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Summary

Coastal flooding is threatening the personal safety, property, and social development
of the low-lying land around the coast worldwide. Storm surge is one of the main sources
of coastal flooding. Tide and surge models can provide timely water level forecasts for
coastal management with the early warning of flooding. Although a regional model can
be used to study effects of climate change in a specific area, global water level modeling
provides some advantages, such as the long-term response of the extreme sea level and
coastal flooding due to global warming and comparison of global surge differences be-
tween regions. Global hydrodynamic modeling is becoming an increasingly important
research topic. Nowadays, with ever increasing resolution, neglected physical processes
and parameter uncertainties due to the inaccurate input or empirical values is becom-
ing more and more dominating the model accuracy. At the same time, measurements
like the satellite altimeter and the in-situ tide gauges are able to monitor the water level
changes, which offers the possibility to estimate uncertain parameters. In this thesis,
we develop a parameter estimation scheme and implement it to a global tide and surge
model, and subsequently, apply to improve the water level forecast skill.

The main challenges for large-scale parameter assimilation for tide models are in as-
sessing parameter uncertainties, large computational demand, large memory require-
ment and insufficient observations. In this thesis, we explore these challenges using
an application to the Global Tide and Surge Model (GTSM). A computationally efficient
and low memory usage iterative estimation scheme is designed and applied to GTSM
for bathymetry and bottom friction coefficient calibration. In addition, we study how to
make the best use of spatial sparse distributed observations.

First, we consider the physical processes included in the global tide modeling. Pa-
rameter uncertainties in the deep ocean and shallow waters are analyzed separately. The
bathymetry in the model is based on a combination of the GEBCO and EMODnet grid-
ded datasets that have large uncertainties caused by the unsurveyed values. Bottom fric-
tion is responsible for three quarters of the global tide energy dissipation but the friction
parameterization is empirical. Therefore, we select bathymetry and bottom friction as
the parameters necessary to be estimated.

We design a parameter estimation scheme that couples a calibration algorithm called
DUD (Does not use derivatives) from OpenDA with GTSM. To make the global scale es-
timation experiments feasible, the computational demands of the methods must be re-
duced. This demand is proportional to the duration of a single model simulation multi-
plied by the parameter dimension. Two techniques, a coarse-to-fine strategy that simu-
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viii Summary

lates the model in a lower resolution and a sensitivity analysis, have been implemented
to reduce the computational cost. This results in a reduction of the computation time of
a single model run to one-third and a reduction of parameter dimension of bathymetry
from O(106) to O(102).

The first experiment works and results in a significant improvement, but the simu-
lation time covering 14 days (one spring-neap cycle) makes the calibration results to a
bit over-fit the observations. Extension of time-span covered to such as 1 month can
solve this problem but results in larger and infeasible memory requirements because
all the measurements in the spatial and temporal fields are assimilated in one batch.
Model order reduction inspired by the Proper Orthogonal Decomposition algorithm is
applied to the temporal patterns of the model output and observations. This results in
a reduction of memory requirement by a factor of 22 with a negligible loss of estimation
accuracy. We also add outer-loop iterations to further improve the estimation accuracy.
This method is similar to Incremental 4D-Var where model increments are simulated in
a lower resolution in the inner-loop and updated with the fine grid model in the outer
loop. With the combination of these methods, we formulate a new and computationally
efficient scheme with a much reduced memory usage and a high estimation accuracy
and successfully apply it for bathymetry estimation.

Finally, we extend the estimation to multiple parameters (bathymetry, bottom fric-
tion coefficient) and extend our domain of interest to include coastal seas. Even though
bottom friction mostly affects the model performance near the coast, time-series in the
nearby deep ocean are also impacted to some extent. With the added estimation of bot-
tom friction, the model results are much more accurate compared to the estimation
of bathymetry only, especially in the shallow waters. Observations from the FES2014
dataset are well distributed, while tide gauge data from CMEMS, UHSLC datasets, and
Arctic stations have an irregular and sparse distribution in some areas. We develop three
strategies to make good use of the available observations. The three methods were tested
for the European Shelf, Hudson Bay/Labrador, and other coastal areas with large energy
dissipation. Experiment results show that model performance is significantly improved
both for the deep ocean and shallow waters, and estimation accuracy benefits from the
direct use of tide gauge data where available.



Samenvatting

Overstromingen in kustgebieden vormen wereldwijd een bedreiging voor de per-
soonlijke veiligheid, eigendommen en sociale ontwikkeling van de gemeenschappen die
wonen in de laaggelegen kustgebieden. Stormvloed is een van de belangrijkste oorzaken
van kustoverstromingen. Getij- en golfslagmodellen worden ingezet om waterstanden te
voorspellen zodat er tijdig gewaarschuwd kan worden voor overstromingen. Regionale
modellen kunnen worden gebruikt om de effecten van klimaatverandering in een spe-
cifiek gebied te bestuderen. Mondiale modellen hebben als voordeel dat ze een lange-
termijn voorspelling kunnen geven van extreme zeewaterstanden en overstromingen als
gevolg van klimaatverandering. Er wordt veel onderzoek gedaan naar globale hydrody-
namische modellen. Door de steeds hogere resolutie van de modellen wordt de mo-
delnauwkeurigheid nu vooral bepaald door de verwaarloosde fysische processen en pa-
rameter onzekerheden (als gevolg van onnauwkeurige invoer of empirische waarden).
Tegelijkertijd is er steeds meer en meer data beschikbaar. Satellietbeelden (altimeter) en
in-situ metingen van waterstanden monitoren veranderingen in waterstanden, dit biedt
de mogelijkheid om onzekere parameters te schatten. In dit proefschrift ontwikkelen we
een parameterkalibratieschema om de parameters te schatten en implementeren we dit
in een wereldwijd getijden- en golfslagmodel, om zo de waterstandsvoorspellingen te
verbeteren.

De belangrijkste uitdagingen voor grootschalige data assimilatie bij het parameter
schatten voor getijdemodellen zijn het bepalen van de parameter onzekerheden, de grote
behoefte aan rekenkracht, het benodigde geheugen en onvoldoende waarnemingen. In
dit proefschrift onderzoeken we deze uitdagingen aan de hand van het Global Tide and
Surge Model (GTSM). Een efficiënt assimilatieschema dat weinig geheugen gebruikt is
ontworpen en toegepast op het GTSM voor bathymetrie- en bodemwrijvingscoëfficiënt-
kalibratie. Daarnaast kijken we hoe we het best gebruik kunnen maken van de ruimtelijk
schaars verdeelde waarnemingen.

Eerst bekijken we de fysische processen die in de globale getijdenmodellering zijn
opgenomen. Parameteronzekerheden in de diepe oceaan en ondiepe wateren worden
afzonderlijk geanalyseerd. De bathymetrie in het model is gebaseerd op een combinatie
van twee datasets, GEBCO en EMODnet. Deze datasets hebben grote onzekerheden als
gevolg van de niet-onderzochte waarden. Bodemwrijving is verantwoordelijk voor drie-
kwart van de totale dissipatie van getijdenenergie, deze wordt nu vaak geschat met een
empirische vergelijking. Wij kiezen om deze reden de bathymetrie en bodemwrijving als
parameters die geschat moeten worden met de ontwikkelde methode.
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x Samenvatting

Een parameterkalibratieschema is ontworpen die het kalibratiealgoritme DUD (Does
not use derivatives) van OpenDA koppelt aan het GTSM. Om de experimenten op we-
reldschaal mogelijk te maken, moeten de rekeneisen van de methoden worden vermin-
derd. Deze rekeneis is gelijk aan de duur van een enkele modelsimulatie vermenigvul-
digd met de parameterdimensie. Twee technieken zijn toegepast om de rekentijd te ver-
minderen. De eerste techniek is een grof-naar-fijn strategie waarbij het model in een
lagere resolutie wordt gesimuleerd, de tweede techniek is het reduceren van de parame-
terdimensie door middel van een gevoeligheidsanalyse. Hiermee is de rekentijd van een
enkele modelrun verminderd tot een derde, en de parameterdimensie van de bathyme-
trie verkleind van O(106) tot O(102).

Het eerste experiment was succesvol en resulteerde in een aanzienlijke verbetering,
echter waren de kalibratieresultaten bij een simulatietijdspanne van 14 dagen (duur ge-
tijdecyclus) overgefit op de waarnemingen. Uitbreiding van de tijdspanne tot bijvoor-
beeld 1 maand kan dit probleem oplossen, maar dit resulteert in grotere en onhaalbare
geheugenvereisten omdat alle metingen in de ruimtelijke en temporele velden in één
batch worden geassimileerd.

Modelreductie geïnspireerd door het Proper Orthogonal Decomposition algoritme
is toegepast op de temporele patronen van de modeluitvoer en de waarnemingen. Dit
resulteerde in een vermindering van het geheugengebruik met een factor 22, met een
verwaarloosbaar verlies aan schattingsnauwkeurigheid. Verder zijn er outer-loop itera-
ties toegevoegd om de nauwkeurigheid verder te verbeteren. Deze methode is vergelijk-
baar met het Incremental 4D-Var waarbij de model incrementen worden gesimuleerd in
een lagere resolutie in de inner-loop en worden ge-update met het fine-grid model in de
outer-loop. De combinatie van deze methoden heeft geleid tot een nieuw en rekenkun-
dig efficiënt schema voor kalibratie met een hogere nauwkeurigheid, en is met succes
toegepast voor bathymetrische schattingen.

Aan het eind schatten we meerdere parameters (bathymetrie, bodemwrijvings coëf-
ficiënt) en breiden we ons interessegebied uit tot kustzeeën. Hoewel bodemwrijving de
modelprestaties het meest beïnvloedt nabij de kust, worden modelresultaten van de na-
bijgelegen diepe oceaan ook tot op zekere hoogte beïnvloed. Met de toegevoegde schat-
ting van bodemwrijving zijn de modelresultaten veel nauwkeuriger in vergelijking met
de schatting van alleen de bathymetrie, vooral in de ondiepe wateren. Waarnemingen
uit de FES2014 dataset zijn goed verdeeld. Dit geldt niet voor de getijniveaumetingen
van CMEMS, UHSLC en Arctische stations, die in sommige gebieden een onregelmatige
en schaarse verdeling hebben. Wij hebben daarom drie strategieën ontwikkeld om goed
gebruik te maken van de beschikbare observaties. De drie methoden zijn getest voor het
Europese continentaal plat, Hudson Bay/Labrador, en andere kustgebieden waar veel
energiedissipatie plaatsvindt. De resultaten tonen aan dat de modelprestaties aanzien-
lijk zijn verbeterd, zowel voor de diepe oceaan als voor ondiepe wateren. Dit laat zien dat
de modelnauwkeurigheid verbeterd kan worden door gebruik te maken van beschikbare
in-situ metingen van getij, wanneer deze beschikbaar zijn.



Chapter 1

Introduction

Coastal flooding presents a severe threat to people’s safety, property, and social develop-
ment in the coastal zones worldwide. Global hydrodynamic tide and surge models have
been identified as the start-of-the-art approach to provide water level forecasts for early
flooding warnings. However, model accuracy is affected by some parameters with signifi-
cant uncertainties that strongly impact the model performance. Parameter estimation can
potentially help to reduce parameter uncertainties and is a hot research topic to improve
global water-level forecasting skills by increasing the consistency of available observations
and model-derived water-level outputs.
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2 1. Introduction

1.1 Motivation: Storm Surge and Coastal Flooding

Coastal flooding poses a severe threat to many people living in coastal zones through-
out the world (Jongman et al., 2012; Muis et al., 2017); over 600 million people living in
these regions are affected by this devastating risk (Kron, 2012; McGranahan et al., 2007).
For example, the 1953 flood, which caused 2000 deaths, was the most devastating in
western Europe in 100 years in terms of loss of life, as captured in Figure 1.1. Another
recent disaster is the flooding of New Orleans in 2005 where around 1100 people died
(Rappaport, 2014).

Figure 1.1: The North Sea flood of 1953. Source: https://en.wikipedia.org/wiki/North_Sea_flood
_of_1953

Coastal flooding is often caused by the combined occurrence of high tide and a se-
vere storm surge. A storm surge is an episodic rise in sea level because of the low atmo-
spheric pressure and shoreward wind-driven water circulation (Muis et al., 2016). The
most extreme events are caused by tropical cyclones, which are rapid rotating storms
originating over tropical oceans, resulting in extreme wind and rain, and driving extreme
sea levels. In interaction, extreme sea-levels significantly intensify wind waves and storm
surges (Needham et al., 2015). Wind waves, or wind-generated waves, occur when wind
with energy blows over a free surface. The size of wind waves can reach up to 30 m (Men-
taschi et al., 2017). In addition, extreme events also occur when extra tropical cyclones,
a type of storm system formed in middle or high latitudes, coincide with a high tide.
Extratropical cyclones form outside the tropics and have a much larger spatial scale, in
contrast to tropical cyclones (Pugh, 1996).

Some researchers have reported that global exposure to flooding has been showing
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an upward trend in recent years (Hallegatte et al., 2013; Oppenheimer et al., 2019; Wahl
et al., 2017). For example, the global sea level is currently rising at 3−4mm/year, and the
10-20 cm sea-level rise will lead to more than double the frequency of coastal flooding
before the year 2050 (Vitousek et al., 2017). It is estimated that without any adaptation,
0.2–4.6% of the global population will be flooded annually in 2100 with global mean sea-
level rising about 25–123 cm (Hinkel et al., 2014). The drivers of increasing risk are the
population and economic growth (Jongman et al., 2012), land subsidence (Syvitski et al.,
2009), climate change (Nicholls & Cazenave, 2010) and sea level rise (Hallegatte et al.,
2013; Rasmussen et al., 2018). Bouwer (2011) reported that social development with the
increased exposure and value of capital at risk is still the main driver for coastal flooding.
However, climate change, resulting in sea-level rise, will significantly intensify coastal
flooding risk (Rasmussen et al., 2018). For instance, changes to storm surge and wind
waves are induced by global warming (Jevrejeva et al., 2016; Little et al., 2015), which also
affects cyclones (Peduzzi et al., 2012). In recent years, the global mean sea level (GMSL)
has been rising rapidly and is expected to continue to accelerate further in the following
decades (Chen et al., 2017; Fasullo et al., 2016; Hay et al., 2015; Kopp et al., 2014; Mengel
et al., 2016). The GMSL simulation with the fast disintegration of the polar ice sheets is
expected to rise up to 5m by 2150 (Eionet, 2021). The rising of mean sea level will also
affect tide amplitudes and phases (Idier et al., 2017). The further global sea-level rise has
to be studied urgently because of coastal flooding.

1.2 Tide and Surge Models

Timely coastal management, such as flood defences globally and early warnings (Hal-
legatte et al., 2013) can greatly reduce these risks. Hydrodynamic models are very use-
ful tools for estimating flood risks by providing sea-level forecasts, especially extreme
forecasts, and simulating the possible effects of climate changes on tides and extreme
sea levels. For example, Jongman et al. (2012) estimated that in 2010, 217 million peo-
ple were living below the 1/100-year exposure line worldwide according to the analysis
of sea-level data from DIVA model (Vafeidis et al., 2008). This number is expected to
grow by about 25% by 2050. Muis et al. (2017) used the GTSM to estimate the present
day 1/100-year exposure at 158 to 218 million people. The differences in these last two
estimates are caused by two different estimates of the extreme sea levels used in their
computations, showing that sea-level estimates significantly impact the exposure es-
timates. Therefore, the reliability of risk identification heavily depends on the model
forecast accuracy concerning the tide representations and surge simulation related to
climate changes (Ward et al., 2015).

However, most hydrodynamic models cannot simulate tide and surge together. Ta-
ble 1.1 gives a summary of different kinds of global tide models. Empirical tide models
provide tide constituents based on the analysis of data records from satellite altimeter,
tide gauges, and/or adopted prior models. An example is GOT4.8 (Ray, 2013), which
was developed at the Goddard Space Flight Center. It results from an empirical har-
monic analysis of satellite altimetry related to an adopted prior model with a resolu-
tion of 0.5°. These tide models can simulate historical tides accurately, but most cannot
be used for scenario studies. Purely hydrodynamic forward tide models simulate tides
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Table 1.1: Global tide models classification and resolution

Type Model Resolution

Empirical tide Models

GOT4.8 (Ray, 2013) 1/2°

OSU12 (Fok, 2012) 1/4°

DTU16 (Cheng & Andersen, 2017) 1/8°

EOT20 (Hart-Davis et al., 2021) 1/8°

CSR3.0 (Eanes & Bettadpur, 1996) 1°

Purely hydrodynamic models

HYCOM (Arbic et al., 2010) 1/12.5°

HIM (Arbic et al., 2008) 1/8°

STORMTIDE (Müller et al., 2012) 1/10°

Hydrodynamic model

with data assimilation

HAMTIDE (Taguchi et al., 2013) 1/8°

FES2014 (Lyard et al., 2021) 1/16°

TPOX09 (Egbert & Erofeeva, 2002) 1/30°

NSWC (Schwiderski, 1981) 1°

based on the tidal potential forcing without data constraints. Hydrodynamic tide mod-
els with data constraints combine the use of tidal dynamic equations with data assimi-
lation to improve the model accuracy. A detailed comparison of these models is given by
Stammer et al. (2014) who concluded that assimilative models are more accurate than
non-assimilative models.

In contrast to tides, there are very few global surge models, and most surge simula-
tions are based on regional models. For example, Zijl et al. (2013) developed the Dutch
Continental Shelf Model (DCSMv6) for the northwestern European Shelf, which provides
a superior representation of tide and surge compared to the previous version. Sea, Lake,
and Overland Surges from Hurricanes (SLOSH) is a 2D numerical model developed by
the National Weather Service (NWS) of United States; it can be seen as a global model
because it can be used to quickly create a regional model everywhere, but its main ap-
plication is to the entire United States, the Atlantic, and the Gulf of Mexico coastlines
(Jelesnianski et al., 1992).

A few global storm surge models do already exist. The Advanced Circulation (AD-
CIRC) model (Luettich & Westerink, 2004) is a widely used coastal ocean model with the
function of forecasting coastal flooding results from extreme events such as hurricanes
and tsunamis. Kodaira et al. (2016) developed a global 3D storm-surge model based on
Nucleus for European Modeling of the Ocean (NEMO) framework (Madec et al., 2017)
and showed the potential benefit of including baroclinic processes in the simulation.
Arbic et al. (2010) extended the global 3D HYCOM model with tides. However, these 3D
models are computationally quite demanding. Carrère and Lyard (2003a) developed a
2D model MOG2D that is used extensively to correct instantaneous sea surface heights
obtained from satellite altimetry. The GTSM (Global Tide and Surge Model) (Verlaan et
al., 2015) is a 2D combined global tide and surge model developed by Deltares. Although
the behavior of tides and surges is quite linear for the deep ocean and steep coasts, there
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may be significant non-linear interaction between tides and surges on the coastal shelf.
Both MOG2D and GTSM use an unstructured grid to apply a higher resolution near the
coast where the spatial scales are smaller. In addition, global water level can be produced
by the combination use of FES2014 and Dynamic Atmospheric Correction (DAC). DAC is
computed as the combination on high-frequency elevations from Mog2D/T-UGOm 2D
model (Carrère & Lyard, 2003b), but FES2014 and DAC are the gridded datasets without
the ability to forecast.

Comparing with regional surge models, global storm surge modeling takes advan-
tage of (1) Providing real-time assessment for coastal flooding with global surge mod-
eling, combining with the refinement in shallow waters; (2) Studying the long-term re-
sponse of the extreme sea level and coastal flooding resulting from the global climate
changes; (3) Comparing and analyzing the surge difference globally; and (4) Researching
the interaction between the coastal surge and water level in the deep ocean. For exam-
ple, the first global reanalysis of storm surges and extreme sea levels called Global tide
and Surge Reanalysis (GTSR) is presented based on the GTSM (Muis et al., 2016). GTSR
consists of the world’s coastlines, time series of tides, surges, and extreme sea-level esti-
mates. GTSR can be applied to assess flood risk and the impacts of climate change (Muis
et al., 2017). In addition, global tide and surge models have many other applications,
ranging from providing boundary conditions for coastal models (Zijl et al., 2013) or in
the processing of satellite gravity data (Dahle et al., 2019).

In this thesis, we begin with an analysis of the model performance of the GTSM and
investigate strategies to improve the model accuracy by parameter estimation, partic-
ularly aiming at higher level of accuracy in water-level prediction, especially in coastal
regions.

1.3 Parameter Estimation Applications for Tide and Surge
Models

Even though existing models are continuously under development with improve-
ments in the descriptions of physical processes and the grid resolution, several sources
of model errors remain: the approximation of the physical processes, uncertainty in the
parameters, that are not known accurately, such as bathymetry, bottom friction and in-
ternal tides friction. Parameter estimation is a promising approach for reducing param-
eter uncertainties with available data, e.g., altimeter and tide gauge measurements.

Parameter estimation can be seen as finding the best values of parameters using a
numerical model and data assimilation or other similar techniques. Data assimilation is
a technique where observation data are combined with the results from numerical mod-
els, optimizing the evolving state variables of the system. Kalnay (2002) defined data
assimilation as "a statistical combination of observations and short-range forecasts". It
can also be understood as "the computation of the probability density function of model
solution conditioned on the measured observations" (Evensen, 2006). A data assimila-
tion system consists of a set of observations, a dynamic model, and a data assimilation
scheme, as Figure 1.2 shows. In data assimilation, it is assumed that both models and
observations contain uncertainties. Observations have errors ranging from instrumental
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Figure 1.2: Data assimilation flow chart

noise and representation errors. A model contains uncertainties from the approximate
physical parameterization, inaccurate input information, and low resolution.

Data assimilation algorithms can be classified as sequential and variational meth-
ods (Evensen & van Leeuwen, 2000; Talagrand, 1997). Sequential data assimilation such
as the Kalman filter estimates unknown variables (state and parameters) by estimating a
joint probability distribution of the analyses and forecasts. Variational data assimilation,
such as 4D-Var, is a powerful method to optimize the initial states, boundary, or model
input, aiming to obtain the posterior (model output from the optimization) that opti-
mally fits all the observations over an assimilative time window. It provides a powerful
approach to update or estimate the initial states and parameters of a dynamic model.

In various earth science disciplines, including meteorology (Navon, 2009), oceanog-
raphy (Edwards et al., 2015), and hydrology, data assimilation is being applied as one of
the core techniques for modern forecasting. Parameter estimation is one possible ap-
plication of data assimilation that focuses on tuning parameter values for good model
performance. Here we will consider parameters such as bathymetry, bottom friction co-
efficients and internal tide friction coefficients, that affect the tide model performance
globally. If these parameters in the model are incorrect/inaccurate, the model-derived
output (water level in tide models) will not be equal to the observed measurements. In
a comparison of several assimilative and non-assimilative global tide models, Stammer
et al. (2014) also reported that data assimilation/parameter estimation could contribute
significantly to the accuracy of global tide models.

Parameter estimation has been widely applied for dynamic ocean tide models (Ed-
wards et al., 2015). In the tide and surge modeling field, both sequential (Altaf et al.,
2012; Mayo et al., 2014) and variational (Heemink et al., 2002; Zaron, 2017, 2019) meth-
ods have been adopted to estimate the water level representations or parameters with
significant uncertainties.

For regional tide models, the main sources of uncertainties are generally assumed
to be bathymetry, bottom friction coefficients and water level states in the model grid
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boundary. Das and Lardner (1991) showed the feasibility of estimating bottom friction
coefficients and water depth for a coastal hydraulic model with periodic tidal observa-
tion. Many scientists such as Ten Brummelhuis et al. (1993) and Heemink et al. (2002)
have investigated the estimation of harmonic constants in open boundary conditions
and parameters such as space varying friction, viscosity, and depth values, for the Eu-
ropean Continental Shelf using the adjoint method. Altaf et al. (2012) applied a Proper
Orthogonal Decomposition (POD) based calibration approach to calibrate a large-scale
shallow-water flow model called the Dutch Continental Shelf Model (DCSM). Zijl et al.
(2013) developed and estimated bathymetry and bottom friction coefficients for a new
generation DCSMv6 in this region.

Moreover, Zaron (2017) examined and identified the sensitivity of barotropic tides
to bottom topography and frictional parameters by variational inverse methods. Zaron
(2019) further assimilated CryoSat-2 data into a barotropic tide model with a variational
approach. The Kalman filter with ensembles has also been applied for the parameter
estimation. For instance, Mayo et al. (2014) proposed the use of the Singular Evalua-
tive Interpolated Kalman filter (SEIK) for estimating Manning’s coefficients for an Ad-
vanced Circulation (ADCIRC) model at the coast and concluded that accurate estima-
tion is dependent on the sensitivity of the model output to the parameter. Barth et al.
(2010) assimilate HF-RADAR current observations with an ensemble smoother to opti-
mize boundary values in the General Estuarine Ocean Model (GETM).

However, so far only a few studies on parameter estimation for a global hydrody-
namic model have been reported in the literature (Lyard et al., 2021). Several studies
focus on worldwide data assimilation to improve the accuracy of state variables such as
tide components in the FES2014 dataset that assimilate satellite altimeter and tide gauge
data. The state variable estimation can provide a highly accurate tidal forecast but it is
challenging for water level representation and climate change studies.

In the global ocean tide model estimation problem, it is not necessary to estimate
boundary conditions because the model is forced by potential tidal forcing. However,
bathymetry and bottom friction coefficients and internal tide friction that generate tide
energy dissipation in the deep ocean still have to be estimated.

1.4 Observations

Parameter estimation can be implemented only when observations are available. We
investigate water level observations at a global scale. Water level can be collected from
tide gauge data, satellite altimeter, or reanalysis datasets such as the FES2014 dataset.

1.4.1 Tide Gauge Data

Global sea level records from tide gauges are important sources for monitoring sea
level rise (SLR). Gauges are in-situ recorders that cover a long period of time. Most tide
gauge locations are distributed around the coastline, which facilitates the study of the
tide, surge, and coastal flooding. However, the spatial distribution of the tide gauges
is uneven, sometimes resulting in large gaps for some coastal areas. There are several
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large collections of tide gauge data available, for example, the PSMSL dataset, the UH-
SLC dataset, the CMEMS dataset, and Arctic Stations. Here we list the datasets UHSLC,
CMEMS and Arctic stations that are used in our study, as Figure 1.3 shows.

• UHSLC dataset: University of Hawaii Sea Level Center dataset

The University of Hawaii Sea Level Centre (UHSLC) has a global collection of ap-
proximately 500 tide gauge time series (Caldwell & Thompson, 2015). The avail-
ability of data varies over the years, with the number of locations increasing over
time, except for the few most recent years. The distribution of the station locations
is somewhat irregular, and most sites are in coastal areas (Figure 1.3a). Two levels
of quality control, Fast Delivery (FD) and Research Quality Data (RQD), are pro-
vided in the UHSLC dataset. RQD is considered the final science-ready data and is
used in this thesis.

• CMEMS dataset: Copernicus Marine Environment Monitoring Service dataset

CMEMS has a collection of in-situ tide gauges located in the Arctic Ocean, Baltic
Ocean, European North-West Shelf Seas, Iberian-Biscay-Ireland regional seas, Black
Sea and Mediterranean sea. All the available data are published after data acquisi-
tion, quality control, product validation, and product distribution. (Figure 1.3b).

• Arctic Stations (Figure 1.3c):

Kowalik and Proshutinsky (1994) described approximately 300 tide stations in the
Arctic Ocean and studied the tide performance. Four major tide constituents,
semidiurnal constituents M2 and S2, and diurnal constituents K1 and O1 are avail-
able. We have to note that only four major tide constituents are available, and they
cannot fully represent the tide time-series with the analysis of all the components.
However, this data is still helpful to evaluate the model performance in the fre-
quency domain.

1.4.2 Satellite Altimeter Data

A satellite altimeter is a unique instrument that measures the time it takes for a radar
pulse to travel from a satellite to the surface of the earth and back to the satellite. Physical
information from the averaged waveform of a radar altimeter comprises distance to sea
surface, back scatter and significant wave height. Sea surface height can be calculated
by combining with the precise satellite location. The satellite altimeter can also map the
sea surface wind speeds and significant wave heights. A total number of 10 altimeter
missions have flown in the past, starting in 1973 (Vignudelli et al., 2019). It is a valu-
able tool for sea-level monitoring and ocean circulation study. Some researchers have
reported that a satellite altimeter has the capability to observe and study storm surge
features, e.g., in Hurricane Sandy (Lillibridge et al., 2013). The use of satellite altimeters
to improve the storm surge simulation with the data assimilation in the Adriatic Sea and
around Venice has been reported in Biancamaria et al. (2016).

However, even though satellite altimeters can provide spatially well-distributed cov-
erage, they have a low temporal resolution. For instance, the relative repeat cycle for
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Figure 1.3: Available tide gauge locations (a) UHSLC dataset; (b) CMEMS dataset; (c) Arctic sta-
tions.
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TOPEX / Poseidon is about 10 days with a wide cross-track spacing (350km). Moreover,
the higher cross-track spatial resolution always follows with the expense of a longer re-
peat cycle, e.g., CryoSat-2 has a resolution of 7.5km and a repeat cycle of 365 days. We
need a few decades of altimeter for tidal analysis. In addition, only TOPEX/Poseidon and
Jason series were designed to be applied to tides. The ground track, as shown in Figure
1.4, cannot cover the poles. Therefore, the utilization of satellite altimeter data for global
parameter estimation is still limited because of the long time frame required to obtain
full coverage, the complex harmonic tidal analysis, and the high computational cost.

Figure 1.4: Ground track of TOPEX/Poseidon. Source: https://www.cmar.csiro.au/sealevel/
sl_meas_sat_alt.html

1.4.3 Gridded Tides: FES2014

The FES2014 dataset was produced by Noveltis, Legos, and CLS and distributed by
Aviso+, with support from CNES (https://www.aviso.altimetry.fr/). It comes from the
FES (Finite Element Solution) tide model consisting of about 2.9 million nodes. Long
altimeter time series (Topex/Poseidon, Jason-1, Jason-2, TPN-J1N, and ERS-1, ERS-2,
ENVISAT), tide gauges, improved modeling, and data assimilation techniques have all
provided an accurate solution for FES2014 (Carrere et al., 2013; Lyard et al., 2021). Thirty-
four tide constituents are included in the FES2014 dataset with a gridded resolution of
1/16°. The main advantage of using a tidal database such as FES2014 is that a tide time
series can be obtained for arbitrary periods globally and without complex analysis of the
direct usage of satellite altimeter. Stammer et al. (2014) also compared the output of
some models with and without data assimilation. FES2012 showed excellent accuracy
when compared with tide gauge and satellite altimeter data. FES2014 is the updated
version of FES2012.

In summary, tide and surge representations can be obtained from tide gauge data in
coastal areas, but there is a spatially-sparse distribution. A satellite altimeter can provide
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an excellent spatial coverage except in coastal areas but it has a low temporal resolution.
Gridded FES2014 dataset has been identified as high accuracy global observations with-
out time and location limits, but only tide components are available. In this study, we
mainly use tide gauge data and FES2014 dataset as observations for the parameter esti-
mation.

1.5 Outline of This Thesis

1.5.1 Aim

From the previous discussion, we can conclude that global sea-level forecasts are ur-
gently required for the assessment of coastal flooding, and that tide and surge models
have the capability to provide them. But the forecasting skills of the existing tide and
surge models are limited by several parameters with significant uncertainties that heav-
ily affect the model performance. Nevertheless, given a sufficient number of measure-
ments, parameter estimation has the potential to reduce these uncertainties and thus
improve the model performance.

Therefore, this thesis aims to develop a global parameter estimation system for tide
and surge models. The system allows for estimating multiple global types of parameters
and assimilation of observations in the deep ocean and shallow waters with acceptable
computational demands.

1.5.2 Research Questions

In this thesis, the research focuses on the combination of global tide surge models
and observation, making use of data assimilation to estimate the uncertain parameters
in these models. The specific research questions studied in this thesis are:

1. For a successful application of parameter estimation that significantly improves
the skill of the model, it is crucial to consider the right parameters and observa-
tions. Rq 1: Which uncertain parameters and other uncertainties determine the
accuracy of hydrodynamic global tide and surge models? And which measure-
ments are needed to estimate them?

To answer this question, Chapter 3 discusses the relevant physical processes and
performs a number of sensitivity experiments for estimation of the parameters
related to the deep ocean. Chapter 5 revisits the topic, but now with a focus on
coastal seas.

2. In this thesis, we will estimate the parameters through minimization of a cost func-
tion that expresses the misfit between the model and observations. The specific
definition of the cost function can have a large impact on the final result, but also
on the performance. Rq 2: How to define a cost function for the parameter esti-
mation problem that gives a good fit between the model and observations and
that can be optimized with a feasible computational cost?
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Chapter 3 discusses the definition of the cost function and reduction of the size
of parameter vector. Chapter 5 extends the approach to the more complex case of
coastal seas.

3. A single model run of the GTSM requires about 250 core hours for a 45-day sim-
ulation. In addition, we want to use millions of measurements to optimize over a
hundred parameters. Thus the minimization of the cost function will only be fea-
sible if the estimation algorithm and it’s implementation are very efficient. Rq 3:
How can we minimize the cost function in a way that is sufficiently efficient to
make the computations feasible?

Chapter 3 introduces the DUD (Doesnot use derivatives) algorithm, which forms
the core of the optimization and a number of optimizations. A coarse-to-fine strat-
egy is proposed to reduce the CPU time used for the estimation. Chapter 4 pro-
poses a projection method to reduce the memory needed for the cost function
computations, which results in a state-of-art approach dealing effectively with the
huge memory requirement. In Chapter 4, we propose an outer-loop iteration to
further improve the estimation accuracy, similar to Incremental 4D-Var.

1.5.3 Organization of the Thesis

The thesis is organized as follows:

• Chapter 2: The Global Tide and Surge Model (GTSM) that we use in this thesis is
introduced. An analysis of parameter uncertainty for the deep ocean and coastal
regions is included, and a sensitivity analysis is performed to study the influence
of the most important parameters on the accuracy of the GTSM.

• Chapter 3: A computational-efficient parameter estimation scheme with the coarse-
to-fine strategy to reduce the computational cost is developed. It is applied to
global bathymetry calibration, resulting in better consistency between the model
output and observations.

• Chapter 4: The model order reduction application in the temporal patterns for
parameter estimation is described in order to reduce the memory requirement re-
sulting from a large number of measurements and parameters. Combined with
outer-loop implementation, similar to Incremental 4D-Var, an estimation scheme
with high computation efficiency and low memory requirement is formulated.

• Chapter 5: The parameter estimation scheme for the global estimation of bottom
friction coefficient and bathymetry is applied in shallow water and this signifi-
cantly improves the model performance. We study several strategies to make the
best possible use of sparse and unevenly distributed tide gauges.

• Chapter 6: This chapter summarizes the conclusions of this thesis, including a dis-
cussion of the research questions and the recommendations for further research.
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Chapter 2

Global Tide and Surge Model

In this chapter, we introduce the Global Tide and Surge model (GTSM) and assess the pa-
rameter uncertainties for the deep ocean and shallow water with the sensitivity analysis.

Parts of this chapter have been published in Wang et al. (2021):

Wang, X., Verlaan, M., Apecechea, M. I., and Lin, H. X. (2021). Computation-efficient Parameter Estima-
tion for a High-resolution Global Tide and Surge Model. Journal of Geophysical Research: Oceans, 126,
e2020JC016917.
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2.1 Global Tide and Surge Model

In this thesis, the Global Tide and Surge Model(GTSM) is used to simulate the ocean
tide and surge at a global scale. The GTSM is a depth-averaged hydrodynamic model
that forms the core in the Global Storm Surge Information System (GLOSSIS) to provide
water level and storm surge forecasts globally. These real-time forecasts can be used for
early warning systems and to provide boundary conditions for regional models (Verlaan
et al., 2015).

The first release of GTSM was in 2015 (Verlaan et al., 2015) with grid cells of 50 km
resolution in the deep ocean and 5 km resolution along the coast. Bathymetry was de-
rived from the General Bathymetric Chart of the Oceans dataset (GEBCO 30 arc-second
grid) (Weatherall et al., 2015). The self-attraction and loading (SLA) requires the global
integrals of the ocean bottom pressure, resulting in the need to solve integro-differential
equations that are considerable complication and time-consuming. Therefore, the ap-
proximation of the phenomena by reduction of the horizontal pressure gradient by ap-
proximately 10% was applied. But the phase errors is resulted from the approximate SAL
representation. It resulted in a relatively poor performance compared to some other tide
models like Finite Element Solution (FES) (Carrere et al., 2013). However, a significant
benefit of GTSM is its capability to provide global surge estimates. An application is a
historic reanalysis of extreme sea levels (GTSR) which is produced with the combination
of surge representation from GTSMv1.0 and tide representation from FES2012 (Muis et
al., 2016).

In January 2017, GTSM was updated to version 2.0 including a full SAL implemen-
tation (Kuhlmann et al., 2011), the parameterized internal wave drag, the higher reso-
lution for the steep depth, and the implementation of the below permanent ice-shelf
seas in Antarctic (De Kleermaeker et al., 2017). Throughout 2017 and up to 2019, sev-
eral improvements were included such as the increased resolution, updated bathymetry
datasets and the inclusion of atmospheric tides. A reanalysis dataset derived from the
GTSMv3.0 has been demonstrated as the successor of the GTSR (Muis et al., 2020). The
main model used in our research is GTSMv3.0, and we give a brief description of it in this
Chapter.

2.1.1 Governing Equations

GTSM is based upon the Delft3D Flexible-Mesh hydrodynamics code (Kernkamp et
al., 2011). It uses a version of the barotropic shallow water equations in two dimensions
(Irazoqui Apecechea et al., 2017). Unlike local models that are forced by open bound-
ary conditions, there are no lateral boundaries for GTSM and tides are forced by a tide-
generating potential. The governing equations are:

∂u

∂t
+ 1

h
(∇· (huu)−u∇· (hu))+ f ×u

=−g∇(ζ−ζEQ −ζS AL)+∇· (ν(∇u +∇uT ))+ τb +τI T +τs

ρh

∂h

∂t
+∇(hu) = 0 (2.1)
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where h is the total water depth with the global distribution as Figure 2.1a, u represents
the depth-averaged horizontal velocity vector, g is the gravitational acceleration, f is the
Coriolis force, ρ is the density of water, ν is the horizontal eddy viscosity, ζ is the water
level relative to a reference plane, ζEQ is the equilibrium tide. τs is the term related to
the wind stress.

The term ζS AL refers to the self-attraction and loading effect (SAL), which is a phe-
nomenon with a significant impact on the tidal dynamics especially at the global scale.
It describes the effects of self-gravitation attraction and deformation of the ocean floor
by the water column on top of it and associated changes to the geo-potential. SAL can
change the tide amplitudes by approximately 10% or more and phases by 30 degrees
(Kuhlmann et al., 2011). It can often be excluded in regional models but is a requirement
in a global model. The SAL potential is included in the momentum equation similar to
the tidal potential. The SAL term is calculated from the modelled water level at every
time-step using a spherical harmonics approach. For a more detailed explanation, see
(Irazoqui Apecechea et al., 2017).

The terms τb and τI T denote parameterization of the bottom friction stress and in-
ternal tide friction stress, respectively. They are the main drivers of the tide energy dissi-
pation. The bottom friction is given by a quadratic friction law, the form is:

τb =−Cρg ||u||u (2.2)

where C is the bottom friction coefficient. There are several formulations for this coeffi-
cient, such as Chézy, Manning’s friction or White-Colebrook formulation (Colebrook et
al., 1937; Egbert & Ray, 2000; Manning et al., 1890). In GTSMv3.0, we use the Chézy for-
mula and C is the constant coefficient with the value of CD =p

1/C = 77(m1/2s−1). Tide
energy dissipation generated by the bottom friction is shown in Figure 2.1b. Blue boxes
indicate the main regions with high dissipation and all of them are located in the coastal
areas. The regions with the largest tidal dissipation are the Hudson Bay/Labrador, the
European Shelf, and the North West of the Australia Shelf.

Moreover, a large amount of the global energy dissipation occurs through bottom
stress in relatively localized regions with shallow water. Still, approximately 1 TW, which
corresponds to 25−30% of the total global dissipation, occurs in the deep ocean through
internal wave drag (Figure 2.1c). Therefore, tidal dissipation through internal wave drag
has a great impact on the model and cannot be neglected for an accurate representation
of tides. In GTSM, it is parameterized as the following equation (Maraldi et al., 2011):

τI T =−Cρk−1N (∇h ·u)∇h (2.3)

where C is the dimensionless coefficient,k is typical topography horizontal wave num-
ber, N is the depth-averaged Brunt-Väisälä frequency, and∇h represents the bathymetry
gradient. It was computed using data from the Copernicus marine global reanalysis
GLORYS (Garric et al., 2017). In our application, C I T = C k−1 is applied as the user-
defined coefficient, with the value of 0.015. It was based on a global estimate of internal
tide dissipation and reproduction of tides by the model.
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Figure 2.1: Spatial distribution of uncertain parameters. (a): Bathymetry [m]; (b): Tide energy
dissipation by bottom friction in [W/m2]; (c): Tide energy dissipation by internal tides friction.
The areas with large tidal energy dissipation are shown in the areas with blue boxes.
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2.1.2 Bathymetry

One of the most important parameters in tide modeling is bathymetry. In GTSMv3.0
the bathymetry is derived from the global products General Bathymetric Chart of the
Oceans dataset (GEBCO). GEBCO is continually developing its bathymetry datasets to
improve the accuracy and the coverage of measured ocean depth. Two versions of GEBCO
dataset, GEBCO release 2014 and GEBCO 2019, are available. The comparison of model
performance with these two datasets is performed to analyze their impact on tide fore-
cast. GEBCO 2019 provides higher accuracy than the GEBCO 2014 (detailed analysis is in
the Chapter 3). In this thesis, GTSMv3.0 with the bathymetry based on the GEBCO 2019
is used as the starting point.

The GEBCO 2019 is used as bathymetry input projecting to the unstructured grid of
GTSM through interpolation. It provides global coverage with a 15 arc-second resolu-
tion grid of measured and estimated seafloor topography. For Europe, the EMODnet
dataset with a resolution of about 250m is used to overwrite the bathymetry in those
regions where there are regional bathymetry data available. All bathymetric data is as-
sumed to be relative to the Lowest Astronomical Tide (LAT). Since GTSM uses Mean Sea
level (MSL) as its vertical reference, a correction is applied for the LAT-MSL difference.
However, even though the techniques developed in the submarine survey and depth are
updated regularly, large regions remain still unsurveyed at a global scale. This has a sig-
nificant impact on the tide reproduction, as we will show later.

2.1.3 Computational Grid

The tidal amplitudes are normally larger at the coast than that in the deep sea while
the wave lengths are typically smaller. To model this accurately a high resolution is re-
quired in coastal areas, which may lead to a large computational cost. Here, we make
use of an unstructured mesh with triangles and quadrilaterals, which makes it possible
to provide a much higher resolution in coastal areas and lower resolution in the deep
ocean to maintain acceptable computational cost (Kernkamp et al., 2011). Compared to
the regular latitude-longitude grid, there are two advantages of the unstructured mesh.
Firstly, grids in high latitudes are thinned to counteract the converging meridians. And
secondly, some areas that require high resolution, such as coastal areas and continental
shelves where much of the dissipation occurs, can be refined.

Two different resolutions of GTSMv3.0 were developed. They are described in Table
2.1 as GTSM with the coarse grid and GTSM with the fine grid. GTSM with coarse grid
has a resolution of approximately 50km in the deep ocean and 5km near the coast. The
largest grid cells in the fine version of GTSM are 25 km. In the coastal area, the resolu-
tion is 1.25km in Europe and 2.5km along coasts elsewhere. The number of grid cells is
approximately 4.9 million and the coarse version has about 2 million cells (see Table 2.1).

As a result of efficient parallelization, a model simulation with the GTSM with the
fine grid for a period of 45 days only takes approximately 10 hours on a computer with
20 cores, consisting of 5 Intel E3 processors with 4 cores each, and 3 hours for the same
simulation for the coarse model. To further reduce the computing time, we moved the
computations to the Dutch National Supercomputer Cartesius, where the running time
for the same simulation on 200 cores reduced to 70 minutes for the fine model and 25
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Figure 2.2: Computational grid around the European region (a): coarse grid; (b): fine grid.

Table 2.1: GTSM resolution and computational time for 45 days simulation in Dutch National Su-
percomputer Cartesius with 200 cores

Model GTSM with the coarse grid GTSM with the fine grid

Resolution

deep ocean:50km deep ocean: 25km

coastal region:5km; coastal Europe:1.25km

other coastal region: 2.5km;

Cells 2 million 4.9 million

Computational time 25 minutes 70 minutes
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minutes for the coarse model. For individual model runs this computing time is accept-
able, but for parameter estimation which requires hundreds of model simulations, that
will take weeks. Therefore, the parameter estimation scheme should be very efficient.

2.1.4 Surge Modelling

Sea level variation can be divided into tidal components and non-tidal components.
The non-tidal component is the residual from the water level removing the regular tides.
During storms, the highest water levels typically occur at a combination of tides together
with effects from air pressure and surface winds. This additional contribution is usually
called surges. In early research, researchers attempted to forecast storm surges by us-
ing of empirical relationships between meteorological fields and sea level to forecast the
water level (Amin, 1982; Pugh & Woodworth, 2014; Rossiter, 1959). However, with the de-
velopment of computing power, it is possible to model surge by the numerical tide and
surge barotropic models. Surges are generated by the use of wind and air pressure fields
as meteorological forcing. In GTSM, meteorological forcings are then applied as time
and space varying wind and air pressure. The wind stress is modeled as the following
equation:

τs = ρaCd ||u10||u10 (2.4)

where ρa is the density of air, and u10 is the term of the wind speed 10 meters above the
free surface. In the Charnock formulation (Charnock, 1955), the wind drag coefficient Cd

is dependent on the wind speed u10 and a user-defined Charnock constant to represent
the surface roughness, which is 0.041 in our model.

2.2 Parameter Uncertainty Analysis

The accuracy of global tide models has improved steadily over the past 20 years and
the remaining uncertainties are now believed to be caused by the uncertainty of the in-
put parameters (Lyard et al., 2021). For instance, although GTSM has been improved
continuously from the perspective of physical process, resolution, and model inputs,
over the past few years from version 1.0 to version 3.0, the uncertainties of the model
output are still significant and further reduction of these uncertainties would benefit its
applications. The main model errors occur in the simplification and parameterization
of physical processes, numerical errors, and uncertainties of the model parameters. The
first two types of errors are studied as part of ongoing modeling efforts with the model
development. Parameter estimation is an approach to optimizing parameters that can-
not be measured directly but does have a major influence on the accuracy of the model
output. Parameter estimation is a process, whereby the difference between model re-
sults and the measurements is reduced by adjusting parameters. Here, we build upon
the grid and parameterization of GTSMv3.0.

The main parameters affecting performance are different for the deep ocean with
the bathymetry larger than 200m and the shallow waters. As we can observed from
the Figure 2.1, bathymetry strongly varies in space (Figure 2.1a). Tide energy dissipa-
tion through internal tides friction is globally distributed and related to the bathymetry
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change, especially in the mid-ocean ridges and trenches, continental shelves, and island
chains (Figure 2.1c). Dissipation by the bottom friction has a much larger influence in
the coastal areas (Figure 2.1b). Therefore, we aim to split the calibration into two stages.
The first is calibration at the large scales in the deep ocean and the second is to refine
the coastal regions with more measurements included locally. The sensitivity has to be
analyzed before the estimation experiment.

2.2.1 Parameters to Estimate in the Deep Ocean

Considering the dominant physical processes, we expect that bathymetry and inter-
nal tide friction are two main parameters in the deep ocean that affect the model-derived
tide representation. We performed a simple experiment to analyze their sensitivity with
the comparison of observations. Sensitivity can be analyzed by perturbing single param-
eters and comparing the relative changes of the cost function to the initial parameters.
The cost function is defined as the sum of squares of the difference between the model
output and observation, with the formula:

J (x) = 1

2
[y −H(x)]T R−1[y −H(x)] (2.5)

where y is the field observation vector including all times and stations, and the term
x is the parameter vector. H(x) is the model output matching the observation loca-
tions and times, and R is the observation error covariance. Observations we used are
1973 evenly distributed time series, restricted to deep water, derived from the FES2014
dataset. Because FES2014 represents only tides and not surge, we run GTSM also with
only tide forcing included.

We divided the global ocean into seven regions as perturbed parameters to compare
the influence of bathymetry and internal tides friction. Parameter in one region is per-
turbed with one factor, which is the uncertainty of that parameter. For the uncertainty of
bathymetry, we select a standard deviation of 5%. Bathymetry is considered uncertain
here because only a fraction of the ocean seabed has been surveyed, and the remain-
ing errors are significant. Tozer et al. (2019) mentioned an estimate uncertainty of 150m
for deep water and 180m between coastlines and the continental rise for the SRTM15+
dataset. Weatherall et al. (2015) showed in their Figure 6 the percentage of bathymetry
changes between GEBCO_2014 and GEBCO_08 (GEBCO 2010 release) grids in the North
Sea region with differences of over 5% or even 10% in many places. Moreover, to make
the sensitivity test results comparable, we define the 20% perturbation for the internal
tides coefficient C I T . The sensitivity is defined as the relative changes of the cost func-
tion between the initial model and the model with perturbed parameters. The value
of sensitivity with respect to bathymetry (Figure 2.3a) ranges up to 25%. This value is
greatly larger than that in internal tides with the value of 3.2% (Figure 2.3b). It means
that for these levels of uncertainty, GTSM is more sensitive to bathymetry than to inter-
nal tides friction. Selecting only the dominating parameter in the model and ignoring
others effectively reduce the parameter dimensions. Therefore, bathymetry is the only
type of parameter we selected to estimate for the deep ocean.
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Figure 2.3: Relative changes of cost function between the initial model and the model with per-
turbed parameter for each region. (a) 5% perturbation is performed to bathymetry in each domain
separately. (b) 20% perturbation is performed to internal tides in each domain separately.

2.2.2 Parameters to Estimate in the Shallow Waters

There is no doubt that the bottom friction coefficient is the critical parameter for the
accurate simulation of water level in the shallow water (Egbert & Ray, 2001; Fan et al.,
2019; Sana & Tanaka, 1997). In coastal water, depths are usually small and tides are often
large, which results in much larger bottom friction than in deep water. However, the co-
efficient is empirically defined (Ludwick, 1975). It affects the model forecast through the
generation of energy dissipation and is vital to estimate (Arora & Bhaskaran, 2012). Many
parameter estimation applications to regional barotropic tide models are performed to
estimate the bottom friction coefficient (Howarth & Souza, 2005; Ludwick, 1975; Xu et
al., 2017). We select 20% as the standard deviation of uncertainty for the bottom friction.

The sensitivity of the bottom friction coefficient is related to the tide energy dissipa-
tion, as shown in Figure 2.1b, as well as depends on the observation locations we com-
pared. For example, Figure 2.4 reports spatial distribution of Root Mean Square Differ-
ence between the initial model and model with perturbed bottom friction coefficient.
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Figure 2.4: RMS of the difference between initial model and model with perturbed bottom friction
in the European Shelf (a) and southern ocean (b) in [m]. Bottom friction coefficients in the red
boxes are perturbed with 20%. Outside the red box, the bottom friction coefficient is same as the
initial model with the constant value shown in Eq. (2.3). Observations are from FES2014 dataset.

Perturbation in the European Shelf (Figure 2.4a) has larger effect to model performance
than perturbing part of the southern ocean (Figure 2.4b). This is the same reaction re-
lated to the tide energy dissipation distribution. In addition, model performance is sig-
nificantly affected in the region nearby with bottom friction changes and smaller when
it is far away. This will be more obvious if we have more local observations, such as tide
gauge data. However, tide gauge data in the shallow water is spatial-sparse distributed
globally. Therefore, the detailed analysis related to bottom friction will be performed af-
ter the observation analysis in the shallow water, see detailed information in Chapter 5.
But we can conclude that the accurate estimation of bottom friction coefficient is vital
to the model performance in shallow waters.

In summary, we identify two parameters to estimate, bathymetry for the global deep
ocean and bottom friction coefficient for the shallow water. We try to come up with a
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two-step strategy for the estimation. The first step is to pay attention to the deep ocean
estimation of bathymetry, after that bottom friction coefficient is calibrated in the sec-
ond stage.

2.3 Conclusions

In this Chapter, we introduce the tide and surge model GTSMv3.0. Parameter error is
analyzed from the physical process perspective and by sensitivity test comparison. The
deep ocean and shallow water are separately discussed due to the difference of uncer-
tain parameters. Finally, bathymetry and bottom friction coefficient are selected as two
parameters for estimation and we propose a tentative strategy for the calibration started
from the large scale tidal propagation in the deep ocean (chapters 3 and 4) and continu-
ous with the bottom friction coefficient estimation (Chapter 5).
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Chapter 3

Computation-efficient Parameter
Estimation for GTSM

In this Chapter, a computation-efficient parameter estimation scheme for high-resolution
global tide and surge models is developed and applied to the GTSMv3.0. The estimation
algorithm uses an iterative least-squares method, known as DUD. We use time-series de-
rived from the FES2014 tidal database in the deep ocean as observations to estimate cor-
rections to the bathymetry. Although the model and estimation algorithm run in parallel,
directly applying of DUD would not be affordable computationally. To reduce the com-
putational demand, a coarse-to-fine strategy is proposed by using output from a coarser
model to replace the fine model. There are two approaches; One is completely replacing
the fine model with a coarser model during calibration (Coarse Calibration) and the sec-
ond is Coarse Incremental Calibration, that replaces the output increments between the
initial model and model with modified parameters by coarser grid model simulations. To
further reduce the computation time, the parameter dimension is reduced from O(106) to
O(102) based on sensitivity analysis, which greatly reduces the required number of model
simulations and storage. In combination, these methods form an efficient optimization
strategy. Experiments show that the accuracy of the tidal representation can be improved
significantly at affordable cost. Validation for other time-periods and using coastal tide-
gauges shows that the accuracy is improved significantly. However, the calibration period
of two weeks is short and leads to some over-fitting of the model.

Parts of this chapter have been published in Wang et al. (2021):

Wang, X., Verlaan, M., Apecechea, M. I., and Lin, H. X. (2021). Computation-efficient parameter estimation for
a high-resolution global tide and surge model. Journal of Geophysical Research: Oceans, 126, e2020JC016917.
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3.1 Introduction

Parameter estimation started from the first stage, estimating bathymetry in the deep
ocean because generally tidal propagation scale in deep ocean is larger than it in shallow
waters and we assume that once the large scales for deep ocean are properly calibrated
the finer details for coastal regions can be refined in later studies. Bathymetry is se-
lected as the first type of parameter to calibrate based on the sensitivity analysis results
shown in Chapter 2. A derivative-free calibration algorithm DUD (Does not use deriva-
tive), proposed by Ralston and Jennrich (1978) is available in OpenDA software (OpenDA
User Documentation, 2016). It is applied to minimize the cost function by comparing
the model predictions with data from the FES2014 dataset and iteratively computing in-
creasingly accurate estimations of the model states. Tide gauge data from the UHSLC
dataset is used for the model validation.

In this study, we developed a parameter estimation scheme for the high-resolution
GTSM. Compared to regional models, a global model covers a much larger area and
does not have open boundaries. As a result of these differences, a global tide model
has quite different challenges from regional tide models. One of which is that changes to
the bathymetry can have effects very far away from the region of the parameter changes.
The high computational complexity and storage usage is also a challenge for the high-
resolution global model calibration. On the one hand, computer memory may be insuf-
ficient to contain the relevant model output for a long simulation; the memory required
increases rapidly with the number of parameters and with the number of observations.
On the other hand, computing time is very long for calibration of a high-resolution global
model even though parallel processing can be applied. For the DUD optimization algo-
rithm, the computing times are roughly proportional to the number of parameters to
be estimated. Thus, the reduction in the number of parameters and reduction in the
computing time per model simulation plays an essential role in effective parameter es-
timation. Therefore, the parameter estimation scheme should be computation-efficient
with low computational cost and small memory usage. We improve the computation
efficiency of parameter estimation in two key aspects. First, a coarse-to-fine strategy is
proposed to replace the model with a coarser grid for parameter estimation. Second, a
large reduction in parameter dimension is achieved via sensitivity tests.

Chapter 3 is organized as follows. The parameter estimation scheme is described in
Chapter 3.2, including a description of the observations used, as well as the coarse-to-
fine parameter estimation approaches. Chapter 3.3 shows the sensitivity analysis for the
parameter dimension reduction and the parameter estimation results. Validation of the
calibrated model is given in Chapter 3.4. Finally, the discussion and conclusions follow
in Chapter 5.6.

3.2 Parameter Estimation Scheme

3.2.1 Observation Network

The datasets applied for parameter estimation and validation in this study are deep
ocean tides from the FES2014 dataset and the tide gauge data from the University of
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Hawaii Sea Level Centre (UHSLC) (Caldwell & Thompson, 2015).

Figure 3.1: Observation locations: 1973 time series from the FES2014 dataset.

The main advantage of using a tidal database such as FES2014 for our deep ocean cal-
ibration is that a tide time series can be obtained for arbitrary time periods globally. With
direct use of satellite altimetry one would have to cover a much longer time span, due to
the relatively long repeat cycle, e.g. 12 days for Sentinel 1. We generated 1973 time series
from the FES2014 dataset with 32 tide constituents (excluding long-term constituents SA
and SSA) for the calibration of bathymetry in January 2014 with a 10-minute time step.
To obtain equally-spaced observation points, firstly, we generated 3000 equally-spaced
points on a sphere using Fibonacci and latitude-longitude lattices method (González,
2009), and then we removed the locations on land and in shallow waters with depth
smaller than 200m, which finally results in 1973 locations for deep ocean. The obser-
vation locations are shown in Figure 3.1.

We retrieved the 283 tide gauge series from the UHSLC dataset that are available from
the hourly research quality dataset in the year 2014. Firstly, we separated tide and surge
from the measured water level and performed the tide analysis by software TIDEGUI,
since our model calibration is based on the tide representation only. Secondly, because
the simulation time window for the parameter estimation covers only a short time pe-
riod, the (solar) annual and semiannual constituents SA and SSA were removed after the
tide analysis. We obtained a set of 93 harmonic constituents. After that, the tide and
surge representations were visually inspected in comparison to the measured series in
the tide analysis procedure. The distribution of the locations is somewhat irregular and
most locations are in coastal areas.

Even though the FES2014 dataset has assimilated tide gauge data, the UHSLC dataset
can still be seen as independent from our calibration because the FES data used for cal-
ibration was limited to deep water, while almost all tide gauges are at the coast. The
purpose of using the UHSLC data is to study the impact of the calibration in the coastal
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areas.

3.2.2 Parameter Estimation Algorithm

Parameter uncertainty can be reduced via optimization techniques to tune the model
output towards the data. Here we use an algorithm called DUD, since it is the default
algorithm in the generic data-assimilation toolbox OpenDA and there is a lot of expe-
rience with this method. DUD is an algorithm similar to Gauss-Newton algorithm but
with a derivative-free method to solve non-linear least squares problems. The algorithm
attempts to minimize a cost function in an iterative manner. A brief flow chart of the
parameter estimation scheme is shown in Figure 3.2.

Figure 3.2: Flow chart of parameter estimation scheme

In addition to an observation term, the cost function also contains a weak-constraint
or background term in order to constrain changes compared to the initial parameters
where the fit to observations does not improve significantly. In the brief description of
the DUD algorithm below, the cost function is limited to the observation term only, to
keep the description concise. The observation term Jo(x) in the cost function measures
the difference between the model output and observations in a time range t ∈ [t1, tNt ],
which is:

Jo(x) = 1

2
[y −H(x)]T R−1[y −H(x)] (3.1)

where y is the observation vector including all times t ∈ [t1, tNt ] and stations (1, . . . , Ns ),
and the term x is the parameter vector with the number n. H(x) is the model output
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matching the observation locations and times and R is the observation error covariance.
The dimension of y and H(x) is O(Ns Nt ). The minimization processes are performed
with the following steps:

1. Obtain model output H(xi ) with the first guess for all parameters x0 = xb , as well
as n runs each with one perturbed parameter (x1 = xb +δe1, . . . , xn = xb +δen).

2. Calculate the cost function Jo(xi ), i = 0, . . . ,n for the n +1 simulations.

3. Perform the iterations of the minimization process.

(a) Reorder the cost function values from the largest value to the smallest as
Jo(x0) ≥ Jo(x1) ≥ ...... ≥ Jo(xn).

(b) Create an approximate linear model by interpolation between the n+1 model
predictions already computed. The linearization equation is:

H(x) ≈ H(xn)+M∆(x −xn) (3.2)

with M = F P−1, where the i th column of F and P are Fi = H(xi )− H(xn),
Pi = xi −xn

(c) Solve the linear problem and update the new parameters by:

x∗ = xn + [M T M ]−1M T [y −H(xn)] (3.3)

(d) If Jo(x∗) < Jo(xn), update the parameters and cost function set by using x∗
to replace x0 which has the highest cost function, i.e. we keep the n +1 best
estimates.

(e) Otherwise, do a line search until the cost function is improved. Update the
parameters in the same way as shown in step (3d).

4. Check the termination criteria in steps (3d) and (3e); if the results do not satisfy
any one of the criteria, then return to step (3a), otherwise stop the iterations.

Several constraints are imposed to make the correction factors realistic. One is the
weak constraint applied as a background term in the cost function which will reduce the
parameter adjustments when the fit to the observations does not improve significantly.
Another is we added a hard constraint to all the parameters by limiting changes to 10%.
This is because the initial number of simulations in step 1 is n +1 and the dimension of
matrix M is Ns Nt ×n. The computational time increases proportionally to the number
of model simulations and running time for each simulation. The parameter dimension
has a major impact on the number of simulations and a higher model resolution also
increases the computational time for each model simulation. It results in the memory
required to store the matrix M ultimately turning out to be a limiting factor in our appli-
cation. Therefore, we propose two further approximations to speed up the computations
and limit the use of memory. Firstly, we propose a coarse-to-fine parameter estimation
scheme to reduce the computational time for each simulation in Chapter 3.2.3. Sec-
ondly, the parameter dimension is reduced to an acceptable scale by sensitivity analysis,
which will be introduced in Chapter 3.3.2.
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3.2.3 Coarse-to-fine Parameter Estimation

In this Chapter, two approaches for the coarse-to-fine parameter estimation strategy
are proposed that replace part of the simulations with the fine grid GTSM by simulations
with a coarser grid. The estimated parameters for the coarse model are reused for the
fine model. Two possible approaches are:

1. Approach 1: Coarse Calibration, which completely replaces the fine model with a
coarser grid model during the calibration.

2. Approach 2: Coarse Incremental Calibration, which replaces the increments be-
tween the output from the initial model and the model with modified bathymetry
using a coarser grid. The bias between the coarse model and the fine model is
corrected for.

The cost function for Approach 1 is:

J1(x) = 1

2
[y −Hc (x)]T R−1[y −Hc (x)] (3.4)

where the term H f (x) and Hc (x) are the model output of the fine and coarse reso-
lution, respectively. In Approach 1, the model simulation runs only on the coarse grid,
which results in a large reduction in computational time. However, the minimization of
the cost function only involves the coarse model without any direct relationship to the
fine model. Since a coarser model is in general less accurate this will lead to a compen-
sation for these errors in the parameter estimates, which still apply to the fine model.

Therefore, we also propose a second approach (Approach 2: Coarse Incremental Cal-
ibration) that only replaces the difference between the initial output and the adjusted
model output of the fine model. Courtier et al. (1994) firstly proposed an incremental
formula to reduce the computational cost of 4D-Var which is widely used in the imple-
mentation of data-assimilation for the ECMWF weather model. In our application, the
Coarse Incremental Calibration is proposed based on the incremental formula replace-
ment by the coarser grid. Starting from the initial parameters xb , Hc (xb) and H f (xb) are
initial output with the fine and coarse grid without any perturbation. The difference be-
tween the initial and adjusted model output of these two resolutions δH f and δHc are:

δH f = H f (x)−H f (xb), δHc = Hc (x)−Hc (xb) (3.5)

Experiment shows that the difference between increments of coarse grid δH f and
δHc is on average small compared to the RMS of δH f and δHc , 0.68cm compared to
3.26cm (not shown here). Therefore, the increments of fine grid in most regions are well
represented by the coarse grid. We assume δH f ≈ δHc , thus the output of fine GTSM can
also be represented as:

H f (x) ≈ H f (xb)−Hc (xb)+Hc (x) (3.6)

Therefore, a new cost function is generated as:

J2(x) = [y −H f (xb)+Hc (xb)−Hc (x)]T R−1[y −H f (xb)+Hc (xb)−Hc (x)] (3.7)
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The new cost function for initial simulation in Approach 2 represents the disagreement
between the observations and the fine model predictions. Compared to Approach 1, the
new cost function gives a better description of the initial fine model. The computational
times of these two approaches are reduced and are almost the same since only one more
simulation of the fine model is required in Approach 2. After the estimation, the correc-
tion factors of bathymetry are interpolated to the fine model’s unstructured grid before
simulations with the fine grid.

3.3 Numerical Experiments and Results

This chapter first provides more detail on how the calibration was performed. Next,
it explains how we reduced the number of parameters to make the computation times
and memory usage manageable. Finally, it describes the results from the calibration
experiments.

3.3.1 Experiment Set-up

As discussed in Chapter 3.2.1, the accuracy of the model will be expressed relative
to time-series computed from FES2014. Direct use of altimeter data to calibrate the
model would require a simulation covering at least several years, which is not feasible
computationally in this context. In our experience, time-series from tide gauges should
cover between a month and a year to obtain accurate tidal estimates. Unfortunately, it
turned out that this did not fit into the memory (32GB) on our cluster. One spring-neap
cycle, of about half a month, did fit into the memory and was selected as the best fea-
sible option at this point. The tidal potential used in the model accounts for the tide
components with a Doodson number ranging from 57.565 to 375.575. The minimum
threshold for the amplitude of the tidal spherical harmonic is 0.03m, which results in a
set of 58 tidal generating frequencies. Long-period tide constituents SSA and SA are ex-
cluded from the model output and observations, because long-period tides are affected
by non-gravitational influences. From the tidal constituents in FES2014 the time-span is
not limited to a particular period. Therefore, we selected January 2014, when the most
tide gauges were available for validation.

The simulation time is chosen from 1 to 14 January 2014 and the spin-up time for the
model is from two weeks before 1 January to make sure that the initial values (zeros) for
the sea level and currents no longer have a significant impact on the results. Each time-
series, with a time-step of 10 minutes thus has a length of Nt = 2016. In total Ns = 1973
locations were selected, resulting in an output of Ns ∗Nt = 3977568 values per simula-
tion.

3.3.2 Sensitivity Analysis and Parameter Dimension Reduction

In order to obtain a better initial bathymetry input for GTSM, a comparison of model
simulations with bathymetry input from GEBCO release 2014 and GEBCO 2019 was per-
formed.
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Table 3.1 shows the RMSE, bias, and standard deviation (SD) for the two grid reso-
lutions and two bathymetry inputs against the time series from FES2014 for seven re-
gions from 1 to 14 January, 2014. The bias between the model output and observations
is very small with the maximum value at the millimeter level. It illustrates that the tides
computed with the fine grid are more accurate than for the coarse grid using the same
bathymetry source in terms of RMSE and SD. Moreover, the model output with GEBCO
2019 bathymetry is more accurate than that with GEBCO 2014. This shows that reducing
the uncertainty of bathymetry can significantly improve the model performance. Based
on these experiments, we selected GEBCO 2019 as the source for the initial bathymetry.

In principle the bathymetry can be different in every grid node of the model. How-
ever, it would be computationally infeasible to treat the bathymetry at every grid node
as a degree of freedom in the estimation. Moreover, the content of the information con-
tained in the observations is not enough to estimate so many parameters.

Thus, we attempt to reduce the number of parameters and use a single value to adjust
the bathymetry with one correction factor per spatial region Si , i = 1, . . . ,n. For every grid
node j in the spatial region we adjust the parameter from D j to D∗

j according to:

D∗
j = (1+ [x]i )D j f or j ∈ Si (3.8)

where [x]i is the i th element of the reduced parameter vector x and we use the initial
estimate xb = 0 (a vector with n zeroes). For instance, if [x]1 = 0.10, the depth in region
S1 will be increased by 10%. In GTSM the number of grid nodes is O(106), while the
feasible number of independent parameters during the estimation is O(102). Thus, we
would like to design O(102) regions or sub-domains where the response of the model is
expected to be similar and the sum of the sensitivities between the regions is of similar
magnitude.

Let us first define the sensitivity si with respect to region Si as

si = J (xb +δei )− J (xb)

J (xb)
(3.9)

which is the relative change of cost function when changing the parameter only in the
i th region by multiplication with a factor 1+δ.

Spatial Scale

Before the final selection of sub-domains for calibration, we first attempt to create
a rough estimate of the spatial length-scale at which one can estimate the bathymetry
from the available tidal data. Consider for example the constituent M2, which is domi-
nant in many places around the world. Figure 3.3a gives an impression of the amplitude
of M2 around our planet. The largest amplitudes are often in coastal areas. The color
scale is limited to 1.4m, but there are a few regions where the amplitude is larger.

Now consider the following thought experiment. When the tide propagates from one
location to another, a perturbation of the bathymetry between these positions could lead
to a water level difference. The water level that arrives by propagation with speed c from
a position at distance l can be described as:

H(t ) = A cos(ω(t − l

c
)) (3.10)
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Figure 3.3: (a) Amplitude and cophase lines of M2 constituent [m]; (b) propagation length based
on perturbed bathymetry with M2 constituent [km]

where l is the propagation length, A and ω denote the amplitude and frequency of M2

constituent respectively. H(t ) is the water level at time t . If the bathymetry is perturbed
between these points, this will affect the propagation speed c =√

g D and the difference
of M2 tide will be:

∆H(t ) ≈ A sin(ω(t − l

c
))
ωl g∆D

2c3 (3.11)

To really observe this difference, the change in tide should be larger than the noise in the
measurements. Thus for observations with noise σ (standard derivation) one can give a
minimum length scale over which changes in bathymetry ∆D =αD may become visible
in the observations:

lc = 2σc3

Aωg∆D
= 2σ

√
g D

αAω
(3.12)

The propagation length-scale lc is inversely proportional to the M2 amplitude and
proportional to the square-root of the depth. It is expected that a small M2 amplitude
and a large value of bathymetry lead to a long propagation length and weak sensitivity.
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Figure 3.3b provides an overview of propagation length at the global scale withσ= 0.05m
and 10% perturbation of bathymetry. Small values of propagation length illustrate the
larger sensitivity of bathymetry corresponding to M2 constituents. From this figure, one
can conclude that it is probably difficult to estimate the bathymetry corrections for the
Arctic and parts of the interior of many oceans, while conditions are much more favor-
able along the coasts and in shallow areas. The values of lc should not be taken too
literally, since the underlying formulas are only a rough approximation of the dynamics
and the estimates for measurement noise and bathymetric uncertainty can be debated.
Still, the method nicely illustrates the large differences in potential spatial resolution for
estimating bathymetry from tides.

Sensitivity Experiment

We generate 285 10°×10° sub-domains based on the estimates of propagation length
being larger than 10° in most of the oceans. Figure 3.4a shows the sensitivity results in
these sub-domains according to Eq. (3.9) with FES2014 tide data. Many sensitive sub-
domains are in the coastal areas or regions with a large M2 amplitude. The sensitivity
in all regions is smaller than 2%. Some regions such as the Arctic Ocean have very small
sensitivity values. The number of 285 sub-domains is too large for our computational
resources, so we merged some neighboring sub-domains to reduce the number of pa-
rameters and CPU times.

Neighboring sub-domains are aggregated if they satisfy both criteria: (1) they have
the same sensitivity directions (both negative or both positive) and (2) their propaga-
tion lengths are large and the sensitivity is small. Correction factor of bathymetry in
each sub-domain is applied for every grid cell. A two-degree transition area is applied
between neighboring regions. The correction factors in the cell of the transition areas
is interpolated by the model, using linear interpolation on a triangulated discretization
with the samples defined in the calibration as nodes. The sensitivity analysis results for
these 110 aggregated sub-domains are reported in the bottom panel of Figure 3.4. The
values of sensitivity are between -0.06 to 0.02. As a result, the parameter dimension has
been reduced from O(106) originally to 110 through the sensitivity analysis. Also, the
size of the matrix H is 110×3977568 which is now small enough to deal with, given the
constraint of limited computer memory space.

3.3.3 Parameter Estimation Results

We apply the coarse-to-fine parameter estimation method as described in Chapter
3.2.3 with 110 sub-domains. Figure 3.5a illustrates the cost function in each iteration for
parameter estimation for the two approaches. It is not easy to observe the difference be-
tween the estimated and initial bathymetry from the map. So, we show the final relative
change to the bathymetry in Figures 3.5b and 3.5c, which is the correction factor [x] in
Eq. (3.8). The final bathymetry estimated by the two approaches has a similar distribu-
tion.

In Figure 3.5a, the first 111 iterations are running with perturbed parameters and the
result of each of these simulations is independent from each other. After the perturbed
simulations, new parameters are iterative estimates based on the previous model output.
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Figure 3.4: Bathymetry sensitivity test in GTSM with the coarse grid: (a) bathymetry perturba-
tion is applied in 285 sub-domains; (b) bathymetry perturbation is applied in 110 sub-domains.
Bathymetry in each subdomain is perturbed with 5%.

Therefore, these first 111 simulations can be computed in parallel if enough computing
resources are available, after that parallelization has to be sought within a single itera-
tion. The computational cost of the two approaches is similar and Approach 2 required
seven more iterations than Approach 1. This is a relatively small difference and could be
different with slightly different settings. We compared the values of the cost function of
the original GTSM model with two resolutions and FES2014 observations. It is expected
that the cost function value of Approach 2 is smaller than that of Approach 1. The values
of the cost functions are greatly reduced from 4.56×106 to 1.48×106 in Approach 1 and
from 2.84×106 to 1.22×106 in Approach 2. The percentage of reduction is approximately
67.5% for Approach 1 and 57% for Approach 2. The cost functions of both approaches
show similar behavior with a sharp reduction in the first few estimation iterations and
little improvement after that. It should be noted that the lower final cost function value
of Approach 2 does not necessarily imply a higher accuracy of the estimated model out-
put, since the methods do not use the same cost function. The cost function in Approach
1, as shown in Eq. (3.4) only includes the coarse grid model results while the cost func-
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Figure 3.5: (a) Cost function for two approaches; Bathymetry differences in Approach 1 (b) and
Approach 2 (c) show the value of [x] in Eq. (3.8).

tion in Approach 2 Eq. (3.7) also includes the initial output from the coarse and fine grid
models. Therefore, the cost functions for these two approaches cannot be compared
directly and we use the RMSE for comparison instead.

Figure 3.6 shows the RMSE for the final model run with the estimated bathymetry as
input from 1 to 14 January 2014. Before the parameter estimation, GTSM with the fine
grid (Figure 3.6d) has better performance than the coarse grid model (Figure 3.6a) almost
everywhere. The RMSE difference between the model with and without estimation are
shown in Figures 3.6b and 3.6c (coarse model) and 3.6e and 3.6f (fine grid). The results
in 3.6b and 3.6e are for Approach 1, and 3.6c and 3.6f are for Approach 2.

It can be observed that compared to FES2014 "observations", the estimated model
output in most areas has improved significantly. The two approaches show a similar spa-
tial pattern of RMSE. There are also a few areas where the RMSE values are marginally
higher than the initial model; see the areas in yellow or red in Figures 3.6b, 3.6c, 3.6e
and 3.6f (negative values in the RMSE difference mean the estimated results are worse
than the initial results). The most persistent area, with consistently the worst results,
between the experiments seems to be in the Bay of Bengal. Perhaps, effects other than
bathymetry, play a role here, such as a lack of resolution around the large river delta
in the north. In summary, we conclude that the estimated model has improved signifi-
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Table 3.2: Regional RMSE after bathymetry estimation in GTSM with two resolutions in [cm] from
1 to 14 January, 2014.

RMSE
GTSM with coarse grid GTSM with fine grid

Initial A1a A2 Initial A1 A2

Arctic Ocean 7.06 4.55 5.78 5.24 3.98 4.34

Indian Ocean 6.70 3.74 3.89 5.57 4.21 3.62

North Atlantic 6.89 3.90 4.51 5.41 3.47 3.43

South Atlantic 6.97 4.44 4.69 5.69 4.40 3.96

North Pacific 4.76 3.16 3.65 4.15 3.32 3.11

South Pacific 7.03 3.62 4.16 5.57 3.73 3.43

Southern Ocean 5.35 3.16 3.69 4.28 3.04 2.97

Total 6.47 3.76 4.19 5.23 3.78 3.49
a A1 and A2 refer to Approach 1 and Approach 2.

cantly on the global scale.

A comparison of spatially averaged RMSE over seven regions for two approaches, the
coarse model and the fine model, are shown in Table 3.2. Compared to the initial model
output, the accuracy of output after optimization of both the fine and coarse models are
improved in every region. For instance, the RMSE has a reduction of 42% and 35% for
the model with coarse grid in Approach 1 and 2, respectively, and in the fine model it is
also reduced by 28% and 33%, respectively.

Because the coarse model Approach 1 directly optimizes the mean RMSE, so one
would expect an improvement. For Approach 2, the cost function used for optimization
uses observations that are corrected for differences between the fine and coarse mod-
els. Still, Approach 2 improves the performance for all regions compared to the initial
model. Finally, both approaches improve the accuracy of the fine model, even though
the fine model is already more accurate than the coarse model initially. On average the
fine model with the calibrated bathymetry of Approach 1 has an accuracy similar to the
coarse model for Approach 1. Thus it does not really benefit from the higher initial ac-
curacy of the fine model. However, Approach 2 does benefit from the higher initial ac-
curacy of the fine model and results in the best performance of all the combinations for
the calibration time span. Most regions behave similar to the average, but in the Arctic
Approach 1 results in a better fit to the data, than Approach 2.

In summary, both calibrations result in an improved fit to the measurements for both
the coarse and the fine model. For the coarse model, approach 1 seems slightly better
and for the fine model Approach 2. This is of course comparing to the same data as
was used for the estimation. Compared to Approach 1 with only the coarse grid estima-
tion, Approach 2 uses both coarse and fine grid models in the cost function. Approach
2 probably has the advantage to capture some small-scale features independently of the
coarser grid. The aim is that for Approach 2 the estimation results are more accurate for
the fine grid GTSM.
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3.4 Model Validation

In order to validate the model performance more independently from the simulation
period and data that we used in the estimation stage, the forecast has been compared
against the FES2014 data for the whole of the year 2014. Also, the main tide component
M2 is analyzed with FES2014 data. In addition, the model forecast is also compared to a
large number of tide gauges for both tide and surge validation.

3.4.1 Validation with FES2014 Dataset

The year 2014 is chosen as the validation period with the FES2014 dataset to analyze
the model performance. Two time period are used as examples for detailed model per-
formance explanation. The first period is chosen from 15 to 31 January 2014, which are
the days in January following the estimation stage and this contains the second spring-
neap cycle within the first lunar cycle in 2014. The model forecast on 1 to 31 July 2014 is
also analyzed here to inspect the model performance in another season.

Figure 3.7 shows the forecast regional RMSE of the fine resolution GTSM with esti-
mated bathymetry by the two approaches in the twelve months of the year 2014. RMSE
for all the seven regions has improved significantly for every month with both approaches.
Contrary to the calibration period, where Approach 2 performed slightly better for the
fine model, here Approach 1 generally shows marginally better results, except for the
Indian Ocean.

In Figure 3.7, the RMSE between the model output and the observed value varies
from month to month and also within the month. For example, the initial global average
of RMSE in the calibration period is 5.23cm, while it is 5.84 cm in the forecast period 15
to 31 January 2014, as Table 3.3 shows. One can observe that accuracy in the period 15
to 31 January, 2014 is lower (higher RMSE) than the calibration period, both before and
after calibration and independent of the approach. It fits our existing experience that
the interaction between the various tidal constituent changes over time. However, the
general conclusion is that the accuracy after the estimation has been greatly improved
also for other forecast periods.

Figure 3.8 shows the spatial distribution of RMSE difference for GTSM with the fine
grid in 15 to 31 January (a) and July (b) in Approach 1. Approach 2 shows a similar spatial
distribution to Approach 1 (not shown here). The spatial distribution of the RMSE dif-
ference in Figure 3.8 is similar to that in the calibration period. Most of the regions are
improved but output in some regions is marginally worse than that in the initial model,
which is even more obvious in the period 15 to 31 January. The similar RMSE distri-
bution in July demonstrates the excellent performance of the calibrated model for the
long-term forecast.

In addition, we also evaluate the model performance in the frequency domain. Tidal
analysis is based on the model output for the year 2014. The root-mean-square (RMS)
between the model and the FES2014 dataset in 1973 locations for major tide constituents
are summarized in Table 3.4. For comparison with (Stammer et al., 2014), we use the
same formula for the RMSE per tidal constituent:

RMS =
√

(Amcos(ωt −φm)− Aocos(ωt −φo)]2 (3.13)
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Figure 3.7: Regional RMSE between GTSM with the fine grid in two approaches and FES2014 for
the year 2014 [cm].
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Table 3.3: Regional forecast RMSE after bathymetry estimation in GTSM with fine grid in [cm] for
two periods.

RMSE
1 to 14 January 15 to 31 January

Initial A1a A2 Initial A1 A2

Arctic Ocean 5.24 3.98 4.34 5.93 4.27 4.92

India Ocean 5.57 4.21 3.62 6.04 4.12 4.01

North Atlantic 5.41 3.47 3.43 6.17 4.08 4.78

South Atlantic 5.69 4.40 3.96 6.14 4.45 4.67

North Pacific 4.15 3.32 3.11 5.42 4.40 4.58

South Pacific 5.57 3.73 3.43 6.30 4.17 4.48

Southern Ocean 4.28 3.04 2.97 4.51 2.97 3.34

Total 5.23 3.78 3.49 5.84 4.05 4.33
a A1 and A2 refer to Approach 1 and Approach 2.

Table 3.4: RSS and RMS of 8 major tide components against FES2014 dataset in [cm].

RMS for all locations RSS

Components Q1 O1 P1 K1 N2 M2 S2 K2

Initial model 0.48 1.12 0.55 1.62 1.01 4.50 2.79 1.76 6.05

Approach 1 0.43 0.89 0.40 1.19 0.69 2.25 1.77 1.18 3.55

Approach 2 0.44 0.96 0.41 1.18 0.66 2.54 1.91 1.46 3.92

where Am , Ao are the amplitudes from model output and observations. φm and φo are
terms of phases lag. ω is the tide frequency. The overbar represents the computation
over one full cycle of the constituent (e.g.,ωt varying from 0 to 2π), as well as all the lo-
cations. A striking feature of the table is the lower RMS for the main components and
the Root-Squared-Sum (RSS) over these components after the estimation in both ap-
proaches. The M2 component shows the largest change; it is reduced from 4.50cm in the
initial model to 2.25cm and 2.54cm for Approaches 1 and 2, respectively. The significant
improvements of tide components for the estimated models demonstrate that they can
be used for the long-term forecast.

A tidal analysis is also performed for the observation from Deep-Ocean Bottom Pres-
sure Recorder (BPR) to compare GTSM with the model described by Stammer et al.
(2014). We used model output for the full year of 2014 for this comparison. BPR data is
available from the Supplement of Ray (2013). As an example, Table 3.5 shows the results
from the NSWC (Naval Surface Weapons Center) model, FES2012, initial GTSM before
calibration and estimated GTSM with Approach 2. The data of NSWC and FES2012 are
from Table 3 in Stammer et al. (2014). In comparison to the seven purely hydrodynamic
models in Stammer et al. (2014) (their Table 12), GTSM has an RMS for M2 of 5.17cm
which is lower than other models except for the NSWC, which has an RMS of 4.27cm.
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Figure 3.8: Spatial distribution of RMSE difference for GTSM with the fine grid in Approach 1 in
the forecast period (a) 15 to 31 January 2014; and (b) 1 to 31 July 2014. The color blue shows
improvement [unit: m].

GTSM is further improved by the calibration but does not become as accurate as
the modern assimilative tide models described by Stammer et al. (2014). For instance,
the RMS of M2 component and RSS for eight major components of the FES2012 model
against deep ocean data in Table 3.5 are 0.66cm and 1.12cm, respectively, while GTSM
with estimated bathymetry in Approach 2 are 2.55cm and 3.96cm for the RMS of M2 and
RSS, respectively. This is one of the reasons why we chose FES2014 dataset to be used
as ’observations’ for our deep ocean calibration. The main advantage of our calibration
approach for GTSM is that it can also be straightforwardly applied for the studies of the
effects of sea level rise, since surge can be included in the simulation by adding winds
and air pressure to the forcing. For example, the first global reanalysis of storm surges
and extreme sea levels (the GTSR dataset) was presented based on the GTSM (Muis et
al., 2016). In Chapter 3.4.2, we also applied the one-year sea level forecast to analyze the
surge representation.

The amplitude and phase difference of M2 component between GTSM with the fine
grid and FES2014 dataset is illustrated in Figure 3.9. Compared to the FES2014 dataset,
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Table 3.5: RSS and RMS of 8 major tide components against BPR dataset in [cm].

RMS for all locations RSS

Components Q1 O1 P1 K1 N2 M2 S2 K2

NSWCa 0.29 0.87 0.64 1.29 1.15 4.27 1.78 0.66 5.11

FES2012 0.22 0.31 0.36 0.47 0.34 0.66 0.41 0.22 1.12

Initial Model 0.56 1.24 0.65 2.10 0.99 5.17 2.36 1.60 6.56

Approach 2 0.48 0.91 0.43 1.49 0.59 2.55 1.82 1.41 3.95
a Data of NSWC and FES2012 are from Table 3 in Stammer et al. (2014).

the differences in amplitudes and phases are substantially smaller in the estimated model
for both approaches than the initial model. Approach 2 has a slightly better performance
in amplitude (Figure 3.9c) than Approach 1 (Figure 3.9b), which is opposite in phases
(Figures 3.9e, 3.9f).

3.4.2 Validation with UHSLC Tide Gauge Data

The calibrated models were also compared to UHSLC tide gauge data. Contrary to
the selected FES data of the previous chapter, most of these locations are along the coast,
and have one average large tidal amplitude with more pronounced local influences. The
time periods used are the same set as above. Figure 3.10 shows the spatial distribution
of RMSE without estimation (Figure 3.10a) and RMSE difference for the tide output and
data from 230 tide gauges for the calibration period from 1 to 14 January, 2014 in Ap-
proach 2 (Figure 3.10b). Approach 1 (not shown here) reports a similar distribution to
Approach 2. Most of the tide gauges are distributed in the coastal region. The RMSE
in these locations (Figure 3.10a) is much larger than in the deep ocean with the com-
parison of the FES2014 dataset, which is as expected since tide constituents often have
larger amplitudes in the coastal regions. The RMSE difference in Approach 1 is similar
to that in Approach 2 and the RMSE difference in the coarse model is similar to it in the
fine model. The model output from the estimated model is in better agreement with
the UHSLC observations than the output from the initial model in the majority of the
locations.

GTSM with the fine grid is more accurate than with the coarse grid, both before
and after calibration. For example, RMSE in the initial GTSM before calibration with
the coarse and fine grids are 17.23cm and 12.98cm, respectively. These are reduced to
13.49cm in coarse grid and 11.12cm in the fine grid after the estimation by Approach1.
Approach 2 shows similar results. In a relative sense the improvements in the calibration
are quite significant, but less than in deep water. It is possible that resolution and more
local influences play a larger role compared to deep water. This can also be seen when
one compares the calibrated coarse model results to the initial fine model, where the cal-
ibration apparently can not compensate for the lower resolution. Still, both the coarse
model and the fine model also benefit at the coast from a calibration that was performed
using only data on deep water. The performance of estimated models with the fine grid



3.4. Model Validation

3

55

F
ig

u
re

3.
9:

Sp
at

ia
ld

is
tr

ib
u

ti
o

n
o

fa
m

p
lit

u
d

e
an

d
p

h
as

e
d

if
fe

re
n

ce
o

f
M

2
b

et
w

ee
n

th
e

m
o

d
el

an
d

F
E

S2
01

4
d

at
as

et
.

(a
),

(b
)

an
d

(c
):

A
m

p
li

tu
d

e
d

if
fe

r-
en

ce
fo

r
th

e
in

it
ia

lG
T

SM
,m

o
d

el
es

ti
m

at
ed

b
y

A
p

p
ro

ac
h

1
an

d
A

p
p

ro
ac

h
2,

re
sp

ec
ti

ve
ly

[u
n

it
:

m
];

(d
),

(e
)

an
d

(f
):

P
h

as
es

d
if

fe
re

n
ce

fo
r

th
e

in
it

ia
l

G
T

SM
,m

o
d

el
es

ti
m

at
ed

b
y

A
p

p
ro

ac
h

1
an

d
A

p
p

ro
ac

h
2,

re
sp

ec
ti

ve
ly

[u
n

it
:d

eg
re

e]
.



3

56 3. Computation-efficient Parameter Estimation for GTSM

Figure 3.10: Spatial distribution of RMSE with the UHSLC data from 1 to 14 January, 2014: (a) initial
RMSE in fine GTSM; (b) RMSE difference in fine GTSM by Approach 2. RMSE differences shown in
blue indicate improvement[unit:m].

is analyzed further with a one-year prediction of tide and surge for the full year of 2014.
Figure 3.11a shows that the RMSE of the tide has improved significantly for both ap-
proaches and all months. Approach 1 performed slightly better than Approach 2. The
spatial patterns of the tide RMSE in every month are very similar to the ones shown in
Figure 3.10 and therefore not shown. Additional experiments with wind forcing (3.11b-
c) show that the surge is much less sensitive to small adjustments of the bathymetry at
large scales. The total water level, being the sum of tides and surge, benefits from the
improved tides.

As an example, time series of the tide at station Benoa with the coordinate (8.75°S,
115.21°E) from initial simulation and estimated simulation in January and July 2014 are
shown in Figure 3.12. The RMSE is decreased by approximately 50% in January and 59%
in July for Approach 1, which is marginally better than for Approach 2 (approximately
44% and 52%, respectively).

Similar to the comparison to FES data, also for UHSLC tide gauges, Approach 2 per-
forms best for the calibration period. Also here, the RMSE is higher for other periods
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Figure 3.11: RMSE between GTSM with fine grid in two approaches and FES2014 for the whole
year 2014 [cm] (a) RMSE for tide; (b) RMSE for surge; (c) RMSE for total waterlevel.

than for the calibration period. This confirms our perception that the fine model gen-
erally improves most using Approach 2 during the calibration period, not just for the
locations and dataset used for the calibration. In other periods, the tidal constituents
interact differently, leading to estimates that over-fit the data to some extent.

This problem can be solved by using a longer simulation time, such as one month,
or even longer. However, longer simulation time means higher computational cost and
larger storage requirement, which is out of reach for the current computing environment
and implementation. Future work will attempt to solve this problem by modifying the
algorithm.

We also note that the calibration changes the model performance significantly. How-
ever, in the current implementation the difference between the model output between
the fine and the coarse models is only computed at the start. This can potentially be
improved further. The algorithm in Approach 2 is similar to the inner loop of Incremen-
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Figure 3.12: Tide elevation and difference comparison between model output and observation at
station Benoa during (a) January and (b) July, 2014 [unit:m].

tal 4D-Var (Trémolet, 2007). The cost function in Incremental 4D-var is minimized at a
low resolution using an iterative algorithm (inner loop) and the resulting increment is
then interpolated back to the high resolution and added to the current first guess (outer
loop). A similar outer loop can also be implemented for Approach 2 in the future. The
estimated parameters can be used as the new first guess to the inner loop. Because of
the large computational cost, we have not performed this experiment yet, but we aim to
do so in the future, after the algorithm has been optimized further.

3.5 Conclusions

We have presented a complete application of parameter estimation for the high-
resolution global tide and surge model (GTSM), with measurements from the FES2014
dataset. A coarse-to-fine strategy is proposed by using output from the coarse model
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to replace the fine model during (parts of) the estimation, which effectively reduces
the computational demand to about 33%. Two variants of this approach were tested.
Moreover, the computational demand and memory requirements are further reduced by
maintaining only the most sensitive parameter dimensions, which were found through
sensitivity experiments.

This study focuses on the estimation of bathymetry, which is considered to be the
most influential parameter. A major challenge for estimation of bathymetry in a global
tide model is the large computational cost. The optimization algorithm performs a large
number of model simulations and a single model in high resolution needs an enor-
mous computational cost, even when parallel computing is deployed. In this case, the
coarse-to-fine strategy is applied to reduce the single model simulation time and make
it computationally affordable for parameter estimation. We tested two approaches here:
Coarse Calibration (Approach 1), where all model runs in the calibration are performed
with a coarser model, and Coarse Incremental Calibration (Approach 2), where the model
differences between initial model output and adjusted model output are replaced by a
coarser model, but the observation model differences are computed with the fine model.
Coarse Incremental Calibration requires one more fine model simulation than Coarse
Calibration for the first guess. In our experiments the computational cost is reduced by
a factor of approximately three based on these two approaches.

In addition to reducing the computing time in a single model, the number of model
simulations also needs to be reduced, which is done here by reducing the number of
parameters, because the initial number of simulations is proportional to the parame-
ter dimension. To reduce the parameter dimension, a sensitivity test is performed by
perturbing the bathymetry in a large number of spatial domains. First, the number of
domains is reduced to 285 domains using an analysis based on the tide propagation
length. Next a uniform correction factor is applied to the bathymetry for one domain
at a time. Finally, using the computed sensitivity, we are able to decrease the number of
parameters further to 110 domains. This number of 110 parameters is just feasible on
the available computer infrastructure, with the existing implementation.

The optimization procedure leads to a significant reduction of the cost function for
both approaches and to an improved fit to the FES2014 data for both the coarse and the
fine versions of the model. Analysis from the frequency domain illustrates significant
improvements, especially for the M2 component, after the estimation. The estimation
results are evaluated further by comparing model simulations for the whole of the year
2014 against the FES2014 dataset and the UHSLC dataset, which shows that although the
calibration is performed for 2 weeks, this still results in a more accurate model for other
time periods. Comparison to the mostly coastal tide gauges shows that the influence of
resolution is more important there. The accuracy of the coarse model improves through
calibration, but cannot exceed the accuracy of even the uncalibrated high-resolution
model. On the other hand, the fine model benefits from the calibration even at coastal
stations. The surge simulation further demonstrated that the estimated bathymetry is
reasonable for not only tide perdiction but also the long-term total water level predic-
tion.

Experiments show that the parameter estimation scheme efficiently improves the
accuracy of the GTSM modelled tides. Further work will concentrate on: The calibra-
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tion algorithms work quite efficiently in terms of computation, but the experiments are
now limited by the memory requirement for the inversion step in the DUD algorithm. At
the same time, the results indicate that a longer time span for the calibration could be
beneficial. A modification of the algorithm or parallelization of this step is necessary to
test this. The increments in Approach 2 are now based on the initial fine model simula-
tion. Somewhat similar to the outer loop in the incremental 4D-VAR, one can restart the
algorithm with the updated fine model, which can potentially further improve the accu-
racy of the model. Finally, we have focused on calibration of the bathymetry throughout
this paper. Closer to the coast, the uncertainty related to bottom friction is probably
important. The model performance may be further improved by the calibration of the
more local bathymetry together with bottom friction, as well as using additional local
observations. This will also provide an opportunity to verify if the friction can indeed be
ignored for the initial calibration at the larger scales.
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Chapter 4

Memory-efficient Parameter
Estimation with Model Order
Reduction

Accurate parameter estimation for the Global Tide and Surge Model (GTSM) benefits from
observations with long time-series. However, increasing the number of measurements
leads to a large computation demand and increased memory requirements, especially for
the ensemble-based methods that assimilate the measurements at one batch. In this study,
a memory-efficient parameter estimation scheme using model order reduction in time
patterns is developed for a high-resolution global tide model. We propose using projection
onto empirical time-patterns to reduce the model output time-series to a much smaller
linear subspace. Then, to further improve the estimation accuracy, we introduce an outer-
loop, similar to Incremental 4D-VAR, to evaluate model-increments at a lower resolu-
tion and subsequently reduce the computational cost. The inner-loop optimizes parame-
ters using the lower-resolution model and an iterative least-squares estimation algorithm
called DUD. The outer-loop updates the initial output from the high-resolution model
with updated parameters from the converged inner-loop and then restarts the inner-loop.
We performed experiments to adjust the bathymetry with observations from the FES2014
dataset. Results show that the time patterns of the tide series can be successfully projected
to a lower dimensional subspace, and memory requirements are reduced by a factor of 22
for our experiments. The estimation is converged after three outer iterations in our exper-
iment, and tide representation is significantly improved, achieving a 34.5% reduction of
error. The model’s improvement is not only shown for the calibration dataset, but also for
several validation datasets consisting of one year of time-series from FES2014 and UHSLC
tide gauges.

Parts of this chapter have been included in a manuscript submitted for publication to Ocean Modelling:

Wang, X., Verlaan, M., Apecechea, M. I., and Lin, H. X. Parameter Estimation for a Global Tide and Surge Model
with a Memory-Efficient Order Reduction Approach.
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4.1 Introduction

In Chapter 3, we proposed a computation-efficient parameter estimation scheme to
estimate bathymetry for a high-resolution Global Tide and Surge Model (GTSM). In the
estimation procedure, observations are compared with the model output in the time se-
ries formula. Tidal constituents are widely used as model output in estimation applica-
tions, such as the estimation of the FES model (Lyard et al., 2021). But tidal constituents
cannot be directly computed in GTSM because GTSM is a time-stepping model. The
Time-stepping model allows a more accurate representation of non-linear interactions
at the coast, which is also recognized by (Lyard et al., 2021). To obtain accurate tidal anal-
ysis results, we have to simulate the GTSM for a year based on the Rayleigh criterion to
separate diurnal constituent S1 from K1. If one would include seasonal constituents Sa
and Ssa, several years would be required since they show large inter-annual variability. In
addition, hundreds of model runs would be simulated in the estimation process. There-
fore, parameter estimation in tidal constituents is not feasible with the computational
facilities available to us. The use of time series for weeks or a month can significantly re-
duce the simulation time and computational complexity. But the simulation time length
of two weeks (one spring-neap cycle) is short and leads to estimates that over-fit the data
to some extent (Wang et al., 2021). However, longer time series imply larger memory re-
quirements in the analysis step, which is not feasible for the current implementation
and computational cluster. Therefore, an efficient approach has to designed which can
reduce the memory requirement and enable a longer simulation time length.

For ensemble-based data assimilation methods (Evensen, 1994), the memory use is
proportional to the number of measurements assimilated in one batch multiplied by the
number of perturbed model runs, called ensemble members. This also applies to the
method used in this paper. Observations are often assimilated in one batch to maintain
consistency between the estimated parameters and model output after the estimation
(Emerick & Reynolds, 2013; Evensen & van Leeuwen, 2000), which cannot be guaran-
teed for incremental assimilation in smaller batches. However, this leads to a large size
of the linearized model outputs O(N Nt Ns ), where N , Nt , Ns are the number of ensem-
bles, number of observation time steps, and number of locations, respectively. When
we attempt to include more observations and to estimate more parameters, this can re-
sult in a huge memory usage on a single compute-node. There are at least two ways to
ease the huge memory usage problem: 1. parallelization of the linear solver; and 2. re-
ducing the size of the problem by approximation. Here we follow the second approach
by using model order reduction methods. Note that variational methods have different
characteristics in terms of memory usage.

Model Order Reduction (MOR) is a collection of methods that can be used to reduce
the computational complexity of mathematical models in numerical simulations with
an approximation of the original model (Antoulas et al., 2015). In this paper, we develop
a new method time-POD, which aims to reduce the size of the model output, so that the
memory needed for data assimilation can be reduced. The method was inspired by the
Proper Orthogonal Decomposition (POD) (Chatterjee, 2000), which projects the spatial
patterns of the state onto the leading singular vectors. Here we project onto the leading
singular vectors of the time patterns instead. POD is one of the MOR techniques first
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introduced in fluid dynamics by Lumley (1967). It was already known as the Karhunen-
Loève expansion (Kosambi, 1943) in statistics, and also as Principal Component Analysis
(PCA) (Jolliffe & Cadima, 2016) or Empirical Orthogonal Functions (EOF) (Monahan et
al., 2009) in meteorology. POD methods (Liang et al., 2002), such as the Karhunen-Loève
decomposition (KLD), PCA, and Singular Value Decomposition (SVD), have been ap-
plied in various fields such as fluid dynamics (Cazemier et al., 1998), pattern recognition
(Kopp et al., 1997), and more recently in control theory and inverse problems.

MOR has been applied in both ensemble-based and variational data assimilation
systems (Beck & Ehrendorfer, 2005; Cane et al., 1996; Cao et al., 2007; Farrell & Ioannou,
2001). The typical application of MOR is projecting the spatial patterns of model state
variables to truncated characteristic vectors. For instance, a dual-weighted proper or-
thogonal decomposition (DWPOD) is proposed combining with four-dimensional vari-
ational method (4DVar) to reduce state space orders in a global shallow-water model
(Daescu & Navon, 2008). Lin and McLaughlin (2014) reduced the parameter dimension
by POD for an EnKF data assimilation system.

In this study, we proposed a low-storage parameter estimation scheme with MOR
for GTSM. The method is based on an iterative least-squares algorithm DUD. With the
use of this smoother type estimation algorithm, the memory needed increases linearly
with the simulation time length. The total data size is in the order of O(109) when the
time length is larger than one month in this application, which leads to memory issues.
Therefore, we developed a time-POD approach to reduce the dimension of the model
output by projecting the time space of the model output onto a smaller subspace. The
main advantage of the time-POD is that the simulation required is not restricted by the
Rayleigh criterion, which normally requires a year’s simulation for accurate estimation
of tidal constituents. The projection reduces the memory requirements while still ac-
curately representing the time signal for any simulation length. The required length of
the time-span considered then becomes limited by other considerations. In our exper-
iments, a length of two weeks leads to some over-fitting for that time period, while the
results for one month are almost equally accurate for an entire year.

Furthermore, parameter estimation accuracy is also affected by the calibration al-
gorithm. The approach of using a lower resolution model in the estimation is similar
to Incremental 4D-Var, and an outer loop iteration can further improve the estimation
accuracy by updating the reference using a new fine resolution simulation with the up-
dated parameters (Chen & Oliver, 2013; Emerick & Reynolds, 2013). The incremental
4D-Var method consists of nested inner-loops and outer-loops to reduce computational
cost for data assimilation. It is applied successfully in the assimilation system at the
ECMWF (Courtier et al., 1994; Mahfouf & Rabier, 2000; Trémolet, 2007). In this study,
we use a very similar structure. Coarse Incremental Estimation (Wang et al., 2021) uses
a coarser grid to represent the model increments between the initial model and model
with updated parameters. The outer loop uses the high-resolution model with the up-
dated parameters from the converged inner-loop to restart the estimation process. It is
expected that this will result in a better match between the observations and the fine grid
model.

Chapter 4.2 describes the parameter estimation scheme, including POD application
in temporal patterns and the outer loop implementation. In Chapter 4.3, information
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Figure 4.1: Flowchart of the iterative parameter estimation scheme to connect the components:
DUD, time-POD and the outer-loop iteration.

about experiment set-up is provides. POD performance is evaluated by firstly analyzing
the accuracy of projected and reconstructed model output and observations and sec-
ondly, comparing the bathymetry estimation performance with or without the applica-
tion of MOR. We also perform a parameter estimation experiment with an extended sim-
ulation time of one month. Model validation for the year 2014 is presented in Chapter
4.4. Finally, discussions and conclusions follow in Chapter 4.5.

4.2 Parameter Estimation with Model Order Reduction

4.2.1 Parameter Estimation Framework

We designed an efficient and low-memory usage parameter estimation scheme with
model order reduction for the high-resolution tide models to reduce parameter uncer-
tainties and improve forecast accuracy. The flowchart of this parameter estimation scheme
is shown in Figure 4.1.

The basic estimation algorithm applied here is called DUD (Doesn’t use derivatives)
in a generic data-assimilation toolbox OpenDA (OpenDA User Documentation, 2016;
Ralston & Jennrich, 1978). It optimizes the parameters by iteratively minimizing the fol-
lowing cost function:

J (x) = 1

2
(x −xb)T B−1(x −xb)+ 1

2
[Y −H(x)]T R−1[Y −H(x)] (4.1)
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where Y is the field observation vector including all time steps in t ∈ [t1, tNt ] and all sta-
tions (1, ..., Ns ). x is the vector of parameters to be estimated, with the dimension of n.
H(x) is the model output vector matching observation locations for all time steps. xb is
the initial parameter vector. B and R are the background and observation error covari-
ances, respectively. The dimension of observation Y and model output H(x) in all space
points and time steps is as O(Ns×Nt ). The first term in the right hand of the cost function
(Eqs. 4.1) is the background term Jb constraining the changes to the initial parameters.
The second term is the observation term Jo representing the difference between model
output and observations. For the brief introduction of the DUD algorithm and parame-
ter estimation scheme, we only describe the observation term of the cost function in the
following chapters.

Figure 4.1 shows the flowchart of the parameter estimation scheme, connecting the
components DUD, time-POD and outer-loop. DUD is implemented in the inner loop
combining with the coarse-to-fine strategy and time-POD application. DUD is a Gauss-
Newton similar algorithm but derivative-free. It started from the model simulation of
first guesses for the parameters x0 = xb and n simulations with each parameter per-
turbed as (x1 = xb +δe1, x2 = xb +δe2, xn = xb +δen). Parameter is updated for an ap-
proximate linear model that fits exactly through the model output for [x0, x1, ..., xn]. DUD
iteratively finds the parameters that minimize the sum of squares between model output
and observations.

We propose three methods to improve estimation performance while reducing the
computational cost and memory requirement based on the original DUD algorithm.
They are the coarse-to-fine strategy, model order reduction in time patterns, and intro-
duction of outer loop iterations.

Firstly, in our previous study (Wang et al., 2021), a coarse-to-fine strategy called Coarse
Incremental Calibration is proposed to reduce the computational cost. It is also applied
here using a coarser grid model to replace the increments between the output from the
initial model and the model with modified parameters. Term H f (x) and Hc (x) are de-
fined as the model output with the fine and coarse grid, respectively. H f (x) can be ap-
proximated with H f (xb)+ (Hc (x)−Hc (xb)), thus the cost function is represented as:

Jo(x) = [Y −H f (xb)+Hc (xb)−Hc (x)]T R−1[Y −H f (xb)+Hc (xb)−Hc (x)] (4.2)

Therefore, GTSM with the fine grid is only simulated to generate the initial model
output H f (xb). Other simulations in the inner iterations use GTSM with the coarse grid
instead, which reduces the computing time to approximately 36% of the original.

Secondly, we consider reducing the dimension of the model output by MOR. The di-
mension of model output [H(x0), H(x1), ..., H(xn+1)] and observations y is huge, which
requires a huge memory, especially when the model has a long simulation time length.
For example, if the number of observations Ns is O(103), and with the number of time
steps Nt is O(103). Then, the dimension of the model output H(x) and observations y is
O(106). If we assume the parameter dimension n is in the order of O(102). The param-
eter dimension is the length of the vector with the parameters estimated. In this paper,
we define spatial subdomains where a single multiplicative adjustment is applied. Each
of these subdomains adds an element to the parameter vector. Thus,the dimension of
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the model output in the analysis step is O(108), such a huge memory usage is unaccept-
able in practice. Therefore, we apply POD in the time patterns for model output and
observations to reduce memory usage in the estimation procedure (that will be further
explained in Section 4.2.2).

Thirdly, we use the DUD process in the inner loop to obtain the updated parameters
at a lower resolution (see Figure 4.1). With the Coarse Incremental Calibration approach,
high resolution GTSM only plays a role as the initial output H f (xb) in Eqs. 4.2 while in-
stead by the coarse grid model Hc (x) for iterative update. Even though our previous
experiments demonstrate that coarse-grid increments can well represent the fine-grid
increments (Wang et al., 2021), the results after the estimation can still be significantly
affected by the model with the coarse grid. Therefore, we introduce the outer loop to
take the high-resolution model states into account. The updated parameters obtained
from the previous converged DUD process are used as the new first guess to update the
initial model output. The new cost function can be rewritten as:

Jo(x) = [Y −H f (xbk
)+Hc (xbk

)−Hc (x)]T R−1[Y −H f (xbk
)+Hc (xbk

)−Hc (x)] (4.3)

where k is the iteration number of the outer loop, xbk
is set to be the optimized param-

eters xak−1 from the previous DUD process. The estimation process terminates once the
cost function has converged.

Compared to the computation-efficient parameter estimation scheme we proposed
in the previous study, the estimation scheme in this paper also contributes to memory
reduction with the POD algorithm and estimation accuracy improvement by the outer
loop iterations. The combination of these methods gives a computation-efficient and
memory-reduced parameter estimation framework.

The parameter estimation process with time-POD application and outer loops as
shown in Figure 4.1 can be summarized as follows:

1. Define first guess parameter set [x0, x1, ..., xn].

2. Analyze initial model output H f (xb), Hc (xb), determine the corresponding POD
reduced model output Ĥ f (xb), Ĥc (xb) with the truncated basis matrix UNp (see
below).

3. Convert the original observations to corresponding observation Ŷ based on the
truncated projection matrix.

4. Simulate the coarse grid model with the first guess parameter set, generate the
POD reduced model states [Ĥc (x0), Ĥc (x1), Ĥc (x2), ..., Ĥc (xn)], and evaluate the cost
function.

5. Find the new parameters x∗ for an approximate linear model that fits exactly through
the model output for [x0, x1, ..., xn].

6. If the DUD stop criteria are not satisfied, then perform a model simulation with
updated parameters x∗ and do model order reduction for model output Ĥc (x∗),
and return to step 5.
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7. If model outputs with optimization results do not reach the outer loop stop crite-
ria, then return to step 1 with the optimized parameters as a new first guess for the
next iteration of the DUD process.

8. Output: optimal estimation of parameters xa in the last outer loop.

4.2.2 Proper Orthogonal Decomposition (POD) Application

In this Chapter, we provide more detail on the application of POD to reduce model
dimension in time patterns. The POD time pattern reduced model is introduced first.
Then, we describe the definition of the corresponding observation term and error co-
variance. Finally, the complete parameter estimation procedure is summarized.

Time-POD Reduced Model

POD reduces the model order by identifying several modes with the most energies
from a high-dimension system and uses these modes as a lower-dimension subspace
approximation. Usually, the discrete POD is derived with snapshots to find a smaller
subspace for states in spatial patterns. A snapshot is the value of the model state vector
at a certain time. However, the vast memory requirement in our application comes from
the model output H f (x), Hc (x) and observation Y , containing the data both in space and
time patterns in the order of O(Ns Nt ). As the simulation time increases, the dimension
in time scale Nt is usually much larger than that in the spatial scale Ns . Thus, reducing
the order in the time patterns is crucial. In the brief description of model order reduc-
tion below, we use H(x) to represent the model output without considering the model
resolution in this chapter.

In Chapter 4.2.1, H(x) is a vector representing output in one model simulation for all
observation locations and time steps. To better explain the MOR applied to model out-
put of time patterns, we rewrite the vector H(x) into a two-dimensional array HNt ,Ns (x) =
[h1(x),h2(x), ...,hNs (x)] ∈ RNt×Ns to distinguish the time and space fields. hi (x) is the
vector of model output for all time steps at the i th observation location. Now we want
to find a projection matrix K ∈ RNt×Nt from RNt to a smaller subspace which minimizes
the error:

||HNt ,Ns (x)−K HNt ,Ns (x)||22 =ΣNs
i=1||hi (x)−K hi (x)||2 (4.4)

where an optimal orthonormal projection matrix K is given by:

K =UNp U T
Np

(4.5)

UNp = [u1,u2, ...uNp ] ∈RNt×Np is an orthogonal matrix containing the Np eigenvectors of

the correlation matrix HNt ,Ns H T
Nt ,Ns

corresponding to the Np largest eigenvalues, start-
ing from the largest eigenvalue corresponding to u1 in decreasing order. The POD modes
are the optimal ordered orthogonal matrix of basis vectors UNp in the least square sense.
The truncated Singular Values Decomposition (SVD) is applied to derive the POD modes.
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It is the factorization of the matrix that generalizes the eigen decomposition via an ex-
tension of the polar decomposition:

HNt ,Ns (x) =UΣV T (4.6)

where, U = [u1,u2, ...uNt ] ∈RNt×Nt and V = [v1,v2, ...vNs ] ∈RNs×Ns are the orthogonal ma-
trices, Σ ∈RNt×Ns is a diagonal matrix with rank r and diagonal value σ1,σ2, ...σr are the
singular values of HNt ,Ns . Therefore, a new matrix ĤNp ,Ns can be defined by projecting
the model output onto a smaller subspace using the truncated orthogonal matrices UNp ,
it is:

ĤNp ,Ns (x) =U T
Np

HNt ,Ns (x) ∈RNp×Ns (4.7)

We define the truncated orthogonal matrices UNp ∈ RNt×Np by keeping the first Np

columns of the matrix U , which correspond to the Np modes with the highest energy of
the dynamic system. In general, ĤNp ,Ns (x) has a much smaller dimension compared to
the model output HNt ,Ns (x), while retains the most important features. After the time-
POD application, the two dimensional matrix ĤNp ,Ns (x) is reshaped into the vector Ĥ(x)
with a dimension of O(Np Ns ):

Ĥ(x) =


U T

Np
h1(x)

U T
Np

h2(x)
...

U T
Np

hNs (x)

 (4.8)

Ĥ(x) is defined as the reduced model output vector used for the parameter estimation
process.

Observation Term Definition

In Chapter 4.2.2, the order of model output has been reduced to a corresponding
model ĤNp ,Ns (x) with a set of data identified on time patterns instead of the real time-
series. To match the model output matrix formula, we denote a two-dimensional array
YNt ,Ns = [y1, y2, ..., y Ns ] ∈ RNt×Ns as the observation term that y i is a vector containing
time series in i th location, we have:

ŶNp ,Ns =U T
Np

YNt ,Ns (4.9)

The truncated basis matrix UNp used here is from the initial model since both the model
and observations have a strong resemblance to the tidal constituents in time patterns.
The projection and reconstruction accuracy is further analyzed in Section 4.3.2. The
reduced observation vector Ŷ is:

Ŷ =


U T

Np
y1

U T
Np

y2

...
U T

Np
y Ns

 (4.10)
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The observation error term has to be identified corresponding to the reduced obser-
vation term. We define the covariance of observation error at i th location over all time
steps as follows:

R i = E([y i −E(y i )][y i −E(y i )]T ) (4.11)

where E(y i ) = y i
t is a vector of the except values at all discrete times at location i . The

POD based observation error covariance R̂ i is:

R̂ i = E([ŷ i − ŷ i
t ][ŷ i − ŷ i

t ]T )

= E([U T
Np

y i −U T
Np

y i
t ][U T

Np
y i −U T

Np
y i

t ]T )

= U T
Np

R iUNp (4.12)

In this application, we assume observation error is time invariant. The covariance matrix
R j is a diagonal matrix with σ2 as diagonal values (σ is the observation uncertainty and
we set its value as 0.05m in this application), so R j =σ2I(Nt ). Therefore, after the model
order reduction, the new observation error covariance for location i is R̂ j =σ2I(Np ). R̂ is
the diagonal matrix including observation error covariance at all observation locations.
We rewrite the cost function with the order reduced model output and observation terms
as follows:

Jo(x) = 1

2
[Ŷ − Ĥ f (xbk

)+ Ĥc (xb k )− Ĥc (x)]T R̂−1[Ŷ − Ĥ f (xbk
)+ Ĥc (xbk

)− Ĥc (x)] (4.13)

4.3 Numerical Experiments and Results

In this chapter, we firstly describe the experiment configuration, including the pa-
rameter selection, model setup, observations, and the setup of three experiments. Sec-
ondly, to assess the performance of POD, we evaluate the projection and reconstruction
accuracy for model output and observations, followed by the comparison of estimation
results with two weeks simulation. The final estimation results are also analyzed.

4.3.1 Experiment Set-up

In this study, GTSM has the same model set-up as that we used in Chapter 2 to es-
timate bathymetry with 110 subdomains. 1973 time-series from the FES2014 dataset
is used for calibration and the UHSLC dataset is applied for validation. We use a sim-
ulation time of two weeks, between 1 to 14 January 2014, to compare the estimation
performance with and without the POD model reduction. After that, the final model es-
timation covers the simulation of two spring-neap cycles (1 month) with POD and outer
loop application. Therefore, the simulation starts from 1 to 31 January 2014 with a two-
week spin-up before January 1. The time interval is set as 10 minutes, which results in
4465 time steps.

Three experiments are set up to investigate the performance of the time-POD param-
eter estimation scheme for GTSM, as Table 4.1 shows. EX1 is the experiment with a short
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Table 4.1: Experiments set-up

Name
Simulation Time Outer

POD
Truncation Data size Data size

Time steps loop size before POD after POD

EX1 1 - 14 Jan. 2017 No No N/A 3.32GB N/A

EX2 1 - 14 Jan. 2017 No Yes 200 3.32GB 0.33GB

EX3 1 - 31 Jan. 4465 Yes Yes 200 7.35GB 0.33GB

simulation time of two weeks without POD implementation and the outer loop. It is very
similar to the experiment in Approach 2 in Chapter 3. The memory needed for the total
model output in this scheme to estimate 110 parameters is approximately 3.5GB. EX2
has the same settings as EX1 but with the implementation of POD. It aims to evaluate
the influence on the accuracy by applying POD, the memory use is significantly reduced
when compared to EX1. Finally, the experiment denoted as EX3 follows the parameter
estimation scheme in Figure 4.1, covering a 1-month simulation time length from 1 to 31
January 2014. Without MOR, the data size of [Hc (x0), Hc (x1), ..., Hc (xn)] and observation
was about 7.35GB, and the total memory use was more than 20GB for this experiment.
With the proposed POD approach, the memory use is sharply reduced to 4.5% after the
POD application.

4.3.2 Time-POD Performance Analysis

Reconstruction Accuracy

The accuracy of parameter estimation with MOR depends on the reconstruction ac-
curacy of the model output and observations. The reconstructed model output and ob-
servation terms are in the formula of UNp U T

Np
HNs ,Nt (x) (the term K HNs ,Nt (x) in Eqs.4.4)

and UNp U T
Np

Y . The basis matrix UNp is obtained by truncated SVD from the initial

model output or observations. Figure 4.2 shows the Root Mean Square Error (RMSE)
between the original and the reconstructed model output (observation) with different
number of modes. Time series is from 1 to 31 January 2014.

In general, the RMSE is decreased with the increase of the truncation size. Basis ma-
trix from observation (Figure 4.2c) shows slower downtrends than others (Figure 4.2a,
4.2b). One possible reason is the model has more tidal components that are not in-
cluded in the observations, there are 32 tidal constituents in observations while 58 tide
potential frequencies are in the model. But that will not affect the estimation results
because the RMSE for reconstructed model and observations without truncation is less
than 5×10−4m. It means the missing components in observation would lead to at most
5× 10−4m water level changes while the observation error we defined is 0.05m, which
is 100 times larger. Figure 4.2a shows the excellent accuracy of the reconstructed coarse
model. The reconstructed fine model and observations have similar performance when
the truncation size varies. Figure 4.2b is opposite to Figure 4.2a for the coarse model. We
use the basis matrix from the coarse model with 200 modes for the calibration process
because most of the model simulation in the estimation iteration is on the coarse grid.
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Reducing the coarse model output with 200 modes sharply reduces the data size, while
the high accuracy for the coarse model with RMSE of 2.64×10−4m is attained and the
reconstructed observation error is also smaller than the observation uncertainty.

Tidal analysis can also be used to reduce the data size, but in comparison, the time-
pattern projection has two advantages. Firstly, tidal analysis requires the selection of a
set of tidal constituents. These constituents should respect the Rayleigh criterion. The
projection method has only one parameter to which is quite insensitive. For example,
time-series of reconstructed model output and observations for modes 1 to 3 (Figure
4.3a-4.3c) in an observation location provide similar waves to the harmonic, implying
the patterns in the projection method work similarly as the tide analysis does but without
the restriction to separating the independent tide components. Secondly, the projection
method gives almost identical results to the time-series approach. The reconstructed
fine grid model output with projection on the first three modes (Figure 4.3d) is close
to the original data. When more modes are included, the reconstruction error would
become very small. We also performed a tidal analysis for the time series from the model
output for this location and after projection onto modes 1- 3, as shown in Table 4.2. The
projection on modes 1 and 2 mainly shows large amplitudes for the semi-diurnal tides
(N2, M2, S2, K2). The contributions from N2 and M2 add up to a large part of the N2, M2
signal, while this is a bit less for S2 and K2. Mode 3 mainly shows diurnal constituents,
where the P1 and K1 amplitudes are close to the values for the full signal. The time
projection thus shows some resemblance to tidal analysis.

Figure 4.2: RMSE between the initial model output H(X ) and reconstructed model output Ĥ(x) for
various truncation sizes (unit: m). With the projection basis vectors derived from (a) initial coarse
model; (b) initial fine model; (c) observations.

Experiments with Time-POD Application

Figure 4.4 shows the cost function (Figure 4.4a) and optimized bathymetry correc-
tion factors of EX1 (Figure 4.4b) and EX2 (Figure 4.4c). EX2, estimation with time-POD,
shows a similar behavior of the cost function in each iteration as EX1 and nearly the same
correction factors. The RMSE for both experiments decreases from 5.23cm to 3.49cm in
the calibration period, while the required memory in EX2 is reduced by a factor of 10.



4

74 4. Memory-efficient Parameter Estimation with Model Order Reduction

Figure 4.3: Time series of the model output and observation with projection in the observation
location (70.1110°S, 23.1397 °W). (a) Projection on Mode 1; (b) Projection on Mode 2; (c) Projection
on Mode 3; (d) Projection on different truncation modes.

Figure 4.5 illustrates the the difference of RMSE at different observation locations
between the initial model and the estimated model in EX2 (i.e., RMSE between the ini-
tial model and observations - RMSE between the estimated model and observations). It
reports nearly the same improvement after the estimation as in EX1 (not shown here).
Therefore, model order reduction is an efficient approach to reduce memory require-
ments for parameter estimation without causing any loss of estimation accuracy.

The purpose of parameter estimation is to improve the GTSM long-term forecast ac-
curacy. However, the interaction of tidal constituents varies during different periods. For
example, the RMSE between estimated model output and observations is 3.49cm from
1 to 14 January, while the RMSE in the forecast increases to 4.33cm for the period from
15 to 31 January 2014. A short simulation time length would lead to over-fit the data in
the estimation period (Wang et al., 2021). After assessing model order reduction perfor-
mance, we selected a longer simulation time of 1 month and perform experiments in
Chapter 4.3.3.
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Table 4.2: The amplitude of eight major tide components from tide analysis for the time-series of
the original GTSM with fine grid and the projection on mode 1-3 for the arbitrary location in (cm):
(70.1110°S, 23.1397 °W).

Components Q1 O1 P1 K1 N2 M2 S2 K2
GTSM with fine grid 7.2 26.06 7.18 21.89 6.34 46.74 33.73 9.58

Projection on mode 1 0.22 1.73 0.77 2.35 8.54 40.92 12.10 3.44
Projection on mode 2 0.23 0.53 0.30 0.90 5.51 26.10 8.05 2.29
Projection on mode 3 4.89 15.33 6.96 21.21 0.80 2.31 1.92 0.54

4.3.3 Parameter Estimation Results Analysis

EX3 covers a simulation time length of 1 month for GTSM to estimate bathymetry.
Figure 4.6a illustrates the changes in the cost function in each simulation in the three
outer loop iterations. In every outer loop, the cost functions of the first 111 runs include
one initial simulation and 110 independent simulations each corresponding to perturb-
ing one of the 110 parameters. Parameters are iteratively updated after the first 111 sim-
ulations. The simulation experiment was run using 200 cores for about 12 days, with a
total of approximately 57600h CPU times.

In the first outer loop (color red in Figure 4.6a), the cost function has a sharp reduc-
tion from 7.21×106 to 3.17×106 and then slowly reduced to 3.00×106 at the end of the
second outer loop (color blue). Compared with the first outer loop, the cost function
in the second outer loop only reduces slightly. It looks that the estimation results are
converged. In the third out loop, the difference of cost functions in each simulation is
very slight, making the DUD process difficult to continue, leading to a stop after several
iterations with a value of 2.95× 106. It is in the same magnitude as that in the second
outer loop. GTSM parameter estimation system converged in the third outer loop iter-
ation. Moreover, sensitivity for each parameter can be observed from the variability of
the cost function for the initial 111 perturbation runs in each outer loop. This is strongly
decreased in the third outer loop, indicating that the estimated parameters are close to
the minimum. The final relative change to the bathymetry, which is the correction fac-
tor [x] in Eqs. 3.8 is shown in Figure 4.6b. The value varies between -0.1 to 0.1 within the
range of hard constraints.

Estimation performance is analyzed by comparing the model output with the FES2014
dataset. For the comparison of the model performance in EX3 and EX1, RMSE of two
time periods is summarized in Table 4.3. RMSE is used to represent the difference be-
tween model output and observations to access model performance. The bias difference
between model and observations is negligible (not shown here). As expected, GTSM
with the fine grid has better performance than that with the coarse grid. Comparing the
coarse grid GTSM, EX3 works better than EX1 in all outer loops and time periods. In the
fine grid GTSM, EX1 performs slightly better than EX3 in the period 1 to 14 January but
worse in 15 to 31 January 2014. This can be explained that EX1 estimates with a two-
week simulation time (1 to 14 January 2014) resulting in an over-fitting of data in the
calibration period. The RMSE is reduced from 5.23cm to 3.49cm in the period 1 to 14
January, while the reduction in the period 15 to 31 January is clearly less, from 5.84cm to
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Figure 4.4: (a) Cost function in EX1 and EX2. Relative adjustments of Bathymetry as estimated in
EX1 (b) and EX2 (c). Positive values show a deepening.

4.33cm in the 15 to 31 January. With a longer simulation time length of 1 month in EX3,
the RMSE of the estimated fine model in these two periods is close to each other, namely
3.62cm and 3.66cm, implying the overfitting is reduced.

The spatial distribution of RMSE for the fine GTSM in January is shown in Figure
4.7. Figure 4.7a is the RMSE between the estimated fine grid model output in EX3 and
FES2014 observations. The differences of RMSE between the model before and after the
estimation are shown in Figure 4.7b. It can be observed that the estimated model has
been significantly improved in most regions. A few areas that are not improved or a bit
worse than the initial model, see the areas with yellow colors (negative values of RMSE
difference) in Figure 4.7b. Possibly, not only bathymetry but also other effects such as
the lack of resolution, play a role here. The regions getting worse only takes up a small
part of the ocean. In addition, estimation by EX3 outperforms EX1 in most ocean sea, as
Figure 4.7c shows. Generally, the estimated model significantly overperforms the initial
model.

In summary, the calibrated model in EX3 is in better agreement with the measure-
ments than EX1. Model order reduction reduces the memory requirement by a factor of
22 while keeping the same estimation accuracy as without model order reduction. Long
simulation time is beneficial for parameter estimation in GTSM, and the implementa-
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Figure 4.5: RMSE difference between the initial model and estimated model in EX2 in the period
from 1 to 14 January 2014, color blue shows the improvement. [unit:m]

Table 4.3: RMSE between GTSM and FE2014 datasets in difference time periods [cm]

Model Time period Initial EX1 EX3_1a EX3_2a EX3_3a

GTSM January 1-14 6.47 4.19 4.08 4.02 4.06

(coarse) January 15-31 7.14 5.20 4.53 4.39 4.41

GTSM January 1-14 5.23 3.49 3.67 3.62 3.62

(fine) January 15-31 5.84 4.33 3.80 3.66 3.66
a EX3_1, EX3_2, and EX3_3 represent the 1st ,2nd ,3r d outer loop in EX3.

tion of the outer loop further improves the tide forecast accuracy.

4.4 Model Validation

Model validation is necessary to ensure the model is independent from the simula-
tion period and data we used in the estimation procedure. We analyzed the tide com-
ponents from GTSM and compared them against the FES2014 dataset in the frequency
domain. The tide forecast of GTSM for the whole year of 2014 is also compared with
observations from the FES2014 and UHSLC datasets.

4.4.1 Tide Analysis Comparison against FES2014 Dataset for 2014

Model performance is evaluated in the frequency domain. Tide forecast from GTSM
in the year 2014 for 1973 observation locations is analyzed with TIDEGUI software. We
use the Root-mean-square (RMS) to assess the difference between model output and
observations for major tide components. Detailed results for 8 major tide components
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Figure 4.6: (a) Changes of the cost function values in the three outer loop iterations of EX3; (b)
Relative adjustments of the bathymetry as estimated in EX3; Positive values show a deepening.

are summarized in Table 4.4. Root-sum-square (RSS) for these 8 constituents is also an-
alyzed.

It can be observed that RSS and RMS for all 8 major components are reduced after
the estimation in EX1 and three outer loop iterations of EX3 when comparing with the
initial model. After the estimation, M2 is the component that significantly improved in
EX3 reduced from 4.50cm to 1.89cm whereas it is 2.54cm in EX1. The other 7 compo-
nents in EX3 are nearly the same or slightly better than in EX1. The RSS over these eight
components in EX3 is reduced from 6.05cm to 3.52cm.

The differences in the amplitude and phase between the model output and FES2014
dataset for M2 component is shown in Figure 4.8. The difference in amplitudes and
phases compared to FES2014 dataset is much smaller for the estimated models in EX1
and EX3 than for the initial model. EX3 has a better agreement with FES2014 dataset than
EX1, especially in the phase domain (Figure 4.8e, 4.8f), consequently EX3 has a smaller
RMS than EX1.

Initial GTSM performs better in deep ocean comparing with Deep-Ocean Bottom
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Figure 4.7: (a) RMSE between estimated fine grid GTSM in EX3 and FES2014 dataset in January
2014; (b) Difference of RMSE between the initial model and the estimated model, color blue shows
the improvement; (c) Difference of RMSE between model after estimation in EX1 and EX3, color
blue shows EX3 outperforms EX1. [unit: m]



4

80 4. Memory-efficient Parameter Estimation with Model Order Reduction

Figure 4.8: Spatial distribution of amplitudes and phase difference of M2 between model and
FES2014 dataset. (a) (b) (c): Amplitudes difference for initial GTSM, model estimated in EX1 and
EX3, respectively [unit: m]. (d) (e) (f): Phases difference for initial GTSM, model estimated in EX1
and EX3, respectively [unit: degree].



4.4. Model Validation

4

81

Table 4.4: RSS and RMS of eight major tide components between the fine GTSM and FES2014
dataset in (cm)

RMS for all locations RSS

Components Q1 O1 P1 K1 N2 M2 S2 K2

Initial 0.48 1.12 0.55 1.62 1.01 4.50 2.79 1.76 6.05

EX1 0.44 0.96 0.41 1.18 0.66 2.54 1.91 1.46 3.92

EX3_1 0.46 1.00 0.45 1.31 0.62 2.02 2.00 1.42 3.68

EX3_2 0.46 0.99 0.43 1.25 0.61 1.91 1.90 1.39 3.53

EX3_3 0.46 1.00 0.43 1.25 0.62 1.89 1.89 1.38 3.52

Pressure Recorder (BPR) observation than most of the purely hydrodynamic models de-
scribed in Table 3 of Stammer et al. (2014), but not as accurate as the assimilative tide
models (Wang et al., 2021). In this study, GTSM is significantly improved after our pa-
rameter estimation to bathymetry in the deep ocean. It outperforms the purely hydro-
dynamic models, especially in the M2 constituent, but still not better than the assimila-
tive tide models. This result is expected because firstly observation locations are limited
in the estimation process, and secondly not only bathymetry but other effects such as
resolutions, other parameters like bottom friction would also affect the model perfor-
mance. However, compared to other tide models, GTSM after parameter estimation has
the advantage to access the effect of sea level rise and climate changes because it can
include surge simulation when meteorological forcing wind and air pressure additions
are added. Therefore, the high accuracy tide representations also benefit the complete
water level forecast.

4.4.2 Monthly Comparison against FES2014 Time Series for 2014

GTSM is also validated through long-term tide forecasts, showing the model perfor-
mance in different time periods. Model forecast in the whole year of 2014 is firstly an-
alyzed with the FES2014 dataset. Figure 4.9 shows the regional RMSE of the fine GTSM
after the estimation in EX1 and EX3 for each month of year 2014. The regional RMSE
between GTSM with the fine grid and FES2014 dataset are shown in Figure 4.9a-g. The
global average of RMSE in 1973 locations is shown in Figure 4.9h.

Compared to the initial model, the RMSE for all the regions is significantly reduced
in EX1 and EX3. RMSE in EX1 is larger than that in EX3 in the year 2014, except for some
months in the Indian Ocean. Forecast results also report that estimation with a longer
simulation length works better than that with a short time window When comparing the
RMSE in EX1 and the first outer loop of EX3. As the number of outer loop iterations
increases, the model performs better throughout 2014. The 1-year forecast comparison
with the FES2014 dataset demonstrates the estimated model can be used for the high-
accuracy long-term forecast.

One can also observe a seasonal pattern in the RMSE in Figure 4.9, both before and
after the calibration. A possible reason is that tide constituents interact differently for
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Figure 4.9: RMSE between model output and FES2014 dataset in 2014.
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Figure 4.10: RMSE between model output and UHSLC dataset in 2014

different periods, leading to a large or small difference between the data and the model
for each month. After calibration, this seasonal pattern is smaller in EX3 than EX1, in-
dicating long simulation time length can weaken it and result in a better agreement to
model and observations. However, it remains challenging to verify whether using a more
extended time period such as one year can further improve the model accuracy and
eliminate over-fitting due to the excessive computational demand. But we see no clear
signals of over-fitting problem in EX3, and the 1-month calibration provides sufficient
calibration accuracy.

4.4.3 Monthly Comparison against UHSLC Time Series for 2014

In the following, the performance of GTSM is assessed using a dataset that is not
used in the estimation stage. Model performance in the coastal areas is evaluated by
comparing with the UHSLC dataset in 2014.

Figure 4.10 shows the monthly averaged RMSE in 2014 between model output and
the UHSLC measurement. The RMSE before the estimation is approximately 12.5-14
cm in each month and it is reduced to about 10-11.5cm after the estimation in both
EX1 and EX3. It indicates the bathymetry estimation for the deep ocean can improve
the accuracy in the nearshore. As expected, the results in EX3 are better than in EX1.
The difference between the three outer loops is not significant, but the second outer
loop is slightly better than the third outer loop. It can also be observed from the mean
RMSE of the whole year of 2014 (Figure 4.10), the second loop has a value of 10.84cm
smaller than the third outer loop with 10.94cm. One possible reason is the bathymetry
estimation mainly works on the deep ocean and some other parameters, such as bottom
friction coefficient, play an important role in the coastal regions. After three outer loop
iterations, the parameter estimation overfits a bit the deep water observation used in
the calibration process. Also, some other effects, such as bottom friction, play a role in
shallow waters, but they are left out of consideration in this study. Future works can
continue on the parameter estimation for shallow waters.

Figure 4.11 shows the spatial distribution of RMSE between the initial fine model and
UHSLC dataset in the year of 2014 (Figure 4.11a) and the RMSE difference between the
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Figure 4.11: (a): RMSE between initial fine GTSM and UHSLC dataset in year 2014; (b): RMSE
Difference between initial model and estimated model in EX3, color blue shows improve-
ment.[unit:m]

model before and after estimation in EX3 (Figure 4.11b). Results in EX1 reported similar
distribution as EX3 but with a slightly higher RMSE (not shown here). Most of the tide
gauges are located in coastal areas with larger RMSE than deep oceans. After the global
calibration, model performance near the coast is improved even though the calibration
mainly focuses on the deep water.

To further have a closer look at the tide representation in one location, the time se-
ries of station Wellington Harbour in New Zealand is used as an example. Figure 4.12a
shows the tide representation from the UHSLC dataset, the model output of the initial,
EX1, and EX3. The difference between model output and observation is depicted in Fig-
ure 4.12b. The RMSE for the initial model is 15.25cm, and after the estimation in EX1,
it is decreased by approximately 44.2% to 8.51cm. EX3, with the RMSE reduction of ap-
proximately 59.21%, is marginally better than in EX1.

The model validation for the whole year of 2014 shows excellent agreement with
the FES2014 and UHSLC datasets in frequency and time domains after applying the
memory-efficient estimation. It illustrates that GTSM with the adjusted bathymetry can
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Figure 4.12: (a): Tide representation for station Wellington Harbour in year 2014; (b): Difference
between different GTSM models with the fine grid and observation. Wellington Harbour is a loca-
tion with coordinate of (41.28°S,174.78°E) in the New Zealand.

provide high accuracy long-term tide forecast.

4.5 Conclusions

This study presented a memory-efficient parameter estimation approach for the high-
resolution global tide model over a long time length. To resolve the memory constraint
of the long period model simulation, time-POD model order reduction is developed to
project the model output time patterns onto a smaller subspace. To further improve
the model estimation accuracy with affordable computational cost, we implemented
inner-outer loop iterations, similar to Incremental 4D-var, using an iterative parame-
ter estimation algorithm called DUD in the inner loop with the lower-resolution model
simulation. The outer loop uses optimized parameters from the previous inner DUD
process as a new reference run with the initial high-resolution model. This parameter
estimation scheme is implemented for the Global Tide and Surge Model (GTSM) to cor-
rect bathymetry and substantially improve the model performance.

Our previous investigation showed that the accuracy of the calibrated model would
probably benefit from a calibration period longer than the two weeks (one spring-neap
cycle) used there, but the huge memory required was limiting an extension in practice.
Here, we use time-POD model order reduction to project the GTSM output onto a lim-
ited number of time patterns. This projection reduces the memory usage by more than
an order of magnitude in our experiments, while our experiments for GTSM show that
parameter estimation with MOR achieves the same model accuracy as without MOR.
This approach has the advantage of keeping the reduced model output size small when
extending the simulation time length.

Finally, a parameter estimation experiment for GTSM with the implementation of
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MOR and inner-outer loop iterations is performed. It covers a simulation time of 1
month while memory demand is reduced by a factor of 22 due to model order reduction
for time fields. Experiment results show that the ocean tide is better represented in the
calibration period. The cost function is converged within three outer loop iterations in
this study. Model validation from the frequency domains illustrates the M2 component
is significantly better estimated with the set-up of 1-month simulation length and the
outer loop implementation. Model tide forecast in the whole year of 2014 is compared
with the FES2014 and UHSLC datasets. It demonstrates that a long simulation period in
the estimation procedure improves the performance for long-term tide forecasting. The
outer loop iterations contribute to further improvement of the model forecast but can
lead to a bit of overfitting to the data in the third outer loop.

In summary, parameter estimation leads to significant performance improvements
for GTSM. The memory requirements are significantly reduced, which allowed us to ex-
tend the time span used for calibration. This resulted in a more accurate reproduction
of tides in GTSM. Bathymetry calibration contributes more to the deep ocean but also
benefits a bit for shallow waters. In addition, this parameter estimation scheme can also
be used to calibrate different parameters simultaneously (e.g., bathymetry, internal tide
friction and bottom friction combined), in particular, to estimate the bottom friction in
shallow water with more tide gauge data.
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Chapter 5

Parameter Estimation to Improve
Coastal Accuracy

Global tide and surge models play a major role in forecasting coastal flooding due to ex-
treme events or climate change. Model performance is strongly affected by parameters
such as bathymetry and bottom friction. In this study, we propose to implement an esti-
mation of bathymetry globally and the bottom friction coefficient in the shallow waters
where energy dissipation is largest for a Global Tide and Surge Model (GTSMv4.1). How-
ever, the estimation effect is limited by the scarcity of observations. We propose to combine
the FES2014 dataset (gridded distributed globally) with tide gauge data (distributed un-
evenly along the coasts) to offset the impact of scarce observations. The FES2014 dataset
outperforms GTSM in most areas and is used as observations for the deep ocean and some
coastal areas, such as Hudson bay/Labrador, where tide gauges are scarce but energy dis-
sipation is large. The experiment is performed with a computation and memory efficient
iterative parameter estimation scheme for a Global Tide and Surge Model (GTSMv4.1).
Estimation results show that model performance is significantly improved for deep ocean
and shallow waters, especially in the European Shelf using the CMEMS tide gauge data in
the estimation. GTSM is also validated by comparing to FES2014 dataset and tide gauges
from UHSLC, CMEMS dataset and some Arctic stations in the year 2014.

Parts of this chapter have been included in a manuscript submitted for publication to Ocean Science:

Wang, X., Verlaan, M., Veenstra, J, and Lin, H. X. Parameter Estimation to Improve Coastal Accuracy in a Global
Tide Model.
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5.1 Introduction

Data assimilation or parameter estimation technique optimizes parameters by mini-
mizing the difference between model runs and observations (Heemink et al., 2002; Mayo
et al., 2014; Zijl et al., 2013). Stammer et al. (2014) reported that assimilated tide mod-
els have higher accuracy than non-assimilative models. For example, in chapters 3 and 4
we developed an efficient iterative parameter estimation scheme to estimate bathymetry
globally for a high-resolution GTSMv3.0 and significantly improved model performance
in the deep ocean but only improved slightly in the shallow water. To further improve
the model accuracy near the coast, we propose to combine the estimation of bathymetry
and bottom friction coefficient together with more tide gauge data included in this study.
Bottom friction plays an essential role at the coasts accounting for a significant propor-
tion of tide energy dissipation (Egbert & Ray, 2001). The total amount of global tidal
energy dissipation is approximate 3.7TW, and two-thirds is generated by the bed stress.
The bottom friction term in the quadratic bed stress formula with the coefficient defined
by the of Chézy, Manning or White-Colebrook method (Colebrook et al., 1937; Manning
et al., 1890), and the coefficient is empirically defined. Some model tests are performed
to adjust the coefficient by calculating the difference between model and measurements.
This value is difficult to set accurately but strongly related to the water level representa-
tion in the shallow water. Moreover, the bottom friction coefficient can vary strongly
between regions.

In regional tide models, data assimilation is applied predominantly to estimate bot-
tom friction bathymetry, and boundary variables (Edwards et al., 2015; Navon, 1998)
with ensemble (Siripatana et al., 2018; Slivinski et al., 2017) or adjoint methods (Zhang et
al., 2020). Ullman and Wilson (1998) estimated a drag coefficient by assimilating Acous-
tic Doppler Current Profiler (ADCP) data into a tidal model of the lower Hudson estu-
ary with the adjoint method. Zijl et al. (2013) improved the water level forecasts for the
Northwest European Shelf and the North Sea through directly modeling and assimilating
altimeter and tide gauge data to adjust bathymetry and Manning’s roughness coefficient.
Mayo et al. (2014) estimated a spatially varying Manning coefficient of an Advanced Cir-
culation (ADCIRC) model of Galveston Bay with a square root ensemble Kalman filter.
The estimation of bottom friction using data-assimilation has been applied successfully
to the European Continental Shelf (Heemink et al., 2002), Bohai, Yellow, and East China
Seas (Wang et al., 2021). We found only one application at a global scale (Lyard et al.,
2021), where altimetry derived tides and tides derived from tide gauges are assimilated
into a combination of a time-stepping and a spectral tide model. The uncertainty for the
model, is partly based on parameter uncertainty, such as bed friction, but the result is in
the form of a tide dataset, called FES2014 as we discussed in Chapter 1. The application
focuses on tides only. We follow a different approach using time series as the basis for
the cost function and also study the sensitivity of parameters and observations.

There are considerable differences between data-assimilation for tides in deep water
and near the coast. In the deep ocean, bathymetry is reported as the parameter that
has most influence on the tide representation. The sensitivity to bottom friction is very
small in deep water, but is often the most sensitive parameter in shallow water. The main
reason for this is that the effects of both parameters interact.
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In this study, we combined the estimation of bathymetry and bottom friction to-
gether. Bathymetry directly controls the tide propagation speed, which is proportional to
the square root of the local water depth (Pugh & Woodworth, 2014). On the other hand,
bottom friction controls the dissipation of tide energy (Egbert & Ray, 2001). But bottom
friction also decreases with depth, which results in a non-linear interaction. Moreover,
due to the quadratic velocity in the friction term, the effect of friction is enhanced when
the different tidal constituents propagate along the shallow water with the complex to-
pography (Cai et al., 2018). Thus, water level is influenced by the co-action of bathymetry
and bottom friction. This also creates an interaction between the deep ocean and the
shelf. The bathymetry in the deep ocean not only affects the tidal propagation there but
also in adjacent coasts. And though the dissipation by bottom friction predominantly
occurs in shallow water, this will also change the tides in the adjacent deep ocean. To
our knowledge, this is the first study with a global model that combined the estimation
of bathymetry and bottom friction. With this approach, we aim to improve modeled
tides, both in the deep ocean as well as along the coasts.

We use the computation and memory efficient parameter estimation schemes pro-
posed in Chapter 4. Bathymetry is estimated in all ocean basins, and regions with signif-
icant tidal energy dissipation are selected for the bottom friction coefficient estimation.
The areas with most tidal energy dissipation are the European Shelf and Hudson Bay
region (Egbert & Ray, 2001). FES2014 time-series are used as observations for the deep
ocean. This dataset has higher accuracy for tides than our initial model (Stammer et al.,
2014) and with FES2014 tide time-series are generated easily for arbitrary locations and
periods. In the coastal areas, tide gauge data is included in the estimation and validation
processes to increase coverage for the coastal regions. Tide gauge data was collected
from the UHSLC (global coverage), CMEMS (Europe). For one comparison in the Arctic,
we made use of the tide dataset by Kowalik and Proshutinsky (1994), the contains four
major constituents for a relatively large number of Arctic tide gauges. Since tide gauge
data are scarce in some areas, we investigate the use of FES2014 also in some coastal
regions. The bottom friction is estimated in the Hudson Bay region, European Shelf
and often other regions with large energy dissipation using a combination of FES2014
and tide gauge data as observations. Together, these datasets form a reliable joined pa-
rameter estimation application to correct the bathymetry globally and bottom friction
coefficient in the coastal and shelf seas.

In Chapter 5.2 and 5.3, the Global Tide and Surge Model (GTSM) in a updated ver-
sion 4.1 and multiple-parameters to estimate are introduced. Chapter 5.4 describes the
detailed methods for the bottom friction coefficient subdomain generation and obser-
vation selection. Chapter 5.5 presents the parameter estimation experiment set-up and
results analysis. The estimated model is evaluated with a one-year analysis compari-
son with the FES2014 dataset and tide gauge data in the time and frequency domains in
Section 5.5. Finally, the discussion and conclusions follow in Section 5.6.

5.2 GTSMv4.1 Configure

GTSM is updated in the version 4.1. In comparison to GTSMv3.0 with the updated
bathymetry (same bathymetry as GTSMv4.1) that described in Chapter 2 and used in
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Chapter 3 and 4, the internal tide forcing term is corrected for the layer thickness in
the salinity/temperature datasets in GTSMv4.1. GTSMv4.1 is retweaked for the bottom
friction and internal tides friction drag coefficients. We use a full set of 484 tide potential
frequencies in version 4.1 replacing 60 constituents in GTSMv3.0. These changes result
in a more accurate initial model with the RMSE reduced by 1cm compared with the
FES2014 dataset. The bias difference is corrected before the RMSE calculation in this
paper. In our estimation experiments, GTSMv4.1 is simulated for tide representation
only and the long-term tide constituents (SA and SSA) are excluded to avoid the seasonal
changes to the time series because long-term constituents show large variation between
years.

5.3 Multiple-Parameters Estimation

5.3.1 Parameters to Estimate

In Chapter 2, we tested the sensitivity of bathymetry and internal tide friction term
for the deep ocean by comparing the relative changes of the cost function when per-
turbing a specific parameter. It shows that bathymetry perturbation results in larger
changes to water level than the internal tide friction term. Therefore, we only optimized
the global bathymetry for the deep ocean.

In shallow water, bottom friction is also a main energy dissipative process. Figure
5.1a illustrates the global tide energy dissipation distribution by the bottom friction term.
The regions in Figure 5.1b are defined the same as in Egbert and Ray (2001). The total
tide energy dissipation in the initial GTSM is 3.77TW, 2.39TW from bottom friction, and
1.37TW from the internal tide friction. The top values are for the Hudson Bay, the North
West Australian Shelf and the European Shelf, as Figure 5.1b shows. We propose to esti-
mate bottom friction only in the shallow water regions with large bottom friction energy
dissipation.

It is impractical to estimate the bathymetry and the bottom friction coefficient for all
the grid cells because of the limited observations and it would also result in huge com-
putational demand, and memory requirement. To reduce the parameter dimension, we
divide the global ocean into 110 subdomains for bathymetry estimation and define the
correction factor for each subdomain to adjust the parameters in Chapter 3. The estima-
tion subdomains for the bottom friction term are located in areas with high dissipation
based on Figure 5.1b and sufficient coastal observations, as explained in more detail in
Section 5.4.

5.3.2 Parameter Estimation Scheme

The parameter estimation application for GTSM uses the estimation scheme devel-
oped in Chapter 4, which has three methods to ensure the estimation feasible, including
the computational cost reduction by coarse-to-fine strategy, the memory requirement
reduction by POD based time pattern order reduction, and the contribution on estima-
tion accuracy with implementation of outer-loop iterations. It results in a computation-
efficient and low-memory usage parameter estimation scheme.



5.4. Estimation of Bottom Friction Coefficient

5

95

Figure 5.1: Bottom friction energy dissipation in initial GTSMv4.1 (a) Global distribution
[Unit:W /m2]; (b) Area-integrated energy dissipation [Unit:T W ].

5.3.3 Observation

We investigated tide observations at the global scale. What we can collect and use for
the calibration are the FES2014 dataset and several global or regional tide gauge datasets,
as we discussed in Chapter 1.

For efficiency, we calibrated tides separately. Firstly, we generate about 4000 time se-
ries from the FES2014 dataset to ensure enough observations for estimating bathymetry
in the year of 2014. These observations are evenly distributed and located in the deep
ocean with a depth larger than 200m. Moreover, tide analysis is performed in the CMEMS
and UHSLC dataset tide gauge data with the TIDEGUI software, a matlab implemen-
tation of approach proposed by Schureman (1958) and following by the visual inspec-
tion of tide and surge representations. After the tidal analysis and quality control, we
obtained 237 locations from the UHSLC dataset and 297 locations from the CMEMS
dataset.

5.4 Estimation of Bottom Friction Coefficient

Even though we obtained three collections of tide gauges, the observations are still
quite sparse in some coastal seas. Therefore, we first investigate how to make use of the
available data with the consideration of the model performance and parameter sensitiv-
ity.

5.4.1 Model and Observation Accuracy Analysis

FES2014 dataset is very accurate in the deep ocean (Stammer et al., 2014) while along
the coast, tide gauge data can be more trustworthy. However, tide gauges data are dis-
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tributed irregularly. We propose to use a combination of the FES2014 dataset and tide
gauge data in the shallow water. The first step is to analyze the accuracy of the FES2014
dataset and the initial GTSMv4.1 comparing with the tide gauge data.

Tide analysis is performed with the TIDEGUI software for the water level represen-
tation from GTSM in the year 2014. Root-mean-square (RMS) describing the difference
between model output and observations for tidal components is applied with the for-
mula:

RMS =
√

(Amcos(ωt −φm)− Aocos(ωt −φo)]2 (5.1)

Am and Ao are model output and observation amplitudes, φm ,φo are for the phase
lag. ω is the tide frequency. The overbar shows the averaging over one full cycle of the
constituent (ωt varying from 0 to 2π) in all locations. We also use Root-Sum-Square
(RSS) to describe the Root Square Sum of RMS for the listed major tidal constituents. To
facilitate comparison, we use the same formulas for RSS and RMS as in Stammer et al.
(2014).

Table 5.1 illustrated the Root-sum-square(RSS) and RMS of eight major tide compo-
nents between FES2014 and initial GTSM with the tide gauge data. The RSS is calculated
for all the eight components in all locations. Comparing with the UHSLC dataset at the
globe, FES2014 is more accurate than GTSM for all of the eight components, implying
generally FES2014 dataset can provide better tide representation in the shallow water
than GTSM. This conclusion is also supported by the comparison with the stations in
the arctic ocean. Figure 5.2 shows the spatial distribution of RSS for each location, which
shows that with a few exceptions FES2014 is more accurate.

In the European Shelf, GTSM has the RSS of 19.15cm when comparing with CMEMS
dataset, which is even smaller than the FES2014 dataset with the RSS of 20.42cm. This
also can be observed from the RMS of the N2,M2,S2 and K2 constituents. However, from
the spatial distribution of RSS for each stations shown in Figure 5.2c,5.2d, FES2014 out-
performs most of the stations from CMEMS dataset but provides poor results in a few sta-
tions. These result in a larger RSS for FES2014 than GTSM. A possible reason is these tide
components obtained from FES2014 is calculated by interpolating the gridded FES2014
dataset to the observation locations, resulting in some errors. GTSM has a higher resolu-
tion in the European Shelf, contributing to better results in those locations with complex
bathymetry.

In general, FES2014 outperforms GTSMv4.1 in the shallow waters before calibration.
Therefore, we will select FES2014 for calibration in the those areas where tide gauge sta-
tions are sparse. In the following, we use the FES2014 dataset in the deep ocean and
CMEMS data in the shallow waters for the calibration. In addition, FES2014 is also in-
cluded to support the shallow waters where without tide gauges. UHSLC and arctic sta-
tions are used for model validation.

5.4.2 Subdomains of Constant Bottom Friction Coefficient

The bottom friction coefficients in the regions with large tide energy dissipation (see
Figure 5.1b) have to be estimated. We define multiple subdomains for the European
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Figure 5.2: Left column: RSS between initial GTSMv4.1 and tide gauge data. Right column: RSS
difference between initial GTSMv4.1 and FES2014 dataset (RSS of GTSM minus RSS of FES2014).
Color blue shows better performance in FES2014 than GTSM. (a),(b) UHSLC dataset; (c),(d)
CMEMS dataset; (e),(f) Arctic stations.[unit: m]
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Table 5.1: RSS and RMS of eight major tide components between FES2014 dataset, initial GTSM
and tide gauge data in (cm)

RMS of all the locations RSS
Q1 O1 P1 K1 N2 M2 S2 K2

UHSLC dataset
FES2014 0.37 1.79 0.83 2.49 2.66 11.75 3.49 0.97 12.98

Initial GTSM 0.53 2.43 1.17 3.51 3.17 15.12 5.37 1.59 17.03
CMEMS dataset

FES2014 0.45 1.05 0.62 1.14 3.96 18.55 6.99 2.28 20.42
Initial GTSM 0.68 2.17 0.68 1.55 3.22 17.99 4.66 1.70 19.15

Arctic Stations
FES2014 - 1.26 - 2.37 - 20.24 7.67 - 21.81

Initial GTSM - 3.03 - 5.47 - 25.27 8.63 - 27.42

Shelf and Hudson Bay/Labrador regions and single subdomains for other coastal areas
shown in Figure 5.1b.

Case Region 1: Hudson Bay/Labrador Region

The Hudson Bay/Labrador region, in the top one of the list 5.1b, generates about
0.39TW energy dissipation, about 16% of the global sum. Most of the dissipation is con-
centrated in the Canadian archipelago, Hudson Bay, Foxe Basin, Hudson Strait, and Un-
gava Bat in Figure 5.3a. We defined three subdomains that firstly separate the Canadian
archipelago outside the other areas. Secondly, Foxe Basin, Hudson Strait, and Ungava
Bay are combined as one subdomain. The last subdomain is for Hudson Bay. Subdo-
mains are shown in the red boxes of Figure 5.3.

The available observations are from the arctic stations but only include four major
tidal components. In theory, harmonic tide analysis can be performed for the model
output and it is possible to estimate parameters with the model output in the form of
tide components, but accurate tide analysis needs a time series of a year, which would
increase the computation time needed for estimation by more than 10 times. In Chapter
4, we showed that an accurate estimation can be performed with a full time series of 1
month, so this would increase run times by a factor of 12. This is not feasible for us at the
moment. Therefore, we select to use the model output of time series, and these arctic
stations can be utilized for the model validation.

To obtain sufficient observations, we propose to generate more observations from
the FES2014 dataset because FES2014 dataset outperforms GTSM. Figure 5.2e illustrates
the RSS (Root Sum Square) of four major tidal constituents between tide gauge data
in the Arctic Ocean and the FES2014 dataset. The RSS difference between GTSM and
FES2014 dataset (RSS between GTSM and tide gauge data - RSS between FES2014 and
tide gauge data) varies for each location and FES2014 has smaller RSS than GTSM in
most of the locations, especially in the Canadian archipelago regions (Figure 5.2f). The
RSS of four major tidal constituents for all the locations in the FES2014 dataset is 21.81cm,
while it is 27.82cm for GTSM. Errors are typically larger near the coast. Performance of
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Figure 5.3: (a) Bottom friction energy dissipation per square meter of the Hudson Bay/Labrador
in GTSMv4.1 [unit: W /m2] and bottom friction coefficient subdomains (red boxes). (b) FES2014
observation distribution: Points with different colors means in different subdomain.

FES2014 at the arctic stations is better than GTSM before the calibration. We expect
the accuracy of FES in open water to be even better. Therefore, we propose to use the
FES2014 dataset to as the observations in the Hudson Bay region. As a result, 61 equally
distributed time series are generated as on the locations in Figure 5.3b. The tidal com-
ponents from arctic stations can be used for the validation.

Case Region 2: European Shelf

Bottom friction energy dissipation in the European Shelf is about 0.25TW which is
approximate 11% of the global total value shown in Figure 5.4. Considering the dissi-
pation distribution, we define 5 subdomains to estimate the bottom friction coefficient.
Firstly, we define subdomains for the areas in and outside the North Sea and separate the
Western and Eastern part of the North Sea. Secondly,The region of Scotland, the Faro
Islands and Shetland have mountainous ocean bathymetry, where expect to a higher
bottom friction coefficient. Therefore, five subdomains are generated for the European
Shelf for calibration.

The estimation for European Shelf takes advantage of a large amount of local tide
gauge data (Figure 5.4b). About 297 tide gauge stations from CMEMS dataset are avail-
able for the year 2014, which will directly be used for parameter estimation. 132 tide
gauge data stations in the Mediterranean Sea and Baltic Sea (blue points in Figure 5.4b)
are removed because they are only weakly connected to the open ocean. The remaining
stations are divided into two subsets, 70 locations for calibration (red points in Figure
5.4b) and 95 points for validation (green points in Figure 5.4b).

Other Coastal Areas with Large Energy Dissipation

There are many other coastal regions that have a significant share of the total large
tide energy dissipation ( Figure 5.1b), like the North West of the Australian Shelf and
the Yellow Sea. Therefore, 11 additional subdomains were defined globally. They are in
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Figure 5.4: (a) Bottom friction energy dissipation per square meter across the European Shelf in
GTSMv4.1 [unit: W /m2] and bottom friction coefficient subdomains (red boxes). (b) CMEMS
observation distribution: points in red are data used for calibration, points in green are used for
validation and points in blue not used.

the North West Australian Shelf, Yellow Sea, Patagonian Shelf, Okhotsk Sea, North East
of Brazil, Arctic/Norwegian Sea, Antarctica, Andaman Sea, China Sea, Bering Sea, and
Indonesia. Because of the limited tide gauge availability in the shallow water and limited
computational resources, it is not feasible to do a detailed subdomain analysis for each
of these regions. The detailed subdomain distribution is shown in the Section 5.5.

Time-series from the UHSLC dataset are collected at the global scale, but these mea-
surements are not evenly distributed and lacks data in some areas, such as the North
West of Brazil and the Okhotsk Sea. To make the research on these areas feasible, we
propose to use more FES2014 data in these regions for estimation and use the UHSLC
dataset for validation only. Therefore, additional distance-equal distributed time series
were generated from FES2014 in the location with bathymetry between 50 to 200m.

In summary, we defined 110 subdomains for bathymetry and 19 subdomains for
bottom friction coefficient estimation (five in the European Shelf, three in the Hudson
Bay/Labrador region and 11 for other coastal areas). In total, 4061 time series from the
FES2014 dataset and 70 time series from the CMEMS dataset are included in the esti-
mation procedure. GTSM after the estimation will be validated by comparing with time-
series from the FES2014 dataset in the deep ocean and tide gauge data from the CMEMS,
UHSLC and Arctic stations.
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5.5 Numerical Experiment and Results

5.5.1 Parameter Estimation

Experiment Design

The experiment is set up to investigate the performance of GTSM after the estima-
tion of bathymetry and bottom friction. GTSM is simulated with tide only because no
surge data is available in the deep ocean. In addition, the surge is not sensitive to the
bathymetry (see Chapter 3) and it has to be adjusted with the additional meteorological
conditions. The improvement of tide representation in this study can also benefit the
accuracy of the total water level. For the estimation runs, we selected a period of one
month, September 2014, which we believe is sufficient for tide calibration when using
high-frequency time series with 10 minutes sampling. To make this possible, meteoro-
logical and long-period signals have to be removed as much as possible. We made model
runs without atmospheric forcing and removed the SA and SSA tidal potential. These
constituents were also removed from the FES2014 and tide gauge tide series to keep the
comparison consistent.

The time step for the model output and observation is 10 minutes, leading to the
time number in a one-month simulation equal to Nt = 4321. The number of observa-
tion locations from FES2014 and CMEMS together is Ns = 4131. Moreover, parameters
are corrected for the 110 bathymetry subdomains and 19 bottom friction subdomains.
In this case, the data size refers to observation, and model output for all the ensembles
(perturbed parameters) in the estimated process is about 17.3GB. With the implemen-
tation of POD-based time pattern order reduction, a truncation size of 200 represents
the model output and observation in a smaller subspace of time patterns. The memory
requirement is reduced by a factor of 22 after the POD application.

We defined several constraints in the optimization process to ensure that the ad-
justed parameters are realistic. The uncertainty for bathymetry correction factor is set to
5 % and for bottom friction coefficient to 20 %. Initially, each parameter is perturbed one
by one with the uncertainty value. The same values are also used for a weak constraint
adding to the cost function as the background term. It defines the difference between the
initial and adjusted parameters. The background term can avoid changes to the param-
eter far away from the initial values than only achieve an insignificant improvement. In
addition, hard constraints are also defined as the upper and lower boundary for the pa-
rameters. They are twice the uncertainty with the value of [-10%, 10%] to bathymetry and
[-40%, 40%] to the bottom friction coefficient. Finally, there is a transition zone between
each subdomain to avoid a sudden change in the correction factor from one subdomain
to another. The correction factor in the transition zone is generated by automatic linear
interpolation.

Parameter Estimation Results

The subdomains for bathymetry and bottom friction and their sensitivity are illus-
trated in Figure 5.5. Bathymetry and bottom friction have comparable sensitivities. The
sensitivity values of bathymetry vary between -0.06 to 0.02 (Figure 5.5a). The sensitiv-
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ity of the bottom friction coefficient changes between -0.01 to 0.05 (Figure 5.5b), with
the largest value up to approximate 0.05 in the North West of the Australian Shelf. As
we discussed in the Introduction, bottom friction impacts the model performance not
only in the local shallow waters but also in the nearby deep ocean. It can be observed
in the Figure 5.5c-5.5f when perturbing the bottom friction in the subdomains of Euro-
pean Shelf and Hudson bay. RMSE is large in the nearby oceans around the perturbing
subdomain and smaller when the location is far away, and the largest RMSE values are
located around the Coastline (Figure 5.5d). Bottom friction in Hudson bay subdomain
has a larger effect on the surrounding deep oceans (Figure 5.5c) than the European Shelf
(Figure 5.5e). It is consistent with that the largest tide energy dissipation is in Hudson
Bay.

Figure 5.6a illustrates the cost function changes for each iteration in these four outer
loops. The first 130 iterations in each loop perturb parameter one by one; parameters are
iteratively updated after that until reaching the stop criteria. Optimized parameters in
this outer loop will be used as the initial parameters to start the next loop. The estimation
experiment was performed with 200 cores, 9 cluster nodes, running for about 16 days,
with a total cost of approximately 76800 CPU core hours.

The cost function in the experiment started from the value of 1.96×107. It is sharply
reduced in the first outer loop to the value of 6.40×106, resulting in a reduction of 67.3%.
The decrease of the cost function in the second to fourth outer loop is slight and con-
verged in the fourth loop with the value of 5.58×106. Finally, the cost function is reduced
to 28.5% of the original. The relative changes of bathymetry and bottom friction coeffi-
cient is shown in Figure 5.6b, 5.6c. After the estimation, the total tide energy dissipation
is reasonable with a value of 3.77TW.

The average spatial RMSE between model output and observation in September 2014
is summarised in Table 5.2. Compared with the FES2014 dataset, the spatial average
RMSE is sharply reduced to 48% after the estimation, from 5.19cm to 2.47cm. The total
reduction is significant in the first outer loop and slight in the second to fourth outer
loops. It is observed that in the Arctic Ocean, the initial RMSE with the value of 11.03cm
is larger than other regions. It is expected because we added more observation points
in the Hudson Bay/Labrador. This area is more shallow with large tide amplitudes, re-
sulting in larger RMSE than other regions. Therefore, the comparison here includes the
observations located in the deep ocean and shallow water together.

The outer loop iterations provide more improvement in the Arctic Ocean than in
other regions. A possible explanation is that parameter estimation impacts areas with
large disagreement against observations most because they still have room to improve,
and non-linear effects become more likely. Compared with the CMEMS tide gauge data
in Europe, GTSM shows significant improvement in the calibration and validation pro-
cesses, reduced to 64% and 69%, respectively. The difference between model and UH-
SLC data is significantly reduced in the first outer loop and finally decreased to 76%. This
decline is smaller than that in CMEMS data for two reasons. One is we do not include
the UHSLC data in the estimation process. Secondly, bottom friction coefficients are
only estimated in the 19 subdomains with large tide energy dissipation, but some UH-
SLC tide gauges are located outside the subdomains. For example, only two tide gauges
are available in the Arctic Ocean, and no stations are in the Hudson Bay area.
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Figure 5.5: (a) Sensitivity for bathymetry. Sensitivity is the relative changes of the cost function,
describing the difference between the model output and the observations when perturbing each
parameter; (b) Sensitivity for bottom friction coefficient; (c-f) RMSE between initial model output
and model output with perturbed bottom friction coefficient [unit: m]. (c)(d) illustrate the RMSE
with the perturbation of the subdomain 5 of the European Shelf in Figure 4a; (e)(f) show the per-
turbation of the subdomain 3 of Hudson Bay in Figure 3a. (c)(e) show the 4061 evenly distributed
locations, which are the same locations as the FES2014 dataset used in the parameter estimation.
(d) shows the RMSE in the tide gauge locations around the EU. (f) shows the observation points
from FES2014 dataset in detail in the Hudson Bay.
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Figure 5.6: (a) Value of the cost function for each model run during the estimation; (b) Relative
changes of bathymetry (bathymetry correction factor) after the estimation; (c) Relative changes of
bottom friction coefficient (bottom friction coefficient correction factor) after estimation.

The spatial distribution of RMSE for estimated GTSM and the RMSE difference be-
tween the initial and estimated model in September 2014 is shown in Figure 5.7. RMSE
between estimated model and FES2014 dataset is larger in the shallow water, such as
the North West of the Australian Shelf, Hudson Bay/Labrador, than in the deep ocean
(Figure 5.7a). It can be observed that the estimated model is significantly improved
with the RMSE reduced by about 2cm for most of the regions in the deep ocean (Fig-
ure 5.7b).Using more time series from the FES2014 dataset in the Hudson Bay/Labrador
plays a role in the estimation process since the model after estimation is better agreed
with the FES2014 dataset for most observation points except several locations in the in
the middle area of Hudson Bay. The comparison with Arctic stations in the Hudson Bay
region will be illustrated in Section 5.5.2.

Compared with the CMEMS dataset in Figure 5.7g and 5.7h, the parameter estima-
tion brings a large improvement to the European Shelf, with the RMSE reduced from
17.60 cm to 11.25cm. This demonstrates that the direct use of tide gauge data in the es-
timation can improve model performance in shallow waters. Figure 5.7c and 5.7d also
illustrates that RMSE between the model and the UHSLC dataset is decreased by a small
amount from 11.98cm to 9.07cm. Figure 5.7e and 5.7f reports the comparison with the



5.5. Numerical Experiment and Results

5

105

Table 5.2: Average RMSE between GTSM and observations in the period of September, 2014 [unit:
cm]

Data Size Initial Es_1a Es_2 Es_3 Es_4

FES2014

Arctic Ocean 196 11.03 6.85 6.09 5.61 5.61
Indian Ocean 784 5.31 2.45 2.38 2.39 2.38
North Atlantic 437 4.89 2.46 2.40 2.34 2.38
South Atlantic 472 3.75 2.49 2.33 2.17 2.16
North Pacific 923 5.05 2.74 2.61 2.55 2.53
South Pacific 1008 4.96 2.18 2.06 2.01 2.01

Southern Ocean 241 4.96 3.05 2.87 2.72 2.65
Total 4061 5.19 2.70 2.56 2.48 2.47

CMEMS for calibration 70 17.60 12.77 12.15 11.36 11.25
CMEMS for validation 90 16.06 12.47 11.89 11.21 11.15

UHSLC dataset

Arctic Ocean 2 13.18 9.19 8.34 6.92 6.63
Indian Ocean 37 13.94 10.56 10.45 10.54 10.53
North Atlantic 52 13.96 11.71 11.64 11.76 11.68
South Atlantic 15 12.22 9.00 8.73 8.62 8.67
North Pacific 85 10.52 8.42 8.33 8.27 8.22
South Pacific 43 8.67 5.80 5.67 5.62 5.62

Southern Ocean - - - - - -
total 234 11.98 9.16 9.07 9.10 9.07

a Es_1, Es_2, Es_3, Es_4 means estimated GTSM in the 1st ,2nd ,3r d ,4th outer loop.

UHSLC dataset for the Australian shelf, where we defined several subdomains for bottom
friction estimation. Even though the subdomains here are not as detailed as in the Hud-
son Bay and the European Shelf, the RMSE is also greatly reduced after the calibration in
most of the tide gauges.

In general, GTSM after the parameter estimation shows significant improvement in
September 2014. The estimation of bottom friction gives much larger improvements
than for estimation of bathymetry only. GTSM benefits from estimating the bottom fric-
tion coefficient, especially in the Hudson Bay/Labrador and the European Shelf. The
combination use of FES2014 and tide gauge data for the bottom friction coefficient op-
timization offsets the scarce supplies of observations in the shallow water and improve
model skills after the parameter estimation. The direct use of tide gauge data provides
excellent agreements between the observation and model output after the estimation.
And the including of FES2014 dataset in shallow waters (50-200m) can partly make up
for the lack of tide gauges.

5.5.2 Model Validation in the Year of 2014

In this section, we validate the GTSM with the FES2014 dataset and tide gauge data
for the whole year of 2014, both in the time and frequency fields.
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Figure 5.7: Left column: spatial distribution of RMSE of estimated GTSM. Right column: The RMSE
difference between initial model and estimated model from September 1 to 30 2014. RMSE differ-
ence is defined as the RMSE of initial model minus RMSE of estimated GTSMv4.1. Color blue in
Right column shows improvements in the estimated model [unit: m]. Observation dataset used
to compare with GTSMv4.1:(a) (b) FES2014 dataset; (c)(d) UHSLC dataset; (e)(f) UHSLC dataset
around the Australian Shelf; (g)(h) CMEMS dataset.
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Monthly Time-series Comparison

First, we evaluate GTSM by comparing the tide representation of the year 2014 with
observations (FES2014 and tide gauge data) in the deep ocean and shallow waters. Fig-
ure 5.8 shows the average RMSE between the GTSM and FES2014 time-series for each
month of year 2014 in seven ocean regions (5.8a-5.8g). Most of the observations are lo-
cated in the deep ocean. Compared to the initial GTSM, results in the calibration period
and the other month of 2014 have reached similar accuracy, implying that the estima-
tion is not over-fitting the observations we used. RMSE in the Arctic Ocean is larger than
other regions, which coincides with the results in Table 5.2.

Model performance in the shallow water is compared with the CMEMS and UHSLC
tide gauge data in Figure 5.9. CMEMS data in Figure 5.9a includes all the stations for cal-
ibration and validation. The average spatial RMSE for the year 2014 in the initial model
is 16.7cm. After the first outer loop estimation, a large reduction is achieved to a value
of 12.38cm. Accuracy is further improved due to the outer loop iteration. Finally, the
RMSE is reduced to 66.5%. The direct use of CMEMS tide gauge data for calibration of
bottom friction coefficient effectively reduces the model error that came from parameter
uncertainty and results in high accuracy tide representation in the shallow waters.

In this study, UHSLC tide gauge dataset is only used for validation (Figure 5.9b). Most
improvements are achieved in the first outer loop and small changes in later outer loop
iterations. It shows that the calibration also has better agreements in shallow waters
outside Europe. But because many of the stations are not in the estimation subdomains
we defined, the improvement is limited.

Comparison of Tidal Constituents

To further analyze the model performance of GTSM before and after the estimation,
we perform a harmonic analysis for the year of 2014.

Table 5.3 compares the tidal analysis results of GTSM and FES2014 before and after
the estimation. Estimated GTSM has higher accuracy for all eight major tide compo-
nents, with the RSS reduced to 52.3% of the original. The largest RMS is in the M2 tidal
constituent. RMS of tidal constituents M2, S2, K1, and O1 in the Arctic Ocean are greatly
larger than other regions before and after the estimation. This can also be observed from
the spatial distribution of the amplitude and phase of the M2 tide component in Figure
5.10. We observed large tide amplitudes in the shallow waters, such as in the Hudson Bay,
European Shelf, and the Australian Shelf, and small in the deep ocean (Figure 5.10a). It
results in large amplitude differences between the GTSM and observations in the Hud-
son Bay/Labrador regions (Figure 5.10b), as well as the higher RMSE for the Arctic Ocean.
After the estimation, amplitude and phase differences are reduced in most regions (Fig-
ure 5.10c, 5.10f). The largest amplitude differences in Figure 5.10c are still in the areas
around the Hudson Bay, Foxe Basin, Hudson Strait, and Ungava Bay, even though the
difference is significantly reduced compared with the initial model.

We compared the tide components with the Deep-Ocean Bottom Pressure Recorder
(BPR) data in the deep ocean to assess the model performance with other tide models
described by Stammer et al. (2014). BPR data is available from the Supplement of Ray
(2013). Compared with the non-assimilative tide models, Initial GTSM has the RMS of
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Figure 5.8: Regional RMSE between GTSM with the fine grid and FES2014 dataset in 2014
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Figure 5.9: Spatial average RMSE between GTSM with the fine grid and tide gauges in 2014; (a)
CMEMS dataset; (b) UHSLC dataset.
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Table 5.3: RSS and RMS of eight major tide components between GTSM and FES2014 dataset in
(cm). The first and second row of each region are the results before and after estimation.

RMS of all the locations RSS
Q1 O1 P1 K1 N2 M2 S2 K2

Arctic Ocean
0.34 2.88 1.54 5.00 2.78 15.37 4.29 1.50 17.33
0.27 1.46 0.72 2.40 1.69 8.18 2.67 0.76 9.27

Indian Ocean
0.24 0.88 0.62 1.02 1.16 5.14 2.32 0.86 6.01
0.17 0.65 0.54 0.89 0.42 1.76 1.62 0.31 2.75

North Atlantic
0.25 0.97 0.40 1.14 0.81 4.92 1.45 0.28 5.44
0.17 0.40 0.25 0.77 0.39 2.56 1.39 0.21 3.08

South Atlantic
0.26 0.84 0.42 1.01 0.84 3.71 1.72 0.52 4.44
0.20 0.42 0.22 0.67 0.51 1.66 1.06 0.28 2.22

North Pacific
0.36 1.96 1.00 2.94 0.95 4.66 2.18 0.50 6.42
0.29 1.21 0.76 2.12 0.52 1.79 1.34 0.28 3.46

South Pacific
0.29 1.16 0.50 1.27 0.96 4.22 2.44 0.57 5.32
0.29 1.06 0.46 1.21 0.58 1.71 1.05 0.27 2.70

Southern Ocean
0.27 1.09 0.55 1.54 1.28 3.01 3.40 1.17 5.25
0.24 0.99 0.48 1.44 0.95 1.88 1.13 0.61 3.07

Total
0.29 1.42 0.73 2.04 1.15 5.53 2.39 0.72 6.71
0.25 0.94 0.54 1.44 0.64 2.55 1.40 0.35 3.51

4.77cm in the M2 component that outperforms the purely hydrodynamic tide models
described in Table 12 of Stammer et al. (2014). In the estimation process, we select the
FES2014 dataset as observations for the deep ocean with a smaller RSS than the initial
GTSM. After the estimation, the RSS of GTSM is reduced to 2.83cm. Even though it is still
not as accurate as FES2014 or other assimilative tide models (Table 3 in Stammer et al.
(2014)), but it is excellent compared to the non-assimilative models.

To analyze GTSM performance in shallow waters, we summarized the RMS of major
tide components with the comparison of tide gauge data in Table 5.5. Tidal compo-
nents from the FES2014 dataset have been evaluated in the tide gauge locations in Table
5.1. After the estimation, the RSS of GTSM is reduced by 16% of the initial GTSM, from
17.03cm to 14.36cm. However, the error is still larger than in the FES2014 dataset with
the value of 12.98cm in Table 5.1. It is expected because we use the FES2014 dataset as
the observation for some coastal regions, and the observation error limits the estimation
accuracy to some extent.

Compared with the CMEMS dataset (all locations in the calibration and validation
subsets), the RSS of all eight components is reduced from 19.15cm to 12.74cm. More-
over, after the estimation, model errors have the largest reduction in the European Shelf
compared with CMEMS than other regions compared with the UHSLC dataset and arctic
stations. These results also demonstrate directly assimilating tide gauge data can signif-
icantly improve the accuracy of tide representation in models.

In the Arctic Ocean, we analyze the four major tide components from arctic stations
and GTSM. When comparing with the FES2014 dataset in the Arctic Ocean (Figure 5.8a),
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Figure 5.10: Spatial distribution of M2 amplitudes and phases from GTSMv4.1 and FES2014
dataset. (a) Amplitudes of M2 for FES2014 dataset; (b) (c): Amplitudes difference between FES2014
and initial GTSM, estimated model, respectively [unit: m]. (d) Phases of M2 for FES2014 dataset;
(e) (f): Phases difference between FES2014 and initial GTSM, estimated model, respectively [unit:
degree].
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Table 5.4: RSS and RMS of eight major tide components between GTSM and Deep-Ocean Bottom
Pressure Recorder (BPR) dataa in (cm)

RMS of all the locations RSS
Q1 O1 P1 K1 N2 M2 S2 K2

FES2012 b 0.22 0.31 0.36 0.47 0.34 0.66 0.41 0.22 1.12
NSWC 0.29 0.87 0.64 1.29 1.15 4.27 1.78 0.66 5.11

FES2014 0.14 0.18 0.14 0.23 0.19 0.30 0.27 0.15 0.58
Initial 0.29 1.20 0.55 1.71 0.98 4.77 1.97 0.53 5.71

Estimated GTSM 0.25 0.68 0.41 1.41 0.54 1.79 1.33 0.24 2.83
a BPR data is available from the Supplement of Ray (2013).
b Results of NSWC and FES2012 are from Stammer et al. (2014) Table 3.

model error is significantly decreased in every outer-loop iteration. To assess the model
performance in each iteration, we reported results with the comparison of arctic sta-
tions in four outer-loops in Table 5.5. RMS is reduced after the first outer loop, especially
for the M2 component, resulting in the value of 22.24cm. It is close to the accuracy of
the FES2014 shown in Table 5.1. However, the total accuracy in the second to fourth
outer loop is not further improved. M2 constituent becomes a bit worse, but other tide
frequencies are improved. This is contrasted with we observed from the Table 5.2 and
Figure 5.8a of the comparison with FES2014 data in Arctic Ocean. In Table 5.2, the RMSE
of 196 time series in the Arctic Ocean derived from the FES2014 dataset is reduced step
by step with the implementation of outer-loop iterations. Model output is continuously
close to the FES2014 dataset in this process, but there are no significant improvements
to the Arctic stations from the outer-loop iteration. This is because, firstly, most of the
arctic stations are located in the Canadian archipelago, not the Hudson Bay. In addi-
tion, there are still observation errors in FES2014 even though FES2014 provides higher
accuracy than the initial GTSM. Estimation leads the results closer to the FES2014 but
does not mean constantly closer to the Arctic Stations because of the observation error
in FES2014 and the uncertainties with the arctic stations. The spatial distribution of RSS
for each station is illustrated in Figure 5.11. We can observe that error of GTSM after
estimation is smaller than before (Figure 5.11a-c). However, the estimated GTSM does
not surpass the accuracy of the FES2014 dataset (Figure 5.11d), which we also did not
expect. Therefore, it is concluded that the observation error significantly influences the
estimation accuracy. In addition, stations in Norway seem to get worse (Figure 5.11c),
which is inconsistent with CMEMS data.

In summary, model assessments from the time and frequency fields demonstrate
that the parameter estimation of bathymetry and bottom friction coefficient combined
with the FES2014 and tide gauge data as observation can significantly improve the tide
representation in the deep ocean and shallow waters.
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Figure 5.11: RSS of four major tide components between the Arctic station and initial GTSMv4.1
(a), estimated GTSMv4.1 (b); (c) RSS difference between initial model and estimated model (RSS
of initial model minus RSS of estimated model); (d) RSS of estimated model minus RSS between
FES2014 and Arctic Stations [unit: m]. (color blue shows better performance in estimated GTSM
than initial model (c) or FES2014 dataset (d).
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Table 5.5: RSS and RMS of eight major tide components between GTSM and CMEMS, UHSLC and
Arctic Stations in (cm)

RMS of all the locations RSS
Q1 O1 P1 K1 N2 M2 S2 K2

UHSLC dataset
Initial 0.53 2.43 1.17 3.51 3.17 15.12 5.37 1.59 17.03

Estimated GTSMa 0.51 2.21 1.05 3.24 2.71 12.63 4.56 1.29 14.36
CMEMS dataset

Initial 0.68 2.17 0.68 1.55 3.22 17.99 4.66 1.70 19.15
Estimated GTSM 0.51 0.85 0.57 1.48 2.45 11.19 5.12 1.23 12.74

Arctic Stations
Initial - 3.03 - 5.47 - 25.27 8.63 - 27.42
Es_1b - 2.22 - 3.74 - 20.39 7.73 - 22.24
Es_2 - 2.11 - 3.51 - 20.68 7.52 - 22.38
Es_3 - 1.98 - 3.24 - 20.65 7.27 - 22.22
Es_4 - 1.95 - 3.24 - 20.46 7.21 - 22.02

a Estimated GTSM is the estimated GTSM in the fourth outer loop.
b Es_1, Es_2, Es_3, Es_4 means estiamted GTSM in the 1st ,2nd ,3r d ,4th outer loop.

5.6 Conclusions

This study presents a study about the joint estimation of bathymetry and bottom
friction coefficient, for a Global Tide and Surge Model (GTSM), which effectively im-
proves the global tide representation, especially in shallow waters. Bathymetry is the
main parameter affecting model performance at the worldwide scale, and the bottom
friction term influences the tide representation in areas with significant tide energy dis-
sipation (shallow/coastal areas). The FES2014 dataset, with higher accuracy than the
initial GTSM in the deep ocean, is used for calibration in this paper. It plays a vital role
in correcting the bathymetry factor in the oceans domain we defined. To ensure that
the estimation for bottom friction coefficient is feasible, we propose a combination of
FES2014 and tide gauge data for the estimation of bottom friction in shallower coastal
waters. Applying this parameter estimation significantly improves the tide representa-
tion of GTSM almost everywhere around the globe.

The Hudson Bay/Labrador Sea and European Shelf are the regions with the largest
tide energy dissipation. The bottom friction coefficient in the European Shelf is opti-
mized with the tide gauge data from the CMEMS dataset. This results in the largest im-
provements of tide accuracy for shallow waters. We refined the observation locations
from the FES2014 dataset in the Hudson Bay and Labrador sea. This approach is based
on the condition that data of Arctic stations only have four major tide components that
cannot be used for calibration, and FES2014 has higher accuracy than initial GTSM when
comparing against these stations. After estimation the accuracy of GTSM is close to
that of FES here. Moreover, some other coastal areas with large energy dissipation are
estimated by including more observation located in the depth between 50-200m from
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FES2014 dataset because the numbered UHSLC tide gauges are too few to be used for
calibration directly in many regions. After calibration, GTSM has smaller disagreements
than initial model but not as accurate as the FES2014 dataset when comparing with UH-
SLC dataset. RSS of eight tide components between FES2014 and UHSLC tide gauge data
is 12.98cm, which is smaller than the estimated GTSM with the value of 14.36cm.

In summary, the accuracy of GTSM is significantly improved with the combined pa-
rameter estimation of bathymetry and bottom friction coefficient. Tide representation
in shallow waters benefits from the optimization of bottom friction coefficient, con-
tributing to a more accurate water level forecast when including wind and air pressure
conditions for surge simulation. Accurate parameter estimation for global tide mod-
els needs sufficient observations and a proper determination of parameter subdomains.
Direct utilization of tide gauge data provides the most significant reduction of model
error. Some areas such as the Hudson Bay with insufficient tide gauge measurements,
the use of other data with higher accuracy than the model can also improve the model
performance to a certain extent. The one-year model validation demonstrates the esti-
mated GTSM can provide long-term high accuracy tide forecasts. Thanks to the efforts of
communities like GLOSS, UHSLC, CMEMS, EMODnet and GESLA, more and more tide
gauge data is becoming available. However, the spatial scales in shallow coastal waters
are much smaller than in deep water, so that the number of available tide gauge is not
yet sufficient for calibration of tide models at the moment. Satellite altimetry has the
potential to add much more information about tides in shallow waters. However, com-
pound tides, overtides and tide-surge interaction will make this more complicated than
in deeper waters.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

To accurately assess the flood risks in coastal areas, we have designed and imple-
mented the parameter estimation of bathymetry and bottom friction for the global tide
and surge model (GTSM) in chapters 3, 4 and 5. We have mainly focused on the accu-
rate estimation with computationally-efficient and low memory usage approaches and
on the optimal use of sparse observations. Significant improvement of the tide accuracy
is achieved globally. In Chapter 1, we have formulated several research questions, and in
the following chapters we look back and summarize the contributions and the answers
to these questions.

Rq 1:Which uncertain parameters and other uncertainties determine the accuracy of
hydrodynamic global tide and surge models? And which measurements are needed to
estimate them?

In Chapter 2, the relevant physical processes for global tide surge modelling are de-
scribed. The model errors come mainly from uncertain parameters, such as bathymetry,
bottom friction coefficient and the internal tide friction term. The model bathymetry is
mainly based on GEBCO, which is a worldwide collection of bathymetric surveys aug-
mented with satellite altimeters, but in large regions the bathymetry remains unsur-
veyed. Bottom friction and internal tide friction significantly impact where the tide
energy dissipates, indirectly affecting the water level representation. The relative im-
portance of these parameters is evaluated here using a sensitivity analysis. In the deep
ocean, sensitivity analysis shows that the changes in tide caused by the perturbation of
bathymetry are more significant than the internal tide friction coefficient. For shallow
waters, the bottom friction coefficient becomes even more important, especially in the
Hudson Bay/Labrador and European Shelf. Therefore, we focus on reducing the uncer-
tainty of bathymetry in the deep ocean and the bottom friction coefficient in shallow
waters to improve the model’s forecast skills.

Parameter estimation accuracy also depends on the proper selection of observations.

119



6

120 6. Discussion and Conclusions

A challenge for global tide model estimation is to obtain well-distributed water level
measurements, that correlate well with the parameters. In the deep ocean, the FES2014
dataset is used as observations because it has higher accuracy than the initial tides from
the GTSM and can be generated everywhere. To some extent, it can be viewed as a more
convenient representation of tides from the satellite altimetry. In addition, we use tide
gauges that are mainly located along the coast but while some coasts have many gauges,
some have none at all. For example, the CMEMS dataset has a relatively dense coverage
at the European Shelf. Some areas covered by the UHSLC dataset have only a limited
number of gauges.

Based on the selection of parameters and measurements, we designed a two-stage
parameter estimation scheme. In the first stage, we estimate the bathymetry in the deep
ocean because the tide propagation scale is larger in the deep ocean than along the coast.
We assume that once the large scales for the deep ocean are properly calibrated, the
finer details for coastal regions can be adjusted in a second stage. The approach for
the first stage is developed and applied in chapters 3 and 4, and significant improve-
ments for the model-derived tide representation are achieved. After this, we originally
planned to estimate bottom friction in coastal water using additional measurements.
However, experiments showed that the effects of changes to the bottom friction and
bathymetry interact more than we had anticipated. Also, bottom friction changes have
a wider than local impact on the tide models, not only in the coastal zones but also in
the deep oceans nearby. Therefore, we adjusted our plan and performed a combined
estimation of bathymetry and bottom friction in Chapter 5. As measurements we used a
combination of well-distributed time series in the deep ocean from the FES2014 dataset
and tide gauge data in shallow waters. Chapter 5 also reports that estimation of more pa-
rameters (bathymetry and bottom friction coefficient together) with more observations
gives better results than only estimating the bathymetry (as in chapters 3 and 4).

Rq 2: How to define a cost function for the parameter estimation problem that gives a
good fit between the model and observations and that can be optimized with a feasi-
ble computational cost?

To estimate tides, it is common to define the cost function in terms of tidal constituents,
but here we use time-series as model output because this works with shorter simulations
than the Rayleigh criterion that tidal constituents would allow. This makes our approach
much more efficient, since simulation times are reduced from a year to a month.

Only tide representation is simulated for the estimation because, firstly, surge is less
sensitive to the bathymetry and bottom friction coefficient. Secondly, surges show an
irregular variability. With the long sampling interval of satellite altimeters estimation
would require simulations over a very long time period. The long-term constituents SA
and SSA are excluded from the experiment, because seasonal variations show a strong
inter-annual variability. Experiments show that the use of time-series can reduce the
computational cost while providing good updates of parameters.

To make the estimation feasible, we have to ensure that the total number of simula-
tions remains acceptable. This number is proportional to the parameter dimension x in
the cost function since the estimation algorithm starts with a perturbation to each pa-
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rameter. A generally applicable method for reducing parameter dimensions is to define
one correction factor per subdomain instead of estimating the parameter in every grid
cell. In Chapter 3 we analyzed the global tide propagation length and selected 110 sub-
domains, each with a correction factor for the bathymetry. 19 subdomains for bottom
friction were used in several regions with large tidal energy dissipation in Chapter 5. In
total, the parameter dimension is sharply reduced from O(106) to O(102).

The computation time for the cost function is also affected by the number of ob-
servations used. To balance the estimation accuracy and computational complexity,
we generate evenly distributed deep ocean data from the FES2014 dataset to estimate
bathymetry in chapters 3 and 4. In Chapter 5, more tide gauge data are included for the
shallow waters such that the bottom friction coefficient can also be effectively estimated.
The observation dimension is kept within an acceptable size with the development of
model order reduction in the estimation process, which will be discussed in detail in
Rq3. In addition, we added some constraints to make the estimation more robust, such
as defining lower and upper boundaries to constrain the changes of the parameters.

Rq 3: How can we minimize the cost function in a way that is sufficiently efficient to
make the computations feasible?

In this thesis, the parameter estimation system we designed is applied to the Global Tide
and Surge Model (GTSM) using an iterative least-squares estimation algorithm called
DUD. The advantages of this algorithm are that it is derivative-free and it is easy to im-
plement. For large-scale estimation, we focused on three aspects: the computational
cost, memory requirement, and the estimation accuracy.

First, we developed a computational-efficient parameter estimation system in Chap-
ter 3; The computational demands are mainly determined by two factors. One is the
computational time of a single model simulation, and the other is the number of model
simulations. To reduce the single model simulation time, a strategy using a coarse grid
model to replace the high-resolution model is designed. We tested two variants, Coarse
Calibration and Coarse Incremental Calibration. The former completely replaces the
fine model with a coarser grid during the parameter estimation procedure. The latter
replaces the output increments between the initial model and model with modified pa-
rameters by coarser grid model simulations. The CPU time using the coarse-to-fine
approach is reduced to one-third. As an example, bathymetry is estimated with this
computation-efficient system in Chapter 3, resulting in significant improvements for the
model-derived tide forecast. The number of model simulations is reduced by parameter
dimension reduction, which is described in Rq2.

To reduce the memory use and enable the use of more observations and longer sim-
ulation times, an estimation scheme with the Proper Orthogonal Decomposition (POD)
time pattern-based model order reduction is designed in Chapter 4. Like most of the pa-
rameter estimation algorithms, DUD assimilates the measurements in one batch. The
memory requirement to assimilate these measurements is proportional to the product
of the number of measurement locations, the number of time steps, and the ensemble
size. This can lead to a huge memory usage that is larger than that available. Therefore,
to allow for longer simulation times, a memory reduction method was developed, that
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is inspired by model order reduction. Traditionally, model order reduction is applied to
spatial patterns of the state variables, mainly to lower the model computational com-
plexity. In this study, we have applied a projection onto to the time patterns of the model
output and observations with a truncated singular value decomposition (SVD). Experi-
ments show that the number of measurements can be reduced from O(104) to O(102),
i.e. by a factor of 22. The experimental results in Chapter 4 show that the memory usage
can be significantly reduced with a negligible accuracy loss.

Lastly, we have designed an outer-loop iteration in Chapter 4 to improve the param-
eter estimation accuracy, similar to the Incremental 4D-Var. The inner-loop consists of
the DUD algorithm, applied to the GTSM with a lower resolution (Approach 2 in Chap-
ter 3). The outer-loop iteration uses the optimized parameters obtained from the inner
loop to update the initial output. The initial model is simulated using the fine grid to
restart the next inner-loop process. This approach provides a better agreement between
the observation and GTSM with the fine grid.

These three combined developments form a feasible and computational-efficient
and memory-efficient parameter estimation scheme for global tide models.

6.2 Outlook

In order to further improve the accuracy of global water-level forecasts, one can con-
sider the refinement or improvement of the physical modeling, parameter estimation,
and state variable assimilation. Here we list a few potential research topics for further
investigation:

1. From the hydrodynamic modeling perspective, the influence of sea ice on the tide
is currently not yet included into the model. However, the seasonal modulation
from sea ice can affect the model performance (Kagan & Sofina, 2010; Müller et
al., 2014). For example, Bij de Vaate et al. (2021) report that seasonal modulation
of the M2 tide is observed across the Arctic with amplitude changes up to 0.25m
in Hudson Bay and on the Russian shelf. Moreover, the tide dissipation rate may
strongly be affected by the sea ice cover (Kagan & Sofina, 2010).

Since the sea ice term is currently not included in GTSM, the water level repre-
sentation in the arctic ocean is relatively crude because sea ice exerts additional
frictional stress on the surface. In our parameter estimation experiment, we ob-
served that in the Canadian archipelago, higher bottom friction coefficients are
estimated. This is probably caused by a lack of dissipation by sea ice. However, the
estimated bottom friction coefficients do not result in the proper behavior through
the different seasons. A possible solution is to include the sea ice modeling in the
GTSM, and the sea ice coefficient will also become an uncertain source to esti-
mate. This will also require measurements that properly represent modulation of
the tides over the seasons. Preliminary products of this type are starting to appear
(Bij de Vaate et al., 2021).

2. In our parameter estimation experiment, we estimated the bottom friction coef-
ficient in 19 subdomains. Bottom friction contributing to the European Shelf and



6.2. Outlook

6

123

the Hudson Bay/Labrador areas is analyzed in detail. However, other regions, such
as the North West Australian Shelf, are calibrated crudely with only 1 subdomain
due to the limited number of tide gauges available and limited computational re-
sources. In our experience, a detailed analysis of the distribution of energy dissipa-
tion and a large number of subdomains can lead to more accurate estimates. For
instance, Zijl et al. (2013) generated 100 subdomains to estimate the bathymetry
and bottom friction term in the European Shelf with the regional tide model DC-
SMv6.0, resulting in excellent improvements for water level forecasts. Besides,
the bottom friction coefficient is assumed to be temporally constant for the initial
model in this study but can vary continuously in space and even in temporal pat-
terns (Wang et al., 2021). Moreover, subdomains for bathymetry can be generated
in detail for shallow waters to be consistent with the bottom friction subdomains.

In addition, the limited availability of observations in coastal waters also limits the
estimation accuracy. Further research can be focused on the detailed study and
estimation of bottom friction near the coast and collection of more local observa-
tions.

3. Water level, the elevation of the free surface of the ocean, can be seen as the sum of
the tide, surge and their interactions. In this study, the accuracy of the water level
is improved because of the parameter estimation for the tide representation. This
is due to the surge not being very sensitive to bathymetry, and to bottom friction.
In addition, including surge in the parameter estimation is difficult.

The main source of error in surge simulation is the meteorological forcing, includ-
ing the wind and air pressure conditions varying in spatial and temporal fields.
The wind stress drag coefficient is empirically defined (Charnock, 1955). Data as-
similation for joint parameter and state estimation (Evensen, 2009) can be a pos-
sible research topic to improve surge simulations. One of the challenges for this
large-scale assimilation system is lack of observations. Tide gauge data is not well-
distributed. Satellite altimeter measurements may be able to be utilized but re-
quires a new approach for the complex preprocessing.
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