. This is discussed in Subsection 3-2-4.
The problem of requiring a high computational power was also encountered in physics. In
Subsection 5-1 the motivation for a statistical approach to bypass this problem is given.

Using a statistical approach, only information about the constraints on the economy is
required to find the state of the economy in macroeconomic equilibrium.

5-4-2 Probability Density Function Prerequisites for Macroeconomic Equilibrium

In this subsection the conditions the probability density function must adhere to in order to
achieve macroeconomic equilibrium are given.
Furthermore it is shown that the probability density function can be used to determine the
expected value of macroeconomic state variables.

Macroeconomic Equilibrium

In this thesis an economic system is said to be in a macroeconomic equilibrium when no
economic growth occurs and the economy is autonomous.
An autonomous economic system is defined as an economic system where no exogenous eco-
nomic rent source is present. This means that no financial aid is received.

According to economic literature, economic growth is an autonomous or endogenous increase
in the GDP [14], while financial aid is an example of of an exogenous increase in the GDP.

Subsection 5-2-3 argues that the GDP is the economic engineering analog of the internal
energy U of a thermodynamic system. The internal energy of a thermodynamic system is a
type of thermodynamic potential. The thermodynamic potential of a system in equilibrium
remains unchanged. The equilibrium conditions of statistical physics can thus also be applied
to an economic system.

Following the analogies found between economics and statistical physics, the equilib-
rium conditions for thermodynamic equilibrium in physics are applied to economic
systems for macroeconomic equilibrium.

For a physical system in equilibrium, the probability density function must remain constant
in time, since a probability density function that is increasing in time corresponds with an
increase in the phase space volume, meaning an increase in the total energy [4].
The same argument is made for an economic system. The probability density function must
remain constant in time for macroeconomic equilibrium, since the total economic rent is
constant and time-independent.

Mathematical Description of Macroeconomic Equilibrium

The conditions for macroeconomic equilibrium are found mathematically using Liouville’s
theorem.
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Liouville’s theorem in statistical mechanics describes the time evolution of the phase space
probability density function ϱ (q, p; t). The theorem can thus also be used to describe the
time evolution of the price-quantity probability density function of the economic system.
The Liouville equation states that:

dϱ

dt
= ∂ϱ

∂t
+

N∑
i=1

D∑
α=1

(
∂ϱ

∂qi,α
q̇i,α + ∂ϱ

∂pi,α
ṗi,α

)
= 0, (5-30)

meaning that the probability density function is constant along any trajectory in the price-
quantity space.
The second term in (5-30) is recognized as the Poisson bracket of ϱ and H using Hamilton’s
equations ((5-25) & (5-26)):

dϱ

dt
= ∂ϱ

∂t
+ {ϱ, H} = 0. (5-31)

A perfect market is assumed, so no economic rent is dissipated within the economy. Also, no
external source or sink of economic rent is present. Expression (3-21) shows that the total
economic rent E is thus equal to the total allocated economic rent H, meaning that H is a
constant. Thus, the total allocated economic rent H does not depend explicitly on time.
Receiving financial aid is a form of an economic rent source, while giving out financial aid is
an example of a sink.

An important property of the Poisson bracket is that if ϱ = ϱ(H), the Poisson bracket
disappears [46]:

{ϱ(H), H} = 0. (5-32)

Combining (5-31) and (5-32) under the conditions that ϱ = ϱ(H) and H does not explicitly
depend on time yields:

∂ϱ

∂t
= 0, (5-33)

meaning that the ensemble is stationary.

An ensemble is a term used in statistical physics for a collection of systems which are macro-
scopically identical. However, many microscopic configurations can lead to the same macro-
scopic states. A stationary ensemble thus means that from a macroscopic point of view, the
system is in equilibrium.

Economically a stationary ensemble means that the economic system is in macroeconomic
equilibrium. The condition that the total economic rent does not explicitly depend on time
is clear now, since an economy receiving financial aid is not in equilibrium, similar to how a
driven mechanical system is not in equilibrium.

To achieve equilibrium, the probability density function ϱ must thus lead to a stationary
ensemble and be of the form

ϱ (q, p; t) = ϱ (q, p) = ϱ(H). (5-34)

For macroeconomic equilibrium it must hold that the probability density function is indepen-
dent of time and a function of the total allocated economic rent.
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Finding Macroeconomic State Variables in Macroeconomic Equilibrium

The density function is used to find macroeconomic state variables in macroeconomic equilib-
rium. A macroeconomic quantity f = f(q, p) that depends on the reservation prices p and
inventory levels q of the agents within an economy is found by taking its expected value:

⟨f⟩ :=
∫∫

f (q, p) ϱ (q, p) dDN q dDN p, (5-35)

where examples of f are the total allocated economic rent H, the total surplus T and the
population size N .

5-4-3 Constant Economic Rent Ensemble & Entropy

In this subsection the probability density function of isolated economic system is derived.
Furthermore, the statistical interpretation of entropy for economic systems is given.

The economic engineering analog of the statistical interpretation of entropy is the main
contribution of this thesis and is called the amount of diversification. The amount of
diversification for an isolated economic system is derived in this subsection.

Subsection 5-4-2 argues that for economies in equilibrium, the probability density function ϱ
must be a function of the total allocated economic rent and no economic rent sources or sinks
may be present.

Furthermore, it is argued that an economic ensemble is a collection of all possible economic
microstates that lead to a certain macroeconomic state.
Thus, depending on the macroeconomic state and constraints of the economy an appropri-
ate probability density function is chosen. This probability density function shows how the
possible economic microstates of the identified ensemble are distributed in the price-quantity
space.

Isolated & Perfect Economy

An isolated and stationary economic system is considered.
Stationary means that the economy is in equilibrium as argued in Subsection 5-4-2 and will
remain in equilibrium.
Isolated means that the economy does not interact with the rest of the world. No agents
enter or leave the economy, there is no growth in the population, no goods are being traded
with foreign economies and no financial aid is received. The total allocated economic rent H
of the economy is thus constant. Economists can consider this to be an autonomous system
or a Robinson Crusoe economy of many agents.

Finally, it is assumed that the economy is in perfect competition [15]. In economic literature
a market in perfect competition has a large number of agents who are all rational. There are
also no transaction costs.

A perfect market has similarities with an ideal gas. There are a large number of particles
and analytical mechanics literature [9] states that the principle of stationary action applies
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to each particle. The analogy between rational agents and the principle of stationary action
as used in current economic engineering literature was given in 3-1-5.
There is no dissipation of energy due to particle interaction in an ideal gas. In economic
literature transaction costs are a form of economic rent dissipation. A perfect market has no
transaction costs, consistent with the analogy to an ideal gas.

Distribution of Economic Microstates

In statistical physics literature the postulate of equal a priori probabilities states that for a
system of fixed energy, each configuration with that energy level is equally likely to be visited
by the phase space trajectory in the course of time.
Applied to an isolated and stationary economic system, this postulate states that every eco-
nomic microstate in the price-quantity space at a particular value of the allocated economic
rent H is equally likely to occur.
Although the total allocated economic rent of an isolated economic system is preserved, there
is no way of knowing the exact value of H. In Subsection 5-1 it was argued that knowing the
exact reservation price and inventory level of all agents is practically impossible.
The analogy to Heisenberg’s uncertainty principle was made in the argument of Section 5-1.
The uncertainty principle holds not only for uncertainties in momentum and position, but for
any pair of conjugate variables [46].
Thus, the same principle also prohibits measuring the exact value of the Hamiltonian of a
particle at a specified moment in time. Naturally, the total Hamiltonian of the system cannot
be known exactly at a specified moment in time.
Following the analogy of Heisenberg’s principle, the economic interpretation is that the exact
value of the total allocated economic rent cannot be known. Although H is said to be constant
for an isolated economy, its exact value is unknown.
For the total allocated economic rent H it holds that H ≤ H (q, p) ≤ H + ∆H, where ∆H is
the uncertainty in the total economic rent.
Using the postulate of equal a priori probabilities, the economic microstates accessible to the
economy of allocated rent H are uniformly distributed inside a infinitesimal hyper-spherical
shell of dimension 2ND and width ∆H. In Figure 5-4 the infinitesimal hyper-spherical shell
containing the possible microeconomic states is shown for an economic system consisting of
a single agent (N = 1) and a single good (D = 1), where the hyper-spherical shell reduces
to a ring of width ∆H. Since the economic microstates are uniformly distributed within the
hyper-spherical shell, the probability density function must be of the form [17]:

ϱ (q, p) =
{

C H ≤ H (q, p) ≤ H + ∆H
0 otherwise , (5-36)

where C is a to be determined constant.
Expression (5-36) shows indeed that the economic microstates are uniformly distributed.

Counting Economic Microstates

Next the possible economic microstates of the economic system of constant allocated rent are
counted.
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q

p

Figure 5-4: Schematic view of the infinitesimal shell of width ∆H containing the allowed eco-
nomic microstates of the system for an economy with one agent and one good. The allowed
microstates are uniformly distributed within the shell.

I propose to call the amount of possible economic microstates the amount of
options available for economic diversification.

Since ϱ is a probability distribution function, it must be normalized:

1 =
∫∫

ϱ (q, p) dDN q dDN p = C

∫∫
H≤H(q,p)≤H+∆H

dDN q dDN p , (5-37)

where the integral is performed over the region H ≤ H (q, p) ≤ H + ∆H. The right-hand
side of (5-37) yields:

C [ω̃ (H + ∆H) − ω̃ (H)] = 1. (5-38)
In physics literature ω̃ (H) is known as the volume of the phase space of region H (q, p) ≤ H
and ω̃ (H + ∆H) is the phase space volume of region H (q, p) ≤ H + ∆H. The phase space
volume of the hyper-spherical shell is thus simply the difference between the two, which is
the inverse of C.
Using the phase space volume of the hyper-spherical shell, the amount of microstates within
the shell is determined. Physics literature [4] argues that microstates cannot be distinguished
due to Heisenberg’s uncertainty principle if they are located too close to one another in phase
space. It is thus proposed to divide phase space in small boxes of hypervolume (∆p∆q)DN ,
where it must hold that ∆p∆q ≳ ℏ.
Furthermore, for gases consisting of identical gas particles, swapping the position of two
particles does not change the microstate, since swapping identical particles does not lead to
a identifiable change in the configuration of the system. A term of N ! is taken to account for
the indistinguishability when swapping particles.
The amount of distinguishable microstates contained inside the phase space volume enclosed
by the hyper-spherical shell is called the multiplicity Ω (H) and is given as:

Ω (H) = ω̃ (H + ∆H) − ω̃ (H)
N ! ℏDN

, (5-39)

where the numerator indicates the hypervolume of the hyper-spherical shell in phase space
and ℏDN is the hypervolume of a box containing a single microstate.
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The multiplicity is a function of the total energy of the system. If the Hamiltonian of the
system increases, the amount of microstates Ω will increase as well.
Although rarely mentioned in physics literature, equation (5-39) shows that the multiplicity
depends on N and D as well. This statement is redundant in physics because for an isolated
system the number of agents N remains constant and D = 3 in physical systems. As a result,
both N and D are constant and do not affect the multiplicity.

The derivation of the multiplicity is given an economic interpretation as well.
The “volume” of the hyper-spherical shell in the price-quantity space is the total “hyper-value”
or wealth within an economy. For the simplified economy of 1 agent and 1 good Figure 5-4
the “volume” of the hyper-spherical shell reduces to the area of a strip, indicating the total
value measured in $. For an economic system with 2ND degrees of freedom, the unit of the
“hyper-value” is $ND.

As mentioned in Section 5-1, economic transactions are always quantized. Regular transac-
tions are rounded to the nearest integer of $0.01 = 1¢, which is measured in $. Economic
microstates for an economy with N = 1 and D = 1 are thus automatically separated by at
least one unit of ¢, the economic engineering analog of ℏ. For an economic system with 2ND
degrees of freedom, the numerator of (5-40) thus has the units of $ND. This is the unit of
the denominator as well, since the amount of economic microstates should be a dimensionless
quantity.

For an isolated economy of constant total economic rent H, where H ≤ H (q, p) ≤ H + ∆H
the “volume” of the price-quantity space of allowed economic microstates ω̃ (H) is a hyper-
spherical shell of width ∆H, consistent with the physical analogy.

Next, the multiplicity is found for economic systems and given economic interpretation. The
multiplicity is the amount of economic microstates available to the economic system:

Ω (H) = ω̃ (H + ∆H) − ω̃ (H)
N ! ¢DN

. (5-40)

In (5-40) it is assumed that agents are identical and indistinguishable, leading to the N ! term.
This is analogous to physics literature. If every agent is unique, this term can be omitted.

If the agents of the economy can be split into groups where two agents from the same group are
indistinguishable but agents from different groups can be differentiated, a suitable constant
must replace the N ! term in (5-40). Groups of agents can be made for example on the basis
of their price elasticity of demand. This is an analog of a mixed gas consisting of particles
with different masses.

In economic sense I propose to view the multiplicity as the amount of options available
for diversification. It shows the amount of distinguishable ways the economic rent can be
allocated within an economy.
Finding the amount of options available for diversification thus comes down to determining
the amount of allowed economic microstates. The different ways of economic diversification
are discussed in the segment “Economic Diversification” of Subsection 5-4-3.

For an ideal gas, the numerator of equation (5-39) is calculated by determining the surface
area of a hyper-spherical shell in DN dimensions [4]. This result contains the term LDN ,
where LD is the D dimensional volume of the system.
To find the numerical value of the numerator of equation (5-40) an economic engineering
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analog of the volume is needed. This analog is not found in this thesis.
As a result no quantitative calculations relating to economic engineering analog of the entropy
can be made in this thesis.

Economic Diversification

In general there are three ways in which the options available for diversification Ω can increase,
namely with an increase in the economic rent, with an increase in the number of agents and
with an increase in the number of goods within the economy.

As the total allocated economic rent increases, the amount of configurations of q and p that
lead to the corresponding value of H increases. The amount of options in which the economic
rent can be distributed thus increases.
For an isolated economy the total allocated economic rent is constant and the amount of
options available for diversification does not increase due to an increase of the economic rent.

If N increases, the economic rent must be distributed among more agents. The amount of
ways in which the rent can be distributed increases.
For an isolated economy the number of agents is constant and the amount of options available
for diversification does not increase due to population growth.

Economies with more product diversification, so a higher number of distinct goods D, have
more options available for diversification as well. A higher product diversification means
agents can trade more distinct goods and can diversify their inventory more.
In Subsection 3-1-2 it was argued that an agent chooses to follow the “trading path” that
maximizes his utility. In an economy with more product diversification the number of “paths”
available to the agent increases.

The difference between the statistical approach proposed here and the general equilibrium
approach taken in economic literature to find the macroeconomic state of the economy is thus
clear.
In the statistical approach the number of ways the economic rent can be distributed to reach
a macroeconomic state are counted. Only H, N and D are needed to do this.
Subsection 3-2-4 shows that in the general equilibrium approach all information about the
stock level and reservation prices of the agent is needed. Also, the equilibrium state can only
be found by brute force calculation.

Example of Economic Diversification Increase

To illustrate the various ways of increasing the economic diversification an example is given.
Consider an exchange economy consisting of N = 2 agents. Initially there is only 1 distinct
good (D=1) available, namely apples. In this example the allocated rent of an agent is the
number of apples he owns. The total allocated economic rent H = H of the economy is thus
H = H1 + H2 and is equal to the number of apples available within the entire economy.

Initially there are 4 apples, so H = 4. If (a1, a2) shows the number of apples agents 1 and
2 own respectively, the apples can be distributed as follows: (4,0), (3,1), (2,2), (1,3), (0,4).
There are thus 5 options available for diversification.
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The first way the amount of options available for diversification Ω can increase is due to an
increase in the total allocated economic rent H. If the number of apples within the economy
is increased to 5, the apples can be distributed as follows: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5).
There are now 6 options available for diversification.

Next, consider population growth. If the economy with 4 apples now has N = 3 agents the
apples can be distributed as follows: (4,0,0), (3,1,0), (3,0,1), (2,2,0), (2,1,1), (2,0,2), (1,3,0),
(1,2,1), (1,1,2), (1,0,3), (0,4,0), (0,0,4), (0,3,1), (0,1,3), (0,2,2). There are now 15 options
available for diversification.

The final way the options of available for diversification can increase is due to product diver-
sification. Consider the economy with N = 2 agents and H = 4 fruits. There are now both
apples and pears; 2 of each. For simplicity agents have no preference between apples and
pears so the allocated economic rent due to ownership of an apple and pear is equal.
Let (a1, p1, a2, p2) be the number of apples and pears for agents 1 and 2 respectively. The
fruits can now be distributed as follows: (2,2,0,0), (2,1,0,1), (2,0,0,2), (1,2,1,0), (1,1,1,1),
(1,0,1,2), (0,2,2,0), (0,1,2,1), (0,0,2,2). There are now 9 options available for diversification.
If apples and pears cannot be distinguished, Ω reduces to the 5 options available in the original
scenario.

The example given here illustrates that the amount of options available for economic diver-
sification depends on the level of the total allocated economic rent, on the number of agents
and the number of distinct goods. From this it follows that Ω = Ω(H, N, D).

Amount of Diversification & Entropy

As argued in the segment “Distribution of Economic Microstates” of Subsection 5-4-3, it is
assumed that in an isolated economy the economic microstates are uniformly distributed,
consistent with the postulate of equal a priori probabilities in statistical physics.
It is argued in the segment “Economic Diversification” of Subsection 5-4-3 that the amount
of microstates or options available for diversification increases with increasing H, N and D.

Since each microstate is equally likely to be occupied, the uncertainty in the knowledge of
the occupied microstate of the economic system increases when the multiplicity or amount of
options available for diversification Ω increases.

In statistical physics the uncertainty of the occupied microstate of the system is called
the entropy. As such, the economic engineering analog of the entropy is the amount
of diversification

The amount of diversification S is given as:

S (H, N, D) = ln (Ω (H, N, D)) = ln
(

ω̃ (H + ∆H) − ω̃ (H)
N ! ¢DN

)
, (5-41)

where the natural logarithm of Ω is taken and with Ω as given in (5-40).
The economic engineering interpretation of the logarithm is given in Section 2-4.

Taking the logarithm of the options gives the amount of choices that need to be made to find
the economic microstate.
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For example, these choices are made by an entrepreneur looking to make a profit by trading
with the economy. The entrepreneur must first identify where the economic rent is allocated
before he can start trading.
The economic diversification can thus also be seen as the amount of choices that need to be
made to find the economic microstate of the economic system. In a more diversified economy,
more choices need to be made before the correct state is found.
In economic literature the economic diversification means shifting an economy away from a
single source of income toward multiple sources [14].
The term also pops up when considering investment portfolio’s, where diversification means
that money is invested in different asset classes and securities in order to minimize the overall
risk of the portfolio [14].
Finally, a more general definition of economic diversification is variations in the economic
status or the use of a broad range of economic activities in a region or country [50].
In this thesis a slightly different definition is used. Here the term diversification means that
the possibilities for dispersion of economic rent have increased. This can happen happen in
two ways, namely over D and over N .
Dispersion over D tells you how a single agent chooses to diversify his portfolio. If more
goods are available within an economic system, an agent will have more diversification options
available.
Dispersion over N tells you how the total surplus of an economic system is distributed over
the population. This is known in economic literature as the income distribution.
In this thesis, the diversification of an agents portfolio and the distribution of surplus over
the population are both contained within the amount of diversification S, which is the analog
of entropy.
S is thus the natural variable that contains the information about the diversification of port-
folios en distribution of surplus within an economy.
Equation 5-41 gives the expression of the amount of diversification derived from microeco-
nomic variables. In Chapter 6 this is compared to its macroeconomic interpretation.

Amount of Diversification from Information Theory

The amount of diversification can also be found using Shannon’s definition of entropy [10] for
a continuous distribution, as derived by Jaynes [51]. This is the expression Gibbs used in his
derivation of entropy and is given as:

S = −
∫∫

ϱ (q, p) ln
(

ϱ (q, p)
K

)
dDN qdDN p, (5-42)

where
K = 1

¢DN N ! , (5-43)

as proposed by Jaynes and upon substitution of ℏ for ¢.
Since the probability density function ϱ (q, p) is a constant for an economy with a constant
total economic rent H, equation (5-42) becomes:

S = ln
( 1

ϱ (q, p) ¢DN N !

)∫∫
ϱ (q, p) dDN qdDN p, (5-44)
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where the integral reduces to unity per definition of the probability density function.
The term in front of the integral is exactly equal to the expression given in (5-41) after
substitution of (5-36) and (5-38) in equation (5-44).

The amount of diversification S can thus be determined by following the definitions used in
statistical physics or in information theory, as these are equivalent.

5-4-4 Constant Level of Welfare Ensemble & Potential Profits

In this subsection the probability density function of closed economic systems is derived.
Furthermore, the economic engineering analog of the partition function is found and is
called the opportunity function.
Finally, the maximum profit available for trading with a closed economy is found, which
is found to be the analog of the change in the (Helmholtz) free energy.

Closed Economy

Economic systems are considered that are closed but not isolated. A closed economy is defined
as an economy that has no population growth and does not allow cross-border migration, but
does allow its inhabitants to trade with foreign economies.

Total System
B

ATrade

Figure 5-5: Schematic view of two economies A and B that are isolated from the rest of
the world, but allowed to trade between themselves. Migration is not allowed. Economy B is
considered large enough that trading does not influence its level of welfare.

For simplicity consider two economies A and B as shown in Figure 5-5, where the economy
A is of interest and economy B is extremely large. Free trade is allowed between the two
economies. Agent migration between the economic systems is not allowed.

Equal Welfare

In Subsections 5-2-4 and 5-3-2 it is argued that if the level of welfare of the two economies
is not equal, a net flow of economic rent will be present. The direction of the net flow is
from the economy with a higher level of welfare to the economy with a lower level of welfare.
Eventually a dynamic equilibrium is reached, where the economies are still allowed to trade,
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but no net transfer of allocated economic rent exists. This happens when the level of welfare
has become equal in both economies.

Since economy B is considered to be extremely large, it is argued that no amount of trading
with economy A can significantly affect the level of welfare of economy B. The level of welfare
of economy B is thus constant and eventually economy A will reach the same level of welfare.
In equilibrium it holds that:

ΘA = ΘB = Θ. (5-45)

This is the analog of a system in thermal contact with a large heat bath of constant temper-
ature. Eventually a thermal equilibrium will exist between the system and the heat bath.
Economic literature shows that in international trade, the level of welfare of the economy that
has a low level of welfare increases [52].

The two economies A and B are isolated from the rest of the world. The total allocated
economic rent H = HA + HB is thus constant. This was argued in Subsection 5-4-3.
Following the definition of an isolated system, any change in HA must mean a change of
opposite sign in HB, as given in (5-15).

Distribution of Economic Microstates

Since the two economies are isolated from the rest of the world, the probability density
function derived in Subsection 5-4-3 holds for the combined system AB:

ϱAB

(
qA, pA; qB, pB

)
=
{

C H ≤ HA

(
qA, pA

)
+ HB

(
qB, pB

)
≤ H + ∆H

0 otherwise
, (5-46)

where qj and pj indicate the inventory levels and reservation prices (5-28) of all agents and all
goods in economy j. Because transactions are rounded to the nearest multiple of ¢ as argued
in Subsection 5-1, the total allocated economic rent of the two economic systems cannot be
known exactly, but is known up to an uncertainty ∆H.

Only the statistical distribution of economy A is of interest. To find the probability density
function belonging to A, the degrees of freedom corresponding to system B in (5-46) must be
integrated out:

ϱA

(
qA, pA

)
=
∫∫

ϱAB

(
qA, pA; qB, pB

)
dDN qB dDN pB, (5-47)

which yields [17]:
ϱA

(
qA, pA

)
= C · ΩB

(
H − HA

(
qA, pA

))
, (5-48)

where ΩB

(
H − HA

(
qA, pA

))
is the multiplicity or options available for diversification of

economy B at economic rent HB

(
qB, pB

)
= H − HA

(
qA, pA

)
and C is a to be determined

constant.

Expression (5-41) of Subsection 5-4-3 shows the relation between the amount of diversification
and the options available for diversification. Applying (5-41) to economy B yields:

SB (HB) = ln (ΩB (HB)) , (5-49)
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where the dependence on N and D is dropped since agent migration is prohibited and no
product diversification is assumed.

Since economy B is much larger than economy A, it is fair to assume that H ≈ HB

(
qB, pB

)
≫

HA

(
qA, pA

)
. Hence (5-49) is approximated by a Taylor expansion around HA = 0:

SB (HB) ≈ SB (H) −
(

∂SB

∂HB

)
· HA

(
qA, pA

)
. (5-50)

∂SB
∂HB

is recognized as the inverse of the level of welfare ΘB of economy B, as shown in (5-18)
upon realization that ⟨H⟩ = U = GDP.
Combining equations (5-45) and (5-50) yields:

SB (HB) = C ′ −
HA

(
qA, pA

)
Θ , (5-51)

where SB (H) = C ′ is a constant once the economies are in equilibrium. Once the two
economies have reached the same level of welfare, the amount of diversification of the total
economic system can no longer increase and is thus constant.
Taking the exponential function to both sides of (5-51) yields:

ΩB (HB) = C ′ exp

−
HA

(
qA, pA

)
Θ

 . (5-52)

Combining (5-48) and (5-52) yields the expression for the probability density function of an
economy with a constant level of welfare:

ϱA

(
qA, pA

)
= 1

¢DN N ! ZΘ
exp

−
HA

(
qA, pA

)
Θ

 , (5-53)

where ¢ and N ! have the same role as in the normalization of the constant economic rent
ensemble (5-40), namely to distinguish economic microstates.
ZΘ is the economic engineering analog of the partition function called the opportunity
function, which is a constant that normalizes the probability density function.
The significance of the opportunity function is discussed in the segment “Opportunity Func-
tion & Level of Poverty” of Subsection 5-4-4.
The expression for the probability density function (5-53) shows that for a certain level of
welfare Θ, high values of economic rent HA are discounted. This is because for a certain value
of Θ there are many more allocations of low economic rent than allocations of high economic
rent leading to that level of welfare. The probability of finding agents with a high amount of
surplus in an economy with a low level of welfare falls of exponentially.
In a perfect market, the allocated economic rent is equal to the total surplus of all agents.
Expression (5-3) shows that the total surplus is a function of pTp.
The probability density function of a closed economy with identical agents in a perfect market
has the form of a normal distribution with variance σ2 ∝ Θ.
In a closed economic system where level of welfare is high, the probability density function is
more spread out. For such economic systems, many allocations of economic rent are possible,
leading to many possible economic microstates. The amount of diversification thus scales
with the variance.
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Opportunity Function & Level of Poverty

The probability density function for a closed economy is given in (5-53). The opportunity
function ZΘ is a dimensionless function that normalizes the distribution function and is given
as:

ZΘ = 1
¢DN N !

∫∫
exp

−
HA

(
qA, pA

)
Θ

dDN qdDN p. (5-54)

In this thesis ZΘ is called the opportunity function because of its relation to the amount of
options available for diversification.
In physics literature it is given that the partition function and the multiplicity are related as
[19]:

ZΘ (β) =
∫

Ω (H) exp (−βH) dH, (5-55)

where it is shown that the partition function is the Laplace transform of the multiplicity. β
is the inverse of the temperature Θ as given in (5-18).
The inverse temperature β is the analog of the level of poverty.

The opportunity function contains all information of the distribution of economic microstates
and depends on the level of welfare (level of poverty).
An economy with a low level of welfare (high level of poverty) will provide little opportunities
for extracting profits trough trading, while the opposite is true for a flourishing economy.

In the economic engineering analogy, the opportunity function is the Laplace transform of
the amount of options available for diversification (5-55). The proof of this is given in Section
A-1 of the Appendix.

The individual terms in the integral of (5-55) are interpreted using the analogies with statis-
tical physics, while the meaning of the Laplace transform is derived from its use in previous
economic engineering research.
In Section 2-4 the meaning of the Laplace transform in economic engineering is given.

The term exp (−βH) in (5-55) is known in physics literature as the Boltzmann distribution
[17], which is a probability distribution function. In this thesis it has the role of discounting
the options available for diversification Ω (H).
The integral (5-55) is thus a weighted summation of all options available for diversification,
where the weight of Ω (H) falls off exponentially for increasing values of the total allocated
economic rent.
The discounting of Ω (H) is over the total allocated economic rent. This is a new application
of the Laplace transform in economic engineering, where previously cash flows discounted
over time were considered [13].

Taking exp (−βH) as a probability distribution function, the opportunity function
ZΘ (β) gives the (weighted) expected value of the options available for diversification
Ω (H) and is interpreted as the opportunities for extracting profits from an economic
system by trading.
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Free Economic Rent & Free Energy

In statistical physics literature [17] the partition function is related to the free energy of the
thermodynamic system. The change in the free energy is the maximum amount of work that
can be extracted from the system.

For a system kept at constant temperature Θ, the corresponding free energy is the Helmholtz
free energy F , which is the Legendre transform of U [17]:

F := U [Θ] = U − ΘS, (5-56)

and with
∆F = Wmax, (5-57)

where U = ⟨H⟩ is the internal energy, which is the expectation value of the Hamiltonian of
the total system and S is the entropy of the system.
∆F is the change in the Helmholtz free energy of the system and Wmax is the maximum
amount of work that can be extracted from the system.

The economic engineering analog of the free energy will be called the free total economic
rent, or free economic rent for brevity, in this thesis.
In a perfect market the term free surplus can also be used as the analog of the free energy.

Using the economic interpretation given to U , Θ and S, the economic engineering analog of
the Helmholtz free energy is:

F = GDP − ΘS. (5-58)

The free economic rent of an economy with a constant level of welfare Θ and an amount of
diversification S is thus given by (5-58).

Trading results in a change in the GDP of an economy and thus a change in the free economic
rent. The change in the free economic rent gives the maximum amount of profits
that can be made from trading with an economy, where the profits made is the analog of the
work extracted from a thermodynamic system.

Building upon the analogs between statistical physics and economic engineering introduced
in this thesis, the relation between the opportunity function ZΘ and the free economic rent
F is derived next.
To do this, the Shannon entropy [10] for a continuous distribution as derived by Jaynes (5-42)
is used [51]. This is the expression Gibbs used in his derivation of entropy. The entropy used
by Gibbs applied to the economic system A with a constant level of welfare gives the amount
of diversification SA of economy A:

SA = −
∫∫

ϱA

(
qA, pA

)
ln

ϱA

(
qA, pA

)
K

dDN qdDN p, (5-59)

with ϱA

(
qA, pA

)
as given in (5-53) and where

K = 1
¢DN N ! , (5-60)

as proposed by Jaynes and upon substitution of ℏ for ¢.
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Rewriting (5-59) and manipulation of mathematical expressions yields:

SA = β

∫∫
HA ϱA

(
qA, pA

)
dDN qdDN p + ln (ZΘ)

∫∫
ϱA

(
qA, pA

)
dDN qdDN p . (5-61)

The first integral of (5-61) reduces to ⟨HA⟩ = GDPA if f = HA is chosen in the expression
for the expectation value as given in (5-35).
The second integral is equal to unity per definition of the probability density function.

Expression (5-61) becomes:
S = β GDP + ln (ZΘ) , (5-62)

where the subscript A is dropped for brevity and generality.
Upon realization that β = 1

Θ , it immediately follows that equations (5-58) and (5-62) are
equivalent if and only if

F := −Θ ln (ZΘ) . (5-63)

In equation (5-63) the natural logarithm of the opportunity function ZΘ is taken. The eco-
nomic interpretation of taking the natural logarithm is given in Section 2-4.

Taking the natural logarithm of the opportunity function yields the expected amount of
choices available to utilize the opportunities of the economy. An economy with a lot of
choices to utilize the opportunities presents a lot of profits available for traders.
Equation (5-63) shows that multiplication of ln (ZΘ) with the level of welfare Θ yields the
magnitude of the free economic rent F .

It makes sense that the free economic rent depends on both the level of welfare as well as the
expected amount of choices for trading. Having more choices means that more manners for
extracting surplus out of an economy are present.
Also, a higher level of welfare means that more surplus can be extracted from the economy.
An economy with a high amount of free economic rent thus presents a high amount of potential
profits that can be extracted from trading with the economy.

Free Economic Rent & Disposable Income

The free economic rent can also be interpreted as the total disposable income.
Physics literature [4] shows that the Gibbs free energy G and the number of agents N are
related as:

G = µN, (5-64)

where µ is the chemical potential.

The Gibbs free energy is the free energy of a thermodynamic system where the temperature
Θ, number of particles N and pressure P are the controlled parameters.
The Helmholtz free energy on the other hand is the free energy of a thermodynamic system
where the temperature Θ, number of particles N and volume V are the controlled parameters.

In this thesis no analogs for the pressure and volume are identified. As a result no distinction
between the Gibbs free energy and the Helmholtz free energy can be made in economic
engineering. The Gibbs free energy and the Helmholtz free energy are assumed to be the
same.
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Replacing G with F in (5-64) yields the relation between the free economic rent F and the
number of agents N within the economy:

F = υN, (5-65)

where υ is the disposable income per capita as argued in Subsection 5-3-3.

From (5-65) it follows that the free economic rent can also be interpreted as the total dispos-
able income.

The change in the total disposable income of an economy is exactly the maximum amount of
profits that can be acquired from trading with that economy.
If the disposable income of an economy has become so low that no one within the economy
wants to trade, no profits can be extracted from that economy. Such an economy is completely
exhausted. This is similar to a thermodynamic system that has reached a minimum amount
of free energy, meaning that no more work can be extracted from the system.

Heat Capacity & GDP Fluctuations

Next, the fluctuations of the GDP of a closed economy is analyzed.
Furthermore, the “heat capacity” of a closed economy is derived, which is proposed to be the
analog of the heat capacity of a thermodynamic system.
The “economic heat capacity” is a measure for the amount of change in GDP required for an
(arbitrarily chosen) unit change in the level of welfare.

Taking the derivative of the opportunity function ZΘ (5-54) w.r.t. β yields:

∂ZΘ
∂β

= − 1
¢DN N !

∫∫
HA

(
qA, pA

)
exp

(
−β HA

(
qA, pA

))
dDN qdDN p. (5-66)

Using the definition of the expected value (5-35) and the expression for the probability density
function for a closed economy (5-53) it follows that:

GDP = ⟨H⟩ = − 1
ZΘ

∂ZΘ
∂β

= − ∂

∂β
(ln (ZΘ)) , (5-67)

or equivalently

GDP = Θ2 ∂

∂ Θ (ln (ZΘ)) , (5-68)

where the subscript A is again dropped for generality.

The differential in equation 5-68 is the change in the amount of choices to utilize the oppor-
tunities w.r.t. the change of the level of welfare. In an economic system with a large GDP, a
marginal increase in the level of welfare yields many more choices to utilize the opportunities.
The opposite is true for an economic system with a low GDP.

The expected value of the squared value of the total allocated economic rent is:

〈
H2
〉

= 1
ZΘ

∂2ZΘ
∂β2 . (5-69)
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The fluctuations in the GDP of the economy are determined by combining equations (5-67)
and (5-69):

(∆ GDP)2 =
〈
H2
〉

− ⟨H⟩2 = Θ2
(

∂ GDP
∂ Θ

)
, (5-70)

where ∆ GDP is the fluctuation of the GDP, which is the standard deviation of H.

The term
(

∂ GDP
∂Θ

)
is defined to be:

C :=
(

∂ GDP
∂Θ

)
= (∆ GDP)2

Θ2 , (5-71)

where C is the “economic heat capacity”.
An economy with a large “heat capacity” will experience a small change in the level of welfare
when the GDP changes. An economy with a small “heat capacity” on the other hand will
experience a large shift in the level of welfare for a similar change in the GDP.

The “economic heat capacity” is an extensive quantity, since ∆ GDP increases with an in-
creasing population.
As C is the economic engineering analog of the heat capacity, it is assumed that the relation
between the heat capacity and the specific heat as known in thermodynamics also holds for
economic systems:

C = Nc, (5-72)

where C is the heat capacity of the system, N is the number of particles and c is the specific
heat of the system, which is an intensive property.
Following the analogy, there thus exists an “economic specific heat”, which is an intensive
property.

From (5-70), (5-71) and (5-72) it follows that ∆ GDP and the number of agents N are related
as:

∆ GDP ∝
√

N. (5-73)

In Subsection 5-2-3 it is argued that:

GDP ∝ N. (5-74)

From equations (5-73) and (5-74) it follows that:

∆ GDP
GDP ∝ 1√

N
−→ 0 as N −→ ∞. (5-75)

Therefore the relative fluctuations in the GDP are found to be negligible for economies with
a large number of agents.

For extremely populated economies it is thus concluded that fluctuations in the GDP are so
small that the GDP is approximately constant. The difference between an economy with a
constant allocated economic rent as mentioned in Subsection 5-4-3 and an economy with a
constant level of welfare as mentioned in Subsection 5-4-4 vanishes.
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5-4-5 Equal Disposable Income Ensemble

In this subsection the probability density function of economic systems that allow free trade
and have open borders is derived.
The opportunity function of open economies is found and related to the opportunity function
of a closed economy as given in (5-54). Furthermore, the expected population size of an
economy is derived, as well as how this is related to the disposable income per capita and the
level of welfare.

Open Economy

Open economic systems are considered. An open economy is defined as en economy that
allows trading with other economies and allows cross-border migration.

Total System
B

ATrade

Migrate

Figure 5-6: Schematic view of two economies A and B that are isolated from the rest of the
world, but are allowed to trade between themselves and have open borders. Migration is thus
allowed. Economy B is considered large enough that trading does not influence its level of welfare
and migration of agents does not influence the disposable income of others.

For simplicity consider two economies A and B as shown in Figure 5-6, where the economy A
is of interest and economy B is extremely large. Free trade and migration is allowed between
the two economies.
The two economies are isolated from the rest of the world, so all trade and migration happens
between the two economies.

Fixed Level of Welfare and Disposable Income

In Subsections 5-3-2 and 5-4-4 it is argued that economies that can trade reach have the same
level of welfare once a macroeconomic equilibrium is reached.
From this conclude that open economies in equilibrium must also have the same level of
welfare.

Since A and B are open economies, agents are also allowed to migrate between the two
economic systems. In Subsection 5-3-3 it is argued that rational agents seek to maximize
their disposable income. As a result agents will migrate to the economy that allows them to
do so.
The disposable income per capita is the proposed analog of the chemical potential, a
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quantity that particles in a thermodynamic system seek to minimize.
In equilibrium there is no driving force for agent migration, since the disposable income per
capita is equal in both economic systems A and B.

Distribution of Economic Microstates

Analogous to the derivation of the probability density function of the closed economy (5-48),
the probability density function ϱA

(
qA, pA, NA

)
of economy A is of the form:

ϱA

(
qA, pA, NA

)
= C · ΩB

(
H − HA

(
qA, pA

)
, N − NA

)
, (5-76)

since the total economic rent and number of agents in the combined system AB must remain
constant.
The probability density function ϱA now depends not only on the reservation prices and
inventory levels of the agents in economy A, but also on the number of agents in A.

ΩB

(
H − HA

(
qA, pA

)
, N − NA

)
is the multiplicity or options available for diversification of

economy B at economic rent HB

(
qB, pB

)
= H−HA

(
qA, pA

)
and population NB = N −NA

and where C is a to be determined constant.

Again following the derivation of the probability density function of closed system (5-50), the
Taylor expansion of the amount of diversification of economy B around HA = 0, NA = 0 is:

SB (HB, NB) ≈ SB (H, N) −
(

∂S

∂H

)
· HA

(
qA, pA

)
− ∂S

∂N
· NA. (5-77)

Combining (5-6) and (5-18) shows that ∂S
∂H is the inverse of the level of welfare Θ and (5-24)

shows that ∂S
∂N is the disposable income per capita divided by the level of welfare. ΩB, the

options available for diversification of economy B is thus:

ΩB (HB, NB) = C ′ exp

−
HA

(
qA, pA

)
+ υNA

Θ

 . (5-78)

Combining equations (5-76) and (5-78) yields the probability density function of an economy
with open borders and free trade:

ϱA

(
qA, pA, NA

)
= 1

¢DNANA! ZΘ,υ
exp

−
HA

(
qA, pA

)
+ υNA

Θ

 , (5-79)

where ZΘ,υ is the opportunity function for an open economy.

The term in the exponent of (5-79) is comparable to the term in the exponent of (5-53), with
only a term υNA

Θ added to the exponent.

For a certain level of welfare, the sum of the total economic rent of economy A and the total
disposable income is discounted. For a certain value of Θ there are many more allocations
of low economic rent plus disposable income than allocations of high economic rent and
disposable income leading to that level of welfare.
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Opportunity Function for Open and Closed Economies

The probability density function for an open economy is given in (5-79). The corresponding
opportunity function ZΘ,υ is a dimensionless function that normalizes the probability density
function and is given as:

ZΘ,υ =
∞∑

NA=0

∫∫ 1
¢DNANA! exp

−
HA

(
qA, pA

)
+ υNA

Θ

dDNAqdDNAp. (5-80)

As was the case for the opportunity function of a closed economy ZΘ (5-54), the opportunity
function of an open economy ZΘ,υ contains the statistical information required to find the
potential profits available.

The opportunity function of a closed economy ZΘ and the opportunity function of an open
economy ZΘ,υ are related via the unilateral Z-transform:

ZΘ,υ =
∞∑

NA=0
ZΘ exp (−βυNA) , (5-81)

where taking z = exp (βυ) puts equation (5-81) in its usual form of the unilateral Z-transform.

The usual form of the Z-transform is:

X (z) = Z {x [n]} =
∞∑

n=−∞
x [n] z−n, (5-82)

where X (z) is the Z-transform of signal x, x [n] is the signal value at time step n and z
is a complex number. For signals that are only specified for n ≥ 0 the lower bound of the
summation in (5-82) becomes 0 and the unilateral Z-transform is found.

The economic interpretation of the Laplace transform given in Section 2-4 also holds for the
Z-transform, because the Z-transform is to discrete time signals what the Laplace transform
is to continuous time signals.
Since the number of agents is a discrete variable, a summation over NA is taken in (5-81)
instead of an integral.

In (5-81) the closed economy opportunity function ZΘ is discounted over the number of
agents in economy A. This is in contrast to the usual application of the Laplace transform in
economic engineering, where (future) payments are discounted over time [13].
In the segment “Opportunity Function & Level of Poverty” of Subsection 5-4-4 a different type
of Laplace transform was introduced. Here, the options available for diversification Ω (H) are
discounted over values of the economic rent.

Irrespective of the variable discounted over, the interpretation of the Laplace
transform remains consistent.

In the segment “Opportunity Function & Level of Poverty” of Subsection 5-4-4 the closed
economy opportunity function ZΘ is the (weighted) expected value of the options available
for diversification Ω (H) and interpreted as the opportunities for extracting profits from an
economic system by trading.
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The open economy opportunity function can then be given an economic interpretation.
Taking the Laplace transform a second time, this time of the closed economy opportunity
function ZΘ with NA as the discounting variable, yields the (weighted) expected value of the
options available for diversification Ω (H), where the weighted average is taken over both the
economic rent and the agents within the economy.
The economic interpretation of the open economy opportunity function remains consistent,
namely the opportunities for extracting profits from the economic system by trading and
migration.

Free Economic Rent for Open Systems

The free economic rent for open economic systems Ξ is derived next. The derivation of Ξ
is similar to the derivation of the free economic rent for a closed system F as done in the
segment “Free Economic Rent & Free Energy” of Subsection 5-4-4.

The free economic rent for open economic systems is the economic engineering analog of the
grand potential or grand free energy [9] as known in statistical physics literature.
Open thermodynamic systems are kept at constant temperature and chemical potential. The
corresponding thermodynamic potential is the grand potential Ξ, which is the Legendre trans-
form of U with Θ and µ as transformation variables:

Ξ := U [Θ, µ] = U − ΘS − µN, (5-83)

which after substitution of (5-56) in (5-83) yields:

Ξ := F − µN. (5-84)

In the economic engineering analogy Ξ is given as:

Ξ := GDP [Θ, υ] = GDP − ΘS + υN = F + υN, (5-85)

where S, N and F are now economic symbols as defined earlier, see Section 2-1.

Next, the relationship between the opportunity function ZΘ,υ and the free economic rent Ξ
for an open economy is derived.

Similar to the derivation of F , the Shannon entropy expression is used [10], [51]. Substitution
of the probability density function for an open economy (5-79) in the Shannon entropy yields:

S = β GDP + ln (ZΘ,υ) + βυN. (5-86)

It follows that equations (5-85) and (5-86) are equivalent if and only if

Ξ := −Θ ln (ZΘ,υ) . (5-87)

Equation (5-87) shows that Ξ has the same form as F (5-63). The economic interpretation is
also similar.

In physics literature the grand potential is interpreted as the work that can be extracted from
the system by shrinking it down to nothing (putting all the particles and energy back into
the reservoir).
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Economically the free economic rent of an open economic system Ξ is interpreted as the profits
that can be extracted from the economy by trading, taking into account the migration.
ln (ZΘ,υ), the expected amount of choices available to utilize the opportunities of the economy,
naturally depends on the population size. An increased population size increases the potential
trading partners and thus the potential profits.

Population Size Fluctuations

In this segment the average population size and the fluctuations in the population size of an
open economy are derived. To do this the steps to determine the fluctuations in the GDP of
a closed economy as done in Subsection 5-4-4 are followed.

The derivative of the open economy opportunity function ZΘ,υ with respect to the disposable
income per capita is:

∂ ZΘ,υ

∂ υ
=

∞∑
NA=0

∫∫ 1
¢DNANA! exp

−
HA

(
qA, pA

)
+ υNA

Θ

 NA

Θ dDNAqdDNAp, (5-88)

which should be related to the expected population size ⟨NA⟩.

Equation (5-35) shows how the expected value of a function f is calculated when the proba-
bility density function depends only on prices and inventory levels. The probability density
function derived in (5-79) however depends also on the population size NA.
The expression for the expected value of f introduced in (5-35) is thus modified:

⟨f⟩ :=
∞∑

N=0

∫∫
f (q, p, N) ϱ (q, p, N) dDN q dDN p. (5-89)

It still holds that ZΘ,υ normalizes the probability density function (5-79). This insight,
combined with equations (5-88) and (5-89) yields:

∂ ZΘ,υ

∂ υ
= ⟨N⟩ ZΘ,υ

Θ , (5-90)

where the subscript A is dropped since it applies to any open economic system.

Rearranging (5-90) yields the expression for the expected population size ⟨N⟩ of an open
economic system:

⟨N⟩ = Θ 1
ZΘ,υ

∂ ZΘ,υ

∂ υ
= Θ ∂

∂υ
(ln (ZΘ,υ)) . (5-91)

Equation (5-91) shows that the expected population size ⟨N⟩ is proportional to the level of
welfare. This result is intuitive, since open economies with no restrictions are considered. All
agents are free to choose where they wish to settle down. An economy with a higher level of
welfare will then naturally have a higher expected population size.

In equation (5-91) ⟨N⟩ is also proportional to ln (ZΘ,υ). The economic interpretation of taking
a logarithm was given in Section 2-4.

ln (ZΘ,υ) is the expected amount of choices available to utilize the opportunities of the open
economy. This interpretation is identical to the interpretation given to ln (ZΘ) in the segment
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“Free Economic Rent & Free Energy” of Subsection 5-4-4, where the only difference in the
interpretation of ln (ZΘ) and ln (ZΘ,υ) is the dependency on the population size in the latter.
Having more choices means that more manners for extracting a surplus out of an economy are
present. An increased population size naturally means that more possible trading partners
are present.

Analogous to the derivation of ⟨N⟩, the expression for
〈
N2〉 is derived:

〈
N2
〉

= Θ2 1
ZΘ,υ

∂2ZΘ,υ

∂υ2 . (5-92)

The fluctuations in the population size ∆N can then be determined using equations (5-91)
and (5-92):

(∆N)2 =
〈
N2
〉

− ⟨N⟩2 , (5-93)

where ∆N is the standard deviation of N .

Finally, by combining equations (5-91), (5-92) and (5-93) it is derived that:

∂ ⟨N⟩
∂υ

=
〈
N2〉− ⟨N⟩2

Θ = (∆N)2

Θ , (5-94)

where it is concluded that for an open economic system with a high level of welfare, marginal
population growth is expected for an increase in the disposable income per capita.
In an economic system with a low level of welfare a significant amount of population growth
is expected when the disposable income per capita increases.
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Chapter 6

Macroeconomics, Thermodynamics &
Applications

In this chapter the results obtained in Chapter 5 are used to complete the link between
microeconomics and macroeconomics.
Irreversible processes found in economic literature are linked to the entropy as known in
physics.

In Section 6-1 the 1st law of thermodynamics is compared to the expression for the expenditure
approach to calculate the GDP given in economic literature.

In Section 6-2 a possible application of the theory derived in Chapter 5 is given, where a
trader is trading between two closed economic systems.

In Section 6-3 a possible application of the theory derived in Chapter 5 is given, where the
unmodeled costs of a firm are seen as the dissipation of energy in a damper of a mechanical
system.
The economic interpretation given to entropy in this thesis is then used to compare the
dissipation of heat in the damper, which is caused by an increase in the entropy, to the
dissipation of economic rent.
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x

C

Figure 6-1: Schematic view of a mechanical spring with compliance C inside an empty cylinder.
Once the spring is compressed, the system is isolated. Over time the spring degrades in quality
and the compliance increases due to an increase in the entropy. The amount of work that can be
extracted from the spring reduces.

6-1 GDP & The 1st Law of Thermodynamics

In this section the well-known expression for the GDP in economic literature is compared to
the 1st law of thermodynamics.

Macroeconomic theory [14] gives (3-24) for the calculation of the GDP using the expenditure
approach. A simplified version of this expression is used here:

GDP = C + I, (6-1)

where the government purchases of goods and services G and net imports X have been
neglected.
C is the national consumption and I indicates the gross investments.

In economic literature, consumption is loosely defined as the act of using resources to satisfy
current needs and wants [53].
Investments on the other hand are taken to embody all the future satisfactions that will flow
from it [53].

The 1st law of thermodynamics is:
∆U = Q + W, (6-2)

where Q is the amount of heat transferred to the system and W is the work done on the
system by its surroundings.
The internal energy cannot be measured directly; instead only changes in U are relevant. If
absolute zero (Θ = 0) is chosen as the zero point of the internal energy, the ∆ in (6-2) is
dropped:

U = Q + W, (6-3)

which is the internal energy of a homogeneous system and has the same form of (6-1).

Figure 6-1 shows a mechanical system consisting of a cylinder closed off by a piston. A spring
is attached to the piston on one end and the bottom of the cylinder at the other end. The
space inside the cylinder is vacuum.

Oseï Fränkel MSc. Thesis



6-1 GDP & The 1st Law of Thermodynamics 89

Initially no heat has been supplied to the system and no work has been done. This is chosen
as the zero point of the internal energy: U = 0.

The cylinder is then compressed, giving the piston a displacement x. If the compression
stroke is adiabatic, meaning no heat is added or produced, the internal energy of the system
becomes:

U = 0 + Fx, (6-4)

where F is the average force of compression, Q = 0 and W = W0 = Fx = 1
Cx2 for a spring

with compliance C.

The system is then isolated.
Over time, the spring will degrade in quality and the compliance of the spring increases. On
a microscopic level the rearrangement and interaction of molecules inside the spring cause
a spontaneous and irreversible increase in the entropy S. The amount of work that can be
extracted from the spring reduces.
The internal energy of the system U is still constant, but is now:

U = Q(t) + W (t), (6-5)

where W (t) ≤ Fx = W0 for t > 0.
The irreversible entropy production thus leads to an in irreversible heat production Q(t). The
maximum amount of work that can be extracted from the system W (t) reduces in time.

This exercise is now given a macroeconomic interpretation.
Looking at the definitions of consumption and investments used in macroeconomic literature
from a thermodynamics point of view, the consumption is identified as the irreversible spend-
ing of the GDP, while the portion of the GDP that is invested is identified as being reversible.
The argument behind this interpretation is that capital goods can be disinvested without loss
of economic rent, while the same cannot be said for consumed goods.

The work done to displace the piston and compress the spring is seen as an investment I. An
economy that initially has a “zero-level” GDP thus receives an investment I0.
Equation (6-1) then becomes:

GDP = 0 + I0, (6-6)

where initially the national consumption is zero.

Rational agents within the economy seek to maximize their utility and do so through con-
sumption, which is an irreversible process. The amount of diversification S increases due to
consumption.
Over time the GDP of the isolated economic system becomes:

GDP = C(t) + I(t), (6-7)

where I(t) ≤ I0 for t > 0.

Consumption should be viewed as a form of depreciation, where the potential profits
that can be extracted from an economy, in the form of a disinvestment, are reduced.
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6-1-1 Macroeconomic Entropy & The Invisible Hand

Macroeconomic Entropy

In Chapter 5 the economic engineering analog of the entropy is called the amount of diversi-
fication. This terminology followed from the statistical interpretation given to the “economic
entropy” derived from microeconomic variables.
In statistical physics the entropy is viewed as a statistical property of a system that gives
information about the state of the system.
In thermodynamics entropy is viewed as a state function of the system. Rather than provid-
ing statistical information about the system, the entropy predicts that certain processes are
irreversible or impossible, despite not violating the conservation of energy.
The thermodynamic interpretation of entropy was first given by Clausius [16]. The statistical
interpretation of entropy was given by Gibbs. It is shown in statistical physics literature that
the two interpretations of entropy are equal [46].

I thus assume that the amount of diversification S derived in Subsection 5-4-3 is the same as
the “macroeconomic entropy” that will be interpreted in this section. It should be noted that
the macroeconomic entropy and the amount of diversification are the same thing, similar to
how Gibbs and Clausius have different interpretations for the same entropy.

In welfare economics [11] the social welfare is maximized due to the decisions of rational
agents. Agents do this by increasing their surplus.
I propose to view the national consumption as a process that converts the total surplus of
agents into social welfare. Subsection 5-3-1 argues that an increase in the social welfare
corresponds with an increase in the amount of diversification S. From this I conclude that
consumption is a process that increases the macroeconomic entropy and is related to the
invisible hand of Adam Smith.

Macroeconomic Invisible Hand

Adam Smith [47] called the unobservable market force that helps the demand and supply of
goods in a free market to reach equilibrium automatically the invisible hand.

I propose to view the “macroeconomic entropy” as the invisible hand on a macroeconomic
scale. Whenever an economy is not in equilibrium, an increase or decrease in the market forces
described by the invisible hand will “push” the economy to equilibrium through consumption.

In an economic system where further economic diversification is possible, the amount of
diversification S will increase as argued in Chapter 5. An increase in consumption is the cause
of this increase in diversification, where eventually macroeconomic equilibrium is reached.

Figure 6-2 shows the energy, entropy curve of a thermodynamic system. All stable thermo-
dynamic equilibrium states lie on the curve, while the region above the curve indicates the
unstable states.
A system that is initially in point A will reach a stable equilibrium on the curve between B
and C. AB is the free energy of the system and AC is the capacity for entropy increase.
The system eventually is “pushed” to a stable equilibrium either by work (path AB), by a
spontaneous increase in the entropy (path AC) or any combination of the two.
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Figure 6-2: Energy, Entropy Curve of a thermodynamic system. For a macroeconomic system
this curve shown the possible macroeconomic equilibria. An economic system that is initially in
point A will reach a point on the curve between B and C.

Giving Figure 6-2 economic interpretation, an economy that is initially in point A will be
pushed to equilibrium, which can happen in two independent ways.
The first (path AB) is due to an external trader that makes a profit by trading with the
economy and completely exploiting the opportunities the economy presents for making a
profit.

The second method (path AC) for reaching an equilibrium is due to the “invisible hand”.
The possibilities for further economic diversification are then exhausted due to consumption.
Consumption is an irreversible process that causes agents to be more diversified. The amount
of diversification is thus identified as the “invisible hand” that pushes a macroeconomic system
to equilibrium.

Naturally, the system can reach any point between B and C on the equilibrium curve due
to a combination of exploited trading opportunities and increased diversification through
consumption.

The invisible hand is identified as the analog of the Clausius entropy or macroeco-
nomic entropy. The analog of Gibbs’ interpretation of the entropy is the amount of
diversification or microeconomic entropy. Just as in physics, these are the same.

6-1-2 Incentive for Diversification and Migration

The slope of the curve of Figure 6-2 is known in physics literature as the temperature Θ of
the system, which follows from its formal definition:

∂S

∂U
= 1

Θ = β. (6-8)
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Writing dU as a total differential yields the 1st law of thermodynamics in differential form:

dU = ΘdS + Fdq + µdN, (6-9)

where Fdq is a form of work and a term µdN the “chemical work” and is added for open
systems.
In economic engineering F is interpreted as a desire for acquiring goods. Θ and µ should have
a similar economic interpretation.

I propose to view Θ macroeconomically as an incentive or desire for diversification. Since
everyone has a desire to be more diversified, the incentive for diversification is strictly positive.
This result is consistent with classical thermodynamics literature, where only positive values
of temperature are well-defined.

The microeconomic interpretation of the analog of temperature Θ is the level of welfare,
while in macroeconomics it is interpreted as the incentive for diversification. The level
of welfare and incentive for diversification are two names for the same quantity.

Similarly, I propose to view µ macroeconomically as the incentive or desire for migration.
Within an economic system, agents have a certain incentive for migration. An economy with
a high incentive for migration will have a net emigration, while an economic system with a
low incentive for migration will have a net immigration.

The incentive for migration is the macroeconomic interpretation given to µ and is the
opposite of the disposable income per capita υ, which was identified as the microeco-
nomic interpretation of the chemical potential analog.

In an economic system where the agents have a high disposable income, their incentive to
migrate will be low.

By giving a macroscopic interpretation to the level of welfare, the disposable income per
capita and the amount of diversification, a link between microeconomics and macroe-
conomics has been made.

6-1-3 No Free Lunch

The saying “there ain’t no such thing as a free lunch”, popularized by economist Milton
Friedman, can also be argued using the economic engineering theory derived in this thesis.

The saying is commonly used in economics to emphasize that a person or a society cannot
get something for nothing.
This immediately points to a analog with the 1st law of thermodynamics, where it is stated
that energy is always conserved and cannot be created or destroyed.
One can thus loosely interpret the 1st law of thermodynamics as saying that it is impossible
to get energy for free.
From the analogy with the 1st law, I conclude that the “no free lunch” saying prohibits the
existence of “economic perpetual motion” of the 1st kind.
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Interpretation of the “no free lunch” saying can however be extended to the 2nd law of ther-
modynamics as well.
To enjoy or utilize a lunch one must consume it. It is argued in Subsection 6-1-1 that con-
sumption increases the amount of diversification and is an irreversible process.
The consumption is thus the price that one pays to utilize the lunch. In order for the lunch
to be “free”, it would need to be deconsumed without loss of value. The 2nd law of thermo-
dynamics prevents this from happening.
From the analogy with the 2nd law, I conclude that the “no free lunch” saying also prohibits
the existence of “economic perpetual motion” of the 2nd kind.

In this thesis a perfect market is assumed, meaning that there are no transaction costs. In
a perfect market an agent could buy and sell a “lunch” without consuming it and effectively
return to his initial state.
In reality however a perfect market does not exist and each transaction has costs associated
with it. A transaction with no associated costs is a form of a “free lunch” in itself.
The saying “there ain’t no such thing as a free lunch”also means that a perfect market with
no transaction costs does not exist in reality. From this I conclude that the non-existence of
“economic perpetual motion” of the 3rd kind is also contained by the “no free lunch” saying.

A free lunch in economics would be the analog of perpetual motion in physics, and
cannot exist.
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6-2 Broker Operating Between Closed Economies

In this section an application of the theory developed in Chapter 5 is given.

Consider two closed economic systems that do not have the same level of welfare or incentive
for diversification. Economy A has a higher incentive for diversification than economy B. As
a result these economies are willing to make a financial trade for a security (e.g. stocks, bonds
or foreign currency).
A broker exploits this incentive difference and acts as the middleman between the two
economies, see Figure 6-3.
The broker exploits the fact that the economic systems are not in equilibrium and Pareto
optimality has not been reached. As a result the broker can make himself better off (by mak-
ing a profit) without making anyone else worse off. While doing so he also has unavoidable
transaction costs. The non-existence of a broker operating without transaction costs was
argued in Subsection 6-1-3.

ΘH ΘCBroker

Profit

TC

QH QC

A B

Figure 6-3: Schematic view of a broker operating between two closed economic systems. The
broker exploits the difference in incentive for diversification between the economies and acts as
the middleman in a financial trade. The profit the broker makes is the difference between his
incoming and outgoing cash flow, where transaction costs are taken into account.

In Figure 6-3 a schematic view of the broker operating between economies A and B is given.
The profit W of the broker is the difference between his incoming and outgoing cash flows:

Profit = W = QH − QC − TC, (6-10)

where TC are the transaction costs of the broker, QH is the cash flow from A to the broker
and QC is the cash flow from the broker to B. QH and QC are the revenue and the purchasing
costs of the broker respectively. The term TC in (6-10) contains the transaction costs the
broker makes for acquiring and selling the goods.

The price the broker pays for securities in economy B is pB, the average reservation price
of economy B for securities. Likewise he sells the securities in economy A for the average
reservation price pA.
The broker does not seek the agents in economy B with the lowest reservation price and the
agents with in A with the highest reservation price to trade with.
An external broker that is able to identify individual reservation prices of agents is an economic
variant of Maxwell’s Demon [3]. Maxwell argued that the demon in his thought experiment
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violates the 2nd law of thermodynamics and cannot exist.
From this I conclude that the costs associated with obtaining the information of the prices
are higher than the profit the broker can make.

The broker described in Figure 6-3 is analogous to a heat engine in thermodynamics. The
“efficiency” of the broker gives the ratio between his profit and his total costs:

η = W

QH
= QH − QC − TC

QH
. (6-11)

The efficiency is identified as the analog of the profit margin as known in economic liter-
ature.

The maximum mathematically possible profit margin would be if the broker were able to
trade with zero transaction costs and without increasing the total amount of diversification
S. It then holds that:

∆S = ∆SA + ∆SB = 0. (6-12)

Such an ideal broker would be the economic engineering analog of a Carnot engine [16], but
would effectively be receiving a “free lunch”.
Analogous to the Carnot engine, the profit margin of the ideal broker is:

ηideal = ΘH − ΘC

ΘH
. (6-13)

For a realistic broker it holds that:
η < ηideal. (6-14)

with η and ηideal as given in (6-13) and (6-14) respectively.
A rational broker will seek to maximize profit margin. The broker will thus aim to minimize
his transaction costs and seek to trade between economies with a large difference in their
respective levels of welfare.
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6-3 Unmodeled Costs & Entropy Production

In this section it is shown how the theory developed in Chapter 5 can be applied to the
current economic engineering modeling method based on the microeconomic laws of supply
and demand.

Setup and Analogs

Consider a trader that buys and sells a certain good of interest. He also has an inventory in
which he can store the good and sell at a later time.
In economic engineering the trader with inventory described here is modeled as a simple
mechanical system.
The storage of goods of the trader is modeled as a mechanical spring. The extension q of the
spring is the analog of the inventory level of the trader for the good of interest.
The compliance C of the spring is the economic engineering analog of the storage capacity
and the spring force F is interpreted as the desire felt by the trader to deplete his inventory
level.
The quantity demanded (supplied) q̇ by the trader is modeled as the velocity of the massive
body. The inertia I is the analog of the inverse price elasticity of demand (supply) E of the
trader.
The trader also makes (unmodeled) costs that are not related to the storage of the good of
interest. These costs lead to the dissipation of economic rent D of the trader. A damper with
damping coefficient b is used to model the economic rent dissipation, which is the analog of
the dissipated energy.

I

C

b

q
p

Figure 6-4: Schematic view of a mechanical mass-spring-damper system. The mass with inertia
I is the analog of a trader with price elasticity E , the spring C is used to model the trader’s
inventory and the damper b gives the (unmodeled) costs of the trader.

Figure 6-4 shows a mechanical mass-spring-damper system used to model the trader.
The surplus T of the trader is the analog of the kinetic energy of the body, while the potential
surplus Φ is the analog of the potential energy.

Modeling Economic Rent Dissipation

The total economic rent E of the trader is the sum of the allocated economic rent H and the
dissipated economic rent D, as given in (3-21).
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In current economic engineering literature [6] the inertia and spring are seen as storage ele-
ments of economic rent, while the damper dissipates economic rent.

The inertia element stores the reservation price p of the trader, while the spring stores his
inventory level q.
I propose to view the damper as an element that stores the “economic entropy” S. Since
it follows from the 2nd law of thermodynamics that S cannot spontaneously decrease, the
“storage of S inside the damper” does not reduce, meaning that the storage of S is irreversible.
This is not the case for the two other elements, where the storage of p and q is reversible.

I propose to view the “economic entropy” S as a measure for the amount of dispersion of
dissipated economic rent D among all agents the trader interacted with when acquiring
these unmodeled costs.

An agent that trades in a certain good will keep track of his inventory q for that good.
However, he will not keep track of all other goods he buys from other agents to remain
operational. The total costs he makes in those trade is thus the dissipated economic rent D,
which is distributed among the agents he interacted with.

Take for example a car dealer. The car dealer will focus mainly on the amount of cars in
stock and the price he wishes to sell them for.
He will be less interested in the amount of paper and pens he uses (e.g. to sign contracts),
the amount of coffee he offers potential customers and the amount of soap and water needed
to clean the cars. The costs associated with these minor transactions can be combined to give
the total unmodeled costs.
The car dealer is not interested in the amount of paper, pens or coffee he has in stock or
the price he would be willing to pay for these items. He only cares about the total costs
associated with these unmodeled economic activities.

A similar approach is taken in the modeling of mechanical systems. We are interested in the
extension of the spring and the momentum of the inertia.
We are not interested in the microscopic movement of oil particles inside a mechanical damper.
Instead, only the energy dissipated in the damper is of interest, since this reduces the energy
that can be stored in the spring and inertia element.

Figure 6-5: Schematic view of a typical mechanical damper. When the damper is compressed,
oil particles are randomly dispersed inside the chamber [5].

Figure 6-5 shows a schematic view of dashpot, which is a type of mechanical damper. When
the damper is compressed, oil particles are randomly dispersed inside the chamber and the
entropy inside the damper increases. This process is comparable to the random movement
of particles in a gas. From this I conclude that the macroscopic damper is an application of
statistical mechanics. The random demand of unmodeled agents is comparable to the random
demand of agents in an economic system as described in Chapter 5.

MSc. Thesis Oseï Fränkel



98 Macroeconomics, Thermodynamics & Applications

I propose that to view the analog of the entropy production inside a damper as an
increase in the dispersion of dissipated economic rent due to unmodeled economic
activity.

Entropy Production Rate

Existing literature on the entropy production rate inside a damper of a mass-spring damper
system [54] can be used to model the dissipation of economic rent of the agent.
The economic rent H of the trader with rent dissipation is of the form H = H (q, p, S),
meaning that H is now also a function of the dispersion of dissipated economic rent S.
From Hamilton’s equations it follows that the change in stock level and reservation price of
the good of interest is:

q̇ = ∂H (q, p, S)
∂p

, (6-15)

ṗ = −∂H (q, p, S)
∂q

+ f (q, p, S) , (6-16)

where f (q, p, S) is the analog of the friction force due to damping. This is interpreted eco-
nomically as the increase in the reservation price of the agent due to additional costs made.
The time derivative of Ḋ is the dissipated economic rent per day (or per week, month, year,
etc.) and is given as:

Ḋ = ΘṠ = −q̇ f ≥ 0. (6-17)
Since the product of q̇ and f must be negative, an inventory depletion corresponds with a
desire felt to increase prices, while the agent feels a desire to decrease his prices when the
inventory increases. This seems logical from an economic point of view.
Θ is the analog of the temperature and can be interpreted as the average surplus of the
unmodeled agents who interacted with the agent modeled by the I element. This is similar
to the level of welfare within the economy as derived in Chapter 5. The dissipated economic
rent of the agent modeled by the I element is thus distributed among the agents he interacted
with when making these costs and Θ is the average surplus acquired by those agents.
The entropy production rate can then be used in a bond graph model, which is the preferred
method of modeling in economic engineering. The bond graph model of the system given in
Figure 6-4 is shown in Figure 6-6.
F is given by the first term of the right-hand side of (6-16) and indicates the desire of the
agent to adjust his reservation price based on his current inventory level. The agent thus
changes his reservation price based on his inventory level and the additional costs he makes.
v is given by the right-hand side of (6-15) and indicates the quantity demanded (supplied)
by the agent and is equal to the change of his stock level.
In current economic engineering modeling, the red box indicates the R element used to model
the costs. No dynamics is taken into account when doing this however. By modeling the
damper as a multiport element that dissipates energy and produces entropy, the costs can be
modeled more accurately.
By putting entropy into controls, improvements can be made in modeling the costs of agents
in economic engineering modeling techniques.
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1 RS(S)
f

q̇

I(p)

v ṗ

C(q)

q̇ F

Se
Ṡ

Θ

Figure 6-6: Bond graph model of the mass-spring-damper system given in Figure 6-6. The red
box indicates the damper R and is modeled as a multiport element.
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Chapter 7

Summary, Conclusions &
Recommendations

7-1 Summary

The purpose of this thesis is to develop a method for modeling economic systems consisting
of many agents within the economic engineering framework. The existing theory of economic
engineering is based on analogs with classical mechanics and models individual agents as
inertia elements.

In this thesis, statistical physics is used to develop a macroeconomic theory of economic
engineering. It is argued that macroeconomic equilibrium is analogous to thermodynamic
equilibrium and that an economic analog of entropy exists that pushes the economy to equi-
librium. The macroscopic or Clausius interpretation of entropy is found to be analogous to
Adam Smith’s invisible hand, while the microscopic or statistical interpretation of entropy,
otherwise known as the Gibbs entropy, is interpreted as the amount of diversification. From
this it is also argued that an economy in equilibrium is Pareto optimal and fully diversified.
Furthermore, the amount of diversification is interpreted as giving the dispersion of economic
rent over the population size N and the number of distinct goods D, where the dispersion
over N is compared to the distribution of income and the dispersion over D is compared to
the portfolio diversification of an agent. The amount of diversification is thus linked to two
major concepts in economic literature.

Analogs are found for the temperature and chemical potential and given both a microeconomic
and macroeconomic interpretation. The macroscopic interpretation of temperature is seen
macroeconomically as an incentive for diversification, while the microscopic interpretation of
temperature is viewed microeconomically as the average revenue or level of welfare. Similarly,
the chemical potential is given a macroeconomic and microeconomic interpretation, with the
former being the incentive for migration and the latter being the disposable income per capita.
No analogs are found for the canonical variables pressure and volume. A pressure is an effort
variable and should be interpreted as an incentive variable, just like the temperature and

MSc. Thesis Oseï Fränkel



102 Summary, Conclusions & Recommendations

chemical potential. However, I could not identify a logical analog for volume. In physics the
volume of a (rectangular) D-dimensional box is found by simply multiplying the length of
the box in each dimension. Multiplying different types of goods makes no sense economically,
meaning a clear interpretation of volume could not be found.

It is also shown that depending on the constraints on the economy, the way the options for
diversification are distributed in the price-quantity space changes. Non-isolated economic sys-
tems are shown to have an opportunity function, which gives the opportunities for extracting
surplus from the economic system by trade and/or migration. The opportunity function is
identified as the analog of the partition function.
From the opportunity function, the analog of the free energy is determined, which is called
the free economic rent. The change in the free energy gives the amount of work that can be
extracted from a thermodynamic system. From the analogies made it then follows that the
change in the free economic rent gives the maximum amount of profits that be made when
trading with an economic system.

Also, a link is made between the fundamental theorems of welfare economics and the laws
of thermodynamics. The 1st fundamental theorem states the existence of a macroeconomic
equilibrium. Since surplus cannot be created from nothing the 1st law of thermodynamics
states that this equilibrium is Pareto optimal. The 2nd fundamental theorem states that an
economic system that is not in equilibrium will be “pushed” to a Pareto optimal equilib-
rium. This matches the 2nd law of thermodynamics, where the existence of equilibrium and
a function that is maximized in equilibrium is defined.

Finally, applications of the theory developed are given, showing how a broker operating as
the middleman in a financial trade between economies is analogous to a heat engine and how
the unmodeled motion of oil particles in a mechanical damper is analogous to the unmodeled
reservation prices and inventory levels of goods of an agent.

7-2 Conclusions

The major contribution of this thesis is explaining how economic equilibrium is reached,
namely by an increase in the amount of diversification. In his work, Manders [18] argued
that thermodynamic equilibrium is analogous to economic equilibrium. However, he did
not explain the mechanism for reaching equilibrium. Similarly, Adam Smith [47] argued
that invisible market forces push the economy towards equilibrium, which economists today
call a Pareto optimal equilibrium. Smith was unable to identify these market forces and
explain how the decisions of individual agents lead to equilibrium. This thesis argues that in
economic systems consisting of many rational agents who each act in their own self-interest,
the economy becomes more diversified. Due to trade between agents, the total economic rent
is dispersed through the economy, increasing the amount of diversification. The economy
is in equilibrium once the amount of diversification is maximized. This gives a statistical
interpretation to the economic entropy, something that is not done by Manders or within the
field of thermoeconomics.

The developed idea of diversification is used to interpret (macro)economic phenomena. Man-
ders [18] did not find an analog of the free energy in his thesis. However, the idea of free
economic rent could be derived from his work as well, since the free energy is a thermodynamic
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quantity. The maximum amount of profits that can be made by trading with an economy then
follows. Because of the developed idea of diversification in this thesis, we now understand
where the fundamental limit on the available profits comes from. The limit on the available
profits is found using the opportunity function and the level of welfare, which both follow
from the amount of diversification. Knowing the opportunities provided by an economy, an
external trader can decide whether or not trading with that economy is lucrative. Also, more
profits can be made when trading with an economy with a high level of welfare, since more
surplus is available in such an economy.
If the external trader is the middleman in a trade between two economic systems with a
different level of welfare, the profit margin of the trader is also bounded. This is analogous
to the efficiency of a heat engine being bounded by Carnot efficiency. A trader that is able
to keep the total amount of diversification constant and has no transaction costs operates at
Carnot efficiency and maximizes his profit margin. To maximize his profit margin, the trader
should aim to minimize his transaction costs and the total increase in diversification. He
should also seek to trade between economies with a large difference in their level of welfare.
The concepts of maximum profits available and maximizing the profit margin can now be
explained using the amount of diversification interpretation given to economic entropy.

Furthermore, we can now show how policy makers can expect the population size in open
economies to change when their policies change the disposable income per capita. It is argued
that each individual is rational and seeks to maximize his disposable income. Agents will thus
migrate if doing so allows them to maximize their disposable income. This is analogous to
a particle moving from high to low chemical potential. The individual behaviour of agents,
namely their desire to maximize their disposable income, is thus related to the macroeconomic
phenomenon of migration.

Finally, the thesis shows that the random movement of oil particles in a mechanical damper is
comparable to the random demand of agents within an economy. The interpretation given to
entropy in this thesis can thus be used in economic engineering modeling, where R elements
are used to model the dissipated economic rent. The entropy is interpreted as a measure
of the dispersion of the dissipated economic rent among unmodeled agents interacted with.
The entropy production within a damper is then the increase in the dispersion of dissipated
economic rent due to unmodeled economic activity.

7-3 Recommendations

The theory developed in this thesis can be improved upon in several areas.
The effect on prices due to cross-price elasticity was not considered. The fact that goods can
be complementary or substitutes was touched upon in the thesis, but not taken into account
in the further development of the theory. Finding out if and how this effects the results
obtained in this thesis is a possible step in the further development of this theory.

No analog for volume was found in this thesis. As a result, the methods used in statistical
physics to determine the volume of a hyper-spherical shell in phase space could not be dupli-
cated, since this requires a well-defined analog of volume. As a result, no quantitative results
for the calculation of the amount of diversification could be made. To further develop and
fully utilize this theory, a solution for this problem needs to be found.
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Classical statistical physics was used to develop this theory. It is interesting to use quantum
statistical physics to develop this theory in the future and compare if and how much the
obtained results differ.

Analogs with equilibrium statistical mechanics were used in this thesis. The thesis argues the
existence of economic equilibrium and that an economy that is initially not in equilibrium will
reach equilibrium by become more diversified or by international trade. No statements are
made on how long it takes before equilibrium is reached. The field of non-equilibrium statis-
tical mechanics should be used to derive an economic engineering theory of macroeconomics
that deals with the time rate of economic processes.

A perfect market was assumed in this thesis, where the potential surplus of agents was ne-
glected. It was thus assumed that agents did not feel a need to keep an inventory for future
use. This is the analog of an ideal gas. How relaxing this assumptions affects the theory
developed is something that should be researched in the future.

Agents were assumed to be analogs of point particles. Modeling the agents as diatomic
particles, meaning they also have a rotational kinetic energy analog, would be an interesting
addition to the developed theory.

More research needs to be done on how to setup Lagrangians for damped harmonic oscillators
within the economic engineering framework. In this thesis I view the entropy in a mechanical
damper as a measure for the amount of dispersion of dissipated economic rent. The random
movement of oil particles in a mechanical damper is compared to the random demand of agents
in an economy. All unmodeled economic activity can then be modeled as an R-element in
economic engineering modeling. More research needs to be done how the entropy production
in a damper can be related to the increase in the dispersion of dissipated economic rent due
to unmodeled economic activity. The field of economic engineering would gain a lot from this
insight and the modeling of costs in economic engineering would improve tremendously.
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Appendix

A-1 Partition Function - Multiplicity Laplace Transform Proof

Two economic (thermodynamic) systems A and B. See Figure A-1 for schematic view of the
system.

Total System
A B

Trade

Figure A-1: Schematic view of two economies A and B that are isolated from the rest of
the world, but allowed to trade between themselves. Migration is not allowed. Eventually both
economies reach macroeconomic equilibrium with the same level of welfare Θ.

The amount of diversification (entropy) S of the entire system is:

S = SA + SB. (A-1)

Together A and B are an isolated system so the total allocated economic rent (Hamiltonian)
is constant:

H = HA + HB = const. (A-2)

The GDP (internal energy) is the expected value of the total allocated economic rent: (Hamil-
tonian):

GDP = U = ⟨H⟩ , (A-3)
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so
U = UA + UB = constant, (A-4)

and
∆UA = −∆UB. (A-5)

Closed system, so NA, NB are constant, where N is the number of agents (particles).
Amount of diversification S only depends on U .

In equilibrium the amount of diversification (entropy) S of the entire system is maximized:

∂S

∂UA
= ∂SA

∂UA
+ ∂SB

∂UA
= 0. (A-6)

This yields:
∂SA

∂UA
= ∂SB

∂UB
= β, (A-7)

where β is the level of poverty (inverse temperature).
In equilibrium the level of poverty (temperature) of the systems is equal.

Amount of diversification S is defined as:

S := ln (Ω (U)) , (A-8)

where Ω (U) is the options available for diversification (multiplicity = number of microstates).
A microstate is a point in the 2ND dimensional price-quantity space (phase space), meaning
it is a possible allocation of all prices and inventory levels (momenta and positions).

More microstates means more diversification options, meaning it is harder to know what is
the occupied microstate of the system.
The amount of diversification (entropy) gives the uncertainty in knowing the occupied mi-
crostate: high entropy meaning a lot of possible microstates.

Equations (A-7) and (A-8) yield:

∂ ln (ΩA (UA))
∂UA

= β. (A-9)

Since β is constant in equilibrium and does not depend on UA, (A-9) can be rewritten as:

∂

∂UA
(ln (ΩA (UA)) − βUA) = 0, (A-10)

meaning that:
ln (ΩA (UA)) − βUA = constant. (A-11)

We call the constant in (A-11) the opportunity function ln (ZΘ (β)).

Equation (A-11) has the form of a Legendre transform:

ln (ΩA (UA)) − βUA = ln (ZΘ (β)) , (A-12)

compare to the standard form of a Legendre transform [19]:

F (x) − s · x = −G (s) , (A-13)
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where F (x) = ln (ΩA (UA)), x = UA, G = − ln (ZΘ (β)) and s = β.

The paper "Making Sense of the Legendre Transform" [19] shows that for a Legendre transform
as given in (A-13) that:

x = ∂G

∂s
. (A-14)

This yields:
UA = −∂ ln (ZΘ (β))

∂β
. (A-15)

The right-hand side of (A-15) is known in physical literature as the internal energy U of a
system kept at constant temperature, which is exactly what we found.

Conclusion: saying that ln (ΩA (UA)) and − ln (ZΘ (β)) are related via a Legendre transform
is justified!

ZΘ (β) is known in physics literature as the canonical partition function, meaning that is is
related to systems kept at constant temperature.

From the Legendre transform (A-12) we find by taking the exponential function on both sides
(subscript A dropped):

ZΘ (β) = eln(Ω(U))−βU = eln((Ω(U))) · e−βU , (A-16)

which yields:
ZΘ (β) = Ω(U)e−βU . (A-17)

This result is inconsistent with physics literature [19], where it is stated that ZΘ (β) and Ω(U)
are related via the Laplace transform:

ZΘ (β) =
∫

Ω(U)e−βU dU. (A-18)

The expression found in (A-17) and the one given in literature differ via an integral over dU
on the right-hand side.

The exponent of of (A-18) is large, since U ∝ N and N is large. Integrals with large exponents
can be approximated via the “steepest descent method” [19].
Evaluating (A-18) at equilibrium yields the expression given in (A-17).

It has thus been proven that the options available for diversification Ω and the opportunity
function ZΘ (β) are related via the Laplace transform.
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3mE Mechanical, Maritime and Materials Engineering
DCSC Delft Center for Systems and Control
TU Delft Delft University of Technology
GDP Gross Domestic Product
DI Disposable Income
NI National Income
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