
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Self-supervised
Federated learning at
the edge
Signal Processing and Algorithms

Bachelor Thesis
F.M. Heijink & F. van Pelt

Self-supervised
Federated learning at

the edge
Signal Processing and Algorithms

by

F.M. Heijink & F. van Pelt

Student Name Student Number

Finn Heijink 5607051
Frank van Pelt 5648378

Supervisors: Dr. C. Frenkel TU Delft EI
Dr. J.H.G. Dauwels TU Delft SPS

Project Assistant: D. Casnici TU Delft EI
Thesis committee: Dr. C. Frenkel TU Delft EI

Dr. J.H.G. Dauwels TU Delft SPS
Prof. Dr. N. Llombart TU Delft THZ
Dr. L.M. Ramírez-Elizondo TU Delft DCES

Thesis defence date: 27th of June, 2024
Faculty: EEMCS
Degree: BSc Electrical Engineering

Preface

This report serves to finalize the bachelor graduation project on the topic of self-supervised federated learning,
specifically the implementation of the algorithms in Python. The goal of the project is to implement a self-
supervised learning setup in a decentralized approach using Field-Programmable Gate Arrays (FPGAs) for the
processing of data. This serves as a proof of concept that decentralized machine learning on unlabeled data
using FPGAs is possible. Multiple algorithms based on the literature were considered to allow for a low-profile
learning setup, with simplifications done to be able to reduce the compute required. The results are promising:
scaled-down models that can run on an FPGA show that self-supervised learning functions as expected from
the theory. By decentralizing the computations increases in performance are possible in favorable conditions.
The authors hope that the concept of self-supervised federated learning can be employed to FPGAs on a
larger scale to help in the processing of the abundant yet underutilized unlabeled data present at the edges
of information networks.

F.M. Heijink & F. van Pelt
Delft, July 2024

i

Contents

Preface i

1 Introduction 1
1.1 Introduction to classification . 1
1.2 Introduction to self-supervised learning . 2
1.3 Introduction to federated learning . 4
1.4 The goal of the project . 4
1.5 Problem definition . 5
1.6 Thesis structure . 5

2 Programme of requirements 6
2.1 General requirements . 6
2.2 Signal Processing and Algorithms Requirements . 6

3 Theory 8
3.1 Self-supervised learning . 8

3.1.1 Different methods & models . 8
3.1.2 Relevant methods . 10
3.1.3 Classification . 11

3.2 Federated learning . 11
3.2.1 FederatedAveraging . 12
3.2.2 SOFed . 12

4 Identification of bottlenecks 14

5 Implementation 15
5.1 SSL Implementation . 15

5.1.1 Models . 16
5.1.2 Dataset . 17
5.1.3 Augmentations . 18
5.1.4 Optimizer . 19
5.1.5 Scheduling . 19
5.1.6 Exponential Moving Average . 19
5.1.7 Classification . 19
5.1.8 Evaluation . 20
5.1.9 Quantization . 20
5.1.10 Hardware agreements . 20
5.1.11 Hyperparameters . 21
5.1.12 Results . 22

5.2 FL Implementation . 24
5.2.1 Communication Protocol . 25
5.2.2 Databuffer . 26
5.2.3 Hyperparameters . 27
5.2.4 Results . 27

6 Discussion and future work 28
6.1 Self-supervised learning . 28
6.2 Federated learning . 28
6.3 Possible continuation . 29
6.4 Requirements revisited . 29
6.5 Problem statement revisited . 29

ii

Contents iii

7 Conclusion 30

References 31

A Machine learning terminology 33
A.1 Abbreviations . 34

B Extra figures and tables 36
B.1 Self-supervised learning . 36
B.2 Federated Learning . 37
B.3 Model sizes . 37
B.4 Self-supervised learning tests . 39

B.4.1 Ablation study . 40
B.5 Federated learning tests . 42

C Fulfillment of the requirements 43
C.1 General requirements . 43
C.2 Signal Processing and Algorithms Requirements . 43

D Implementation Details 45
D.1 Self-supervised learning . 45

D.1.1 Config.py . 45
D.1.2 Model.py . 45
D.1.3 ImageAugmenter.py . 45
D.1.4 CheckPointer.py . 45
D.1.5 Dataset.py . 45
D.1.6 KRIAInterface.py . 46
D.1.7 main.py . 46

D.2 Federated Learning . 46
D.2.1 Communication.py . 46
D.2.2 Client.py . 46
D.2.3 Server.py . 46

E Python code 47
E.1 Checkpointer.py . 47
E.2 Client.py . 48
E.3 Communication.py . 52
E.4 Config.py . 54
E.5 Dataset.py . 56
E.6 ImageAugmenter.py . 57
E.7 KRIAInterface.py . 58
E.8 main.py . 59
E.9 Model.py . 63
E.10 QNN.py . 71
E.11 Server.py . 73
E.12 Util.py . 75

1
Introduction

In this chapter some fundamental concepts of machine learning classification on unlabeled data will be intro-
duced. Afterwards, the goal of the project itself will be defined and the subgroup division will be explained.
Finally, the structure of the thesis will be explained. More explanation of the terms used here and in the
remainder of the report can be found in chapter A.

1.1. Introduction to classification
In machine learning, the aim is often to find a model that can give information about new input data based
on similar, known data. An example could be the prediction of the outside temperature based on features of
the weather, like rainfall and the geographical location. This is done using information about different outside
temperature measurements: a relation between the features of the input data and the outside temperature is
found. Since the outside temperature can take on an infinite amount of values it is known as a continuous
variable, and this form of machine learning is known as regression: the prediction is a continuous value.

Another form of machine learning has to do with the prediction of the label of the input data. An example
could be checking whether a given input image contains a dog or a cat. In this case, the prediction is discrete:
there is a limited amount of values the prediction can obtain.

Image classification is a form of classification that takes images as input data and performs classification
based on this. Since humans rely heavily on their vision to deduce features of their surroundings it is no
wonder that artificial intelligence (AI) would evolve to perform the same thing. The applications of image clas-
sification are numerous, and with the improvement of imaging- and sensor technology the quality and amount
of data is increasing. The structure of image classification is given in figure 1.1.

Figure 1.1: General image classification structure. The image is processed by the machine learning network and a prediction is made.

To perform classification, the model must be trained using representative data for the data that needs to be
classified. A machine learning model consists of a general structure with parameters that need to be trained:
depending on the predictions made, the machine learning model should change these parameters to improve

1

1.2. Introduction to self-supervised learning 2

the accuracy of the predictions. This is known as the training of a machine learning model. A general training
approach can look as follows:

1. Initialize the machine learning model. Give the trainable parameters an initial value.
2. Find the prediction based on the input data. Feed the input data to the machine learning model and

find the prediction based on this.
3. Compare the prediction to the actual label. This is done by using a cost function. This is a function

that quantifies the difference between correct and incorrect predictions, also known as the loss. If the
loss increases, the prediction made by the model differs more from the input data.

4. Compute in what way the parameters should change to reduce the error between the prediction
and the label. This is done by minimizing the loss. To achieve this, most often the derivatives of the
cost function with respect to the trainable parameters are calculated to find the effect of changing them
on the loss.

5. Update the parameters such that the error between the prediction and the label decreases. This
step is done using an optimizer that decides in which way to change the weights.

If we apply this approach to figure 1.1, we can implement it as seen in figure 1.2.

Figure 1.2: Training of an image classifier. The steps are based on the general training approach, with the numbers corresponding to
the steps given there.

If we keep repeating steps 2 through 5 using all the data we have, we can improve the machine learning model
and increase the accuracy. This is the main idea behind classification, which in this thesis’ case is performed
on images.

To test the performance of the model, we stop training the model. We use separate representative input
data that was not used to train the model itself as the testing set, and compare the predictions generated by
the model based on the testing set to the actual labels of the testing set. We find what percentage of the
labels of the testing data was predicted correctly to find the accuracy of the machine learning model. If we are
satisfied with the accuracy of the model we can use the model to make predictions on different representative
data to find labels. This is the main idea behind supervised learning: we use the ground-truth of the data to
estimate the performance of our machine learning model.

1.2. Introduction to self-supervised learning
Thus far, we have assumed that supervised learning was possible due to the presence of labels. A very real-
istic scenario is one in which this is not the case: a very large amount of data can be generated using modern

1.2. Introduction to self-supervised learning 3

technologies, way too much to be analyzed and labeled by humans. We thus often use a small amount of the
actual data we have since we have a limited amount of data we can actually label. This leaves us with much
potentially useful data that can not be used for supervised learning due to the lack of labels. This issue can
be tackled by the use self-supervised learning.

Self-supervised learning is a form of unsupervised learning: the input data is unlabeled. Self-supervised learn-
ing tries to learn from the data by generating labels itself: the machine learning model in a self-supervised
learning setup is tasked with generating representations of the input data that captures the important features
of the input data.

The general approach for self-supervised learning is as follows:

1. Use self-supervised training to train a machine learning model to generate good representations
of the input data. We still follow the same steps as for supervised learning, but now use a new cost
function and associated loss that are not reliant on a label of the input data. For this multiple methods
exist, and these will be elaborated upon in chapter 3.

2. Copy this trainedmodel for downstreamclassification. If themodel is thought to generate sufficiently
accurate representations of the input data, the trained model is used for downstream classification: we
place another machine learning model, a classifier, behind the trained model.

3. Use supervised training to train the classifier. We use a small amount of labeled data to train this
classifier, which does not see the data but the output representations of the trained model: the trained
model is now fed with labeled data.

The general self-supervised approach is pictured in figure 1.3.

Dog
Supervised

Loss Dog

Labeled input image Machine learning model Prediction

Dog

Cat

Unlabeled input image Machine learning model

Classifier

Unsupervised
Loss

Figure 1.3: General self-supervised learning setup. The self-supervised learning setup is trained using unlabeled data

1.3. Introduction to federated learning 4

Central server

Data
Processing

SensorSensorSensor Sensor Sensor

Central server

Model
aggregation

Sensor

Data
Processing

Sensor

Data
Processing

Sensor

Data
Processing

Data

Model

Centralised approach Decentralised approach

Figure 1.4: Comparison of a centralised decentralised approach in a sensor network.

1.3. Introduction to federated learning
In many cases, many sensors are used at different locations. The effect is that the data is spread through-
out a larger network. The centralised approach is to first share the data with a central server that does the
data processing, which admits a single point of failure and a large amount of data transfer. In some cases,
this data could even be private such that the sharing is prohibited. Federated learning aims to solve this issue.

The main idea of federated learning is to implement the processing of data in a decentralized approach: the
data is (partially) processed at the location where it is gathered, such that instead of using a single large server
multiple smaller processing units are used [1]. This removes the single point of failure and does not require
the sharing of the data itself, but the sharing of (partially) trained machine learning models. Figure 1.4 shows
this difference.

To realise this, increased compute is required at the sensors itself. Depending on the application this can
result in the constraint that the processing hardware must bemore compact and affordable than usual machine
learning hardware, like computers with powerful processors (CPUs) and graphics cards (GPUs).

1.4. The goal of the project
Due to the large amount of unlabeled data which potentially can not be shared due to privacy constraints, a
decentralized approach to processing unlabeled data is in high demand. There are numerous applications,
some of which are listed below:

• Intelligent medical diagnosis systems can be implemented using self-supervised federated learning. Pa-
tient confidentiality is challenging to maintain if the data were to be processed. Even when keeping the
data private, this typically unlabeled data can be processed by self-supervised federated learning setups
[2].

• In modern wireless networks, model-based approaches for system design and analysis are not feasible
anymore due to the large sizes of the networks. Instead of relying only on the mathematical models,
machine learning models that can learn from the enormous amounts of available data can be used to
tackle this problem. Due to the often private nature of the data federated learning can prove to be useful,
especially in the case of on-device computation units [3].

• The power grid is becoming increasingly digital and intelligent with the rise of smart grids. This allows
for better sensing and sharing of power-related data. A downside of this is the immense amount of data
that would need to be shared with central nodes for processing. Multi-party sharing and collaborated
learning of the data is done, however this can endanger the private nature of the data. Federated
learning can be used to mitigate this risk by processing the data at the grids itself and sharing encrypted
model parameters back to a central node. This reduces the necessary bandwidth for sharing this much

1.5. Problem definition 5

data and reduces the risk of leaking private data [4].

By processing unlabeled data directly at the sensor nodes, known as the edges of a network, server-side ma-
chine learning models can improve their accuracy and reliability, even in the case of private data which may
not be shared between the sensors and the central server. High constraints on the hardware at the sensor
sides call for affordable and low-profile hardware that replaces the task classically done at the central server,
where constraints on hardware are a lot less stringent.

The goal of the project is to provide a first step in realising this using Field Programmable Gate Arrays (FP-
GAs). The FPGAwould serve as the data processing units that perform self-supervised learning in a federated
learning context. A down-scaled implementation of self-supervised learning in conjunction with a federated
learning framework will be developed. The FPGAs will perform hardware acceleration to increase the speed
performance of the setup. The self-supervised federated learning framework will be created in Python and
the hardware design will be done using SystemVerilog. The federated learning setup is aimed to be centered
around the self-supervised on-device federated learning (SOFed) algorithm [5]. A readily available FPGA
board is used, which contains an on-board microcontroller as well as an FPGA chip.

1.5. Problem definition
To implement a self-supervised federated learning setup, the total group is split up into pairs. Each pair is
denoted as a subgroup, and works on one of two parts of the project:

• Hardware subgroup. Responsible for the hardware acceleration of the self-supervised learning setup
on the FPGA.

• Signal Processing andAlgorithms subgroup. Responsible for the implementation of the self-supervised
learning setup in Python.

This thesis will describe the process and product developed by the Signal Processing and Algorithms group.

1.6. Thesis structure
The thesis has the following structure. In chapter 2 the programme of requirements for the total group and the
subgroup will be discussed. In chapter 3 the theoretical background of self-supervised learning and federated
learning will be discussed. Chapter 4 discusses a preliminary assessment of the speed bottlenecks in the
algorithms that will be used, such that the implementation of the algorithms can take these into account. In
chapter 5 the implementation of the self-supervised federated learning framework will be discussed in addition
to the testing and results of the implementation. In chapter 6 the delivered product will be reflected upon and
recommendations for future work on the topic will be mentioned, and the completion of the requirements will
discussed. Chapter 7 gives the conclusion of the thesis.

2
Programme of requirements

In order to delineate the problem statement further, a programme of requirements has been formulated. This
list of requirements can be used afterwards to evaluate whether the final result conforms to the initially devised
requests and expectations. The programme of requirements has been split up into three parts: a general part,
shared by both subgroups, and a further sequence of requirements for each subgroup. Only the requirements
relevant for the signal processing subgroup will be stated here.

2.1. General requirements
These requirements make the use of self-supervised learning, federated learning and an FPGA as client
explicit.

1. The system should use self-supervised federated learning.
2. The system should be able to perform federated learning on an FPGA on the client side.
3. The system should include a server that coordinates the federated learning among multiple clients. This

server does not need to run on an FPGA.
4. The system should be scalable to allow for multiple clients, with 2 clients being the minimum amount.
5. The system’s algorithms must be accelerated by using the programmable logic available on the client

nodes.

The last requirements is not the task of the signal processing subgroup however, but of the hardware subgroup:
it is added for completeness.

2.2. Signal Processing and Algorithms Requirements
The following requirements detail the algorithm that will be implemented, how it will be adjusted to be used
in combination with an FPGA and how different network models will be compared. The focus lays firstly on
the implementation of the self-supervised and federated learning algorithms, and secondly on the testing and
evaluation of the algorithms.

1. The system should implement the basic SOFed setup based on the SOFed paper [5].
2. In this paper, each client has a databuffer containing data for the network to train on. When the client

receives new data, this data can be inserted into the databuffer according to its relevance. The system
may implement the buffer first in a FIFO (first-in, first-out) manner, with the lazy-scoring buffer detailed
in the paper serving as an optional aspect.

3. The system should be optimized and downscaled enough such that it is possible to run the system on
the FPGA board (e.g. using simpler machine learning models and algorithms, or using a more coarsely
quantized number data format).

4. Several different machine learning models should be tested and compared.

6

2.2. Signal Processing and Algorithms Requirements 7

5. The memory usage of the different implementations should be found and compared.
6. The compute requirements (number of multiply-adds and trainable parameters) of the different imple-

mentations should be found and compared.
7. The effect of key algorithm parameters should be tested and evaluated.
8. The self-supervised learning should have an effect: the downstream classification accuracy at the server

side must be improved by training the model on unlabeled data.

3
Theory

To discuss the relevant backgroundmaterial, a chapter is dedicated to themethods used in the implementation.
The concept of self-supervised learning discussed in chapter 1 is built upon with clear examples, followed by
the continuation of the concept of federated learning which was also discussed in chapter 1. Different methods
will be discussed including pros and cons of each. The goal of this chapter is to help in making the decision
of which form of self-supervised learning in conjunction with federated learning to use for the implementation
in chapter 5.

3.1. Self-supervised learning
Self-supervised learning is the process of training amachine learning network to classify data without telling the
network what the data represents. In this thesis, image classification is considered, and henceforth the data
is assumed to consist of images. Given a network f(x), and a constrastive L2 loss function L(a, b) = ||a− b||22,
the network is trained in general by providing either two images x1 and x2, called a positive pair, representing
the same class, and minimizing the loss L(f(x1), f(x2)), or by providing two images x1 and x2, called a neg-
ative pair, representing different classes, and maximizing the loss L(f(x1), f(x2)). The former kind is called
non-contrastive learning, and the latter contrastive learning. Using this process, the network f is trained to
output similar output vectors for similar input images, and different output vectors for different input images.
These are called representations of the input data.

Since the images are unlabeled it is difficult to recognize which images should generate the same represen-
tations: the model does not know if two images are part of the same image class. Non-contrastive learning
attempts to solve this problem by taking the same input image x, and generating two views x1 = U(x) and
x2 = V (x) of this image. U and V are image transformations like rotation, blurring and resizing. These
transformations change the image, but preserve the semantic information and the class that the image repre-
sents. These two views, which by definition represent the same image class, can then be used to minimize
L(f(x1), f(x2)), thereby training the network f to generate the same representation for the same image class.
It is evident that the degree to which this method works is dependent on the quality of the image transfor-
mations U and V . This method does not work however for contrastive learning, where labels are needed to
determine whether two images indeed do not represent the same image class. To circumvent this, negative
pairs are randomly chosen by picking two different images. However, this means that there is still a chance
that a negative pair represents the same class, since those two images could belong to the same class.

3.1.1. Different methods & models
Over the past years, several different variations of this basic concept have been devised. This section will go
through the most important of these.

BYOL
The Bootstrap Your Own Latent (BYOL) [6] approach is visualized in figure 3.1.

8

3.1. Self-supervised learning 9

x

v yθ zθ qθ(zθ)

v′ y′ξ z′ξ sg(z′ξ)

view

input
image

representation projection prediction

t

fθ gθ qθ

t′

fξ gξ sg

loss

online

target

Figure 3.1: A schematic depiction of the BYOL algorithm. [6]

The BYOL algorithm starts with the same input image x, which gets transformed into two views v and v′ by a
random transformation t. These views are then fed into two separate branches: an online branch and a target
branch. The online branch contains the encoder network fθ that is actively trained, along with a projector gθ
and predictor qθ. The target branch also contains a network fξ and a projector gξ. These target networks are
however not actively trained, due to a stop-gradient (sg) element at the end of the target branch. Instead, the
target branch is defined as a moving average of the online branch. If wξ is the set of weights of the target
branch, and wθ the weights of the online branch, the new set of weights wξ,new = τwξ+(1−τ)wθ is calculated
after every training iteration. By feeding the two views into the two network branches, the loss function can be
defined as follows: L(qθ(gθ(fθ(v)), gξ(fξ(v′))). As a loss function, it uses L(a, b) = || a

||a||2 −
b

||b||2 ||
2
2. Because

BYOL only operates on positive pairs, it is a form of non-contrastive learning.

The encoder network is a convolutional neural network (CNN) generally consisting of a sequence of con-
volutional layers, batch normalization layers, and activation layers. The functioning of a CNN and batch
normalization layers is explained in appendix A.

It should be noted that, along with the encoder network f , two other networks are included: a projector and a
predictor. The projector, present in both the online and target branch, is a Multi-Layer Perceptron (shortened
as MLP, a multi-layer neural network consisting of n ≥ 2 linear layers and an activated layer), reducing the
dimension of the output of the network f . The predictor is an MLP as well, which tries to map the output of
the online branch to the output of the target branch.

Three counter-measures taken to prevent collapse are taking the exponential moving average (EMA) of the
online branch for the target branch, the projector, and the predictor. Theoretically, in non-contrastive learn-
ing, it would be possible for the network f to always output a zero vector; an optimal loss L(f(x1), f(x2)) =
L(0, 0) = 0 would then be achieved. However, this is undesirable: the network has collapsed, and the output
of the does network f does not contain a representation of the input image class. Every image would generate
the same representation. The EMA, projector, predictor, and stop gradient all help to prevent this collapse.
An (empirical) argument for the need of these elements is given in the next section.

A brief explanation of the need for a projector is given in the ’SSL Cookbook’ [7]. Although not strictly nec-
essary for preventing collapse, it can give ∼20% accuracy gains under special conditions. Furthermore, it
is postulated that it can help with noisy augmentations such that a positive pair whose two views are quite
different can still be projected onto the same representation.

SimSiam
SimSiam [8] is a modification of BYOL. It removes the EMA and sets the target network equal to the online
network at all times. This showed that the EMA was not needed to prevent collapse. As a loss function, it uses
negative cosine similarity: L(a, b) = − a

||a||2 ·
b

||b||2 . Note that SimSiam in fact removes the distinction between

3.1. Self-supervised learning 10

the online and target branch. However, these names will still be used to designate the two branches.

Because the networks in the two branches of SimSiam are equal, SimSiam requires less memory than BYOL,
since the weights of the two branches are shared. It can also require less computation, since feeding an
image through the network immediately computes both the online and target result of that image. The pre-
dictor output can then be calculated to find the output of the online branch using the output of the target branch.

One of the purposes of the SimSiam paper is to show that EMA is not strictly necessary to prevent collapse.
SimSiam does achieve a slightly lower final accuracy however, although it converges faster in the beginning
[8].

The paper also performs an empirical study to show what effect the other network parts have. It showed
that removing the stop gradient causes a quick collapse [8]. Hence, the stop gradient seems instrumental to
prevent collapse. Removing the batchnorm layers in the network did not cause collapse, but it did cause a
great loss of accuracy. Hence, batch normalization is instrumental to achieve good accuracy. Removing the
predictor also caused collapse; hence the predictor is also a necessary element.

SimCLR
SimCLR [9] is a predecessor to BYOL. Like SimSiam, it does not use an EMA encoder but the same network
for both branches. It does use negative pairs: when training the network using one minibatch at a time, the
two augmentations in the two branches from the same image in the minibatch count as a positive pair, but
the same image with respect to every other image in the minibatch count as negative pairs. This removes
collapse, considering that besides the minimisation of one loss, the maximization of another type of loss is
needed: the representations for the negative pair should differ as much as possible, while the representations
of the positive pair should be as close as possible like before.

The paper shows that contrastive learning benefits from large batch sizes and longer training. It also shows
that it is able to achieve accuracies only slightly lower (a few %) than equivalent supervised learning on the
ImageNet dataset [10]. Note that BYOL and SimSiam generally achieve better results than SimCLR [6] [8],
although the risk of collapse exists for those algorithms.

BarlowTwins
BarlowTwins [11] is a successor to SimSiam and BYOL. It has a symmetrical architecture, with the online
and target branch being the same, containing an encoder and a projector. BarlowTwins does not contain a
predictor, nor a stop gradient. In order to prevent collapse without a predictor or a stop gradient, BarlowTwins
defines its loss function as trying to get the cross-correlation of the output of the two branches as close as
possible to an unity matrix. Given the two projections zθ and zξ:

Cij =

∑
b zθ,b,izξ,b,j√∑

b(z
2
θ,b,i)

√∑
b(z

2
ξ,b,j)

, (3.1)

it defines the loss function L(zθ, zξ) =
∑

i(1 − Cii)
2 + λ

∑
i

∑
j ̸=i C

2
ij . With this loss function, L(0,0) ̸= 0 is

not an optimal solution anymore, hence collapse is prevented inherently.

On ImageNet, it achieves an accuracy slightly below BYOL, and slightly above SimSiam. It seems robust
to small batch sizes, like BYOL. BarlowTwins seems to profit from a large projector output size.

3.1.2. Relevant methods
Having explained themost popular SSLmethods, a summary of the characteristics of each can be seen in table
3.1. In order to choose which SSL method to employ, several considerations could be made. For example,
[12] details the considerations in choosing between contrastive and non-contrastive learning. But given the
scope of this project, implementation simplicity and computational complexity are key considerations due
to time and hardware constraints. Non-contrastive learning is easier to implement since only positive pairs
need to be considered, simplifying the loss function. Both BarlowTwins and SimSiam have lower memory
needs since both SSL branches are equal, while there is a distinction in BYOL between the online and target

3.2. Federated learning 11

branch, hence both need to be stored in memory. Between BarlowTwins and SimSiam, SimSiam is easier to
implement since, again, it has a simpler loss function. BYOL is similar in this regard, but additionally does
not collapse as quickly and can achieve slightly higher accuracies, albeit at the cost of higher memory usage.
In lieue of these considerations, SimSiam seems the most promising SSL method, with BYOL serving as a
baseline. Since SimSiam is akin to BYOL but without EMA, it is trivial implementation-wise to change BYOL
to SimSiam. Thus, BYOL and SimSiam will be the two SSL methods that will be considered from now on, and
their performance will be compared and discussed in chapter 5.

Table 3.1: An overview of each of the SSL methods.

Name Contrastive EMA Projector Predictor Liable to collapse
BYOL No Yes Yes Yes Yes
SimSiam No No Yes Yes Yes
SimCLR Yes No Yes No Yes
BarlowTwins No No Yes No No

3.1.3. Classification
After training the model in a self-supervised manner, it can be converted into a classification model by taking
only the (online) encoder of the SSL model and attaching it to a linear evaluation head, which consists of a
single linear layer. This layer takes the output vector of the encoder and converts it into scores for each of
the classes in the dataset. This classifier head can then be trained in a supervised manner, although with
much less (labeled) data than the amount of unlabeled data that was available to the encoder using SSL. This
method of evaluating a self-supervised model using a linear layer is called linear evaluation, and shows if the
encoder generates proper representations of the different image classes when used for testing [13].

3.2. Federated learning
With the discussion of self-supervised learning, the ability to process unlabeled data is explained and explored.
This allows for real-time data processing at the edges of a data-gathering network. To further build upon this
concept, a decentralized approach is needed such that the data processing at the sensor nodes can be incor-
porated into a collective machine learning training protocol without the sharing of data. The answer to this is
the concept of federated learning.

As mentioned in chapter 1, federated learning is a machine learning approach that relies on multiple clients
with data-processing capabilities to train the models, relieving the central server of being solely responsible
for this task [1]. In this section, multiple approaches to achieve this are explained and compared.

In general, a decentralized processing network consists of N clients, with client i having acces to a subset Di

of the total data in the network D. In general, the data is not identically and independently distributed (IID):
some sensors may generate data that differs tremendously from other sensors. In context: a medical image
sensor that tries to detect the presence of diseases in organs would generate more data of damaged organs
if a sick patient is imaged. Another sensor in the same network that is imaging a healthy patient will clearly
have a different data distribution. This means thatDi andDi+1 will not necessarily have the same distribution.

Now take a general machine learning model M(D) that is used at the server for making data predictions
on dataD. In a decentralized approach, we try to create this model by taking the models of the clientsMi(Di)
which are trained on the local data. We thus have a setup of N clients each with a model Mi(Di) trained
on the subset Di of the total data D, and we are looking for a way to combine these to generate M(D): the
goal of federated learning is to perform the function f(·) such that M(D) = f(M1(D1),M2(D2), ...,MN (DN))
predicts the total dataset sufficiently well.

There are two main benefits to this approach when compared to centralized machine learning: the data does
not have to be present at the server itself, and the server does not have to train a machine learning model.
This is an ideal solution to issues with private or very abundant data: the clients can not (realistically) share
their data with the server due to regulations or low communication bandwidths, and the server has no/little
access to any data. The server only has to find M(D) by performing f(·).

3.2. Federated learning 12

3.2.1. FederatedAveraging
The initial approach to federated learning was to take the average of the weights of all models, known as
FederatedAveraging [1]. The critical assumption for this to work is thatMi(Di) has the exact same architecture
for each of the clients, and that the starting models are all initialized with the same weights. We denote the
weights ofMi(Di) as wi. The weights w ofM(D) can then be found using equation 3.2, which serves as f(·)
in the case of this approach.

w =

N∑
i=1

|Di|∑N
j=1 |Dj |

wi (3.2)

Where |Di| is denoted as the amount of images in |Di|. The emphasis of this approach lies on the unbalanced
nature of the data per client: some clients are likely to have way more data available than others. The algo-
rithm takes care of this by taking a weighted average based on the amount of data present at the client: more
data means a higher weight and thus a larger influence on the total model update. Note that the data itself
does not have to be shared: the client shares the model weights and the amount of images used for training,
not the images itself

This model is based on Stochastic Gradient Descent (SGD) as the optimizer. SGD works by updating the
weights of the model for every small batch of training images [14]. When compared to normal Gradient
Descent (GD), where the update is only done after the entire training dataset, we see a more fluctuating con-
vergence to the minimum: outliers in the data can cause larger changes in the model parameters. While
the exact convergence is more complicated due to this, potentially better minima of the loss function can be
achieved.

In the case of FederatedAveraging, the data at each client is not necessarily representative of the total data but
could be distributed differently. By using SGD on this data, the model is updated more often when compared
to GD, meaning that the model can converge quicker but the result is less stable. This is ideal for federated
learning: each client can converge quicker to the representative data but with more variance of the datasets
taken into account, and the averaging of the weights that takes place at the server side helps resolve these
issues. FederatedAveraging adds to this concept by letting the clients train their data for multiple epochs
before sending the model to the server.

In summary, the training loop looks as follows.

1. Server: initialize central model Mt−1(D) at timestep t− 1.
2. Server: send central model to clients.
3. Clients: perform training using SGD for multiple epochs on the received model using the local data Di.
4. Clients: send Mt−1,i(Di) and the amount of data used |Di| to the server.
5. Server: finds Mt(D) = f(Mt−1,1(D1),Mt−1,2(D2), ...,Mt−1,N (DN)) as described in equation 3.2. The

loop will continue from 2.

A strong point of this approach is the little amount of communication rounds needed: instead of updating the
central model after every local model update, more training is done per communication round. This does
not only decrease the amount of communication rounds needed for convergence, but also outperforms the
approach of updating the central model after every single training epoch of the clients [1].

What this method does not address is the limited amount of storage at the clients: the datasets Di can
not be too large due to this. Since there is typically a lot of data being generated, part of this data must be
dropped to allow for realistic training-data storage. If we were to just drop the data in the context of non-IID
data, catastrophic forgetting could occur. This leads to the incorrect classification of images that have not
been seen for a certain amount of time, which is realistic in the case of non-IID data.

3.2.2. SOFed
To account for the limited amount of storage at the clients, data must be dropped. Section 3.2.1 detailed that
dropping data without any consideration of the content itself, catastrophic forgetting could occur in the case of

3.2. Federated learning 13

non-IID data. Self-supervised On-device Federated learning (SOFed) aims to solve this, in addition to omitting
the use of labeled data by focusing specifically on the use of self-supervised learning for the training of the
local models [5].

In SOFed the data will be stored in a data buffer that can be implemented on a device. This buffer serves
to hold the most important data for model training, where importance is defined using a score. This score
indicates if the self-supervised machine learning model has difficulty creating representations based on this
data, which can be formulated as the SSL loss for the input image, as described in section 3.1. When new
data arrives, the data entries with the highest scores are chosen to fill the buffer. This way, we try to keep the
data that is the most useful to train on since the model has not yet managed to process the data sufficiently.
The batch size during training is set equal to the buffer size, and the buffer is updated as soon as data comes in.

With the current setup, every time the weights are updated the score of an image in the buffer becomes
invalid. Since typical updates do not change the loss of a single image dramatically in typical systems, a
lazy scoring approach is used. By only calculating the score after a certain amount of weight updates, less
computations are needed with minimal changes in accuracy [5]. This is done by giving a timer to each image
indicating the amount of epochs since the last scoring. If this timer exceeds a chosen amount of epochs, it is
updated to better represent the score of the image for the current model.

SOFed also makes use of equation 3.2 to find the new weights, however now the weighted average is depen-
dent on the buffer size (which is typically equal for every client, in which case the averaging becomes uniform).
The training approach is equal to that of FederatedAveraging, besides the lazy scoring of images which takes
place after every weight update of every client.

Figure B.2 in appendix B shows the approach used by SOFed.

4
Identification of bottlenecks

This chapter will highlight the bottlenecks of the system by the profiling of a formative subsystem.

Before simplifications can be made, the bottlenecks of the system must be analyzed. This is done by pro-
filing the system: the percentage of the runtime of each section of the subsystem for an epoch of training
is done. For more information on how this is achieved the reader is referred to the thesis of the hardware
subgroup.

The tests are performed on BYOL with an encoder that contains of 2 convolutional layers with 16 channels
in the first layer and 32 channels in the second layer. The hyperparameters of the system and other models
used for the setup are discussed in section 5.1.11 and section D.1. The results are given in figure 4.1.

Figure 4.1: Results of the profiling done by the Hardware subgroup on an early implementation of BYOL. The percentages indicate
what part of the runtime is needed for that part of the setup.

We note that the three most taxing elements of the system are the backpropagation, the forward pass of the
system (calculation of the output of the system for a given input image), and the augmentations of the images.
The focus will thus lie on simplifying the models by accelerating these in the hardware. Due to the scope
and time-frame of the project the backpropagation algorithm in hardware was not deemed to be feasible. The
hardware subgroup goes into more detail on this topic, with the conclusion being that the augmentations and
the forward pass of the encoder will be accelerated in hardware. This will be taken into consideration on
the software side of the project too by taking simplified encoder structures and researching alternatives that
require less computations (e.g. SimSiam). The results of this will be explained in chapter 5.

14

5
Implementation

This chapter firstly gives an overview of the implementation of the self-supervised learning algorithms by out-
lining the high-level algorithms and the network models used. These algorithms and network models have
been implemented in Python using PyTorch [15]. All code is included in appendix E, and some implementa-
tion details are given in appendix D. Afterwards, the interaction with the hardware/FPGA-side of this project
is detailed and the simplifications that had to be performed. These were based on the profiling of the system
mentioned in chapter 4. Finally, the test results of the then complete SSL setup will be given. Different SSL
methods and network models will be compared, and an ablation study will be performed to test the effect of
some of the hyperparameters on evaluation accuracy.

The second part of this chapter discusses the federated learning setup in the same structure: a detailed
explanation of the algorithms used, followed by the test results.

5.1. SSL Implementation
The implementation of the SSL implementation will be discussed part-by-part using the heartbeat of the pro-
gram: the training loop, as seen in pseudocode in algorithm 1. The network is trained on a dataset which
is split up into small batches of images and looped over in N epochs. For every batch, the images are aug-
mented into two different views of the same input images. These input images are fed into the model, which
returns a loss. Backpropagation (see appendix A) is performed on this loss, thereby minimizing it. After every
batch, the online and target network are updated in the case of the BYOL model. Firstly, the ’model’ part will
be discussed, then the dataset (’loadBatch’), the image augmentations (’augment’), the optimizer (’backward’),
the EMA (’updateEMA’), the changing of τ and the learning rate over time (’updateSchedule’), and finally how
the trained model can be used to perform classification tasks and how the accuracy of a trained model is
evaluated.

Algorithm 1 Main Loop
n← 0
while n < Nepochs do

startEpoch()
while dataLeft() do

x←loadBatch()
x1, x2 ←augment(x)
L ←model(x1, x2)
backward(L)
updateEMA()
updateSchedule()

end while
n← n+ 1

end while

15

5.1. SSL Implementation 16

5.1.1. Models
As discussed in chapter 3, two main SSL methods will be discussed: BYOL and SimSiam. Firstly, the BYOL
algorithm is considered, then its constituent parts: the encoder, projector and predictor, and finally the SimSiam
algorithm (which utilises the same encoder, projector and predictor, but in a slightly different manner).

BYOL
The implementation of the BYOL algorithm is given in pseudocode in algorithm 2. Both images views are fed
into both the online and target branch, and the loss is computed both between the online result of view 1 and
the target result of view 2, and the online result of view 2 and the target result of view 1. This effectively trains
the network twice, without having to recompute augmentations.
In the algorithm, it can be seen that the BYOL makes use of several other submodels. The implementation of
each of the subparts of the network (the encoder f , the projector g and the predictor q) will now be detailed.

Algorithm 2 BYOL
Input

x1 First augmented image view
x2 Second augmented image view

Output
L Loss

zθ,1 ← gθ(fθ(x1))
qθ,1 ← qθ(zθ,1)
zξ,1 ← sg(gξ(fξ(x1)))

zθ,2 ← gθ(fθ(x2))
qθ,2 ← qθ(zθ,2)
zξ,2 ← sg(gξ(fξ(x2)))

L ← 1
2

∣∣∣∣∣∣ qθ,1
||qθ,1||2 −

zξ,2
||zξ,2||2

∣∣∣∣∣∣2
2
+ 1

2

∣∣∣∣∣∣ qθ,2
||qθ,2||2 −

zξ,1
||zξ,1||2

∣∣∣∣∣∣2
2

Encoder
The encoder is a Convolutional Neural Network (CNN). Several CNN implementations have been considered:
the BYOL paper [6] itself uses different ResNet models [16] for the encoder; MobileNet [17], and its different
versions, are intended to be used in mobile (hence low-power) vision applications. These models still have
upwards of 2M+ parameters [17]. Due to the hardware constraints the decision was made to stick to CNN
models with less than 50K parameters. In the end, three different CNNmodels were used: a ’simple’, ’medium’
and an ’advanced’ network. These can be seen in figures B.1a, B.1b & B.1c in appendix B. Note, that each
BatchNorm layer also includes a Rectified Linear Unit (ReLU) activation at the end. Batchnorm is included,
which is very helpful for the network to converge and achieve decent accuracies [18] [6]. The configuration
of the convolutional layers can be seen in table 5.1. These configurations have differing amounts of layers,
with channel counts gradually increasing, as is commonly seen in literature [17]. The size of each encoder in
terms of parameters and its computational cost can be found in table B.1 in appendix B.

Table 5.1: Configurations of the three different encoder types.

Encoder type Input channel # Output channel #’s
Simple 1 2 4
Medium 1 4 8 12
Advanced 1 6 12 18 24 30

Projector
The projector is an MLP [6]. All MLP’s used and mentioned in this thesis are regular two-layered networks,
consisting of, in sequence: a linear layer (the hidden layer), batch normalization, ReLU activation, and at the
end another linear layer (the output layer).

5.1. SSL Implementation 17

The input of the projector is the image output of the encoder, flattened to a singled one dimensional vector.
The hidden layer size and the output size are hyperparameters, whose values are stated in section 5.1.11.

Predictor
The predictor is an MLP as well [6]. The output of the online projector is fed into the predictor, and the output
of the predictor has the same size as its input considering that it has to be compared (in the loss function)
against the output of the target projector. The hidden layer size of the MLP is a hyperparameter stated in
section 5.1.11.

SimSiam
The implementation of the SimSiam algorithm can be seen in algorithm 3. Again, both images views are fed
into both the online and target branch, and the loss is computed both between the online result of view 1 and
the target result of view 2, and the online result of view 2 and the target result of view 1. Since the target
branch is equal to the online branch, the encoded and projected result of the one branch can be reused for
the other: zθ,1 = zθ,2. The same encoder (f), projector (g) and predictor (q) networks are used as with BYOL.

Algorithm 3 SimSiam
Input

x1 First augmented image view
x2 Second augmented image view

Output
L Loss

zθ,1 ← gθ(fθ(x1))
qθ,1 ← qθ(zθ,1)
zξ,1 ← sg(zθ,1)

zθ,2 ← gθ(fθ(x2))
qθ,2 ← qθ(zθ,2)
zξ,2 ← sg(zθ,2)

L ← 1
2

∣∣∣∣∣∣ qθ,1
||qθ,1||2 −

zξ,2
||zξ,2||2

∣∣∣∣∣∣2
2
+ 1

2

∣∣∣∣∣∣ qθ,2
||qθ,2||2 −

zξ,1
||zξ,1||2

∣∣∣∣∣∣2
2

5.1.2. Dataset
In order to choose an adequate dataset of images to test the SSL framework on it must adhere to the following
criteria:

1. It must be sufficiently difficult to train on such that a simple linear layer without a CNN cannot already
achieve high accuracy.

2. It must not be too difficult: the encoders defined above must be able to achieve sufficiently high accuracy
such that the setup can find proper representations of the data.

3. The format of the images in the dataset must not be too big: the images must fit in the storage on the
FPGA board.

Three common datasets used for testing are MNIST [19], CIFAR-10 [20] and ImageNet [10]. These datasets
vary wildly in difficulty, and also in the format of the images. The buffer storing the images mentioned in chap-
ter 3.2.2 should be big enough for the algorithms to function properly without taking too much space in the
memory or on the chip, hence the third point in the list

ImageNet has coloured images that have an average resolution of around 256x256 pixels after cropping [10],
CIFAR-10 has coloured images that are 32x32 pixels, while MNIST has gray-scale images that are 28x28
pixels. Examples can be found in figure 5.1. Since a coloured image requires three channels to represent the
RGB values, MNIST would require less than a third of the amount of storage when compared to CIFAR-10,
and almost 250 times less storage than an ImageNet image. For this reason, MNIST is chosen as a prelim-
inary dataset. The main issue with MNIST lies in the ease of classification: the accuracy typically lies well

5.1. SSL Implementation 18

above 90% even for simple models [19]. Alternatives that are harder to classify exist: FashionMNIST [21]
and KMNIST [22] have the exact same image format (size, resolution, and number of colours) while typically
being harder to classify. For this reason a test was done to find baseline accuracies for each of these sets to
find which is most difficult to classify. The results can be found in chapter 5.1.12, table 5.2, which show that
KMNIST is the best fit for the needs of the project. KMNIST will thus be used as the dataset for training and
testing.

(a) An image in the MNIST
dataset.

(b) An image in the KMNIST
dataset.

(c) An image in the CIFAR-10
dataset.

(d) An image in the ImageNet
dataset.

Figure 5.1: Examples of images in the different datasets that were considered.

5.1.3. Augmentations
Three different image augmentations will be considered: Gaussian blur, rotation, and resized crop. The effect
of these three image augmentations can be seen in figure 5.2. A Gaussian blur and resized crop stem from
the BYOL paper [6], while (slight) rotations are very effective image augmentations that can be replicated
relatively well on low-hardware [23]. The BYOL paper also uses color augmentations, but since the KMNIST
dataset is in grayscale, these augmentations do not apply. The paper also uses a horizontal flip augmentation,
but since a flipped character in the KMNIST dataset does not have the same semantic meaning, it is also not
applicable for this dataset: KMNIST consists of Japanese characters, and unbounded rotations and flips result
in ambiguity of the letters in extreme cases. Note also that each image is normalized before it is sent to the
network, which helps to train the network and improve accuracy [24].

Figure 5.2: A visualization of the different image augmentations that will be considered. Note that this is an image from the MNIST
dataset, not from the KMNIST dataset.

Three different ways of augmenting images will be considered:

1. Augmenting the input twice to create two different, augmentated views: x1 = U(x), x2 = U(x).
2. Augmenting the input once for one view, and using the input directly for the other view: x1 = U(x), x2 = x.
3. Augmenting the input once, using a weak augment (only the resized crop), and using the input directly

for the other view: x1 = V (x), x2 = x.

While the first method is the most thorough way of creating two different views of the same image, methods
two and three are much faster to execute. As a baseline, the first method will be used, and the effect of the

5.1. SSL Implementation 19

second and third method on evaluation accuracy will be evaluated in the ablation study in section 5.1.12.

5.1.4. Optimizer
The process of backpropagation (see appendix A for more information) mentioned in algorithm 1 as ’back-
ward()’ is implemented in PyTorch itself [15]. What remains is choosing an optimizer.
A simple SGD optimizer has been used as a baseline, the reason for which is detailed in section 3.2.1. Its
parameters (learning rate, momentum, and weight decay) are stated in section 5.1.11.

5.1.5. Scheduling
The process of scheduling entails changing certain hyperparameters over time, commonly the learning rate.
By employing a high, coarse learning rate, the model first finds a rough estimate of the global minimum of the
loss function, and by slowly changing this to a lower, finer learning rate, the model is fine-tuned to the global
minimum. In this implementation, a linear warm-up with cosine decay schedule is used, in order to modulate
the learning rate as seen in figure 5.3a. This is the same schedule as used in the BYOL paper [6].
Another parameter whose value could be changed according to a schedule is the EMA parameter τ . It will be
varied according to cosine decay schedule based on the BYOL paper [6]. The scheduler is shown in figure
5.3b.

(a) The linear startup, cosine decay schedule of the learning rate. (b) The cosine decay schedule of the EMA parameter τ .

Figure 5.3: The two different schedules employed while training.

5.1.6. Exponential Moving Average
As explained in chapter 3, the weights of the target branch of the BYOL network are updated according to
equation 5.1:

wξ,new = τwξ + (1− τ)wθ. (5.1)

Here wξ are the weights of the target network (belonging to the encoder and projector), and wθ are the weights
of the online network (belonging to the encoder and projector). The predictor is not taken into account here
since the target network contains no predictor. τ is a hyperparameter controlling how fast the target network is
updated using the weights of the online network, whose value is stated in section 5.1.11. Note that this process
of updating the target branch using an EMA of the online network is not performed when using SimSiam since
SimSiam does not have a distinct online and target branch. Note that when setting τ = 0, the target and
online branch are set equal to each other as well: SimSiam is the same as BYOL with τ = 0.

5.1.7. Classification
After having trained the BYOL network (algorithm 2) or the SimSiam network (algorithm 3), the process of
which has been detailed in the preceding chapters, the network as of yet only operates on unlabeled data,
and hence it is not yet able to correctly guess the label of input images. Allowing the network to perform actual
classification is done by training a separate classification network. This classification reuses the encoder part

5.1. SSL Implementation 20

of the original network, but discards the projector and predictor. After the encoder, a classification head is
placed: a single linear layer. The input of this layer is the flattened output of the encoder, and the output size
is equal to the number of classes in the dataset (10 for KMNIST). Finally, a LogSoftmax [25] activation is used
at the output.

This network is trained in the same manner as in algorithm 1, but with a few changes:

1. The weights of the encoder network stay fixed, to ensure that the encoder has only been trained in a
self-supervised manner without using labeled data.

2. There is generally much less labeled data. To simulate this difference between the amount of unlabeled
data and the amount of labeled data, the classifier is only trained on a subset of the dataset. The
exact percentage of image data used as labeled is a hyperparameter, stated in section 5.1.11, and has
been taken as 10%. The other 90% of the dataset is used for self-supervised training: training of the
BYOL/SimSiam network and training of the classification network happen on distinct parts of the dataset,
there is no data overlap between the two training processes. It must be noted that this is only a simulation
of the effects of having a large portion of unlabeled data, since in fact all of the image data in the KMNIST
dataset is labeled.

5.1.8. Evaluation
Now that a full network has been obtained fit for classification tasks, the accuracy of the trained network needs
to be assessed. The accuracy of a network is obtained by calculating the percentage of images in the dataset
it is able to classify correctly. Generally, a separate evaluation part of the dataset, apart from the training part,
is used for this evaluation of the network, such that a network that has been able to memorize all data from
the training dataset without actually learning to classify the data will not be able to score the 100% on the
evaluation dataset. For more information see appendix A.

Note that the classification network does not directly output a label but rather outputs a score for each class.
The higher the score, the higher the probability that the input image is of that class. The class with the highest
score is taken as the final prediction of the model.

5.1.9. Quantization
This project, as discussed, also contains a hardware side, which aims to perform the forward passes through
the CNN on the FPGA in programmable logic in order to speed up the training time. The interface between
the hardware and software group has been determined (see section 5.1.10) to be a function that takes the
input and weights of one convolutional layer and calculates and returns the convolved output. Furthermore,
the hardware part performs it calculations in fixed-point arithmetic (see also section 5.1.10), instead of the
floating-point arithmetic that is used in the rest of the system.

This software/signal processing side of the project hence has to accommodate for a mixed signal path: part of
the computation done is by the microcontroller unit (MCU) on the FPGA board, and part on the programmable
logic. Furthermore, in order to test the software part independently from the hardware part, a drop-in replace-
ment of the hardware forward convolutional function should be made. This replacement function should also
emulate the effects of fixed-point arithmetic by quantizing floating-point values to only the values allowed in
the fixed-point format, although the calculations themselves may still be performed in floating-point arithmetic.

As activation function in the encoder, ReLU-1 is used: ReLU1(x) = min(max(0, x), 1), clamping the input
between 0 and 1. This simulates the internal 8-bit hardware data format (see section 5.1.10).

5.1.10. Hardware agreements
The previous section already discussed some of the interaction between signal processing subgroup and the
hardware subgroup. This section gives an overview of the agreements that were made. The reader is referred
to the thesis by the hardware group for information on the hardware acceleration.

1. Forward convolutional computations are hardware-accelerated and calculated in fixed-point, 12-bit for-
mat: 1 sign bit, 4 whole bits (before the dot) and 7 fraction bits (after the dot).

2. Other computations, like the linear layer computations of the projector and predictor MLPs are done on

5.1. SSL Implementation 21

the MCU and are not hardware-accelerated. The backward pass is also not hardware-accelerated.
3. Weights transported to and from hardware are 12 bit fixed-point: 1 sign bit, 4 integer bits, 7 fraction bits.
4. Input and output values of each convolutional section (including batchnorm and activation) are 8 bit:

1 integer bit and 7 fraction bits. Values are thus between 0 and ∼2. This effect was intended to be
simulated by using ReLU-1 as an activation function. However, the correct activation function would be
ReLU-2. This is considered further in the discussion in chapter 6.

5. The interaction mechanism between hardware and software is, at it most simplest, one function that
performs the forward pass of a single convolutional layer. If time permits, this can be extended to
performing the whole forward encoder pass, including augmentations, in hardware. In the end, this was
not achieved. This will be elaborated upon in chapter 6.

5.1.11. Hyperparameters
The hyperparameters of a machine learning network are specific parameters that can be used to tune a ma-
chine learning model. They can change how quickly the model will converge or how high the classification
accuracy will be. These need to be tuned to allow for the best outcomes.

This can often be a tricky task to achieve, since each combination generally results in a different outcome
and the parameters are often not uncorrelated: the effect on the performance of a parameter can change as
soon as another parameter changes. We first start by listing all the hyperparameters of the setup and then
move on to the selection- and tuning process. For any other hyperparameters that are part of the PyTorch
library the default values are used unless otherwise specified

The first set of hyperparameters hold for any chosen SSL method in this setup.

1. Learning rate. This hyperparameter influences the amount of change that can occur in a single weight
update. Increasing the learning rate results in higher jumps in the values of the weights per optimization
step.

2. Weight decay. This hyperparameter influences the loss function of the system: it adds a penalty term
related to the magnitudes of the weights to the loss function. A higher weight decay forces the system
to reduce the magnitude of the weights of the system.

3. Momentum. This hyperparameter influences the convergence of the model by taking previous weight
updates in account during the next update.

4. Batch size. The total training data is split into smaller batches. Changing the size of this batch can
influence the convergence and variance of the updates of the weigths [14]. In general, the learning rate
should be scaled based on the batch size: higher batch sizes call for a larger learning rate [6].

5. Classification split. Datasets often provide a train and a test set for the training and testing of a model
respectively. In the case of self-supervised learning, this is not enough. A large train set should be
utilized to train the network using a large amount of unlabeled data, while a smaller train set should be
used to train the downstream classifier using a small amount of labeled data. Lastly, the test set is used
to evaluate the total system. The percentage split between the labeled training data and the unlabeled
training data can be varied and is denoted as the classification split.

6. Size of the hidden layers. For the projector and predictor networks, a MLP is used. This gives freedom
in the number of nodes in the hidden channel of the network. Increasing this channel in size requires
more computations but can increase performance. Note: the output of the projector is also a hyperpa-
rameter that can be tuned.

7. For BYOL: τ . This parameter described in section 5.1.6 is also treated as a hyperparameter. This
parameter can have major effects on the convergence of the SSL setup and can help prevent collapse
[26].

Optimization methods for hyperparameter tuning exist, which often consist of checking the performance of
the model in the case of a selection of parameters, and choosing the setup with the highest accuracy. A
setup based on this was created using the SciKit-Optimize library [27]: by approximating the distribution of
the hyperparameters as a multivariate normal distribution, an estimation is made of the distribution of the pa-
rameters based on the accuracies for different combinations of the parameters. After this a selection is made

5.1. SSL Implementation 22

for the optimal selection of the hyperparameters in the regard of accuracy. This setup was implemented in
Python but due to the stochastic convergence of the models many epochs of training were needed for proper
accuracy measurements. Due to the short time-frame of the project, this was not feasible to perform (more
on this in chapter 6). For this reason most of the hyperparameters are chosen based on the literature of the
chosen methods or on empirical results.

We choose a learning rate equal to 0.05 · B
64 , where B is the batch size. This is based on the SimSiam

paper [8] besides a scaling factor: the learning rate was empirically found to perform better when increasing
the learning rate found in the papers, which is equal to 0.05 · B

256 .

We also base the weight decay on the SimSiam paper [8], which yields a weight decay of 0.0001. For the
momentum, a value of 0.9 is used as stated in the BYOL paper [6].

The batch size is more difficult to find considering that the size and depth of the neural networks used can influ-
ence what batch size is optimal. In the SOFed scenario depicted in chapter 3.2.2, the batch size corresponds
to the data buffer on the clients: a smaller buffer will be helpful for the hardware implementation considering
the decrease in storage required. We start off with a slightly smaller value than mentioned in the SOFed paper
[5]: instead of 128, a batch size of 64 is chosen as a starting point.

The classification split is also based on the SOFed paper [5]. Tests are done where either 1% or 10% of
the total training data is used as labeled training data for the classifier, where the latter achieved higher accu-
racies. Considering that we want to show the effect of training the SSL setup on the classification accuracy,
we do not want to take the risk of supplying too little data to the classifier such that it bottlenecks. Choosing a
lower classification split may allow for a higher increase in performance due to the increase in data used for
the SSL setup. This choice is hard to make, but ultimately a classification split of 10% was chosen based on
empirical tests: using this split often resulted in enough data for proper convergence of the classifier, which
reduces the uncertainty for testing.

The size of the hidden layers of the projector and the predictor were decreased when compared to the BYOL
and SimSiam [6] [8] considering that the used dataset is considerably smaller than the dataset used in the
papers. In the papers, ImageNet is used a dataset, which consists of more than 5000 different object classes
[10]. Considering that KMNIST consists of only 10 object classes and the general model complexity necessary
for classifying ImageNet calls for more advanced models, the layers where arbitrarily chosen as 128 nodes
for the hidden layers and 32 nodes for the output layer of the predictor.

For the value of τ for BYOL, the value in the paper was chosen [6]. This results in a value of 0.99 for this
parameter. This value is of importance for the convergence and should be chosen carefully: some values can
result in the collapse of the system as described in chapter 3.1.1. The prevention of collapse was ensured
before testing.

5.1.12. Results
We first start with the comparison of two forms of SSL: BYOL and SimSiam. The theory tells us that we expect
SimSiam to converge slightly faster, but that BYOL can achieve an overall higher accuracy.

We use the three separate NNs mentioned in chapter 5.1.1 for the encoder in both setups. This thus re-
quires six separate tests to be done, one for each combination of SimSiam or BYOL and an encoder. The
total sizes of each of the models are given in table B.2 in appendix B.

We aim to compare the two methods by comparing the accuracy of the classifier in the case of an encoder
that is not trained and an encoder that is trained using SSL as described in sections 5.1.7 and 5.1.8. Before
we do this however, we find the average classifier accuracy for each dataset.

In general, we train the classifier for 50 epochs using the chosen classification split of 0.1/10%. We use
a batch size of 64 and SGD as the optimizer. Since the classifier starts to converge after around 20 epochs,
we take the average of the last 30 epochs to estimate the average classifier accuracy for each encoder. We
do this for three datasets: MNIST, FashionMNIST, and KMNIST. The accuracy for each type of encoder and

5.1. SSL Implementation 23

dataset is given in table 5.2.

Table 5.2: Accuracies of the different (randomly initialized) encoders on different MNIST-like datasets.

Classifier accuracy (untrained encoders)
Encoder name MNIST dataset FashionMNIST dataset KMNIST dataset
Simple encoder 92.2% 79.3% 66.2%
Medium encoder 94.6% 80.1% 74.0%
Advanced encoder 94.6% 77.9% 73.5%

We note that the KMNIST dataset clearly shows the lowest base accuracy. We use the results to justify the
choices made in section 5.1.2.

We now move to the testing of the classifier accuracy in the case of trained encoders for both BYOL and
SimSiam. We use 50 epochs of self-supervised training and train the classifier for 1 epoch and directly test
it afterwards after every epoch of self-supervised training. We plot the results per epoch of this test in figure
B.3 in the appendix. The model training was done using the DelftBlue High-performance Cluster [28], using
a single NVIDIA Tesla V100S GPU card.

We first note the stochastic convergence: after 30 epochs, accuracy ceases to improve, although there is a
lot of variance in the result. We thus calculate the final accuracy using the final 10 epochs and taking the
average of these values for every method. We also calculate the relative increase of the accuracy compared
to the reference accuracies for each type of encoder. The results are given in table 5.3.

Table 5.3: Accuracies of the different trained encoders in different SSL setups on KMNIST.

Classifier accuracy (trained encoders)
Encoder type (SSL type) Reference Obtained accuracy Relative increase
Simple encoder (BYOL) 66.2% 71.1% 7.4%
Simple encoder (SimSiam) 66.2% 69.7% 5.3%
Medium encoder (BYOL) 74.0% 80.3% 8.5%
Medium encoder (SimSiam) 74.0% 79.8% 7.8%
Advanced encoder (BYOL) 73.5% 81.9% 11.4%
Advanced encoder (SimSiam) 73.5% 80.4% 9.4%

We see promising results: by choosing an encoder with more channels and layers, the accuracy increases.
BYOL typically gives a slightly higher result but also requires more computations to perform. The amount of
epochs needed for convergence seems to stay relatively close to that for SimSiam, which could be due to
the smaller NNs used for the encoder. The relative increases, defined as the increase of the SSL setup on
the classifier trained on an initialized encoder, also increase as the encoder becomes more complex: using
complexer encoders help the model in achieving better results.

We now move on to the choice of a single encoder for the FPGA setup. We base this on two factors: the
setup should be computationally efficient and the effect of SSL should be clear: there should be a high (rel-
ative) increase in accuracy. Considering that the forward pass requires a lot of computations based on the
profiling, we would prefer using SimSiam: the encoder and projector forward pass for the online and target
branch are equal, heavily reducing the amount of computations necessary for the forward pass. We thus
pick the encoder with the largest relative accuracy increase in a SimSiam setup, which results in using the
advanced encoder in conjunction with SimSiam. Although the other setups can be used just fine, the chosen
setup is picked for the ablation study to show the influence of certain parameters and components.

Ablation study
In the ablation study, the chosen SSL setup will be further analyzed by changing parameters and parts of the
system. We will focus on two parts of the system that play a large role for the hardware group and implemen-
tation of the system on a device: the batch size and the augmentation of the input images. The batch size

5.2. FL Implementation 24

decides the size of the buffer, which should ideally be small. The augmentation of the input images is impor-
tant for the generation of good representations of the data (see chapter 3.1) but could perhaps be simplified.
We research these two critical parts individually.

We start with studying the influence of the batch size. To do this, we do the same tests as before but we
now change the batch size (and thus the learning rate too, see chapter 5.1.11) from 16 to 256, doubling the
batch size for every step. We use the advanced encoder with SimSiam as mentioned before. We analyze the
average final accuracy and relative increase in the same ways. We now also analyze the stability of the final
solution: we find the standard deviation of the accuracy in the last 15 epochs of training for every batch size
used. The results are plotted in figure B.4 in the appendix, and are also given in the table below.

Table 5.4: Accuracies of the advanced encoder using SimSiam using different batch sizes on KMNIST.

Classifier accuracy (different batch sizes)
Batch size Obtained accuracy Relative increase Standard deviation
B = 16 81.2% 10.5% 0.21%
B = 32 80.1% 9.0% 0.24%
B = 64 80.4% 9.3% 0.41%
B = 128 82.2% 11.9% 1.3%
B = 256 80.8% 9.9% 1.4%

The results are very interesting: we see that there is not necessarily a clear optimum. When increasing the
batch size, we notice an increase in accuracy first but then a decrease in accuracy afterwards. We hypothe-
size that the increase in batch size increases the capability of high performance of the model by achieving high
accuracies but also the standard deviation of the accuracy. There is thus a balance between good accuracies
and a low standard deviation. In the ablation study we have done, a batch size of 16 proved to be most viable
for an on-device setup considering that we would like to keep the buffer (and thus the batch size) as small as
possible. A more optimal batch size could be chosen but this would have effects on the hardware needed for
the buffer. The key takeaway is that a higher or lower batch size is not better necessarily. This agrees with
the literature [8].

The second ablation study is done by varying the means of image augmentation. In standard SSL schemes,
both the online and target branch apply a different augmentation to the same image. We try to analyze the
effect of reducing this to only a single augmentation of the input image of the target branch, and even simpli-
fying the augmentation itself. We base the types of augmentations on section 5.1.3. We use the batch size of
16 from the previous ablation test for these tests, and keep the rest of the settings the same as before. The
results are plotted in figure B.5 in the appendix. The results are also given in table 5.5.

Table 5.5: Accuracies of the advanced encoder using SimSiam with a batch size of 16 using different augmentations, tested on
KMNIST.

Classifier accuracy (different augmentations)
Type of augmentation Obtained accuracy Relative increase
Double augmentation 81.2% 10.5%
Single augmentation 79.6% 8.3%
Single weak augmentation 76.8% 4.5%

The results are as expected: decreasing the amount of augmentations and the quality of the augmentation
decreases the obtained accuracy. This trade-off in accuracy could be made to decrease the computations
necessary for the augmentations.

5.2. FL Implementation
With SSL being fully explained and tested, federated learning will now be considered. As explained in section
3.2, federated learning (FL) entails training a model on several clients simultaneously, with a server coordinat-
ing the process and training a classifier upon the self-supervised models that the clients train. In this project,

5.2. FL Implementation 25

the SOFed algorithm will be implemented [5]. This algorithm consists, on the one hand, of FederatedAver-
aging (see section 3.2.1) as a method of updating the global model using the local model of each client, and
a special data buffer on the other hand which does not contain the full dataset, but only relevant portions.
By keeping a small data buffer, memory usage is kept small. The implementation of these two parts will be
detailed in their respective order.

5.2.1. Communication Protocol
The FederatedAveraging algorithm has been explained in global terms in section 3.2.1. Algorithm 4 shows
the implementation of this algorithm im more detailed terms. The algorithm has been adjusted such that a
client can enter and leave the training process at any time, which simplifies testing.

Algorithm 4 Federated Averaging: Server
wglobal ← randomModel()
while True do

while
∑

c∈clients receivedModel(c) <
len(clients) ∨ len(clients) = 0 do

listenForClients()
for all c ∈ clients do

updateCommunication(c)
end for

end while
wglobal ← 1

len(clients)
∑

c∈clients wc

sleep(ttimeout)
for all c ∈ clients do

updateCommunication(c)
end for
trainClassifier()
evaluateClassifier()

end while

Algorithm 5 Federated Averaging: Client
startCommunication()
n← 0
while n < Nepochs do

if n mod Nserversync = 0 then
receiveModel()

end if
trainModel()
if n mod Nbufferupdate = 0 then

updateBuffer()
end if
n← n+ 1
if n mod Nserversync = 0 then

sendModel()
end if

end while
stopCommunication()

The server starts with a randomly initialized model. It runs a main loop, which performs a full averaging pro-
cess every iteration. At the start of the iteration, the server waits for new clients, and waits until each of these
new clients has sent its updated model. Then, it averages the model, waits a while (to give each of the clients
time to send a request for the averaged model after they have sent their updated model. For a production
environment, this could be made more robust), and sends the new global model. Then, it trains a classifier
upon the global model and evaluates the performance.

The client-server communication works using a messaging system: the client sends one of three possible
messages:

1. Request for global model. Upon receiving this message, the server sends back the global model.
2. Updated local model available. Immediately after sending this message, the client sends its own local

model
3. Client stopped. Upon receiving this message, the server sends an acknowledge message, such that it

knows that the server has successfully received the stop message and the communication channel can
be closed.

The function updateCommunication() checks if messages have been received from a client, and if so, it pro-
cesses them.

The function listenForClients() checks whether new clients are available to join the training process, and if
so, it appends them to the ’client’ list.

The functioning of the client can be seen in pseudocode in algorithm 5. The training starts by connecting
the server, after which the training loop is entered. At the first epoch of the training loop the global model is

5.2. FL Implementation 26

requested from the server such that the client starts at the most up-to-date version of the global model. Then,
the model is trained (’trainModel()’). Note that the model is trained not on a dataset, like in the SSL implemen-
tation discussed before, but on a data buffer, whose implementation is discussed in the next section. Every
Nbufferupdate epochs, this data buffer is updated, allowing new data to enter the buffer. Every Nserversync

epochs, the trained client model is sent to the server, after which the server averages the model and sends
the model back at the start of next client epoch. Nbufferupdate andNserversync are two hyperparameters whose
value will be discussed in section 5.2.3.

Training, however, is done in quite the same way as detailed in section 3.1, apart from a few differences.
For example, the FL client does not contain learning-rate and τ scheduling; this was left out due to time con-
straints. Furthermore, note that an epoch in the sense taken here is different from its meaning in SSL training.
In SSL training, an epoch meant iterating over the whole KMNIST dataset; here it entails iterating over just the
data buffer, which contains much less data. Consequently, fully training a model requires many more epochs.

5.2.2. Databuffer
The SOFed algorithm [5] includes a data buffer which keeps a small subset of images instead of a full dataset
to conserve memory in low-footprint devices. This data buffer can be implemented in a First-In First-Out
(FIFO) manner, where each time a device receives a new image, it is immediately added to the buffer, and the
oldest image in the buffer is discarded. However, the SOFed paper details an importance scoring algorithm,
where each received image receives a score according to how ’important’ the image is to train on. The most
important images are then kept in the data buffer. As a measure of importance, the loss of the BYOL/SimSiam
network is used when the two branches are fed the same image, only weakly augmented: v = L = f(x, V (x)),
where v is the importance score, f the whole network including encoder, projector and predictor as seen in
algorithms 2 & 3, and V a weak augmentation. In this implementation, a resized crop augmentation was used
as a weak augmentation. The implementation of the data buffer can be seen in algorithm 6, and is used in
algorithm 5 as ’updateBuffer()’.

Algorithm 6 Data Buffer
Input

newImages Newly received images
for all x ∈ buffer do

timeInBuffer(x)← timeInBuffer(x) + 1
if timeInBuffer(x) ≥ Nrescore then

score(x)← f(x, V (x))
timeInBuffer(x)← 0

end if
end for
for all x ∈ newImages do

score(x)← f(x, V (x))
timeInBuffer(x)← 0
add(buffer, x)
if len(buffer) > Nbuffersize then

remove(buffer, lowestScoreItem(buffer))
end if

end for

First, images in the buffer receive new scores when necessary. New scores are calculated ever Nrescore (the
lazy-scoring interval, see section 5.2.3 for its value and section 3.2.2 for a more thorough explanation) times
this function gets called. It would be possible to calculate new scores every time but this would require much
computation time. Since the network does not change too much between iterations, the scores are expected
to stay mostly the same, and only a periodic update is required. This saves much computation time. Then,
the newly received images and scored. If the score is high enough, they are kept in the buffer and another
image is discarded.
The buffer starts out empty, but images are gradually added. When the buffer reaches it maximum size
Nbuffersize, an image must be discarded for every new image that is added.

5.2. FL Implementation 27

5.2.3. Hyperparameters
Most of the hyperparameters corresponding to FL are equal to those in the SSL setup: please refer to chapter
5.1.11 for these. Besides the values given here, we update the batch size following the ablation study: the
batch size used is equal to 16, which also equals the size of the buffer. In addition to this, we use SimSiam
for the SSL in conjunction with the advanced encoder. The lazy-scoring interval of the buffer is arbitrarily set
to 10 epochs: the score is updated every 10 epochs at the client.

5.2.4. Results
The testing of the federated learning setup is done using two clients as a starting point. To simulate the SSL
setup, the clients perform 50 epochs of training on the data buffer every training round. 16 new images are
provided to the setup during every epoch of training, of which the client picks a selection using the scoring
mechanism. After training and model-sharing by the clients, the server finds the new global model and trains
the classifier for 5 epochs. We analyze the accuracy as a function of the number of communication rounds.

A critical detail is that the data distribution is identical for each client: each client receives a random selection
of the total data. This is not analyzed in the literature for SOFed [5] considering that it is a simplification of the
real scenario, which means an analysis and check of the results will be more difficult.

The results of the experiment are visible in figure B.6 in the appendix. We see a stark increase in accuracy
that does not seem to slow down: the results do not give a definite result of the final accuracy considering that
it is not reached. Due to the time frame of the project, no further tests were possible to find the final accuracy
of the setup.

From the results we can already see that the accuracy presented in chapter 5.1.12 for a batch size of 16
is exceeded: the accuracy almost reaches 85% in the SOFed setup, while the SSL setup only managed to
achieve an accuracy of 81.2%. These results thus tell us that the FL setup is able to outperform the SSL setup.

This contradicts the results in the paper: a decrease in accuracy when compared to the SSL setup was
achieved [5]. One critical difference is that the data used for the data buffer was not distributed equally for
every client: each client had access to data classes in different amounts, which was shown to negatively im-
pact the accuracy if the differences in distribution increase in the ablation tests. We thus hypothesize that the
equal distribution of the data for every data buffer helps in achieving higher accuracies than standalone SSL.

As to why higher accuracies may occur, the parallel nature could very much help in this regard. By using
multiple clients with different data which we train on extensively, we allow the clients to train the model to
create very good representations of the small amount of data in the data buffers. By averaging the results of
the encoders of every client, we are essentially averaging the models that are trained on data with the same
distribution. This could allow for a decrease in the variance of the model updates performed by the clients.
This argument is backed by the very stable convergence of the models: comparing figure B.6 to figure B.3
in the appendix, we see much less large fluctuations in the accuracy, with drops of more than a percent in
accuracy being very uncommon in the case of SOFed.

To build upon this result, tests on a higher number of clients must be performed in addition to longer tests
on two clients to reveal the final achieved accuracy. The literature tells us that a larger amount of clients is
expected to result in a lower accuracy; however, this is in the case of clients with access to different data
distributions which does not correspond to the implemented setup. It thus remains to be seen what the effect
of increasing the number of clients will be on the performance of the FL setup.

6
Discussion and future work

In this chapter the results of the project are analyzed. The choices made are discussed and compared to the
literature. The results are then compared to the programme of requirements. Finally the continuation and
recommended future work of the project is discussed.

6.1. Self-supervised learning
The results of the self-supervised learning part of the project were largely positive: the framework yields results
which seem to fit the theory. Simplifications had to be done to allow for a decrease in available computational
power but it is suspected that due to the use of a simpler dataset this did not influence the comparison of
expected results to theory too much.

What could have been improved was the tuning of the setups. It was seen during the ablation study that
the optimal batch size was not found before the start of the tests, meaning that the initial tests were not com-
pletely representative for the setup in the case of changing the batch size. This could have been solved by
tuning the hyperparameters to find the optimal set first. For the purpose of the tuning a Python setup was
created, however the time necessary for testing the parameters would have taken too long due to time con-
straints. (It would have taken in the range of 50 hours per encoder and SSL combination, and could only be
done after the SSL setup was finalized.)

Implementing quantized computations proved more difficult than expected. It was agreed upon with the hard-
ware group that the convolutional computations would be done in 12 bit fixed-point precision. However, Py-
Torch, the Python framework that was used for the implementation, does not allow the usage of fixed-point
data in its networks, let alone custom data formats (like the 12 bit format). Hence, the quantization effects that
the hardware would encounter had to be simulated in software. Before and after every convolution, the input,
weights and output floating-point data had to be quantized to fixed-point values (e.g. 0.246 gets rounded
off to 0.25, although still staying a floating-point value). PyTorch did allow using 16-bit floating-point values
instead of 32-bit values however, which got made use of, since would still save the microcontroller on the
FPGA-board computation time. Furthermore, a mistake slipped in while discussing the quantization formats
with the hardware subgroup; at the one hand, ReLU-1 activation was agreed upon to simulate the effects of
hardware quantization, but on the other hand the actually 8 bit quantized values have a range of 0-2; ReLU-2
should have been used. Hence, the test results are not completely accurate. The effect of this discrepancy is
expected to be minimal however.

6.2. Federated learning
The results of the federated learning setup are not as complete as hoped for. Since the results in the case of
two clients are harder to compare to the literature due to the simplifications made it is harder to confirm the
functioning of the system. To properly show the functionality of the system, extra tests with more clients and
longer tests are needed. This sadly did not fit in the time frame of the project.

28

6.3. Possible continuation 29

6.3. Possible continuation
Due to the time constraints of the project some of the tests and additions were not completed. We offer a list
of things that should be analyzed and tested in the case of a continuation of the completed work.

• Implementation of the complete quantization. The quantization of the whole system should be imple-
mented such that the complete forward and backward pass of the system can be performed in hardware.
This would require quantizing all the weights and the backpropagation results. While attempts were
made to implement this, no viable results were generated due to issues in causing stable results.

• Tuning and further ablation testing. The setups should be tuned properly using the created hyper-
parameter optimizer before further testing. After this the ablation testing can be extended: besides the
batch size and the augmentations, also looking at changing the hidden layer sizes of the projector and
predictor: this could result in accuracy gains without adding too many computations.

• Further testing of the federated learning setup. The tests performed were incomplete for a conclusive
answer on the effect of scaling the setup to multiple clients. In addition to this, further tests should be
performed to research the convergence time and accuracies achievable using the created setup. If the
quantization is implemented correctly the results should be representative for the actual setup using
FPGAs.

• Actual implementation in hardware. Although this is mostly the task of the hardware group, the signal
processing and algorithms group could implement a version of the framework that can properly commu-
nicate with the hardware acceleration unit on the FPGA. The framework should be adapted to allow for
this. Efforts were made in this regard but due to the issues in the hardware group actual integration and
testing was sadly not yet possible.

• Further improvement of the implementation. Some simplifications like IID data were assumed, which
is less realisic when compared to actual sensing scenario’s [1]. Considering that the algorithms used
are relatively resilient to the use of non-IID data, testing can be done to confirm this. If this proves to
be difficult, improvements can be made like replacing the averaging of the model weights at the server
side in SOFed and using more complex algorithms currently treated in the literature, which can allow for
dynamic data distributions and increased privacy [29].

6.4. Requirements revisited
Most of the requirements have been successfully completed. Some requirements still remain to be completed
due to integration issues with the hardware group. To complete all requirements of the Signal Processing and
Algorithms subgroup, further testing would be necessary. The reflection on the fulfillment of each requirement
can be found in appendix C.

6.5. Problem statement revisited
The problem that this thesis set out to solve was: how can the discrepancy between the amount of labeled
and unlabeled data be leveraged to train a network using unlabeled data, such that it performs better than if
it were trained purely on labeled data, but without sharing the (private) unlabeled data?
The first part of this problem, training a network using unlabeled data, was solved using self-supervised al-
gorithms, BYOL and SimSiam. The results in section 5.1.12 have shown that training an encoder using both
BYOL and SimSiam on unlabeled data allowed for a better downstream classification accuracy.
The second problem, of training the network without sharing the unlabeled data with a central server, has been
solved by federated learning. Two clients have been able to separately train a common network in parallel,
without needing to share their data, and achieving an accuracy on par with training the SSL model centrally
on one single computer. Although running the system with more than two clients has not been tested, there
is no reason to expect why this system would not be scalable to more clients. For a conclusive answer, tests
must be done.

This shows that both SSL and FL are promising methods for companies who have a lot of unlabeled or highly
distributed, privacy sensitive data respectively.

7
Conclusion

The goal of the bachelor graduation project was to implement self-supervised federated learning on a Field-
Programmable Gate Array (FPGA), with this report being focused on the implementation of the machine learn-
ing framework in Python.

Multiple self-supervised learning setups were considered with two approaches being most suited for the setup:
Bootstrap Your Own Latent (BYOL) and Simple Siamese networks (SimSiam). These were implemented in
Python and simplified to reduce computations needed for model training. Both approaches were tested for a
selection of different compact neural networks to find a solution that balances the effectiveness of the setup
and the computations needed for training. The setup was further improved via an ablation study. The end
result was a lightweight implementation of SimSiam with quantization.

The self-supervised learning approach was combined with Self-supervised On-device Federated learning
(SOFed) to test the performance. A client and server were simulated to test the performance of the setup.
In the case of two clients, the results show an increase in performance and a more stable convergence of the
algorithm. The results for multiple clients remain to be tested.

The final result is an efficient Python implementation of self-supervised federated learning that simulates the
computational environment of the envisioned hardware acceleration that could be implemented on an FPGA.

The implementation of self-supervised federated learning on compact and affordable hardware can improve
privacy and processing of unlabeled data which is otherwise difficult to utilize. Data can remain local and
private while still being used to improve machine learning models at central locations. This has numerous
applications in for example the fields of wireless communications, health, and power grid management.

30

References

[1] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning of deep networks using
model averaging,” CoRR, vol. abs/1602.05629, 2016. arXiv: 1602 . 05629. [Online]. Available: http :
//arxiv.org/abs/1602.05629.

[2] S. Bharati, M. R. H. Mondal, P. Podder, and V. S. Prasath, “Federated learning: Applications, challenges
and future directions,” International Journal of Hybrid Intelligent Systems, vol. 18, no. 1–2, pp. 19–35,
May 2022, ISSN: 1875-8819. DOI: 10.3233/his-220006. [Online]. Available: http://dx.doi.org/10.
3233/HIS-220006.

[3] S. Niknam, H. S. Dhillon, and J. H. Reed, Federated learning for wireless communications: Motivation,
opportunities and challenges, 2020. arXiv: 1908.06847 [eess.SP].

[4] H. Liu, X. Zhang, X. Shen, and H. Sun, A federated learning framework for smart grids: Securing power
traces in collaborative learning, 2021. arXiv: 2103.11870 [cs.LG].

[5] J. Shi, Y. Wu, D. Zeng, J. Tao, J. Hu, and Y. Shi, “Self-supervised on-device federated learning from
unlabeled streams,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 42, no. 12, pp. 4871–4882, Dec. 2023, ISSN: 1937-4151. DOI: 10.1109/tcad.2023.3274956.
[Online]. Available: http://dx.doi.org/10.1109/TCAD.2023.3274956.

[6] J.-B. Grill, F. Strub, F. Altché, et al., Bootstrap your own latent: A new approach to self-supervised
learning, 2020. arXiv: 2006.07733 [cs.LG].

[7] R. Balestriero, M. Ibrahim, V. Sobal, et al., “A cookbook of self-supervised learning,” 2023.
[8] X. Chen and K. He,Exploring simple siamese representation learning, 2020. arXiv: 2011.10566 [cs.CV].
[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A simple framework for contrastive learning of visual

representations, 2020. arXiv: 2002.05709 [cs.LG].
[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image

database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
DOI: 10.1109/CVPR.2009.5206848.

[11] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, Barlow twins: Self-supervised learning via redun-
dancy reduction, 2021. arXiv: 2103.03230 [cs.CV].

[12] R. Balestriero and Y. LeCun, Contrastive and non-contrastive self-supervised learning recover global
and local spectral embedding methods, 2022. arXiv: 2205.11508 [cs.LG].

[13] A. Kolesnikov, X. Zhai, and L. Beyer, Revisiting self-supervised visual representation learning, 2019.
arXiv: 1901.09005 [cs.CV].

[14] S. Ruder, An overview of gradient descent optimization algorithms, 2017. arXiv: 1609.04747 [cs.LG].
[15] A. Paszke, S. Gross, F. Massa, et al., Pytorch: An imperative style, high-performance deep learning

library, 2019. arXiv: 1912.01703 [cs.LG].
[16] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015. arXiv: 1512.

03385 [cs.CV].
[17] A. G. Howard, M. Zhu, B. Chen, et al., Mobilenets: Efficient convolutional neural networks for mobile

vision applications, 2017. arXiv: 1704.04861 [cs.CV].
[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” CoRR, vol. abs/1502.03167, 2015. arXiv: 1502.03167. [Online]. Available: http://
arxiv.org/abs/1502.03167.

[19] L. Deng, “The mnist database of handwritten digit images for machine learning research [best of the
web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012. DOI: 10.1109/MSP.2012.
2211477.

31

https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.3233/his-220006
http://dx.doi.org/10.3233/HIS-220006
http://dx.doi.org/10.3233/HIS-220006
https://arxiv.org/abs/1908.06847
https://arxiv.org/abs/2103.11870
https://doi.org/10.1109/tcad.2023.3274956
http://dx.doi.org/10.1109/TCAD.2023.3274956
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2002.05709
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/2103.03230
https://arxiv.org/abs/2205.11508
https://arxiv.org/abs/1901.09005
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477

References 32

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, May 2012.
[21] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for benchmarking machine

learning algorithms,” CoRR, vol. abs/1708.07747, 2017. arXiv: 1708.07747. [Online]. Available: http:
//arxiv.org/abs/1708.07747.

[22] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, andD. Ha, “Deep learning for classical
japanese literature,” CoRR, vol. abs/1812.01718, 2018. arXiv: 1812.01718. [Online]. Available: http:
//arxiv.org/abs/1812.01718.

[23] D. D. Thang and T. Matsui, Image transformation can make neural networks more robust against ad-
versarial examples, 2019. arXiv: 1901.03037 [cs.CV].

[24] K. Cabello-Solorzano, I. Ortigosa de Araujo, M. Peña, L. Correia, and A. J. Tallón-Ballesteros, “The
impact of data normalization on the accuracy of machine learning algorithms: A comparative analysis,”
in 18th International Conference on Soft Computing Models in Industrial and Environmental Applications
(SOCO 2023), P. García Bringas, H. Pérez García, F. J. Martínez de Pisón, et al., Eds., Cham: Springer
Nature Switzerland, 2023, pp. 344–353, ISBN: 978-3-031-42536-3.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[26] Y. Tian, X. Chen, and S. Ganguli, Understanding self-supervised learning dynamics without contrastive

pairs, 2021. arXiv: 2102.06810 [cs.LG].
[27] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi, Scikit-optimize/scikit-optimize, 2021.

DOI: 10.5281/ZENODO.5565057. [Online]. Available: https://zenodo.org/record/5565057.
[28] D. H. P. C. C. (DHPC), DelftBlue Supercomputer (Phase 2), https://www.tudelft.nl/dhpc/ark:

/44463/DelftBluePhase2, 2024.
[29] B. Liu, N. Lv, Y. Guo, and Y. Li, Recent advances on federated learning: A systematic survey, 2023.

arXiv: 2301.01299 [cs.LG].
[30] N. Sharma, V. Jain, and A.Mishra, “An analysis of convolutional neural networks for image classification,”

Procedia Computer Science, vol. 132, pp. 377–384, 2018, International Conference on Computational
Intelligence and Data Science, ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2018.05.
198. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S18770509183093
35.

https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1812.01718
https://arxiv.org/abs/1901.03037
https://arxiv.org/abs/2102.06810
https://doi.org/10.5281/ZENODO.5565057
https://zenodo.org/record/5565057
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://arxiv.org/abs/2301.01299
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.198
https://www.sciencedirect.com/science/article/pii/S1877050918309335
https://www.sciencedirect.com/science/article/pii/S1877050918309335

A
Machine learning terminology

In machine learning, lots of terms exist that can be confusing and not entirely self-explanatory. This list is
provided to help the reader understand terms used in the report and literature.

• Epoch: an epoch is a single training round in which all of the data is used for training. The convergence
time of a machine learning model is often denoted in number of epochs instead of computation time.

• Batch: a batch is a smaller part of the total training data on which training is done. For every piece
of data in a batch, training is done to find the necessary update needed to the weights. Afterward the
average value of all these updates is taken. The update to the weights is thus only done once per batch
instead of after every image.

• Gradient descent: gradient descent is an optimizer that works by updating the weights in the opposite
direction of the gradient of the loss function. The maximal decrease in loss is taken using the derivative
of the loss function with respect to all the model weights.

• Training-, test-, and validation sets: the total data is split up into several categories. The training set
is used to train the model. The testing set is used to find how many correct predictions the trained model
can make on data it has never seen before. The validation set is a part of the training set which is also
tested to find the number of correct predictions: the model has seen this data, thus a higher result is
typically expected.

• Hyperparameters: the hyperparameters of a machine learning model are parameters that can be tuned
to change how the learning is done. These are related to the architecture of the models but also the
convergence rate.

• Overfitting: the machine learning model is too closely trained on the training data. This results in the
noise and peculiarities of the training data becoming part of the model. This is often seen as a very high
accuracy on the validation set but a much lower accuracy on the testing set. This can be handled by
simplifying the model or tuning the hyperparameters.

• Underfitting: the machine learning model can not find a good relation between the data and the result.
This is often seen as very low accuracies for both the testing and the training set. This can be handled
by complexifying the model or tuning the hyperparameters.

• Neural network: a neural network is a special type of machine learning model. It consists of layers of
nodes. Each layer receives a number of input values. In an activation layer, each node in this layer
obtains a linear combination of the inputs (scaled by the weights and added) and a unique bias. These
weights and biases can be updated via training.

After this summation, the output is scaled by a non-linear function: the activation function. This can
be a unit step function, a rectifying function (known as ReLU) or any other non-linear function. The goal
of the network is to train each weight such that the activation functions can be used to decipher non-
linear relations in the data. Each node has a related activation function, although commonly these are
equal for every node in the layer. The outputs of the nodes are then the output of the activation function.

33

A.1. Abbreviations 34

If there is no activation function, the layer is called a linear layer: there is a linear relation between the
inputs and the output.

• Batch normalization layer: a special type of layer that normalizes the data in a batch by setting the
expected value to zero and the variance to 1. These are commonly used since they cause an increase
in performance in neural networks [18].

• Convolutional layer: a special type of layer that takes a convolution of the previous layer but applies
an activation function to the result of each kernel. Each node in the layer corresponds to a single result
of a convolution. This reduces the number of weights and has proven to be extremely useful for image
processing classification [30].

• Convolutional neural network: a neural network that uses convolutional layers. An example of a
simple CNN is given in figure A.1. If we denote the activation function as f(x) and the weights of the 3x3
kernel pictured in the figure by w0, w2, ..., w9, we can find the following relation: y1 = f(w0 +

∑9
i=1 wixi).

The bias in this case is equal to w0. Each channel has a unique sets of weights per previous input
channel, and if the previous layer has multiple channels, next channel takes the sum of the convolutions
over each previous layer. Related to the figure, the first convolutional layer sees 3 input layers (the image
is in colour, thus a channel for red, green, and blue respectively), thus it needs 3 sets of 10 weights (3x3
kernel weights plus a bias weight) per channel in the first convolutional layer.

• Backpropagation. This is an efficient way to find the derivatives of the cost function with respect to
the weights by making use of the chain rule. Instead of calculating the derivative of every weight with
respect to the input individually, the loss function is differentiated with respect to the weights closest to
the output first, followed by differentiating these weights with respect to the weights one step back to
the input. This cycle repeats until the input is reached. Using multiplications, the derivative of the cost
function with respect to every weight can be found. The algorithm propagates back through the network:
the calculations are started close to the output and finish at the input. This is the general way in which
the derivative of the loss function with respect to the weights is taken in the case of deeper machine
learning models like typical neural networks. After this, the optimizer can be applied.

x3x2x1

x4 x5 x6

x7 x9x8

y1 y2 y3

y4 y5 y6

y7 y8 y9

Channel 2

Channel 1 Channel 1

z1

Channel 1

Channel 2

Channel 3

Channel 4

1st Convolutional layerInput image 2nd Convolutional layer

Figure A.1: Example of a 2-layer CNN, with the first layer having 2 channels and the second layer having 4 channels.

A.1. Abbreviations
Abbreviation Definition
BYOL Bootstrap Your Own Latent
CNN Convolutional neural network
EMA Exponential moving average
FedAvg Federated Averaging
FL Federated learning

A.1. Abbreviations 35

Abbreviation Definition
FPGA Field-programmable Gate Array
GD Gradient Descent
IID Identically and independently distributed
MCU Microcontroller unit
MLP Multilayer perceptron
NN Neural network
SGD Stochastic Gradient Descent
SimSiam Simple Siamese representation learning
SOFed Self-supervised On-device Federated learning
SSL Self-supervised learning
WD Weight decay

B
Extra figures and tables

B.1. Self-supervised learning

2 26

Conv2D BatchNorm

4 24

Conv2D BatchNorm

(a) The structure of the ’simple’ encoder.

4 26

Conv2D BatchNorm

8 24

Conv2D BatchNorm

12 22

Conv2D BatchNorm

(b) The structure of the ’medium’ encoder.

6 26

Conv2D BatchNorm

12 24

Conv2D BatchNorm

18 22

Conv2D BatchNorm

24 20

Conv2D BatchNorm

30 18

Conv2D BatchNorm

(c) The structure of the ’advanced’ encoder.

Figure B.1: The structures of the different encoder types.

36

B.2. Federated Learning 37

B.2. Federated Learning

Server

Global model

Classifier

Client 1
Self-supervised learning

Local model 1

Unlabeled data

Labeled data

BYOL

Data buffer 1

Client N
Self-supervised learning

Local model N

BYOL

Data buffer N

N Clients

Replace local model
with global model

Use small amount of
labeled data

Send local model to global
model for averaging

Use large amount of
unlabeled data

Figure B.2: Schematic diagram of SOFed. Each client performs training using data present in the data buffer on a global model, and
the server combines these models every communication round. After training the model is used for downstream classification. The

self-supervised learning method used is BYOL as based on the literature [5]

B.3. Model sizes
The sizes of the models in the case of only the encoder is given in table B.1 while the size including the
predictor and projector is given in table B.2. These encoders correspond to the ones mentioned in chapter
5.1.1 and pictured in figures B.1a, B.1b, and B.1c.

B.3. Model sizes 38

Table B.1: Sizes of the three different encoders

Encoder name Trainable parameters Multiply-adds needed Total size (MB)
Simple encoder 108 0.05M 0.15 MB
Medium encoder 1.26k 0.61M 0.30 MB
Advanced encoder 13.3k 0.74M 0.74 MB

Table B.2: Sizes of the three different setups (incl. encoder)

Encoder name Trainable parameters Multiply-adds needed Total size (MB)
Simple encoder 86.9k 0.14M 0.56 MB
Medium encoder 200.2k 0.81M 1.25 MB
Advanced encoder 337.4k 5.35M 2.28 MB

B.4. Self-supervised learning tests 39

B.4. Self-supervised learning tests

0 10 20 30 40 50
Training epochs

60

65

70

75

80

85

90

A
cc

ur
ac

y
[%

]

Self-supervised training comparison

BYOL Simple
SimSiam Simple
BYOL Medium
SimSiam Medium
BYOL Advanced
SimSiam Advanced

Figure B.3: Results of the SSL testing setup using the 3 different encoders for both BYOL and SimSiam.

B.4. Self-supervised learning tests 40

B.4.1. Ablation study

0 10 20 30 40 50
Training epochs

60

65

70

75

80

85

90

A
cc

ur
ac

y
[%

]

Batch-size comparison

B = 16
B = 32
B = 64
B = 128
B = 256

Figure B.4: Results of the ablation test for the batch size. The encoder used is the advanced encoder using SimSiam for the SSL
algorithm.

B.4. Self-supervised learning tests 41

0 10 20 30 40 50
Training epochs

60

65

70

75

80

85

90
A

cc
ur

ac
y

[%
]

Batch-size comparison

Double augmentations
Single augmentation
Single weak augmentation

Figure B.5: Results of the ablation test for the augmentations. The encoder used is the advanced encoder using SimSiam for the SSL
algorithm.

B.5. Federated learning tests 42

B.5. Federated learning tests

0 200 400 600 800 1000 1200
Communication rounds

60

65

70

75

80

85

90

A
cc

ur
ac

y
[%

]

SOFed test

2 Clients

Figure B.6: Results of the SOFed testing setup using 2 clients.

C
Fulfillment of the requirements

In this chapter the requirements are revisited and the completion of each is discussed.

C.1. General requirements
1. The system should use self-supervised federated learning.

The implemented software framework successfully performs self-supervised federated learning, indicat-
ing that this requirement is fulfilled.

2. The system should be able to perform federated learning on an FPGA on the client side.
This requirement is not met completely: while the software framework can run on an FPGA, the hardware
acceleration is not yet integrated with the software framework.

3. The system should include a server that coordinates the federated learning among multiple
clients. This server does not need to run on an FPGA.
The server is successfully implemented in the software framework. While minor improvements can be
made, it functions as expected. This requirement is fulfilled.

4. The system should be scalable to allow for multiple clients, with 2 clients being the minimum
amount.
The tests show the functionality in the case of 2 clients. Considering that the results are hard to verify
since the literature does not cover the expected result, it is unclear if the results are correct. The created
software framework allow for the selection of more clients, thus this requirement would be met if the
results of the system can be verified via further testing.

5. The system’s algorithms must be accelerated by using the programmable logic available on the
client nodes.
This requirement is not part of the Signal Processing and Algorithms subgroup. For the reflection on the
completion of this requirement the reader is referred to the thesis of the Hardware subgroup.

C.2. Signal Processing and Algorithms Requirements
1. The system should implement the basic SOFed setup based on the SOFed paper [5].

The software framework implements the SOFed setup successfully. This requirement is fulfilled.
2. In this paper, each client has a databuffer containing data for the network to train on. When the

client receives new data, this data can be inserted into the databuffer according to its relevance.
The system may implement the buffer first in a FIFO (first-in, first-out) manner, with the lazy-
scoring buffer detailed in the paper serving as an optional aspect.
The software framework makes use of the lazy-scoring buffer for the storing of data at the clients. This
requirement is fulfilled.

3. The system should be optimized and downscaled enough such that it is possible to run the
system on the FPGA board (e.g. using simpler machine learning models and algorithms, or
using a more coarsely quantized number data format).

43

C.2. Signal Processing and Algorithms Requirements 44

While it is not entirely sure if the simplifications done are sufficient for the functionality on an FPGA,
efforts were done to achieve this. Considering that the system is unable to run using the hardware
acceleration, the requirement is not met completely.

4. Several different machine learning models should be tested and compared.
The tests were done using multiple different encoders. This requirement is met.

5. The memory usage of the different implementations should be found and compared.
The storage space in memory necessary for the training of each SSL setup is successfully found. This
requirement is fulfilled.

6. The compute requirements (number of multiply-adds and trainable parameters) of the different
implementations should be found and compared.
The number of multiplies and additions needed in addition to the number of trainable parameters for
each SSL setup were successfully found. This requirement is fulfilled.

7. The effect of key algorithm parameters should be tested and evaluated.
For some of the parameters (batch size and type of augmentations) the effects on the performance
were found. Other parameters (hidden sizes of the projector and predictor) remain to be tested. This
requirement is not fulfilled completely.

8. The self-supervised learning should have an effect: the downstream classification accuracy at
the server side must be improved by training the model on unlabeled data.
The results show definite increases when SSL training is informed, and this is in-line with the theoretical
results stemming from the literature. This requirement is fulfilled.

D
Implementation Details

This chapter details the Python implementation of the SSL and FL algorithms. The Python files can be found
in appendix E.

D.1. Self-supervised learning
The full process of training and evaluation as well as the definition of the network models used has been ex-
plained now in general terms. This process and these definitions have been translated into and implemented
as Python code. A complete walk-through of the code will not be given, since the explanation above should
suffice as a blueprint of any implementation. However, some codebase specific things will be detailed in this
section.

As a general remark: the code uses PyTorch [15] as a machine-learning framework, for its ease of use. The
main files of the codebase will be regarded one-by-one.

D.1.1. Config.py
All hyper-parameters, as well as other configuration settings are set centrally in Config.py. This file contains a
large dictionary of settings, whose parts are distributed to relevant portions of the program, and then expanded
as a list of function arguments. In this manner, variables all over the program can be configured centrally.
These configuration variables can also be set using the command-line.

D.1.2. Model.py
This file contains, aside from some helper functions, the model definitions, of the MLP, the Classifier, a generic
encoder implementation which is used to create models of the ’simple’, ’medium’ and ’advanced’ encoders,
an implementation of other, more advanced encoders like MobileNetV2, and an implementation of the BYOL
network. The BYOL class functions as SimSiam when τ is set to zero.

D.1.3. ImageAugmenter.py
This file contains a class and methods to augment a batch of images. Note the different augmentation types,
as mentioned in section 5.1.3.

D.1.4. CheckPointer.py
This file contains a utility class used to save and load pretrained networks, such that training may be paused
temporarily and resumed later.

D.1.5. Dataset.py
This file uses PyTorch vision to load different image datasets. Note that each dataset is splitted into three
sections: training, classification and testing.

45

D.2. Federated Learning 46

D.1.6. KRIAInterface.py
This file implements a function that emulates a quantized forward pass as a replacement for the actual hard-
ware implementation. Weights and inputs are quantized to values allowed by a preconfigured fixed-point
format, and the output is again quantized. The file then uses this function to implement a convolutional layer
class, that is then used in Model.py as a direct replacement for the default PyTorch Conv2D class.

D.1.7. main.py
This file contains functions for the main SSL training loop, for the classification training loop, and a function
for model evaluation. The main function itself initialises the different parts of the program, distributes, as men-
tioned, the configuration to each part, and then, depending on the configured mode, performs different training
types: either SSL training (’pretrain’), and optionally training the classifier head every epoch, or evaluating the
network every N epochs; evaluating a model (’eval’); or training the classifier after having trained the encoder
(’evaltrain’/’evaltrainfrombyol’); or, a special mode, training the classifier, without fixing the weights of the en-
coder (’classtrain’). After having performed training, the program exits and outputs several training statistics
like the final accuracy.

D.2. Federated Learning
The implementation of the SOFed algorithm in code reuses most of the SSL codebase detailed in section D.1.
Three main files have been added however, which will be discussed in order.

D.2.1. Communication.py
This file implements the communication channel necessary for the server and clients to communicate. The
TCP protocol is used, using the Python ’socket’ library. Since the TCP protocol exposes an unstructured
stream of byte data, a separate protocol has to be used on top of TCP. This protocol has been explained in
section 5.2.1. The client and server communicate via messages, which consists of a 4-byte integer and a
UTF-8 string. The integer represents the length of the string in bytes.

D.2.2. Client.py
The client implements the client SOFed algorithm as seen in algorithm 5. The client trains on a dataset
exposed via an abstract base class ’DataSource’, such that multiple data source implementations can be
easily tested and compared. Two different data sources have been implemented: one allowing the client to
train regularly on the whole KMNIST dataset, and one implementing the SOFed databuffer algorithm as seen
in algorithm 6. Every time ’updateBuffer()’ (see algorithm 5) is called, this implementation simulates the arrival
of new image data by samplingNstreamcount new images from the KMNIST dataset. This parameter has been
set arbitrarily to Nstreamcount = 16.

D.2.3. Server.py
This file implements the server according to algorithm 4. The timeout parameter has been set to ttimeout = 1s.

E
Python code

This appendix contains the Python code of the SSL and FL implementations. A brief explanation of the
structure and each file can be found in appendix D.

E.1. Checkpointer.py
1 import os.path as path
2 import time
3 import datetime
4 import glob
5 import os
6 from enum import Enum
7

8 import torch
9

10 class CheckpointMode(Enum):
11 DISABLED = -1,
12 EVERY_EPOCH = 0,
13 EVERY_BATCH = 1,
14 EVERY_N_BATCHES = 2,
15 EVERY_N_SECS = 3,
16

17 class Checkpointer:
18

19 def __init__(self, directory, checkpointMode, saveOptimizerData=False, checkPointEveryNSecs=0,
checkPointEveryNBatches=0, prefix=""):

20 self.directory = directory
21 self.mode = checkpointMode
22 self.saveOptimizerData = saveOptimizerData
23 self.checkPointEveryNSecs = checkPointEveryNSecs
24 self.checkPointEveryNBatches = checkPointEveryNBatches
25

26 self.lastEpoch = -1
27 self.lastBatch = -1
28 self.lastCheckpointTime = -1
29

30 self.prefix = prefix
31 self.runIdentifier = datetime.datetime.now().strftime("%d%m%y_%H%M%S")
32

33 def getModelCheckpointPath(self):
34 return path.join(self.directory, self.prefix + "Model_" + self.runIdentifier + "_" +

str(self.lastEpoch) + ".pt")
35

36 def getOptimizerCheckpointPath(self):
37 return path.join(self.directory, self.prefix + "Optimizer_" + self.runIdentifier + "_" +

str(self.lastEpoch) + ".pt")
38

39 def update(self, model, optimizer, currentEpoch, maxEpochs, currentBatch, maxBatches):
40 currentTime = time.time()

47

E.2. Client.py 48

41

42 if self.mode == CheckpointMode.EVERY_EPOCH:
43 if currentEpoch != self.lastEpoch:
44 self.lastEpoch = currentEpoch
45 self.saveCheckpoint(model, optimizer)
46 elif self.mode == CheckpointMode.EVERY_BATCH:
47 if currentEpoch != self.lastEpoch or currentBatch != self.lastBatch:
48 self.lastEpoch = currentEpoch
49 self.lastBatch = currentBatch
50 self.saveCheckpoint(model, optimizer)
51 elif self.mode == CheckpointMode.EVERY_N_SECS:
52 if currentTime > self.lastCheckpointTime + self.checkPointEveryNSecs:
53 self.lastCheckpointTime = currentTime
54 self.saveCheckpoint(model, optimizer)
55 elif self.mode == CheckpointMode.EVERY_N_BATCHES:
56 raise NotImplementedError
57 elif self.mode == CheckpointMode.DISABLED:
58 pass
59 else:
60 raise NotImplementedError
61

62 self.lastEpoch = currentEpoch
63

64 def loadLastCheckpoint(self, model, optimizer):
65 listOfFiles = glob.glob(self.directory + "/*")
66 latestFile = max(listOfFiles, key=lambda f: os.path.getctime(f) if

f.split("\\")[-1].startswith(self.prefix) else 0).split("\\")[-1]
67

68 if not latestFile.startswith(self.prefix):
69 print(f"No {self.prefix} checkpoint found")
70 return
71

72 postfix = "_".join(latestFile.split("_")[1:])
73

74 return self.loadCheckpointFromPostfix(postfix, model, optimizer)
75

76 def loadCheckpointFromPostfix(self, postfix, model, optimizer):
77 print(f"Loading {self.prefix} checkpoint: {postfix}")
78

79 modelPath = path.join(self.directory, self.prefix + "Model_" + postfix)
80 if os.path.exists(modelPath):
81 model.load_state_dict(torch.load(modelPath))
82

83 if optimizer and self.saveOptimizerData:
84 optimizerPath = path.join(self.directory, self.prefix + "Optimizer_" + postfix)
85 if os.path.exists(optimizerPath):
86 optimizer.load_state_dict(torch.load(optimizerPath))
87

88 return int(postfix.split("_")[-1].split(".")[0])
89

90 def loadCheckpoint(self, specificCheckpoint, model, optimizer):
91 if specificCheckpoint == None:
92 return self.loadLastCheckpoint(model, optimizer)
93 else:
94 return self.loadCheckpointFromPostfix(specificCheckpoint, model, optimizer)
95

96 def saveCheckpoint(self, model, optimizer):
97 torch.save(model.state_dict(), self.getModelCheckpointPath())
98

99 if optimizer and self.saveOptimizerData:
100 torch.save(optimizer.state_dict(), self.getOptimizerCheckpointPath())

E.2. Client.py
1 import torch
2 import torch.optim as optim
3

4 import time
5

6 import Dataset

E.2. Client.py 49

7 import Config
8 import Model
9 import ImageAugmenter
10 import Communication
11 import Util
12

13 class DataSource:
14

15 def initBuffer(self, model, device):
16 pass
17

18 def updateBuffer(self, model, device):
19 pass
20

21 def startEpoch(self):
22 pass
23

24 def getDataBatch(self): # Should not return target labels
25 pass
26

27 def isEpochFinished(self):
28 pass
29

30 class DataBufferDataSource(DataSource):
31

32 class DataBufferImage:
33 def __init__(self, image, score, timeout):
34 self.image = image
35 self.score = score
36 self.timeout = timeout
37

38 def __init__(self, config):
39

40 config = config.copy()
41 config["dataset"]["batchSize"] = config["dataBuffer"]["datasetLoadBatchSize"] #Don't load

complete batches from the dataset for filling the image buffer
42

43 self.config = config
44

45 self.dataset = Dataset.Dataset(**config["dataset"])
46 self.enumeration = self.dataset.trainingEnumeration()
47

48 self.augmenter = ImageAugmenter.ImageAugmenter(**config["augmenter"])
49

50 self.buffer = [] # array of (image, score)
51 self.bufferTargetSize = config["dataBuffer"]["bufferSize"]
52 self.lazyScoringInterval = config["dataBuffer"]["lazyScoringInterval"]
53 self.batchSize = config["dataBuffer"]["batchSize"]
54 self.epochStreamCount = config["dataBuffer"]["epochStreamCount"]
55

56 self.index = 0
57

58 def calculateScore(self, model, device, image):
59 image = torch.unsqueeze(image, 0)
60 dataView1, dataView2 = self.augmenter.weaklyAugment(image)
61 dataView1, dataView2 = dataView1.to(device), dataView2.to(device)
62

63 model.eval()
64 with torch.no_grad():
65 loss = model(dataView1, dataView2)
66

67 return loss.item()
68

69 def updateAndStreamNewData(self, model, device, newImageCount):
70

71 # Update the score of the images in the buffer when necessary (lazy scoring)
72 rescoreCount = 0
73 for bufferImage in self.buffer:
74 bufferImage.timeout = bufferImage.timeout - 1
75 if bufferImage.timeout == 0:
76 bufferImage.score = self.calculateScore(model, device, bufferImage.image)

E.2. Client.py 50

77 bufferImage.timeout = self.lazyScoringInterval
78 rescoreCount = rescoreCount + 1
79 print(f"Rescored {rescoreCount} images")
80

81 # Load newImageCount new images in batches, and add them to the buffer, keeping the images
in the buffer with the highest scores

82 imagesProcessed = 0
83 newImagesAcceptedCount = 0
84 while imagesProcessed < newImageCount:
85 batchData, batchLabels = next(iter(self.enumeration))
86 for image in batchData:
87 bufferImage = self.DataBufferImage(image, self.calculateScore(model, device,

image), self.lazyScoringInterval)
88 imagesProcessed = imagesProcessed + 1
89

90 self.buffer.append(bufferImage)
91

92 if len(self.buffer) > self.bufferTargetSize:
93

94 # Buffer is now too large, remove the item with the lowest score
95

96 lowestIndex = -1
97 lowestScore = 100000000
98 for index, bufferImage in enumerate(self.buffer):
99 if bufferImage.score < lowestScore:
100 lowestScore = bufferImage.score
101 lowestIndex = index
102

103 if lowestIndex != len(self.buffer) - 1:
104 newImagesAcceptedCount += 1
105

106 self.buffer.pop(lowestIndex)
107 else:
108 newImagesAcceptedCount += 1
109 print(f"Accepted {newImagesAcceptedCount} new images")
110

111 def printBuffer(self):
112 for index, bufferImage in enumerate(self.buffer):
113 print(f"Image #{index}: score={bufferImage.score}, timeout={bufferImage.timeout}")
114

115 def initBuffer(self, model, device):
116 self.updateAndStreamNewData(model, device, self.bufferTargetSize)
117

118 def updateBuffer(self, model, device):
119 self.updateAndStreamNewData(model, device, self.epochStreamCount)
120

121 def startEpoch(self):
122 self.index = 0
123

124 def getDataBatch(self):
125 dataAmountToFetch = min(self.batchSize, len(self.buffer) - self.index)
126 images = torch.stack([bufferImage.image for bufferImage in self.buffer[-self.index -

dataAmountToFetch -1:-self.index-1]])
127 self.index += dataAmountToFetch
128 return images
129

130 def getProgress(self):
131 return self.index / len(self.buffer)
132

133 def isEpochFinished(self):
134 return self.index == len(self.buffer)
135

136 class DatasetDataSource(DataSource):
137 def __init__(self, config):
138 self.dataset = Dataset.Dataset(**config["dataset"])
139 self.enumeration = self.dataset.trainingEnumeration()
140

141 self.len = self.dataset.trainBatchCount() // self.dataset.batchSize
142 self.index = 0
143

144 def startEpoch(self):

E.2. Client.py 51

145 self.index = 0
146

147 def getDataBatch(self):
148 data, target = next(iter(self.enumeration))
149 self.index = self.index + 1
150 return data # Note: we don't return the target labels!
151

152 def getProgress(self):
153 return self.index / self.len
154

155 def isEpochFinished(self):
156 return self.index == self.len
157

158 class Client:
159 def __init__(self, device, config, dataSource : DataSource):
160 self.device = device
161 self.config = config
162 self.dataSource = dataSource
163

164 self.emaScheduler = Util.EMAScheduler(**config["EMA"])
165 self.model = Model.BYOL(self.emaScheduler, **config["BYOL"]).to(device)
166 self.optimizer = getattr(optim,

config["optimizer"]["name"])(self.model.trainableParameters(),
**config["optimizer"]["settings"])

167

168 self.augmenter = ImageAugmenter.ImageAugmenter(**config["augmenter"])
169

170 self.communication = Communication.Communication()
171

172 def connect(self, ip, port):
173 print(f"Connecting to {ip}:{port}")
174 self.communication.connect(ip, port)
175

176 def run(self):
177 try:
178 self.run_()
179 except KeyboardInterrupt:
180 pass
181

182 self.communication.sendMessage("stop")
183 while not self.communication.isDataReady():
184 time.sleep(1)
185 self.communication.receiveMessage()
186 self.communication.close()
187

188 def run_(self):
189 shouldStop = False
190

191 epoch = 0
192

193 self.dataSource.initBuffer(self.model, self.device)
194

195 while not shouldStop and epoch < self.config["training"]["epochs"]:
196

197 if epoch % self.config["client"]["serverSyncEveryNEpochs"] == 0:
198 print("Loading model from server")
199 self.communication.sendMessage("requestSend")
200 self.communication.receiveModel(self.model)
201

202 print(f"Training BYOL Epoch {epoch + 1}: lr={self.optimizer.param_groups[0]['lr']}")
203 self.dataSource.startEpoch()
204

205 self.model.train()
206

207 batchIndex = 0
208 while not self.dataSource.isEpochFinished():
209 data = self.dataSource.getDataBatch()
210 dataView1, dataView2 = self.augmenter.createImagePairBatch(data)
211 dataView1, dataView2 = dataView1.to(self.device), dataView2.to(self.device)
212

213 self.optimizer.zero_grad()

E.3. Communication.py 52

214 loss = self.model(dataView1, dataView2)
215 loss.backward()
216 self.optimizer.step()
217 self.model.stepEMA()
218

219 if batchIndex % 1 == 0:
220 print(f"Epoch {epoch + 1}, batch {batchIndex}/{self.dataSource.getProgress() *

100:.1f}%: loss={loss:.4f}")
221 batchIndex = batchIndex + 1
222

223 if epoch % self.config["client"]["updateBufferEveryNEpochs"] == 0:
224 print("Updating buffer...")
225 self.dataSource.updateBuffer(self.model, self.device)
226

227 epoch = epoch + 1
228

229 # Note: checking after epoch+1! We load from server at the first epoch in a sequence,
and send to the server at the last of the sequence

230 if epoch % self.config["client"]["serverSyncEveryNEpochs"] == 0:
231 print("Sending model to server")
232 self.communication.sendMessage("update")
233 self.communication.sendModel(self.model)
234

235 def main():
236 config = Config.GetConfig()
237

238 #torch.manual_seed(0) # Don't seed, such that all clients train in a different way.
239 device = Util.GetDeviceFromConfig(config)
240

241 Model.SetUseReLU1(config["useReLU1"])
242

243 #dataSource = DatasetDataSource(config)
244 dataSource = DataBufferDataSource(config)
245 client = Client(device, config, dataSource)
246

247 client.connect("localhost", 1234)
248 client.run()
249

250 if __name__ == "__main__":
251 main()

E.3. Communication.py
1 import socket
2 import time
3

4 import select
5 import torch
6 import struct
7 import io
8

9 class Server:
10 def __init__(self):
11 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
12

13 def bind(self, ip, port):
14 self.socket.bind((ip, port))
15 self.socket.listen()
16 self.socket.setblocking(False)
17

18 def close(self):
19 self.socket.close()
20

21 def tryAcceptClient(self):
22 readable, writable, errored = select.select([self.socket], [], [], 0)
23 if len(readable):
24 clientSocket, addr = self.socket.accept()
25 return Communication(clientSocket), addr
26 else:
27 return None, None

E.3. Communication.py 53

28

29 class Communication:
30 def __init__(self, initialSocket = None):
31 if initialSocket == None:
32 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
33 else:
34 self.socket = initialSocket
35

36 def connect(self, ip, port):
37 self.socket.connect((ip, port))
38

39 def close(self):
40 self.socket.close()
41

42 def sendModel(self, model):
43 bytesStream = io.BytesIO()
44 torch.save(model.state_dict(), bytesStream)
45

46 data = bytesStream.getvalue()
47 length = len(data)
48

49 packedLength = struct.pack("!i", length)
50

51 self.socket.sendall(packedLength)
52 self.socket.sendall(data)
53

54 def receiveModel(self, model):
55 packedLength = recvall(self.socket, 4)
56 length = struct.unpack("!i", packedLength)[0]
57

58 data = recvall(self.socket, length)
59

60 bytesReadStream = io.BytesIO(data)
61 statesDict = model.state_dict()
62 model.load_state_dict(torch.load(bytesReadStream))
63 bytesReadStream.close()
64

65 def sendMessage(self, text):
66 data = text.encode("utf-8")
67 length = len(data)
68

69 packedLength = struct.pack("!i", length)
70

71 self.socket.sendall(packedLength)
72 self.socket.sendall(data)
73

74 def receiveMessage(self):
75 packedLength = recvall(self.socket, 4)
76 length = struct.unpack("!i", packedLength)[0]
77

78 data = recvall(self.socket, length)
79 return data.decode("utf-8")
80

81 def isDataReady(self):
82 read_sockets, write_sockets, error_sockets = select.select([self.socket], [], [], 0)
83 return len(read_sockets) == 1
84

85 def recvall(socket : socket.socket, n):
86 # Helper function to recv n bytes or return None if EOF is hit
87 data = bytearray()
88 while len(data) < n:
89 try:
90 packet = socket.recv(n - len(data))
91 if not packet:
92 return None
93 data.extend(packet)
94 except BlockingIOError: #No data available yet, wait a bit then try again
95 time.sleep(0.010)
96 return data

E.4. Config.py 54

E.4. Config.py
1 import Checkpointer
2

3 def GetConfig(doPostConfig=True):
4 config = dict(
5 device="cuda",
6 mode="pretrain",
7 loadFromCheckpoint=False,
8 loadFromSpecificCheckpoint=None,
9 printStatistics=True,
10 useHalfPrecision=True,
11 useReLU1=True,
12

13 augmenter=dict(
14 imageDims=(0, 0), #autoset
15 applyColorAugments=False,
16 applyFlips=False,
17),
18

19 training=dict(
20 epochs=50,
21 warmupEpochs=1,
22 evaluateEveryNEpochs=1,
23 classifierEpochs=1,
24 finalclassifierEpochs=20,
25),
26 dataset=dict(
27 datasetName="KMNIST",
28 normalization=None, #autoset
29 batchSize=64,
30 classificationSplit=0.1,
31),
32 EMA=dict(
33 initialTau=0.99,
34 epochCount=None, #autoset
35 enableSchedule=True
36),
37 classifier=dict(
38 hiddenSize=128,
39 batchNorm=None #autoset
40),
41 BYOL=dict(
42 encoderName="EncoderType1",
43 projector=dict(
44 hiddenSize=128,
45 outputSize=32,
46),
47 predictor=dict(
48 hiddenSize=128
49),
50 encoder=dict(
51 imageDims=(0, 0), #autoset
52 imageChannels=0 #autoset
53),
54 batchNorm=None #autoset
55),
56 #optimizer=dict(
57 # name="AdamW",
58 # settings=dict(
59 # lr=0.0003,
60 # weight_decay=0.0001
61 #)
62 #),
63 optimizer=dict(
64 name="SGD",
65 settings=dict(
66 lr=0.05,
67 weight_decay=0.0001,
68 momentum=0.9
69)

E.4. Config.py 55

70),
71 batchNorm=dict(
72 eps=1e-5,
73 momentum=0.1
74),
75 quantization = dict(
76 enabled=True,
77 nb=12,
78 nf=7,
79 quantizeWeights=False,
80 useCustomConv=True
81),
82 checkpointer=dict(
83 directory="src/checkpoints",
84 #checkpointMode=Checkpointer.CheckpointMode.EVERY_N_SECS,
85 checkpointMode=Checkpointer.CheckpointMode.EVERY_EPOCH,
86 checkPointEveryNSecs=30,
87 saveOptimizerData=True
88),
89 dataBuffer=dict(
90 datasetLoadBatchSize=16,
91 bufferSize=128,
92 batchSize=None, #autoset
93 lazyScoringInterval=50,
94 epochStreamCount=16,
95),
96 client=dict(
97 serverSyncEveryNEpochs=100,
98 updateBufferEveryNEpochs=1
99),
100 server=dict(
101 classifierTrainEpochs=25,
102)
103)
104

105 if doPostConfig:
106 DoPostConfig(config)
107

108 return config
109

110 def DoPostConfig(config):
111 config["BYOL"]["batchNorm"] = config["batchNorm"]
112 config["BYOL"]["dtypeName"] = "float16" if config["useHalfPrecision"] else "float32"
113 config["BYOL"]["quantization"] = config["quantization"]
114 config["classifier"]["dtypeName"] = "float16" if config["useHalfPrecision"] else "float32"
115 config["classifier"]["batchNorm"] = config["batchNorm"]
116 config["classifier"]["encoder"] = config["BYOL"]["encoder"]
117 config["classifier"]["encoderName"] = config["BYOL"]["encoderName"]
118 config["classifier"]["quantization"] = config["quantization"]
119 config["dataBuffer"]["batchSize"] = config["dataset"]["batchSize"]
120 config["EMA"]["epochCount"] = config["training"]["epochs"]
121 config["augmenter"]["useHalfPrecision"] = config["useHalfPrecision"]
122

123 config["optimizer"]["settings"]["lr"] = config["optimizer"]["settings"]["lr"] *
config["dataset"]["batchSize"] / 64

124

125 if config["EMA"]["initialTau"] > 0.01: # Tau=0 means EMA disabled, so don't scale it.
Otherwise, do scale.

126 config["EMA"]["initialTau"] = 1 - (1 - config["EMA"]["initialTau"]) *
(config["dataset"]["batchSize"] / 64)

127

128 if config["dataset"]["datasetName"] == "MNIST":
129 config["augmenter"]["imageDims"] = (28, 28)
130 config["dataset"]["normalization"] = ((0.1307,), (0.3081,))
131 config["BYOL"]["encoder"]["imageDims"] = (28, 28)
132 config["BYOL"]["encoder"]["imageChannels"] = 1
133 config["classifier"]["classCount"] = 10
134 elif config["dataset"]["datasetName"] == "CIFAR10":
135 config["augmenter"]["imageDims"] = (32, 32)
136 config["augmenter"]["applyColorAugments"] = True
137 config["augmenter"]["applyFlips"] = True

E.5. Dataset.py 56

138 config["dataset"]["normalization"] = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
139 config["BYOL"]["encoder"]["imageDims"] = (32, 32)
140 config["BYOL"]["encoder"]["imageChannels"] = 3
141 config["classifier"]["classCount"] = 10
142 elif config["dataset"]["datasetName"] == "FashionMNIST":
143 config["augmenter"]["imageDims"] = (28, 28)
144 config["dataset"]["normalization"] = ((0.1307,), (0.3081,))
145 config["BYOL"]["encoder"]["imageDims"] = (28, 28)
146 config["BYOL"]["encoder"]["imageChannels"] = 1
147 config["classifier"]["classCount"] = 10
148 elif config["dataset"]["datasetName"] == "KMNIST":
149 config["augmenter"]["imageDims"] = (28, 28)
150 config["dataset"]["normalization"] = ((0.1917,), (0.3483,))
151 config["BYOL"]["encoder"]["imageDims"] = (28, 28)
152 config["BYOL"]["encoder"]["imageChannels"] = 1
153 config["classifier"]["classCount"] = 10
154 elif config["dataset"]["datasetName"] == "EMNIST":
155 config["augmenter"]["imageDims"] = (28, 28)
156 config["dataset"]["normalization"] = ((0.1307,), (0.3081,))
157 config["BYOL"]["encoder"]["imageDims"] = (28, 28)
158 config["BYOL"]["encoder"]["imageChannels"] = 1
159 config["classifier"]["classCount"] = 47
160 else:
161 raise NotImplementedError

E.5. Dataset.py
1 import torch
2 from torchvision import datasets, transforms
3 import torchvision.transforms.functional as F
4

5 class ToHalfTensor(torch.nn.Module):
6 def forward(self, img):
7 return F.to_tensor(img).half()
8

9 class Dataset:
10

11 def __init__(self, datasetName, batchSize, normalization, classificationSplit):
12

13 transform = transforms.Compose([
14 #ToHalfTensor() if useHalfPrecision else transforms.ToTensor(),
15 transforms.ToTensor(),
16 transforms.Normalize(normalization[0], normalization[1])
17])
18

19 if (datasetName == 'EMNIST'):
20 self.train = getattr(datasets, datasetName)('datasets', train=True,

download=True,split='balanced', transform=transform)
21 self.test = getattr(datasets, datasetName)('datasets', train=False, split='balanced',

transform=transform)
22 else:
23 self.train = getattr(datasets, datasetName)('datasets', train=True, download=True,

transform=transform)
24 self.test = getattr(datasets, datasetName)('datasets', train=False,

transform=transform)
25

26 self.train, self.classification = torch.utils.data.random_split(self.train, [1 -
classificationSplit , classificationSplit])

27

28 self.trainLoader = torch.utils.data.DataLoader(self.train, batch_size=batchSize)
29 self.classificationLoader = torch.utils.data.DataLoader(self.classification,

batch_size=batchSize)
30 self.testLoader = torch.utils.data.DataLoader(self.test, batch_size=batchSize)
31

32 self.batchSize = batchSize
33

34 def trainingEnumeration(self):
35 return self.trainLoader
36

37 def classificationEnumeration(self):

E.6. ImageAugmenter.py 57

38 return self.classificationLoader
39

40 def testingEnumeration(self):
41 return self.testLoader
42

43 def trainBatchCount(self):
44 return len(self.trainLoader.dataset)
45

46 def classificationBatchCount(self):
47 return len(self.classificationLoader.dataset)
48

49 def testBatchCount(self):
50 return len(self.testLoader.dataset)

E.6. ImageAugmenter.py
1 import torch
2 import torchvision.transforms.v2 as transforms
3 import torchvision.transforms.functional as F
4

5 class ToHalfTensor(torch.nn.Module):
6 def forward(self, img):
7 return img.half()
8

9 class UnityTransform(torch.nn.Module):
10 def forward(self, img):
11 return img
12

13 class ImageAugmenter:
14 def __init__(self, imageDims, applyFlips=False, applyColorAugments=False,

useHalfPrecision=False):
15 self.transform = transforms.Compose([
16 transforms.RandomApply(torch.nn.ModuleList([transforms.GaussianBlur((3, 3), (1.0,

2.0))]), p=0.2),
17 transforms.RandomRotation(degrees=30),
18 transforms.RandomResizedCrop(size=imageDims, antialias=True, scale=(0.5, 1)),
19])
20

21 if applyColorAugments:
22 self.transform = transforms.Compose([
23 self.transform,
24 transforms.ColorJitter(0.4, 0.4, 0.2, 0.1),
25 transforms.RandomGrayscale(p=0.2),
26 #transforms.GaussianBlur(9, sigma=(0.1, 0.2)),
27 transforms.RandomSolarize(threshold=0.5, p=0.2)
28])
29

30 if applyFlips:
31 self.transform = transforms.Compose([
32 self.transform,
33 transforms.RandomHorizontalFlip(p=0.5),
34 #transforms.RandomVerticalFlip(p=0.5),
35])
36

37

38 if useHalfPrecision:
39 self.transform = transforms.Compose([
40 self.transform,
41 ToHalfTensor()
42])
43 self.weakTransform = transforms.Compose([
44 transforms.RandomResizedCrop(size=imageDims, antialias=True, scale=(0.8, 1)),
45 ToHalfTensor()
46])
47 self.noTransform = ToHalfTensor()
48 else:
49 self.weakTransform = transforms.RandomResizedCrop(size=imageDims, antialias=True,

scale=(0.8, 1))
50 self.noTransform = UnityTransform()
51

E.7. KRIAInterface.py 58

52 def createImagePairBatch(self, imageBatch):
53 return torch.stack([self.transform(image) for image in imageBatch]),

torch.stack([self.transform(image) for image in imageBatch])
54

55 def createImagePairBatchSingleAugment(self, imageBatch):
56 return self.noTransform(imageBatch), torch.stack([self.transform(image) for image in

imageBatch])
57

58 def weaklyAugment(self, image):
59 return self.noTransform(image), self.weakTransform(image)

E.7. KRIAInterface.py
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import math
5

6 import QNN
7

8 class FConv2D_3x3(torch.autograd.Function):
9 """
10 We can implement our own custom autograd Functions by subclassing
11 torch.autograd.Function and implementing the forward and backward passes
12 which operate on Tensors.
13 """
14

15 @staticmethod
16 def forward(ctx, input, weight, bias):
17 """
18 In the forward pass we receive a Tensor containing the input and return
19 a Tensor containing the output. ctx is a context object that can be used
20 to stash information for backward computation. You can cache arbitrary
21 objects for use in the backward pass using the ctx.save_for_backward method.
22 """
23 ctx.save_for_backward(input, weight, bias)
24

25 result = QNN.quantize(F.conv2d(QNN.quantize(input), QNN.quantize(weight)))
26

27 if bias is not None:
28 reshapedBias = bias.reshape(1, bias.shape[0], 1, 1).repeat(result.shape[0], 1,

result.shape[2], result.shape[3])
29 result += reshapedBias
30

31 return result
32

33 @staticmethod
34 @torch.autograd.function.once_differentiable
35 def backward(ctx, grad_output):
36 """
37 In the backward pass we receive a Tensor containing the gradient of the loss
38 with respect to the output, and we need to compute the gradient of the loss
39 with respect to the input.
40 """
41 input, weight, bias = ctx.saved_tensors
42

43 grad_input = grad_weight = grad_bias = None
44 if ctx.needs_input_grad[0]:
45 grad_input = F.conv_transpose2d(grad_output, weight)
46 if ctx.needs_input_grad[1]:
47 grad_weight = F.conv2d(input.transpose(0, 1), grad_output.transpose(0,

1)).transpose(0, 1)
48 if bias is not None and ctx.needs_input_grad[2]:
49 grad_bias = grad_output.sum((0, 2, 3)).squeeze(0)
50

51 return grad_input, grad_weight, grad_bias
52

53 class Conv2D_3x3(nn.Module):
54 def __init__(self, inChannels, outChannels, dtype=torch.float32, bias=True):
55 super(Conv2D_3x3, self).__init__()

E.8. main.py 59

56

57 self.inChannels = inChannels
58 self.outChannels = outChannels
59 self.dtype = dtype
60

61 self.weight = torch.nn.Parameter(torch.empty((outChannels, inChannels, 3, 3), dtype=dtype))
62

63 if bias:
64 self.bias = torch.nn.Parameter(torch.empty(outChannels, dtype=dtype))
65 else:
66 self.register_parameter('bias', None)
67

68 # Initialize parameters, from ConvNd.reset_parameters
69 torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
70 if self.bias is not None:
71 fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
72 if fan_in != 0:
73 bound = 1 / math.sqrt(fan_in)
74 torch.nn.init.uniform_(self.bias, -bound, bound)
75

76 def forward(self, input):
77 return FConv2D_3x3.apply(input, self.weight, self.bias)

E.8. main.py
1 import torch
2 import torch.optim as optim
3

4 import argparse
5

6 import Checkpointer
7 import Model
8 import Config
9 import Dataset
10 import ImageAugmenter
11 import Util
12

13 def TrainBYOLEpoch(byol, device, dataset, optimizer, augmenter, checkpointer, epoch, maxEpochs):
14 byol.train() # Enables dropout
15

16 print(f"Training BYOL Epoch {epoch + 1}: lr={optimizer.param_groups[0]['lr']},
tau={byol.emaScheduler.getTau()}")

17

18 maxTrainBatches = dataset.trainBatchCount() / dataset.batchSize
19 for batchIndex, (data, target) in enumerate(dataset.trainingEnumeration()):
20 data = data.to(device)
21 dataView1, dataView2 = augmenter.createImagePairBatch(data)
22 #dataView1, dataView2 = dataView1.to(device), dataView2.to(device)
23

24 optimizer.zero_grad()
25 loss = byol(dataView1, dataView2)
26 loss.backward()
27 optimizer.step()
28 byol.stepEMA()
29 byol.quantizeParameters()
30

31 checkpointer.update(byol, optimizer, epoch, maxEpochs, batchIndex, maxTrainBatches)
32

33 if batchIndex % 10 == 0:
34 print(f"Epoch {epoch + 1}, batch {batchIndex}/{batchIndex / maxTrainBatches *

100:.1f}%: BYOLLoss={loss:.4f}")
35

36 def TrainClassifierEpoch(classifier, device, dataset, optimizer, checkpointer, epoch, maxEpochs,
useHalfPrecision):

37 classifier.train()
38

39 print(f"Training Classifier Epoch {epoch + 1}: lr={optimizer.param_groups[0]['lr']}")
40

41 maxClassifierBatches = dataset.classificationBatchCount() / dataset.batchSize
42 for batchIndex, (data, target) in enumerate(dataset.classificationEnumeration()):

E.8. main.py 60

43 data, target = data.to(device), target.to(device)
44

45 if useHalfPrecision:
46 data = data.half()
47

48 optimizer.zero_grad()
49 loss = classifier.loss(data, target)
50 loss.backward()
51 optimizer.step()
52

53 checkpointer.update(classifier, optimizer, epoch, maxEpochs, batchIndex,
maxClassifierBatches)

54

55 if batchIndex % 10 == 0:
56 print(
57 f"Epoch {epoch + 1}, batch {batchIndex}/{batchIndex / maxClassifierBatches *

100:.1f}%: classificationLoss={loss:.2f}")
58

59

60 def TestEpoch(classifier, device, dataset, useHalfPrecision):
61 classifier.eval() # Disable dropout
62

63 testLoss = 0
64 accuracy = 0
65 batchCount = 0
66 with torch.no_grad():
67 for batchIndex, (data, target) in enumerate(dataset.testingEnumeration()):
68 data, target = data.to(device), target.to(device)
69

70 if useHalfPrecision:
71 data = data.half()
72

73 loss, output, prediction = classifier.predictionLoss(data, target)
74

75 testLoss += loss.item()
76 accuracy += prediction.eq(target.view_as(prediction)).sum().item() / len(data)
77

78 batchCount += 1
79

80 testLoss /= batchCount
81 accuracy /= batchCount
82

83 print(f"Evaluation: loss={testLoss:2f}, accuracy={accuracy * 100:.1f}%")
84

85 return testLoss, accuracy
86

87 def ParseArgs(config):
88 parser = argparse.ArgumentParser()
89

90 # From: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
91 def t_or_f(arg):
92 ua = str(arg).upper()
93 if 'TRUE'.startswith(ua):
94 return True
95 elif 'FALSE'.startswith(ua):
96 return False
97 else:
98 pass # error condition maybe?
99

100 def PopulateDict(prefix, dictionary):
101 for key, value in dictionary.items():
102 if isinstance(value, dict):
103 PopulateDict(prefix + key + ".", value)
104 else:
105 if type(value) == bool:
106 parser.add_argument("--" + prefix + key, required=False, type=t_or_f)
107 else:
108 parser.add_argument("--" + prefix + key, required=False, type=type(value))
109

110 PopulateDict("", config)
111 result = parser.parse_args()

E.8. main.py 61

112

113 def RetrieveDict(prefix, dictionary):
114 for key, value in dictionary.items():
115 if isinstance(value, dict):
116 RetrieveDict(prefix + key + ".", value)
117 else:
118 resultValue = getattr(result, prefix + key)
119 if not (resultValue is None):
120 dictionary[key] = resultValue
121

122 RetrieveDict("", config)
123

124 def main():
125 config = Config.GetConfig(doPostConfig=False)
126 ParseArgs(config)
127 Config.DoPostConfig(config)
128

129 torch.manual_seed(0)
130 device = Util.GetDeviceFromConfig(config)
131 statistics = []
132

133 dataset = Dataset.Dataset(**config["dataset"])
134 emaScheduler = Util.EMAScheduler(**config["EMA"])
135 byol = Model.BYOL(emaScheduler, **config["BYOL"]).to(device)
136 classifier = Model.Classifier(**config["classifier"]).to(device)
137 byolCheckpointer = Checkpointer.Checkpointer(**config["checkpointer"], prefix="BYOL")
138 classifierCheckpointer = Checkpointer.Checkpointer(**config["checkpointer"],

prefix="Classifier")
139

140 Model.SetUseReLU1(config["useReLU1"])
141

142 if config["mode"] == "pretrain":
143 byolOptimizer = getattr(optim, config["optimizer"]["name"])(byol.trainableParameters(),

**config["optimizer"]["settings"])
144 classifierOptimizer = getattr(optim,

config["optimizer"]["name"])(classifier.trainableParameters(),
**config["optimizer"]["settings"])

145

146 startEpoch = 0
147 if config["loadFromCheckpoint"]:
148 startEpoch = byolCheckpointer.loadCheckpoint(config["loadFromSpecificCheckpoint"],

byol, byolOptimizer)
149 classifierCheckpointer.loadCheckpoint(config["loadFromSpecificCheckpoint"],

classifier, classifierOptimizer)
150

151 lrScheduler = Util.WarmupCosineScheduler(byolOptimizer, startEpoch,
config["training"]["epochs"], config["training"]["warmupEpochs"],
config["optimizer"]["settings"]["lr"])

152 emaScheduler.startStep(startEpoch)
153

154 augmenter = ImageAugmenter.ImageAugmenter(**config["augmenter"])
155

156 try:
157 for epoch in range(startEpoch, config["training"]["epochs"]):
158 TrainBYOLEpoch(byol, device, dataset, byolOptimizer, augmenter, byolCheckpointer,

epoch, config["training"]["epochs"])
159 classifier.copyEncoderFromBYOL(byol)
160 for i in range(config["training"]["classifierEpochs"]):
161 TrainClassifierEpoch(classifier, device, dataset, classifierOptimizer ,

classifierCheckpointer , epoch, config["training"]["epochs"], config["useHalfPrecision"])
162

163 if config["training"]["evaluateEveryNEpochs"] != 0 and epoch %
config["training"]["evaluateEveryNEpochs"] == 0:

164 testResults = TestEpoch(classifier, device, dataset,
config["useHalfPrecision"])

165 statistics.append((*testResults, epoch))
166

167 lrScheduler.step()
168 classifierOptimizer.param_groups[0]["lr"] = byolOptimizer.param_groups[0]["lr"]
169 emaScheduler.step(epoch)
170 except KeyboardInterrupt:

E.8. main.py 62

171 pass
172

173 for i in range(config["training"]["finalclassifierEpochs"]):
174 TrainClassifierEpoch(classifier, device, dataset, classifierOptimizer ,

classifierCheckpointer , config["training"]["epochs"], config["training"]["epochs"],
config["useHalfPrecision"])

175 testResults = TestEpoch(classifier, device, dataset, config["useHalfPrecision"])
176 statistics.append((*testResults, config["training"]["epochs"]))
177

178 elif config["mode"] == "eval":
179 if config["loadFromCheckpoint"]:
180 classifierCheckpointer.loadCheckpoint(config["loadFromSpecificCheckpoint"],

classifier, None)
181

182 TestEpoch(classifier, device, dataset, config["useHalfPrecision"])
183 elif config["mode"] == "evaltrain" or config["mode"] == "evaltrainfrombyol":
184 classifierOptimizer = getattr(optim,

config["optimizer"]["name"])(classifier.trainableParameters(),
**config["optimizer"]["settings"])

185

186 startEpoch = 0
187

188 if config["mode"] == "evaltrainfrombyol":
189 if config["loadFromCheckpoint"]:
190 startEpoch = byolCheckpointer.loadCheckpoint(config["loadFromSpecificCheckpoint"],

byol, None)
191 classifier.copyEncoderFromBYOL(byol)
192 else:
193 if config["loadFromCheckpoint"]:
194 startEpoch =

classifierCheckpointer.loadCheckpoint(config["loadFromSpecificCheckpoint"], classifier,
classifierOptimizer)

195

196 lrScheduler = Util.WarmupCosineScheduler(classifierOptimizer, startEpoch,
config["training"]["epochs"], config["training"]["warmupEpochs"],
config["optimizer"]["settings"]["lr"])

197

198 try:
199 for epoch in range(startEpoch, config["training"]["classifierEpochs"]):
200 TrainClassifierEpoch(classifier, device, dataset, classifierOptimizer,

classifierCheckpointer , epoch, config["training"]["classifierEpochs"],
config["useHalfPrecision"])

201

202 if config["training"]["evaluateEveryNEpochs"] != 0 and epoch %
config["training"]["evaluateEveryNEpochs"] == 0:

203 testResults = TestEpoch(classifier, device, dataset,
config["useHalfPrecision"])

204 statistics.append((*testResults, epoch))
205

206 lrScheduler.step()
207 except KeyboardInterrupt:
208 pass
209 elif config["mode"] == "classtrain":
210 classifier.setAllowTrainingEncoder() #Before classifier.trainableParameters()
211 classifierOptimizer = getattr(optim,

config["optimizer"]["name"])(classifier.trainableParameters(),
**config["optimizer"]["settings"])

212

213 startEpoch = 0
214 lrScheduler = Util.WarmupCosineScheduler(classifierOptimizer, startEpoch,

config["training"]["epochs"], config["training"]["warmupEpochs"],
config["optimizer"]["settings"]["lr"])

215

216 try:
217 for epoch in range(startEpoch, config["training"]["classifierEpochs"]):
218 TrainClassifierEpoch(classifier, device, dataset, classifierOptimizer,

classifierCheckpointer , epoch, config["training"]["classifierEpochs"],
config["useHalfPrecision"])

219

220 if config["training"]["evaluateEveryNEpochs"] != 0 and epoch %
config["training"]["evaluateEveryNEpochs"] == 0:

E.9. Model.py 63

221 testResults = TestEpoch(classifier, device, dataset,
config["useHalfPrecision"])

222 statistics.append((*testResults, epoch))
223

224 lrScheduler.step()
225 except KeyboardInterrupt:
226 pass
227 else:
228 raise NotImplementedError
229

230 if config["printStatistics"]:
231 computeCost = byol.getForwardComputeCost()
232 print("Multiplies:", computeCost[0])
233 print("Adds:", computeCost[1])
234 print("Memory:", computeCost[2] * (2 if config["useHalfPrecision"] else 4))
235

236 if len(statistics):
237 if config["printStatistics"]:
238 Util.PlotStatistics(statistics)
239

240 print("Final accuracy:", statistics[-1][1])
241

242 if __name__ == "__main__":
243 main()

E.9. Model.py
1 import math
2 import numpy as np
3

4 import torch
5 import torch.nn as nn
6 from torch.nn.functional import relu, max_pool2d, log_softmax, nll_loss, normalize, relu6,

adaptive_avg_pool2d
7 from itertools import chain
8

9 import KRIAInterface
10 import QNN
11

12 def relu1(x, inplace=False):
13 return torch.clamp(x, 0, 1)
14

15 class ReLU1(nn.Module):
16 def __init__(self):
17 super(ReLU1, self).__init__()
18

19 def forward(self, x):
20 return relu1(x)
21

22 reluFunctionToUse=relu
23 reluModuleToUse=nn.ReLU
24

25 def SetUseReLU1(use):
26 global reluFunctionToUse
27 global reluModuleToUse
28 if use:
29 reluFunctionToUse = relu1
30 reluModuleToUse = ReLU1
31 else:
32 reluFunctionToUse = relu
33 reluModuleToUse = nn.ReLU
34

35 def GetLinearComputeCost(inputSize, outputSize, bias):
36 if bias:
37 inputSize += 1
38

39 multiplies = inputSize * outputSize
40 adds = outputSize * (inputSize - 1)
41 params = inputSize * outputSize
42 return np.array((multiplies, adds, params))

E.9. Model.py 64

43

44 def GetConvolutionalComputeCost(inputDims, inputChannels, outputChannels, kernelSize, stride=1):
45 perPixel = np.array((kernelSize ** 2, kernelSize ** 2 + 1))
46

47 pixels = (inputDims[0] - (kernelSize - 1))/stride * (inputDims[1] - (kernelSize - 1))/stride
48

49 totalMA = perPixel * pixels * inputChannels * outputChannels
50 params = kernelSize ** 2 * inputChannels * outputChannels
51 return np.concatenate((totalMA, [params]))
52

53 def GetBatchNormComputeCost(size):
54 return np.array((0, 0, 0))
55

56 class MLP(nn.Module):
57 def __init__(self, inputSize, hiddenSize, outputSize, batchNorm, dtype, quantization):
58 super(MLP, self).__init__()
59

60 self.hiddenLayer = nn.Linear(inputSize, hiddenSize, bias=True, dtype=dtype)
61 self.outputLayer = nn.Linear(hiddenSize, outputSize, bias=False, dtype=dtype)
62 self.batchNorm = nn.BatchNorm1d(hiddenSize, **batchNorm)
63

64 self.quantizationEnabled = quantization["enabled"]
65

66 self.inputSize = inputSize
67 self.hiddenSize = hiddenSize
68 self.outputSize = outputSize
69

70 def forward(self, x):
71 x = self.hiddenLayer(x)
72 if self.quantizationEnabled:
73 x = QNN.quantize(x)
74 x = self.batchNorm(x)
75 if self.quantizationEnabled:
76 x = QNN.quantize(x)
77 x = reluFunctionToUse(x, inplace=True)
78 x = self.outputLayer(x)
79 if self.quantizationEnabled:
80 x = QNN.quantize(x)
81 return x
82 #return self.outputLayer(reluFunctionToUse(self.hiddenLayer(x), inplace=True))
83

84 def getOutputSize(self):
85 return self.outputSize
86

87 def getInputSize(self):
88 return self.inputSize
89

90 def getHiddenSize(self):
91 return self.hiddenSize
92

93 def getComputeCost(self):
94 return GetLinearComputeCost(self.inputSize, self.hiddenSize, True) +\
95 GetLinearComputeCost(self.hiddenSize, self.outputSize, False) +\
96 GetBatchNormComputeCost(self.hiddenSize)
97

98 class Classifier(nn.Module):
99 def __init__(self, classCount, hiddenSize, encoder, encoderName, batchNorm, dtypeName,

quantization):
100 super(Classifier, self).__init__()
101

102 dtype = getattr(torch, dtypeName)
103

104 QNN.QuantizeTensor.nb = quantization["nb"]
105 QNN.QuantizeTensor.nf = quantization["nf"]
106 self.quantizationEnabled = quantization["enabled"]
107

108 self.encoder = globals()[encoderName](dtype=dtype, batchConfig=batchNorm,
quantization=quantization, **encoder)

109 # self.outputLayer = MLP(self.encoder.getOutputSize(), hiddenSize, classCount,
batchNorm=batchNorm, dtype=dtype, quantization=quantization)

110 self.outputLayer = nn.Linear(self.encoder.getOutputSize(), classCount, dtype=dtype)

E.9. Model.py 65

111

112 for param in self.encoder.parameters():
113 param.requires_grad = False
114

115 self.allowTrainingEncoder = False
116

117 def setAllowTrainingEncoder(self):
118 for param in self.encoder.parameters():
119 param.requires_grad = True
120

121 self.allowTrainingEncoder = True
122

123 def forward(self, x):
124

125 if self.allowTrainingEncoder:
126 if self.quantizationEnabled:
127 x = QNN.quantize(x)
128 encoded = self.encoder(x)
129 else:
130 with torch.no_grad():
131 if self.quantizationEnabled:
132 x = QNN.quantize(x)
133 encoded = self.encoder(x).detach()
134

135 return log_softmax(self.outputLayer(encoded), dim=1)
136

137 def loss(self, x, target):
138 return nll_loss(self(x), target)
139

140 def predict(self, x):
141 output = self(x)
142 prediction = output.argmax(dim=1, keepdim=True)
143 return output, prediction
144

145 def predictionLoss(self, x, target):
146 output = self(x)
147 prediction = output.argmax(dim=1, keepdim=True)
148 loss = nll_loss(output, target)
149 return loss, output, prediction
150

151 def copyEncoderFromBYOL(self, byol):
152 for classifierParam, onlineParam in zip(self.encoder.parameters(),

byol.onlineEncoderParameters()):
153 classifierParam.data = onlineParam.data
154

155 def trainableParameters(self):
156 if self.allowTrainingEncoder:
157 return self.parameters()
158 else:
159 return self.outputLayer.parameters()
160

161 def getComputeCost(self):
162 return self.encoder.getComputeCost() + self.outputLayer.getComputeCost()
163

164 class GenericEncoder(nn.Module):
165 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization, channels):
166 super(GenericEncoder, self).__init__()
167

168 self.imageDims = imageDims
169 self.channels = channels
170

171 self.quantizationEnabled = quantization["enabled"]
172 self.useCustomConv = quantization["useCustomConv"]
173

174 sequence = []
175 lastChannelCount = imageChannels
176 computeCost = np.zeros((3,))
177 currentImageDims = list(imageDims)
178

179 for channel in channels:
180 if self.useCustomConv:

E.9. Model.py 66

181 sequence.append(KRIAInterface.Conv2D_3x3(lastChannelCount, channel, dtype=dtype))
182 else:
183 sequence.append(nn.Conv2d(lastChannelCount, channel, 3, 1, dtype=dtype))
184 if self.quantizationEnabled:
185 sequence.append(QNN.QuantizeModel())
186

187 sequence.append(nn.BatchNorm2d(channel, **batchConfig))
188 if self.quantizationEnabled:
189 sequence.append(QNN.QuantizeModel())
190

191 sequence.append(reluModuleToUse())
192

193 computeCost += GetConvolutionalComputeCost(currentImageDims, lastChannelCount,
channel, 3)

194

195 currentImageDims[0] -= 1
196 currentImageDims[1] -= 1
197 lastChannelCount = channel
198

199 self.computeCost = computeCost
200

201 self.sequence = nn.Sequential(*sequence)
202

203 def getOutputSize(self):
204 return self.channels[-1] * (self.imageDims[0] - 2 * len(self.channels)) // 2 *

(self.imageDims[1] - 2 * len(self.channels)) // 2
205

206 def forward(self, x):
207 x = self.sequence(x)
208 x = max_pool2d(x, 2)
209 return torch.flatten(x, 1)
210

211 def getComputeCost(self):
212 return self.computeCost
213

214 class Encoder(GenericEncoder):
215 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization,

outputChannels=64, hiddenChannels=32):
216 super(Encoder, self).__init__(imageDims, imageChannels, batchConfig, dtype, quantization,

channels=[hiddenChannels, outputChannels])
217

218 class EncoderType1(GenericEncoder):
219 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization):
220 super(EncoderType1, self).__init__(imageDims, imageChannels, batchConfig, dtype,

quantization, channels=[2, 4])
221

222 class EncoderType2(GenericEncoder):
223 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization):
224 super(EncoderType2, self).__init__(imageDims, imageChannels, batchConfig, dtype,

quantization, channels=[4, 8])
225

226 class EncoderType3(GenericEncoder):
227 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization):
228 super(EncoderType3, self).__init__(imageDims, imageChannels, batchConfig, dtype,

quantization, channels=[4, 8, 12])
229

230 class EncoderType4(GenericEncoder):
231 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization):
232 super(EncoderType4, self).__init__(imageDims, imageChannels, batchConfig, dtype,

quantization, channels=[6, 12, 18, 24, 30])
233

234 class MobileNetV2Block(nn.Module):
235 def __init__(self, imageDims, inputChannels, outputChannels, batchConfig, dtype, quantization,

expansionFactor=6, downSample=False):
236 super(MobileNetV2Block, self).__init__()
237

238 self.downSample = downSample
239 self.shortcut = (not downSample) and (inputChannels == outputChannels)
240 self.imageDims = [*imageDims]
241

242 internalChannels = inputChannels * expansionFactor

E.9. Model.py 67

243

244 self.inputChannels = inputChannels
245 self.internalChannels = internalChannels
246

247 self.quantizationEnabled = quantization["enabled"]
248

249 self.conv1 = nn.Conv2d(inputChannels, internalChannels, 1, bias=False, dtype=dtype)
250 self.bn1 = nn.BatchNorm2d(internalChannels, **batchConfig, dtype=dtype)
251 self.conv2 = nn.Conv2d(internalChannels, internalChannels, 3, stride=2 if downSample else

1, groups=internalChannels, bias=False, padding=1, dtype=dtype)
252 self.bn2 = nn.BatchNorm2d(internalChannels, **batchConfig, dtype=dtype)
253 self.conv3 = nn.Conv2d(internalChannels, outputChannels, 1, bias=False, dtype=dtype)
254 self.bn3 = nn.BatchNorm2d(outputChannels, **batchConfig, dtype=dtype)
255

256 def forward(self, x):
257 y = self.conv1(x)
258 if self.quantizationEnabled:
259 y = QNN.quantize(y)
260 y = self.bn1(y)
261 if self.quantizationEnabled:
262 y = QNN.quantize(y)
263 y = relu1(y, inplace=True)
264 y = self.conv2(y)
265 if self.quantizationEnabled:
266 y = QNN.quantize(y)
267 y = self.bn2(y)
268 if self.quantizationEnabled:
269 y = QNN.quantize(y)
270 y = relu1(y, inplace=True)
271 y = self.conv3(y)
272 if self.quantizationEnabled:
273 y = QNN.quantize(y)
274 y = self.bn3(y)
275 if self.quantizationEnabled:
276 y = QNN.quantize(y)
277

278 if self.shortcut:
279 return y + x
280 else:
281 return y
282

283 def getComputeCost(self):
284 hiddenDims = [*self.imageDims]
285 if self.downSample:
286 hiddenDims[0] /= 2
287 hiddenDims[1] /= 2
288

289 return GetConvolutionalComputeCost(self.imageDims, self.inputChannels,
self.internalChannels, 1) +\

290 GetConvolutionalComputeCost(self.imageDims, self.internalChannels,
self.internalChannels, 3, stride=2 if self.downSample else 1) +\

291 GetConvolutionalComputeCost(hiddenDims, self.internalChannels, self.outputChannels, 1)
292

293 class MobileNetV2(nn.Module):
294 def __init__(self, dtype, imageDims, imageChannels, batchConfig, quantization):
295 super(MobileNetV2, self).__init__()
296

297 imageDims = [*imageDims]
298

299 self.conv0 = nn.Conv2d(imageChannels, 32, 3, padding=1, bias=False)
300 self.bn0 = nn.BatchNorm2d(32)
301

302 blocks = [
303 MobileNetV2Block(imageDims, 32, 16, batchConfig, dtype, quantization,

expansionFactor=1, downSample=False),
304 MobileNetV2Block(imageDims, 16, 24, batchConfig, dtype, quantization,

downSample=False),
305 MobileNetV2Block(imageDims, 24, 24, batchConfig, dtype, quantization),
306 MobileNetV2Block(imageDims, 24, 32, batchConfig, dtype, quantization,

downSample=False),
307 MobileNetV2Block(imageDims, 32, 32, batchConfig, dtype, quantization),

E.9. Model.py 68

308 MobileNetV2Block(imageDims, 32, 32, batchConfig, dtype, quantization),
309 MobileNetV2Block(imageDims, 32, 64, batchConfig, dtype, quantization, downSample=True),
310 MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
311 MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
312 MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
313 MobileNetV2Block(imageDims, 64, 96, batchConfig, dtype, quantization,

downSample=False),
314 MobileNetV2Block(imageDims, 96, 96, batchConfig, dtype, quantization),
315 MobileNetV2Block(imageDims, 96, 96, batchConfig, dtype, quantization),
316 MobileNetV2Block(imageDims, 96, 160, batchConfig, dtype, quantization,

downSample=True),
317 MobileNetV2Block(imageDims, 160, 160, batchConfig, dtype, quantization),
318 MobileNetV2Block(imageDims, 160, 160, batchConfig, dtype, quantization),
319 MobileNetV2Block(imageDims, 160, 320, batchConfig, dtype, quantization,

downSample=False)
320]
321

322 for block in blocks:
323 if block.downSample:
324 imageDims[0] /= 2
325 imageDims[1] /= 2
326 block.imageDims = imageDims
327

328 self.blocks = nn.Sequential(*blocks)
329

330 # last conv layers and fc layer
331 self.conv1 = nn.Conv2d(320, 1280, 1, bias=False)
332 self.bn1 = nn.BatchNorm2d(1280)
333

334 def getOutputSize(self):
335 return 1280
336

337 def forward(self, x):
338 y = relu1(self.bn0(self.conv0(x)))
339 y = self.blocks(y)
340 y = relu1(self.bn1(self.conv1(y)))
341 y = adaptive_avg_pool2d(y, 1)
342 y = torch.squeeze(torch.squeeze(y, -1), -1)
343 return y
344

345 def getComputeCost(self):
346 computeCost = GetConvolutionalComputeCost(self.imageDims, self.imageChannels, 32, 3)
347

348 for block in self.blockList:
349 computeCost += block.getComputeCost()
350

351 computeCost += GetConvolutionalComputeCost(self.lastLayerImageDims, 320, 1280, 1)
352

353 return computeCost
354

355 class MobileNetV2Short(nn.Module):
356 def __init__(self, imageDims, imageChannels, batchConfig, dtype, quantization):
357 super(MobileNetV2Short, self).__init__()
358

359 self.imageDims = [*imageDims]
360 self.imageChannels = imageChannels
361

362 self.conv0 = nn.Conv2d(imageChannels, 32, 3, padding=1, bias=False)
363 self.bn0 = nn.BatchNorm2d(32)
364

365 self.blockList = [
366 MobileNetV2Block(imageDims, 32, 16, batchConfig, dtype, quantization,

expansionFactor=1, downSample=False),
367 MobileNetV2Block(imageDims, 16, 24, batchConfig, dtype, quantization,

downSample=False),
368 # MobileNetV2Block(imageDims, 24, 24, batchConfig, dtype, quantization),
369 MobileNetV2Block(imageDims, 24, 32, batchConfig, dtype, quantization,

downSample=False),
370 # MobileNetV2Block(imageDims, 32, 32, batchConfig, dtype, quantization),
371 # MobileNetV2Block(imageDims, 32, 32, batchConfig, dtype, quantization),
372 MobileNetV2Block(imageDims, 32, 64, batchConfig, dtype, quantization, downSample=True),

E.9. Model.py 69

373 # MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
374 # MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
375 # MobileNetV2Block(imageDims, 64, 64, batchConfig, dtype, quantization),
376 MobileNetV2Block(imageDims, 64, 96, batchConfig, dtype, quantization,

downSample=False),
377 # MobileNetV2Block(imageDims, 96, 96, batchConfig, dtype, quantization),
378 # MobileNetV2Block(imageDims, 96, 96, batchConfig, dtype, quantization),
379 MobileNetV2Block(imageDims, 96, 160, batchConfig, dtype, quantization,

downSample=True),
380 # MobileNetV2Block(imageDims, 160, 160, batchConfig, dtype, quantization),
381 # MobileNetV2Block(imageDims, 160, 160, batchConfig, dtype, quantization),
382 MobileNetV2Block(imageDims, 160, 320, batchConfig, dtype, quantization,

downSample=False)
383]
384

385 imageDims = [*imageDims]
386 for block in self.blockList:
387 if block.downSample:
388 imageDims[0] /= 2
389 imageDims[1] /= 2
390 block.imageDims = [*imageDims]
391

392 self.blocks = nn.Sequential(*self.blockList)
393

394 self.lastLayerImageDims = imageDims
395

396 # last conv layers and fc layer
397 self.conv1 = nn.Conv2d(320, 1280, 1, bias=False, dtype=dtype)
398 self.bn1 = nn.BatchNorm2d(1280)
399

400 def getOutputSize(self):
401 return 1280
402

403 def forward(self, x):
404 y = relu1(self.bn0(self.conv0(x)))
405 y = self.blocks(y)
406 y = relu1(self.bn1(self.conv1(y)))
407 y = adaptive_avg_pool2d(y, 1)
408 y = torch.squeeze(torch.squeeze(y, -1), -1)
409 return y
410

411 def getComputeCost(self):
412 computeCost = GetConvolutionalComputeCost(self.imageDims, self.imageChannels, 32, 3)
413

414 for block in self.blockList:
415 computeCost += block.getComputeCost()
416

417 computeCost += GetConvolutionalComputeCost(self.lastLayerImageDims, 320, 1280, 1)
418

419 return computeCost
420

421 class BYOL(nn.Module):
422 def __init__(self, emaScheduler, encoderName, predictor, projector, encoder, batchNorm,

dtypeName, quantization):
423 super(BYOL, self).__init__()
424

425 self.emaScheduler = emaScheduler
426

427 dtype = getattr(torch, dtypeName)
428

429 QNN.QuantizeTensor.nb = quantization["nb"]
430 QNN.QuantizeTensor.nf = quantization["nf"]
431 self.quantizationEnabled = quantization["enabled"]
432 self.weightQuantizationEnabled = quantization["quantizeWeights"]
433

434 self.onlineEncoder = globals()[encoderName](dtype=dtype, batchConfig=batchNorm,
quantization=quantization, **encoder)

435 self.targetEncoder = globals()[encoderName](dtype=dtype, batchConfig=batchNorm,
quantization=quantization, **encoder)

436 self.onlineProjector = MLP(dtype=dtype, inputSize=self.onlineEncoder.getOutputSize(),
batchNorm=batchNorm, quantization=quantization, **projector)

E.9. Model.py 70

437 self.targetProjector = MLP(dtype=dtype, inputSize=self.targetEncoder.getOutputSize(),
batchNorm=batchNorm, quantization=quantization, **projector)

438 self.predictor = MLP(dtype=dtype, inputSize=self.onlineProjector.getOutputSize(),
outputSize=self.targetProjector.getOutputSize(), batchNorm=batchNorm,
quantization=quantization, **predictor)

439

440 # Make sure the target network starts out the same as the online network
441 for onlineParam, targetParam in zip(self.onlineParameters(), self.targetParameters()):
442 targetParam.requires_grad = False
443 targetParam.data = onlineParam.data
444

445 if self.emaScheduler.getTau() == 0:
446 print("Using SimSiam")
447

448 def forward(self, dataView1, dataView2):
449 # dimensions of dataView1 ,2: [batchSize, channelCount, imageWidth, imageHeight]
450

451 if self.quantizationEnabled:
452 with torch.no_grad():
453 dataView1 = QNN.quantize(dataView1)
454 dataView2 = QNN.quantize(dataView2)
455

456 # Standard BYOL approach
457 if self.emaScheduler.getTau() != 0:
458 image1OnlineEncoded = self.onlineEncoder(dataView1)
459 image1Online = self.onlineProjector(image1OnlineEncoded)
460 image1Predicted = self.predictor(image1Online)
461 with torch.no_grad():
462 image1Target = self.targetProjector(self.targetEncoder(dataView1)).detach()
463

464 image2OnlineEncoded = self.onlineEncoder(dataView2)
465 image2Online = self.onlineProjector(image2OnlineEncoded)
466 image2Predicted = self.predictor(image2Online)
467 with torch.no_grad():
468 image2Target = self.targetProjector(self.targetEncoder(dataView2)).detach()
469

470 # Simplified SimSiam approach
471 else:
472 image1OnlineEncoded = self.onlineEncoder(dataView1)
473 image1Online = self.onlineProjector(image1OnlineEncoded)
474 image1Predicted = self.predictor(image1Online)
475 with torch.no_grad():
476 image1Target = image1Online.detach()
477

478 image2OnlineEncoded = self.onlineEncoder(dataView2)
479 image2Online = self.onlineProjector(image2OnlineEncoded)
480 image2Predicted = self.predictor(image2Online)
481 with torch.no_grad():
482 image2Target = image2Online.detach()
483

484 def MSELoss(a, b):
485 return torch.mean(torch.square(a - b))
486

487 def RegressionLoss(a, b):
488 return MSELoss(normalize(a, dim=1), normalize(b, dim=1))
489

490 onlineLoss = (RegressionLoss(image1Predicted, image2Target) +
RegressionLoss(image2Predicted, image1Target)) / 2

491

492 if torch.isnan(onlineLoss).any():
493 breakpoint()
494

495 return onlineLoss
496

497 def stepEMA(self):
498 tau = self.emaScheduler.getTau()
499

500 # Standard BYOL approach
501 if tau != 0:
502 for onlineParam, targetParam in zip(self.onlineParameters(), self.targetParameters()):
503 targetParam.data = targetParam.data + (onlineParam.data - targetParam.data) * (1.0

E.10. QNN.py 71

- tau)
504 targetParam.requires_grad = False
505

506 # Simplified SimSiam approach
507 else:
508 for onlineParam, targetParam in zip(self.onlineParameters(), self.targetParameters()):
509 targetParam.data = onlineParam.data
510 targetParam.requires_grad = False
511

512 def trainableParameters(self):
513 return chain(
514 self.onlineEncoder.parameters(),
515 self.onlineProjector.parameters(),
516 self.predictor.parameters(),
517)
518

519 def onlineParameters(self):
520 return chain(
521 self.onlineEncoder.parameters(),
522 self.onlineProjector.parameters()
523)
524

525 def targetParameters(self):
526 return chain(
527 self.targetEncoder.parameters(),
528 self.targetProjector.parameters()
529)
530

531 def onlineEncoderParameters(self):
532 return self.onlineEncoder.parameters()
533

534 def predictorParameters(self):
535 return self.predictor.parameters()
536

537 def getForwardComputeCost(self):
538 computeCost = 2 * (self.onlineEncoder.getComputeCost() +

self.onlineProjector.getComputeCost() + self.predictor.getComputeCost() +
self.targetEncoder.getComputeCost() + self.targetProjector.getComputeCost())

539 computeCost[2] /= 2
540 return computeCost
541

542 def quantizeParameters(self):
543 if self.quantizationEnabled and self.weightQuantizationEnabled:
544 for param in self.parameters():
545 with torch.no_grad():
546 param.data = QNN.quantize(param.data)

E.10. QNN.py
This file contains a (modified) function to quantize a PyTorch Tensor. Credits to Charlotte Frenkel, Institute of
Neuroinformatics, 2021-2022.

1 #
2 # Charlotte Frenkel, Institute of Neuroinformatics, 2021-2022
3 #
4 # Credit for the surrogate gradient function: F. Zenke,

https://github.com/fzenke/spytorch/blob/main/notebooks/SpyTorchTutorial1.ipynb
5

6 # The quant_fraction function is an addition to the original file contents
7 #
8

9 import math
10

11 import torch
12 import torch.nn as nn
13 from torch.autograd import Variable
14 from torch.nn.modules.utils import _pair
15 import torch.nn.functional as F
16 from torch.autograd import Function
17

18

E.10. QNN.py 72

19 def quant_one(W, nb):
20 if nb == 1:
21 return (W >= 0).float() * 2 - 1
22 elif nb == 2:
23 return torch.clamp(torch.floor(W), -1, 1)
24 non_sign_bits = nb - 1
25 m = pow(2, non_sign_bits)
26 return torch.clamp(torch.floor(W * m), -m, m - 1) / m
27

28 def quant_fraction(W, nb, nfract):
29 if nb == 1:
30 return (W >= 0).float() * 2 - 1
31 elif nb == 2:
32 return torch.clamp(torch.floor(W), -1, 1)
33

34 non_sign_bits = nb - 1
35

36 f = pow(2, nfract)
37 m = pow(2, non_sign_bits)
38

39 return torch.clamp(torch.floor(W * f), -m, m - 1) / f
40

41 class SurrGradSpike(torch.autograd.Function):
42 """
43 Here we implement our spiking nonlinearity which also implements
44 the surrogate gradient. By subclassing torch.autograd.Function,
45 we will be able to use all of PyTorch's autograd functionality.
46 Here we use the normalized negative part of a fast sigmoid
47 as this was done in Zenke & Ganguli (2018).
48 """
49

50 scale = 100.0 # controls steepness of surrogate gradient
51

52 @staticmethod
53 def forward(ctx, input):
54 """
55 In the forward pass we compute a step function of the input Tensor
56 and return it. ctx is a context object that we use to stash information which
57 we need to later backpropagate our error signals. To achieve this we use the
58 ctx.save_for_backward method.
59 """
60 ctx.save_for_backward(input)
61 out = torch.zeros_like(input)
62 out[input > 0] = 1.0
63 return out
64

65 @staticmethod
66 def backward(ctx, grad_output):
67 """
68 In the backward pass we receive a Tensor we need to compute the
69 surrogate gradient of the loss with respect to the input.
70 Here we use the normalized negative part of a fast sigmoid
71 as this was done in Zenke & Ganguli (2018).
72 """
73 input, = ctx.saved_tensors
74 grad_input = grad_output.clone()
75 grad = grad_input / (SurrGradSpike.scale * torch.abs(input) + 1.0) ** 2
76 return grad
77

78

79 class QuantizeTensor(torch.autograd.Function):
80 nb = 8
81 nf = 4
82

83 @staticmethod
84 def forward(ctx, input):
85 return quant_fraction(input, QuantizeTensor.nb, QuantizeTensor.nf)
86

87 @staticmethod
88 def backward(ctx, grad_output):
89 return grad_output

E.11. Server.py 73

90

91 class QuantizeModel(nn.Module):
92 def forward(self, input):
93 return quantize(input)
94

95 spikeAct = SurrGradSpike.apply
96 quantize = QuantizeTensor.apply

E.11. Server.py
1 import torch
2 import torch.optim as optim
3

4 import time
5

6 import Config
7 import Model
8 import Communication
9 import Checkpointer
10 import Dataset
11 import Util
12 import main as mainModule
13 class Server:
14

15 class ServerClient:
16 def __init__(self, comm, addr, model):
17 self.comm = comm
18 self.name = str(addr)
19 self.model = model
20 self.hasReceivedModel = False
21

22 def __init__(self, device, config):
23 self.device = device
24 self.config = config
25 self.checkpointer = Checkpointer.Checkpointer(**config["checkpointer"])
26

27 self.classifier = Model.Classifier(**config["classifier"]).to(device)
28 self.classifierOptimizer = getattr(optim,

config["optimizer"]["name"])(self.classifier.trainableParameters(),
**config["optimizer"]["settings"])

29 self.emaScheduler = Util.EMAScheduler(**config["EMA"])
30

31 self.dataset = Dataset.Dataset(**config["dataset"])
32

33 self.communicationServer = Communication.Server()
34

35 self.clients = []
36 self.currentModel = Model.BYOL(self.emaScheduler, **self.config["BYOL"])
37

38 def bind(self, ip, port):
39

40 self.communicationServer.bind(ip, port)
41

42 def listenForClients(self):
43

44 while True:
45 comm, addr = self.communicationServer.tryAcceptClient()
46 if comm is None:
47 break
48 else:
49 print(f"Accepted client at {addr}")
50

51 client = self.ServerClient(comm, addr, Model.BYOL(self.emaScheduler,
**self.config["BYOL"]))

52 self.clients.append(client)
53 self.updateClientCommunication(client)
54

55 def updateClientCommunication(self, client):
56 if client.comm.isDataReady():
57 message = client.comm.receiveMessage()

E.11. Server.py 74

58 if message == "stop": # Clients wants to disconnect
59 print(f"Closing client {client.name}")
60 self.clients.remove(client)
61 client.comm.sendMessage("stopAcknowledged")
62 client.comm.close()
63 elif message == "requestSend": # Should send current model to client
64 print(f"Sending model to client {client.name}")
65 client.comm.sendModel(self.currentModel)
66 elif message == "update":
67 print(f"Receiving model from client {client.name}")
68 client.comm.receiveModel(client.model)
69 client.hasReceivedModel = True
70 else:
71 print(f"Received unknown message {message} from client {client.name}")
72

73 def run(self):
74

75 shouldStop = False
76 while not shouldStop:
77

78 print("Waiting for updated models...")
79 while True: # Communicate with clients until all clients have sent an updated model
80 self.listenForClients()
81 for client in self.clients:
82 self.updateClientCommunication(client)
83

84 clientsWithModelCount = 0
85 for client in self.clients:
86 if client.hasReceivedModel:
87 clientsWithModelCount += 1
88

89 if len(self.clients) == 0:
90 print("Waiting for clients...")
91 elif clientsWithModelCount == len(self.clients):
92 break
93

94 time.sleep(1)
95

96 print("Averaging")
97

98 modelParameters = [list((client.model.parameters())) for client in self.clients]
99

100 for idx, param in enumerate(self.currentModel.parameters()):
101 param.data = torch.mean(torch.stack([modelParameters[modelIdx][idx].data for

modelIdx in range(len(modelParameters))]), dim=0)
102

103 # Clear the received models to indicate we processed them
104 for client in self.clients:
105 client.hasReceivedModel = False
106

107 # Communicate with clients to send the averaged model
108 time.sleep(1) # Give clients time to process
109 for client in self.clients:
110 self.updateClientCommunication(client)
111

112 print("Saving model")
113 self.checkpointer.saveCheckpoint(self.currentModel, None)
114

115 self.classifier.copyEncoderFromBYOL(self.currentModel)
116 for i in range(self.config["server"]["classifierTrainEpochs"]):
117 mainModule.TrainClassifierEpoch(self.classifier, self.device, self.dataset,

self.classifierOptimizer, self.checkpointer, -1, -1, self.config["useHalfPrecision"])
118 mainModule.TestEpoch(self.classifier, self.device, self.dataset,

self.config["useHalfPrecision"])
119

120 def main():
121 config = Config.GetConfig()
122 config["device"] = "cpu"
123

124 torch.manual_seed(0)
125 device = Util.GetDeviceFromConfig(config)

E.12. Util.py 75

126

127 Model.SetUseReLU1(config["useReLU1"])
128

129 server = Server(device, config)
130 server.bind("localhost", 1234)
131 server.run()
132

133 if __name__ == "__main__":
134 main()

E.12. Util.py
This file contains a few utility functions.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import torch
4 import math
5

6 def PlotImage(image):
7 plt.imshow(np.squeeze(torch.movedim(image * 0.5 + 0.5, 0, 2).detach().cpu().numpy()))
8 plt.show()
9

10 def PlotStatistics(statistics):
11 statistics = np.array(statistics)
12

13 print("Statistics:", statistics)
14

15 loss = statistics[:,0]
16 accuracy = statistics[:,1]
17 epochs = statistics[:,2]
18

19 plt.figure(figsize=(10,10))
20 plt.plot(epochs, loss, label="Loss")
21 plt.plot(epochs, accuracy, label="Accuracy")
22 plt.grid()
23 plt.xlabel("Epochs #")
24 plt.ylim(0)
25 plt.legend()
26 plt.show()
27

28 def GetDeviceFromConfig(config):
29 deviceName = config["device"]
30 if deviceName == "cuda" and torch.cuda.is_available():
31 print("Using CUDA")
32 return torch.device("cuda")
33 else:
34 print("Using CPU")
35 return torch.device("cpu")
36

37 class WarmupCosineScheduler(torch.optim.lr_scheduler.LRScheduler):
38 def __init__(self, optimizer, startEpoch, epochCount, warmupEpochs, baseLearningRate):
39 self.baseLearningRate = baseLearningRate
40 self.epochCount = epochCount
41 self.warmupEpochs = warmupEpochs
42

43 super(WarmupCosineScheduler , self).__init__(optimizer)
44

45 for i in range(startEpoch):
46 self.step()
47

48 def get_lr(self):
49 afterWarmupEpoch = self._step_count - self.warmupEpochs
50 nonWarmupEpochCount = self.epochCount - self.warmupEpochs
51

52 if self._step_count < self.warmupEpochs:
53 return [self.baseLearningRate * self._step_count / self.warmupEpochs] # Linear warm-up
54 elif self._step_count < self.epochCount:
55 return [self.baseLearningRate * 0.5 * (1 + math.cos(math.pi * afterWarmupEpoch /

nonWarmupEpochCount))]
56 else:

E.12. Util.py 76

57 return [0]
58

59 class EMAScheduler:
60 def __init__(self, initialTau, epochCount, enableSchedule):
61 self.initialTau = initialTau
62 self.epochCount = epochCount
63 self.enableSchedule = enableSchedule
64

65 self.tau = self.initialTau
66

67 def step(self, currentEpoch):
68 if not self.enableSchedule:
69 return
70

71 if self.initialTau == 0:
72 self.tau = 0 # SimSiam
73 else:
74 self.tau = 1 - (1 - self.initialTau) * 0.5 * (1 + math.cos(math.pi * currentEpoch /

self.epochCount))
75

76 def startStep(self, steps):
77 for i in range(steps):
78 self.step(i)
79

80 def getTau(self):
81 return self.tau

	Preface
	Introduction
	Introduction to classification
	Introduction to self-supervised learning
	Introduction to federated learning
	The goal of the project
	Problem definition
	Thesis structure

	Programme of requirements
	General requirements
	Signal Processing and Algorithms Requirements

	Theory
	Self-supervised learning
	Different methods & models
	Relevant methods
	Classification

	Federated learning
	FederatedAveraging
	SOFed

	Identification of bottlenecks
	Implementation
	SSL Implementation
	Models
	Dataset
	Augmentations
	Optimizer
	Scheduling
	Exponential Moving Average
	Classification
	Evaluation
	Quantization
	Hardware agreements
	Hyperparameters
	Results

	FL Implementation
	Communication Protocol
	Databuffer
	Hyperparameters
	Results

	Discussion and future work
	Self-supervised learning
	Federated learning
	Possible continuation
	Requirements revisited
	Problem statement revisited

	Conclusion
	References
	Machine learning terminology
	Abbreviations

	Extra figures and tables
	Self-supervised learning
	Federated Learning
	Model sizes
	Self-supervised learning tests
	Ablation study

	Federated learning tests

	Fulfillment of the requirements
	General requirements
	Signal Processing and Algorithms Requirements

	Implementation Details
	Self-supervised learning
	Config.py
	Model.py
	ImageAugmenter.py
	CheckPointer.py
	Dataset.py
	KRIAInterface.py
	main.py

	Federated Learning
	Communication.py
	Client.py
	Server.py

	Python code
	Checkpointer.py
	Client.py
	Communication.py
	Config.py
	Dataset.py
	ImageAugmenter.py
	KRIAInterface.py
	main.py
	Model.py
	QNN.py
	Server.py
	Util.py

