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Abstract

Research on botnet mitigation has focused predomi-
nantly on methods to technically disrupt the command-
and-control infrastructure. Much less is known about the
effectiveness of large-scale efforts to clean up infected
machines. We analyze longitudinal data from the sink-
hole of Conficker, one the largest botnets ever seen, to as-
sess the impact of what has been emerging as a best prac-
tice: national anti-botnet initiatives that support large-
scale cleanup of end user machines. It has been six years
since the Conficker botnet was sinkholed. The attackers
have abandoned it. Still, nearly a million machines re-
main infected. Conficker provides us with a unique op-
portunity to estimate cleanup rates, because there are rel-
atively few interfering factors at work. This paper is the
first to propose a systematic approach to transform noisy
sinkhole data into comparative infection metrics and nor-
malized estimates of cleanup rates. We compare the
growth, peak, and decay of Conficker across countries.
We find that institutional differences, such as ICT devel-
opment or unlicensed software use, explain much of the
variance, while the national anti-botnet centers have had
no visible impact. Cleanup seems even slower than the
replacement of machines running Windows XP. In gen-
eral, the infected users appear outside the reach of current
remediation practices. Some ISPs may have judged the
neutralized botnet an insufficient threat to merit remedi-
ation. These machines can however be magnets for other
threats — we find an overlap between GameoverZeus
and Conficker infections. We conclude by reflecting on
what this means for the future of botnet mitigation.

1 Introduction

For years, researchers have been working on methods to
take over or disrupt the command-and-control (C&C) in-
frastructure of botnets (e.g. [14, 37, 26]). Their suc-
cesses have been answered by the attackers with ever

more sophisticated C&C mechanisms that are increas-
ingly resilient against takeover attempts [30].

In pale contrast to this wealth of work stands the lim-
ited research into the other side of botnet mitigation:
cleanup of the infected machines of end users. Af-
ter a botnet is successfully sinkholed, the bots or zom-
bies basically remain waiting for the attackers to find
a way to reconnect to them, update their binaries and
move the machines out of the sinkhole. This happens
with some regularity. The recent sinkholing attempt of
GameoverZeus [32], for example, is more a tug of war
between attackers and defenders, rather than definitive
takedown action. The bots that remain after a takedown
of C&C infrastructure may also attract other attackers,
as these machines remain vulnerable and hence can be
re-compromised.

To some extent, cleanup of bots is an automated pro-
cess, driven by anti-virus software, software patches and
tools like Microsoft’s Malicious Software Removal Tool,
which is included in Windows’ automatic update cycle.
These automated actions are deemed insufficient, how-
ever. In recent years, wide support has been established
for the idea that Internet Service Providers (ISPs) should
contact affected customers and help them remediate their
compromised machines [39, 22]. This shift has been ac-
companied by proposals to treat large-scale infections as
a public health issue [6, 8].

As part of this public health approach, we have seen
the emergence of large-scale cleanup campaigns, most
notably in the form of national anti-botnet initiatives.
Public and private stakeholders, especially ISPs, collabo-
rate to notify infected end users and help them clean their
machines. Examples include Germany’s Anti-Botnet
Advisory Center (BotFrei), Australia’s Internet Industry
Code of Practice (iCode), and Japan’s Cyber Clean Cen-
ter (CCC, superseded by ACTIVE) [27].

Setting up large-scale cleanup mechanisms is cumber-
some and costly. This underlines the need to measure
whether these efforts are effective. The central question
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of this paper is: What factors drive cleanup rates of in-
fected machines? We explore whether the leading na-
tional anti-botnet initiatives have increased the speed of
cleanup.

We answer this question via longitudinal data from
the sinkhole of Conficker, one the largest botnets ever
seen. Conficker provides us with a unique opportunity to
study the impact of national initiatives. It has been six
years since the vulnerability was patched and the botnet
was sinkholed. The attackers have basically abandoned it
years ago, which means that infection rates are driven by
cleanup rather than the attacker countermeasures. Still,
nearly a million machines remain infected (see figure 1).
The Conficker Working Group, the collective industry ef-
fort against the botnet, concluded in 2010 that remedia-
tion has been a failure [7].

Before one can draw lessons from sinkhole data, or
from most other data sources on infected machines, sev-
eral methodological problems have to be overcome. This
paper is the first to systematically work through these is-
sues, transforming noisy sinkhole data into comparative
infection metrics and normalized estimates of cleanup
rates.

For this research, we were generously given access to
the Conficker sinkhole logs, which provide a unique long
term view into the life of the botnet. The dataset runs
from February 2009 until September 2014, and covers all
countries — 241 ISO codes — and 34,000 autonomous
systems. It records millions of unique IP addresses each
year — for instance, 223 million in 2009, and 120 mil-
lion in 2013. For this paper, we focus on bots located in
62 countries.

In sum, the contributions of this paper are as follows:

1. We develop a systematic approach to transform
noisy sinkhole data into comparative infection met-
rics and normalized estimates of cleanup rates.

2. We present the first long term study on botnet reme-
diation.

3. We provide the first empirical test of the best prac-
tice exemplified by the leading national anti-botnet
initiatives.

4. We identify several factors that influence cleanup
rates across countries.

2 Background

2.1 Conficker timeline and variants
In this section we will provide a brief background on the
history of the Conficker worm, its spreading and defense

Figure 1: Conficker bots worldwide

mechanisms, and some milestones in the activities of the
Conficker Working Group.

The Conficker worm, also known as Downadup, was
first detected in November 2008. The worm spread by
exploiting vulnerability MS08-067 in Microsoft Win-
dows, which had just been announced and patched. The
vulnerability affected all versions of Microsoft Windows
at the time, including server versions. A detailed tech-
nical analysis is available in [29]. Briefly put, infected
machines scanned the IP space for vulnerable machines
and infected them in a number steps. To be vulnerable,
a machine needed to be unpatched and online with its
NetBIOS ports open and not behind a firewall. Remark-
ably, a third of all machines had still not installed the
patch by January 2009, a few months after its availabil-
ity [11]. Consequently, the worm spread at an explosive
rate. The malware authors released an update on Decem-
ber 29, 2008, which was named Conficker-B. The update
added new methods of spreading, including via infected
USB devices and shared network folders with weak pass-
words. This made the worm propagate even faster [7].

Infected machines communicated with the attackers
via an innovative, centralized system. Every day, the bots
attempted to connect to 250 new pseudo-randomly gen-
erated domains under eight different top-level domains.
The attackers needed to register only one of these do-
mains to reach the bots and update their instructions and
binaries. Defenders, on the other hand, needed to block
all these domains, every day, to disrupt the C&C. An-
other aspect of Conficker was the use of intelligent de-
fense mechanisms, that made the worm harder to re-
move. It disabled Windows updates, popular anti-virus
products, and several Windows security services. It also
blocked access to popular security websites [29, 7].

Conficker continued to grow, causing alarm in the cy-
bersecurity community about the potential scale of at-
tacks, even though the botnet had not yet been very active
at that point. In late January, the community — includ-
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ing Microsoft, ICANN, domain registries, anti-virus ven-
dors, and academic researchers — responded by forming
the Conficker Working Group [7, 31]. The most impor-
tant task of the working group was to coordinate and reg-
ister or block all the domains the bots would use to com-
municate, staying ahead of the Conficker authors. The
group was mostly successful in neutralizing the botnet
and disconnecting it from its owners; however, small er-
rors were made on two occasions in March, allowing the
attackers to gain access to part of the botnet population
and update them to the C variant.

The Conficker-C variant had two key new features:
the number of pseudo-randomly generated domains was
increased to 50,000 per day, distributed over a hun-
dred different TLDs, and a P2P update protocol was
added. These features complicated the work of the work-
ing group. On April 9, 2009, Conficker-C bots up-
graded to a new variant that included a scareware pro-
gram which sold fake anti-virus at prices between $50–
$100. The fake anti-virus program, probably a pay-per-
install contract, was purchased by close to a million un-
witting users, as was later discovered. This use of the
botnet prompted law enforcement agencies to increase
their efforts to pursue the authors of Conficker.1 Even-
tually, in 2011, the U.S. Federal Bureau of Investiga-
tion, in collaboration with police in several other coun-
tries, arrested several individuals associated with this
$72-million scareware ring. [21, 19]

2.2 National anti-botnet centers
Despite the successes of the cybersecurity community in
neutralizing Conficker, a large number of infected ma-
chines still remained. This painful fact was recognized
early on; in its ‘Lessons Learned’ document from 2010,
the Conficker Working Group reported remediation as its
top failure [7]. Despite being inactive, Conficker remains
one of the largest botnets. As recent as June 2014, it was
listed as the #6 botnet in the world by anti-virus ven-
dor ESET [9]. This underlines the idea that neutralizing
the C&C infrastructure in combination with automated
cleanup tools will not eradicate the infected machines;
some organized form of cleanup is necessary.

During the past years, industry and regulatory guide-
lines have been calling for increased participation of ISPs
in cleanup efforts. For instance, the European Network
and Information Security Agency [1], the Internet En-
gineering Task Force [22], the Federal Communications
Commission [10], and the Organization for Economic
Cooperation and Development [27] have all called upon
ISPs to contact infected customers and help them clean
up their compromised machines.

1Microsoft also set a $250,000 bounty for information leading to
arrests.

The main reason for this shift is that ISPs can iden-
tify and contact the owners of the infected machines, and
provide direct support to end users. They can also quar-
antine machines that do not get cleaned up. Earlier work
has found evidence that ISP mitigation can significantly
impact end user security [40].

Along with this shift of responsibility towards ISPs,
some countries have established national anti-botnet ini-
tiatives to support the ISPs and end users in cleanup ef-
forts. The setup is different in each country, but typically
it involves the collection of data on infected machines
(from botnet sinkholes, honeypots, spamtraps, and other
sources); notifying ISPs of infections within their net-
works; and providing support for end users, via a website
and sometimes a call-center.

A number of countries have been running such cen-
ters, often as part of a public-private partnership. Table
1 lists the countries with active initiatives in late 2011,
according to an OECD report [27]. The report also men-
tions the U.S. & U.K. as developing such initiatives. The
Netherlands is listed as having ‘ISP-specific’ programs,
for at that time, KPN and Ziggo — the two largest ISPs
— were heading such programs voluntarily [39].2 Fin-
land, though not listed, has been a leader with consis-
tently low infection rates for years. It has had a notifi-
cation and cleanup mechanism in place since 2005, as
part of a collaboration between the national CERT, the
telco regulator and main ISPs [20, 25]. At the time of
writing, other countries are starting anti-botnet centers as
well. In the EU alone, seven new national centers have
been announced [2]. These will obviously not impact the
past cleanup rates of Conficker, but they do underwrite
the importance of empirically testing the efficacy of this
mitigation strategy.

Figure 2 shows the website of the German anti-botnet
advisory center, botfrei. The center was launched in 2010
by eco, the German Internet industry association, and is
partially funded by the German government. The cen-
ter does three things. First, it identifies users with in-
fected PCs. Second, they inform the infected customers
via their ISPs. Third, they offer cleanup support, through
a website — with free removal tools and a forum — and

2It has now been replaced by a wider initiative involving all main
providers and covering the bulk of the broadband market.

COUNTRY INITIATIVE
Australia Internet Industry Code of Practice (iCode)
Germany German Anti-Botnet Initiative (BotFrei)
Ireland Irish Anti-Botnet Initiative
Japan Cyber Clean Center / ACTIVE
Korea KrCERT/CC Anti-Botnet Initiative

Netherlands Dutch Anti-Botnet Initiative (Abuse-Hub)

Table 1: List of countries with anti-botnet initiatives [27]
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Figure 2: The German Anti-Botnet Advisory Center
website - botfrei.de

a call center [17]. The center covers a wide range of
malware, including Conficker. We should mention that
eco staff told us that much of the German Conficker re-
sponse took place before the center was launched. In
their own evaluations, the center reports successes in
terms of the number of users visiting its website, the
number of cleanup actions performed, and overall reduc-
tions in malware rates in Germany. Interestingly enough,
a large number of users visit botfrei.de directly, without
being prompted by their ISP. This highlights the impact
of media attention, as well as the demand for proactive
steps among part of the user population.

We only highlight Germany’s botfrei program as an
example. In short, one would expect that countries run-
ning similar anti-botnet initiatives to have higher cleanup
rates of Conficker bots. This, we shall evaluate.

2.3 Related Work
Similar to other botnets, much of the work on the
Conficker worm has focused predominantly on tech-
nical analysis, e.g., [29]. Other research has studied
the worm’s outbreak and modeled its infection patterns,
e.g., [42], [16], [33] and [41]. There have also been a
few studies looking into the functioning of the Work-
ing Group, e.g., [31]. None of this work looks specif-
ically at the issue of remediation. Although [33] uses
the same dataset as this paper to model the spread of the
worm, their results are skewed by the fact that they ig-
nore DHCP churn, which is known to cause errors in in-
fection rates of up to one order of magnitude for some
countries [37].

This paper also connects to the literature on botnet
mitigation, specifically to cleanup efforts. This includes
the industry guidelines we discussed earlier, e.g., [1],
[27], [10] and [22]; as well as academic work that tries
to model different mitigation strategies, e.g., [6], [18]
and [13]. We contribute to this discussion by bringing
longitudinal data to bear on the problem and empirically
evaluating one of the key proposals to emanate from this

literature. This expands some of our earlier work.
In a broader context, a large body of research focuses

on other forms of botnet mitigation, e.g., [14, 37, 26, 30],
modeling worm infections, e.g. [35, 44, 43, 28], and
challenges in longitudinal cybersecurity studies. For the
sake of brevity we will not cite more works in these areas
here (— except for works used in other sections).

3 Methodology

Answering the central research question requires a num-
ber of steps. First, we set out to derive reliable esti-
mates of the number of Conficker bots in each country
over time. This involves processing and cleaning the
noisy sinkhole data, as well as handling several measure-
ment issues. Later, we use the estimates to compare in-
fection trends in various countries, identify patterns and
specifically see if countries with anti-botnet initiatives
have done any better. We do this by by fitting a de-
scriptive model to each country’s time-series of infec-
tion rates. This provides us with a specific set of param-
eters, namely the growth rate, the peak infection level,
and the decay rate. We explore a few alternative models
and opt for a two-piece model that accurately captures
these characteristics. Lastly, to answer the central ques-
tion, we explore the relationship between the estimated
parameters and a set of explanatory variables.

3.1 The Conficker Dataset

The Conficker dataset has four characteristics that make
it uniquely suited for studying large-scale cleanup ef-
forts. First, it contains the complete record of one sink-
holed botnet, making it less convoluted than for example
spam data, and with far fewer false positives. Second,
it logs most of the population on a daily basis, avoid-
ing limitations from seeing only a sample of the bot-
net. Third, the dataset is longitudinal and tracks a period
of almost six years. Many sinkholes used in scientific
research typically cover weeks rather than months, let
alone six years. Fourth, most infection data reflects a mix
of attacker and defender behavior, as well as different
levels (global & local). This makes it hard to determine
what drives a trend – is it the result of attacker behav-
ior, defender innovation, or just randomness? Conficker,
however, was neutralized early on, with the attackers los-
ing control and abandoning the botnet. Most other global
defensive actions (e.g., patching and sinkholing) were
also done in early 2009. Hence, the infection levels in
our dataset predominantly reflect cleanup efforts. These
combined attributes make the Conficker dataset excellent
for studying the policy effects we are interested in.
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Raw Data

Our raw data comes from the Conficker sinkhole logs.
As explained in the background section, Conficker bots
used an innovative centralized command and control in-
frastructure. The bots seek to connect to a number of
pseudo-random domains every day, and ask for updated
instructions or binaries from their masters. The algo-
rithm that generates this domain list was reverse engi-
neered early on, and various teams, including the Con-
ficker Working Group, seized legal control of these do-
mains. The domains were then ‘sinkholed’: servers were
set up to listen and log every attempt to access the do-
mains. The resulting logs include the IP address of each
machine making such an attempt, timestamps, and a few
other bits of information.

Processing Sinkhole Logs

The raw logs were originally stored in plain text, before
adoption of the nmsg binary format in late 2010. The
logs are huge; a typical hour of logs in January 2013
is around half a gigabyte, which adds up to tens of ter-
abytes per year. From the raw logs we extract the IP
address, which in the majority of cases will be a Con-
ficker A, B, or C bot (the sinkholed domains were not
typically used for other purposes). Then, using the Max-
Mind GeoIP database [23] and an IP-to-ASN database
based on Routeviews BGP data [4], we determine the
country and Autonomous System that this IP address be-
longed to at that moment in time. We lastly count the
number of unique IP addresses in each region per hour.

With some exceptions, we capture most Conficker bots
worldwide. The limitations are due to sinkholes down-
time; logs for some sinkholed domains not being handed
over to the working group [7]; and bots being behind
an egress firewall, blocking their access to the sinkhole.
None of these issues however creates a systematic bias,
so we may treat them as noise.

After processing the logs we have a dataset spanning
from February 2009 to September 2014, covering 241
ISO country codes and 34,000 autonomous systems. The
dataset contains approximately 178 million unique IP ad-
dresses per year. In this paper we focus on bots located in
62 countries, which were selected as follows. We started
with the 34 members of the Organization for Economic
Cooperation and Development (OECD), and 7 additional
members of the European Union which are not part of
the OECD. These countries have a common develop-
ment baseline, and good data is available on their poli-
cies, making comparison easier. We add to this list 23
countries that rank high in terms of Conficker or spam
bots — cumulatively covering 80 percent of all such bots
worldwide. These countries are interesting from a cy-
bersecurity perspective. Finally, two countries were re-

Figure 3: Unique IP counts over various time-periods

moved due to severe measurement issues affecting their
bot counts, which we will describe later. The full list of
countries can be seen in figure 8 or in the appendix.

3.2 Counting bots from IP addresses

The Conficker dataset suffers from a limitation that is
common among most sinkhole data and other data on in-
fected machines, such as spam traps, firewall logs, and
passive DNS records: one has to use IP addresses as a
proxy for infected machines. Earlier research has estab-
lished that IP addresses are coarse unique identifiers and
they can be off by one order of magnitude in a matter of
days [37], because of differences in the dynamic IP ad-
dress allocation policies of providers (so-called DHCP
churn). Simply put, because of dynamic addresses, the
same infected machine can appear in the logs under mul-
tiple IP addresses. The higher the churn rate, the more
over-counting.

Figure 3 visualizes this problem. It shows the count
of unique Conficker IP addresses in February 2011 over
various time periods — 3 hours, 12 hours, one day, up to
a week. We see an interesting growth curve, non-linear
at the start, then linear. Not all computers are powered
on at every point in time, so it makes sense to see more
IP addresses in the sinkhole over longer time periods.
However, between the 6th and 7th day, we have most
likely seen most infected machines already. The new IP
addresses are unlikely to be new infections, as the daily
count is stable over the period. The difference is thus
driven by infected machines reappearing with a new IP
address.

The figure shows IP address counts for the Nether-
lands and Germany. From qualitative reports we know
that IP churn is relatively low in the Netherlands —
an Internet subscriber can retain the same IP address
for months — while in Germany the address typically

5
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changes every 24 hours. This is reflected in the figure:
the slope for Germany is much steeper. Should one ig-
nore the differences in churn rates among countries, and
simply count unique IP addresses over a week, then a
severe bias will be introduced against countries such as
Germany. Using shorter time periods, though leading to
under-counting, decreases this bias.3 We settle for this
simple solution: counting the average number of unique
IPs per hour, thereby eliminating the churn factor. This
hourly count will be a fraction of the total bot count, but
that is not a problem when we make comparisons based
on scale-invariant measures, such as cleanup rates.

Network Address Translation (NAT) and the use of
HTTP proxies can also cause under-counting. This is
particularly problematic if it happens at the ISP level,
leading to large biases when comparing cleanup poli-
cies. After comparing subscriber numbers with IP ad-
dress space size in our selection of countries, we con-
cluded that ISP-level NAT is widely practiced in India.
As we have no clear way of correcting such cases, we
chose to exclude India from our analysis.

3.3 Missing measurements

The Conficker dataset has another problem that is also
common: missing measurements. Looking back at fig-
ure 1, we see several sudden drops in bot counts, which
we highlighted with dotted lines. These drops are pri-
marily caused by sinkhole infrastructure downtime —
typically for a few hours, but at one point even several
weeks. These measurement errors are a serious issue,
as they only occur in one direction and may skew our
analysis. We considered several approaches to dealing
with them. One approach is to model the measurement
process explicitly. Another approach is to try and mini-
mize the impact of aberrant observations by using robust
curve-fitting methods. This approach adds unnecessary
complexity and is not very intuitive. A third option is to
pre-process the data using curve smoothing techniques;
for instance by taking the exponentially weighted rolling
average or applying the Hodrick-Prescott filter. Although
not necessarily wrong, this also adds its own new biases
as it changes data. The fourth approach, and the one that
we use, is to detect and remove the outliers heuristically.

For this purpose, we calculate the distance between
each weekly value in the global graph with the rolling
median of its surrounding two months, and throw out the
top 10%. This works because most bots log in about
once a day, so the IP counts of adjacent periods are not
independent. The IP count may increase, decrease, or

3Ideally, we would calculate a churn rate — the average number of
IPs per bot per day — and use that to generate a good estimate of the
actual number of bots. That is not an easy task, and requires making
quite a number of assumptions.

Figure 4: Conficker bots versus broadband subscribers

slightly fluctuate, but a sudden decrease in infected ma-
chines followed by a sudden return of infections to the
previous level is highly unlikely. The interested reader is
referred to the appendix to see the individual graphs for
all the countries with the outliers removed.4

3.4 Normalizing bot counts by country size
Countries with more Internet users are likely to have
more Conficker bots, regardless of remediation efforts.
Figure 4 illustrates this. It thus makes sense to normalize
the unique IP counts by a measure of country size; in par-
ticular if one is to compare peak infection rates. One such
measure is the size of a country’s IP space, but IP address
usage practices vary considerably between countries. A
more appropriate denominator and the one we use is the
number of Internet broadband subscribers. This is avail-
able from a number of sources, including the Worldbank
Development Indicators.

4 Modeling Infections

4.1 Descriptive Analysis
Figure 5 shows the Conficker infection trends for Ger-
many, United States, France, and Russia. The x-axis is
time; the y-axis is the average number of unique IP ad-
dresses seen per day in the sinkhole logs, corrected for
churn. We observe a similar pattern: a period of rapid
growth; a plateau period, where the number of infected
machines peaks and remains somewhat stable for a short
or longer amount of time; and finally, a period of gradual
decline.

What explains these similar trends among countries,
and in particular, the points in time where the changes

4An extreme case was Malaysia, where the length of the drops
and fluctuations spanned several months. This most likely indicates
country-level egress filtering, prompting us to also exclude Malaysia
from the analysis.
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Figure 5: Conficker trends for four countries

occur on the graphs? At first glance, one might think
that the decline is set off by some event — for instance,
the arrest of the bot-masters, or a release of a patch.
But this is not the case. As previously explained, all
patches for Conficker were released by early 2009, while
the worm continued spreading after that. This is because
most computers that get infected with Conficker are “un-
protected” — that is, they are either unpatched or with-
out security software, in case the worm spreads via weak
passwords on networks shares, USB drives, or domain
controllers. The peak in 2010 – 2011 is thus the worm
reaching some form of saturation where all vulnerable
computers are infected. In the case of business networks,
administrators may have finally gotten the worm’s re-
infection mechanisms under control [24].

Like the growth phase and the peak, the decline can
also not be directly explained by external attacker be-
havior. Arrests related to Conficker occurred mid 2011,
while the decline started earlier. In addition, most of the
botnet was already out of the control of the attackers.
What we are seeing appears to be a ‘natural’ process of
the botnet. Infections may have spread faster in some
countries, and cleanups may have been faster in others,
but the overall patterns are similar across all countries.

4.2 Epidemic Models
It is often proposed in the security literature to model
malware infections similarly as epidemics of infectious
diseases, e.g. [28, 44]. The analog is that vulnerable
hosts get infected, and start infecting other hosts in their
vicinity; at some later point they are recovered or re-
moved (cleaned, patched, upgraded or replaced).

This leads to multiple phases, similar to what we see
for Conficker: in the beginning, each new infection in-
creases the pressure on vulnerable hosts, leading to an
explosive growth. Over time, fewer and fewer vulnera-
ble hosts remain to be infected. This leads to a phase
where the force of new infections and the force of recov-

ery are locked in dynamic equilibrium. The size of the
infected population reaches a plateau. In the final phase,
the force of recovery takes over, and slowly the number
of infections declines towards zero.

Early on in our modeling efforts we experimented
with a number of epidemic models, but eventually de-
cided against them. Epidemic models involve a set of
latent compartments and a set of differential equations
that govern the transitions between them — see [12] for
an extensive overview. Most models make a number of
assumptions about the underlying structure of the popu-
lation and the propagation mechanism of the disease.

The basic models for instance assume constant tran-
sition rates over time. Such assumptions might hold to
an acceptable degree in short time spans, but not over
six years. The early works applying these models to the
Code Red and Slammer worms [44, 43] used data span-
ning just a few weeks. One can still use the models even
when the assumptions are not met, but the parameters
cannot be then easily interpreted. To illustrate: the basic
Kermack-McKendrick SIR model fits our data to a rea-
sonable degree. However, we know that this model as-
sumes no reinfections, while Conficker reinfections were
a major problem for some companies [24].

More complex models reduce assumptions by adding
additional latent variables. This creates a new problem:
often when solved numerically, different combinations
of the parameters fit the data equally well. We observed
this for some countries with even the basic SIR model.
Such estimates are not a problem when the aim is to pre-
dict an outbreak. But they are showstoppers when the
aim is to compare and interpret the parameters and make
inferences about policies.

4.3 Our model

For the outlined reasons, we opted for a simple descrip-
tive model. The model follows the characteristic trend
of infection rates, provides just enough flexibility to cap-
ture the differences between countries, and makes no as-
sumptions about the underlying behavior of Conficker.
It merely describes the observed trends in a small set of
parameters.

The model consists of two parts: a logistic growth that
ends in a plateau; followed by an exponential decay. Lo-
gistic growth is a basic model of self-limiting population
growth, where first the rate of growth is proportional to
the size of the existing population, and then declines as
the natural limit is approached (— the seminal work of
Staniford, et al. [35] also used logistic growth). In our
case, this natural limit is the number of vulnerable hosts.

Exponential decay corresponds to a daily decrease of
the number of Conficker bots by a fixed percentage. Fig-
ure 6 shows the number of infections per subscriber over

7
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Figure 6: Conficker bots per subscriber on logarithm
scale for (from top to bottom) Russia, Belarus, Germany.

time for three countries on a logarithm scale. We see a
downward-sloping straight line in the last phase that cor-
responds to an exponential decay: the botnet shrank by
a more or less a constant percentage each day. We do
not claim that the assumptions underpinning the logistic
growth and the exponential decay models are fully satis-
fied, but in the absence of knowledge of the exact dynam-
ics, their simplicity seems the most reasonable approach.

The model allows us to reduce the time series data for
each country to these parameters: (1) the infection rate
in the growth phase, (2) the peak number of infections,
(3) the time at which this peak occurred, and (4) the ex-
ponential decay rate in the declining phase. We will fit
our model on the time series for all countries, and then
compare the estimates of these parameters.

Mathematically, our model is formulated as follows:

bots(t) =




K
1+ e−r(t−t0)

, if t < tP

He−γ(t−tP), if t ≥ tP

(1)

where bots(t) is the number of bots at time t, tP is the
time of the peak (where the logistic growth transitions to
exponential decay), and H the height of the peak. The lo-
gistic growth phase has growth rate r, asymptote K, and
midpoint t0. The parameter γ is the exponential decay
rate. The height of the peak is identified by the other
parameters:

H =
K

1+ e−r(tP−t0)
.

4.4 Inspection of Model Fit
We fit the curves using the Levenberg-Marquardt least
squares algorithm with the aid of the lmfit Python mod-
ule. The results are point estimates; standard errors were
computed by lmfit by approximating the Hessian matrix

Figure 7: Comparison of alternative models

at the point estimates. With these standard errors we
computed Wald-type confidence intervals (point estimate
± 2 s.e.) for all parameters. These intervals have no ex-
act interpretation in this case, but provide some idea of
the precision of the point estimates.

The reader can find plots of the fitted curves for all 62
countries in the appendix. The fits are good, with R2 val-
ues all between 0.95 and 1. Our model is especially ef-
fective for countries with sharp peaks, that is, the abrupt
transitions from growth to decay that can be seen in Hun-
gary and South Africa, for example. For some countries,
such as Pakistan and Ukraine, we have very little data
on the growth phase, as they reached their peak infection
rate around the time sinkholing started. For these coun-
tries we will ignore the growth estimates in further anal-
ysis. By virtue of our two-phase model, the estimates of
the decay rates are unaffected by this issue.

We note that our model is deterministic rather than
stochastic; that is, it does not account for one-time
shocks in cleanup that lead to a lasting drop in infec-
tion rates. Nevertheless, we see that the data follows the
fitted exponential decay curves quite closely, which in-
dicates that bots get cleaned up at a constant rate and
non-simultaneously.5

Alternative models: We tried fitting models from epi-
demiology (e.g. the SIR model) and reliability engineer-
ing (e.g. the Weibull curve), but they did not do well in
such cases, and adjusted R2 values were lower for almost
all countries. Additionally, for a number of countries, the
parameter estimates were unstable. Figure 7 illustrates
why: our model’s distinct phases captures the height of
peak and exponential decay more accurately.

5The exception is China: near the end of 2010 we see a massive
drop in Conficker infections. After some investigation, we found clues
that this drop might be associated by a sudden spur in the adoption of
IPv6 addresses, which are not directly observable to the sinkhole.
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5 Findings

5.1 Country Parameter Estimates

Figure 8 shows the parameter estimates and their preci-
sion for each of the 62 countries: the growth rate, peak
height, time of the peak, and the decay rate.

The variance in the peak number of infections is strik-
ing: between as little as 0.01% to over 1% of Inter-
net broadband subscribers. The median is .1%. It ap-
pears that countries with high peaks tend to also have
high growth rates, though we have to keep in mind that
the growth rate estimates are less precise, because the
data does not fully cover that phase. Looking at the
peak height, it seems that this is not associated with low
cleanup rates. For example, Belarus (BY) has the highest
decay rate, but a peak height well above the median.

The timing of the peaks is distributed around the last
weeks of 2010. Countries with earlier peaks are mostly
countries with higher growth rates. This suggests that the
time of the peak is simply a matter of when Conficker
ran out of vulnerable machines to infect; a faster growth
means this happens sooner. Hence, it seems unlikely that
early peaks indicate successful remediation.

The median decay rate estimate is .009, which corre-
sponds to a 37% decline per year (100 · (1− e−.009·52)).
In countries with low decay rates (around .005), the bot-
net shrank by 23% per year, versus over 50% per year on
the high end.

5.2 National Anti-Botnet Initiatives

We are now in a position to address the paper’s central
question and to explore the effects of the leading na-
tional anti-botnet initiatives (ABIs). In figure 8, we have
highlighted the countries with such initiatives as crosses.
One would expect that these countries have slower bot-
net growth, a lower peak height, and especially a faster
cleanup rate. There is no clear evidence for any of this;
the countries with ABIs are all over the place. We do
see some clustering on the lower end of the peak height
graphs; however, this position is shared with a number of
other countries that are institutionally similar (in terms
of wealth for example) but not running such initiatives.

We can formally test if the population median is equal
for the two groups using the Wilcoxon ranksum test. The
p-value of the test when comparing the Conficker decay
rate among the two sets of countries is 0.54, which is too
large to conclude that the ABIs had a meaningful effect.
It is somewhat surprising, and disappointing, to see no
evidence for the impact of the leading remediation efforts
on bot cleanup.

We briefly look at three possible explanations. The
first one is that country trends might be driven by in-

fections in other networks than those of the ISPs, as we
know that the ABIs focus mostly on ISPs. This explana-
tion fails, however, as can be seen in figure 2. The ma-
jority of the Conficker bots were located in the networks
of the retail ISPs in these countries, compared to educa-
tional, corporate or governmental networks. This pattern
held in 2010, the year of peak infections, and 2013, the
decay phase, with one minor deviation: in the Nether-
lands, cleanup in ISP networks was faster than in other
networks.

Country ISP % 2010 ISP % 2013
AU 77% 74%
DE 89% 82%
FI 73% 69%
IE 72% 74%
JP 64% 67%
KR 83% 87%
NL 72% 37%

Others 81% 75%

Table 2: Conficker bots located in retail ISPs

A second explanation might be that the ABIs did not
include Conficker in their notification and cleanup ef-
forts. In two countries, Germany and the Netherlands,
we were able to contact participants of the ABI. They
claimed that Conficker sinkhole feeds were included and
sent to the ISPs. Perhaps the ISPs did not act on the data
— or at least not at a scale that would impact the decay
rate; they might have judged Conficker infections to be
of low risk, since the botnet had been neutralized. This
explanation might be correct, but it also reinforces our
earlier conclusion that the ABIs did not have a signifi-
cant impact. After all, this explanation implies that the
ABIs have failed to get the ISPs and their customers to
undertake cleanup at a larger scale.

Given that cleanup incurs cost for the ISP, one could
understand that they might decide to ignore sinkholed
and neutralized botnets. On closer inspection, this de-
cision seems misguided, however. If a machine is in-
fected with Conficker, it means it is in a vulnerable —
and perhaps infected — state for other malware as well.
Since we had access to the global logs of the sinkhole
for GameoverZeus — a more recent and serious threat
— we ran a cross comparison of the two botnet popu-
lations. We found that based on common IP addresses,
a surprising 15% of all GameoverZeus bots are also in-
fected with Conficker. During six weeks at the end of
2014, the GameoverZeus sinkhole saw close to 1.9 mil-
lion unique IP addresses; the Conficker sinkhole saw 12
million unique IP addresses; around 284 thousand ad-
dresses appear in both lists. Given that both malware
types only infected a small percentage of the total pop-
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Figure 8: Parameter estimates and confidence intervals

ulation of broadband subscribers, this overlap is surpris-
ingly large.6 It stands in stark contrast to the findings of
a recent study that systematically determined the over-
lap among 85 blacklists and found that most entries were
unique to one list, and that overlap between independent
lists was typically less than one percent [34]. In other
words, Conficker bots should be considered worthwhile
targets for cleanup.

6The calculated overlap in terms of bots might be inflated as a re-
sult of both NAT and DHCP churn. Churn can in this case have both an
over-counting and under-counting effect. Under-counting will occur if
one bot appears in the two sinkholes with different IP addresses, as a
result of different connection times to the sinkholes. Doing the IP com-
parisons at a daily level yields a 6% overlap, which is still considerable.

5.3 Institutional Factors

Given that anti-botnet initiatives cannot explain the vari-
ation among the country parameters shown in figure 8,
we turn our attention to several institutional factors that
are often attributed with malware infection rates (e.g., see
[40]). These are broadband access, unlicensed software
use, and ICT development on a national level. In addi-
tion, given the spreading mechanism of Conficker, we
also look at Operating System market shares, as well as
PC upgrade cycles. We correlate these factors with the
relevant parameters.

10



USENIX Association 	 24th USENIX Security Symposium  11

Correlating Growth Rate

Broadband access is often mentioned as a technolog-
ical enabler of malware; in particular, since Conficker
was a worm that spread initially by scanning for hosts
to infect, one could expect its growth in countries with
higher broadband speeds to be faster. Holding other fac-
tors constant, most epidemiological models would also
predict this faster growth with increased network speeds.
This turns out not to be the case. The Spearman cor-
relation coefficient between average national broadband
speeds, as reported by the International Telecommunica-
tion Union [15], and Conficker growth rate is in fact neg-
ative: -0.30. This is most probably due to other factors
confounding with higher broadband speeds, e.g. national
wealth. In any case, the effects of broadband access and
speeds are negligible compared to other factors, and we
will not pursue this further.

Correlating Height of Peak

As we saw, there is a wide dispersion between countries
in the peak number of Conficker bots. What explains the
large differences in peak infection rates?

Operating system market shares: Since Conficker
only infects machines running Windows 2000, XP, Vista,
or Server 2003/2008, some variation in peak height may
be explained by differences in use of these operating sys-
tems (versus Windows 7 or non-Windows systems). We
use data from StatCounter Global Stats [36], which is
based on page view analytics of some three million web-
sites. Figure 9 shows the peak height against the com-
bined Windows XP and Vista market shares in January
2010 (other vulnerable OS versions were negligible). We
see a strong correlation — with a Pearson correlation co-
efficient of 0.55. This in itself is perhaps not surprising.

Dividing the peak heights by the XP/Vista market
shares gives us estimates of the peak number of infections
per vulnerable user; we shall call this metric h̃p. This
metric allows for fairer comparisons between countries,
as one would expect countries with higher market shares
of vulnerable OS’s to harbor more infections regardless
of other factors. Interestingly, there is still considerable
variation in this metric – the coefficient of variance is 1.2.
We investigate two institutional factors that may explain
this variation.

ICT development index is an index published by the
ITU based on a number of well-established ICT indica-
tors. It allows for benchmarking and measuring the digi-
tal divide and ICT development among countries (based
on ICT readiness and infrastructure, ICT intensity and
use, ICT skills and literacy [15]). This is obviously a
broad indicator, and can indicate the ability to manage
cybersecurity risks, including botnet cleanups, among
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Figure 9: Bots versus XP & Vista use

both citizens and firms. Figure 10 shows this metric
against h̃p, and interestingly enough we see a strong cor-
relation.

Unlicensed software use or piracy rates are another
oft mentioned factor influencing malware infection rates.
In addition to the fact that pirated software might include
malware itself, users running pirated OS’s often turn off
automatic updates, for fear of updates disabling their un-
licensed software — even though Microsoft consistently
states that it will also ship security updates to unlicensed
versions of Windows [38]. Disabling automatic updates
leaves a machine open to vulnerabilities, and stops au-
tomated cleanups. We use the unlicensed software rates
calculated by the Business Software Alliance [5]. This
factor also turns out to be strongly correlated with h̃p, as
shown in figure 10.

Since ICT development and piracy rates are them-
selves correlated, we use the following simple linear re-
gression to explore thier joint association with peak Con-
ficker infection rates:

log(h̃p) = α +β1 · ict-dev+β2 ·piracy+ ε

where both regressors were standardized by subtract-
ing the mean and dividing by two standard devia-
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Figure 10: h̃p versus ICT development & piracy
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tions. We use the logarithm of h̃p as it is a propor-
tion. The least squares estimates (standard errors) are
β̂1 = −0.78(0.27), p < 0.01, and β̂2 = 1.7(0.27), p <
0.001. These coefficients can be interpreted as follows:
everything else kept equal, countries with low (one sd be-
low the mean) ICT development have e0.78 = 2.2 times
more Conficker bots per XP/Vista user at the peak than
countries with high ICT development (one sd above the
mean), and, similarly, countries with high piracy rates
(one sd above the mean) have an e1.7 = 5.5 times higher
peak than countries with low piracy rates (one sd below
the mean). The R2 of this regression is 0.78, which indi-
cates that ICT development and piracy rates explain most
of the variation in Conficker peak height.

Correlating Decay Rate

Although decay rates are less dispersed than peak
heights, there are still noticeable differences among
countries. Given the rather slow cleanup rates — the me-
dian of 0.009 translates to a 37% decrease in the number
of bots after one year — one hypothesis that comes to
mind is that perhaps some of the cleanup is being driven
by users upgrading their OS’s (to say Windows 7), or
buying a new computer and disposing of the old fully.

For each country we estimated the decay rate of the
market share of Windows XP and Vista from January
2011 to June 2013 using the StatCounter GlobalStats
data. Figure 11 shows these decay rates versus Conficker
decay rates. There is a weak correlation among the two,
with a Spearman correlation coefficient of 0.26.

But more interesting and somewhat surprising is that
in many countries, the Conficker botnet shrank at a
slower pace than the market share of Windows XP / Vista
(all countries below and to the right of the dashed line).
Basically this means that the users infected with Con-
ficker are less likely to upgrade their computers then the
average consumer.7

6 Discussion

We found that the large scale national anti-botnet ini-
tiatives had no observable impact on the growth, peak
height, or decay of the Conficker botnet. This is sur-
prising and unfortunate, as one would expect Conficker
bots to be among those targeted for cleanup by such ini-
tiatives. We checked that the majority of bots were in-
deed located among the networks of ISPs, and also ob-
served that some of these machines have multiple infec-
tions. Turning away from the initiatives and to institu-
tional factors that could explain the differences among

7This difference between users who remain infected with Conficker
and the average user might be more extreme in countries with a higher
level of ICT development. This can be observed in the graph.
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Figure 11: Conficker decay vs. XP/Vista decay

countries, we observed that the ICT development index
and piracy rates can explain 78% of the variation in peak
height, even after correcting for OS market shares. We
also found that the Conficker cleanup rate is less than the
average PC upgrade rate.

Perhaps not all security experts are surprised by these
findings. They are nevertheless important in forming ef-
fective anti-botnet policies. We presented the research
to an audience of industry practitioners active in botnet
cleanup. Two North American ISPs commented that they
informed their customers about Conficker infections —
as part of the ISP’s own policy, not a country-level ini-
tiative. They stated that some customers repeatedly ig-
nored notifications, while others got re-infected soon af-
ter cleanup. Another difficulty was licensing issues re-
quiring ISPs to point users to a variety of cleanup tool
websites (e.g., on microsoft.com) instead of directly dis-
tributing a tool, which complicates the process for some
users. Interestingly enough both ISPs ranked well with
regards to Conficker peak, showing that their efforts did
have a positive impact. Their challenges suggests areas
for improvement.

Future work in this area can be taken in several direc-
tions. One is to test the various parameters against other
independent variables — e.g., the number of CERTs, pri-
vacy regulation, and other governance indicators. A sec-
ond avenue is to explore Conficker infection rates at the
ISP level versus the country level. A random effects re-
gression could reveal to what extent ISPs in the same
country follow similar patterns. We might see whether
particular ISPs differ widely from their country baseline,
which would be interesting from an anti-botnet perspec-
tive. Third, it might be fruitful to contact a number of
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users still infected with Conficker in a qualitative sur-
vey, to see why they remain unaware or unworried about
running infected machines. This can help develop new
mitigation strategies for the most vulnerable part of the
population. Perhaps some infections are forgotten em-
bedded systems, not end users. Forth and more broadly
is to conduct research on the challenges identified by the
ISPs: notification mechanisms and simplifying cleanup.

7 Conclusion and Policy Implications

In this paper, we tackled the often ignored side of bot-
net mitigation: large-scale cleanup efforts. We explored
the impact of the emerging best practice of setting up
national anti-botnet initiatives with ISPs. Did these ini-
tiatives accelerate cleanup?

The longitudinal data from the Conficker botnet pro-
vided us with a unique opportunity to explore this ques-
tion. We proposed a systematic approach to transform
noisy sinkhole data into comparative infection metrics
and normalized estimates of cleanup rates. After re-
moving outliers, and by using the hourly Conficker IP
address count per subscriber to compensate for a vari-
ety of known measurement issues, we modeled the in-
fection trends using a two-part model. We thereby con-
densed the dataset to three key parameters for each coun-
try, and compared the growth, peak, and decay of Con-
ficker, which we compared across countries.

The main findings were that institutional factors such
as ICT development and unlicensed software use have in-
fluenced the spread and cleanup of Conficker more than
the leading large scale anti-botnet initiatives. Cleanup
seems even slower than the replacement of machines run-
ning Windows XP, and thus infected users appear out-
side the reach of remediation practices. At first glance,
these findings seem rather gloomy. The Conficker Work-
ing Group, a collective effort against botnets, had noted
remediation to be their largest failure [7]. We have now
found that the most promising emerging practice to over-
come that failure suffers similar problems.

So what can be done? Our findings lead us to identify
several implications. First of all, the fact that peak infec-
tion levels strongly correlate with ICT development and
software piracy, suggests that botnet mitigation can go
hand in hand with economic development and capacity
building. Helping countries develop their ICT capabil-
ities can lower the global impact of infections over the
long run. In addition, the strong correlation with soft-
ware piracy suggests that automatic updates and unat-
tended cleanups are some of the strongest tools in our
arsenal. It support policies to enable security updates to
install by default, and delivering them to all machines,
including those running unlicensed copies [3]. Some of
these points were also echoed by the ISPs mentioned in

section 6.
Second, the fact that long-living bots appear in a re-

liable dataset — that is, one with few false positives —
suggests that future anti-botnet initiatives need to com-
mit ISPs to take action on such data sources, even if the
sinkholed botnet is no longer a direct threat. These ma-
chines are vulnerable and likely to harbor other threats as
well. Tracking these infections will be an important way
to measure ISP compliance with these commitments, as
well as incentivize cleanup for those users outside the
reach of automated cleanup tools.

Third, given that cleanup is a long term effort, future
anti-botnet initiatives should support, and perhaps fund,
the long-term sustainability of sinkholes. This is a neces-
sity if we want ISPs to act on this data.

A long term view is rare in the area of cybersecurity,
which tends to focus on the most recent advances and
threats. In contrast to C&C takedown, bot remediation
needs the mindset of a marathon runner, not a sprinter.
To conclude on a more optimistic note, Finland has been
in the marathon for a longer time than basically all other
countries. It pays off: they have been enjoying consis-
tently low infection rates for years now. In other words,
a long term view is not only needed, but possible.
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Appendix - Individual Country Graphs

In this appendix we provide the model fit for all the 62
countries used in the paper. The graphs show the relative
number of Conficker bots in each country - as measured
by average unique Conficker IP addresses per hour in the
sinkholes, divided by broadband subscriber counts for
each country. (Please refer to the methodology section
for the rationale). In each graph, the solid line (in blue)
indicates the measurement; the dotted line (in gray) is
removed outliers; and the smooth-solid line (in red) in-
dicates the fitted model. The model has four parameters:
growth and decay rates — given on the graph — and
height and time of peak infections — deducible from the
axes. The R2 is also given for each country.
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