
Symbolic Turbulence Modelling
with Multi-Agent Reinforcement
Learning

Zing Shawn Tan

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Symbolic
Turbulence

Modelling with
Multi-Agent

Reinforcement
Learning

by

Zing Shawn Tan

to obtain the degree of Master of Science Aerospace Engineering
at the Delft University of Technology,

to be defended publicly on Tuesday November 18, 2025 at 10:00 AM.

Student number: 5229286

Project duration: February 20, 2025 – October 31, 2025

Thesis committee: Dr. R.P. Dwight, TU Delft, supervisor

Dr. A. Eidi, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image generated with Dall-E

http://repository.tudelft.nl/

Symbolic Turbulence Modelling with
Multi- Agent Reinforcement Learning

Turbulence modelling remains a major challenge in computational fluid dynamics (CFD), as Reynolds-
Averaged Navier-Stokes (RANS) closures rely on empirical relations introducing significant model-form
uncertainty. Symbolic regression offers a path toward interpretable data-driven closures, but conven-
tional Deep Symbolic Regression (DSR) struggles to efficiently explore the vast space of physically
consistent expressions.

We propose a Multi-Agent Deep Symbolic Regression (MADSR) framework that reformulates turbu-
lence model discovery as a cooperative multi-agent reinforcement learning (MARL) problem. Each
agent discovers one scalar coefficient function in the tensor-basis expansion of the Reynolds-stress
anisotropy tensor, sharing a common reward derived from frozen RANS evaluations. This cooperative
setup promotes coordinated learning among model components.

In MADSR, the effectiveness of 2 MARL techniques, proximal policy optimization (PPO) and centralised
training decentralised execution (CTDE), is investigated on symbolic turbulence modelling. Several
MADSR variants are developed and tested, including a vanilla multi-agent DSR, a proximal policy
optimization (PPO) based MADSR, an actor-critic MADSR, and a MAPPO-DSR inspired by multi-agent
proximal policy optimization (MAPPO).

Applied to the Explicit Algebraic Reynolds-Stress Model (EARSM) and k-corrective RANS formulations,
MADSR outperforms single-agent DSR in frozen RANS evaluations of the periodic-hill benchmark. The
multi-agent structure enhances exploration efficiency and enables discovery of more consistent and
interpretable turbulence closures. MADSR thus represents a promising step toward fully end-to-end,
reinforcement-learning-based symbolic turbulence modelling.

iii

Preface
After 5 years in Delft, I have finally completed both my Bachelor and Master’s degrees in Aerospace
Engineering. This thesis marks the end of my academic journey, and I am grateful for the knowledge
and experiences I have gained along the way. These 5 years in Delft have been filled with many
experiences, in which I have grown both academically and personally. Good or bad, these experiences
have shaped me into the person I am today, and I will always cherish the memories I have made here.

Firstly, I would like to thank my parents, for their support allowing me to pursue my studies in the
Netherlands. I would also like to thank my friends in Delft and back home for their companionship and
support throughout these years. The great times we have shared together have made my time in Delft
truly memorable.

I would like to express my gratitude to my main supervisor, Dr. Richard Dwight, for introducing me to
this thesis topic and providing invaluable guidance throughout the research process. I would also like
to thank my daily supervisor, Dr. Ali Eidi, for his support and time that he has dedicated to help me
complete this thesis. The discussions and feedback with him have been instrumental in shaping the
final outcome of this work. I would like to thank Tyler Buchanan for his assistance with providing the
datasets I needed, and for his help in understanding certain aspects of the data.

Zing Shawn Tan
Delft, October 2025

v

Contents

Abstract iii

1 Introduction 1

2 Background and related work 3
2.1 RANS Turbulence Modelling . 3
2.2 Two equation models. 4

2.2.1 Turbulence kinetic energy . 4
2.2.2 The k-𝜀 model . 5
2.2.3 The k-𝜔 model . 5
2.2.4 The 𝑘−𝜔 SST model . 6

2.3 Model-form error correction . 7
2.3.1 Data-driven EARSM . 8
2.3.2 SpaRTA . 9
2.3.3 Relative Importance Term Analysis (RITA) . 10

2.4 Symbolic Regression . 12
2.4.1 Genetic Expression Programming for EARSM . 13

2.5 Reinforcement Learning . 14
2.5.1 Returns, Values, and Q-values . 15
2.5.2 Policy . 16
2.5.3 Policy Gradient Methods . 16
2.5.4 Actor-Critic Methods . 17
2.5.5 Proximal Policy Optimization (PPO) . 18

2.6 Deep Symbolic Regression (DSR). 19
2.6.1 DSR framework. 19
2.6.2 Expression generation . 19
2.6.3 Risk-seeking policy gradient . 22

2.7 DSR extensions . 22
2.7.1 Improving exploration . 22
2.7.2 Neural-guided genetic programming . 23
2.7.3 Unified Deep Symbolic Regression (uDSR). 24
2.7.4 Deep Symbolic Regression for EARSM . 25

2.8 Multi-agent reinforcement learning . 25
2.8.1 Multi Agent Proximal Policy Optimisation (MAPPO) 26

3 Multi-agent DSR and experimental setup 27
3.1 Limitations of DSR in EARSM . 27

3.1.1 Independent learning . 27
3.1.2 Use of REINFORCE . 28

3.2 Multi-Agent Deep Symbolic Regression for turbulence modelling 28
3.3 EARSM as a POMDP . 29
3.4 MARL techniques. 29

3.4.1 Proximal Policy Optimization in multi-agent DSR 29
3.4.2 Centralised Training Decentralised Execution in multi-agent DSR. 29

3.5 Algorithms . 30
3.6 Expression generation . 32

3.6.1 Function sets . 32
3.6.2 Network architecture . 32
3.6.3 Priors . 33

vii

viii Contents

3.7 Reward function . 34
3.7.1 Training batch organisation . 34

3.8 Advantage function . 35
3.8.1 Risk-seeking advantage function . 35
3.8.2 Learned critic advantage function . 35

3.9 Loss function . 35
3.9.1 Actor loss . 36
3.9.2 Critic loss . 36
3.9.3 Entropy loss. 37

3.10 Loss function for each algorithm . 37
3.10.1 vanilla MADSR . 37
3.10.2 vanilla MAPPO DSR . 37
3.10.3 Actor-critic MADSR. 37
3.10.4 MAPPO DSR . 38

3.11 Experimental setup for turbulence modelling . 38
3.11.1 EARSM . 38
3.11.2 k-corrective RANS . 39
3.11.3 Flow cases . 39
3.11.4 Training setup. 41

3.12 General framework . 44

4 MADSR results and analysis of discovered models 47
4.1 Algorithm comparison . 47

4.1.1 EARSM with three tensors . 48
4.1.2 EARSM with four tensors . 49
4.1.3 k-corrective RANS . 50
4.1.4 Summary of algorithm comparison . 52

4.2 Analysis of found models. 52
4.2.1 Best models in training . 52
4.2.2 Best performing models . 53

4.3 Further optimised models . 55
4.4 Ablation study. 56

4.4.1 Δ𝑏𝑖𝑗 correction . 57
4.4.2 R correction . 57

4.5 Flow field analysis . 58
4.5.1 𝛼𝑃𝐻 = 1.0 . 58
4.5.2 𝛼𝑃𝐻 = 1.5 . 63
4.5.3 Summary of the flow field analysis. 64

5 Conclusions 65
5.1 Limitations . 67
5.2 Recommendations for future work . 67

A Found models 69
A.1 Three tensor models . 69
A.2 Four tensor models . 71
A.3 R correction models . 72

B Predicted Flow fields 75
B.1 𝛼𝑃𝐻 = 1.0 case . 75

B.1.1 Δ𝑏𝑖𝑗 prediction results with three-tensor model . 75
B.1.2 Δ𝑏𝑖𝑗 prediction results with four-tensor model . 78
B.1.3 𝑅 correction prediction results . 80

B.2 𝛼𝑃𝐻 = 1.5 case . 81
B.2.1 Δ𝑏𝑖𝑗 prediction results with three-tensor model . 81
B.2.2 Δ𝑏𝑖𝑗 prediction results with four-tensor model . 83
B.2.3 𝑅 correction prediction results . 85

Contents ix

C Basis tensors 87

D Counterfactual Multi-Agent Policy Gradients (COMA) 91

List of Figures

2.1 The architecture of TBNN. The input invariants are passed through several hidden layers
to obtain the coefficients 𝛼(𝑛), which are then multiplied by the basis tensors to obtain
the correction term Δ𝑏𝑖𝑗. Image taken from Ling et al., 2016. 8

2.2 Schematic of how TBRF is used to predict the model-form error in the Reynolds-stress
tensor. Image taken from Kaandorp and Dwight, 2020. 9

2.3 Visualization of the RITA shear-layer classifier 𝜎𝑆𝐿 applied to the periodic hill flow at
𝑅𝑒 = 10, 595. Regions where 𝜎𝑆𝐿 = 1 (highlighted in red). Figure by Buchanan et al.,
2025. 11

2.4 M-GEP framework. The host chromosome represents the tensorial structure, while plas-
mids encode scalar-valued expressions. The host can call plasmids at specific positions
within its symbolic expression tree, allowing for flexible assembly of tensor expressions.
Figure by Weatheritt and Sandberg, 2016. 14

2.5 DSR framework. The RNN generates tokens of the symbolic expression in a pre-order
traversal manner, and the generated expression is evaluated on the dataset to obtain a
reward. Image by Petersen et al., 2019 . 20

2.6 Neural-guided genetic programming population seeding framework. TheRNN generates
an initial population for GP, which evolves the expressions. The best GP individuals are
then used to train the RNN. Image by Mundhenk et al., 2021 24

3.1 Parametrisation of the Periodic Hills geometry with respect to the geometric scaling pa-
rameter 𝛼. Image by Xiao et al., 2019. 40

3.2 Extension of the Periodic Hills database by Laizet (2021), including additional variations
in domain length and height. Image by Xiao et al., 2019. 41

3.3 Input scalar features used by theMADSR agents for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036:
(a) first invariant 𝐼1, (b) second invariant 𝐼2, (c) 𝐷𝑘/𝐶𝑘 ratio, and (d) 𝐷𝑘/𝑃𝑘 ratio. 42

3.4 First Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. This tensor is the input
feature to the discovered models and is used to construct the Reynolds stress anisotropy
tensor correction. 43

3.5 Turbulent dissipation rate 𝜀 for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. This is used to
model the production correction term. 43

3.6 Target fields for MADSR, 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036: (a) Reynolds stress
anisotropy correction Δ𝑏𝑖𝑗, and (b) production correction term 𝑅. These fields are used
to compute the reward signal during training. 44

3.7 Overview of the proposed MADSR framework. Each policy network generates symbolic
expressions for the coefficient functions 𝛼(𝑛)(𝐼1, … , 𝐼𝐾), which are multiplied by the cor-
responding basis tensors 𝑇(𝑛)𝑖𝑗 to obtain the anisotropy correction Δ𝑏𝑖𝑗. The resulting
stress correction is evaluated using frozen RANS simulations to compute the reward
signal. Multi-agent reinforcement learning methods are then used to train the networks
cooperatively. 45

4.1 Comparison of training curves for different algorithms on EARSM with three tensors.
Shaded areas represent the standard deviation across ten runs with different random
seeds. 48

4.2 Comparison of training curves for different algorithms on EARSM with four tensors.
Shaded areas represent the standard deviation across ten runs with different random
seeds. 50

4.3 Comparison of training curves for different algorithms on the R correction. Shaded areas
represent the standard deviation across ten runs with different random seeds. 51

xi

xii List of Figures

4.4 𝑅2 values for different ablation combinations of the 𝑅 correction model. Each bar repre-
sents a different combination of input features, with the full model on the far right. Each
colour represents a different model from the best performing models. 57

4.5 Difference in predicted vs true Δ𝑏𝑖𝑗, 𝑒(Δ𝑏𝑖𝑗) = ̂Δ𝑏𝑖𝑗−Δ𝑏𝑖𝑗, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036,
using the three-tensor model. Red indicates overprediction, where the model predicts
a higher anisotropy than the true values, while blue indicates underprediction. White
regions indicate no difference between the predicted and true Δ𝑏𝑖𝑗. 59

4.6 Difference in predicted vs true Δ𝑏𝑖𝑗, 𝑒(Δ𝑏𝑖𝑗) = ̂Δ𝑏𝑖𝑗−Δ𝑏𝑖𝑗, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036,
using the four-tensor model. Red indicates overprediction, where the model predicts a
higher anisotropy than the true value, while blue indicates underprediction. White re-
gions indicate no difference between the predicted and true Δ𝑏𝑖𝑗. 60

4.7 Plots of the true and predicted 𝑅 for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. 61
4.8 Difference in predicted vs true R, 𝑒(𝑅) = 𝑅̂−𝑅, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. Red in-

dicates overprediction, where the model predicts a higher production deficit than the true
R, while blue indicates underprediction. White regions indicate no difference between
the predicted and true R. 62

4.9 Plots of the 2 input features used in the R correctionmodel for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. 62
4.10 Plots of the 2 input features used in the R correctionmodel for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. 63
4.11 Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036. 64
4.12 Difference in predicted vs true R, 𝑒(𝑅) = 𝑅̂ − 𝑅, for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036.

Red indicates overprediction, where the model predicts a higher production deficit than
the true R, while blue indicates underprediction. White regions indicate no difference
between the predicted and true R. 64

B.1 True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.0 case. 76
B.2 True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.0 case. 77
B.3 True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.0 case. 78
B.4 True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.0 case. 79
B.5 Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. 80
B.6 Difference in predicted vs true R field for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. Red colours

indicate overprediction, where themodel predicts a higher production deficit than the true
field, while blue colours indicate underprediction. White regions indicate no difference
between the predicted and true fields. 80

B.7 True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.5 case. 81
B.8 True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.5 case. 82
B.9 True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.5 case. 83
B.10 True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.5 case. 84
B.11 Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036. 85
B.12 Difference in predicted vs true R field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036. Red

colours indicate overprediction, where the model predicts a higher production deficit than
the true field, while blue colours indicate underprediction. White regions indicate no dif-
ference between the predicted and true fields. 85

C.1 First Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. 87
C.2 Second Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. 88
C.3 Third Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. 88
C.4 Fourth Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. 89

List of Tables

3.1 Summary of the four implemented multi-agent DSR algorithms and their main charac-
teristics. 31

3.2 Neural network architecture details for actor and critic. 33

4.1 Best 𝑅2 values achieved by each algorithm for EARSM with three tensors. 48
4.2 Best 𝑅2 value obtained for each algorithm for the correction with four tensors. 49
4.3 Best 𝑅2 value obtained for each algorithm for the R correction. 51
4.4 Best performing models for the correction with three tensors. 54
4.5 Best performing models for the correction with four tensors. 54
4.6 Best performing models for the R correction. 55
4.7 Best performing optimised model for the correction with three tensors. 55
4.8 Best performing optimised model for the correction with four tensors. 56
4.9 Best performing optimised models for the R correction. 56

xiii

List of Symbols and Abbreviations

List of Symbols

Symbol Name Description

𝑢 Velocity Velocity of the fluid at a point in space and time

𝑢̄ Mean velocity Enseble-averaged velocity of the fluid

𝑢′ Velocity fluctuations Fluctuating component of velocity due to turbulence

𝑝 Pressure Pressure of the fluid at a point in space and time

𝑝̄ Mean pressure Ensemble-averaged pressure of the fluid

𝑝′ Pressure fluctuations Fluctuating component of pressure due to turbulence

𝜌 Density Mass per unit volume of the fluid

𝑘 Turbulent kinetic energy Represents the energy in turbulent eddies

𝜈 Kinematic viscosity Represents the fluid’s resistance to flow, defined as 𝜈 = 𝜇
𝜌

where 𝜇 is dynamic viscosity and 𝜌 is density
𝜈𝑡 Eddy viscosity Represents the effective viscosity in turbulent flows

𝑆𝑖𝑗 Strain rate tensor Represents the deformation of fluid elements in turbulence

Ω𝑖𝑗 Rotation rate tensor Represents the rotation of fluid elements in turbulence

𝜀 Dissipation rate Rate at which turbulent kinetic energy is dissipated

𝜔 specific dissipation rate Specific turbulence dissipation rate 𝜔 = 𝜀/𝑘 in the 𝑘 − 𝜔
model

𝜏𝑖𝑗 Reynolds stress tensor Additional stress due to turbulence in RANS equations

𝑏𝑖𝑗 Reynold stress anisotropy Anisotropoic part of the Reynolds stress tensor in RANS
equations

Δ𝑏𝑖𝑗 Reynolds stress
anisotropy correction

Correction term for the Reynolds stress anisotropy tensor

𝛿𝑖𝑗 Kronecker delta Used to represent the identity tensor in tensor equations

𝐷𝑘 Turbulent destruction
term

Represents the destruction of turbulent kinetic energy in
turbulence models

𝑃𝑘 Turbulent production term Represents the production of turbulent kinetic energy in tur-
bulence models

𝐶𝑘 Turbulent convection term Represents the convection of turbulent kinetic energy in
turbulence models

𝛼𝑃𝐻 Geometric parameter Parameter defining the geometry of the periodic hill

𝐿𝑥/𝐻 Domain length Length of the periodic hill domain

𝐿𝑦/𝐻 Domain height Height of the full periodic hill domain

xv

xvi List of Tables

𝑇(𝑛)𝑖𝑗 Basis tensors Set of tensors used in tensor basis expansions for turbu-
lence modelling

𝛼(𝑛) Coefficient functions Scalar functions of invariant flow features used in turbu-
lence modelling

𝐴 Advantage Advantage of taking this action at this state

𝑟𝑡 Reward Immediate scalar feedback signal from the environment

𝑅 Return Total amount of rewards obtained durind an episode

𝛾 Discount factor Factor by which future rewards are multiplied (0 ≤ 𝛾 ≤ 1)
𝑠𝑡 State Representation of the environment at a given time

𝜏 Trajectory Full rollout of a policy

𝑎𝑡 Action Decision or move taken by the agent at a given time

𝐿 Episode length Total number of time steps in an episode

ℒ Loss Objective to be minimized during training

𝐽 Objective function Function to be maximized (e.g., expected return)

𝑉(𝑠) State value function Expected return starting from state 𝑠 following policy 𝜋
𝑄(𝑠, 𝑎) Action value function Expected return starting from state 𝑠, taking action 𝑎, and

thereafter following policy 𝜋
𝜋(𝑎|𝑠) Policy probabilities Probability of taking action 𝑎 in state 𝑠 under policy 𝜋
𝜃 Actor parameters Parameters of the policy network (actor)

𝜙 Critic parameters Parameters of the value function network (critic)

𝜖 risk-seeking quantile Top 𝜖-th quantile of returns used in risk-seeking policy gra-
dient updates

𝑅𝜖 risk-seeking baseline Baseline return value corresponding to the 𝜖 quantile
𝑦 True value Ground truth target valueof the dataset for regression

𝑦̂ Predicted value Model’s predicted value for regression

List of Tables xvii

List of Abbreviations

Abbreviation Name

RANS Reynolds-Averaged Navier-Stokes

DNS Direct Numerical Simulation

LES Large-Eddy Simulation

EVM Eddy-Viscosity Model

SST Shear Stress Transport

RST Reynolds Stress Tensor

EARSM Explicit Algebraic Reynolds-Stress Model

MDP Markov Decision Process

POMDP Partially Observable MDP

RL Reinforcement Learning

DRL Deep Reinforcement Learning

RNN Recurrent Neural Network

TD Temporal-Difference Learning

GAE Generalised Advantage Estimation

TRPO Trust Region Policy Optimisation

PPO Proximal Policy Optimisation

DSR Deep Symbolic Regression

MARL Multi-Agent Reinforcement Learning

GP Genetic Programming

uDSR Unified Deep Symbolic Regression

MAPPO Multi-Agent PPO

CTDE Centralised Training, Decentralised Execution

TBNN Tensor-Basis Neural Network

TBRF Tensor-Basis Random Forest

SpaRTA Sparse Regression of Turbulent Stress Anisotropy

RITA Relative Importance Term Analysis

M-GEP Multidimensional Gene Expression Programming

TBDSR Tensor-Basis Deep Symbolic Regression

1
Introduction

Turbulence modelling remains one of the central challenges in computational fluid dynamics (CFD). Al-
though the Reynolds-averaged Navier-Stokes (RANS) equations provide a computationally affordable
way to simulate turbulent flows, they require closure models that introduce significant empirical un-
certainty. Most RANS closures are derived from physical intuition and experimental calibration, which
limit their generality and accuracy in complex flows involving strong pressure gradients, separation, or
curvature effects. Improving the predictive capability of turbulence models, therefore, remains a key
problem in CFD.

Recent advances in data-driven modelling have introduced new opportunities to overcome these limi-
tations. High-fidelity datasets from direct numerical simulation (DNS) and large-eddy simulation (LES)
provide detailed turbulence information that can be used to correct deficiencies in conventional models
(Duraisamy et al., 2019). Symbolic regression has emerged as a promising approach for this task, as
it allows the discovery of analytical expressions that are both interpretable and generalizable. Unlike
black-box machine learning methods, symbolic regression yields explicit mathematical relations, mak-
ing it well-suited for scientific modelling where interpretability and physical consistency are essential.

Deep Symbolic Regression (DSR) combines symbolic regression with deep reinforcement learning to
automatically discover equations that fit data. In DSR, a recurrent neural network is trained to gener-
ate symbolic expressions as sequences of tokens, which are evaluated and rewarded based on their
performance. However, the standard DSR formulation is limited to single-output regression tasks.
This becomes restrictive when applied to turbulence modelling problems such as the Explicit Algebraic
Reynolds-Stress Model (EARSM), where multiple coupled scalar functions must be learned simulta-
neously. In such cases, learning each equation independently can lead to inconsistencies and reduce
model accuracy.

This work proposes a new framework called Multi-Agent Deep Symbolic Regression (MADSR), which
extends DSR using multi-agent reinforcement learning (MARL) principles. In this formulation, each
scalar coefficient function in the EARSM is represented by an individual agent, and all agents coop-
erate to minimise the overall model-form error in the predicted Reynolds-stress anisotropy tensor. All
agents share a common reward derived from frozen RANS evaluations, encouraging coordinated learn-
ing across functions. This multi-agent approach allows for consistent, physically meaningful symbolic
expressions to be discovered across all terms of the model.

The thesis investigates several variants of the MADSR framework, including a vanilla multi-agent DSR,
an actor-critic MADSR, and a Multi-Agent Proximal Policy Optimization (MAPPO) DSR. Each variant
is evaluated within the frozen RANS environment on the periodic-hill dataset, comparing its ability
to discover accurate and interpretable turbulence model corrections. Through this, the work aims to
address twomajor limitations of conventional DSR: the use of REINFORCE and the lack of coordination
across multiple symbolic functions.

1

2 1. Introduction

The objective of this research is to answer the following question:

How can multi-agent reinforcement learning techniques be integrated with deep symbolic
regression to perform turbulence modelling?

This research aims to develop a novel framework that integrates multi-agent reinforcement learning
(MARL) with deep symbolic regression (DSR) to address the challenges of multi-equation turbulence
modelling. Key objectives include identifying suitable MARL algorithms for cooperative symbolic re-
gression, evaluating the impact of MARL integration on learning efficiency and expression quality,
assessing the framework’s ability to discover EARSM closures and k-corrective RANS models, and
determining whether the approach can produce accurate and interpretable turbulence models.

Thesis structure
The thesis begins with a background chapter that introduces the fundamental ideas required to under-
stand this work. It also presents related work that has been done. The RANS equations are presented
along with the closure problem and the motivation for turbulence models. The formulation of the k-ω
SST model is discussed to illustrate how traditional eddy-viscosity models are derived and the limita-
tions they introduce. The concept of model-form error is then explained, followed by a discussion of
the EARSM and its tensor-basis representation. Then, reinforcement learning is introduced, covering
basic reinforcement learning algorithms. The chapter then discusses DSR in detail, explaining how it
combines symbolic regression with reinforcement learning to discover equations from data. Finally, the
chapter reviews the multi-agent reinforcement learning concepts that form the foundation of this work.

The methodology chapter presents the design of the MADSR framework. It begins by outlining the lim-
itations of standard DSR and motivates the multi-agent extension. It then describes how the EARSM
is represented as a multi-agent environment, where each agent learns one coefficient function and
all agents share a common reward based on their collective performance in frozen RANS. Different
algorithmic variants are introduced, including the vanilla, actor-critic, and MAPPO-based MADSR for-
mulations, along with the general training procedure and evaluation setup. Finally, the chapter details
the experimental setup used to train and test the MADSR algorithms developed.

The results chapter then analyses the performance of these algorithms in learning turbulence model
corrections. The discovered symbolic models are compared in terms of their predictive accuracy, in-
terpretability, and consistency across agents. Additional studies, such as ablation tests and flow-field
analyses, are used to examine the influence of different components and to assess how the learned
models reproduce key flow features.

2
Background and related work

This chapter lays the foundation for the methods developed in this thesis, and it also provides some
related work in the field of turbulence modelling and data-driven model discovery. It begins with the
Reynolds-Averaged Navier-Stokes equations and standard turbulence closures, explaining the limi-
tations of linear eddy-viscosity models and the motivation for model-form error corrections such as
EARSM and the 𝑘-corrective approach. The 𝑘-𝜔 SST model is presented as a representative two-
equation turbulence model. The chapter then introduces data-driven correction methods, including
tensor-basis learning and sparse symbolic approaches such as SpaRTA and RITA. This is followed
by an overview of symbolic regression and its deep learning extension, Deep Symbolic Regression,
where reinforcement learning methods are used to discover analytical expressions. The chapter con-
cludes with a discussion of multi-agent reinforcement learning and recent extensions of DSR, forming
the basis for the multi-agent deep symbolic regression framework proposed in this work.

2.1. RANS Turbulence Modelling
The incompressible viscous Navier-Stokes equations are described by the following equations:

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0

𝜕𝑢𝑖
𝜕𝑡 + 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈𝜕
2𝑢𝑖
𝜕𝑥2𝑗

(2.1)

These equations fully describe the fluid motion and can, in theory, be solved exactly through Direct
Numerical Simulation (DNS), resulting in a highly accurate representation of the real physical flow.
However, due to the prohibitive computational cost associated with resolving all scales of fluid motion,
DNS is typically infeasible for practical engineering applications. Therefore, approximation methods
such as Large Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) equations have
been developed and widely adopted as computationally efficient alternatives.

RANS is a method that averages the Navier-Stokes equations over ensembles, where the velocity
𝑢𝑖 and pressure 𝑝 are decomposed into a mean part 𝑢̄𝑖 and a fluctuating part 𝑢′𝑖. This results in the
Reynolds-averaged Navier-Stokes equations:

𝜕𝑢̄𝑖
𝜕𝑥𝑖

= 0

𝜕𝑢̄𝑖
𝜕𝑡 + 𝑢̄𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗

= −1𝜌
𝜕𝑝̄
𝜕𝑥𝑖

+ 𝜈𝜕
2𝑢̄𝑖
𝜕𝑥2𝑗

−
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

.
(2.2)

Ensemble averaging eliminates the effect of turbulent fluctuations, and yields governing equations for
the mean flow that look almost identical to the full Navier-Stokes equations. However, Equation 2.2

3

4 2. Background and related work

introduces an additional term, the Reynolds stress tensor 𝜏𝑖𝑗 = 𝑢′𝑖𝑢′𝑗, which represents the effect of the
turbulent fluctuations on the mean flow. The Reynolds stress tensor is unknown, making the RANS
equations an unclosed system of equations. To close the system, a turbulence model is required to
model the Reynolds stress tensor.

Commonly, the Reynolds stress tensor is separated into an isotropic contribution (23𝑘𝛿𝑖𝑗) from an
anisotropic contribution 𝑏𝑖𝑗:

𝜏𝑖𝑗 = 2𝑘 (𝑏𝑖𝑗 −
1
3𝛿𝑖𝑗) . (2.3)

Here 𝑘 is the turbulent kinetic energy, and 𝛿𝑖𝑗 is the Kronecker delta. The linear eddy viscosity model
(LEVM) is commonly used to model the anisotropic term, where the anisotropy tensor 𝑏𝑖𝑗 is defined to
be linear in the strain rate tensor 𝑆𝑖𝑗. This is known as Boussinesq’s hypothesis by Boussinesq, 1877,
which states that the Reynolds stress tensor is proportional to the strain rate tensor. The anisotropy
tensor 𝑏𝑖𝑗 is defined as:

𝑏𝑖𝑗 = −
𝜈𝑡
𝑘 𝑆𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖𝑗 =

1
2 (

𝜕𝑢̄𝑖
𝜕𝑥𝑗

+
𝜕𝑢̄𝑗
𝜕𝑥𝑖

) (2.4)

Substituting the eddy-viscosity model into the RANS equations:

𝜕𝑢̄𝑖
𝜕𝑡 + 𝑢̄𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗

= − 𝜕
𝜕𝑥𝑖

(𝑝̄𝜌 +
2
3𝑘) +

𝜕
𝜕𝑥𝑗

(2(𝜈 + 𝜈𝑡)𝑆𝑖𝑗) . (2.5)

The eddy viscosity model suggests that the effect of turbulence can be modelled as an additional vis-
cosity term 𝜈𝑡, where 𝜈𝑡 is the eddy viscosity. The eddy viscosity represents the additional momentum
transport due to turbulent fluctuations. Determining the eddy viscosity 𝜈𝑡, therefore, becomes the cen-
tral task of the closure. RANS solvers obtain the eddy viscosity from auxiliary transport equations that
relate 𝜈𝑡 to characteristic turbulence time and length-scales.

2.2. Two equation models
Tomodel the eddy viscosity 𝜈𝑡, two-equation turbulencemodels solve two additional transport equations
for two turbulence variables. Here, the most common two-equation turbulence models, the 𝑘-𝜀, 𝑘-𝜔,
and 𝑘-𝜔 SST models are presented. These models model the eddy viscosity based on the turbulence
kinetic energy 𝑘 (TKE) and a second variable that represents the turbulence dissipation.

2.2.1. Turbulence kinetic energy
The turbulence kinetic energy is the mean kinetic energy per unit mass in the turbulent fluctuations. It
is defined as the trace of the Reynolds stress tensor divided by two 𝑘 = 𝑡𝑟𝑎𝑐𝑒(𝜏𝑖𝑗)/2, which can be
expressed as:

𝑘 = 1
2𝑢

′
𝑖𝑢′𝑖 =

1
2(𝑢

′2 + 𝑣′2 +𝑤′2). (2.6)

The turbulence kinetic energy forms the basis of many turbulence models, as it represents the intensity
of turbulence in a flow. Thus, equations to describe the behaviour of the turbulence kinetic energy
are essential for turbulence modelling. A transport equation for the turbulence kinetic energy can be
derived from the Reynolds stress transport (RST) equations. The Reynolds stress transport equations
are obtained by multiplying the fluctuating velocity components 𝑢′𝑖 and 𝑢′𝑗 by the incompressible RANS
equations. The resulting transport equation for the Reynolds stress tensor contains terms representing
production, dissipation, pressure-strain, and diffusion of the Reynolds stresses. By setting 𝑖 = 𝑗 and
summing over all components, a transport equation for the turbulence kinetic energy can be derived:

𝐷𝑘
𝐷𝑡 = 𝜏𝑖𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗⏝⎵⏟⎵⏝

Production

+ 𝜕
𝜕𝑥𝑗

(−12𝑢
′
𝑖𝑢′𝑖𝑢′𝑗 −

1
𝜌𝑝

′𝑢′𝑗 +
1
𝑅𝑒

𝜕𝑘
𝜕𝑥𝑗

)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Diffusion

+ 1
𝑅𝑒
𝜕𝑢′𝑖
𝜕𝑥𝑗

𝜕𝑢′𝑖
𝜕𝑥𝑗⏝⎵⎵⏟⎵⎵⏝

Dissipation

. (2.7)

2.2. Two equation models 5

While the exact transport equation for the turbulence kinetic energy can be derived from the RST
equations, it contains several unclosed terms that require modelling. The production term contains the
Reynolds stress tensor, which has already been modelled using the eddy-viscosity model. The first
two terms in the diffusion term are called the turbulent transport and pressure diffusion. These 2 terms
contain higher-order correlations of the fluctuating velocity and pressure fields, and are modelled using
another eddy viscosity assumption, where they are assumed to be proportional to the gradient of the
turbulence kinetic energy. The model is shown:

−12𝑢
′
𝑖𝑢′𝑖𝑢′𝑗 −

1
𝜌𝑝

′𝑢′𝑗 ≈
𝜈𝑡
𝑃𝑟𝑘

𝜕𝑘
𝜕𝑥𝑗

. (2.8)

Where 𝑃𝑟𝑘 is the turbulent Prandtl number for 𝑘. The dissipation term is where the 2 equation turbulence
models differ, and is the final term that needs to be modelled. The dissipation term represents the rate
at which the turbulence kinetic energy is converted into thermal internal energy due to viscous effects.
So for now, the dissipation term is denoted as 𝜀.

2.2.2. The k-𝜀 model
The 𝑘-𝜀 model by Jones and Launder, 1972 is one of the most widely used two-equation turbulence
models. The 𝑘−𝜀 model works under the assumption that the dissipation and production of turbulence
kinetic energy are in equilibrium, so TKE does not increase or decrease over time. This leads to the
following definition of the eddy viscosity:

𝜈𝑡 = 𝐶𝜇
𝑘2
𝜀 (2.9)

Where 𝐶𝜇 is a model constant with a typical value of 0.09. 𝜀 remains unknown, so a second transport
equation, the 𝜀 transport equation, is derived to model the behaviour of 𝜀. This is done by postulating
𝜀 onto the 𝑘 transport equation. The resulting transport equation for 𝜀 is shown in Equation 2.10.

𝐷𝜀
𝐷𝑡 = 𝐶𝜀1

𝜀
𝑘 𝜏𝑖𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗

+ 𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝑘

) 𝜕𝜀𝜕𝑥𝑗
] − 𝐶𝜀2

𝜀2
𝑘 (2.10)

Where 𝐶𝜀1, 𝐶𝜀2 are model constants, and 𝑃𝑟𝜀 is the turbulent Prandtl number for 𝜀. The assumption that
the dissipation and production of turbulence kinetic energy are in equilibrium is valid for fully developed
turbulent flows. However, the assumption does not hold in flows with strong pressure gradients and
flow separation, so the 𝑘-𝜀 model tends to perform well for external flows without separation. This is
the main limitation of the 𝑘-𝜀 model.

2.2.3. The k-𝜔 model
The 𝑘-𝜔 model by Wilcox, 1988 uses the specific dissipation rate 𝜔 instead of 𝜀 as the second variable.
The specific dissipation rate is defined as the dissipation rate per unit turbulence kinetic energy, and
thus the parameters in the 𝑘-𝜔 model are:

𝜔 = 𝜀
𝐶𝜇𝑘

, 𝜈𝑡 =
𝑘
𝜔 . (2.11)

A transport equation for 𝜔 is derived similarly to the 𝜀 transport equation, by postulating 𝜔 onto the 𝑘
transport equation. The resulting transport equation for 𝜔 is:

𝐷𝜔
𝐷𝑡 = 𝛼𝜔

𝜔
𝑘 𝜏𝑖𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗

+ 𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝜔

) 𝜕𝜔𝜕𝑥𝑗
] − 𝛽𝜔2. (2.12)

Where 𝛼𝜔, 𝛽 are model constants, and 𝑃𝑟𝜔 is the turbulent Prandtl number for 𝜔. The 𝑘-𝜔 model,
while very similar in method to the 𝑘-𝜀 model, is quite different in performance. It performs well in
near-wall regions and adverse pressure gradient flows where there is flow separation. However, the
𝑘-𝜔 model is sensitive to the freestream value of 𝜔, which is an arbitrary value that must be specified
at the boundary. This sensitivity can lead to significant variations in the predicted flow field, especially
in free shear flows and external aerodynamics applications.

6 2. Background and related work

2.2.4. The 𝑘−𝜔 SST model
The 𝑘-𝜔 shear-stress transport (SST) model was introduced by Menter, 1994 to improve the predic-
tive accuracy of two-equation eddy-viscosity models for engineering applications, particularly for flows
involving strong adverse pressure gradients and flow separation. The model was derived through a
combination of the most robust features of existing turbulence models: the near-wall accuracy and
numerical stability of the 𝑘-𝜔 model, and the freestream independence and performance in shear flows
of the standard 𝑘-𝜀 model.

The first step in Menter’s formulation was the construction of a baseline (𝑘-𝜔 BSL) model that smoothly
blends the 𝑘-𝜔 and 𝑘-𝜀 models. The 𝑘-𝜔 formulation is retained in the inner and logarithmic regions of
the boundary layer, while the model transitions to a 𝑘-𝜀 formulation in the wake region and in free shear
flows. This blending avoids the strong freestream sensitivity of the original 𝑘-𝜔 model, which depends
heavily on the arbitrary freestream value of 𝜔. The transport equations for the 𝑘-𝜔 SST model are:

𝐷𝑘
𝐷𝑡 =

̂𝑃𝑘 +
𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝑘

) 𝜕𝑘𝜕𝑥𝑗
] − 𝛽∗𝑘𝜔

𝐷𝜔
𝐷𝑡 = 𝛼

𝜔
𝑘
̂𝑃𝑘 +

𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝜔

) 𝜕𝜔𝜕𝑥𝑗
] − 𝛽𝜔2 + 2(1 − 𝐹1)

𝜎𝜔2
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

Cross Diffusion Term

.
(2.13)

Here, ̂𝑃𝑘 = min(𝑃𝑘 , 10𝛽∗𝑘𝜔) is a modified production term that limits the production of turbulence
kinetic energy in stagnation regions, where 𝑃𝑘 is the standard production term found in the other models.
The model coefficients 𝛼, 𝛽, 𝛽∗, 𝜎𝜔2, and 𝑃𝑟𝜔 are blended between their 𝑘-𝜔 and 𝑘-𝜀 values using the
function 𝐹1. Both 𝑘-𝜔 and 𝑘-𝜀 model coefficients share the same set of coefficients, but have different
values for them. Consider that the set of model coefficients is denoted as𝜙, then the blended coefficient
is defined as:

𝜙 = 𝐹1𝜙𝑘−𝜔 + (1 − 𝐹1)𝜙𝑘−𝜀 (2.14)

The 𝑘-𝜔 SST model blends the two models using the cross diffusion term, which is the last term in
the 𝜔 transport equation of Equation 2.13. When 𝐹1 = 1, the term is inactive, and the 𝜔 transport
equation reduces to the standard 𝑘-𝜖 formulation. When 𝐹1 = 0, the term becomes active, introducing
a cross-diffusion effect that is characteristic of the 𝑘-𝜖 model. 𝐹1 is defined based on the distance to
the nearest wall and the local flow variables, ensuring that it transitions smoothly from one model to the
other based on the flow conditions. 𝐹1 is equal to one in the viscous sublayer and logarithmic region of
the boundary layer, where the 𝑘-𝜔 model is most accurate, and zero in the wake region and free shear
flows, where the 𝑘-𝜀 model performs better. This controls the effect of the blending and ensures that
the model behaves appropriately in different flow regimes.

Bradshaw’s relation (Huang et al., 1992) suggests that the principal turbulent shear stress 𝜏𝑖𝑗 = −𝜌𝑢′𝑣′
is proportional to the turbulent kinetic energy 𝑘 in the wake region of boundary layers. Standard two-
equation eddy-viscosity models violate this relationship because they define the shear stress as 𝜏𝑡 =
𝜌𝜈𝑡𝜕𝑈/𝜕𝑦, which scales with the local strain rate rather than 𝑘. In adverse pressure gradient flows, this
causes an overprediction of the turbulent shear stress.

To correct this, Menter introduced the Shear Stress Transport (SST) formulation (Menter et al., 2003),
which modifies the eddy-viscosity definition to account for the effects of strong adverse pressure gradi-
ents. Menter modified the eddy-viscosity definition to limit its value in regions where production exceeds
dissipation, thereby enforcing Bradshaw’s relation:

𝜈𝑡 =
𝑎1𝑘

max(𝑎1𝜔,Ω𝐹2)
, (2.15)

Where Ω is the vorticity magnitude and 𝐹2 is another blending function that activates the correction only
within boundary layers (𝐹2 = 1 near walls and 𝐹2 = 0 in free shear layers). This modification reduces
the turbulent viscosity in adverse pressure gradient regions, improving the model’s ability to predict
flow separation.

2.3. Model-form error correction 7

𝑘-𝜔 SST Model

Turbulent Kinetic Energy Equation:

𝐷𝑘
𝐷𝑡 =

̂𝑃𝑘 +
𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝑘

) 𝜕𝑘𝜕𝑥𝑗
] − 𝛽∗𝑘𝜔 (2.16)

Dissipation Rate Equation:

𝐷𝜔
𝐷𝑡 = 𝛼

𝜔
𝑘
̂𝑃𝑘 − 𝛽𝜔2 +

𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝜔

) 𝜕𝜔𝜕𝑥𝑗
] + 2(1 − 𝐹1)

𝜎𝜔2
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

. (2.17)

Eddy Viscosity Definition:
𝜈𝑡 =

𝑎1𝑘
max(𝑎1𝜔,Ω𝐹2)

, (2.18)

Model Coefficients:
The coefficients of the 𝑘-𝜔 and 𝑘-𝜀 models are denoted as 𝜙𝑘−𝜔 and 𝜙𝑘−𝜀 and are defined as:

𝜙𝑘−𝜀 ∶ 𝛼 = 0.44, 𝛽 = 0.0828, 𝛽∗ = 0.09, 𝜎𝜔2 = 1.0, 𝑃𝑟𝜔 = 0.856 (2.19)

𝜙𝑘−𝜔 ∶ 𝛼 = 5/9, 𝛽 = 3/40, 𝛽∗ = 0.09, 𝜎𝜔2 = 0.856, 𝑃𝑟𝜔 = 0.5 (2.20)

Then the blended coefficient 𝜙 is defined as:

𝜙 = 𝐹1𝜙𝑘−𝜔 + (1 − 𝐹1)𝜙𝑘−𝜀 (2.21)

Auxiliary Equations:

̂𝑃𝑘 =min(𝑃𝑘 , 10𝛽∗𝑘𝜔) (2.22)

𝐹1 = tanh [(min(max(√𝑘
𝛽∗𝜔𝑦 ,

500𝜈
𝑦2𝜔) ,

4𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑦2

))
4

] (2.23)

𝐶𝐷𝑘𝜔 =max [2𝜌𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

, 10−10] (2.24)

𝐹2 = tanh [(max(2√𝑘𝛽∗𝜔𝑦 ,
500𝜈
𝑦2𝜔))

2

] (2.25)

2.3. Model-form error correction
High-fidelity DNS and LES studies reveal that the linear stress-strain assumption does not reproduce
the true anisotropy tensor 𝑏𝑖𝑗 of turbulent flows. Pope, 1975 quantified the resulting model-form error
as the difference between the DNS/LES tensor and its LEVM counterpart. The error, Δ𝑏𝑖𝑗, is defined
as:

Δ𝑏𝑖𝑗 = 𝑏DNS/LES𝑖𝑗 − 𝑏LEVM𝑖𝑗 = 𝑏DNS/LES𝑖𝑗 + 𝜈𝑡𝑘 𝑆𝑖𝑗 (2.26)

Where 𝑏LEVM𝑖𝑗 = −𝜈𝑡𝑆𝑖𝑗/𝑘 has been substituted in the final expression for clarity.

In Pope, 1975, a non-linear correction term is proposed to correct the model-form error in the Reynolds-
stress tensor. It is based on the assumption that the Reynolds stress tensor depends not only on the
strain rate tensor 𝑆𝑖𝑗 but also on the rotation rate tensor Ω𝑖𝑗, which is defined as:

𝑆𝑖𝑗 =
1
2 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) , Ω𝑖𝑗 =
1
2 (

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

) . (2.27)

8 2. Background and related work

Based on the Cayley-Hamilton theorem, any objective, symmetric, traceless tensor function of 𝑆𝑖𝑗 and
Ω𝑖𝑗 can be expressed as a linear combination of ten invariant basis tensors 𝑇(𝑛)𝑖𝑗 . Hence, the model-form
error reduces to the compact expansion shown in Equation 2.28.

Δ𝑏𝑖𝑗 =
10

∑
𝑛=1

𝛼(𝑛)(𝐼1, ...𝐼5)𝑇𝑖𝑗(𝑛) (2.28)

This provided a way to correct themodel-form error in the Reynolds-stress tensor, where the coefficients
𝛼(𝑛) are functions of the invariants 𝐼1, .., 𝐼5 of the strain rate and rotation rate tensors. Thus, the objective
is to find the functions 𝛼(𝑛) that best fit the data. This is called an explicit algebraic Reynolds-stress
model (EARSM), as it provides an explicit expression for the Reynolds-stress tensor in terms of the
strain rate and rotation rate tensors.

Data-driven approaches to find an EARSM have been proposed, where the goal is to find the func-
tions 𝛼(𝑛) that best fit the data. These approaches typically use frozen RANS, where already available
high-fidelity data is used to train the model. The data is typically obtained from DNS or LES simula-
tions, where the Reynolds-stress tensor is computed from the velocity field. The invariants 𝐼1, ..., 𝐼5 are
computed from the strain rate and rotation rate tensors, and the functions 𝛼(𝑛) are then fitted to the
data.

2.3.1. Data-driven EARSM
Several methods have been proposed to find the functions 𝛼(𝑛). Data-driven approaches have grown
in popularity (Duraisamy et al., 2019), where high-fidelity data is obtained from DNS or LES simu-
lations, and used to train machine learning models to predict the functions 𝛼(𝑛). These approaches
typically use frozen RANS, where the input features are computed using the mean flow features from
the high-fidelity data, and used to train the model. This avoids the need to run RANS simulations dur-
ing training, which can be computationally expensive. The target outputs are the correction terms Δ𝑏𝑖𝑗,
which are computed from the difference between the high-fidelity Reynolds-stress tensor and the LEVM
Reynolds-stress tensor. Many machine learning models have been proposed to find the functions 𝛼(𝑛),
including neural networks, random forests, sparse regression, and symbolic regression.

Figure 2.1: The architecture of TBNN. The input invariants are passed through several hidden layers to obtain the coefficients
𝛼(𝑛), which are then multiplied by the basis tensors to obtain the correction term Δ𝑏𝑖𝑗. Image taken from Ling et al., 2016.

Ling et al., 2016 proposed a tensor-based neural network (TBNN) to find the functions 𝛼(𝑛). The authors
used a neural network that takes the invariants 𝐼1, ..., 𝐼5 as input and outputs the coefficients 𝛼(𝑛). Then,

2.3. Model-form error correction 9

a final layer multiplies the coefficients with the basis tensors 𝑇(𝑛)𝑖𝑗 to obtain the correction term Δ𝑏𝑖𝑗.
The TBNN is trained using a supervised learning approach, where the loss is the error between the
predicted correction term and the true correction term obtained from high-fidelity data. Figure 2.1 shows
a schematic of the TBNN architecture.

Figure 2.2: Schematic of how TBRF is used to predict the model-form error in the Reynolds-stress tensor. Image taken from
Kaandorp and Dwight, 2020.

Kaandorp and Dwight, 2020 proposed the Tensor-Basis Random Forest (TBRF). Each decision tree
in the forest partitions the invariant space and solves a local weighted least-squares problem to obtain
optimum 𝛼(𝑛) values, while the tensor basis itself remains fixed, ensuring Galilean invariance. Com-
pared with neural networks, TBRF involves fewer hyperparameters, offers out-of-bag error estimates
for built-in validation, and supplies prediction-spread information via ensemble variance. Figure 2.2
shows a schematic of how TBRF is used to predict the model-form error in the Reynolds-stress tensor.

2.3.2. SpaRTA
Schmelzer et al., 2020 introduced the Sparse Regression of Turbulent Stress Anisotropy (SpaRTA)
framework, a deterministic symbolic regression method for discovering algebraic stress models di-
rectly from high-fidelity data. Unlike stochastic approaches such as Gene Expression Programming,
SpaRTA formulates model discovery as a sparse regression problem, identifying the smallest possible
set of physically meaningful terms from a large predefined library. The method is based on elastic
net regularisation, which blends LASSO and Ridge regression to promote sparsity while maintaining
numerical robustness. In this way, SpaRTA yields interpretable algebraic models that can be efficiently
implemented in RANS solvers.

A large candidate library of basis tensors and invariant functions is constructed, and the sparse regres-
sion selects the subset of terms that best describe the anisotropy tensor from DNS or LES data. This
formulation makes the model deterministic and computationally inexpensive compared to evolutionary
methods, while ensuring reproducibility across runs.

In addition to identifying corrections for the Reynolds-stress tensor, SpaRTA also introduced the k-
corrective frozen RANS approach, which extends the frozen RANS framework. The motivation for this
extension arises from the observation that modifying the Reynolds-stress tensor in RANS, particularly
in 𝑘-𝜔models, changes the production term 𝑃𝑘 in the turbulent kinetic energy equation. If this additional
production is not accounted for, the modified Reynolds stresses can create residual errors in the TKE
transport equation. The k-corrective approach explicitly models this residual by introducing an additive
correction term 𝑅, resulting in a coupled correction of both the Reynolds-stress tensor and the turbulent
kinetic energy equations.

The modified 𝑘-𝜔 SST model with this correction can be written as:
𝜕𝑘
𝜕𝑡 + 𝑈𝑗

𝜕𝑘
𝜕𝑥𝑗

= (𝑃𝑘 + 𝑅) − 𝛽∗𝜔𝑘 +
𝜕
𝜕𝑥𝑗

[(𝜈 + 𝜎𝑘𝜈𝑡)
𝜕𝑘
𝜕𝑥𝑗

] ,

𝜕𝜔
𝜕𝑡 + 𝑈𝑗

𝜕𝜔
𝜕𝑥𝑗

= 𝛾𝜈𝑡𝑘 (𝑃𝑘 + 𝑅) − 𝛽𝜔
2 + 𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜔𝜈𝑡)

𝜕𝜔
𝜕𝑥𝑗

] + 𝐶𝐷𝑘𝜔 .
(2.29)

10 2. Background and related work

Here, the residual term 𝑅 introduces additional production in the TKE equation to compensate for the
effects of the corrected Reynolds stresses. It is defined analogously to the anisotropy correction, as
shown below:

𝑅 = 2𝑘 𝑏𝑅𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

, (2.30)

Where 𝑏𝑅𝑖𝑗 is the residual anisotropy tensor, modelled as a linear combination of the basis tensors 𝑇
(𝑛)
𝑖𝑗

with coefficients 𝛼(𝑛)𝑅 (𝐼1, … , 𝐼5). This formulation mirrors the structure of the Reynolds-stress correction
term Δ𝑏𝑖𝑗 but applies it to the TKE residual, enabling both terms to be discovered within the same
symbolic regression framework.

The combined correction terms Δ𝑏𝑖𝑗 and 𝑅 are extracted from high-fidelity simulations using the k-
corrective frozen RANS procedure, which iteratively solves the 𝜔-equation while keeping the velocity
and 𝑘 fields frozen. This allows the residuals of the RANS equations to be computed directly from data,
without the need for an expensive inverse optimisation. These residuals form the training targets for
the SpaRTA regression. By regressing both Δ𝑏𝑖𝑗 and 𝑅, the framework can identify algebraic models
that simultaneously correct the stress-strain relationship and the TKE production.

The resulting models are sparse, interpretable, and computationally robust, providing physical insight
into which terms in the tensor polynomial basis contribute most significantly to the model-form error.
Cross-validation across canonical separated flows, such as the periodic hill, converging-diverging chan-
nel, and curved backwards-facing step, showed that the SpaRTA-discovered models consistently im-
proved RANS predictions of velocity and turbulence quantities. SpaRTA achieves these improvements
with minimal model complexity, demonstrating that sparse algebraic corrections are sufficient to capture
key deficiencies in the baseline 𝑘-𝜔 SST model.

Overall, SpaRTA represents a systematic, deterministic alternative to evolutionary symbolic regression.
By combining sparse regularisation with physically constrained tensor algebra. It also introduces the
k-corrective frozen RANS approach, enabling simultaneous correction of both Reynolds stresses and
TKE production. It was found that the turbulence production correction proved to be more significant
than

2.3.3. Relative Importance Term Analysis (RITA)
Buchanan et al., 2025 introduced theRelative Importance TermAnalysis (RITA) framework as a physics-
based methodology for identifying and targeting regions in which RANS models require correction.
Rather than modifying closure coefficients globally, RITA provides a systematic way to localise cor-
rections by quantifying the relative magnitudes of physical processes in the turbulence kinetic energy
equation. The approach enables selective application of data-driven corrections in separated shear
layers, where RANS models typically fail, while preserving baseline performance in regions where the
model is already accurate, such as attached boundary layers.

The foundation of RITA lies in analysing the balance of transport terms in the TKE equation of a standard
𝑘 − 𝜔 SST model:

𝜕𝑘
𝜕𝑡 + 𝑈𝑗

𝜕𝑘
𝜕𝑥𝑗

= 𝑃𝑘 − 𝐷𝑘 + 𝑑𝑘 , (2.31)

where 𝑃𝑘 is production, 𝐷𝑘 is destruction (or dissipation), and 𝑑𝑘 represents diffusive transport. Instead
of focusing on the absolute magnitudes of these terms-which vary strongly across different flows, RITA
uses non-dimensional ratios that describe the relative importance of each mechanism. These ratios
reveal consistent, physical patterns across flow types, distinguishing boundary layers, shear layers,
and recirculation regions through their characteristic energy balances.

The key idea is that the structure of separated shear layers can be identified from the balance between
production and destruction in the TKE equation. In attached boundary layers, dissipation typically
dominates (|𝐷𝑘| > |𝑃𝑘|), while in shear layers the two terms are nearly balanced (|𝐷𝑘| ≈ |𝑃𝑘|), and in

2.3. Model-form error correction 11

the freestream their magnitudes are both small. By exploiting these systematic trends, RITA formulates
a set of simple, interpretable indicators:

𝜙𝐷𝑘/𝑃𝑘 =
|𝐷𝑘|

|𝐷𝑘| + |𝑃𝑘|
, 𝜙𝑘 =

𝑘
𝑘 + 0.5|𝑈|2 , 𝑅𝑒Ω =

𝑑2𝑤Ω
𝜈 . (2.32)

Here, 𝜙𝐷𝑘/𝑃𝑘 quantifies the local production-destruction balance, 𝜙𝑘 represents the turbulent-to-total
kinetic energy ratio, and 𝑅𝑒Ω is a vorticity-based Reynolds number that captures rotational intensity
scaled by wall distance 𝑑𝑤. These dimensionless quantities are robust across different geometries
and Reynolds numbers and directly encode the dominant flow mechanisms in a given region.

Using these indicators, RITA defines a binary classifier 𝜎𝑆𝐿 that identifies whether a given location
belongs to a separated shear layer. The classifier is defined as:

𝜎𝑆𝐿 = {
1, if 𝜙𝐷𝑘/𝑃𝑘 < 0.55, 𝜙𝑘 ≥ 0.12, 𝑅𝑒Ω ≥ 0.02,
0, otherwise.

. (2.33)

Cells with 𝜎𝑆𝐿 = 1 are considered part of the shear layer and receive model corrections, while all others
retain the baseline model. This zonal classification ensures that corrections are applied only in phys-
ically justified regions, preserving baseline accuracy in wall-bounded flows and log-law regions. The
thresholds are empirically chosen based on consistent behaviour observed across canonical separated
flows such as the periodic hill and NASA hump cases.

Figure 2.3: Visualization of the RITA shear-layer classifier 𝜎𝑆𝐿 applied to the periodic hill flow at 𝑅𝑒 = 10, 595. Regions where
𝜎𝑆𝐿 = 1 (highlighted in red). Figure by Buchanan et al., 2025.

An example of the RITA classifier applied to the periodic hill flow is shown in Figure 2.3. Once the
classifier identifies the shear-layer zones, correction terms derived through symbolic regression (e.g.
SpaRTA) are applied only within those zones. This approach avoids global model modifications and
introduces a physically interpretable form of zonal augmentation, where corrections to Reynolds stress
anisotropy or TKE production are selectively activated by 𝜎𝑆𝐿. The final zonally augmented 𝑘-𝜔 SST
equations thus become:

RITA-augmented 𝑘-𝜔 SST Model

Continuity and Momentum Equations:

𝜕𝑢̄𝑖
𝜕𝑥𝑖

= 0

𝜕𝑢̄𝑖
𝜕𝑡 + 𝑢̄𝑗

𝜕𝑢̄𝑖
𝜕𝑥𝑗

= − 𝜕
𝜕𝑥𝑖

(𝑝̄𝜌 +
2
3𝑘) +

𝜕
𝜕𝑥𝑗

(2(𝜈 + 𝜈𝑡)𝑆𝑖𝑗) + 𝜎𝑆𝐿
𝜕
𝜕𝑥𝑗

(2𝑘Δ𝑏𝑖𝑗)
(2.34)

Turbulent Kinetic Energy Equation:

12 2. Background and related work

𝐷𝑘
𝐷𝑡 =

̂𝑃𝑘 + 𝜎𝑆𝐿𝑅 +
𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝑘

) 𝜕𝑘𝜕𝑥𝑗
] − 𝛽∗𝑘𝜔 (2.35)

Specific Dissipation Rate Equation:

𝐷𝜔
𝐷𝑡 = 𝛼

𝜔
𝑘 (

̂𝑃𝑘 + 𝜎𝑆𝐿𝑅) − 𝛽𝜔2 +
𝜕
𝜕𝑥𝑗

[(1𝑅𝑒 +
𝜈𝑡
𝑃𝑟𝜔

) 𝜕𝜔𝜕𝑥𝑗
] + 2(1 − 𝐹1)

𝜎𝜔2
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

. (2.36)

Eddy Viscosity Definition:

𝜈𝑡 =
𝑎1𝑘

max(𝑎1𝜔,Ω𝐹2)
, (2.37)

TKE production term:

̂𝑃𝑘 =min(−2(𝜈𝑡𝑆𝑖𝑗 + 𝜎𝑆𝐿Δ𝑏𝑖𝑗)
𝜕𝑢̄𝑖
𝜕𝑥𝑗

, 10𝛽∗𝑘𝜔) (2.38)

where 𝜎𝑆𝐿 is a binary classifier, determining whether the correction is applied based on the local flow
conditions. Because 𝜎𝑆𝐿 is binary and non-differentiated in the momentum, TKE, and specific dissi-
pation rate equations, it does not affect the numerical stability of the transport equations or introduce
spurious gradients at zonal interfaces.

Conceptually, RITA represents a shift from global model correction to targeted model enhancement. By
characterising the flow through the internal dynamics of the RANS equations rather than externally de-
fined features, it leverages the existing model structure to identify its own deficiencies. This makes the
approach physically transparent, computationally efficient, and broadly applicable across different ge-
ometries. Moreover, since the classification criteria are based on invariant, non-dimensional quantities,
RITA naturally generalises from two-dimensional to three-dimensional configurations, as demonstrated
by its performance on flows such as the Faith Hill and Ahmed body cases.

2.4. Symbolic Regression
Traditional regression methods, such as linear regression, polynomial regression, and especially neural
networks, typically assume a fixed model structure, with the parameters adjusted to best fit the data.
While these approaches can provide an excellent fit to the data, they often do so at the expense of
interpretability. In particular, models such as neural networks tend to act as black-box models, mapping
inputs to outputs through complex, nontransparent internal mechanisms. As a result, it is often difficult
to discern the underlying relationships or physical laws from such models, and to understand how
predictions are made.

In contrast, symbolic regression is a form of regression analysis that searches over the space of math-
ematical expressions to identify the model that best fits a given dataset. Here, the model is typically
represented as an explicit mathematical formula, such as:

𝑦 = 𝑎 𝑥21 + 𝑏 sin(𝑥2) + 𝑐 𝑥1𝑥2 + 𝑑. (2.39)

Where the objective is to discover both the functional form (the combination of operations and variables)
and the optimal values for the constants. Unlike black-boxmodels, symbolic regression aims to yield so-
called white-box models: interpretable equations whose structure can often be related back to physical
principles or domain knowledge. This interpretability is especially valuable in fields such as physics
and engineering, where gaining insights into the underlying functional relationships is of fundamental
importance.

A variety of methods have been developed for symbolic regression. Evolutionary algorithms, in partic-
ular, have been widely employed to evolve candidate mathematical expressions. It is based on natural
selection, where the fittest individuals are selected to reproduce and create new offspring. Over suc-
cessive generations, the population evolves towards better-fitting expressions.

2.4. Symbolic Regression 13

Genetic programming (GP) (Koza, 1994, Schmidt and Lipson, 2009) is one of the most popular evo-
lutionary approaches for symbolic regression. In GP, candidate solutions are represented as tree
structures, where nodes correspond to mathematical operations (e.g. addition, multiplication, sine,
cosine) and leaves represent input variables or constants. The algorithm evolves the population of
trees through genetic operations such as selection, crossover, and mutation, guided by a fitness func-
tion that evaluates how well each expression fits the data.

More recently, deep learning techniques have been explored in the context of symbolic regression. One
such approach is Deep Symbolic Regression, which combines the flexibility of deep learning with the
interpretability of symbolic regression, enabling the discovery of complex mathematical expressions
while preserving transparency.

Notably, recent works have leveraged large-scale pre-training and language models for symbolic re-
gression. For example, Biggio et al., 2021 introduced a neural symbolic regression framework based on
Transformers, which can be pre-trained on large, procedurally-generated equation datasets and then
rapidly adapted to new tasks. Similarly, Valipour et al., 2021 proposed SymbolicGPT, a transformer-
based language model that frames symbolic regression as a language modelling problem. By learning
to “caption” datasets with the corresponding mathematical expressions, SymbolicGPT demonstrates
improved speed and data efficiency, scaling well to higher dimensions and diverse functional forms.

2.4.1. Genetic Expression Programming for EARSM
Conventional symbolic regression approaches are effective for scalar regression tasks but are ill-suited
for tensorial relationships, as they often produce expressions that violate dimensional consistency or
tensor symmetry. The EARSMproblem is inherently tensorial, requiring the regression of the anisotropy
tensor Δ𝑏𝑖𝑗 as a function of tensorial inputs like the mean strain rate 𝑆𝑖𝑗 and rotation rate Ω𝑖𝑗, multiplied
by scalar coefficient functions of invariants, as explained in section 2.3. Standard symbolic regression
methods, such as traditional genetic expression programming (GEP), lack the structural mechanisms
to ensure that the generated expressions respect the mathematical properties of tensors.

To overcome this, Weatheritt and Sandberg, 2016 introduced a multidimensional extension of GEP
(M-GEP), designed to regress tensor-valued quantities while maintaining valid tensor algebra. The key
innovation of M-GEP is its host-plasmid architecture, inspired by biological systems. In this structure,
the host chromosome encodes the tensorial form of the expression, while plasmids represent auxiliary
scalar expressions that can be inserted into the host at specific positions. The host thus determines
the overall tensor structure, whereas the plasmids encode scalar functions of invariants or other scalar
quantities that modulate this structure. The concept is illustrated in Figure 2.4.

This modular design allows tensor expressions to be constructed hierarchically, preserving dimensional
consistency while maintaining flexibility in form. The host chromosome operates on tensor-valued ter-
minals (such as basis tensors 𝑇(𝑛)𝑖𝑗 or the identity 𝛿𝑖𝑗) and tensor operations (e.g. addition, multiplica-
tion, or contraction), while the plasmids evolve independently to provide scalar coefficients that can be
functions of invariants. When a host expression calls a plasmid symbol 𝑝, the plasmid is inserted and
evaluated to yield a scalar multiplier. This creates a coupled co-evolutionary system in which hosts
and plasmids evolve together, with their fitness jointly determined by the performance of the combined
tensor expression.

The overall objective of theM-GEP framework is to regress an algebraicmapping between the anisotropy
tensor 𝑎𝑖𝑗 and invariants derived from the mean strain rate 𝑆𝑖𝑗 and rotation rate Ω𝑖𝑗.

𝑎𝑖𝑗 = 𝑓(𝑆𝑖𝑗 , Ω𝑖𝑗 , 𝑘, 𝜀), (2.40)

This formulation mirrors the structure of traditional EARSMs, but crucially, both the tensor basis and
the scalar functions are discovered autonomously through evolution, rather than being predefined by
the modeller.

14 2. Background and related work

Figure 2.4: M-GEP framework. The host chromosome represents the tensorial structure, while plasmids encode scalar-valued
expressions. The host can call plasmids at specific positions within its symbolic expression tree, allowing for flexible assembly

of tensor expressions. Figure by Weatheritt and Sandberg, 2016.

The training process proceeds in two stages. In the a priori phase, M-GEP is trained on high-fidelity
data extracted from DNS of turbulent flows, such as the backwards-facing step. The objective function
measures the alignment between the predicted anisotropy tensor and the reference tensor from the
DNS

Fit(𝑎pred𝑖𝑗) =∑
𝑘

𝑎𝑖𝑗,𝑘𝑎pred𝑖𝑗,𝑘

√𝑎𝑚𝑛,𝑘𝑎𝑚𝑛,𝑘 √𝑎
pred
𝑝𝑞,𝑘𝑎

pred
𝑝𝑞,𝑘

, (2.41)

which evaluates how closely the predicted tensor aligns with the true anisotropy tensor at each training
point. The algorithm iteratively evolves both host and plasmid populations using genetic operators
such as mutation, recombination, and transposition, while enforcing consistency between tensorial
and scalar operations. The best-performing host-plasmid combinations are then validated a posteriori
by embedding them directly into a RANS solver and testing their predictive performance on benchmark
flows such as periodic hills and backwards-facing step geometries.

The results demonstrated that the M-GEP framework was able to autonomously discover algebraic
Reynolds-stress models that achieved improved anisotropy alignment and flow-field predictions com-
pared to both the baseline linear eddy-viscosity model and the established non-linear EARSM of com-
parable complexity. Importantly, multiple independent runs of the stochastic optimisation converged
to functionally similar expressions, indicating that the algorithm was discovering consistent physical
relationships rather than arbitrary curve fits. The discovered models showed systematic improvements
in the prediction of separated flows, particularly in regions of recirculation where conventional RANS
models typically fail.

2.5. Reinforcement Learning
Reinforcement learning (RL) (Sutton, Barto, et al., 1998) is a subfield of machine learning concerned
with training agents to make sequential decisions through interaction with an environment. In this
framework, an agent observes the environment, takes actions, and receives feedback in the form of
rewards. The agent’s objective is to learn a mapping from states to actions that maximises the expected
cumulative reward over time.

A formal framework for RL is the Markov Decision Process (MDP) by Bellman, 1966, which describes
the interaction between the agent and the environment in terms of:

• States (𝑠): A representation of the current situation of the environment.

2.5. Reinforcement Learning 15

• Actions (𝑎): The set of all possible decisions or moves the agent can make from a given state.

• Transition probabilities (𝑃(𝑠′|𝑠, 𝑎)): The probability of moving from state 𝑠 to state 𝑠′ when
action 𝑎 is taken.

• Reward (𝑟(𝑠, 𝑎)): The immediate scalar feedback signal received after taking an action at some
state.

• Policy (𝜋): The agent’s decision-making strategy, specifying the probability of taking each action
in each state.

• Discount factor (𝛾): A parameter 0 ≤ 𝛾 ≤ 1 that determines the importance of future rewards.

In an MDP, the agents’ behaviour is defined by a stochastic policy 𝜋(𝑎|𝑠). This policy defines a proba-
bility distribution over possible actions 𝑎 given the current state 𝑠. The agent selects actions according
to this distribution, allowing for exploration of different actions in the environment.

In some settings, the agent may not have access to the full state of the environment but only to partial
observations, in which case the problem ismodelled as a Partially ObservableMarkov Decision Process
(POMDP). This introduces several new variables into the framework:

• Observation (𝑜): The information the agent receives about the environment, which may be in-
complete or noisy.

• Observation probabilities (𝑂(𝑜|𝑠)): The probability of receiving observation 𝑜 given the true
state 𝑠.

• Belief state (𝑏): A probability distribution over possible states, representing the agent’s uncer-
tainty about the true state.

2.5.1. Returns, Values, and Q-values
Returns, values, andQ-values (Bellman, 1966) are fundamental concepts in reinforcement learning that
help quantify the long-term performance of an agent’s policy. The objective of reinforcement learning
is to learn an optimal policy 𝑎 ∼ 𝜋(⋅|𝑠) that maximises the objective function 𝐽𝜋. The objective function
is defined as the expected cumulative reward when starting from an initial state 𝑠0 and following policy
𝜋. This is given by Equation 2.42.

𝐽𝜋 = 𝔼[𝑅(𝜏)|𝑠0, 𝜋] = 𝔼 [
∞

∑
𝑡=0
𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)|𝑠0, 𝜋] (2.42)

Where R(𝜏) is the return of a trajectory 𝜏, defined as the sum of discounted rewards along one episode.
This is the total discounted reward the agent receives from time step 𝑡 = 0 to the end of the episode.
The discount factor 𝛾 determines the importance of future rewards, with values closer to 1 placing more
emphasis on long-term rewards.

A value function 𝑉𝜋 is the expected return when starting from a certain state 𝑠 and following policy 𝜋
thereafter. The value function is defined as:

𝑉𝜋(𝑠) = 𝔼[𝑅(𝜏)|𝑠0 = 𝑠, 𝜋] = 𝔼 [
∞

∑
𝑡=0
𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)|𝑠0 = 𝑠, 𝜋] . (2.43)

Similarly, the action-value function, or Q-function, 𝑄𝜋(𝑠, 𝑎), is defined as the expected return when
starting from state 𝑠, taking some action 𝑎, and thereafter following policy 𝜋. The Q-function is defined
as:

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] = 𝔼 [
∞

∑
𝑡=0
𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] . (2.44)

These functions provide a way to evaluate the quality of states and actions under a given policy, and
they are central to many reinforcement learning algorithms. They allow the agent to make informed
decisions about which actions to take in order to maximise its long-term reward.

16 2. Background and related work

2.5.2. Policy
The policy 𝜋(𝑎|𝑠) defines the agent’s behaviour at a certain state, but there are many ways to represent
and learn the policy. The most basic approach is to use a tabular representation, where the policy is
stored in a table with one entry for each state-action pair. For example, Q-learning (Watkins et al.,
1989) is a popular tabular method that learns the Q-values for each state-action pair and derives the
policy by selecting the action with the highest Q-value in each state. However, tabular methods are
limited to small state and action spaces, as the size of the table grows exponentially with the number
of states and actions.

The advent of deep reinforcement learning (DRL) has further advanced the field by leveraging deep
neural networks as powerful function approximators. In DRL, neural networks (Rosenblatt, 1958,
Rumelhart et al., 1985) are used to approximate the policy, the value function, or both, enabling RL to
scale to high-dimensional and complex state or action spaces. The usage of Recurrent neural networks
(RNN) in the policy can even tackle POMDPs, as the RNN can maintain a belief state by encoding the
history of observations and actions. This allows the agent to make decisions based on its internal state,
which captures information about the environment that is based on past observations.

As DRL is now standard in most modern applications, throughout this work, ”reinforcement learning”
refers specifically to deep reinforcement learning unless otherwise specified.

2.5.3. Policy Gradient Methods
Policy gradient methods are a class of reinforcement learning algorithms that directly optimise the
policy by adjusting its parameters in the direction of the gradient of the expected cumulative reward.
Unlike value-based methods, which learn a value function and derive the policy from it, policy gradient
methods maintain a parameterised policy and update its parameters based on the observed rewards.
It is a stochastic reinforcement learning method that uses a probability distribution 𝜋(𝑎|𝑠) as the policy,
and samples over it at every time step to select an action.

REINFORCE is a fundamental policy gradient algorithm introduced by Williams, 1992. It uses a neural
network to output a probability distribution over actions, with the current state as input. The loss function
for REINFORCE is:

𝐿(𝜃) = −𝔼 [𝑅(𝜏) log𝜋𝜃(𝑎|𝑠)] . (2.45)

Where 𝑅(𝜏) is the return of a trajectory 𝜏. 𝜋𝜃(𝑎|𝑠) is the policy of a neural network parameterised by
𝜃. 𝜋𝜃(𝑎|𝑠) is the probability of taking action 𝑎 in state 𝑠 under the current policy. The loss function
encourages actions that lead to higher returns by weighting the log-probability of actions by their corre-
sponding returns. For example, if some trajectory 𝜏 has a high return 𝑅(𝜏), the optimiser will increase
the log-probability of the actions taken in that trajectory, making them more likely to be selected in the
future. So whether a certain action is good or bad is determined by the return of the trajectory it was
taken in, and the policy learns from experience by adjusting the probabilities of actions based on the
returns they yield.

This approach has very high variance, as a full trajectory forms a tree with 𝑎𝐿 combinations, where a is
the number of possible actions, and L is the length of each trajectory. This means that the return will also
have high variance as it is the sum of rewards over the trajectory. This can lead to slow convergence
and instability in training, especially in environments with sparse or delayed rewards. So a baseline is
usually introduced to reduce this variance. The new loss function is given by:

𝐿(𝜃) = −𝔼 [(𝑅(𝜏) − 𝑏) log𝜋𝜃(𝑎|𝑠)] (2.46)

The baseline 𝑏 can be a constant, the average return, or a learned function. Using a baseline does
not introduce bias but can significantly reduce the variance of the gradient estimates, leading to more
stable and efficient training.

2.5. Reinforcement Learning 17

2.5.4. Actor-Critic Methods
Actor-critic methods build directly upon the basic REINFORCE algorithm. In REINFORCE, the policy
parameters are updated using the full return from each episode as the learning signal. A user-defined
baseline needs to be introduced to reduce the variance of the gradient estimates, which can be difficult
to choose appropriately. Actor-critic methods by Mnih et al., 2016, Konda and Tsitsiklis, 1999, Sutton
et al., 1999 address this by introducing a critic, which is a learned value function that estimates the
expected return from each state.

In actor-critic methods, two neural networks are used: an actor network and a critic network. The actor
is responsible for selecting actions according to the current policy, while the critic provides an estimate
of the expected cumulative reward (the value) for each state. This leverages the knowledge of value
functions to provide an appropriate baseline for the policy gradient algorithm. The simplest version of
an actor-critic method is the temporal difference actor-critic (Sutton, 1988), where the critic estimates
the value function 𝑉𝜙(𝑠) using a neural network with parameters 𝜙. The loss functions for each are
shown below:

𝐿(𝜃) = −𝔼𝜋 [
𝑇−1

∑
𝑡=0
(𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉𝜙(𝑠𝑡+1) − 𝑉𝜙(𝑠𝑡)) log𝜋𝜃(𝑎𝑡|𝑠𝑡)]

𝐿(𝜙) = MSE(𝑟(𝑠, 𝑎) + 𝛾𝑉𝜙(𝑠′) − 𝑉𝜙(𝑠)).

(2.47)

The term 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉𝜙(𝑠𝑡+1) acts as an estimate of the Q-value, where it is the expected return for
taking the chosen action 𝑎𝑡 in state 𝑠𝑡 plus the value of being in the next state 𝑠𝑡+1. The term 𝑉𝜙(𝑠𝑡) is
the baseline, which is the value of being in state 𝑠𝑡. The difference between these two terms is called
the temporal difference (TD) error, which measures how much better or worse taking action 𝑎𝑡 in state
𝑠𝑡 is compared to the average action in the current state 𝑠𝑡.

This turns the trajectory-based policy gradient into a transition-based one. In actor-critic, every tran-
sition now has its own reward signal, indicating the quality of each action in each state. Thus, the
policy learns by each transition, instead of weighting the entire trajectory with the same return. This
significantly reduces the variance of the gradient estimates, which improves sample efficiency, and
thus training time. A more general form for an actor-critic loss can be written by generalising the TD
error into an advantage function 𝐴(𝑠, 𝑎), which measures the advantage of taking a certain action, when
being in the current state. This results in:

𝐿(𝜃) = −𝔼 [𝐴(𝑠, 𝑎) log𝜋𝜃(𝑎|𝑠)]
𝐿(𝜙) = MSE(𝐴(𝑠, 𝑎)). (2.48)

The advantage function can be defined in several ways, but one approach is 𝑛-step bootstrapping,
which considers the sum of rewards over several steps plus the value of future states. The 𝑛-step
advantage function does not only consider the value of the next step like TD learning, but looks further
ahead. The 𝑛-step advantage function is shown here:

𝐴(𝑠, 𝑎) =
𝑛−1

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 + 𝛾𝑛𝑉𝜙(𝑠𝑡+𝑛) (2.49)

Another form of the advantage function is the Generalised Advantage Estimation (GAE) introduced by
Schulman, Moritz, et al., 2015. GAE is a method for estimating the advantage function that balances
bias and variance through a parameter 𝜆. The GAE advantage function is shown below:

𝐴(𝑠, 𝑎) =
∞

∑
𝑡=0
(𝛾𝜆)𝑡𝛿𝑡

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1) − 𝑉𝜙(𝑠𝑡)
(2.50)

18 2. Background and related work

Here, 𝛿𝑡 is the TD error at time step 𝑡, and 𝜆 is a parameter that controls the trade-off between bias
and variance. When 𝜆 = 0, GAE reduces to the one-step TD error, which has low variance but can be
biased. When 𝜆 = 1, GAE becomes the Monte Carlo estimate of the advantage, which is unbiased but
has high variance. By tuning 𝜆, GAE can provide a more stable and efficient estimate of the advantage
function, leading to improved learning performance in actor-critic methods.

2.5.5. Proximal Policy Optimization (PPO)
While actor-critic methods improve the sampling efficiency of policy gradient algorithms, they still lag
behind other reinforcement learning algorithms. This is mainly due to the on-policy nature of policy
gradient methods. Policy gradients are probabilistic and depend on Monte Carlo estimates to provide
a good estimate of the gradient. This means that the policy can only be updated using data collected
from the current policy, and not from previous policies. So every sample can only be used for one
update step of the neural network, and thus, no epochs can be done, since the probability distribution
shifts when the neural network changes.

The Trust Region Policy optimisation (TRPO) by Schulman, Levine, et al., 2015 circumvents this issue.
It changes the original policy gradient algorithm into one where there is a shifting policy. The original
actor loss can be rewritten as:

∇𝐿(𝜃) = −𝔼𝜋 [
𝑇−1

∑
𝑡=0

𝐴(𝑠, 𝑎) log𝜋𝜃(𝑎|𝑠)]

= −
𝑇−1

∑
𝑡=0

∫∫𝐴(𝑠, 𝑎)𝜋𝜃(𝑎𝑡|𝑠𝑡)
∇𝜃𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝑑𝑎𝑡𝑑𝑠𝑡 .

(2.51)

If there are samples from a different distribution 𝜇(𝑎|𝑠), the loss can be rewritten as:

∇𝐿(𝜃) ≈ −
𝑇−1

∑
𝑡=0

∫∫𝐴(𝑠, 𝑎)𝜇(𝑎𝑡|𝑠𝑡)
∇𝜃𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜇(𝑎𝑡|𝑠𝑡)

𝑑𝑎𝑡𝑑𝑠𝑡

≈ −𝔼𝜇 [
𝑇−1

∑
𝑡=0

𝐴(𝑠, 𝑎)∇𝜃𝜋𝜃(𝑎𝑡|𝑠𝑡)𝜇(𝑎𝑡|𝑠𝑡)
] .

(2.52)

This approximations holds as long as the two distributions 𝜋𝜃(𝑎|𝑠) and 𝜇(𝑎|𝑠) are close. In TRPO,
this is measured by the Kullback-Leibler (KL) divergence, which measures the difference between
two probability distributions. TRPO is formulated as a constrained optimisation problem, where the
objective is to minimise the actor loss while keeping the KL divergence between the two policies below
a certain threshold. A general form of the TRPO optimisation problem is shown below:

min 𝐿(𝜃) 𝑠.𝑡. 𝐷𝐾𝐿(𝜋𝜃(𝑎|𝑠)||𝜇(𝑎|𝑠)) ≤ 𝛿 (2.53)

Where 𝛿 is a hyperparameter that controls the maximum allowed divergence between the two policies.
This ensures that the new policy 𝜋𝜃(𝑎|𝑠) does not deviate too much from the old policy 𝜇(𝑎|𝑠), which
helps to stabilise training and prevent large, destabilising updates to the policy.

However, TRPO requires solving a complex constrained optimisation problem, making it difficult to
implement in practice. The calculation of the KL divergence is also costly and inefficient. Thus, the
Proximal Policy Optimisation (PPO) Schulman et al., 2017 was introduced as a simpler alternative to
TRPO.

PPO achieves a similar effect using a simple clipped objective function for the actor, which prevents
large updates to the policy that could lead to instability. The clipped objective function is shown in
Equation 2.54. The main idea is to limit the ratio of the new policy 𝜋𝜃,𝑖(𝑎|𝑠) to the old policy 𝜇(𝑎|𝑠) to

2.6. Deep Symbolic Regression (DSR) 19

be within a certain range defined by the hyperparameter 𝛾. This prevents large updates to the policy
that could lead to instability.

𝐿(𝜃) = 𝔼 [
𝑇−1

∑
𝑡=0

min(𝜋𝜃(𝑎𝑡|𝑠𝑡)𝜇(𝑎𝑡|𝑠𝑡)
𝐴𝑡 , clip(

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜇(𝑎𝑡|𝑠𝑡)

, 1 − 𝛾, 1 + 𝛾)𝐴𝑡)] (2.54)

PPO does not change the definition of the advantage function, so any of the previously mentioned
methods can be used. In practice, PPO has become one of the most popular reinforcement learn-
ing algorithms due to its robustness, simplicity, and strong empirical performance across a range of
complex control tasks.

2.6. Deep Symbolic Regression (DSR)
The inherently discrete structure of symbolic expressions presents a challenge for the direct applica-
tion of conventional deep learning techniques. Deep Symbolic Regression (DSR), as introduced by
Petersen et al., 2019, addresses this by combining symbolic regression with deep learning, specifically
formulating symbolic regression as a reinforcement learning problem. The objective is to automatically
discover mathematical expressions that accurately fit a given dataset, while retaining interpretability.
DSR turns the symbolic regression into a POMDP, and it is defined by the following components:

• State: The hidden state of the RNN, which encodes the history of the generated sequence and
serves as the POMDP state.

• Action: The selection of the next token from the RNN’s output distribution.

• Observation: The context at each step, typically including information about the parent and
sibling tokens and the number of dangling nodes in the tree.

• Reward: The quality of the generated expression, quantified by its performance on the dataset.

With this POMDP framework, reinforcement learning methods can be applied to symbolic regression.
This allows the use of deep learning techniques for sequence modelling, namely RNNs, to be applied to
the discrete and structured nature of symbolic expressions. The RNN is trained to generate expressions
that maximise the expected reward, effectively learning to produce high-quality mathematical models
that fit the data well.

2.6.1. DSR framework
In DSR, policy gradient methods are used as the main training method, namely the REINFORCE algo-
rithm. But DSR introduces a novel variant of the REINFORCE algorithm, called the risk-seeking policy
gradient. This variant focuses the learning signal on the top-performing samples in each batch, rather
than optimising for the expected (average) reward. The general algorithm for DSR is:

1. Generate a batch of 𝐵 expressions using the RNN.

2. Evaluate the reward for each expression based on its performance on the dataset.

3. Select the top 𝜖 fraction of expressions with the highest rewards.

4. Update the RNN parameters using the risk-seeking policy gradient, focusing on the selected top-
performing expressions.

5. Repeat steps 1-4 until the exact expression is found, or the maximum iterations are met.

2.6.2. Expression generation
There are two main types of tokens in the expression: operators and terminals. Operators are functions
that take one or more inputs (operands) and produce an output. Examples of operators include addition,
multiplication, sine, and logarithm. Terminals are the basic building blocks of the expression, which
have no inputs, like variables or constants. The RNN generates a sequence of these tokens to form a
complete mathematical expression.

20 2. Background and related work

To enable reinforcement learning, symbolic expressions, naturally represented as trees, must be con-
verted into a linear format suitable for sequential modelling. DSR accomplishes this by using a pre-order
traversal of the expression tree. This linearization allows an RNN to generate expressions token by
token, treating expression generation as a sequence modelling problem. A pre-order traversal visits
the root node first, followed by recursively visiting the left and right subtrees. This method enables
the RNN to generate expressions in a top-down manner, starting from the highest-level operator and
progressively adding operands. The pre-order traversal can be illustrated with the following example
expression:

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 ∶ −, ∗, 𝑥, 𝑙𝑜𝑔, 𝑦, ∗, 2, 𝑠𝑖𝑛, 𝑦 ⇒ (𝑥 ⋅ log(𝑦)) − 2 ⋅ sin(𝑦) (2.55)

At each iteration of the full DSR process, the RNN generates a batch of size 𝐵 expressions, each of
maximum length 𝐿. The generation process is illustrated in Algorithm 1, and a schematic of the DSR
framework is shown in Figure 2.5.

Algorithm 1 Expression Sampling Procedure
1: for 𝑏 = 1 to 𝐵 do Sample 𝐵 expressions
2: 𝑠 ← 𝑠0
3: for 𝑡 = 1 to 𝐿 do
4: p ← RNN(𝑜𝑡 , 𝑠𝑡) Token probability distribution
5: p ← (p+ 𝑝𝑝𝑟𝑖𝑜𝑟𝑠) Apply priors
6: 𝑎𝑡 ∼ Softmax(p) Sample next token
7: (𝑠𝑡+1, 𝑜𝑡+1) ← EnvStep(𝑎𝑡 , 𝑠𝑡 , 𝑜𝑡) Next state & observation
8: end for
9: if dangling nodes exist then
10: Complete with random terminal tokens
11: end if
12: end for

Figure 2.5: DSR framework. The RNN generates tokens of the symbolic expression in a pre-order traversal manner, and the
generated expression is evaluated on the dataset to obtain a reward. Image by Petersen et al., 2019

Observations
The observations inform the policy in the context of the current token, and they also provide the RNN
with information about the expression. The observation space consists of the following components:

• Previous action: The token selected in the previous step.

2.6. Deep Symbolic Regression (DSR) 21

• Parent token: The token of the parent node in the expression tree.

• Sibling token: The token of the sibling that this token will be.

• Dangling nodes: The number of dangling nodes in the expression tree.

The previous action is straightforward, as it is just the previously selected action. The parent is the
token type of the parent node for the current token, and it has to be an operator, as only operators
can have children. The sibling is the token type of the sibling node for the current token, if the parent
node has an arity larger than 1. For example, if the parent operator is a division, then the sibling is the
numerator (the left or first child) of the division, and the current token would be the denominator. Thus,
it is helpful to know what the current node would be dividing. Finally, the number of dangling nodes is
the number of nodes in the expression tree that still need to be filled by terminal tokens.

The previous action, parent token, and sibling tokens are a discrete selection, and thus have to be
represented as a vector so that the weights of the neural network do not become too large. This can
be done with a learned encoding or a one-hot vector. The number of dangling nodes is a continuous
value, and thus can be represented as a scalar. The full observation vector is then the concatenation
of these components.

Priors
Before sampling the next token, priors are applied to the output distribution of the policy. These priors
enforce syntactic constraints on the generated expressions, ensuring that they are valid and meaning-
ful. When certain conditions are met when sampling expressions, the prior can prevent certain tokens
from being the next token to be sampled. This is done by subtracting the token that should not be
sampled by infinity. This effectively sets the probability of that token being sampled to zero after the
softmax is applied. The priors used in DSR are:

• Length prior: This prior constrains the length of the expression. A minimum and maximum
length can be set, and if the current length is below the minimum, only operators can be sampled.
And if the current length is a certain amount from the maximum, and there are equal amounts of
dangling nodes left, the prior will enforce that only terminal nodes can be sampled, thus controlling
the length of expressions.

• No inputs constraint: This prior prevents the expression from having no inputs. An expression
that is just a function of only constants would be meaningless. In the end, it would just evaluate
to a single constant. For example, the expression 3.14 + 𝑠𝑖𝑛(1.63) would just evaluate to 4.138,
and thus would be pointless to have as a symbolic expression. This prior ensures that at least
one input variable is present in the expression.

• Inverse unary constraint: This prior prevents the expression from having inverse unary opera-
tors, such as 𝑙𝑜𝑔(𝑒𝑥𝑝(𝑥)) or 𝑠𝑞𝑟𝑡(𝑥2). These expressions are redundant, as the unary operators
cancel each other out. This prior ensures that the expression does not contain such redundant
structures.

• Trigonometric constraint: This prior prevents trigonometric functions from being a descendant
of another trigonometric function. Although these are still valid functions, nested trigonometric
functions like 𝑠𝑖𝑛(𝑥1 + 𝑐𝑜𝑠(𝑥2)) basically do not exist in any scientific domain.

Reward function
This process results in a batch of 𝐵 candidate expressions, each represented as a sequence of tokens.
These expressions are then evaluated to obtain their predicted values on the dataset 𝑦̂(𝑥1, ..., 𝑥𝐾). If
constants are part of the expression, they are optimised to improve the fit. Then, the reward is evaluated
using the reward function 𝑅(𝑦̂, 𝑦), which quantifies how well the generated expression fits the data. The
reward function can be defined in many ways, but commonly it is defined using the inversed normalised
mean squared error, defined as:

𝑅(𝑦̂, 𝑦) = 1
1 + (𝑦̂ − 𝑦)2/𝜎(𝑦) . (2.56)

22 2. Background and related work

Where 𝜎(𝑦) is the standard deviation of the target values 𝑦. This reward function provides a bounded
reward as 𝑅 ∈ [0, 1], where a perfect fit yields a reward of 1, and poor fits approach 0. Normalisation
using the standard deviation also helps to stabilise training across datasets with different scales.

2.6.3. Risk-seeking policy gradient
Petersen et al., 2019 proposed a novel variant of the REINFORCE algorithm, referred to as the risk-
seeking policy gradient. Unlike traditional policy gradient methods, which optimise for the expected
(average) reward, the risk-seeking variant focuses the learning signal on the top-performing samples
in each batch.

The risk-seeking objective is inspired by CVar, a risk-averse reinforcement learning algorithm proposed
by Tamar et al., 2015. CVaR formalises robustness by optimising performance in the worst 𝜖-fraction
of outcomes rather than the mean. Let 𝑅𝜖(𝜃) denote the reward of the 𝜖th-quantile. The risk-averse
objective function of CVaR is:

𝐽CVaR(𝜃) = 𝔼𝜏∼𝜋𝜃[𝑅(𝜏)|𝑅(𝜏)≤𝑅𝜖]. (2.57)

Equation 2.57 explicitly targets “guaranteed” performance under the worst trajectories. Basic policy
gradient training spreads effort across the entire distribution, aiming to maximise the average return.
In contrast, CVaR concentrates updates on under-performing samples to lift the worst-case behaviour.
It does so by only updating with samples that fall below the 𝜖th-quantile, so the policy shifts its aim
toward improving these worst-case outcomes.

The risk-seeking objective does the opposite of CVaR. It focuses on the best 𝜖-fraction of outcomes
rather than the worst 𝜖-fraction. This changes the ≤ in Equation 2.57 to ≥, resulting in a risk-seeking
objective function. Instead of using the full batch of 𝐵 expressions to compute the policy gradient, only
the top 𝜖 percentile of expressions are used to compute the gradient update. This causes the policy
to only see the top epsilon expressions, and thus biases the policy toward only the best-performing
expressions. This bias toward high-reward expressions is particularly suited to symbolic regression,
where the primary aim is to find the best expression rather than to improve the population average.
Formally, the risk-seeking policy gradient is defined as:

∇𝐽(𝜃) = 1
𝜖𝑁

𝑁

∑
𝑖=1
[𝑅(𝜏(𝑖)) − 𝑅𝜖] ⋅ 1|𝑅(𝜏(𝑖))≥𝑅𝜖∇𝜃 log𝜋𝜃(𝜏) (2.58)

Here, 𝑅𝜖 is the (1−𝜖)th-quantile of the rewards in the sampled batch. This introduces a baseline to the
standard REINFORCE loss function, which helps to reduce the variance of the gradient estimates. This
introduces a moving baseline for the algorithm. The returns are weighted based on how much better
it performs compared to the 𝑅𝜖 baseline. This mechanism encourages the expressions generated
to always do better than the 𝜖-th percentile, constantly pushing the policy to improve. The indicator
function 1|𝑅(𝜏(𝑖)) ≥ 𝑅𝜖 ensures that only the top 𝜖 fraction of samples contribute to the gradient update.

2.7. DSR extensions
Many works have built upon DSR, trying to improve its performance in various ways. Some works
have focused on improving the exploration of the search space, while others have integrated genetic
programming into the process. Some works have even used DSR for turbulence modelling.

2.7.1. Improving exploration

While DSR leverages a risk-seeking policy gradient to bias learning toward high-reward expressions,
its exploration dynamics can still be improved. Currently, it only uses an entropy term, which helps
to maintain diversity in the policy. However, Landajuela et al., 2021 identified two key challenges that
hamper effective exploration in DSR: (i) early commitment, where the policy collapses entropy on the
first few tokens and repeatedly chooses the same initial branches; and (ii) initialization bias, where
naive, uniform token priors skew the a priori length distribution toward overly long expressions.

2.7. DSR extensions 23

Landajuela et al., 2021 proposes two complementary techniques to address these issues within policy-
gradient search for symbolic optimisation (including SR): a hierarchical entropy regularizer and a soft
length prior (SLP). Together, these methods improve recovery, sample efficiency, and solution com-
pactness on the Nguyen benchmarks (Uy et al., 2011) when built on top of the DSR framework.

Hierarchical entropy regularizer.
Standard entropy bonuses sum the per-step entropies evenly,

𝑅std𝐻 (𝜏) =
|𝜏|

∑
𝑖=1
𝐻[𝜋(⋅ ∣ 𝜏1∶(𝑖−1); 𝜃)] (2.59)

But in autoregressive generation, this concentrates exploration pressure on later tokens, allowing the
policy to freeze early decisions (early commitment). To counteract this, the hierarchical entropy regu-
larizer exponentially emphasises earlier actions:

𝑅hier𝐻 (𝜏) =
|𝜏|

∑
𝑖=1
𝛾 𝑖−1𝐻[𝜋(⋅ ∣ 𝜏1∶(𝑖−1); 𝜃)] , 0 < 𝛾 < 1. (2.60)

Intuitively, Equation 2.60 weighs initial tokens with more entropy, causing the policy to have more en-
tropy in initial tokens, encouraging diversity. This helps to prevent early commitment, as the policy is
encouraged to explore different initial branches of the expression tree. The hyperparameter 𝛾 controls
the rate of decay, with smaller values placing more emphasis on the earliest tokens. This hierarchical
approach ensures that exploration is more evenly distributed across the entire sequence, leading to a
more diverse set of generated expressions.

Soft length prior (SLP).
Even with a token-equalising logit prior that balances unary/binary/terminal categories, the sampling
process places excessive mass on long sequences, and the expected length diverges. Rather than
relying solely on hard min/max length constraints, used in DSR to ensure syntactic completeness Pe-
tersen et al., 2019, SLP injects a position-dependent logit bias that softly favours a target length band.
Let 𝑖 denote the current position in the sequence, the added logits are:

𝜓SLP𝑖 = (− (𝑖−𝜆)2
2𝜎2 1 𝑖>𝜆)⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

discourage too-long

1binary ‖ 0unary ‖ (− (𝑖−𝜆)2
2𝜎2 1 𝑖<𝜆)⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

discourage too-short

1terminal, (2.61)

With hyperparameters 𝜆 (target length) and 𝜎 (width). In the probability space, Equation 2.61 behaves
like a multiplicative Gaussian window: before the target length, it tempers terminal choices; after the
target, it tempers binary expansions. The result is a smoother, learnable distribution over lengths that
reduces reliance on hard truncation and balances the exploration of short and long expressions.

2.7.2. Neural-guided genetic programming
One limitation of DSR is that its exploration is restricted by the distribution learned by the RNN policy.
Once the policy starts to focus its probability mass around a few promising regions, it becomes less
likely to explore diverse expressions that might lead to higher rewards. To address this, Mundhenk
et al., 2021 proposed combining the strengths of DSR and genetic programming (GP) through a hybrid
approach called neural-guided GP population seeding.

In this method, the RNN policy fromDSR is used to initialise the population of a GP algorithm. Instead of
starting from a completely random set of expressions, the initial GP population is seeded with samples
generated by the RNN, where the top expressions are used to train the RNN. This hybrid structure
allows both methods to complement each other. The RNN provides informed initial populations based
on its learned distribution, guiding GP toward promising regions of the search space. GP alone, on the
other hand, can make large, non-local modifications to expressions through its stochastic operators,
effectively exploring areas that the RNN is unlikely to reach on its own. The evolved GP individuals
also introduce new high-reward samples that help the RNN avoid premature convergence and improve
its exploration.

24 2. Background and related work

Figure 2.6: Neural-guided genetic programming population seeding framework. The RNN generates an initial population for
GP, which evolves the expressions. The best GP individuals are then used to train the RNN. Image by Mundhenk et al., 2021

Figure 2.6 illustrates the overall framework of neural-guided GP. This weak coupling between the RNN
and GP ensures that the system remains stable and avoids off-policy issues, while still allowing knowl-
edge transfer between the two components. The RNN continuously improves its sampling distribution
based on the best GP individuals, while GP benefits from increasingly better initial populations as
training progresses. This interaction improves exploration efficiency and recovery rates on standard
symbolic regression benchmarks compared to using DSR or GP alone.

2.7.3. Unified Deep Symbolic Regression (uDSR)
Landajuela et al., 2022 introduced the unified Deep Symbolic Regression (uDSR) framework, which
combines several complementary symbolic regression strategies into a single modular system. The
system builds upon DSR as its base and integrates additional modules that perform recursive sim-
plification, large-scale pre-training, genetic optimisation, and linear subcomponent fitting. The uDSR
framework consists of five main components:

1. Recursive problem simplification (AIF): Based on AI Feynman Udrescu et al., 2020, this mod-
ule decomposes the main symbolic regression problem into smaller, lower-dimensional sub-
problems by detecting separable relationships in the dataset.

2. Neural-guided search (DSR): Serves as the core of the framework and provides a neural con-
troller that generates symbolic expressions through policy gradient reinforcement learning.

3. Large-scale pre-training (LSPT): Inspired by the NeSymReS framework by Biggio et al., 2021,
this component pre-trains the RNN controller using a transformer-based encoder-decoder model
on a large dataset of synthetic symbolic regression problems. The pre-training phase enables
the network to learn general relationships between input-output data pairs (𝑋, 𝑦) and symbolic
expressions, improving generalisation and convergence speed when fine-tuned with reinforce-
ment learning on new tasks.

4. Genetic programming (GP-meld): Incorporated as an inner-loop optimisationmodule that evolves
the expressions sampled by the RNN. GP applies crossover and mutation to these initial popula-
tions to produce new candidate expressions, in which the top-performing expressions are used
to train the RNN.

5. Linear models (LM): Introduces a new LINEAR token that represents a full linear model com-
posed of a set of basis functions 𝜙(𝑥) and coefficients 𝛽. The coefficients are solved using sparse
linear regression, such as LASSO, during expression evaluation. This allows uDSR to efficiently

2.8. Multi-agent reinforcement learning 25

represent and optimise linear subcomponents within nonlinear expressions, improving accuracy
without sacrificing interpretability.

All components in uDSR are connected within a single modular framework that operates in both pre-
training and fine-tuning stages. The process begins with AIF decomposing the original problem into
simpler sub-problems. For each sub-problem, the pre-trained controller from LSPT is fine-tuned using
the risk-seeking policy gradient from DSR, where DSR acts as the expression generator for the trans-
former. The RNN-generated expressions are then evolved through GP to enhance exploration and
diversity, while the LINEAR token efficiently optimises any embedded linear subcomponents.

2.7.4. Deep Symbolic Regression for EARSM
Some works have used DSR to develop explicit algebraic Reynolds-stress models (EARSM). Hemmes,
2022 was the first to use DSR to develop explicit algebraic Reynolds-stress models. The tensor basis
DSR (TBDSR) method extends the DSR framework to tensor-valued regression tasks. In contrast
to previous methods such as SpaRTA, which construct models as sparse linear combinations of a
predefined library of functions, the TBDSR approach is fundamentally different. DSR enables the direct
discovery of true analytical expressions, closed-form mathematical formulas, whose structure is not
constrained by any fixed function library or basis (as in GEP as well). This allows for potentially more
physically meaningful functional forms to emerge directly from the data.

The author used a modified version of DSR in which the policy outputs an N times larger action space,
where N is the number of basis tensors. This is equivalent to having N separate policies, one for each
basis tensor. Thus, each policy can be trained independently to discover the best function for that basis
tensor.

The TBDSR method was also applied to the k-corrective RANS framework. DSR found explicit analyti-
cal expressions–true closed-form mathematical formulas–whose structure and composition are not re-
stricted by a predefined basis for both the Reynolds-stress tensor correction, and the additional source
term for TKE production 𝑅.

Tang et al., 2023 also usedDSR to develop an explicit algebraic Reynolds-stressmodel for the Reynolds-
stress tensor. The author used a different approach than Hemmes, 2022, where the author used a sin-
gle policy that output a sequence that was N times longer. This sequence was then split into N parts,
where each part corresponds to a basis tensor. The author only applied this to the Reynolds-stress
tensor, and also for the k-𝜀 turbulence model instead of the k-ω SST.

2.8. Multi-agent reinforcement learning
Multi-agent reinforcement learning (MARL) is a subfield of reinforcement learning that focuses on sce-
narios where multiple agents interact in a shared environment. Multiple agents with their own policies,
and thus able to make their own decisions, interact within the same environment, each aiming to max-
imise its own cumulative reward. The agents may cooperate, compete, or act independently, leading
to complex dynamics that differ significantly from single-agent reinforcement learning.

A key difficulty in MARL is that the environment becomes non-stationary from the perspective of any
individual agent. In single-agent RL, the environment’s transition dynamics and reward structure are
fixed. In MARL, each agent is simultaneously learning and updating its own policy. As a result, the
environment observed by one agent is constantly changing as other agents adapt their behaviours.
This makes the learning problem more challenging, as strategies that are effective at one point may
become suboptimal as other agents change their policies and adapt to each other’s strategies. The
unpredictability of other agents’ decisions adds an additional layer of complexity to the learning process.

Many methods have been proposed for MARL. MADDPG by Lowe et al., 2017 is one of the most
popular algorithms for continuous action spaces, which extends the DDPG algorithm to multi-agent
settings. COMA by Foerster et al., 2018 is a policy gradient method that uses a counterfactual baseline
to address the credit assignment problem in cooperative multi-agent settings. QMIX by Rashid et al.,
2020 is a value-based method that decomposes the joint action-value function into individual agent
value functions using a mixing network, allowing for efficient learning in cooperative tasks.

26 2. Background and related work

2.8.1. Multi Agent Proximal Policy Optimisation (MAPPO)
PPO is one of the most widely used reinforcement learning algorithms in single-agent domains, but it
has seen limited adoption in MARL. This is largely due to the perception that PPO, being an on-policy
method, is significantly less sample-efficient than off-policy algorithms such as MADDPG or QMix.
However, recent studies Yu et al., 2022 have shown that when configured appropriately, PPO can
achieve state-of-the-art results in cooperative multi-agent environments while maintaining competitive
sample efficiency. The simplicity and robustness of PPO make it a strong baseline for multi-agent
tasks, provided certain implementation and hyperparameter practices are followed. They introduced
Multi-Agent PPO (MAPPO), a straightforward extension of PPO to multi-agent settings that leverages
centralised training with decentralised execution (CTDE).

In MAPPO, agents with identical observation and action spaces typically share the same policy network,
and each agent is differentiated by its agent ID as an input. This is known as parameter sharing, which
acts as a form of information sharing between agents. During execution, each agent acts independently
using only its local observation. Whereas during training, the shared critic leverages the global state to
compute accurate value estimates and advantages.

During training, the objective function is the standard clipped PPO objective, which allows multiple
policy updates with the same batch. The loss function for each agent’s policy is defined the same as
in single-agent PPO, just applied individually to each agent. The actor loss for agent 𝑖 is:

𝐿𝑖(𝜃) = 𝔼𝜋 [
𝑁−1

∑
𝑡=0

min(𝜋𝜃(𝑎𝑡|𝑠𝑡,𝑖)𝜇𝑖(𝑎𝑡|𝑠𝑡,𝑖)
𝐴𝑡 , clip(

𝜋𝜃,𝑖(𝑎𝑡|𝑠𝑡)
𝜇𝑖(𝑎𝑡|𝑠𝑡)

, 1 − 𝛾, 1 + 𝛾)𝐴𝑡)] . (2.62)

To compute the policy gradient, the advantage 𝐴̂𝑡 is estimated using GAE, as described in Equa-
tion 2.50. Where multi-agent PPO differs from single-agent PPO is in the critic network used to estimate
the value function. In the multi-agent case, all agents share a centralised critic 𝑉𝜙(𝑠) parameterised
by 𝜙. This critic takes as input the full state 𝑠 of the environment, rather than the local observation 𝑜𝑖
of each agent. This means that the value function used can access additional centralised information
beyond the agent’s local observation, which is used only during training. This approach follows the cen-
tralised training with decentralised execution (CTDE) paradigm, where agents have their own policy for
execution, but the critic has access to global information during training. The centralised critic acts as
a form of communication between agents during training, allowing for more accurate value estimates
and better coordination among agents.

The effectiveness of MAPPO arises from the combination of PPO’s stability with the richer training
signal provided by the centralised critic. Value normalisation, limited sample reuse, and appropriately
sized training batches further mitigate instability from non-stationarity. Empirical results across multiple
benchmarks, including the Multi-Agent Particle Environment (Lowe et al., 2017), the StarCraft Multi-
Agent Challenge(Samvelyan et al., 2019), Google Research Football (Kurach et al., 2020), and Hanabi
(Bard et al., 2020), demonstrate that MAPPO achieves performance comparable or superior to leading
off-policy methods. These results highlight that PPO’s limitations in multi-agent learning are largely
practical rather than fundamental, and that with suitable configuration, MAPPO provides a simple yet
powerful framework for cooperative multi-agent reinforcement learning.

3
Multi-agent DSR and experimental setup
DSR is a powerful framework for symbolic regression, but its standard formulation is limited to single-
equation discovery. This chapter outlines the methodology developed to extend DSR into a multi-
agent reinforcement learning framework, and the multi-agent techniques integrated to improve learning
stability and efficiency. It also details the experimental setup used to evaluate the proposed MADSR
framework in the context of turbulence modelling.

The chapter first defines the limitations of standard DSR in the context of EARSM, motivating the need
for a multi-agent formulation. It then presents the proposed MADSR framework, detailing the formu-
lation and describing the four algorithms developed, ranging from the baseline multi-agent DSR to the
novel actor-critic and PPO-based variants. It then details the neural network architectures, expres-
sion generation process, reward formulation, and training procedures. Finally, the chapter presents
the experimental setup used for turbulence modelling, including the dataset, input features, and im-
plementation of the EARSM and k-corrective RANS frameworks, concluding with an overview of the
general MADSR workflow.

3.1. Limitations of DSR in EARSM

Deep Symbolic Regression (DSR) provides a reinforcement learning-based framework for discovering
interpretable mathematical expressions from data. However, in its standard form, DSR is designed
for single-output regression problems, learning one equation at a time. In contrast, explicit algebraic
Reynolds-stress models (EARSM) require discovering multiple scalar functions simultaneously to con-
struct a tensorial mapping. This fundamental mismatch between DSR’s single-equation formulation
and EARSM’s multi-equation structure introduces key limitations when applying DSR to turbulence
modelling.

Previous works such as Hemmes, 2022 and Tang et al., 2023 have applied DSR to the EARSM prob-
lem, demonstrating that DSR can discover physically interpretable turbulence models. However, both
studies encountered methodological constraints inherent to the original DSR design. Two key limita-
tions are identified: (i) the independent treatment of each scalar coefficient function, and (ii) the use of
REINFORCE as the learning algorithm.

3.1.1. Independent learning
In the EARSM formulation, the Reynolds stress anisotropy correction Δ𝑏𝑖𝑗 is represented as a linear
combination of basis tensors 𝑇(𝑛)𝑖𝑗 , weighted by scalar coefficient functions 𝛼(𝑛)(𝐼1, … , 𝐼5):

Δ𝑏𝑖𝑗 =
10

∑
𝑛=1

𝛼(𝑛)(𝐼1, … , 𝐼5)𝑇(𝑛)𝑖𝑗 . (3.1)

27

28 3. Multi-agent DSR and experimental setup

Each 𝛼(𝑛) function contributes to the same target quantity Δ𝑏𝑖𝑗, meaning that the equations are in-
trinsically coupled and must be learned jointly. However, existing DSR-based EARSM studies treat
each function as an independent regression task. This ignores interdependencies between coefficient
functions, leading to potentially inconsistent or redundant expressions across different basis terms.

Because the contribution of each function affects the others, independent learning may produce models
that fit well in isolation but perform poorly when combined. A cooperative learning framework, where
multiple expressions are learned simultaneously under a shared objective, would allow information ex-
change between functions, promoting consistency and coordination. Such an approach could capture
the coupled nature of the EARSM equations more faithfully.

3.1.2. Use of REINFORCE
DSR is trained using the REINFORCE algorithm, a Monte Carlo policy gradient method that updates
the policy based on full trajectory rewards. Although simple and unbiased, REINFORCE is known
to suffer from high variance in its gradient estimates because it assigns a single reward to an entire
trajectory. This slows convergence and can lead to unstable learning, particularly when reward signals
are sparse, as is the case in symbolic regression, where rewards are only computed after a complete
expression is generated.

To mitigate this, the original DSR formulation introduces a risk-seeking baseline, which focuses the
gradient update on the top-performing samples within each batch. This stabilises learning, but does
not address the variance problem directly.

This becomes particularly relevant in a multi-agent setting, where multiple agents share the same en-
vironment, thus making the search space much larger. A centralised critic that learns the joint value of
all agents’ states and actions could provide better credit assignment and coordination, allowing agents
to exploit the shared structure of the problem. Therefore, extending DSR with actor-critic methods
represents a natural next step toward more stable and cooperative symbolic regression.

3.2. Multi-Agent Deep Symbolic Regression for turbulence mod-
elling

The motivation of this work is to overcome the limitations of standard DSR in multi-equation modelling
by formulating the problem as a cooperative multi-agent reinforcement learning task. The key obser-
vation is that the EARSM problem naturally maps to a multi-agent system: each function 𝛼(𝑛) can be
interpreted as an individual agent whose goal is to jointly minimise the model-form error in the predicted
Reynolds stress anisotropy tensor. All agents share a common reward signal derived from the global
performance of Δ𝑏𝑖𝑗, ensuring cooperation toward a unified objective.

Each agent corresponds to one coefficient function 𝛼(𝑛), and has its own identity given by the basis ten-
sor 𝑇(𝑛)𝑖𝑗 . Together, the agents need to cooperatively predict the Reynolds stress anisotropy correction
Δ𝑏𝑖𝑗. This formulation allows modern MARL algorithms, such as that proposed by Yu et al., 2022, to be
directly applied to symbolic regression, providing mechanisms for shared learning, variance reduction,
and improved coordination.

By leveraging multi-agent reinforcement learning, DSR can be extended beyond independent single-
equation discovery toward the cooperative discovery of structured, physically consistent systems of
equations. This brings us back to the central research question of this thesis:

How can multi-agent reinforcement learning techniques be integrated with deep symbolic
regression to perform symbolic turbulence modelling?

The research question encapsulates the goal of developing a novel framework that combines the
strengths of MARL and DSR to address the unique challenges of multi-equation turbulence modelling.
This invokes several sub-questions:

3.3. EARSM as a POMDP 29

1. What MARL algorithms are best suited for cooperative symbolic regression tasks, and how can
they be integrated with DSR?

2. How does integrating MARL techniques impact the efficiency of learning and the quality of dis-
covered expressions compared to base DSR?

3. How does themulti-agent DSR framework perform in discovering EARSMclosures and k-corrective
RANS models?

4. Is a multi-agent DSR approach capable of discovering accurate and interpretable models for
turbulence modelling?

3.3. EARSM as a POMDP
EARSM can be thought of as a cooperative multi-agent problem, where each agent is responsible for
learning a function 𝛼(𝑛)(𝑥1, ...𝑥𝐾), where 𝑛 is the agent index, and 𝐾 is the number of input features.
The expressions are then multiplied by their respective basis tensors to get the final Reynolds stress
anisotropy tensor. This model is then evaluated using frozen RANS and given a reward based on its
performance. The agents are then trained using reinforcement learning to maximise the reward. Thus,
the multi-agent POMDP can be defined as follows:

• Agents: Each agent is responsible for sampling a function 𝛼(𝑛)(𝑥1, ...𝑥𝐾). Each agent has its own
unique contribution to the final expression. In the case of EARSM, each agent is responsible for
learning a function that is multiplied by each Pope basis tensor, explained in section 2.3. The
final expression is then the sum of all the agents’ contributions.

• Observation space: The observation space is the current state of the expression, including the
current position in the tree and the number of dangling nodes left in the expression.

• State space: The state space is the current expression being built by the agents. This is learnt
using an RNN, which learns a hidden state representation of the expression.

• Action space: The action space is the set of possible tokens that can be added to the expression.
This includes operators, variables, and constants.

• Reward function: The reward function 𝑅(𝑦, 𝑦̂) is a measure of the performance of the generated
expressions.

3.4. MARL techniques
Formulating EARSM as a multi-agent POMDP allows the application of MARL techniques to train the
agents cooperatively. In this work, two MARL techniques are investigated for their effectiveness in
symbolic turbulence modelling: PPO and CTDE. These techniques are integrated into the DSR frame-
work to create multi-agent variants of DSR. Before describing the specific methodology, the theoretical
basis of how these techniques improve upon the limitations of DSR is explained.

3.4.1. Proximal Policy Optimization in multi-agent DSR
The integration of PPO into multi-agent DSR aims to enhance the sample efficiency of DSR by allowing
multiple policy updates per batch of sampled expressions. This is to address the second limitation of
DSR, which is the use of REINFORCE. PPO clipping allows the policy to be updated multiple times
per batch, without the risk of large policy updates that could destabilise learning. This would allow the
agents to make better use of the sampled expressions, as they can learn more from each batch.

3.4.2. Centralised Training Decentralised Execution in multi-agent DSR
The CTDE paradigm aims to improve both the independent learning and REINFORCE limitations of
DSR. The CTDE paradigm introduces a centralised learned critic that estimates the joint value of all
agents’ states and actions, to replace the risk-seeking baseline used in DSR. As explained in subsec-
tion 2.5.4, the critic is a network that estimates the value function of the current state 𝑉𝜙(𝑠). Having
such an estimate allows the computation of the advantage function, which quantifies how much better

30 3. Multi-agent DSR and experimental setup

(or worse) a particular action is compared to the agent’s expected performance under its current policy.
This allows the agent to learn which actions are better than average, when it is in a certain state.

This provides a more meaningful learning signal for the agent, as it can learn to take actions that are
better than average at each step. As a result, the learning process transitions from being return-based,
where agents learn which overall trajectories yield higher returns, to being transition-based, where they
learn which individual actions are advantageous at each step. Thus, agents can learn which actions
are better than average at each step, instead of learning which trajectories are better than others. This
would reduce the variance of the gradient estimates, leading to more stable and efficient learning.

In the case of MADSR, the critic is centralised, meaning that it receives the observations of all agents
and outputs a single value function. With access to the full state of the environment, the centralised
critic can evaluate the combined effect of all agents’ actions. The inclusion of a centralised critic would
provide a stronger and more stable learning baseline for each actor, as it captures the interactions
between agents and how the actions of one agent influence the outcomes of others. It could also learn
the structure of the multi-agent problem, allowing it to provide more accurate value estimates. Thus,
the centralised critic acts as a form of communication between agents, allowing them to coordinate
their learning more effectively.

3.5. Algorithms
Four different multi-agent DSR (MADSR) algorithms are implemented and tested. The base DSR
algorithm is extended to the multi-agent setting as a baseline test case, as this was already done in
the works of Hemmes, 2022 and Tang et al., 2023. A PPO version of the base DSR algorithm is also
implemented as a comparison to the vanilla multi-agent DSR. The main novelty of this work is the
implementation of an actor-critic version of multi-agent DSR, as well as a PPO version of the actor-
critic multi-agent DSR. These two algorithms are inspired by Yu et al., 2022, where a centralised critic
and decentralised actors, the CTDE paradigm, is used. The four algorithms are summarised below.

The first is vanilla multi-agent DSR (vDSR). This is the simplest version of multi-agent DSR. This
algorithm uses the base DSR algorithm, but with multiple agents. This algorithm is fairly similar to
Hemmes, 2022, where the original DSR algorithm, with its risk-seeking baseline and risk-seeking policy
gradient, is used. But now it is extended to multiple agents. Each agent learns independently of the
other, while still being able to share parameters.

The second algorithm is a PPO version of vanilla multi-agent PPO DSR (vPPODSR). This algorithm
extends the risk-seeking policy gradient to include the PPO clipping function. The risk-seeking baseline
is still used, but PPO clipping allows the policy to be updated multiple times per batch, which aims to
improve sample efficiency. Vanilla multi-agent DSR and its PPO version both do not use the CTDE
paradigm, and thus do not have a learned critic. The agents still learn independently of each other,
only sharing parameters.

The third algorithm is an actor-critic version of multi-agent AC DSR (ACDSR). In this algorithm, a
centralised critic is used to estimate the value function. An advantage function replaces the risk-seeking
baseline, and the agents are trained using the advantage function. This algorithm introduces CTDE
to multi-agent DSR, allowing the agents to learn cooperatively using a shared critic. This algorithm is
used to assess the effectiveness of CTDE in multi-agent DSR. But the base REINFORCE loss function
is still used, and thus only one update per batch is done.

The final algorithm is a PPO version of ACDSR, themulti-agent PPO DSR (PPODSR). This algorithm
extends the actor-critic multi-agent DSR by including PPO clipping. This algorithm uses both a cen-
tralised critic and PPO clipping, allowing the agents to learn cooperatively using a shared critic, while
also being able to update the policy multiple times per batch. This is the most advanced algorithm
implemented in this work, as it combines both PPO and CTDE techniques. This algorithm is expected
to perform the best out of the four algorithms, as it combines the strengths of both techniques.

3.5. Algorithms 31

Table 3.1: Summary of the four implemented multi-agent DSR algorithms and their main characteristics.

Algorithm Risk-seeking baseline Critic PPO clipping

Vanilla MADSR (vDSR) 3 × ×
Vanilla PPO MADSR (vPPODSR) 3 × 3

Actor-Critic MADSR (ACDSR) × 3 ×
PPO Actor-Critic MADSR (PPODSR) × 3 3

These four algorithms, and their differences, are summarised in Table 3.1. They mainly differ in the
training step, where the differences are whether a critic is used, whether PPO clipping (and thus epochs
and mini-batches are used), and whether the risk-seeking baseline is used.

These four algorithms are tested and compared against each other to assess their performance. The
main focus of this work is to assess the performance of the actor-critic multi-agent DSR and its PPO
version, as these are the most novel algorithms. The vanilla multi-agent DSR and its PPO version are
used as baselines to compare against.

Algorithm 2 General Training Procedure for Multi-Agent Deep Symbolic Regression (MADSR)
1: Initialize actor(s) 𝜋𝜃,𝑛 and (optional) critic 𝑉𝜙
2: for each training iteration do
3: for i=1 to B do
4: 𝜏(𝑖) ∼ 𝜋𝜃,𝑛 for all agents 𝑛 Sample 𝐵 expressions
5: end for
6: min {𝑐𝑗} ∈ 𝜏 Fit constants for each expression
7: 𝑦̂ ← 𝐹(𝑋train, 𝑋context) Evaluate expressions
8: 𝑟(𝑛,𝑖) ← 𝑅(𝑦, 𝑦̂) Compute rewards
9: 𝒟𝑠𝑢𝑏 ← {(𝑠, 𝑎) | 𝑟(𝑛,𝑖) ≥ 𝑅𝜖} Select top 𝜖 subset
10: 𝐴𝑡 ← AdvantageFunction(𝜏) Compute advantage (Depends on algorithm)
11: 𝐿actor ← ActorLoss(𝜃, 𝜏, 𝐴𝑡) Compute actor loss (Depends on algorithm)
12: 𝐿entropy ← EntropyLoss(𝜃, 𝜏) Compute entropy loss
13: 𝜃 ← 𝜃 + ∇𝜃𝐿actor +𝑤𝑒∇𝜃𝐿entropy Actor update
14: if critic used (Depends on algorithm) then
15: 𝐿critic ← CriticLoss(𝜙, 𝜏) Compute critic loss
16: 𝜙 ← 𝜙 − 𝑤𝑐∇𝜙𝐿critic Critic update (MSE)
17: end if
18: end for

Algorithm 2 shows a general algorithm for multi-agent DSR, which applies to all algorithms. It starts
with initialising the actor and critic networks. Then, for each training iteration, a batch 𝐵 expressions
are sampled from each agent’s policy. The constants in the expressions are then optimised. The
expressions are then evaluated on the training dataset 𝑋𝑡𝑟𝑎𝑖𝑛 and context variables 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to get the
model predictions 𝑦̂ using the evaluation function 𝐹. The rewards are then calculated using the reward
function 𝑅(𝑦, 𝑦̂). The top 𝜖 of the rewards are then selected to form the sub batch 𝒟𝑠𝑢𝑏.

All steps that came before this are common to all four algorithms. The definition of the advantage func-
tion (AdvantageFuntion), loss function (ActorLoss), and critic updates are where the algorithms
differ. The advantage function is defined differently if the risk-seeking baseline or a learned critic is
used. The actor loss function also differs depending on whether PPO clipping is used or not. The critic
is only updated if a learned critic is used. The specific details of these components will be explained in
the following sections.

32 3. Multi-agent DSR and experimental setup

3.6. Expression generation
Each agent is independent, and thus has its own policy 𝜋𝑛, where 𝑛 is the agent index. So each
agent samples 𝐵 expressions using its own respective policy, in the same way as single-agent DSR,
explained in subsection 2.6.2, where there are priors, observations, and actions. The only difference
is that an additional agent ID is added to the observation space, which will be explained in more detail
in subsection 3.6.2. This results in 𝑁 × 𝐵 expressions, where 𝑁 is the number of agents.

3.6.1. Function sets
The function set determines the operators that can be used to generate the expressions. A good
function set is important, as an insufficient function set can limit the expressiveness of the generated
expressions, while a function set that is too large canmake the search space too large, making it difficult
for the agents to learn. The following function set is used: add, subtract, multiply, divide, logarithm,
exponential, hyperbolic tangent, and regularised division (𝑅_𝑑𝑖𝑣).

Basic arithmetic operators (add, subtract, multiply, and divide) are essential for any expression. Loga-
rithms and exponentials have seen some use in turbulencemodelling, such as in Hemmes, 2022, where
logarithms appeared quite often in the discovered expressions. A combination of logarithm and expo-
nential can also be used to represent power functions, which could be useful in turbulence modelling.
Hyperbolic tangent is also used quite often in turbulence modelling, as it is a smooth approximation of
the clipping function, which is commonly used in turbulence modelling to prevent unphysical values.

𝑅_𝑑𝑖𝑣(𝑥) = 𝑥
1 + 𝑥2 (3.2)

The regularised division is defined in Equation 3.2, and is the ratio of 𝑥 and 1 + 𝑥2. This function was
used as it was found to be able to approximate EARSM models quite well in Buchanan et al., 2025.

3.6.2. Network architecture
For the actor network, a similar architecture to the original DSR is used. It uses a multi-layer long
short-term memory (LSTM) network (Hochreiter and Schmidhuber, 1997) to provide state estimation
and record the history of the expression. The outputs of the LSTM are then fed into linear layers, where
the final layer output has a size of the action space, which is the number of possible tokens that can be
next in the expression.

At each step, the agent takes in observations of the current state of the expression. The observation
space is made up of the following components:

• The previous token that was added to the expression. This is represented as a one-hot vector of
size equal to the number of possible tokens.

• The parent of the current token. This is represented as a one-hot vector of size equal to the
number of possible tokens.

• The left sibling of the current token. This is also represented as a one-hot vector of size equal to
the number of possible tokens. This token can be null if the current token is the first child of its
parent, or if the parent is a unary operator.

• The number of dangling nodes left in the expression

The framework also uses parameter sharing between the agents, so the agents are able to communi-
cate and help each other. To achieve this, an extra input is required in the observation space, which is
the agent ID. This is represented as a one-hot vector of size equal to the number of agents, which is
concatenated to the observation vector. This agent ID allows the network to differentiate between the
agents. This allows each agent to learn different policies while still being able to share parameters.

For the critic network, a similar architecture to the actor network is used, where there is an LSTM
followed by linear layers. The final linear layer has an output size of one, which is the estimated value
function. For the observations, as the critic is centralised, it takes in the observations of all the agents.
Thus, the observation space for the critic would be the concatenation of the observation spaces of all
the agents.

3.6. Expression generation 33

Table 3.2 summarises the architecture details for both the actor and critic networks. The RNN for
the actor is set to be narrower, but deeper, as the actor needs to be able to process the inputs and
generalise to a distribution over actions. The RNN for the critic was set to be wider, as the critic needs
to be able to process the observations of all agents, and thus would need to encode more information.

Table 3.2: Neural network architecture details for actor and critic.

Actor RNN Actor linear layers Critic RNN Critic linear layers

Number of layers 3 2 2 2

Hidden layer size 48 32 64 32

Activation function - 𝑡𝑎𝑛ℎ - 𝑡𝑎𝑛ℎ

3.6.3. Priors
Similar to single-agent DSR, priors are used to impose constraints on what expressions can be gener-
ated. These priors were optimised to fit the multi-agent setting. All agents share the same priors, as
most constraints apply to all agents. The base priors that are used in the base single-agent DSR are
also used in multi-agent DSR, but some priors were modified to better suit the multi-agent setting. Only
modified priors are explained here, while unmodified priors are the same as in subsection 2.6.2.

• Length prior: This prior constrains the length of the expression. No minimum length is set to
allow for simple expressions to be generated. This allows for expressions such as 𝑥1 or 3.14 to
be generated. Setting no minimum length in multi-agent DSR is important, as one agent may
learn a simple function, such as a constant, or even 0, which would suggest that the contribution
of this agent is not important. A maximum length of 10 tokens is set, as this encourages the
agents to learn simple expressions and prevents overfitting. Since there are multiple agents,
each agent can learn a simple expression, and the final expression can still be complex. For
example, if there are 3 agents, each agent can learn an expression of length 10, resulting in a
final expression equivalent to an expression of length 30.

• No inputs constraint: This prior prevents the expression from having no inputs. While it pre-
vents expressions such as 𝑒𝑥𝑝 or 𝑙𝑜𝑔(3.56+ 𝑡𝑎𝑛ℎ(5.47)), which are redundant constants, it was
augmented to still allow constants to be the only input. This is to allow for expressions such as
3.14 or 2.71, which are valid expressions in the case of multi-agent DSR.

Aside from this, additional constraints were added to further improve the performance of multi-agent
DSR. These priors are:

• Repeat constraint: This prior prevents the same token from being sampled more than the max-
imum repeat limit. The constraint was used on constants, as a model can overfit really easily by
using a large number of constants. An example is that the model can learn an expression that
is just a linear combination of simple functions, and fit really well, which does not really provide
much meaningful insight. Thus, a maximum repeat limit of 3 was set for constants.

• Relational constraint: This prior prevents certain relations between tokens. It can prevent a
certain token from being a child, descendant or sibling of another token. In MADSR, it was used
to prevent nested operators from occurring by preventing tokens from being descendants of the
same token. This was from an observation of initial tests where expressions like log(log(log(𝑥)))
or tanh(tanh(𝑥)) were being generated, which are not very physical and do not occur in science.
The tokens that were chosen for this prior were the unary operators {log, exp, 𝑅𝑑𝑖𝑣 , tanh}.

• Soft length prior: This prior was proposed by Landajuela et al., 2021, and is explained further
in subsection 2.7.1. A target length of two and a width of two was used. This is to encourage
expressions to be as short as possible. This also encourages shorter expressions like 𝑥1 or 3.14
to be generated, which could be useful in multi-agent DSR.

34 3. Multi-agent DSR and experimental setup

3.7. Reward function
Constants are one of the tokens that can be added to the expression, and are always one until this
point. Before calculating the reward of the expressions, the constants need to be optimised to fit the
data. This is done using SciPy’s BFGS optimiser, which is a quasi-Newton method for optimisation.
This optimiser is used to find the optimal constants that minimise the MSE between the predicted and
true values. Now, 𝑁 expressions are obtained, each with its own optimised constants, and an example
expression is shown here:

𝛼(1)(𝑥1, 𝑥2) = 4.8⋅𝑙𝑜𝑔(𝑥1)+2.3, 𝛼(2)(𝑥1, 𝑥2) = 𝑡𝑎𝑛ℎ(𝑥22+0.13), 𝛼(3)(𝑥1, 𝑥2) = 𝑒−3.1⋅𝑥1+0.7𝑥2 (3.3)

Now that the expressions are obtained, with their respective constants optimised, they are evaluated to
get the prediction 𝑦̂. First, the variables 𝑥1, ...𝑥𝐾 are input into the preorder traversal, and the expressions
are evaluated to obtain the output 𝛼(𝑛).

In a more general sense, these 𝛼(𝑛) values are then put into some function 𝐹(𝛼(1), ..., 𝛼(𝑁)), which is
defined depending on the multi agent regression problem, to get the final prediction 𝑦̂. In the case of
EARSM, the function 𝐹 is simply a weighted sum of the basis tensors, where each 𝛼(𝑛) is multiplied
by its respective basis tensor, and then summed together to get the final Reynolds stress anisotropy
tensor. This results in the model prediction 𝑦̂.

To get the reward 𝑅, the model prediction 𝑦̂ is compared to the true values 𝑦 using some reward function
𝑅(𝑦, 𝑦̂). The 𝑅2 score was used as the reward function, as it was found to work the best compared to
other methods tested. The 𝑅2 score is also a commonly used metric to measure the performance of
EARSM models (Lăcătuş, 2024, Siddiqui, 2025), as it takes into account the variance of the dataset.
For invalid expressions, where the expression cannot be evaluated due to mathematical errors such
as division by zero, logarithm of a negative number or having an expression that is too long, a reward
of -10 is given to heavily penalise the agents.

The 𝑅2 score is defined in Equation 3.4 in the case of an EARSM model, where 𝑖 and 𝑗 are the indices
of the tensor, and 𝑘 is the index of the data point. The 𝑅2 score is bounded between −∞ and 1, where
1 is a perfect prediction, and 0 means that the model is as good as predicting the mean of the dataset.
A negative 𝑅2 score means that the model is worse than predicting the mean of the dataset.

𝑅(𝑦, 𝑦̂) = 1 −∑
𝑖
∑
𝑗

∑𝑘(𝑦𝑘𝑖𝑗 − 𝑦̂𝑘𝑖𝑗)2
𝑣𝑎𝑟(𝑦𝑖𝑗)

(3.4)

Since the 𝑦̂𝑖𝑗 and 𝑦𝑖𝑗 values are tensors, the magnitudes of each element might be different, and thus
each element’s contribution to the 𝑅2 score might vary. If an element has a very small magnitude
throughout the dataset, then it will have a very small contribution to the MSE, and consequently the 𝑅2
score. This might cause the agents to ignore that element, as it does not contribute much to the reward.
To prevent this, each element of the tensor is normalised using min-max normalisation, where each
element is scaled to be between -1 and 1. This ensures that each element has an equal contribution to
the 𝑅2 score, and thus the agents are encouraged to learn all elements of the tensor. Before evaluating
the reward, Equation 3.5 is applied to each element of the tensor, where 𝑦𝑚𝑖𝑛𝑖𝑗 and 𝑦𝑚𝑎𝑥𝑖𝑗 are theminimum
and maximum values of the element 𝑦𝑖𝑗 in the dataset.

𝑦𝑘𝑖𝑗 = 2 ⋅
𝑦𝑘𝑖𝑗 − 𝑦𝑚𝑖𝑛𝑖𝑗
𝑦𝑚𝑎𝑥𝑖𝑗 − 𝑦𝑚𝑖𝑛𝑖𝑗

− 1 (3.5)

3.7.1. Training batch organisation
Before moving on to training the agents, the data needs to first be organised into a training batch. It
was found that using risk-seeking, like in subsection 2.6.3, improved the performance when extended
to multi-agent DSR. In preliminary tests, all algorithms performed worse when risk-seeking was not
used, Thus, a similar approach is used here for all algorithms.

3.8. Advantage function 35

The rewards of the whole batch of size 𝐵 are sorted in descending order, and the reward of the 𝜖-th
percentile was calculated. This reward is called the baseline reward 𝑅𝜖, which is used as a threshold
where only the expressions with rewards greater than or equal to 𝑅𝜖 are used to train the actors.

3.8. Advantage function
The advantage function is a measure of the performance of the current action taken by the agent.
Therefore, it is an important component of the loss function as it provides a learning signal for the
agents. The advantage function is defined differently depending on whether a risk-seeking baseline
or a learned critic is used. Two types of advantage functions are used, depending on whether a risk-
seeking baseline or a learned critic is used.

3.8.1. Risk-seeking advantage function
For algorithms that use the risk-seeking baseline, the baseline reward 𝑅𝜖 is used as a baseline. Thus,
the advantage function is defined as:

𝐴𝑟𝑖𝑠𝑘 = 𝑅(𝜏) − 𝑅𝜖 (3.6)

In this case, the advantage function 𝐴 is simply the difference between the total return of the trajectory
𝑅(𝜏) and the baseline reward 𝑅𝜖. It does not change over the steps of the trajectory, and is constant
for the entire trajectory.

3.8.2. Learned critic advantage function
There are many ways to calculate the advantage function, such as temporal difference learning, n-step
returns, Monte Carlo returns, and generalised advantage estimation (Schulman, Moritz, et al., 2015).
Due to the sparse nature of the rewards (only getting a reward at the end of the expression), it is best
to bootstrap the value function as quickly as possible, so that long expressions can still have a good
estimate of the value function. While generalised advantage estimation is the most commonly used
method in MARL, in this application, Monte Carlo returns would be the best option. The Monte Carlo
target is defined as:

𝑦𝑙 =
𝐿

∑
𝑘=𝑙+1

𝛾𝑘−𝑙𝑟𝑘 (3.7)

Where 𝐿 is the terminal time step, 𝛾 is the discount factor, and 𝑟𝑘 is the reward at time step 𝑘. The
values are then predicted using the critic network, with all agents’ observations as input. The advantage
function is then calculated using Equation 3.8.

𝐴(𝑠𝑙) = 𝑦𝑙 − 𝑉𝜙(𝑠𝑙) (3.8)

3.9. Loss function

Equation 3.9 shows the total loss function used to train the agents. The total loss is a combination of
three losses: the actor loss 𝐿𝑎𝑐𝑡𝑜𝑟(𝜃), the critic loss 𝐿𝑐𝑟𝑖𝑡𝑖𝑐(𝜙), and the entropy loss 𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜃).

𝐿(𝜃, 𝜙) = 𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) + 𝑤𝑐 ⋅ 𝐿𝑐𝑟𝑖𝑡𝑖𝑐(𝜙) + 𝑤𝑒 ⋅ 𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜃) (3.9)

𝑤𝑐 and 𝑤𝑒 are weights for the critic loss and entropy loss respectively, and are hyperparameters that
need to be tuned for each algorithm. The Adam optimiser (Kingma, 2014) is used to train the networks,
and it was found that a learning rate of 5 × 10−4 worked well for all algorithms. A small learning rate
was used to prevent overshooting, which could cause oscillations during training.

In this section, general forms of the loss functions are presented. The algorithms mainly differ in the
forms of the loss functions used, as well as whether a critic is used or not. The exact forms of the loss
functions for each specific algorithm being used will be explained in their respective subsections later.

36 3. Multi-agent DSR and experimental setup

3.9.1. Actor loss
The actor loss is the component of the loss to train the actor networks. This loss differs depending on
the algorithm used, and is explained in the respective sections for each algorithm. The general form of
the actor loss is shown below:

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = −
1
𝑁𝐵

𝑁

∑
𝑛=1

𝐵

∑
𝑖=1

𝐿

∑
𝑙=1
𝐴𝑙,𝑖 ⋅ 1|𝑅(𝜏)≥𝑅𝜖 𝑙(𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙,𝑖)) (3.10)

Here, 𝐴𝑡 is the advantage function, and is defined differently depending on the algorithm used. The
advantage function should always just be a constant, and no gradients should flow through it. Thus,
no backpropagation is done through the advantage function.

𝑙(𝜋𝜃(𝑎𝑙|𝑠(𝑛)𝑙)) represents the log probability of the action taken at step 𝑙 given the state 𝑠(𝑛)𝑙 for agent 𝑛.
The exact form of this term depends on the algorithm used. It provides a way to update the probability
distribution of the policy weighted by the advantage function. A higher log probability means that the
action taken is more likely to be taken again in the future, while a lower log probability means that the
action taken is less likely to be taken again. This term is where the actor network parameters 𝜃 are
updated.

The indicator function 1|𝑅(𝜏(𝑛))≥𝑅𝜖 is the risk-seeking indicator, which represents use of the risk-seeking
method. The indicator is 1 if the reward of the expression generated is greater than or equal to the
baseline reward 𝑅𝜖, and 0 otherwise.

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = −𝔼𝜋,𝑛 [𝐴𝑙 ⋅ 1|𝑅(𝜏)≥𝑅𝜖 𝑙(𝜋𝜃(𝑎𝑙|𝑠
(𝑛)
𝑙))] (3.11)

Since parameter sharing is used, the identity of the agent 𝑛 is included in the state 𝑠(𝑛)𝑙 . Thus, the
policy network 𝜋𝜃 does not depend on the agent index 𝑛, and only the state 𝑠(𝑛)𝑙 depends on it. Since
the agent index 𝑛 is just a state, the training of the different agents can just be done by concatenating
all the agents’ data together, resulting in a full batch of size 𝑁 × 𝐵. In further sections, the averaging
over 𝑛 agents and batch size 𝐵 will be written as in Equation 3.11 for simplicity and clarity.

3.9.2. Critic loss
The critic loss is the component of the loss used to train the critic. It is just the mean squared error of
the advantage function, shown in Equation 3.12. This loss is only used for actor-critic algorithms.

𝐿𝑐𝑟𝑖𝑡𝑖𝑐(𝜙) =
1
𝐵

𝐵

∑
𝑖=1

𝐿−1

∑
𝑙=0
𝐴(𝑠𝑙,𝑖 , 𝜙)2 (3.12)

Here, 𝐴(𝑠𝑙 , 𝜙) is the advantage function, 𝑠𝑙 is the state of all agents at time step 𝑙, and 𝜙 is the parame-
ters of the critic network. The state 𝑠𝑙 here does not depend on the agent 𝑛, since the critic has access
to the observations of all agents.

For the critic loss, it is important that the full batch is used to train the critic, and not just the top 𝜖
percentile of rewards. This is because the critic is supposed to learn the expected return of the policy,
and not the expected return of the top 𝜖 percentile of rewards.

The critic learns the expected returns through Monte Carlo sampling, and thus needs to see the full
distribution of rewards to learn an accurate estimate. If the critic only saw the top 𝜖 percentile of rewards,
it would learn a biased estimate of the value function, leading to overestimation of the value function.
Thus, the critic loss does not have the risk-seeking indicator function.

3.10. Loss function for each algorithm 37

3.9.3. Entropy loss
The entropy loss is used to encourage exploration, and is the same for all algorithms. The hierarchical
entropy by Landajuela et al., 2021 is used, which was explained in subsection 2.7.1. The entropy loss
is shown in Equation 3.13, where 𝜋𝜃(𝑠(𝑛)𝑙) is the probability distribution of the policy at state 𝑠(𝑛)𝑙 , and
𝐻(𝜋𝜃,𝑛) is the entropy of that probability distribution.

𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜃) = −
1
𝑁

𝑁

∑
𝑛=1

𝐿−1

∑
𝑙=0
𝜆𝑙𝐻(𝜋𝜃(𝑠(𝑛)𝑙)) (3.13)

The search space is very large, and thus exploration is crucial to find good expressions. The entropy
loss penalises low entropy policies, thus encouraging the actors to have amore uniform distribution over
actions. This makes the entropy loss very important for MADSR, as without this loss, the agents would
quickly converge to suboptimal policies and get stuck in local minima. The entropy loss encourages
the agents to explore more, and thus find better expressions.

3.10. Loss function for each algorithm
The main difference between the four algorithms lies in their loss functions. In this section, the specific
loss functions for each algorithm are explained in detail.

3.10.1. vanilla MADSR
This is just the base version of DSR, extended to the multi-agent setting. Each agent 𝑛 maintains its
own policy network 𝜋𝜃,𝑛, and is trained using the risk-seeking policy gradient:

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = 𝔼𝜋,𝑛 [(𝑅(𝜏) − 𝑅𝜖)
𝐿−1

∑
𝑙=0
⋅1|𝑅(𝜏)≥𝑅𝜖 log𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙)] . (3.14)

Here, the risk-seeking baseline 𝑅𝜖 is retained, and thus the risk-seeking advantage function is used.
The original log probabilities of REINFORCE are used, and the critic is not used in this algorithm.

For this algorithm, an entropy weight of 𝑤𝑒 = 0.03 was used, as the resulting advantages had small
magnitudes, and thus a smaller entropy weight is needed so that the entropy loss does not dominate
the total loss. As there is no critic in this algorithm, the critic weight 𝑤𝑐 is set to 0, and the critic loss is
not calculated.

3.10.2. vanilla MAPPO DSR
This algorithm extends the vanilla multi-agent DSR by including PPO in the multi-agent context. This
allows for multiple epochs and mini-batch updates, which should lead to more data-efficient training,
since the same data is used multiple times. The loss function for the PPO actor in this framework is:

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = 𝔼𝜋,𝑛 [𝐴𝑟𝑖𝑠𝑘
𝐿−1

∑
𝑙=0

min(𝜋𝜃(𝑎𝑙|𝑠
(𝑛)
𝑙)

𝜇(𝑎𝑙|𝑠(𝑛)𝑙)
, clip(𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙)

𝜇(𝑎𝑙|𝑠(𝑛)𝑙)
, 1 − 𝛾, 1 + 𝛾))1|𝑅(𝜏)≥𝑅𝜖] . (3.15)

For this algorithm, it is mostly the same as vDSR, but with PPO clipping added to the loss function.
Four epochs and a division into four mini-batches per iteration were used for this algorithm. A PPO
clipping value of 𝛾 = 0.2 was used, as this is a commonly used value in PPO.

3.10.3. Actor-critic MADSR
This algorithm is where the main novelty of this work lies. It introduces CTDE into multi-agent DSR,
turning it into an actor-critic method. In this framework, the critic loss is non-zero, and the critic network
will be trained. The actor loss for this algorithm is:

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = 𝔼𝜋,𝑛 [
𝐿−1

∑
𝑙=0
𝐴(𝑠𝑙) ⋅ 1|𝑅(𝜏)≥𝑅𝜖 log𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙)] . (3.16)

38 3. Multi-agent DSR and experimental setup

For the advantage function, the learned critic advantage function is used, as explained in section 3.8.
In this case, the critic network also needs to be trained, and thus the critic loss is non-zero. The
critic weight 𝑤𝑐 was found to be quite an important parameter. A critic weight that is too large causes
too much bias, and can cause overshoots of critic estimations. This causes oscillations in the critic
estimation, which in turn causes oscillations in the advantage function, and finally causes oscillations
in the actor loss. This results in unstable training. A critic weight that is too small is also detrimental, as
the policy will change too fast compared to the critic, causing the critic to not be able to keep up with
the policy changes. This causes the critic to provide poor value estimates, which in turn causes poor
advantage estimates, and finally, poor actor updates. After hyperparameter tuning, a critic weight of
𝑤𝑐 = 0.7 was found to be the optimal critic weight.

In actor-critic methods, the advantage function values have a larger magnitude compared to vanilla
DSR in general. Thus, a larger entropy weight of 𝑤𝑒 = 1.5 was used to prevent the actor loss from
dominating the entropy loss. This prevents the actors from converging too quickly to a suboptimal
policy.

3.10.4. MAPPO DSR
Similar to vanilla MADSR, the natural next step is to extend the method to include PPO in actor-critic
DSR. The loss function for the PPO actor in this framework is:

𝐿𝑎𝑐𝑡𝑜𝑟(𝜃) = 𝔼𝜋,𝑛 [
𝐿−1

∑
𝑙=0
𝐴(𝑠𝑙)min(𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙)

𝜇𝑖(𝑎𝑙|𝑠(𝑛)𝑙)
, clip(𝜋𝜃(𝑎𝑙|𝑠

(𝑛)
𝑙)

𝜇(𝑎𝑙|𝑠(𝑛)𝑙)
, 1 − 𝛾, 1 + 𝛾)) ⋅ 1|𝑅(𝜏)≥𝑅𝜖] . (3.17)

Four epochs and a division into four mini-batches were also used for this algorithm, and a PPO clipping
value of 𝛾 = 0.2 was also used. The same advantage function, and thus the same critic loss, as in
ACDSR was used. The critic weight was also kept the same at 𝑤𝑐 = 0.7. The entropy weight had
to be slightly increased to 𝑤𝑒 = 2.0, as the multiple updates per batch caused the policy to converge
faster, and thus a larger entropy weight was needed to prevent premature convergence and constant
exploration.

3.11. Experimental setup for turbulence modelling
In this section, the experimental setup for turbulence modelling is explained. Two different turbulence
modelling frameworks are tested using multi-agent DSR: EARSM and k-corrective RANS. The flow
case used is also illustrated here, and how the training data is used to train MADSR.

3.11.1. EARSM
In EARSM, the Reynolds stress anisotropy tensor Δ𝑏𝑖𝑗 is modelled as a linear combination of basis
tensors 𝑇(𝑛)𝑖𝑗 , weighted by scalar functions 𝛼(𝑛) of invariant flow features, as in Equation 2.28. In this
work, it was decided that only the first four basis tensors would be used. According to Pope, 1975,
three basis tensors are sufficient to represent a two-dimensional flow. But using the 4th basis tensor
allows for more complex expressions to be learned, and thus potentially better performance. Both the
three- and four-basis tensor models were tested, and the four basis tensors are defined below:

𝑇(1)𝑖𝑗 = 𝑆𝑖𝑗 𝑇(2)𝑖𝑗 = 𝑆𝑖𝑗Ω𝑖𝑗 − Ω𝑖𝑗𝑆𝑖𝑗 (3.18)

𝑇(3)𝑖𝑗 = 𝑆𝑖𝑗2 −
1
3𝐼 trace(𝑆𝑖𝑗

2) 𝑇(4)𝑖𝑗 = Ω𝑖𝑗2 −
1
3𝐼 trace(Ω𝑖𝑗

2). (3.19)

In a two-dimensional flow, only the first two basis tensors are non-zero. Thus, the first two invariants
are used as inputs to the expressions. These invariants are defined as:

𝐼1 = 𝑡𝑟𝑎𝑐𝑒(𝑆𝑖𝑗2) = 𝑆𝑛𝑚𝑆𝑚𝑛 , 𝐼2 = 𝑡𝑟𝑎𝑐𝑒(Ω𝑖𝑗2) = Ω𝑛𝑚Ω𝑚𝑛 . (3.20)

3.11. Experimental setup for turbulence modelling 39

Additionally, 2 other scalar inputs are used as well. These are:

• Dk/Ck ratio: This is the ratio between the turbulence destruction rate 𝐷𝑘, and the convection
rate 𝐶𝑘 of turbulent kinetic energy 𝑘. This is defined in Equation 3.21

𝐷𝑘/𝐶𝑘 =
|𝐷𝑘|

|𝐷𝑘| + |𝐶𝑘|
(3.21)

• Dk/Pk ratio: This is the ratio between the turbulence destruction rate 𝐷𝑘, and the production rate
𝑃𝑘 of turbulent kinetic energy 𝑘. This is defined in Equation 3.22

𝐷𝑘/𝑃𝑘 =
|𝐷𝑘|

|𝐷𝑘| + |𝑃𝑘|
(3.22)

These variables were introduced in Buchanan et al., 2025, and were found to be useful in turbu-
lence modelling. Thus, the final expressions generated by multi-agent DSR will have the form of
𝛼(𝑛)(𝐼1, 𝐼2, 𝐷𝑘/𝐶𝑘, 𝐷𝑘/𝑃𝑘), where 𝑛 is the agent index. The final correction model is then given by:

Δ𝑏𝑖𝑗 =
3,4

∑
𝑛=1

𝛼(𝑛)(𝐼1, 𝐼2, 𝐷𝑘/𝐶𝑘, 𝐷𝑘/𝑃𝑘)𝑇(𝑛)𝑖𝑗 . (3.23)

3.11.2. k-corrective RANS
The k-corrective RANS provides a correction to the production deficit term 𝑅, which is added to the
production term in the turbulent kinetic energy equation. It follows the framework by Schmelzer et al.,
2020, and was explained further in subsection 2.3.2. The k-corrective RANS is slightly different from
EARSM, as the production deficit term 𝑅 is a scalar instead of a tensor like Δ𝑏𝑖𝑗.

k-corrective RANS is still multi-agent in nature, as each agent generates an expression for a scalar
function 𝛽(𝑛)(𝐼1, 𝐼2, 𝐷𝑘/𝐶𝑘, 𝐷𝑘/𝑃𝑘), but the evaluation function 𝐹(⋅) turns the tensor inputs into a scalar.
An intermediary term 𝑏𝑅𝑖𝑗 is first computed using Equation 3.24, which has the same form as EARSM.
It uses the same inputs as EARSM as well, but only the first 3 basis tensors are used.

𝑏𝑅𝑖𝑗 =
3

∑
𝑛=1

𝛽(𝑛)(𝐼1, 𝐼2, 𝐷𝑘/𝐶𝑘, 𝐷𝑘/𝑃𝑘)𝑇(𝑛)𝑖𝑗 (3.24)

Currently, 𝑏𝑅𝑖𝑗 is still a tensor, but it needs to be turned into a scalar production correction term 𝑅. This
is done using Equation 3.25, where 𝑃𝑘 is the production rate of turbulent kinetic energy 𝑘.

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝛽(𝜀)(𝐼1, 𝐼2, 𝐷𝑘/𝐶𝑘 , 𝐷𝑘/𝑃𝑘) ⋅ 𝜀 (3.25)

Here, an additional expression 𝛽(𝜀) is generated by another agent, where it is multiplied with the tur-
bulence dissipation rate 𝜀. This term was shown to be effective in Buchanan et al., 2025, and thus
is included in this work as well. Thus, in total, four agents are used for the k-corrective frozen RANS
framework, with three agents generating expressions for 𝑏𝑅𝑖𝑗 using 3 basis tensors, and one agent
generating an expression for 𝛽(𝜀). The dissipation rate was calculated using Equation 3.26, where
𝐶𝜇 = 0.09 is a model constant.

𝜀 = 𝐶𝜇𝑘𝜔 (3.26)

3.11.3. Flow cases
The Flows Over Periodic Hills of Parameterized Geometries dataset by Xiao et al., 2019 is used as the
dataset for symbolic regression in this work. It consists of DNS data of turbulent flow over a family of
periodic hills with systematically varied geometries. The variation is defined by a single non-dimensional
geometric parameter, 𝛼, which scales the hill width while keeping the hill height constant. Increasing

40 3. Multi-agent DSR and experimental setup

𝛼 produces a wider hill and a longer streamwise period, thereby changing the size and position of the
separation bubble. The streamwise domain length is defined as a function of 𝛼 according to:

𝐿𝑥/𝐻 = 3.858𝛼 + 5.142. (3.27)

Figure 3.1: Parametrisation of the Periodic Hills geometry with respect to the geometric scaling parameter 𝛼. Image by Xiao
et al., 2019.

where 𝛼 ∈ {0.5, 0.8, 1.0, 1.2, 1.5, 3.0}. The baseline configuration corresponds to 𝛼 = 1.0, giving 𝐿𝑥/𝐻 =
9.0. All simulations were performed at a Reynolds number of 𝑅𝑒 = 5600 using the high-order Incom-
pact3d solver, with grid resolutions typically around 768 × 385 × 128 depending on the geometry. The
dataset provides consistent mean fields and turbulence statistics across different hill shapes, allowing
systematic analysis of attached and separated flow regimes.

An extended database was added by Sylvain Laizet. This addition includes 29 simulations, also at
𝑅𝑒 = 5600, created by systematically varying three geometric and domain parameters: (i) the hill
width, represented by five 𝛼 values; (ii) the length of the upstream and downstream flat sections, 𝐿𝑓,
with three settings; and (iii) the domain height, 𝐿𝑦, with three settings. To modify the domain length,
Equation 3.27 was updated to:

𝐿𝑥
𝐻 = 3.858𝛼 + 𝐶𝑓 , 𝐶𝑓 ∈ {2.142, 5.142, 8.142}. (3.28)

This updated domain-length relation was applied only to three of the 𝛼 values, specifically 𝛼 ∈ {0.50, 1.00, 1.50}.
The remaining two cases, 𝛼 = 0.75 and 𝛼 = 1.25, retained the baseline configuration with 𝐶𝑓 = 5.142.
Combined with the three domain heights 𝐿𝑦/𝐻 ∈ {2.024, 3.036, 4.048}, this results in a total of
3 × 3 × 3 + 2 = 29 simulated flow cases. Since the same symbol 𝛼 is used for both hill width scaling
and the coefficient functions in MADSR, the geometric scaling parameter will be denoted as 𝛼𝑃𝐻 in the
remainder of this work to avoid confusion.

This extended version of the dataset is used in the present work. Only the cases with 𝛼𝑃𝐻 = {1.0, 1.5}
are considered, as the 𝛼𝑃𝐻 = 0.5 case proved too challenging for initial model evaluations. This selec-
tion yields 18 flow cases in total for training and testing.

3.11. Experimental setup for turbulence modelling 41

Figure 3.2: Extension of the Periodic Hills database by Laizet (2021), including additional variations in domain length and
height. Image by Xiao et al., 2019.

The original study by Xiao et al., 2019 focused solely on developing and evaluating EARSM-basedmod-
els and did not include the 𝑘-corrective RANS framework. In this work, a corresponding 𝑘-corrective
frozen RANS dataset is generated for all 18 flow cases to model the production deficit term 𝑅. This
was done in the same manner as in subsection 2.3.2, where an ordinary differential equation in terms
of 𝜔 is solved, while keeping the TKE 𝑘 frozen to the DNS values.

3.11.4. Training setup
A subset of this dataset was used for training MADSR. The training set consists of 2 flow cases, specif-
ically those with 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036 and 𝛼𝑃𝐻 = 1.5, 𝐿𝑥/𝐻 = 10.929, 𝐿𝑦/𝐻 = 3.036.
The remaining 16 flow cases were reserved for testing the generalisability of the discovered turbulence
models. The 2 training cases were chosen to enable the models to be able to generalise to different
geometries (𝛼𝑃𝐻 values). The 𝛼𝑃𝐻 = 1.0 case has a much larger separation compared to the 𝛼𝑃𝐻 = 1.5
case, and thus the models have to learn to be able to predict both cases well.

The training dataset combined has a total of around 30,000 data points, which is the whole field of
the 2 training cases. This is very large, and thus needs to be reduced for training. Thus, the RITA
classifier by Buchanan et al., 2025 was used to select only the most important data points for training.
The classifier allows the model to focus on the most important regions of the flow, where the turbulence
modelling errors are the largest, since most of the flow is already well modelled by RANS. This reduced

42 3. Multi-agent DSR and experimental setup

the dataset to around 5000 data points, which is more manageable for training.

A thousand training steps were used for trainingMADSR for both EARSMand k-corrective frozen RANS
frameworks. Each training step consists of generating a batch of 1000 expressions per agent. This
results in a total of 1 million reward function evaluations during training. This is quite a large number,
but it is necessary to explore the large search space of possible expressions.

Input features
The field for the input features used for training MADSR for the 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036
case is shown in Figure 3.3. These features will be the scalar variables that can be used by the agents
to generate expressions for the coefficient functions 𝛼(𝑛) or 𝛽(𝑛). The features that are actually used
are within the dotted black line, which is the region selected by the RITA classifier for training.

(a) Invariant 𝐼1 = tr(𝑆2). (b) Invariant 𝐼2 = tr(Ω2).

(c) Ratio 𝐷𝑘/(|𝐷𝑘| + |𝐶𝑘|) (denoted 𝐷𝑘/𝐶𝑘). (d) Ratio 𝐷𝑘/(|𝐷𝑘| + |𝑃𝑘|) (denoted 𝐷𝑘/𝑃𝑘).

Figure 3.3: Input scalar features used by the MADSR agents for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036: (a) first invariant 𝐼1, (b)
second invariant 𝐼2, (c) 𝐷𝑘/𝐶𝑘 ratio, and (d) 𝐷𝑘/𝑃𝑘 ratio.

Basis tensors
For the basis tensors, only the first basis tensor 𝑇(1)𝑖𝑗 for the 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036 case is
shown here as an example. The other basis tensors can be found in Appendix C, and are not shown
here for brevity. Only the xx, xy, yy and zz components are visualised. The xz and yz components are
not shown as they are all zero due to the 2D nature of the flow. The yx component is also not shown,
as all basis tensors, as well as Δ𝑏𝑖𝑗 itself, are symmetric tensors, meaning that 𝑏𝑖𝑗 = 𝑏𝑗𝑖. So the yx
component is equal to the xy component, and does not provide any additional information.

3.11. Experimental setup for turbulence modelling 43

Figure 3.4: First Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. This tensor is the input feature to the discovered
models and is used to construct the Reynolds stress anisotropy tensor correction.

The field for the turbulent dissipation rate 𝜀 used for training MADSR for the 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9,
𝐿𝑦/𝐻 = 3.036 case is shown in Figure 3.5. This variable is used in the k-corrective frozen RANS
framework as an additional term to model the production correction term 𝑅.

Figure 3.5: Turbulent dissipation rate 𝜀 for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036. This is used to model the production
correction term.

Target fields

The target fields used for training MADSR for the 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036 case are shown
in Figure 3.6. These fields are the ground truth values that the discovered models will try to predict.
The Reynolds stress anisotropy correction Δ𝑏𝑖𝑗 is used for the EARSM framework, and is a tensor field.

44 3. Multi-agent DSR and experimental setup

(a) True Δ𝑏𝑖𝑗, in the full domain.

(b) True production deficit 𝑅, in the full domain.

Figure 3.6: Target fields for MADSR, 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036: (a) Reynolds stress anisotropy correction Δ𝑏𝑖𝑗, and
(b) production correction term 𝑅. These fields are used to compute the reward signal during training.

The production correction term 𝑅 is used for the k-corrective frozen RANS framework, and is a scalar
field.

3.12. General framework

To summarise the methodology, the overall workflow of the MADSR framework is illustrated in Fig-
ure 3.7. The framework combines symbolic regression with reinforcement learning and the frozen
RANS evaluation procedure to enable data-driven turbulence model discovery.

At each training iteration, the process begins with all agents sampling symbolic expressions from their
respective policies. Each agent represents a coefficient function 𝛼(𝑛) that corresponds to a basis tensor
𝑇(𝑛)𝑖𝑗 in the EARSM formulation.

The sampled expressions are then evaluated on the frozen RANS dataset. The generated expressions

3.12. General framework 45
LAYOUT

PRIMARY COLORS

SECONDARY COLORS

Text

CHOOSING TEXT LEVELS

1 • Bullet

2

Under the tab ‘Home’, use the list level-buttons to
choose a text level.
Choose from:

• Sub-bullet

3 Default text

4 Title/Quote
5 Subtitle
6

1. Numerical bullet7

a. Alphabetical bullet8

Source9

Default text

WANT TO KNOW MORE?
Go to the tab 'SLIDEBUILDER’ and click
on the button ‘INSPIRATION'

Home Text level down

Text level up

Inspiration

Frozen RANS
(1) T ij

(1)

T ij

(2)

T ij

(N)

(2) (N)

Actor 1 Actor 2 Actor N

bij

Frozen RANS

RLoss

Critic

V(s)
Gradients

Figure 3.7: Overview of the proposed MADSR framework. Each policy network generates symbolic expressions for the
coefficient functions 𝛼(𝑛)(𝐼1 , … , 𝐼𝐾), which are multiplied by the corresponding basis tensors 𝑇(𝑛)𝑖𝑗 to obtain the anisotropy
correction Δ𝑏𝑖𝑗. The resulting stress correction is evaluated using frozen RANS simulations to compute the reward signal.

Multi-agent reinforcement learning methods are then used to train the networks cooperatively.

are combined to predict the Reynolds-stress anisotropy tensor (or production correction term in the 𝑘-
corrective RANS case), which is compared to the reference data from high-fidelity simulations.

A reward is then computed based on the accuracy of the predictions, measured using the R2 score.
The reward serves as the learning signal for all agents. The top-performing expressions, according to
the risk-seeking method, are selected and used to update the actor networks. If a critic is used, it is
trained in parallel to estimate the value function, which is then used to compute the advantage function
for actor updates.

These steps, sampling expressions, evaluating them with frozen RANS, computing rewards, and up-
dating the networks, are repeated iteratively. Until a set number of training iterations is reached.

4
MADSR results and analysis of

discovered models
This chapter presents the results obtained from applying the proposedMADSR framework to turbulence
model discovery. The performance of the four developed algorithms: vDSR, vPPODSR, MADSR,
and PPODSR is first compared across three correction types: the EARSM with three and four-tensor
bases, and the scalar R correction. The best-performing algorithm is then analysed in detail, and the
discovered models are evaluated for their interpretability, generalisability, and physical consistency.
Subsequent sections present further optimisation of the identified models, followed by an ablation study
to assess the contribution of individual tensor terms. Finally, flow-field visualisations are provided to
examine the spatial accuracy of the predicted corrections and to highlight regions where the models
perform well or exhibit deficiencies.

4.1. Algorithm comparison
In this section, the performance of the four different algorithms proposed in section 3.5 is compared
on the three different turbulence modelling corrections: EARSM with three tensors, EARSM with four
tensors and the R correction. A table showing the best 𝑅2 values achieved by each algorithm for
each correction is presented, along with training curves showing the performance of each algorithm
over the course of training. These 𝑅2 values correspond to the 𝑅2 of only the training case, which is
the parametrised periodic hill case with 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036 and 𝛼𝑃𝐻 = 1.5, 𝐿𝑥/𝐻 =
10.929, 𝐿𝑦/𝐻 = 3.036.

In the training curves, three metrics are shown to evaluate the performance of each algorithm during
training:

• Best model reward: This shows the reward of the best model found so far during training. This
gives an indication of the algorithm’s ability to find expressions, and what the best model it can
find is. This is a very important metric, as the best model found is what will be used in practice.
However, this metric alone does not give a complete picture of the algorithm’s performance, as it
could do this just by chance, and not be able to improve further.

• Average sub batch reward: This shows the average reward of the top 𝜖 models sampled in
each training step. This indicates how consistent the algorithm is at finding good models, as
reproducing good models on average consistently can lead to even better ones.

• Maximum reward: This shows the best reward achieved by a model in each training step. This
metric is quite similar to the average sub batch reward, as it generally follows the same trend.
However, it shows the variance in the models sampled, as a high maximum reward but low av-
erage reward indicates that the models sampled are quite varied in performance. Or when the
maximum reward and average reward are close together, it indicates that the models sampled
have converged to generating similar models.

47

48 4. MADSR results and analysis of discovered models

4.1.1. EARSM with three tensors
Table 4.1 shows the best 𝑅2 values achieved for each algorithm for the Δ𝑏𝑖𝑗 correction with three
tensors (agents). Predicting Δ𝑏𝑖𝑗 proved to be a difficult task for all algorithms. All algorithms struggled
to achieve a high 𝑅2 value, with most algorithms achieving an 𝑅2 value of around 0.4. Only with
PPODSR was it possible to achieve an 𝑅2 value above 0.5. Even then, the best model found only
achieved an 𝑅2 value of 0.518, which is still quite low.

Table 4.1: Best 𝑅2 values achieved by each algorithm for EARSM with three tensors.

vDSR vPPODSR ACDSR PPODSR

Reward 0.402 0.448 0.405 0.518

This low 𝑅2 value indicates that the models are not able to capture the behaviour of the Reynolds stress
anisotropy tensor very well. This could be due to the complexity of the problem, as the Reynolds stress
anisotropy tensor is a tensor quantity. The models discovered need to predict the four independent
components of the Reynolds stress anisotropy tensor simultaneously, which is a challenging task. The
complexity of the problem could also cause the algorithms to struggle to find good models, as the
search space is likely very large and complex.

0 200 400 600 800 1000
Steps

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

Best Reward

0 200 400 600 800 1000
Steps

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Re
wa

rd

Average sub batch Reward

0 200 400 600 800 1000
Steps

0.4

0.2

0.0

0.2

0.4

0.6

Re
wa

rd

Max Reward

bij Training Curves with 3 tensors

ACDSR
PPODSR
vDSR
vPPODSR

Figure 4.1: Comparison of training curves for different algorithms on EARSM with three tensors. Shaded areas represent the
standard deviation across ten runs with different random seeds.

Figure 4.1 shows the training curves for the correction with three tensors. Both algorithms with PPO

4.1. Algorithm comparison 49

perform much better than the other algorithms without. Since PPO is able to use training epochs, it can
learn from good performing models more effectively. So whenever a good model is sampled, PPO can
learn more from this sample, compared to the other algorithms that only learn from each sample once.

PPODSR outperformed vPPODSR here. vPPODSR learned very quickly in the beginning, exceeding
PPODSR in the first half of the 1000 training steps. However, after this, it struggles to improve further. It
reaches an average sub-batch 𝑅2 value of around 0.4 at around 400 training steps, and then stagnates
there for the rest of the training. This means that vPPODSR has converged to a local minimum and is
not exploring the search space further. PPODSR, on the other hand, continued searching the space.
It continued to learn from good models it finds, allowing it to improve further. Eventually, most runs in
PPODSR discovered better models than any run with vPPODSR.

The three-tensor case proved to be quite stochastic, with large variations in performance between
different runs, shown by the large error bars in Figure 4.1. Some runs were able to find good models
quickly and learn very quickly from them, while other runs really struggled to find good models. This
indicates that the search space is quite complex, and very specific models are needed to achieve
good performance. If the algorithm is not able to find these models, it struggles to improve further. So
EARSM with three tensors is very seed-dependent and requires good exploration. But with PPODSR,
all runs were eventually able to find good models within a thousand training steps, shown by the smaller
error bars towards the end of training, indicating that the runs are converging to similar performance.
This shows that PPODSR is robust and is able to learn from any good models it finds, allowing it to
eventually find good models in all runs.

One interesting thing to note is that there is a sharp dip in performance before ACDSR starts learning.
This is a known phenomenon in actor-critic algorithms called critic bias. During initialisation, the critic
outputs values close to zero for all states. Since the rewards are negative, this leads to a large negative
advantage, which suggests that all actions taken were bad. This leads to the actor updating its policy
to avoid all actions taken, which leads to a sharp drop in performance. As the critic learns to predict
the rewards more accurately, this effect diminishes, and the actor is able to learn better policies.

While PPODSR also uses advantages, the sharp drop is not seen there. Since it uses multiple training
epochs, the critic can learn much more quickly, and thus the actor does not suffer from this effect as
much. But critic bias is still present in PPODSR, since the initial performance of PPODSR compared to
vPPODSR is lower, where vPPODSR shoots up very quickly in the beginning, while PPODSR improves
more slowly. This period of slow growth is likely due to critic bias, so while there is no sharp drop,
PPODSR still suffers from critic bias to some extent.

4.1.2. EARSM with four tensors
Using four tensors adds an additional degree of freedom to the model, which should allow it to capture
the behaviour of the Reynolds stress anisotropy tensor better. But this also increases the search space
significantly, making it more difficult for the algorithms to find good models. However, PPODSR was
still able to find a good model with an 𝑅2 value of 0.551, shown in Table 4.2. This is an improvement
over the best model found with three tensors, indicating that the additional tensor does help to improve
the performance of the models.

Table 4.2: Best 𝑅2 value obtained for each algorithm for the correction with four tensors.

vDSR vPPODSR ACDSR PPODSR

Reward 0.384 0.426 0.376 0.55

But the additional degree of freedom needs to be properly exploited by the algorithms, as the other
algorithms performed worse in the four-tensor case compared to the three-tensor case. This indicates
that the additional complexity of the search space makes it more difficult for the algorithms to find good
models, and only PPODSR was able to effectively explore the search space and find good models.

50 4. MADSR results and analysis of discovered models

0 200 400 600 800 1000
Steps

0.25

0.30

0.35

0.40

0.45

0.50
Re

wa
rd

Best Reward

0 200 400 600 800 1000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

Average sub batch Reward

0 200 400 600 800 1000
Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
wa

rd

Max Reward

bij Training Curves with 4 tensors

ACDSR
PPODSR
vDSR
vPPODSR

Figure 4.2: Comparison of training curves for different algorithms on EARSM with four tensors. Shaded areas represent the
standard deviation across ten runs with different random seeds.

The algorithms in the four-tensor case show similar trends to the three-tensor case, as shown in Fig-
ure 4.2. The PPO-based algorithms outperform the other algorithms significantly, with PPODSR being
the best performing algorithm. vPPODSR again shows quick initial improvement, but then stagnates
after around 300 training steps. PPODSR, on the other hand, is able to continue improving throughout
the training process, eventually finding better models than vPPODSR.

The greater degree of freedom in the four-tensor case allowed the algorithms to find well performing
models more easily. This is shown by the smaller variance of PPODSR at the start. The four-tensor
case is more methodical, where the improvements are steadier and consistent, compared to the three-
tensor case, where the improvements were more sporadic and depended heavily on finding specific
models. But towards the end of training, the variance increases again, as the algorithms start to explore
more and find different models, due to the larger search space. This shows that the four-tensor case
is overall more stable and easier to learn, but still has a complex search space that requires good
exploration.

4.1.3. k-corrective RANS
The k-corrective RANS provides a correction to the production deficit term 𝑅, which is a scalar quantity,
as explained in subsection 3.11.2, and Figure 3.6b shows a visualisation of the target field. In further
sections, this correction will be referred to as the R correction for brevity. In the case of the R correction,
all algorithms were able to achieve much higher 𝑅2 values compared to the Reynolds stress anisotropy
tensor corrections. This is likely because the R correction is a scalar quantity, making it easier to predict

4.1. Algorithm comparison 51

compared to the tensor quantities. The best model found achieved an 𝑅2 value of 0.822, shown in
Table 4.3, which is significantly higher than the best models found for the other two corrections.

Table 4.3: Best 𝑅2 value obtained for each algorithm for the R correction.

vDSR vPPODSR ACDSR PPODSR

Reward 0.808 0.806 0.816 0.822

In Figure 4.3, the 𝑅2 each algorithm achieves at the start (a random model) is approximately 0.65,
much higher than the starting 𝑅2 values for the other two corrections, which had negative starting 𝑅2
values. This is once again because predicting a scalar quantity is easier, and even a random model is
able to achieve a reasonable 𝑅2 value.

0 200 400 600 800 1000
Steps

0.74

0.76

0.78

0.80

0.82

Re
wa

rd

Best Reward

0 200 400 600 800 1000
Steps

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Re
wa

rd

Average sub batch Reward

0 200 400 600 800 1000
Steps

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Re
wa

rd

Max Reward

R Training Curves

ACDSR
PPODSR
vDSR
vPPODSR

Figure 4.3: Comparison of training curves for different algorithms on the R correction. Shaded areas represent the standard
deviation across ten runs with different random seeds.

But all algorithms other than PPODSR struggle to improve on the R corrections. This is mainly seen in
the maximum reward and the average sub batch reward curves. For the other algorithms, it stagnates
at an 𝑅2 of approximately 0.73, at around 200 steps, and does not improve further. While the scalar
form of the R correction makes it easier to predict, it also means that more information is lost when
calculating the rewards. Differences in models that would lead to significant differences in the tensor
corrections may only lead to small differences in the scalar R correction. This makes it more difficult
for the algorithms to distinguish between good and bad models.

52 4. MADSR results and analysis of discovered models

PPODSR, on the other hand, does manage to escape this local minimum and continues to improve,
reaching an average sub-batch 𝑅2 of approximately 0.80. Since the average of the top-𝜖 models is
performing well in PPODSR, the algorithm is able to explore in that area of the search space more
thoroughly. As shown in the best model curve, the best model found by PPODSR constantly improves,
getting better and better models as training progresses, while the other algorithms do not manage to
find better models after the initial stagnation.

Other algorithms do manage to find at least one good model eventually, and only ever find a few
models that perform better than 0.8. This is likely due to probabilistic luck, as expression generation
is stochastic. The difference between PPODSR and the other algorithms is that when PPODSR gets
lucky and finds a good model, it is able to exploit that and learn from it. PPODSR learnt the structure of
the expressions generated by the agents, and identified which parts of the expressions are beneficial
and which are not, allowing it to further improve on the models it finds.

This is where CTDE proves to be very useful, as it allows the critic to learn the structure of why certain
expressions perform well. Using the value estimates from the critic, the actor can learn which parts
of the expressions are beneficial and which are not. This allows the actor to learn what structures of
expressions are good and to exploit that knowledge to generate better expressions. This is especially
useful in the R correction case, where the reward signal is weak, and it is difficult to distinguish between
good and bad models.

The R correction does not suffer from the critic bias problem seen in the other two corrections. This is
likely because the starting 𝑅2 value is much higher, meaning that most of the initial models sampled do
not lead to large negative advantages. Therefore, the actor manages to learn good policies from the
start and does not suffer from the sharp drop in performance seen in the other two corrections.

4.1.4. Summary of algorithm comparison
EARSM proved to be a difficult problem to model, with low 𝑅2 values achieved for both the three-
tensor and four-tensor corrections. The difficulty of the EARSM problem can be seen from the inputs
and target in section 3.11. The tensor nature of the target makes it a complex problem to model, as
the model needs to capture the behaviour of multiple components of the tensor simultaneously. Each
component of the target also has very different distributions and magnitudes, and the same is true for
the basis tensors. The complex problem thus makes most models have a low 𝑅2 value on average,
making it difficult for the algorithms to learn from good models.

PPODSR was found to be the best performing algorithm across all three corrections models. It outper-
forms specifically on the R correction, where it is able to escape local minima that the other algorithms
get stuck in. Inclusion of PPO improves the performance of the algorithms significantly, as both PPO-
based algorithms outperformed their non-PPO counterparts in all three corrections. While CTDE did
not lead to significant improvements in performance on its own, when combined with PPO, it did lead
to significant improvements, as seen by the performance of PPODSR compared to vPPODSR. A com-
bination of both PPO and CTDE is thus the most effective approach for turbulence model discovery
using MADSR. Therefore, PPODSR is used for all further experiments, and all references to MADSR
refer to PPODSR. And all models found in further sections are trained using PPODSR.

4.2. Analysis of found models
In this section, the best models found by PPODSR for each of the three corrections are analysed
in detail. The models are evaluated based on their interpretability, generalisability, complexity, and
accuracy. All discovered models can be found in Appendix A. An analysis of the best models found
during training is first presented, followed by an analysis of the most generalisable models found.

4.2.1. Best models in training
Equation 4.1, Equation 4.2, and Equation 4.3 show the best performing models found for the correc-
tion with three tensors, four tensors and the R correction, respectively. These were the best models
achieved in training, meaning that they achieved the highest 𝑅2 value only on the training case.

4.2. Analysis of found models 53

Δ𝑏𝑖𝑗 = [𝑒
0.069𝐼2
𝐼21 − 0.562] 𝑇(1)𝑖𝑗 + 𝑒

𝐷𝑘/𝑃𝑘
𝐼1+0.339 𝑇(2)𝑖𝑗 + [1.357𝐼1

+ 1 − 𝑒
𝐼2

𝐼1𝐼2
] 𝑇(3)𝑖𝑗 (4.1)

The best model found for the correction with three tensors is shown in Equation 4.1. This model
achieved an 𝑅2 value of 0.518 on the training case. It can be seen that all terms in the expression
contain an exponential function, indicating that the model relies heavily on exponentials to capture the
behaviour of the Reynolds stress anisotropy tensor. It also uses mostly the 2 invariants 𝐼1 and 𝐼2, with
only one term using 𝐷𝑘/𝑃𝑘.

Δ𝑏𝑖𝑗 =[tanh(
1.85𝐼2
𝐼1

) + 0.545] 𝑇(1)𝑖𝑗 + 0.411
−𝐼2 + 𝐼1 + 0.045

𝑇(2)𝑖𝑗

+ 0.146 − 0.702𝐼1𝐼2
𝑇(3)𝑖𝑗 + 0.5 − 3.05𝐷𝑘/𝑃𝑘

4

𝐼2
𝑇(4)𝑖𝑗

(4.2)

This model achieved an 𝑅2 value of 0.551 on the training case. The second best model found for the
four-tensor correction achieved an 𝑅2 value of only 0.50, showing a significant gap between the best
model and the rest. This indicates that this model is unique in its structure, allowing it to capture the
behaviour of the Reynolds stress anisotropy tensor better than any other model found.

The model is also relatively simple and quite interpretable. All other models found are generally very
complex, with many nested functions and operations. This model, on the other hand, is relatively
straightforward, using modelling terms with simple expressions such as division, addition and hyper-
bolic tangent.

The model does not use any complex functions such as exponentials or logarithms, and only the hyper-
bolic tangent function is used in the first tensor. These functions are readily available for the algorithm
to use, so the fact that the model does not use them indicates that they are not necessary to capture
the behaviour of the Reynolds stress anisotropy tensor in this case. The use of constants in the model
is also lower than the allowed number, with every function only using two constants, while up to three
were allowed.

𝑏𝑅𝑖𝑗 = 92.4 log(−0.982 +
0.0003474

𝐼2
)𝑇(1)𝑖𝑗 + 𝐷𝑘/𝑃𝑘 𝑇(2)𝑖𝑗 + log (−0.00238𝐷𝑘/𝑃𝑘) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ [9.75
(0.00418 − 𝐷𝑘/𝐶𝑘)

(0.00418 − 𝐷𝑘/𝐶𝑘)
2 + 1.0

+ 5.4] 𝜀
(4.3)

The best model found for the R correction is shown in Equation 4.3. This model achieved an 𝑅2 value
of 0.822 on the training case. It can be seen that the model relies heavily on logarithmic functions to
capture the behaviour of the Reynolds stress anisotropy tensor. But there are a lot of spurious constants
in themodel, wheremany constants are close to zero, indicating that they and their corresponding terms
do not contribute much to the model. This indicates that the model is likely overfitting to the training
data, and may not generalise well to other cases.

4.2.2. Best performing models
In section 4.1, the model with the highest 𝑅2 value during training is presented. This means that the
model performed best on the training set, which is the case 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036 and
𝛼𝑃𝐻 = 1.5, 𝐿𝑥/𝐻 = 10.929, 𝐿𝑦/𝐻 = 3.036. However, this does not necessarily mean that this model will
perform best on the other test cases. Therefore, the models need to be evaluated on all test cases to
determine which model generalises best. The definition of best performing model is also ambiguous,
as a model might perform best on one case but poorly on another. So, different definitions of best
performing model are considered here:

• Training: The model that performs best on the training case

• 𝛼𝑃𝐻=1.0: The model that performs best on all 𝛼𝑃𝐻 = 1.0 cases. This is done by concatenating
the data of all 𝛼𝑃𝐻 = 1.0 cases and evaluating the model on that.

54 4. MADSR results and analysis of discovered models

• 𝛼𝑃𝐻=1.5:The model that performs best on all 𝛼𝑃𝐻 = 1.5 cases. Similarly, all data from 𝛼𝑃𝐻 = 1.5
cases is concatenated, and the model is evaluated on that.

• All: The model that performs best on all cases. All data from both 𝛼𝑃𝐻 = 1.0 and 𝛼𝑃𝐻 = 1.5 cases
is concatenated, and the model is evaluated on that.

• Mean: The model with the highest mean 𝑅2 across all cases. The data is not concatenated here;
instead, the model is evaluated on each case individually, and the mean performance is taken.

The performance metric used here is the 𝑅2 value, which is the same metric used during training. The
performance of the best models will be shown in a table like Table 4.4.

Three-tensor Δ𝑏𝑖𝑗 correction
The performance of the best models, and which category they were best at, is shown in the table
Table 4.4. The performance of each model in all metrics is also shown.

Table 4.4: Best performing models for the correction with three tensors.

Model Best in Training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 All Mean

𝑀1 Training, 𝛼𝑃𝐻=1.5, all, mean 0.518 0.282 0.443 0.368 0.347

𝑀2 𝛼𝑃𝐻=1.0 0.498 0.285 0.424 0.359 0.344

From Table 4.4 it can be seen that the model that performed best on the training case, also performed
best on most other metrics. This indicates that the model generalises well to other cases and is not
overfitting to the training data. The only exception is that the model does not perform best on the 𝛼𝑃𝐻 =
1.0 cases, where a different model𝑀2 performs slightly better. However, the difference in performance
between 𝑀1 and 𝑀2 in the 𝛼𝑃𝐻 = 1.0 cases is only 0.003, which is very small compared to the overall
performance difference between 𝑀1 and 𝑀2.

Four-tensor Δ𝑏𝑖𝑗 correction
A similar trend can be seen here as well in Table 4.5. The model that performed best on the training
case also performed best on most other metrics. The only exception is the model that performed best
on the 𝛼𝑃𝐻 = 1.0 cases, which is a different model 𝑀2. Unlike the previous case, 𝑀2 had a significantly
better performance in the 𝛼𝑃𝐻 = 1.0 case, with a difference of 0.012 compared to𝑀1. But𝑀2 performed
very poorly in all other cases, indicating that it has overfit heavily to the 𝛼𝑃𝐻 = 1.0 cases. Thus, 𝑀1 is
still the most generalisable model found here, as it performs well across all cases without overfitting to
any specific case.

Table 4.5: Best performing models for the correction with four tensors.

Model Best in training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 All Mean

𝑀1 Training, 𝛼𝑃𝐻=1.5, all, mean 0.551 0.358 0.459 0.418 0.389

𝑀2 𝛼𝑃𝐻=1.0 0.37 0.37 0.294 0.37 0.324

R correction
In the R correction, four models were identified that each had their own strengths. This is quite different
from the Reynolds stress corrections, where one model was able to perform well across most cases.
Here, there is more variety with different models excelling in different areas. Model 𝑀1 that did best
in the training case performed poorly in most other cases, except the case where 𝛼𝑃𝐻 = 1.5. This
suggests that the model overfitted to 𝛼𝑃𝐻 = 1.5, and is not able to generalise well to other cases. This
shows that the training set is quite biased towards 𝛼𝑃𝐻 = 1.5 in the R correction, and the model has
learned to perform better in that case, at the expense of performance in other cases.

4.3. Further optimised models 55

Table 4.6: Best performing models for the R correction.

Model Best in Training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 All Mean

𝑀1 Training 0.822 0.376 0.851 0.481 0.769

𝑀2 𝛼𝑃𝐻=1.0 0.816 0.394 0.828 0.49 0.76

𝑀3 𝛼𝑃𝐻=1.5 0.814 0.376 0.858 0.483 0.764

𝑀4 All, mean 0.82 0.39 0.854 0.493 0.78

The models 𝑀2 and 𝑀3 overfit to 𝛼𝑃𝐻 = 1.0 and 1.5, respectively, achieving the best performance
in those cases. The overfitting is more obvious when the performance of the models in their non-
favoured 𝛼𝑃𝐻 is observed. 𝑀2 performs poorly in 𝛼𝑃𝐻 = 1.5, achieving an 𝑅2 value of only 0.828, while
𝑀3 performs poorly in 𝛼𝑃𝐻 = 1.0, achieving an 𝑅2 value of only 0.376. But an interesting thing to note
about 𝑀2 is that the performance in the full dataset is quite good, achieving an 𝑅2 value of 0.49, which
is comparable to the best model 𝑀4. This indicates that overfitting to 𝛼𝑃𝐻 = 1.0 is more beneficial for
generalisability to the full dataset, compared to overfitting to 𝛼𝑃𝐻 = 1.5.

𝑀4 achieved the best performance in the full dataset, as well as the best mean performance across
all cases. 𝑀4 was quite different from the other models, as it did not overfit to any specific case. It
achieved an 𝑅2 value of around 0.82 in the training case, and also good performance in both 𝛼𝑃𝐻 =
1.0 and 1.5 cases, having only a 0.004 difference from the best models in those cases. This indicates
that 𝑀4 is the most generalisable model found, as it is able to perform well across all cases without
overfitting to any specific case.

4.3. Further optimised models
To achieve more generalisability, further optimisation was performed on all models found during train-
ing. These models have many coefficients in them, and they can be further optimised to find better
coefficients that generalise better across all cases. The equations of all models were taken, and the
coefficients were further optimised using the full dataset, instead of just the training case. The opti-
misation was done using the same optimisation method as used during training, which is the BFGS
algorithm from scipy. The optimisation only changes the coefficients in the models, while keeping the
structure of the models the same.

Three-tensor Δ𝑏𝑖𝑗 correction
The performance of 𝑀1 across all metrics is shown in the Table 4.7. After optimisation, it was found
that 𝑀1 outperformed all other models across all metrics. The 𝑅2 value increases by quite a lot in the
full cases, improving from 0.368 to 0.393. The biggest improvement was seen in the 𝛼𝑃𝐻 = 1.0 cases,
where the 𝑅2 value improved from 0.282 to 0.352, a significant improvement. But performance in the
𝛼𝑃𝐻 = 1.5 cases decreased quite significantly, from 0.443 to 0.397. This indicates that the optimisation
has focused more on improving performance in the 𝛼𝑃𝐻 = 1.0 cases, at the expense of performance in
the 𝛼𝑃𝐻 = 1.5 cases. The final optimised model is shown in Equation 4.4, where this model is the final
model used for evaluation.

Table 4.7: Best performing optimised model for the correction with three tensors.

Model Training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 all Mean

𝑀1 0.497 0.352 0.397 0.393 0.368

Δ𝑏𝑖𝑗 = [𝑒
0.0464𝐼2

𝐼21 − 0.63] 𝑇(1)𝑖𝑗 + 𝑒
𝐷𝑘/𝑃𝑘
𝐼1+0.346 𝑇(2)𝑖𝑗 + [1.304𝐼1

+ 1.0 − 𝑒
𝐼2

𝐼1𝐼2
] 𝑇(3)𝑖𝑗 (4.4)

56 4. MADSR results and analysis of discovered models

Four-tensor Δ𝑏𝑖𝑗 correction
The performance of 𝑀1 across all metrics is shown in the Table 4.8. Similarly to the three-tensor case,
it was found that 𝑀1 outperformed all other models across all metrics after optimisation. The biggest
improvement was seen in the 𝛼𝑃𝐻 = 1.0 cases, where the 𝑅2 value improved from 0.358 to 0.413, a
significant improvement. This improvement in performance on the 𝛼𝑃𝐻 = 1.0 cases also led to a large
improvement in the mean performance, which improved from 0.389 to 0.423. Unlike the three-tensor
case, performance in the 𝛼𝑃𝐻 = 1.5 cases also improved, increasing from 0.459 to 0.463.

Table 4.8: Best performing optimised model for the correction with four tensors.

Model Training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 all Mean

𝑀1 0.525 0.413 0.463 0.449 0.423

While the 𝑅2 value of the training case decreased, it is more important for the model to generalise
well across all cases, rather than just performing well in the training case. Therefore, optimising the
coefficients of the model was beneficial in improving its overall performance. The optimised model is
shown in Equation 4.5, and this is the final model used for evaluation.

Δ𝑏𝑖𝑗 = [tanh (
1.467𝐼2
𝐼1

) + 0.52] 𝑇(1)𝑖𝑗 + 0.33
−𝐼2 + 𝐼1 + 0.0233

𝑇(2)𝑖𝑗

+ 0.121 − 0.484𝐼1𝐼2
𝑇(3)𝑖𝑗 + 0.405 − 2.16𝐷𝑘/𝑃𝑘

4

𝐼2
𝑇(4)𝑖𝑗

(4.5)

R correction
Unlike the Δ𝑏𝑖𝑗 corrections, optimising the coefficients of the R correction models did not lead to sig-
nificant improvements in performance. As shown in Table 4.9, the performance of all models only
increased slightly with the optimisation, and the relative performance between the models remained
the same, where every model still retained its position as the best model for its respective metric.
Thus, optimisation of the coefficients did not lead to significant improvements in performance for the R
correction models. Thus, further analysis needs to be done on the models found during training.

Table 4.9: Best performing optimised models for the R correction.

Model Best in Training 𝛼𝑃𝐻=1.0 𝛼𝑃𝐻=1.5 All Mean

𝑀1 Training 0.814 0.385 0.861 0.49 0.775

𝑀2 𝛼𝑃𝐻=1.0 0.8 0.396 0.849 0.496 0.748

𝑀3 𝛼𝑃𝐻=1.5 0.802 0.383 0.868 0.49 0.77

𝑀4 All, Mean 0.811 0.394 0.855 0.496 0.776

4.4. Ablation study
To further understand the impact and contribution of each tensor term in the discovered models, an
ablation study was performed on the best-performing model obtained during training. In this study,
each coefficient function 𝛼(𝑛) was systematically set to zero, thereby removing the corresponding tensor
basis term 𝑇(𝑛)𝑖𝑗 from the model.

To assess the influence of individual and combined terms, all possible combinations of tensor removals
were evaluated. This includes removing one tensor at a time, pairs of tensors, triplets, and so on, up to
removing all but one tensor. For each ablation configuration, the coefficients were re-optimised using
the BFGS algorithm on the full dataset to ensure that the remaining terms were adjusted optimally in

4.4. Ablation study 57

the absence of the removed tensors. The modified model was then re-evaluated on the dataset, and
its performance was compared to that of the original full model. This procedure was applied to all
corrections considered in this work, including the three-tensor, four-tensor, and 𝑅-correction models.

4.4.1. Δ𝑏𝑖𝑗 correction
For the Δ𝑏𝑖𝑗 correction with three and four tensors, no meaningful patterns were observed in the abla-
tion results. The removal of any individual tensor term led to a significant drop in model performance,
indicating that each tensor contributed substantially to the overall predictive capability of the model,
and is very co-dependent on each other. Even with the re-optimisation of coefficients, none of the ab-
lated models were able to approach the performance of the full model. This suggests that the discov-
ered models rely on a complex interplay between all tensor terms to accurately capture the underlying
physics of the Reynolds stress anisotropy tensor.

4.4.2. R correction
The ablation study for the 𝑅 correction model revealed more nuanced insights into the contributions
of individual tensor terms. As shown in Figure 4.4, the removal of certain tensor terms had a more
pronounced effect on model performance than others. Specifically, the removal of the epsilon term
led to the most significant decrease in the 𝑅2 value. Any ablation that does not include epsilon sees
a huge drop in performance. This indicates that the epsilon term plays a crucial role in capturing the
Production deficit in the flow and is essential for accurate predictions.

(0
,)

(1
,)

(2
,)

(
,)

(0
, 1

)

(0
, 2

)

(0
,

)

(1
, 2

)

(1
,

)

(2
,

)

(0
, 1

, 2
)

(0
, 1

,
)

(0
, 2

,
)

(1
, 2

,
)

(0
, 1

, 2
,

)

Combination

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Re
wa

rd

Effect of each combination across experiments

Figure 4.4: 𝑅2 values for different ablation combinations of the 𝑅 correction model. Each bar represents a different combination
of input features, with the full model on the far right. Each colour represents a different model from the best performing models.

The removal of the first tensor term also resulted in a noticeable decline in performance, albeit less
severe than that observed with the epsilon term. It can be seen that for the ablations with only 2 terms,
the ones that include the first tensor term performed significantly better than those that do not. This
suggests that the first tensor term also contributes meaningfully to the model’s predictive capability.

The second and third tensor terms appeared to have a very minor impact on model performance when
removed individually. Ablations excluding these terms did not exhibit substantial drops in 𝑅2 value, as
long as the epsilon and first tensor terms were retained. In certain models, some ablations of terms
two or three, after coefficient optimisation, even led to improvements in performance compared to the

58 4. MADSR results and analysis of discovered models

full model. This indicates that while these terms may provide some additional information, they mainly
act as components that refine the model, rather than being critical for its overall accuracy.

The redundancy of the 2nd and 3rd tensor terms is further highlighted by an observation that was made
during training. During training, it was observed that all good models found tended to have very similar
structures for the first tensor term and the epsilon term, while the 2nd and 3rd tensor terms varied
significantly between different good models. This is reflected in the best models found during training
as well, which can be found in Appendix A, where the 2nd and 3rd tensor terms have very different
structures in the best models, while the first tensor term and epsilon term are quite similar.

For the first tensor term, the equations generally have some form of log (𝐼2). This occurred in many
runs, but in very different forms, such as log (𝐼2 + 𝑐1)/𝐼2, (log (𝐼2 + 𝑐2))2, or log (𝑐3 + log 𝑐4𝐼2). This
indicates that the model relies on some logarithmic relationship with 𝐼2 to capture the behaviour of the
R term.

For the epsilon term, the equations generally have some form of 𝑐1 ⋅𝑅_𝑑𝑖𝑣(𝐷𝑘/𝐶𝑘)+𝑐2, where 𝑅_𝑑𝑖𝑣 is
the regularised division operation defined in subsection 3.6.1. This indicates that 𝑅_𝑑𝑖𝑣 and 𝐷𝑘/𝐶𝑘 are
important in capturing the behaviour of the R term. In Buchanan et al., 2025, one of the best models
found for the R correction using sparse regression was 𝑐1 ⋅ 𝑅_𝑑𝑖𝑣((𝐷𝑘/𝐶𝑘)/𝑐2), which is very similar to
the forms found here. Hoefnagel, 2023 also found that a good model for the R correction can be just a
constant multiplied by epsilon, without any other terms. Thus, a combination of these two observations
have been found by MADSR, resulting in the final model for the R correction is shown in Equation 4.6.

𝑅 = 2𝑘 [−2.66 + log (𝐼2 + 0.972)
𝐼2

] 𝑇(1)𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ [−10.1 ⋅ 𝐷𝑘/𝐶𝑘
𝐷𝑘/𝐶𝑘2 + 1

+ 5.3] 𝜀 (4.6)

Compared to the coefficients found in Buchanan et al., 2025, the coefficients found here are a mag-
nitude higher. This is likely due to the different way 𝜖 is defined here. In Buchanan et al., 2025, 𝜖 is
defined as 𝑘𝜔, while it is defined as 0.09𝑘𝜔 here. This coefficient of 0.09 comes from the standard
𝑘 − 𝜔 SST turbulence model formulation, but it was not applied in RITA, as there are coefficients as-
sociated with each model term that can absorb this scaling factor. This scaling factor of 0.09 leads to
a difference in the coefficients found here compared to Buchanan et al., 2025.

4.5. Flow field analysis
Now that the best models have been identified and optimised, it is important to visualise the predicted
fields to analyse where the models perform well and where they struggle. This section presents visual
comparisons between the true and predicted fields for the best-performing models in each correction
category. All plots are clipped between -1 and 1 for better visualisation, as some areas in the domain
have very high errors that would skew the colour map otherwise.

4.5.1. 𝛼𝑃𝐻 = 1.0
The following analysis focuses on the case with 𝛼𝑃𝐻 = 1.0, Lx/H = 9 and Ly/H = 3.036. This case is
chosen as it is one of the training cases, so the models should perform well here.

Three tensor Δ𝑏𝑖𝑗 correction
Figure 4.5 shows the difference between the true and predicted Reynolds stress anisotropy tensor
𝑒(Δ𝑏𝑖𝑗) correction using the three-tensor model for the case with 𝛼𝑃𝐻 = 1.0, Lx/H = 9 and Ly/H = 3.036.
The left plot shows the difference in the full domain, while the right plot shows the difference only in the
shear region classified by RITA. From Figure 4.5b, it can be seen that the model performs quite well
in the shear region, with only small errors seen in most areas, for all components of the tensor. The
model struggles the most in the reattached flow region, where most of the errors are concentrated. This
indicates that the model is not able to capture the complex flow behaviour in that region well, leading
to larger errors.

4.5. Flow field analysis 59

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using a three-tensor
model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using a three-tensor
model, in the RITA classified shear region.

Figure 4.5: Difference in predicted vs true Δ𝑏𝑖𝑗, 𝑒(Δ𝑏𝑖𝑗) = ̂Δ𝑏𝑖𝑗 − Δ𝑏𝑖𝑗, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036, using the
three-tensor model. Red indicates overprediction, where the model predicts a higher anisotropy than the true values, while blue

indicates underprediction. White regions indicate no difference between the predicted and true Δ𝑏𝑖𝑗.

The model also predicts the xy and yy components quite well in the shear region, with only small errors
seen throughout. The xx and zz components have larger errors compared to the other two components,
indicating that the model is not able to capture those components as well.

Figure 4.5a shows the performance of the model in the full domain. There is a large line seen at the
top of the domain for all components. This feature mainly comes from the input features and basis
tensors. From Figure 3.3, it can be seen that in this region, the second invariant has values that are
close to zero. The flow in this region is uniform, and so the velocity gradients are zero. Thus, in the
model, there are divisions by zero or very small numbers, leading to large spikes in the output. The
models are trained only on the shear region, so they did not learn how to handle the zeros in the input

60 4. MADSR results and analysis of discovered models

features and basis tensors.

The model also struggles a lot near the wall. Large errors are seen along the wall for all components,
where the errors have a value of 1 or -1. As the values in the field are clipped between -1 and 1, this
means that the model is making very large errors that are even larger than 1 in magnitude. Similarly to
the region at the top of the domain, there are also some values of zero in the input features near the
wall, as seen in Figure 3.3. This indicates that the model is very inaccurate near the wall, and is not
able to generalise to the near wall at all.

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using a four-tensor
model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using a four-tensor
model, in the RITA classified shear region.

Figure 4.6: Difference in predicted vs true Δ𝑏𝑖𝑗, 𝑒(Δ𝑏𝑖𝑗) = ̂Δ𝑏𝑖𝑗 − Δ𝑏𝑖𝑗, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036, using the four-tensor
model. Red indicates overprediction, where the model predicts a higher anisotropy than the true value, while blue indicates

underprediction. White regions indicate no difference between the predicted and true Δ𝑏𝑖𝑗.

4.5. Flow field analysis 61

Four tensor Δ𝑏𝑖𝑗 correction
Figure 4.6 shows the difference between the true and predicted Reynolds stress anisotropy tensor
corrections. The four-tensor correction has lower errors overall compared to the three-tensor correction.
This is expected, since the four-tensor model has more degrees of freedom, allowing it to fit the data
better. Similar to the three-tensor model, the largest errors are seen in the reattached flow region.

In the full domain, the four-tensor model has more error throughout the domain, outside the shear
region, in the region that should have simpler flow behaviour. The error is quite uniform throughout
the domain, indicating that the model is not able to generalise towards the regions with simpler flow
behaviour.

But while the four-tensor model has more error outside the shear region, it has lower error at the
near-wall region compared to the three-tensor model. The large errors seen along the wall in the three-
tensor model are not present in the four-tensor model in all components. In the xy and yy components,
the errors along the wall are even small, indicating that the four-tensor model is able to generalise to
near-wall effects better.

R correction
Figure 4.7 shows the true and predicted turbulence production deficit using the R correction model. The
true R is mostly zero everywhere, except in the separation region at the start of the drop, reattached
region, and on the walls at the bottom of the domain. The model was able to capture the structure at
the separation point quite well and was also able to predict, to an extent, the reattached region.

(a) True 𝑅. (b) Predicted 𝑅 using the R correction model.

Figure 4.7: Plots of the true and predicted 𝑅 for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036.

Figure 4.8 shows the prediction capabilities of the R correction model in more detail. The model, while
capable of predicting the separation region at the start, underpredicts the magnitude of the production
deficit there. Looking at Figure 4.8b, specifically at the separation region, the model is seen to un-
derpredict in general, while also overpredicting the production deficit slightly at the bottom part of the
separation region.

At the reattached region, the true field seems to be quite noisy, with many small regions of high or low
production. But the model is able to capture an overall trend of a slight positive production deficit in that
region, although it misses many of the smaller structures seen in the true field. In the middle, where
the production deficit is mostly zero, the model predicted that well, with only small errors seen.

The performance outside the shear region is quite good in general, since most of the field is zero
there. However, the slight non-zero production deficit at the bottom wall is not predicted by the model
at all. This means that the model is once again not able to capture near-wall effects well, similar to the
Reynolds stress anisotropy tensor corrections.

62 4. MADSR results and analysis of discovered models

(a) Difference between the true and predicted R using the final R
correction model, in the full domain.

(b) Difference between the true and predicted R using the final R
correction model, in the RITA classified shear region.

Figure 4.8: Difference in predicted vs true R, 𝑒(𝑅) = 𝑅̂ − 𝑅, for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. Red indicates overprediction,
where the model predicts a higher production deficit than the true R, while blue indicates underprediction. White regions

indicate no difference between the predicted and true R.

A plot of the input feature 𝜀 is also visualised in Figure 4.9a. This analysis is to visualise the input
features used in the R correction model. It can be seen that epsilon has a very similar structure to the
true R field, with high values at the separation region, but it does not have any values at the reattachment
region. Since the values at the separation region are the highest, epsilon is able to capture most of the
production deficit there. This explains the high importance of epsilon seen in the ablation study.
The other input feature 2𝑘𝑇(1)𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

, is visualised in Figure 4.9b. This feature was seen to be less im-
portant than epsilon in the ablation study, but it still contributed significantly to the model performance.
It can be seen that this feature has non-zero values at both the separation and reattached regions.
While the structure at the separation region is not as similar to the true R field, the reattached region is
captured quite well. This indicates that this feature is mainly responsible for predicting the production
deficit at the reattached region, while epsilon is mainly responsible for predicting the production deficit
at the separation region. But neither feature has non-zero values at the wall region, explaining why the
model is not able to predict the production deficit there.

(a) Plot of the input feature 𝜀. (b) Plot of the input feature 2𝑘𝑇(1)𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

.

Figure 4.9: Plots of the 2 input features used in the R correction model for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036.

4.5. Flow field analysis 63

This effect is more obvious when looking at the corresponding plots of the models found by MADSR.
In Figure 4.10a, the model found by MADSR for the first tensor term is visualised. It can be seen that
within the shear region, there are only values at the reattachment region. This filters out the positive
values of the first tensor term at the separation region, and only retains the values at the reattachment
region. Outside the shear region, the model also has non-zero values along the wall and along the top
of the domain. These values mainly come from the 1/𝐼2 term in the model, as 𝐼2 approaches zero in
these regions, leading to high values of the model. But in the first tensor term, these values are filtered
out by the basis tensor itself, which is zero in these regions.

In Figure 4.10b, the model found by MADSR has a uniform value throughout the domain of around
0.25. This means that the model is mainly scaling epsilon by a constant factor to predict the production
deficit. The contribution of the 𝑅_𝑑𝑖𝑣 term comes from the beginning of the shear region, where the
values of R are slightly higher than the rest of the domain. This indicates that the model is mainly relying
on epsilon to predict the production deficit, with some small adjustments made by the 𝑅_𝑑𝑖𝑣 term.

(a) Plot of the model for the first tensor term. (b) Plot of the model for the 𝜖 term.

Figure 4.10: Plots of the 2 input features used in the R correction model for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036.

4.5.2. 𝛼𝑃𝐻 = 1.5
Δ𝑏𝑖𝑗 correction
For the 𝛼𝑃𝐻 = 1.5 case, the visualisations of the Reynolds stress anisotropy tensor corrections are
similar to the 𝛼𝑃𝐻 = 1.0 case for both the three and four-tensor models, so they are not shown here for
brevity. The only difference is that the errors are generally lower overall, since the flow is less complex
in this case. The model is able to predict the shear region well, with only small errors seen throughout.
The visualisations can be found in Appendix B.

R correction
Figure 4.11 shows the true and predicted turbulence production deficit using the R correction model
for the case with 𝛼𝑃𝐻 = 1.5, Lx/H = 10.929 and Ly/H = 3.036. The true field is again mostly zero
everywhere, except in the separation region at the start of the drop, but the reattachment region has
almost no production deficit at all, unlike the 𝛼𝑃𝐻 = 1.0 case. Since the separation in this case is milder,
the values of the production deficit are much lower in magnitude as well. In this case, the model is able
to capture the structure at the separation point quite well and does not predict any production deficit at
the reattachment region, which is correct.

In Figure 4.12, the model can predict the production deficit much better than in the 𝛼𝑃𝐻 = 1.0 case. The
error is much smaller overall, with only small regions of under- and over-prediction seen. The model
still underpredicts the magnitude of the production deficit, and then again overpredicts slightly at the

64 4. MADSR results and analysis of discovered models

(a) True 𝑅. (b) Predicted 𝑅 using the R correction model.

Figure 4.11: Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036.

bottom part of the separation region. However, similar to the 𝛼𝑃𝐻 = 1.0 case, the model still does not
predict the near-wall effects seen at the bottom wall of the domain.

(a) Difference between the true and predicted R using the final R
correction model, in the full domain.

(b) Difference between the true and predicted R using the final R
correction model, in the RITA classified shear region.

Figure 4.12: Difference in predicted vs true R, 𝑒(𝑅) = 𝑅̂ − 𝑅, for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036. Red indicates
overprediction, where the model predicts a higher production deficit than the true R, while blue indicates underprediction. White

regions indicate no difference between the predicted and true R.

4.5.3. Summary of the flow field analysis

In general, all models were able to predict the shear region well for both Reynolds stress anisotropy
tensor corrections and the R correction. Most of the errors were concentrated in the reattached flow
region at the leeward side of the domain. All models also fail to predict near-wall effects well. Especially
for the Δ𝑏𝑖𝑗 corrections, where large errors were seen along the wall in many cases.

Additionally, observation of the structure of the input features and models used in the R correction
provided insights into the importance of each term in predicting different regions of the production
deficit. Epsilon was found to be crucial for capturing the separation region, while the first tensor term
was more important for predicting the reattachment region.

5
Conclusions

The Reynolds-Averaged Navier-Stokes (RANS) equations contain closure terms that must be modelled
to represent the effects of turbulence on the mean flow. In practice, these are commonly closed with
eddy-viscosity models under the Boussinesq approximation, which imposes a linear relation between
the Reynolds stress anisotropy and the mean strain rate. While effective for many attached flows, such
linear closures struggle in shear layers of separated flows. The explicit algebraic Reynolds-stress mod-
els (EARSM) seek to encode these effects via tensor-basis expansions with scalar coefficient functions.
Data-driven approaches have been increasingly used to perform EARSM by learning from high-fidelity
simulation data. Among these methods, symbolic regression is particularly valuable because it dis-
covers analytical expressions that remain interpretable while improving model accuracy. This balance
between data-driven correction and physical interpretability makes symbolic regression a promising
tool for advancing turbulence modelling and for producing corrections that can be analysed.

Deep symbolic regression (DSR) has recently emerged as a symbolic regression technique that lever-
ages deep learning to efficiently explore the space of mathematical expressions. By training neural
networks to generate candidate expressions and using reinforcement learning to guide the search,
DSR can discover compact and accurate models for complex systems. But applying DSR to turbulence
modelling presents challenges, as DSR does regression for single equations, while EARSM requires
learning multiple coefficient functions simultaneously.

In this work, it was observed that the coefficient functions in EARSM form a cooperative multi-agent
problem, where each coefficient function contributes to the overall model performance. DSR also pro-
poses a reinforcement learning framework for symbolic regression. Therefore, we propose to extend
DSR to a multi-agent setting, where each agent learns to generate one coefficient function, and the
agents cooperate to optimise the overall EARSM performance. By reformulating the EARSM symbolic
regression problem as a multi-agent reinforcement learning task and using DSR as the underlying
symbolic regressor, modern multi-agent reinforcement learning algorithms can be employed to train
the agents to cooperatively discover accurate and interpretable EARSM closures. Thus, the research
question addressed in this work is:

How can multi-agent reinforcement learning techniques be integrated with deep symbolic
regression to perform symbolic turbulence modelling?

To answer the research question, several sub-questions were investigated:

1. What MARL algorithms are best suited for cooperative symbolic regression tasks, and
how can they be integrated with DSR?
Throughout this work, several algorithmic variants of the Multi-Agent Deep Symbolic Regression
(MADSR) framework were developed to investigate how different reinforcement learning strate-
gies affect symbolic model discovery. The baseline formulation, the vanilla MADSR, extended
the Deep Symbolic Regression (DSR) algorithm into a multi-agent setting, where each agent

65

66 5. Conclusions

independently learned one scalar coefficient function while sharing a common reward. This sim-
ple extension already demonstrated the advantages of cooperative learning over the standard
single-agent DSR. Building upon it, the PPO-based variant (vPPODSR) introduced the clipping
mechanism of proximal policy optimisation(PPO) to stabilise training and allow multiple gradient
updates per batch, improving convergence speed and robustness.
To further enhance coordination between agents and reduce the high-variance gradient estimates
inherent to REINFORCE, an actor-critic variant (ACDSR) was developed. This was inspired
based on the multi-agent proximal policy optimization (MAPPO) algorithm by Yu et al., 2022,
which uses a centralised critic and decentralised execution (CTDE) paradigm to provide more
informative feedback to each agent. Finally, a PPO version of ACDSR was implemented, which
combined the sample efficiency of PPO with the CTDE framework, resulting in the PPODSR
algorithm.

2. How does integrating MARL techniques impact the efficiency of learning and the quality
of discovered expressions compared to base DSR?
All MADSR variants were tested on the challenging EARSM symbolic regression task. The im-
plementation of PPO, instead of REINFORCE or actor-critic, was found to be the most effective
in improving the learning efficiency of the algorithms. Both vPPODSR and PPODSR significantly
outperformed the vanilla MADSR and ACDSR in terms of average and best reward in 1000 train-
ing steps. This indicates that the PPO clipping mechanism effectively stabilised training and
allowed for more efficient policy updates, leading to faster convergence towards high-quality so-
lutions.
TheCTDE framework used in ACDSR and PPODSR also contributed to improved performance by
enabling better coordination among agents. However, the benefits of CTDE onlymanifested when
combined with PPO, as ACDSR did not outperform the vanilla MADSR. This is due to critic bias,
whichmisleads policy updates when the critic is not well-trained, in which case themultiple epochs
of PPO help to mitigate this issue. PPODSR achieved the highest average and best rewards,
demonstrating that the combination of PPO and CTDE provides the most effective framework for
cooperative symbolic regression. CTDE was able to allow the agents to better understand their
joint impact on the overall EARSM performance, and learn the underlying structure of the target
expressions more effectively, allowing PPODSR to discover much better expressions than the
other algorithms.

3. How does the multi-agent DSR framework perform in discovering EARSM closures and
k-corrective RANS models?
The EARSM correction to regress a Δ𝑏𝑖𝑗 was found to be too challenging for all MADSR variants,
as none were able to discover symbolic expressions that had an 𝑅2 score above 0.55 on the
frozen RANS evaluation. Both a three-tensor and four-tensor basis EARSM were considered,
where both formulations proved too complex for the MADSR algorithms to learn effectively. The
high complexity of a tensor regression, where multiple tensor basis components interact to form
the final Reynolds stress anisotropy, made the search space too large for the MADSR algorithms
to explore.
However, in the case of the k-corrective frozen RANS evaluation, where only a single scalar cor-
rection to the turbulent kinetic energy production deficit was learned, the MADSR algorithms were
able to discover accurate and interpretable EARSM closures. An 𝑅2 score of 0.8 was achieved
by every algorithm, with PPODSR again achieving the best performance.

4. Is a multi-agent DSR approach capable of discovering accurate and interpretable EARSM
closures?
The models discovered during training for the Δ𝑏𝑖𝑗 problem were found to be quite generalisable
toward the test set, with only a small drop in 𝑅2 performance from training to testing. A further opti-
misation of the coefficients in the discovered expressions further improved the test 𝑅2 scores. The
𝑅 correction models discovered were much less generalisable, where different models achieved
very different test performances for different metrics. Even with coefficient optimisation, there
were almost no changes in test performance, indicating that the discovered expressions were
overfitted to the training data.

5.1. Limitations 67

An ablation study of the basis tensors was also done to observe the impact of each tensor. All
basis tensors were found to be equally important for the Δ𝑏𝑖𝑗, where the 𝑅2 value decreased
a very large amount when any tensors were removed. The epsilon term was found to be the
most critical, as removing it caused a significant drop in performance. The first basis tensor
also contributed meaningfully, where removing it led to a moderate decrease in accuracy. The
second and third tensors were found to be completely redundant for this task, as removing either
had a negligible impact, or even improved performance. This insight suggests that for the k-
corrective task, a simplified EARSM formulation using only the epsilon and first basis tensor may
be sufficient, reducing model complexity while maintaining accuracy.
An analysis of the models discovered also revealed insightful patterns. The algorithms consis-
tently identified certain mathematical structures, where all runs that achieved high accuracy con-
tained similar sub-expressions. For the 𝜀 coefficient function, 𝑐1 ⋅ 𝑅𝑑𝑖𝑣(𝐷𝑘/𝑃𝑘) + 𝑐2 terms were
commonly found, reproducing a result found by Buchanan et al., 2025. Additionally, the log(𝐼2)/𝐼2
structure was frequently discovered for the first tensor. These recurring patterns highlight the abil-
ity of the MADSR framework to uncover meaningful and interpretable expressions that align with
established turbulence modelling concepts.

In conclusion, the integration of advanced MARL methods like PPO and CTDE in PPODSR signifi-
cantly enhanced learning efficiency and model quality compared to base DSR. It was able to identify
structures in the k-corrective task, demonstrating the potential of multi-agent DSR for symbolic turbu-
lence modelling. However, the complexity of full tensor-based EARSM remains a challenge, indicating
avenues for future research.

5.1. Limitations
One key limitation of MADSR is the computational cost of coefficient optimisation. This is the bottleneck
of the entire MADSR framework, as coefficients are really powerful and are able to help the discovered
expressions fit the data much better. However, optimising coefficients requires multiple evaluations of
the frozen RANS solver, which is computationally expensive. The agents learn that coefficients are
important for maximising reward, and thus frequently propose new expressions that require coefficient
optimisation. This leads to a large number of coefficients to be optimised, which significantly slows
down training. Coefficient optimisation made up around 90% of the total training time for all MADSR
variants. Future work could explore more efficient coefficient optimisation methods or surrogate models
to approximate the frozen RANS evaluations, to reduce this computational burden.

One of the main constraints of this work was the time available to implement and test the various
MADSR algorithms. Due to the complexity of integrating MARL techniques with DSR, significant ef-
fort was required to develop, debug and optimise the algorithms. As a result, only a limited number
of MARL variants could be explored, and extensive hyperparameter tuning was not feasible. Only
MAPPO was able to be developed, tested and analysed in depth, while other MARL algorithms, such
as counterfactual multi-agent policy gradients (COMA) by Foerster et al., 2018, were proposed but did
not reach the implementation stage.

There was also limited time for inference of the discovered models in a RANS simulation. While frozen
RANS evaluations provided a useful proxy for assessing model performance, a full RANS simulation
would have offered a more comprehensive evaluation of the discovered EARSM closures. However,
due to time constraints, only frozen RANS tests were conducted, leaving the true performance of the
models in practical simulations unverified.

5.2. Recommendations for future work
GP-meld, and uDSR by Mundhenk et al., 2021 and Landajuela et al., 2022 respectively, are two recent
symbolic regression algorithms that were built upon DSR and have shown promising results in symbolic
regression. Future work could explore integrating these other symbolic regression techniques into
the MADSR framework to see if they can further enhance the performance of multi-agent symbolic
turbulence modelling.

68 5. Conclusions

COMA by Foerster et al., 2018 is another MARL algorithm that further improves upon the CTDE frame-
work by using a counterfactual baseline to learn more effective policies. Implementing a COMA-based
MADSR variant could provide additional insights into how different MARL strategies impact cooperative
symbolic regression.

A
Found models

A.1. Three tensor models
Δ𝑏𝑖𝑗 =

log (−0.6073516𝐼1 − 0.9701)
𝐼1

𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 (6.67375731 − 3.066198𝐼1) + 𝐷𝑘/𝑃𝑘 𝑇(2)𝑖𝑗

+ 2𝐼1 + 8.0494 log (𝐼2) + 32.97330𝑇(3)𝑖𝑗

(A.1)

Δ𝑏𝑖𝑗 = 𝐼2 − 0.219538 +
log (𝐼1) + 3.33445

11.11857859 (0.299899 log (𝐼1) + 1)
2 + 1.0

𝑇(1)𝑖𝑗

+ 7.088580 (0.3755954𝐼2 + 0.3755954 log (𝐷𝑘/𝑃𝑘) + 1)
2 𝑇(2)𝑖𝑗

+ 𝐼1 + 𝐼2 + 7.9757805 log (𝐼2) + 32.74024𝑇(3)𝑖𝑗

(A.2)

Δ𝑏𝑖𝑗 = −0.22994212 +
tanh (log (𝐼1) + 3.32426210)

tanh2 (log (𝐼1) + 3.324262) + 1.0
𝑇(1)𝑖𝑗

+ 5.1438855 tanh (𝐷𝑘/𝑃𝑘) + 1.3907924𝑇(2)𝑖𝑗

+ 𝐼2 + 𝐷𝑘/𝑃𝑘 + 8.061203 log (tanh (𝐼2)) + 32.68499𝑇(3)𝑖𝑗

(A.3)

Δ𝑏𝑖𝑗 = 𝐷𝑘/𝑃𝑘 + tanh (log (𝐼1) + 3.5890425) − 0.9907184𝑇(1)𝑖𝑗

+ 8.68850295𝐷𝑘/𝑃𝑘𝑒−3.637422𝐼1 𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 + 8.1676853 log(tanh(
𝐼2

𝐼22 + 1.0
)) + 32.983259𝑇(3)𝑖𝑗

(A.4)

Δ𝑏𝑖𝑗 = 𝐷𝑘/𝑃𝑘 + tanh (log (𝐼1) + 3.589042) − 0.990718𝑇(1)𝑖𝑗

+ 8.6885029𝐷𝑘/𝑃𝑘𝑒−3.6374224𝐼1 𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 + 8.1676853 log(tanh(
𝐼2

𝐼22 + 1.0
)) + 32.983259𝑇(3)𝑖𝑗

(A.5)

Δ𝑏𝑖𝑗 = −0.254087766 +
1.1004971 (log (𝐼1) + 3.35048)

11.22578 (0.298463 log (𝐼1) + 1)
2 + 1.0

𝑇(1)𝑖𝑗

+ 0.38621060 − log(𝐼1
𝐼21 + 1.0

− 0.003228117)𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝐶𝑘 + 8.4002369 log(
𝐼2

𝐼22 + 1.0
) + 33.571316𝑇(3)𝑖𝑗

(A.6)

69

70 A. Found models

Δ𝑏𝑖𝑗 = −0.2573897 +
1.103406 (log (𝐼1) + 3.3484447)

11.21208 (0.29864611 log (𝐼1) + 1)
2 + 1.0

𝑇(1)𝑖𝑗

+ 1.799611𝑒
−0.4428176𝐷𝑘/𝑃𝑘 log(

𝐼1
𝐼21+1.0

)
𝑇(2)𝑖𝑗

+ 7.863320 +
(𝐼22 + 1.0) log (

𝐼2
𝐼22+1.0

+ 1.14202)
𝐼2

𝑇(3)𝑖𝑗

(A.7)

Δ𝑏𝑖𝑗 = tanh(1.7746841𝐼2𝐼1
) + 0.5294934𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 (−31.931387𝐼1 + 31.931387 tanh (𝐼2) + 9.62890) 𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝐶𝑘 +
7.9030252𝑒tanh (𝐼2) − 7.77172

𝐼2
𝑇(3)𝑖𝑗

(A.8)

Δ𝑏𝑖𝑗 = −𝐼1 +
29.856229𝐼1 − 1.3530607

891.394458 (𝐼1 − 0.045319)
2 + 1.0

𝑇(1)𝑖𝑗

+ 14.3204573(−0.26425𝐼1𝐼21 + 1.0
+ 𝐷𝑘/𝑃4𝑘 + 0.458055)

2
𝑇(2)𝑖𝑗

+ 18.605215
(−0.231836𝐼2 − 1)

2 − 18.47599
𝐼2

𝑇(3)𝑖𝑗

(A.9)

Δ𝑏𝑖𝑗 = 𝐼1 +
87.8321𝐼2 + 1.31935

7714.482852276495 (𝐼2 + 0.015021)
2 + 1.0

𝑇(1)𝑖𝑗

+−9.306656𝐼1 + 8.29487𝐷𝑘/𝑃𝑘 𝑇(2)𝑖𝑗

+ 18.215
(−0.234307𝐼2 − 1)

2 − 18.0867327
𝐼2

𝑇(3)𝑖𝑗

(A.10)

Δ𝑏𝑖𝑗 = tanh (49.3514420𝐼1 − 1.078916) − tanh (𝑒𝐼1) 𝑇(1)𝑖𝑗

+−𝐷𝑘/𝐶𝑘 − 1.113158 log (𝐼1) + 0.8944105𝑇(2)𝑖𝑗

+ log (tanh (𝐼2) + 1.1473849)
tanh (𝐼2)

+ 7.31𝑇(3)𝑖𝑗

(A.11)

Δ𝑏𝑖𝑗 = log (𝐷𝑘/𝑃𝑘 + tanh (26.5719756𝐼1 − 0.63223)) + tanh (𝐼2) 𝑇(1)𝑖𝑗

+ 1.8547810𝑒−𝐼2𝑒3.001294𝐼2+3.001294𝐷𝑘/𝑃2𝑘 𝑇(2)𝑖𝑗

+ log (−𝐼2 + 1.366782 tanh (𝐼2) + 1.00615)
𝐼2 tanh (𝐼1)

𝑇(3)𝑖𝑗

(A.12)

Δ𝑏𝑖𝑗 = tanh (𝐷𝑘/𝑃𝑘) +
log (tanh (23.35388𝐼1 + 𝐷𝑘/𝑃𝑘 − 0.46824426))

𝐷𝑘/𝑃𝑘
𝑇(1)𝑖𝑗

+ 𝑒
tanh (0.8425314𝐷𝑘/𝑃𝑘)

𝐼1+0.26470568 𝑇(2)𝑖𝑗

+ − tanh
(𝐼2) + tanh (9.886245 log (𝐼2 + 1.01357))

tanh (𝐼2)
𝑇(3)𝑖𝑗

(A.13)

Δ𝑏𝑖𝑗 = tanh (log (40.139816𝐼1)) − 0.5818273𝑇(1)𝑖𝑗

+ 5.21211 (−0.438019𝐷𝑘/𝑃𝑘 + 0.3134𝑒4𝐼1 − 1)
2 𝑇(2)𝑖𝑗

+ 19.357267
(0.227288 tanh (𝐼2) + 1)

2 − 19.22425
tanh (𝐼2)

𝑇(3)𝑖𝑗

(A.14)

A.2. Four tensor models 71

Δ𝑏𝑖𝑗 = 𝑒
0.069013𝐼2

𝐼21 − 0.562223𝑇(1)𝑖𝑗

+ 𝑒
𝐷𝑘/𝑃𝑘

𝐼1+0.339138 𝑇(2)𝑖𝑗

+
1.3573065 + 1.006193−𝑒𝐼2

𝐼2
𝐼1

𝑇(3)𝑖𝑗

(A.15)

A.2. Four tensor models
Δ𝑏𝑖𝑗 = log (tanh (𝐷𝑘/𝑃𝑘) + tanh (25.39547𝐼1 − 0.5690660)) 𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 (−𝐷𝑘/𝑃𝑘 + 16.71201𝑒−𝐷𝑘/𝑃𝑘−5.837830 tanh (𝐼1)) 𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 +
0.0181181 log (tanh (𝐼1) + 19.729477)

𝐼2
𝑇(3)𝑖𝑗

+−𝐷𝑘/𝑃𝑘 +
𝐷𝑘/𝑃𝑘 +

0.56671415−3.259539 tanh (𝐷𝑘/𝑃𝑘)
𝐷𝑘/𝑃2𝑘

𝐷𝑘/𝑃𝑘
𝑇(4)𝑖𝑗

(A.16)

Δ𝑏𝑖𝑗 = tanh (36.49104𝐼1 − 0.8122938) − 0.694032𝑇(1)𝑖𝑗

+ 5.18814151𝐷𝑘/𝑃𝑘 log (log (𝐼1)) + 0.7039421𝑇(2)𝑖𝑗

+ (19.3401549 log (𝐼2) + 90.41928) log (log (𝐼1)) 𝑇(3)𝑖𝑗

+ 161.39159 (0.1773484 log (𝐼1) + 1)
2 𝑇(4)𝑖𝑗

(A.17)

Δ𝑏𝑖𝑗 = tanh (32.473811𝑒𝐼1 − 33.153506) − 0.711702𝑇(1)𝑖𝑗

+ 4.128068𝑒𝐷𝑘/𝑃𝑘 − 3.0427278𝑇(2)𝑖𝑗

+−52.04001𝑒236.38951𝐼2 𝑇(3)𝑖𝑗

+−106.4722531𝑒−6.217191𝐷𝑘/𝑃𝑘 𝑇(4)𝑖𝑗

(A.18)

Δ𝑏𝑖𝑗 =
87.288974𝐼2 + 1.2584340

7619.365 (𝐼2 + 0.01441687)
2 + 1.0

+ 0.093267𝑇(1)𝑖𝑗

+−𝐼1 − 1.0607126 tanh (𝐼1) + 3.8227338𝑇(2)𝑖𝑗

+ 0.24676941
7.188260𝐼2 + 0.01601041

𝑇(3)𝑖𝑗

+ 18.7124708 − 12.609462𝐷𝑘/𝑃𝑘
𝑇(4)𝑖𝑗

(A.19)

Δ𝑏𝑖𝑗 = tanh (35.83744𝐼1 − 0.80982𝑚) − 0.6784039𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘
0.6110479𝐼1 + 0.10882

𝑇(2)𝑖𝑗

+ −0.26526776 tanh
(𝐼1) − 1.55433

𝐼1
𝑇(3)𝑖𝑗

+ 59.530775 log (𝐼2) + 150.62068200𝑇(4)𝑖𝑗

(A.20)

72 A. Found models

Δ𝑏𝑖𝑗 = 2.7912215 tanh (33.402389098277372𝐼1) − 2.517549𝑇(1)𝑖𝑗

+ 𝐼1 (− tanh (𝐷𝑘/𝑃𝑘) − 19.18629) + 4.442680𝑇(2)𝑖𝑗

+
0.07813 − 0.2614064 tanh (𝐼1)

tanh2 (𝐼1)+1.0
𝐼2

𝑇(3)𝑖𝑗

+
5.2306414 − 4.42701

𝐷𝑘/𝑃𝑘
𝐷𝑘/𝑃𝑘

𝑇(4)𝑖𝑗

(A.21)

Δ𝑏𝑖𝑗 = tanh (402.0398𝐼21) − 0.732917145𝑇(1)𝑖𝑗

+ 22.32267494 (−𝐼1 + 0.211654𝐷𝑘/𝑃𝑘 + 0.3452129989)
2 𝑇(2)𝑖𝑗

+
− 0.0011114𝐷𝑘/𝐶𝑘
𝐷𝑘/𝑃𝑘(𝐷𝑘/𝐶2𝑘+1.0)

+ 0.0520341
𝐼2

𝑇(3)𝑖𝑗

+
−1.13851853 − 0.343730

𝐷𝑘/𝑃𝑘
𝐷𝑘/𝑃2𝑘

𝑇(4)𝑖𝑗

(A.22)

Δ𝑏𝑖𝑗 = tanh(1.8506339𝐼2𝐼1
) + 0.5448001𝑇(1)𝑖𝑗

+ 0.41127
−𝐼2 + tanh (𝐼1) + 0.04497598

𝑇(2)𝑖𝑗

+ 0.145761 − 0.7018434𝐼1𝐼2
𝑇(3)𝑖𝑗

+ 0.4968954 − 3.0541985𝐷𝑘/𝑃
4
𝑘

𝐼2
𝑇(4)𝑖𝑗

(A.23)

Δ𝑏𝑖𝑗 = −0.2569117 +
1.076682044 (log (𝐼1) + 3.3448089)

11.18774 (0.298970739 log (𝐼1) + 1)
2 + 1.0

𝑇(1)𝑖𝑗

+ 𝑒
0.44589346(−1+ 0.49605960

log (𝐷𝑘/𝑃𝑘)
)
2

𝑇(2)𝑖𝑗

+−137.585841(0.24607960 log(𝐼2
𝐼22 + 1.0

) + 1)
2
𝑇(3)𝑖𝑗

+ 178.31175420 (−0.2953203 log (𝐼2) − 1)
2 − 8.524447𝑇(4)𝑖𝑗

(A.24)

A.3. R correction models

𝑏𝑅𝑖𝑗 = 8.18597 (0.3495141 log (𝐼2) + 1)
2 − 1.3008349𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃2𝑘 𝑇
(2)
𝑖𝑗

+ log (𝐼1) + log (𝐼1 − 0.038195922) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+−9.791443𝐷𝑘/𝐶𝑘𝐷𝑘/𝐶2𝑘 + 1.0
+ 5.41922386 𝜀

(A.25)

A.3. R correction models 73

𝑏𝑅𝑖𝑗 = −1.6865210 −
0.0293670

𝐼2
𝑇(1)𝑖𝑗

+ 𝐼1 (𝐷𝑘/𝐶
2
𝑘 + 1.0)

𝐷𝑘/𝐶𝑘
+ 0.4954660𝑇(2)𝑖𝑗

+ 𝐼2 (𝐼1 + 1.0030402𝐷𝑘/𝑃𝑘) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 5.37861(1 + 0.08739𝐷𝑘/𝐶𝑘
)
2
− 6.13405869 𝜀

(A.26)

𝑏𝑅𝑖𝑗 = −2.8482158 +
(𝐼2 − 0.03460117) (𝐼22 + 1.0)

𝐼2
𝑇(1)𝑖𝑗

+
(𝐼22 + 1.0) (−

0.348073𝐷𝑘/𝑃𝑘
𝐷𝑘/𝑃2𝑘+1.0

+ 0.092201474)
𝐼2

𝑇(2)𝑖𝑗

+−1.3009507979179462
𝐼1 +

𝐼1
𝐼21+1.0

𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 17.86783 tanh2 (𝐷𝑘/𝐶𝑘
𝐷𝑘/𝐶2𝑘 + 1.0

− 0.7576128) 𝜀

(A.27)

𝑏𝑅𝑖𝑗 = 92.361870 log(−0.981 +
0.00034737

𝐼2
)𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝑃𝑘 𝑇(2)𝑖𝑗

+ log (−0.002383189𝐷𝑘/𝑃𝑘) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 9.7528611
(0.00417560661 − 𝐷𝑘/𝐶𝑘)

(0.00417560 − 𝐷𝑘/𝐶𝑘)
2 + 1.0

+ 5.402693 𝜀

(A.28)

𝑏𝑅𝑖𝑗 = −2.63576413 +
log (𝐼2 + 0.9727890)

𝐼2
𝑇(1)𝑖𝑗

+ 1.738909 (0.8688337𝐼2 − 1)
4 𝑇(2)𝑖𝑗

+ 𝐷𝑘/𝐶𝑘 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 30.81619(−0.1801401𝐷𝑘/𝐶𝑘𝐷𝑘/𝐶2𝑘 + 1.0
+ 1)

2
− 25.00792 𝜀

(A.29)

𝑏𝑅𝑖𝑗 = −2.560547939 +
log (𝐼2 + 0.9719790)

𝐼2
𝑇(1)𝑖𝑗

+ 𝑒1.930099(1−0.71979𝐷𝑘/𝑃𝑘)
2
− 0.62188𝑇(2)𝑖𝑗

+ 𝐼1 + tanh (𝐷𝑘/𝑃𝑘 − 𝑒2𝐷𝑘/𝐶𝑘) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+−10.0813𝐷𝑘/𝐶𝑘𝐷𝑘/𝐶2𝑘 + 1.0
+ 5.553959 𝜀

(A.30)

𝑏𝑅𝑖𝑗 =
log (2𝐼2 − 0.9658)

𝐼2
𝑇(1)𝑖𝑗

+ log(3.83707850𝐷𝑘/𝑃𝑘𝐷𝑘/𝑃2𝑘 + 1.0
− 19.631618) − 1.624077𝑇(2)𝑖𝑗

+−3.14528076𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝐷𝑘/𝐶𝑘 −
14.030364𝐷𝑘/𝐶𝑘
𝐷𝑘/𝐶2𝑘 + 1.0

+ 6.653005 𝜀

(A.31)

74 A. Found models

𝑏𝑅𝑖𝑗 = −27.962971 log(1.050019 +
0.00100530

𝐼2
)𝑇(1)𝑖𝑗

+ 2.1198627𝑒−0.9152880𝐷𝑘/𝑃𝑘 𝑇(2)𝑖𝑗

+ log (𝐼2) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+−10.04101𝐷𝑘/𝐶𝑘𝐷𝑘/𝐶2𝑘 + 1.0
+ 5.5901802 𝜀

(A.32)

𝑏𝑅𝑖𝑗 = 15.5600 (0.29538510 log (𝐼2) + 1)
2 𝑇(1)𝑖𝑗

+ 2.69537 log(1.261896093 + 0.12050144𝐼2
)𝑇(2)𝑖𝑗

+ log (0.3882543 tanh (𝐼1)) 𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+−8.5788159 + 15.5501𝑒
− 𝐷𝑘/𝐶𝑘
𝐷𝑘/𝐶2𝑘+1.0 𝜀

(A.33)

𝑏𝑅𝑖𝑗 = 0.4625229 +
0.5157122
𝐷𝑘/𝐶𝑘

𝑇(1)𝑖𝑗

+ 𝐷𝑘/𝐶𝑘 + 14.411944 −
6.6492
𝐷𝑘/𝐶𝑘

𝑇(2)𝑖𝑗

+−4.795497669567968𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 476.64625𝐼2
3098.2498𝐼22 + 1.0

+ 5.513608 𝜀

(A.34)

𝑏𝑅𝑖𝑗 = 11.967906 tanh(
144.86785𝐼2
𝐼22 + 1.0

) + 12.113802𝑇(1)𝑖𝑗

+
46.2661322𝐼2 (tanh2 (𝐷𝑘/𝐶𝑘) + 1.0)

tanh (𝐷𝑘/𝐶𝑘)
+ 5.09341𝑇(2)𝑖𝑗

+−2.761168212 − 0.0191
tanh (𝐼2

𝐼22+1.0
)
𝑇(3)𝑖𝑗

𝑅 = 2𝑘𝑏𝑅𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝐷𝑘/𝑃𝑘 (−
17.43371𝐷𝑘/𝐶𝑘
𝐷𝑘/𝐶2𝑘 + 1.0

+ 10.10268) 𝜀

(A.35)

B
Predicted Flow fields

B.1. 𝛼𝑃𝐻 = 1.0 case
B.1.1. Δ𝑏𝑖𝑗 prediction results with three-tensor model

75

76 B. Predicted Flow fields

(a) True Δ𝑏𝑖𝑗 using the final three-tensor model. (b) Predicted Δ𝑏𝑖𝑗 using the final three-tensor model.

Figure B.1: True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.0 case.

B.1. 𝛼𝑃𝐻 = 1.0 case 77

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
three-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
three-tensor model, in the RITA classified shear region.

Figure B.2: True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.0 case.

78 B. Predicted Flow fields

B.1.2. Δ𝑏𝑖𝑗 prediction results with four-tensor model

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the RITA classified shear region.

Figure B.3: True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.0 case.

B.1. 𝛼𝑃𝐻 = 1.0 case 79

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the RITA classified shear region.

Figure B.4: True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.0 case.

80 B. Predicted Flow fields

B.1.3. 𝑅 correction prediction results

(a) True 𝑅 field. (b) Predicted 𝑅 field using the R correction model.

Figure B.5: Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036.

(a) Difference between the true and predicted R using the final R
correction model, in the full domain.

(b) Difference between the true and predicted R using the final R
correction model, in the RITA classified shear region.

Figure B.6: Difference in predicted vs true R field for 𝛼𝑃𝐻=1.0, Lx/H=9, Ly/H=3.036. Red colours indicate overprediction, where
the model predicts a higher production deficit than the true field, while blue colours indicate underprediction. White regions

indicate no difference between the predicted and true fields.

B.2. 𝛼𝑃𝐻 = 1.5 case 81

B.2. 𝛼𝑃𝐻 = 1.5 case
B.2.1. Δ𝑏𝑖𝑗 prediction results with three-tensor model

(a) True Δ𝑏𝑖𝑗 using the final three-tensor model. (b) Predicted Δ𝑏𝑖𝑗 using the final three-tensor model.

Figure B.7: True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.5 case.

82 B. Predicted Flow fields

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
three-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
three-tensor model, in the RITA classified shear region.

Figure B.8: True vs predicted Δ𝑏𝑖𝑗 using the final three-tensor model for the 𝛼𝑃𝐻 = 1.5 case.

B.2. 𝛼𝑃𝐻 = 1.5 case 83

B.2.2. Δ𝑏𝑖𝑗 prediction results with four-tensor model

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the RITA classified shear region.

Figure B.9: True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.5 case.

84 B. Predicted Flow fields

(a) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the full domain.

(b) Difference between the true and predicted Δ𝑏𝑖𝑗 using the final
four-tensor model, in the RITA classified shear region.

Figure B.10: True vs predicted Δ𝑏𝑖𝑗 using the final four-tensor model for the 𝛼𝑃𝐻 = 1.5 case.

B.2. 𝛼𝑃𝐻 = 1.5 case 85

B.2.3. 𝑅 correction prediction results

(a) True 𝑅 field. (b) Predicted 𝑅 field using the R correction model.

Figure B.11: Plots of the true and predicted 𝑅 field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036.

(a) Difference between the true and predicted R using the final R
correction model, in the full domain.

(b) Difference between the true and predicted R using the final R
correction model, in the RITA classified shear region.

Figure B.12: Difference in predicted vs true R field for 𝛼𝑃𝐻=1.5, Lx/H=10.929, Ly/H=3.036. Red colours indicate
overprediction, where the model predicts a higher production deficit than the true field, while blue colours indicate

underprediction. White regions indicate no difference between the predicted and true fields.

C
Basis tensors

Figure C.1: First Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036.

87

88 C. Basis tensors

Figure C.2: Second Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036.

Figure C.3: Third Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036.

89

Figure C.4: Fourth Pope basis tensor for 𝛼𝑃𝐻 = 1.0, 𝐿𝑥/𝐻 = 9, 𝐿𝑦/𝐻 = 3.036.

D
Counterfactual Multi-Agent Policy

Gradients (COMA)
Counterfactual Multi-Agent Policy Gradients (COMA) is a multi-agent reinforcement learning algorithm
that was researched, but there was not enough time to implement it in this thesis. This appendix
provides a detailed explanation of the COMA algorithm, its motivation, and how it addresses the credit
assignment problem in cooperative multi-agent settings.

In cooperative multi-agent reinforcement learning, all agents typically share a single global reward sig-
nal. This poses a fundamental challenge known as the credit assignment problem, where it becomes
difficult for each agent to determine how its individual actions contribute to the overall team perfor-
mance. When the joint reward depends on the combined actions of all agents, a single agent cannot
easily infer whether a change in its behaviour would have improved the outcome. This results in high
variance and unstable learning signals when applying standard policy gradient methods.

One classical approach to mitigate this problem is through difference rewards by Wolpert and Tumer,
2001. The main idea behind difference rewards is to provide each agent with a shaped reward that
measures its individual contribution to the team’s performance. For an agent 𝑎, the difference reward
𝐷𝑎 is defined as

𝐷𝑎 = 𝑟(𝑠, 𝑢) − 𝑟(𝑠, (𝑢−𝑎 , 𝑐𝑎)), (D.1)

where 𝑟(𝑠, 𝑢) is the global reward obtained from the joint action 𝑢, and 𝑟(𝑠, (𝑢−𝑎 , 𝑐𝑎)) is the reward that
would have been obtained if all other agents’ actions 𝑢−𝑎 remained the same, but agent 𝑎 had instead
taken a default action 𝑐𝑎. This difference measures how much agent 𝑎’s actual action improved (or
worsened) the team reward relative to a counterfactual scenario. In theory, optimising such shaped
rewards leads each agent to maximise its true contribution to the team objective, encouraging cooper-
ative and coordinated behaviour.

Although difference rewards provide a principled way to assign credit, they are rarely practical to com-
pute in complex environments. Estimating the counterfactual reward 𝑟(𝑠, (𝑢−𝑎 , 𝑐𝑎)) would require re-
peatedly simulating the environment under alternate actions for every agent at every step, which is
computationally prohibitive. Moreover, the choice of the default action 𝑐𝑎 is often arbitrary and task-
dependent, making the method difficult to generalise.

The COMA algorithm Foerster et al., 2018 provides a practical, differentiable approximation to differ-
ence rewards using a centralised critic. COMA adopts a centralised training with decentralised exe-
cution (CTDE) setup. Each agent maintains a decentralised policy 𝜋𝑎(𝑢𝑎|𝜏𝑎) that depends only on its
local observation history 𝜏𝑎, but during training, a centralised critic 𝑄(𝑠, 𝜏, 𝑢) is used to evaluate the joint
action given the full state 𝑠 and the joint observation histories 𝜏. The critic is trained to estimate the
expected return of the joint action, acting as a learned model of the global reward function.

91

92 D. Counterfactual Multi-Agent Policy Gradients (COMA)

COMA replaces the explicit computation of difference rewards with a learned, counterfactual advantage
that compares the Q-value of the current joint action with a baseline that marginalises out the individual
agent’s action. For agent 𝑎, this advantage is defined in Equation D.2.

𝐴𝑎(𝑠, 𝜏, 𝑢) = 𝑄(𝑠, 𝜏, 𝑢) −∑
𝑢′𝑎

𝜋𝑎(𝑢′𝑎|𝜏𝑎)𝑄(𝑠, 𝜏, (𝑢−𝑎 , 𝑢′𝑎)). (D.2)

This formulation can be interpreted as a learned version of the difference reward, where the counterfac-
tual term ∑𝑢′𝑎 𝜋𝑎(𝑢

′
𝑎|𝜏𝑎)𝑄(𝑠, 𝜏, (𝑢−𝑎 , 𝑢′𝑎)) serves as a baseline that estimates what the team’s expected

return would be if agent 𝑎’s action were replaced with all possible alternatives, weighted by its policy.
The result is a per-agent credit assignment signal that captures how much better or worse the joint
outcome was compared to this counterfactual expectation. Crucially, this baseline depends only on
the centralised critic and can be computed efficiently in a single forward pass of the network, avoiding
the need for additional simulations or predefined default actions.

The counterfactual advantage provides a low-variance, unbiased gradient estimate for each agent’s
policy. Each agent’s policy parameters 𝜃𝑎 are updated using the gradient, shown in Equation D.3.

∇𝜃𝑎𝐽 = 𝔼𝜋 [∇𝜃𝑎 log𝜋𝑎(𝑢𝑎|𝜏𝑎) 𝐴𝑎(𝑠, 𝜏, 𝑢)] , (D.3)

Which encourages the agent to increase the likelihood of actions that contribute positively to the global
outcome relative to its counterfactual baseline. Since the baseline is independent of the sampled action
𝑢𝑎, its expected contribution to the gradient is zero, ensuring that the update remains unbiased.

Conceptually, COMA can be viewed as an actor-critic implementation of difference rewards, where the
centralised critic acts as a differentiable model that estimates how the global return would change if an
individual agent’s action were altered. This transforms the discrete notion of difference rewards into a
continuous, learnable advantage function that can be optimised end-to-end with gradient descent. In
doing so, COMA provides a scalable solution to the credit assignment problem, enabling decentralised
agents to learn coordinated behaviour through centralised training.

Bibliography
Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E., Dumoulin,

V., Moitra, S., Hughes, E., et al. (2020). The hanabi challenge: A new frontier for ai research.
Artificial Intelligence, 280, 103216.

Bellman, R. (1966). Dynamic programming. science, 153(3731), 34–37.
Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., & Parascandolo, G. (2021). Neural symbolic regression

that scales. International Conference on Machine Learning, 936–945.
Boussinesq, J. (1877). Essay on the theory of running water. National Printing.
Buchanan, T., Lăcătuş, M., West, A., & Dwight, R. P. (2025). Data-driven rans closures using a rel-

ative importance term analysis based classifier for 2d and 3d separated flows. arXiv preprint
arXiv:2504.06758.

Duraisamy, K., Iaccarino, G., & Xiao, H. (2019). Turbulence modeling in the age of data. Annual review
of fluid mechanics, 51(1), 357–377.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018). Counterfactual multi-agent
policy gradients. Proceedings of the AAAI conference on artificial intelligence, 32(1).

Hemmes, J. (2022). Data-driven turbulence modelling of algebraic reynolds-stress models using deep
symbolic regression.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Hoefnagel, K. (2023). Multi-flow generalization in data-driven turbulence modeling: An exploratory
study.

Huang, P., Bradshaw, P., & Coakley, T. J. (1992). Assessment of closure coefficients for compressible-
flow turbulence models (tech. rep.).

Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of
turbulence. International journal of heat and mass transfer, 15(2), 301–314.

Kaandorp, M. L., & Dwight, R. P. (2020). Data-driven modelling of the reynolds stress tensor using
random forests with invariance. Computers & Fluids, 202, 104497.

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information processing

systems, 12.
Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection.

Statistics and computing, 4(2), 87–112.
Kurach, K., Raichuk, A., Stańczyk, P., Zając, M., Bachem, O., Espeholt, L., Riquelme, C., Vincent, D.,

Michalski, M., Bousquet, O., et al. (2020). Google research football: A novel reinforcement
learning environment. Proceedings of the AAAI conference on artificial intelligence, 34(04),
4501–4510.

Lăcătuş, M. (2024). Improving data-driven rans turbulence modelling for separated flow scenarios.
Landajuela, M., Lee, C. S., Yang, J., Glatt, R., Santiago, C. P., Aravena, I., Mundhenk, T., Mulcahy,

G., & Petersen, B. K. (2022). A unified framework for deep symbolic regression. Advances in
Neural Information Processing Systems, 35, 33985–33998.

Landajuela, M., Petersen, B. K., Kim, S. K., Santiago, C. P., Glatt, R., Mundhenk, T. N., Pettit, J. F., &
Faissol, D. M. (2021). Improving exploration in policy gradient search: Application to symbolic
optimization. arXiv preprint arXiv:2107.09158.

Ling, J., Kurzawski, A., & Templeton, J. (2016). Reynolds averaged turbulence modelling using deep
neural networks with embedded invariance. Journal of Fluid Mechanics, 807, 155–166.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. Advances in neural information processing
systems, 30.

Menter, F. R. (1994). Two-equation eddy-viscosity turbulencemodels for engineering applications. AIAA
journal, 32(8), 1598–1605.

93

94 Bibliography

Menter, F. R., Kuntz, M., Langtry, R., et al. (2003). Ten years of industrial experience with the sst
turbulence model. Turbulence, heat and mass transfer, 4(1), 625–632.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning. International conference on machine
learning, 1928–1937.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P., Faissol, D. M., & Petersen, B. K. (2021).
Symbolic regression via neural-guided genetic programming population seeding. arXiv preprint
arXiv:2111.00053.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago, C. P., Kim, S. K., & Kim, J. T. (2019). Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
gradients. arXiv preprint arXiv:1912.04871.

Pope, S. B. (1975). A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 72(2),
331–340.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2020). Monotonic
value function factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research, 21(178), 1–51.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological review, 65(6), 386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error
propagation (tech. rep.).

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T. G., Hung, C.-M., Torr,
P. H., Foerster, J., & Whiteson, S. (2019). The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043.

Schmelzer, M., Dwight, R. P., & Cinnella, P. (2020). Discovery of algebraic reynolds-stress models using
sparse symbolic regression. Flow, Turbulence and Combustion, 104, 579–603.

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. science,
324(5923), 81–85.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization.
International conference on machine learning, 1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Siddiqui, A. A. (2025). Data-driven correction fields for turbulence modeling: A priori and a posteriori
study.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning,
3(1), 9–44.

Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An introduction (Vol. 1). MIT press
Cambridge.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12.

Tamar, A., Glassner, Y., & Mannor, S. (2015). Policy gradients beyond expectations: Conditional value-
at-risk.

Tang, H., Wang, Y., Wang, T., & Tian, L. (2023). Discovering explicit reynolds-averaged turbulence
closures for turbulent separated flows through deep learning-based symbolic regression with
non-linear corrections. Physics of Fluids, 35(2).

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., & Tegmark, M. (2020). Ai feynman 2.0: Pareto-
optimal symbolic regression exploiting graph modularity. In H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, & H. Lin (Eds.), Advances in neural information processing systems (pp. 4860–
4871, Vol. 33). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2020/
file/33a854e247155d590883b93bca53848a-Paper.pdf

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., & Galván-López, E. (2011). Semantically-based
crossover in genetic programming: Application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines, 12(2), 91–119.

Valipour, M., You, B., Panju, M., & Ghodsi, A. (2021). Symbolicgpt: A generative transformer model for
symbolic regression. arXiv preprint arXiv:2106.14131.

https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf

Bibliography 95

Watkins, C. J. C. H., et al. (1989). Learning from delayed rewards.
Weatheritt, J., & Sandberg, R. (2016). A novel evolutionary algorithm applied to algebraic modifications

of the rans stress–strain relationship. Journal of Computational Physics, 325, 22–37.
Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence mod-

els. AIAA journal, 26(11), 1299–1310.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning, 8(3), 229–256.
Wolpert, D. H., & Tumer, K. (2001). Optimal payoff functions for members of collectives. Advances in

Complex Systems, 4(02n03), 265–279.
Xiao, H., Wu, J.-L., Laizet, S., & Duan, L. (2019). Flows over periodic hills of parameterized geometries:

A dataset for data-driven turbulence modeling from direct simulations. https://arxiv.org/abs/
1910.01264

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., & Wu, Y. (2022). The surprising effectiveness
of ppo in cooperative multi-agent games. Advances in neural information processing systems,
35, 24611–24624.

https://arxiv.org/abs/1910.01264
https://arxiv.org/abs/1910.01264

	Abstract
	Introduction
	Background and related work
	RANS Turbulence Modelling
	Two equation models
	Turbulence kinetic energy
	The k-varepsilon model
	The k-omega model
	The k-omega SST model

	Model-form error correction
	Data-driven EARSM
	SpaRTA
	Relative Importance Term Analysis (RITA)

	Symbolic Regression
	Genetic Expression Programming for EARSM

	Reinforcement Learning
	Returns, Values, and Q-values
	Policy
	Policy Gradient Methods
	Actor-Critic Methods
	Proximal Policy Optimization (PPO)

	Deep Symbolic Regression (DSR)
	DSR framework
	Expression generation
	Risk-seeking policy gradient

	DSR extensions
	Improving exploration
	Neural-guided genetic programming
	Unified Deep Symbolic Regression (uDSR)
	Deep Symbolic Regression for EARSM

	Multi-agent reinforcement learning
	Multi Agent Proximal Policy Optimisation (MAPPO)

	Multi-agent DSR and experimental setup
	Limitations of DSR in EARSM
	Independent learning
	Use of REINFORCE

	Multi-Agent Deep Symbolic Regression for turbulence modelling
	EARSM as a POMDP
	MARL techniques
	Proximal Policy Optimization in multi-agent DSR
	Centralised Training Decentralised Execution in multi-agent DSR

	Algorithms
	Expression generation
	Function sets
	Network architecture
	Priors

	Reward function
	Training batch organisation

	Advantage function
	Risk-seeking advantage function
	Learned critic advantage function

	Loss function
	Actor loss
	Critic loss
	Entropy loss

	Loss function for each algorithm
	vanilla MADSR
	vanilla MAPPO DSR
	Actor-critic MADSR
	MAPPO DSR

	Experimental setup for turbulence modelling
	EARSM
	k-corrective RANS
	Flow cases
	Training setup

	General framework

	MADSR results and analysis of discovered models
	Algorithm comparison
	EARSM with three tensors
	EARSM with four tensors
	k-corrective RANS
	Summary of algorithm comparison

	Analysis of found models
	Best models in training
	Best performing models

	Further optimised models
	Ablation study
	Delta bij correction
	R correction

	Flow field analysis
	alpha = 1.0
	alpha = 1.5
	Summary of the flow field analysis

	Conclusions
	Limitations
	Recommendations for future work

	Found models
	Three tensor models
	Four tensor models
	R correction models

	Predicted Flow fields
	alphaPH=1.0 case
	Delta bij prediction results with three-tensor model
	Delta bij prediction results with four-tensor model
	R correction prediction results

	alphaPH=1.5 case
	Delta bij prediction results with three-tensor model
	Delta bij prediction results with four-tensor model
	R correction prediction results

	Basis tensors
	Counterfactual Multi-Agent Policy Gradients (COMA)

