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Executive Summary

Space Situational Awareness is becoming increasingly important as the number of space objects increases, and
the risk of collisions between objects rises. A collision between two satellites will lead to even more fragmented
objects cluttering the space around the Earth, which in turn causes more risk of collisions, and inevitably leads
to the doom scenario of the Kessler syndrome, where our access to Space is prevented by the large density of
space debris. To prevent this doom scenario, Conjunction Assessment aims to predict the probability of colli-
sion between objects ahead of time, to allow for mitigating measures. Conjunction assessment between space
objects requires an accurate propagation of the uncertainty of both objects from a measurement to the time of
closest approach. To predict collisions sufficiently ahead of time requires long propagations of the uncertain-
ties through highly nonlinear dynamics, which often result in non-Gaussian final uncertainties. This research
aims to improve upon the calculation of the collision probability by comparing existing and novel uncertainty
propagation methods, and applying a promising novel uncertainty propagation method to conjunction assess-
ments.

In the first part of this research, 8 different uncertainty propagation methods are implemented and compared
to each other, by propagating the uncertainty in various challenging test cases. These test cases include two low
earth orbits, two highly elliptical orbits and a geostationary orbit, and are used with varying propagation times,
such as to analyse the use of these uncertainty propagation methods with highly non-Gaussian uncertainties.
The implemented methods are Monte Carlo (MC) sampling, the linearised covariance (LinCov) method, the
unscented transform (UT), the multi-fidelity (MF) method, Gaussian Mixture Models (GMMs) combined with
the UT as well as with the MF to propagate the components, Adaptive Entropy-based Gaussian-mixture Infor-
mation Synthesis (AEGIS) and Polynomial Chaos Expansions (PCEs).

It is found that LinCov is computationally fastest of the implemented methods, but only performs well when the
final uncertainty remains Gaussian. Similarly the UT performs well for final Gaussian uncertainties. When the
final uncertainty becomes non-Gaussian, i.e. for long propagation times or highly elliptical orbits, both PCEs
and MF perform well, where MF has a higher computational efficiency. With the settings used in this research,
GMMs are unable to accurately approximate the tails of non-Gaussian final uncertainties. Finally, AEGIS is
too computationally inefficient compared to other methods, and becomes impractical for long propagation
times.

In the second part of this research, the promising MF method has been used to propagate the uncertainties of
two space objects to the time of closest approach (TCA) in 4 different conjunction assessment scenarios. The
realistic conjunction scenarios are based on actual close encounters and include both high and low relative
velocity encounters, as well as short and long propagation times. The uncertainties are propagated to the TCA
from an initial epoch 48h or 96h earlier, using various different settings of MF, as well as using Monte Carlo
samples to be used as a baseline. With the propagated uncertainties, the collision probability is calculated by
comparing the closest distance for random generated sample pairs at the TCA, to the hard-body radius of the
combined satellites.

It is found that when when enough important samples (8 or more) are propagated in the MF method, the
collision probability remains within the 95% confidence interval, even when the low-fidelity dynamics used
are as simple as 2-body Keplerian dynamics. Using the 2-body Keplerian dynamics, a computational speed-up
of up to 4 orders of magnitude can be achieved.
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Ŝ Unit vector of the along-track direction of the RSW coordinate frame [m]
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Wi Weight of the i ’th sigma point [−]

wi Weight of the i ’th sample [−]

wq Weight of the q ’th point in a quadrature grid [−]

Subscripts

1 From the first probability distribution in a comparison of uncertainties

2 From the second probability distribution in a comparison of uncertainties

x x-coordinate of vector in Cartesian coordinates

y y-coordinate of vector in Cartesian coordinates

z z-coordinate of vector in Cartesian coordinates

1,i From the i ’th component of the first Gaussian mixture model

2,i From the i ’th component of the second Gaussian mixture model

car t In Cartesian coordinates



xx List of symbols and abbreviations

J From the joint probability distribution in a conjunction assessment

mee In modified equinoctial elements

new After a transformation

ol d Before a transformation

P From the primary object in a conjunction assessment

sc From the scaled Gaussian probability distribution

S From the secondary object in a conjunction assessment

t0 At the initial time epoch

t f At the final time epoch

T C A,mean At the time of closest approach between the mean state vectors

T C A,tr ue At the actual time of closest approach between the sampled pair of state vectors

T C A At the time of closest approach



1
Introduction

Space Situational Awareness.
With the ever growing number of space objects being launched, and the exponential rise of objects in orbit
around Earth [1], space situational awareness becomes increasingly important to prevent doom scenarios such
as that described by the Kessler syndrome [1]. Collisions between spacecrafts have sparked additional attention
to the concepts of collision avoidance, conjunction analysis and space debris tracking [2, 3]. Among many other
space objectives, these methods require an adequate characterization of the uncertainty in the orbital state
of the catalogued space objects [4], which entails determining the object’s state moments (such as the mean
and covariance matrix) or associated probability density function (PDF) [5]. Due to the increase in the ratio of
objects in space to telescopes on the ground, and the already vast amount of tracked space objects, the tracking
of catalogued objects uses long propagation times of multiple orbits and possibly spanning several days, to
provide orbital state information in between sparse measurements [6, 7]. These long propagation times and
strong accuracy requirements define the problem in uncertainty propagation (UP) in astrodynamics.

Uncertainty propagation methods.
The problem of propagating the PDF of a space object in the two-body problem can be described by the Fokker-
Planck equation [8]. However, solutions to this equation are generally intractable and no solution is known for
this equation in the astrodynamics domain [5, 9]. Conventional approaches to solve the equation numerically
scale exponentially with the size of the state vector, and thus suffer from the ’curse of dimensionality’.

To handle the large and complex state-space of orbit uncertainty problems, Sequential Monte Carlo (MC)
methods were introduced [10, 11]. The Monte Carlo method has seen many improvements [12–16], and has
been widely used in the late 20th century for space missions. However, to achieve a high accuracy with MC, a
large number of samples is needed, which can be computationally expensive for orbit propagation problems
[5]. Nevertheless, due to its easy implementation and the reliability of its results, which approach the true
probability distribution when the number of samples goes to infinity, it is still often used as a comparison to
determine the accuracy performance of other methods[17].

An alternative to the computationally intensive MC is to linearise the orbital mechanics, and assume that the
PDF is a Gaussian distribution, such that propagating this PDF is reduced to integrating the state transition
matrix (STM)[5, 18–20]. While considerably faster than MC, this method becomes inaccurate when used over
long periods for the highly nonlinear orbital systems. In a linear system, a Gaussian distribution remains Gaus-
sian over time. However, in the non-linear orbital dynamics this is not the case, and long propagations lead to
non-Gaussian uncertainties, even if the initial distribution is Gaussian [21]. The linear uncertainty propagation
and STM can not account for this.

This trade-off between accuracy and computational intensity has led to alternative methods being actively in-
vestigated. One of these methods is the unscented transform (UT) proposed by [22], which keeps the nonlinear
dynamics of the system, while approximating the PDF using a Gaussian distribution represented by a limited
set of weighted samples [23–25]. This method only requires the propagation of 2·nst ate+1 points for an accurate
approximation of the first two moments. However, this approach is limited to Gaussian distributions.

To approximate non-Gaussian PDFs, a Gaussian mixture model (GMM) can be used [26–30]. This method
approximates the non-Gaussian PDF by a sum of multiple weighted Gaussian distribution components, which
can be determined using various optimisation and splitting methods [27, 28, 30–32]. Extensions of the GMM
include methods to adaptively split components online, such as to keep an accurate representation of the PDF
as the non-Gaussianity increases [26, 29, 33]. The GMMs provide an accurate way to spread the propagation of
large non-Gaussian PDFs in non-linear systems over multiple small problems, which can be easily combined
with many of the other existing uncertainty propagation methods. However, for large dimensionalities, GMMs

1
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may require many components to obtain the required accuracy, and determining and updating the weights of
the Gaussian components can be a complex process [5].

The state transition tensor (STT) method for orbit uncertainty propagation has been proposed in [34], which
has been extended on in [35–39]. This method applies Taylor expansions to the deviation of the state with re-
spect to a nominal trajectory, where a first order Taylor expansion corresponds to solving for the STM in the
aforementioned linearised method, and solving for higher order solutions can provide better results for cases
with strong nonlinearity [34]. These STT based methods do not require random sampling and also deliver ac-
curate results in comparison to the MC method, while providing a semi-analytic method to non-linearly prop-
agate the uncertainties efficiently. However, these methods require continuous and differentiable underlying
dynamics, and the derivation of higher order STTs often results in computational complexities [5].

To avoid the derivation of complex partial derivatives, differential algebra (DA), proposed in [40], can be used
to propagate the orbit uncertainty nonlinearly [41, 42]. The DA technique allows for the computation of a
function’s Taylor expansion up to an arbitrary order, which can then be used to efficiently compute the PDF
[42]. DA methods are able to propagate uncertainties nonlinearly without having to integrate the variational
equations to obtain high-order expansions. However, like STTs, DA also requires continuous and differentiable
dynamics, which in orbit determination is not always the case [5].

Another alternative faster than the MC method, which is able to represent higher moments of the PDF, is using
polynomial chaos expansions (PCEs), first proposed by [43]. This method represents the inputs and outputs of
a system using series of approximations with random variables [5]. The coefficients can be determined using
intrusive and non-intrusive methods. The latter treats the dynamics as a black box, making the method suitable
for astrodynamics applications with pre-existing orbit propagation tools [5], and PCEs have been applied to
many orbit UP problems [7, 44–49]. PCEs allow for fast propagation and conversion, but also suffer from the
curse of dimensionality [50].

This work focuses on a new non-intrusive method based on stochastic collocation, Multi-fidelity (MF), pro-
posed by [51] and first applied to an astrodynamics problem in [52]. MF leverages the speed performance of
low fidelity propagation methods to propagate many samples, while achieving accurate results by correcting
the propagated states with few carefully chosen high-fidelity (HF) samples [52]. The MF method can be com-
bined with other methods listed above (GMMs, DA, MC) and can provide reduced runtimes for both particle
and Gaussian mixture representations of the PDF, however, at a cost of reduced accuracy [53].

Multi-fidelity orbit uncertainty propagation.
Multi-fidelity methods are not unique to orbit uncertainty propagation problems, or even uncertainty quan-
tification in general, but have been used in various fields and come in varying versions of the method [54]. The
common factor of these techniques is the advantageous combination of high-fidelity models to achieve a high
accuracy and low-fidelity models to produce fast results. Narayan et al. [51] proposed a non-intrusive version
of the MF method applicable to stochastic collocation problems, built upon in [55], which has then been used
by Jones et al. [52] for orbit uncertainty propagation problems, starting a series of developments in the MF
method for astrodynamics.

Jones et al. [52] applies the MF method to a set of test cases in which an initial Gaussian PDF is propagated to
a non-Gaussian PDF. The test cases include two different low earth orbit (LEO) satellites and a Molniya orbit,
where different acceleration models are analysed for the low-fidelity model. The MF method demonstrates a
significant decrease in position error when the sampled states propagated with low-fidelity (LF) dynamics are
corrected using the subset of points propagated with high-fidelity (HF) dynamics. Here the position error is de-
termined by directly comparing the propagated / corrected points with the same initial point propagated using
HF dynamics. At the same time, the states propagated with MF dynamics can be generated with much faster
run times compared to propagating all samples using HF dynamics. The MF method is also combined with
GMMs for the same scenarios, where the MF method provides similar results but with faster run times com-
pared to using GMMs with the UT for each component, by speeding up the propagation of the sigma points.
Finally, MF is applied to a two-line element case, where the MF correction improves the orbit determination
accuracy of the low-fidelity model using SGP4 [56].

Jones et al. [53] develops a method to determine the systematic errors induced by the MF method, which is
tested using the scenarios described in [52]. A new type of filter is developed using MF and GMMs, in which
the systematic error is accounted for, thus producing smaller errors than what is normally achievable with
the MF method. The filter is demonstrated on a double pendulum problem, and applied to a space object
tracking scenario. This work shows that the MF filter is faster than using a HF filter, and converges to the HF



3

filter’s results. In the updated work [57], a method is introduced to automatically split the domain over which
the MF methods are used to achieve an arbitrary accuracy without significantly increasing the computation
time.

Fossà et al. [58] develops a new method combining MF with DA and GMMs. The GMM representation of the
PDF is used with automatic splitting, where in the low-fidelity step, the non-linearity index is determined by
Taylor expansions computed with DA. The centres of the Taylor polynomials are then propagated as sample
points using high-fidelity models. The new method is demonstrated with three test cases containing a low,
medium and high Earth orbit. The MF method is compared to MC samples and a good agreement is found
between the PDFs, with significant speed-up compared to the HF method.

Jia et al. [59] applies the MF in a different way to assess and leverage the correlation between the uncertainties
after different numbers of orbital revolutions, and uses it for efficient long-term uncertainty propagation. While
this uses the same methods as the other MF studies, to combine a higher accuracy model with a more efficient
model, this study uses the description of low-fidelity and high-fidelity differently. The method comprises a
short propagation and a longer propagation representing the low- and high-fidelity model respectively, which
are used as a MF method to predict the long term uncertainty propagation. Results for a test scenario, using a
highly elliptical orbit in the equatorial plane, with long-term propagation times of both 5 and 10 orbital periods,
demonstrate that with very few sampling data the MF method can achieve comparable accuracy to MC, and is
especially effective for long-time uncertainty propagations.

Wolf et al. [60] applies the MF method developed in [52] to the cis-lunar space, and determines the effectiveness
of the method in these highly nonlinear environments, and compares the effect of different low-fidelity models
in the three-body problem. Test case scenarios include a low and medium Lunar orbit, and a near rectilinear
Halo orbit. Results lead to similar conclusions as in [52], with improvements on accuracy compared to the
low-fidelity model and better runtime performance than the high-fidelity models.

Fossà et al. [61] builds upon [58] and decouples the propagation of the initial uncertainty from the process
noise effects, to combine them a posteriori into a single orbit state estimation accounting for both uncertainty
sources. The method is applied to two test cases taken from [52] and an extra scenario in which a continuous
thrust is applied to a spacecraft in a geostationary transfer orbit. Results indicate similar accuracy to the high-
fidelity methods with improved runtime performances.

Conjunction Assessment
Conjunction Assessment (CA) is one of the most important applications of uncertainty propagation. CA con-
sists of a number of tasks, aiming to asses the risk of collision between two space objects. Important tasks of
CA are propagating the positions and uncertainties of space objects to the time of closest approach (TCA), and
computing the collision probability PC [62]. For the computation of PC , many different methods have been
developed with varying assumptions, levels of accuracy and computational efficiencies [63].

The MC simulation has been widely used to calculate the instantaneous collision probability [64–67]. This
method is considered the most reliable and accurate, but also the most computationally expensive method
[63]. Many improvements have been developed to MC to improve its computational efficiency, both to the MC
method itself[68–70] and to the underlying sampling methods used for the propagation [7, 45, 71–74].

Due to the long runtimes required for MC methods, alternative methods to calculate the instantaneous PC have
been developed, both analytical and numerical: Transforming the integral form into simpler expressions [75],
combining PCEs with MC [7, 45, 71], using the conjugate unscented transform [76] and splitting the position
PDF into Gaussian components that can be integrated over a hard sphere. [77]

More interesting than the instantaneous collision probability, is the cumulative collision probability PC , which
is the instantaneous collision probability integrated over the time of the close encounter, and is often distin-
guished between short-term and long-term encounters. Many different methods exist to calculate PC for short-
term encounters, such as numerical methods [78–80] as well as various analytical methods [75, 81–84]. These
short term methods make a number of assumptions, including constant velocities and constant uncertainties
over the time of the encounter. Using these assumptions, the time integral of the instantaneous collision prob-
ability can be transformed to a volume integral, which can be reduced to an area integral in the encounter
plane [63]. Foster’s method [78] uses polar coordinates in the encounter plane [85], Alfano [79] develops a se-
ries representation, and Patera [80] uses a coordinate rotation and a scale change to reduce the problem to a
1-dimensional line integral.

In cases of low relative velocities, the assumptions made for the short-term methods can no longer be used,
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and long-term methods are needed to determine PC . Patera [86] develops an integration method to estimate
PC that includes changes in the position, velocity and covariances throughout the conjunction. Coppola et al.
[87] derives a formula based on a spherical surface integral, which can be used for both short- and long-term
encounters. Alfano [88] presents three more numerical approaches using a discretisation of time, and in [89]
the nonlinear motion is linearised to enable easier evaluation of the integrations. These methods all assume
Gaussian uncertainties, but other developments can also be used with non-Gaussian uncertainties. Vittaldev et
al. [90] uses a GMM to represent a non-Gaussian distribution and uses all-on-all analysis of the components to
compute PC , DeMars et al. [91] expands on this by using Coppola’s method to include the velocity uncertainty,
Vittaldev et al. [30] uses a multivariate GMM to approach non-Gaussian distributions better and Shelton et al.
[92] approximates non-Gaussian PDFs with an adaptive GMM to combine with Coppola’s methods.

In addition to the research of new collision probability computation methods, different orbit uncertainty prop-
agation methods have been combined with PC computation methods to provide faster or more accurate alter-
natives. A combination of GMMs and STT is developed in [93] to apply as an uncertainty propagation method
for conjunction analysis. Khatri et al. [94] extends this by relaxing the assumption of one object with a known
position and using more realistic dynamics. This is expanded on in [95–97] by demonstrating that in a long-
term conjunction each component’s interaction with other components can be modelled as a short-term en-
counter, thus extending the applications to long-term conjunction analysis. Balducci et al. [98] applies sepa-
rated representations with MC to calculate PC . Jones et al. [45] uses PCEs to generate the samples required for
a multi-epoch MC computation of PC for a short term conjunction, and avoids the computation of the time of
closest approach (TCA) by assuming a dense grid over the conjunction period. This work is also extended to
the conjunction analysis after a translational manoeuvrer in [7].

Research Motivation
Previous studies [52, 53, 57–61] have shown the effectiveness of the Multi-Fidelity method in efficiently propa-
gating non-Gaussian uncertainties over long time windows and in challenging scenarios, while still providing
good agreement with the results obtained from the MC runs . This raises the question whether the Multi-
Fidelity can be used to propagate the uncertainties to the TCA in a conjunction analysis to provide a significant
improvement in computation time, without deviating too much from the real probability distributions such
that the collision probability becomes inaccurate.

Current methods to compute the collision probability each have their advantages and disadvantages [63].
Many of the methods assume Gaussian uncertainties even at the TCA, which is often not the case. Other meth-
ods have reduced accuracy or require too many assumptions on the scenarios. Using Multi-Fidelity (which
can accurately propagate non-Gaussian uncertainties too), or a combination of the Multi-Fidelity method and
Gaussian Mixture Models, a better alternative can be found for the computation of the collision probability.
A more accurate can result in the decrease of unnecessary collision avoidance manoeuvrers, whereas a more
efficient method facilitates an increase in the number of space objects that can be tracked for collisions for the
same computational power available. A higher computational efficiency also means that longer propagation
times can be used within the same computation times. Thus, if the method used can accurately predict the un-
certainty for long propagation times, the time window of conjunction assessments can be extended to predict
collisions further in advance, which gives satellite operators more time to take mitigating action.

The importance of conjunction analysis in space situational awareness, the certain need for an uncertainty
propagation method to compute the collision probability, and the absence of previous research into the ap-
plication of Multi-Fidelity to conjunction analysis, all together lead to a key research gap, to be filled with by
the work described in this research proposal. In this research, the relatively new method of Multi-Fidelity orbit
uncertainty propagation is applied to the realm of conjunction analysis, to see if the method can be a feasible
alternative for the slow method of MC simulations. Due to the various number of methods to propagate the
uncertainty of space objects, there is plenty of literature available on the application of other uncertainty prop-
agation methods in conjunction analysis, which can be beneficial for the set up of the test scenarios, useful for
guidance on the methodology, and can provide applicable validation and comparison data.

The research performed in this report is outlined in Chapter 2, where the objective, main research question
and sub-questions are documented. Following this, Chapter 3 provides more information about UP methods
and Chapter 4 goes into more detail on the computation of the collision probability. A comparison study be-
tween several UP methods for various test case scenarios is described in Chapter 5, after which the results are
presented in Chapter 6. Subsequently, a conjunction analysis study with the MF method is set up in Chapter 7,
followed by the results in Chapter 8. Finally, the report is concluded by answering the research question in Sec-
tions 9.1 and 9.2, a discussion in Section 9.3, and ended with several recommendations in Section 9.4.



2
Research Outline

To aid the development in the field of uncertainty propagation and conjunction analysis and to improve the
problem described in Chapter 1, a research will be conducted with the following objective:

Reduce the safety risks of space debris by improving the efficiency of computationally expensive tasks in conjunc-
tion analysis.

In order to achieve this, a preliminary research is outlined, with the focus on the recently developed methods
of orbit uncertainty propagation, such as Multi-Fidelity. The research is described by the following research
question:

How can novel orbit uncertainty propagation methods contribute to the improvement upon the calculation
of the collision probability between two space objects?

By investigating the following set of sub-questions related to this main research question, a better understand-
ing of orbit uncertainty propagation environment will be developed, and a promising candidate for the uncer-
tainty propagation method is analysed, with the aim to answer the main research question:

• How do different orbit uncertainty propagation methods compare to each other in terms of accuracy
and computational efficiency?

• Is Multi-Fidelity a feasible orbit uncertainty propagation method to use for conjunction analysis?

• How do challenging scenarios such as long time horizons, highly elliptical orbits and low relative ve-
locities, affect the performance of High-Fidelity orbit uncertainty propagation in conjunction assess-
ment?

5



3
Uncertainty Propagation Methods

3.1. Monte Carlo
An uncertainty’s PDF can be very precisely propagated using the Monte Carlo method. By generating a suffi-
cient amount of random samples from the initial distribution, the propagated states of these random samples
will accurately represent the final distribution, even when the final distribution is not a Gaussian distribu-
tion.

Starting from an initially Gaussian uncertainty, Nsamples number of samples can be generated from this multi-
variate normal distribution via [52]

x t0 (ξ) = x t0 +Sξ (3.1)

where x t0 is the mean state vector at t0, S is the square root matrix of the covariance matrix, such that P = SST ,
and

ξ∼N (0, I6) (3.2)

are random input vectors, generated using a pseudo-random number simulator.

These samples can then be propagated individually to their final states, where they can be used as a sample
set to show the final uncertainty. From these samples, a Gaussian mean and covariance can also be derived
according to:

x =
Nsampl es∑

i=1
wi x i (3.3)

P =
Nsampl es∑

i=1
wi

(
x i −x

)(
x i −x

)T (3.4)

where for all Monte Carlo samples, wi = 1/Nsamples .

The accuracy of the Monte Carlo method depends on the number of samples used. The higher the number
of samples, the more accurate the representation of the true uncertainty will be, and although a large sample
set is computationally expensive, it is often used to represent the truth in a comparison with other uncertainty
propagation methods.

3.2. Linearised Covariance
A quick and computationally efficient method to propagate an uncertainty is to use the linearised covariance
(LinCov) method, which approximates the nonlinear dynamics with a linear model. The true trajectory of an
object in space, with states x(t ), can be represented by the difference with respect to a reference orbit, with
states defined by x∗(t ). If the reference orbit is sufficiently close to the true trajectory, the difference between
states, ∆x(t ) = x(t )−x∗(t ), will behave linearly [18]. An exaggerated illustration is shown in Figure 3.1.

6
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x*(tf)

x*(t0) x(tf)

x(t0)

Δx(t) = x(t) - x*(t)

Figure 3.1: Illustration of the relation between a true trajectory and a reference orbit.

Given the nonlinear dynamics of the true trajectory [18]:

ẋ(t ) = F (x , t ) (3.5)

the Taylor expansion can be expanded about the reference trajectory:

ẋ(t ) = F (x , t ) = F (x∗, t )+
[
δF (t )

δx(t )

]∗ [
x(t )−x∗(t )

]+ ... (3.6)

By neglecting higher order terms, this can be simplified to:

∆ẋ(t ) = J∗(t )∆x(t ) (3.7)

where J∗(t ) represents the Jacobian of the reference trajectory at epoch t:

J∗(t ) =
[
δF (t )

δx(t )

]∗
(3.8)

The general solution of this system can then be expressed as:

∆x(t ) =Φ(t , tk )∆x(tk ) (3.9)

whereΦ(t , tk ) is the state transition matrix (STM) from epoch tk to t .

The mean state vector and covariance matrix are defined as the expected value of the state, and the expected
squared difference with respect to the mean state [99]:

x =
∫
∞
ξp(ξ)dξ (3.10)

P =
∫
∞

(ξ−x)(ξ−x)T p(ξ, t )dξ (3.11)

Assuming that the differences between the true trajectory and the reference trajectory remains small, the STM
in Equation 3.9 can be used with Equations 3.10 and 3.11 to propagate the mean state vector and covariance
matrix linearly from the initial epoch t0 to epoch t :

x(t ) =Φ(t , t0)x(t0) (3.12)

P (t ) =Φ(t , t0)P (t0)Φ(t , t0)T +G(t )Q(t )G(t )T (3.13)

Here G(t ) is a matrix characterising the diffusion of a Brownian motion process with covariance matrix Q(t ).
Both G(t ) and Q(t ) can be used to account for mismodelling of the acceleration models. However, mismod-
elling will not be considered for any of the UP methods in this study, since this research focusses more on the
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evolution of the uncertainty in the nonlinear dynamical system, and on comparing various uncertainty propa-
gation methods to each other based on their computational efficiencies and accuracies in estimating the final
uncertainty. Thus, the new formula to propagate the covariance matrix forward becomes:

P (t ) =Φ(t , t0)P (t0)Φ(t , t0)T (3.14)

With this method, only the mean vector of the probability distribution has to be propagated to solve the vari-
ational equations and obtain the STM, which can be used in Equation 3.14 to calculate the final covariance
matrix. Since the method only requires one state vector to be propagated, it is very computationally efficient.
However, the method assumes a Gaussian distribution for both the initial and final epoch, and linearises the
dynamics close to the reference trajectory. Since the true orbital dynamics are nonlinear and a Gaussian uncer-
tainty becomes non-Gaussian for long propagation times, this leads to inaccuracies, which are small for short
propagation times but will grow when the propagation time increases.

3.3. Unscented Transform
The idea of the Unscented Transform (UT) is to avoid linearising or approximating the dynamics, by instead
approximating the probability distribution itself. This is done by using a set of carefully chosen sigma points
from which the statistical properties of the distribution can be determined. These sigma points can then be
transformed using a nonlinear function, after which the new distribution is determined from the transformed
points. An illustration is shown in Figure 3.2.

Figure 3.2: A 2D illustration of the Unscented transform.

There are various sets of points and weights available to use for the UT. In this study, the following set given by
Julier et al. [100] will be used:

χ0 = x W0 = κ/(nst ate +κ)

χi = x +
(√

(nst ate +κ)P
)

i
Wi = 1/(2 · (nst ate +κ)) for i = 0, . . . ,nst ate

χi+nst ate
= x −

(√
(nst ate +κ)P

)
i

Wi+nst ate = 1/(2 · (nst ate +κ))

(3.15)

where x is the mean vector of the distribution,
(p

(nst ate +κ)P
)

i is the i ’th column of the square root matrix
of the scaled covariance matrix, nst ate is the size of the state vector and κ is a tuning parameter, often set to
nst ate +κ= 3 for Gaussian distributions.

To transform a set of sigma points χi and weights Wi back into statistical moments, the following equations
can be used [100]:

x =
2·nst ate∑

i=0
Wiχi (3.16)

P =
2·nst ate∑

i=0
Wi

(
χi −x

)(
χi −x

)T (3.17)
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3.4. Multi-Fidelity Orbit Uncertainty Propagation
The Multi-Fidelity (MF) method is based on using a low-fidelity (LF) model to propagate a large number of
samples in an efficient manner, and combining this with a correction based on a small set of samples prop-
agated with a high-fidelity (HF) model, to improve the accuracy of the propagated points. The method relies
on the assumption that the relation between sample points propagated using LF dynamics, will not be much
different from the relation between sample points propagated using HF dynamics. In this way, all the sample
points propagated using LF dynamics are mapped to a small set of ’important samples’. The important sam-
ples are then propagated using the HF dynamics, and the map is used to transform the remaining LF samples
to approximately the states they would assume under the HF dynamics. An illustration of this process is shown
in Figure 3.3.

LF

coefficients

HF

important
samples

pr
op
ag
at
ion

pr
op
ag
at
ion

Figure 3.3: Illustration of the Multi-Fidelity orbit uncertainty propagation method.

Given a set of Nsamples sample points Ξ=
{
ξ1, . . . ,ξNsamples

}
, the initial states

X 0(Ξ) =
[

x t0 (ξ1) , · · · , x t0 (ξNsamples )
]

are created from an initial Gaussian distribution using:

x(ξ) = x +Sξ (3.18)

Where x is the mean state vector, S is the square root matrix of the covariance matrix, such that P = SST ,
and

ξ∼N (0, I6) (3.19)

are generated using a pseudo-random number simulator.

The next step is to propagate all samples from t0 to t f with LF dynamics to get X L (Ξ) =
[

xL
t f

(ξ1) , · · · , xL
t f

(ξNsamples )
]

.

With these LF states, Algorithm 1, included in Appendix A, can be used to select a smaller set of rm f important

samplesΞ=
{
ξ

1
, · · · ,ξ

rm f

}
, while also generating an array of coefficients c m , where for each important sample

ξ
ℓ

the coefficients [c m]ℓ relate all LF states X L (Ξ) to the LF state vector of this important sample: xL
(
ξ
ℓ

)
. This

process is explained in more detail further in this section. For now it suffices that the important samples and
coefficients are generated such that the LF states X L (Ξ) can be approximated by the important samples using
an expansion of the form:

x̃L(ξ) =
rm f∑
ℓ=1

[c m]ℓ (ξ)xL
(
ξ
ℓ

)
(3.20)

To determine the required rank rm f , an initial value of r = 1 is chosen, which is increased by 1 at each step
while repeating Algorithm 1 to determine the important samples, until the generated set of important samples

satisfies an accuracy condition. The accuracy condition can be defined by comparing the approximation X̃ L
(Ξ)

from Equation 3.20 with the actual states X L (Ξ). In this work rm f is selected such that the maximum difference
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between the approximated states and the actual states is smaller than a user-defined tolerance ϵl f :

max
∣∣∣X̃ L −X L

∣∣∣< ϵl f (3.21)

The small set of important samples Ξ is then propagated using HF dynamics to generate X H
(
Ξ

)
. The assump-

tion is made that the same coefficients c m used with X L
(
Ξ

)
to approximate X̃ L

(Ξ) in Equation 3.20 can be used

in an expansion with X H
(
Ξ

)
to approximate X̃ H

(Ξ) [52]. With the HF states of the important samples X H
(
Ξ

)
,

the state vector of each sample can be estimated with HF dynamics using:

x̃ H (ξ) =
rm f∑
ℓ=1

[c m]ℓ (ξ)x H
(
ξ
ℓ

)
(3.22)

To select the important samples and generate the coefficients, Equation 3.23 can be solved iteratively to find

the next important sample, by maximising the distance between the state of the next important sample x
(
ξ

k

)
and the states of the existing set of important samples X

(
Ξk−1

)
.

ξ
k
= argmax

ξ∈Ξ
dist

(
x(ξ), X

(
Ξk−1

))
(3.23)

Where
dist(x ,X) ≡ inf

y∈X
∥x − y∥ and Ξk =Ξk−1 ∪

{
ξ

k

}
(3.24)

However, solving this is generally intractable [60], and a linear algebra method from [51] can be used to de-
termine the set of important samples Ξ and the coefficients c m used in Equation 3.20 by solving the pivoted
Cholesky decomposition [71]:

[
X L]T

GL [
X L]= AT Ch [Ch ]T A (3.25)

Here GL is the Gramian matrix of the LF samples X L , where
[
GL

]
i , j = xL (ξi ) · xL

(
ξ j

)
, and A is a permutation

matrix based on pivoting that orders samples based on the optimization problem shown in Equation 3.23, and
thus directly indicates the indices of the important samples Ξ in the full sample set Ξ.

Using Algorithm 1 from Appendix A, A and Ch can be obtained from Equation 3.25 without computing the full
Cholesky decomposition [71]. The Ch matrix can then be used to generate c m using [71]:

Ch [Ch ]T c m = g L (3.26)

where [
g L]

ℓ = xL(ξ) · xL
(
ξ
ℓ

)
ℓ= 1, . . . ,r (3.27)

The entire process is summarised in a flowchart presented in Figure 3.4
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Algorithm 1

Figure 3.4: Flowchart of the process of propagating an uncertainty with MF

Equation 3.25 requires nst ate ≥ rm f in order to generate a large enough matrix A to find the order of indices
for the rm f important samples. This means that for this MF uncertainty propagation method, which uses
Equation 3.25 in Algorithm 1 (documented in Appendix A), the maximum number of important samples is
limited to the size of the state vector. For most astrodynamics problems, the state vector x (ξ) is comprised of
the position and velocity vector in 3D:

x (ξ) =
[

r t (ξ)
v t (ξ)

]
(3.28)

Using this as the state vector, results in nst ate = 6 which limits the number of import samples too much. How-
ever, nst ate can be increased by including the position and velocity vectors at multiple moments of t into one
new state vector:

x(ξ) =


r t0 (ξ)
v t0 (ξ)

...
r t f (ξ)
v t f (ξ)

 (3.29)

This formulation allows rm f > 6 and will be used in this further analysis. Since the propagation of states from
t0 to t f already requires integrating the position and velocity vector over multiple intermediate steps, the gen-
eration of this extended state vector causes no significant increase to the computation time.

3.5. Gaussian Mixture Models
Gaussian Mixture Models are useful to represent a non-Gaussian PDF as a weighted sum of Gaussian distri-
butions. The PDF is split up into smaller components that each have an associated weight and their own
Gaussian PDF with a covariance and a mean. By combining enough of these components, any general PDF
can be accurately approximated [101]. By splitting the non-Gaussian PDF into smaller Gaussian distributions,
the individual components can conveniently be used for uncertainty propagation and collision probability
computation methods that assume Gaussian distributions [30, 90–92, 94–97]. An example illustration of how
a GMM representation can use Gaussian components to evolve to a non-Gaussian PDF is shown in Figure 3.5
[96].
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Figure 3.5: A propagated GMM representation of an initially Gaussian PDF to a non-Gaussian PDF, image from [96].

For a univariate Gaussian distribution with mean x and standard deviation σ, the PDF is given by [102]:

f (x) = 1p
2πσ

exp

[
−

(
x −x

)2

2σ2

]
(3.30)

For a multivariate Gaussian distribution, with mean vector x and covariance matrix P , this is represented by
[27]:

N
(
x : x ,P

)= 1p
det(2πP )

exp

[
−1

2

(
x −x

)T P−1 (
x −x

)]
(3.31)

The PDF of a GMM with Ng components is then given by:

p (x) =
Ng∑
i=1

αi N
(
x : x i ,P i

)
(3.32)

where x i and P i are the mean and covariance matrix of the component i for i = 1,2, ..., Ng .

There are various versions of GMMs available. These versions depend on the split size, the split directions, the
splitting rules used for the resulting components, and the algorithms used to determine when and how to split
a component. For a select number of components and algorithms, various pre-computed splitting libraries
have been developed. These splitting libraries provide the weights αi , means xi and standard deviations σi for
a specific number of elements of a GMM that approaches the standard normal distribution. Using the standard
deviation and mean of the non-Gaussian PDF, this GMM approximating the standard normal distribution can
then be shifted and scaled to approximate the non-Gaussian PDF.

The splitting of a PDF into a GMM is done by generating a fixed number of Gaussian components Ng with their
predefined covariance matrix P i , and creating an optimisation problem for the weightsαi and means x i of the
components. In the optimisation problem, a metric that defines the accuracy of the PDF approximation, such
as the L2 distance, can be used to set up a cost function, and symmetry and the total summation of the weights
can be used as constraints. To form the predefined covariance matrices P i , the original covariance matrix P
of the non-Gaussian PDF is taken, and a new predefined standard deviation σ is applied to the column of the
splitting direction in the square-root S of the covariance matrix P according to P = SST . The standard deviation
values in the splitting direction can be chosen according to different splitting rules [103]:

1: σ2 = (
1/Ng

)
2: σ2 = (

1/Ng
)3/4

3: σ2 = (
1/Ng

)1/2

To keep the number of components limited to save computation time, the number of directions to split a GMM
in is often limited to 1 or 2. This direction is carefully chosen, sometimes based on the size of the covariance
in the different directions, determined by the eigenvalues of the covariance matrix [28], or in other cases the
sensitivity to nonlinearity at t0 [103], determined with a metric described by Equation 3.33.

N L (â) = f
(
x + h̃σâ â

)+ f
(
x − h̃σâ â

)−2 f
(
x
)

2h̃2
(3.33)
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Here â is the unit vector of the splitting direction, σâ is the standard deviation along that unit vector, and h̃
is the step size of the interpolation, often chosen as

p
3 [103]. In cases of multiple splitting directions, the di-

rections can be ranked based on these metrics and the top 2 or 3 directions are chosen to split in. Since the
nonlinearity in orbital dynamics applies to all directions in the Cartesian frame, splitting the GMM to 6 compo-
nents becomes intractable. Therefore, converting the coordinates to Keplerian elements (or better Equinoctial
elements to avoid singularities), where 5 of the 6 orbital elements evolve linearly, reduces the needed splitting
directions to 1 and provides better approximations of the non-Gaussian PDF [27].

After an uncertainty has been split into a GMM, the propagation of the GMM can be done by various other
uncertainty propagation methods, such as MC, LinCov, UT and MF, since each component can be treated as
a Gaussian distribution and can be propagated separately, or in parallel. The most logical here are the UT or
LinCov, since the purpose of using GMMs is to transform non-Gaussian uncertainties into smaller uncertain-
ties that remain Gaussian, thereby allowing the use of the most efficient methods that assume final Gaussian
distributions.

Besides splitting an initial PDF into a GMM that keeps the number of components constant during the uncer-
tainty propagation, the GMM can also be split online by checking at each step whether the nonlinearity passes
a threshold, and applying a split to the current set of components in the direction that becomes too nonlinear.
This is called automatic domain splitting, and has various different implementations possible. The methods
differ in their ways of checking when to split a component and how to split the component.

A commonly used method for adaptive splitting is Adaptive Entropy-based Gaussian-mixture Information Syn-
thesis (AEGIS) [28], where the differential entropy of a solution flow is calculated using the linear LinCov
method and nonlinear UT, such that the difference can be used to determine whether or not to split the GMM
further. Another method compares the linearised extended Kalmann filter (EKF) solution with higher order
solutions to determine the size of the truncation error due to linearisation, and applies splitting accordingly
[104].

3.6. Adaptive Entropy-based Gaussian-mixture Information Synthesis
The AEGIS method propagates an uncertainty as a GMM (for an initially Gaussian distribution this can be ini-
tialised as a GMM with 1 single component), and continues to split this GMM further along the propagation, at
moments where the nonlinear behaviour reaches a user-defined threshold. The idea behind this, is that when-
ever the dynamics are so nonlinear that it affects the solution more than desired, the splitting will decrease the
size of the Gaussian components, and thus reduce the effect of nonlinear behaviour on the components.

The nonlinear behaviour is assessed by comparing the difference between two calculations of the differential
entropy of the Gaussian component, a linear and nonlinear version. The differential entropy He (x) of a Gaus-
sian distribution N

(
x : x ,P

)
can be determined using [28]:

He (x) = 1

2
log |2πem P | (3.34)

where P is the covariance matrix, x is the current state and em is the mathematical constant, equal to approx-
imately 2.718. For a linearised system, the time derivative of this differential entropy can be determined by
[105]:

Ḣe (x) = trace
(

J
(
x (t ) , t

))
(3.35)

where J
(
x (t ) , t

)
is the Jacobian matrix of the time derivatives of the state as a function of the mean x (t ).

The linear differential entropy can be determined by starting with an initial differential entropy calculated by
Equation 3.34, and integrating the derivative in Equation 3.35 over time. Whereas the nonlinear differential
entropy can be directly calculated using Equation 3.34 after propagating the covariance using a nonlinear tech-
nique, often the UT [105]. When the normalised difference (with respect to the initial entropy of the compo-
nent) reaches a threshold, the propagation is stopped. The component is then split into new components and
the entropies are recalculated before continuing with the propagations of the new components. The difference
in entropy is assessed according to:

|Hnonli near −Hl i near |
Hi ni t i al

> ϵent (3.36)

Where Hi ni t i al is the nonlinear entropy at the initial epoch of the component’s propagation, and ϵent is a tun-
able parameter 0 < ϵent < 1.
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In this way, each component is propagated (usually with the UT, which can be directly used to calculate the
nonlinear differential entropy along the propagation) until all components have reached the end of the time
domain. This can be done in parallel, stopping the entire propagation each time a component requires split-
ting, and continuing with a slightly bigger set of components. It can also be done sequentially, by adding newly
split components to the queue, and propagating each component individually until all components in the
queue have reached the final epoch.

3.7. Polynomial Chaos Expansions
Non-intrusive Polynomial Chaos Expansions (PCEs) approximate the final solution by a sum of polynomial
functions, built around a number of sampled points. The sampled points are selected based on a specific grid,
and can be propagated using a black box propagator, to provide sample states of the final solution. These states
are then used to generate a PCE, which can be used to estimate the entire probability distribution, as well as
for other purposes such as sensitivity analyses.

The final uncertainty can be represented by [106]:

x t f (ξ) ≈
Pe∑
j=0

[
c p

]
j Ψ j (ξ) (3.37)

where

Ψ j (ξ) =
nst ate∏

i=1
ψ

j
i (ξi ) (3.38)

Here p denotes the polynomial order, d the dimension of the state vector, or in other words the number of

variables in each polynomial, ψ j
i (ξ) is the j ’th polynomial function for the i ’th variable with respect to the

random input ξi of the i ’th variable. c p are the coefficients of the expansion, to be found at the epoch of interest
t . In total, a number of Pcoe f coefficients are needed for the expansion, where Pcoe f follows from [44]:

Pcoe f =
(Pe +nst ate )!

Pe ! ·nst ate !
(3.39)

where Pe is the order of the expansion, and nst ate is the dimension of the state vector x .

To solve Equation 3.37 for the coefficients c p , two different methods are used: Pseudo-spectral projection, and
least squares regression.

Pseudo-spectral projection
In the Pseudo-spectral projection approach, the final solution is projected against each basis function. Since
the polynomials form orthonormal basis functions, the coefficients can be found by the projection of x (ξ) onto
each basis function ψ j (ξ) [106]: [

c p
]

j =
1

〈Ψ j 〉2

∫
x (ξ)Ψ j (ξ) p (ξ)dξ (3.40)

Where p (ξ) represents the probability density of the solution, integrated over the full probability space, and
〈Ψ j 〉2 is the norm squared of the multivariate polynomial, which can be found by the product of the norm
squared of each univariate polynomial function [106]:

〈Ψ j 〉2 =
nst ate∏

i=1
〈ψ j

i 〉2 (3.41)

In pseudo-spectral projection, this integral is approximated by a finite set of points in a quadrature grid of order

Q: X Q =
{

x
(
ξ1

)
, . . . , x

(
ξNg r i d

)}
, such that the numerical integration becomes:

c j = 1

〈Ψ j 〉2

Ng r i d∑
q=1

x
(
ξq

)
Ψ j

(
ξq

)
wq (3.42)

where wq are the weights associated to the nodes q of a quadrature grid, and Ng r i d is the number of points
in the quadrature grid, which depends on the choice of grid structure. For the choice of grid points, several
quadrature rules are available. This study includes the Gaussian quadrature rules, where the grid points are
distributed based on the PDF of each random input ξi . To reduce the effects of dimensionality on the num-
ber of grid points, sparse Smolyak grids are used to preserve the 1D integration properties, while requiring
significantly fewer grid points [44].
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Least Squares Regression
In the regression approach, random samples are used to find a set of coefficients that minimises the sum of
the squared differences between the solution and estimation of each sample. The samples are generated at t0

according to:
x t0 (ξ) = x t0 +Sξ with P = SST (3.43)

And propagated to t to produce x t (ξ). To find the coefficients c p that minimise the sum of squared differences,
the following cost function is used [44]:

[
cp

]
j ≈ arg min{

[c̃p ] j (t )
} 1

Nsampl es

Nsampl es∑
i=1

(
x t

(
ξi

)− Pe∑
j

[
c̃p

]
j (t )Ψ j

(
ξi

))2

(3.44)

where Nsampl es is the total number of samples and Pe is the order of the expansion used. The accuracy of the
least squares regression approximation depends on the ratio between the number of samples used Nsamples

and the number of coefficients Pcoe f , which is further denoted as N /P .

Chaospy
The process of generating an expansion, creating a quadrature integration grid or random samples, and solving
for the coefficients using pseudo-spectral projection or least squares regression, can all be done efficiently
using the Python package Chaospy [107]. In this study, the entire propagation of uncertainty using PCEs is
done via Chaospy, where only the expansion order Pe , quadrature order Q and sample ratio N /P are adjusted
as settings.

3.8. Comparing Propagated Probability Distributions
The various methods described above produce different types of PDFs at t f . Studying the effectiveness of the
various methods requires a way to compare these final uncertainties. A metric that can compare two proba-
bility distributions, and can be applied to different types of PDFs, is the L2 distance, which gives a measure of
how different two distributions are from each other.

L2 Distance
The L2 distance between two probability distributions can be calculated by the following formula [108]:

L2
(
p1, p2

)= ∫
Rn

(
p1 (x)−p2 (x)

)2 d x (3.45)

The L2 distance is both symmetric and satisfies the triangle inequality L2
(
p1, p2

)≤ L2
(
p1

)+L2
(
p2

)
. The sym-

metry here comes from the square in the integral, and the triangle inequality can be proven by rewriting Equa-
tion 3.45 to:

L2
(
p1, p2

)= ∫
Rn

(
p1 (x)−p2 (x)

)2 d x =
∫
Rn

p1 (x)2 d x +
∫
Rn

p2 (x)2 d x −2
∫
Rn

p1 (x) p2 (x)d x (3.46)

= L2
(
p1

)+L2
(
p2

)−2
∫
Rn

p1 (x) p2 (x)d x (3.47)

where p1 (x) and p2 (x) are the PDFs of the two probability distributions and are both defined as positive in the
entire domain of integration.

Using this triangle property, the L2 distance can be normalised to a value 0 ≤ N L2
(
p1, p2

)≤ 1 as follows:

N L2
(
p1, p2

)= ∫
Rn

(
p1 (x)−p2 (x)

)2 d x∫
Rn p1 (x)2 d x +∫

Rn p2 (x)2 d x
= 1− 2

∫
Rn p1 (x) p2 (x)d x∫

Rn p1 (x)2 d x +∫
Rn p2 (x)2 d x

(3.48)

By substituting the PDF for a GMM from Equation 3.32 into each term from Equation 3.46, the equation for the
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L2 distance between two GMMs can be found:∫
Rn

p1 (x) p2 (x)d x =
∫
Rn

[
k1∑

i=1
w1,i N

(
x : x1,i ,P 1,i

)][
k2∑

j=1
w2, j N

(
x : x2, j ,P 2, j

)]
d x (3.49)

=
∫
Rn

k1∑
i=1

k2∑
j=1

w1,i w2, j N
(
x : x1,i ,P 1,i

)
N

(
x : x2, j ,P 2, j

)
(3.50)

=
k1∑

i=1

k2∑
j=1

w1,i w2, j

∫
Rn

N
(
x : x1,i ,P 1,i

)
N

(
x : x2, j ,P 2, j

)
(3.51)

Similarly for the other two terms:∫
Rn

p1 (x)2 d x =
k1∑

i=1

k1∑
j=1

w1,i w1, j

∫
Rn

N
(
x : x1,i ,P 1,i

)
N

(
x : x1, j ,P 1, j

)
(3.52)

∫
Rn

p2 (x)2 d x =
k2∑

i=1

k2∑
j=1

w2,i w2, j

∫
Rn

N
(
x : x2,i ,P 2,i

)
N

(
x : x2, j ,P 2, j

)
(3.53)

The product of two Gaussian PDFs can be computed with a single scaled Gaussian PDF [108]:

N
(
x : x1,P 1

)
N

(
x : x2,P 2

)=N
(
x1 : x2,P 1 +P 2

)
N

(
x : x sc ,P sc

)
(3.54)

where the new Gaussian PDF can be computed with:

x sc = P sc
(
P−1

1 x1 +P−1
2 x2

)
and P sc =

(
P−1

1 +P−1
2

)−1
(3.55)

Since the integral of a Gaussian PDF over the entire probability domain is always 1, the integral of the product
of two GMMs then reduces to the scaling factor:

∫
Rn

N
(
x : x1,P 1

)
N

(
x : x2,P 2

)=N
(
x1 : x2,P 1 +P 2

)
(3.56)

= 1√
det(2π (P 1 +P 2))

exp

[
−1

2

(
x1 −x2

)T
(P 1 +P 2)−1 (

x1 −x2
)]

(3.57)

Thus, the L2 distance between two GMMs becomes:

L2
(
p1, p2

)= d1,1 +d2,2 −2d1,2 (3.58)

and the N L2 distance:

N L2
(
p1, p2

)= 1− 2d1,2

d1,1 +d2,2
(3.59)

where

d1,2 =
k1∑

i=1

k2∑
j=1

w1,i w2, j N
(
x1,i : x2, j ,P 1,i +P 2, j

)
(3.60)

d1,1 =
k1∑

i=1

k1∑
j=1

w1,i w1, j N
(
x1,i : x1, j ,P 1,i +P 1, j

)
(3.61)

d2,2 =
k2∑

i=1

k2∑
j=1

w2,i w2, j N
(
x2,i : x2, j ,P 2,i +P 2, j

)
(3.62)

Gaussian Mixture Model Fitting on Data
A final uncertainty with a probability distribution that consists of a large set of points, such as that generated by
MC, can not be compared using the closed form expressions of the N L2 found above. However, a set of points
can be approximated with a GMM by using the expectation-maximisation algorithm to fit a Gaussian mixture
model to the data. This study uses Scikit-learn [109] to fit GMMs to the samples of the probability distributions,
such that these uncertainties can be compared to other Gaussian distributions and GMMs.



4
Conjunction Assessment

Once a close encounter between two space objects is identified [62], there are various methods to determine
the probability of a collision. The collision probability can be determined at a single epoch, which is defined
as the instantaneous collision probability. More often, a cumulative collision probability is determined, which
integrates the instantaneous collision probabilities over the duration of the close encounter. These close en-
counters are separated into two categories: short-term encounters and long-term encounters. The short-term
encounters consider a high relative velocity between the two objects (in the range of kilometres per second)
and often make a number of assumptions on the situation to simplify the computation of the collision prob-
ability. The long-term encounters consider low relative velocities resulting in longer time periods of the close
encounter and thus fewer simplifying assumptions can be used.

To calculate the instantaneous collision probability, the position covariances of both objects (if their uncertain-
ties are uncorrelated) are summed to a joint covariance matrix [63]:

P r
J = P r

P +P r
S (4.1)

where P r
P and P r

S are the position covariance matrices of the primary and secondary space object respectively.
Then, the instantaneous collision probability of the two space objects is given by the integration of the corre-
sponding joint Gaussian PDF, centred on the secondary object, over the volume of a hardball sphere with the
radius HBR = RP +RS centred on the primary object:

PC ,i (t ) =
Ñ

Ṽ
N

(
r ;r r el ,P r

J

)
dV (4.2)

Here N
(
r ;r r el ,P r

J

)
represents the 3-dimensional combined Gaussian PDF, r r el denotes the relative position

of the primary object with respect to the secondary object and RP and RS are the radii of the primary and
secondary object respectively. An illustration of the integration volume Ṽ is shown in Figure 4.1.

Figure 4.1: 2D rendering of the integration to PC in the conjunction plane, image from [110].

To determine the cumulative PC , the instantaneous collision probability PC ,i can be integrated over the dura-
tion of the conjunction [63]:

PC =
∫ t2

t1

PC ,i (t )dt (4.3)

17
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Where t1 and t2 define the duration of the close encounter. Usually t1 is chosen at an epoch far enough away
to assume a cumulative collision probability of 0 up to that point [87].

4.1. Analytical method
For short-term encounters, analyses to compute the collision probability generally make the following assump-
tions [63]:

• The relative velocity of the two space objects during the close approach is considered constant.

• There is no uncertainty in the velocity of the space objects during the encounter.

• The position uncertainty is constant during the encounter and equal to the uncertainty at the TCA.

• The position uncertainty of the two objects are uncorrelated and follow Gaussian distributions.

• The two objects are spherically shaped.

Using these assumptions, the time integral can be converted to a 3-dimensional volume integral, similar to the
formula described in Equation 4.2 [63]:

PC =
Ñ

V ′
N

(
r ;r r el ,TC A ,P r

J ,TC A

)
dV (4.4)

Except now, V ′ refers to the volume swept out by a hardball sphere (with radius HBR = RP +RS ) centred on the
primary object, and the combined uncertainty is constant and taken as the uncertainty at the time of closest
approach t = tTC A . An illustration of the swept out volume is given in Figure 4.2.

Figure 4.2: 3D and 2D schematic of the integration to PC in a short-term close encounter.

From Figure 4.2 it can be seen that when the relative velocity and the combined position uncertainty are
constant throughout the short-term encounter, the 3-dimensional volumetric integral can be reduced to a 2-
dimensional surface integral on the conjunction plane, by integrating along the relative velocity direction. This
simplifies the collision probability computation problem to Equation 4.5 and is the basis for various numerical
and analytical methods that expand on this with further derivations and methods [63].

PC =
Ï

A j

h
(
x, y

)
dS (4.5)

Where h(x, y) is the combined PDF in the conjunction plane, obtained by integrating the combined PDF over
the relative velocity direction, and A j represents the area of the combined radii hardball sphere projected on
the conjunction plane. The conjunction plane is defined as the plane orthogonal to the relative velocity vector,
passing through the mean position of the secondary object.
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4.2. Monte Carlo Collision Probability
In cases of low relative velocities, the encounter becomes a long-term encounter and the assumptions made
for short-term encounters no longer hold. The computation of PC in long-term encounters is more complex
than that for the short-term [63]. Most methods assume a Gaussian distribution for both space objects’ uncer-
tainties. By dividing a non-Gaussian PDF into a number of Gaussian components like by the GMMs described
in Chapter 3, these methods can be used on each Gaussian component.

To compute PC accurately without requiring simplifying assumptions, both for instantaneous, short-term and
long-term collision probabilities, MC simulations can be used. To compute the PC using MC simulation, a
sufficient number of random samples must be produced from the PDFs, each of which are propagated through
the close encounter. By determining for each pair of samples if a collision has occurred, the collision probability
can be approximated with [63]:

PC = Nc

Nt
(4.6)

where Nc is the number of samples resulting in a collision and Nt is the total number of samples generated. The
collision can be determined by comparing the combined radii of the space objects with the distance between
both objects at the time of interest for the instantaneous collision probability, and by comparing it with the
distance at closest approach (DCA) for the cumulative collision probabilities. The standard deviation of the
estimated PC is then [63]:

σ=
√

PC (1−PC )

Nt
(4.7)

To ensure that the standard deviation of the result is low enough to make the estimate accurate, sufficiently
many runs should be generated. The number of samples required also increases when the collision probability
becomes small, which is often around 10−4 or lower for space objects [45]. Figure 4.3 shows the number of
samples required to obtain various relative error levels for a given confidence level of β= 97% [63].

Figure 4.3: The number of MC samples required to compute PC with β= 97%, image from [63].

Two concepts of computing PC are using an all-on-all or one-on-one analysis. With MC simulations, it is com-
mon to use the one-on-one technique. By choosing random pairs of samples and evaluating these pairs for a
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collision, the collision probability can be estimated, which approaches the true value if enough random pairs
are evaluated [111]. Some more complex PC computation techniques include all-on-all analyses, such as when
working with GMMs. In an all-on-all analysis, each component is paired with each other component to eval-
uate its collision probability. This can be useful when the number of points or components is much smaller.
With GMMs this technique is often used to evaluate two PDFs modelled by a Gaussian Mixture, where each pair
of Gaussian components can be evaluated using more advanced numerical or analytical computation methods
[95].

To determine whether a collision occurs between two sampled states, both initial states are propagated up to
tTC A . If the distance between the position of both states at tTC A is smaller than the HBR, then a collision is
counted. However, for each sample pair, the actual moment at which the distance between both positions is
smallest can deviate from the tT C A found for the mean states. Therefore, a distinction is made between the
tTC A found for the mean states: tTC A,mean , and the actual tTC A for each sample pair: tTC A,tr ue . The count of
collisions can be determined by evaluating the distance between all pairs at the same time epoch of tTC A,mean ,
or by evaluating the distance between the pairs at the tT C A,tr ue , which is a different time epoch for each sample
pair.

The tTC A,tr ue can be found by propagating both sampled states backwards and forwards from the tTC A,mean

over a small time window, and applying an algorithm to find the exact time at which the distance is minimum,
for which multiple options are available. The original brute-force Monte Carlo method developed by the NASA
Conjunction Assessment Risk Analysis (CARA) team used equally spaced bins in time [112], which has later
been updated with an algorithm to find all local minima more accurately [113]. Another often used method is
Denenberg’s algorithm, which can find the 4 extrema of each orbital period by the use of a fitted polynomial
function [114].

In this study, a bisection method, described in Algorithm 2 in Appendix A, is used to find the local minimum
efficiently. The algorithm is based on the algorithm used by the CARA team, and works under the assumption
that only one minimum is present in the bounded search interval. This assumption can be used when the in-
terval is much smaller than the smallest orbital period of the two objects, and sufficiently large to ensure the
minimum is found within the interval. The backward and forward propagation from tTC A,mean in these algo-
rithms is often done with a simpler and more efficient propagation model than the model used to propagate
the uncertainty to tT C A,mean , for example using Keplerian dynamics [112].

Instead of propagating the state vector of both satellites from t0 to tTC A,mean for all Nsamples points, the states
can also be sampled from a Gaussian distribution created at tTC A,mean from the propagated sampled points
using Modified Equinoctial Elements (MEE). The state vectors at tT C A,mean of both objects for all propagated
points are first converted from Cartesian coordinates to MEE using Equations B.11 to B.16 from Appendix B.
Then, the mean vector and covariance matrix are obtained using:

xmee = 1

Nsamples

Nsamples−1∑
i=0

x i ,mee (4.8)

P mee = 1

Nsamples

Nsamples−1∑
i=0

(
x i ,mee −xmee

)(
x i ,mee −xmee

)T (4.9)

With the mean vector and covariance matrix in MEE, Nsamples state vectors can be sampled using

xmee (ξ) = xmee +Smeeξ (4.10)

where S is the square root matrix of the covariance matrix in MEE, such that P mee = Smee ST
mee , and ξ∼N (0, I6).

Finally, all sampled state vectors are converted to Cartesian coordinates using Equations B.11 to B.16.

To summarise the available methods of computing the PC with MC samples, there are three main choices
to be made. The samples can be evaluated in an all-on-all or one-on-one analysis, where this research will
implement a one-on-one analysis. Additionally, the samples can be evaluated at tTC A,mean , or at the calculated
tTC A,tr ue for each sample pair. The latter option is used further in this study, where the tT C A,tr ue is calculated
using Algorithm 2, described in Appendix A. Finally, the required samples at tTC A can be propagated from t0, or
sampled from a propagated PDF at tT C A . Again, the latter option is used in the conjunction assessment study
in this research, such that the PDFs can be propagated with fewer samples than the number of samples needed
to calculate PC .



5
Uncertainty Propagation Analysis Scenarios

The various uncertainty propagation (UP) methods described in Chapter 3 are evaluated with different settings
for a set of test case scenarios, such as to compare their efficiency and accuracy in propagating different types
of uncertainties with orbital dynamics. The efficiency and accuracy are determined by the computation times
of the uncertainty propagation and the N L2 distance between the propagated uncertainty and an uncertainty
propagated with 105 MC samples used as a baseline. The test case scenarios are based on currently active
satellites, orbiting around the Earth in unique types of orbits. The initial uncertainty of each test case scenario
is based on the measurement uncertainty published by Privateer Wayfinder [115], and represents a realistic
uncertainty, to be used in the uncertainty propagations of RSOs.

A total of five objects are selected, of which two objects are in a low Earth orbit (LEO), one object is in a geo-
stationary orbit (GEO) and two objects have a highly elliptical orbit (HEO). Important specifications of the five
satellites and their orbits are presented in Table 5.1. The mass and average cross section are obtained from ESA
DISCOS (Database and Information System Characterising Objects in Space)1.

Name Orbit type a [km] e [−] i [deg ] T [s] m [kg ]
Average cross
section [m2]

VELOX C1 LEO 6857.2 0.0020 14.9786 5652 123 0.348
ONEWEB-0416 LEO 7605.7 0.0012 87.9960 6600 148 2.032
COSMOS 2518 Molniya 26548.0 0.7191 63.0748 43050 2550 14.304

SPIRALE B HEO 20311.8 0.6725 1.9085 28800 117 1.379
METEOSAT 12 GEO 42165.9 0.0002 0.7341 86172 3760 19.366

Table 5.1: Characteristic information about the different test case scenarios.

In this study, a pre-developed propagation tool is used to propagate the initial states forward in time. This
propagator is used to analyse the scenario, as well as to propagate any sample points required in the uncertainty
propagation methods. The propagation software used is the TU Delft Astrodynamics Toolbox (Tudat)2. In
Tudat, the position ephemerides of third-bodies in the propagation, as well as the rotation model of the central
body, are retrieved from SPICE [116, 117].

In the following sections, each of the five test case scenarios is described in more detail. This includes illus-
trations of the orbital trajectories, as well as the time epochs for the start and end of each propagation. Each
section also includes the initial distribution of the uncertainty of each test case scenario, provided by the mean
vector and the covariance matrix. Finally, for each test case scenario, a summary of the settings used for the
propagation is included.

1https://discosweb.esoc.esa.int/
2https://docs.tudat.space/en/latest/

21
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5.1. Velox scenario
Figure 5.1 shows an illustration of the orbit of the VELOX C1 satellite, on which the Velox test case scenario is
based.

Figure 5.1: Illustration of the orbit of the VELOX C1 satellite, at 18-02-2025 20:00:00 UTC via Wayfinder [115].

Based on the available data of the satellite’s state vectors and covariance matrices, the initial state of the test
case scenario is selected at t0 = 12-02-25 21:45:41.733 UTC, resulting in an initial state vector close to the orbit’s
perigee. The initial uncertainty, taken from data from Wayfinder [115], is characterised by a Gaussian distribu-
tion with the following values in the ECI coordinate frame:

x = [ −5.365E +6 −4.249E +6 4.120E +4 4.593E +3 −5.780E +3 1.965E +3
][

m m/s
]

P =



9.725E +3 −4.153E +2 2.444E +2 1.183E +1 4.463E +0 6.775E −1
−4.153E +2 8.767E +3 −6.952E +1 3.254E −1 1.865E +0 2.313E −2

2.444E +2 −6.952E +1 8.809E +3 1.559E +0 6.881E −1 1.816E +0
1.183E +1 3.254E −1 1.559E +0 1.915E −2 2.767E −3 −7.530E −3
4.463E +0 1.865E +0 6.881E −1 2.767E −3 4.925E −2 3.177E −3
6.775E −1 2.313E −2 1.816E +0 −7.530E −3 3.177E −3 6.039E −2


[

m2 m2

s
m2

s
m2

22

]

Using Tudat, a single propagated orbit, starting from this initial state, is shown in Figure 5.2. The duration of
this propagation is set to T = 5652.0 seconds, resulting in t f = 12-02-25 23:19:53.732 UTC. For a simulation
lasting Nor bi t orbital revolutions, the propagation end time is determined by t f = t0 +Nor bi t ·T , also shown in
Table 5.2 for the various number of revolutions chosen to simulate.
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Figure 5.2: A single propagated orbit of the Velox test case scenario.

Nor bi t [−] t0 [UTC] t f [UTC]
1 12-02-25 21:45:41.733 12-02-25 23:19:53.732
2 12-02-25 21:45:41.733 13-02-25 00:54:05.732

10 12-02-25 21:45:41.733 13-02-25 13:27:41.732
20 12-02-25 21:45:41.733 14-02-25 05:09:41.732
50 12-02-25 21:45:41.733 16-02-25 04:15:41.732

Table 5.2: Propagation start and end times for different numbers of orbital revolutions simulated, for the Velox scenario.

The propagator and integrator settings for the Velox scenario have been analysed for the maximum number
of revolutions, Nor bi t = 50, such that both the integration error and the model error (compared to the highest
fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis is docu-
mented in Appendix C, and the final settings are repeated here for the high-fidelity and low-fidelity dynamics
in Table 5.3 and Table 5.4.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-6)

Propagator Cowell
Table 5.3: Propagation settings used for the high-fidelity dynamics of

the Velox scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Atmospheric drag CD = 2.0 (US76)
Environment models

Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-6)

Propagator Cowell
Table 5.4: Propagation settings used for the low-fidelity dynamics of

the Velox scenario

5.2. Oneweb scenario
Figure 5.3 shows an illustration of the orbit of the ONEWEB-0416 satellite, on which the Oneweb test case
scenario is based.

Figure 5.3: Illustration of the orbit of the ONEWEB-0416 satellite, at 18-02-2025 20:00:00 UTC via Wayfinder [115].

Based on the available data of the satellite’s state vectors and covariance matrices, the initial state of the test
case scenario is selected at t0 = 13-02-25 06:37:02.992 UTC, resulting in an initial state vector close to the orbit’s
perigee. The initial uncertainty is characterised by a Gaussian distribution with the following values:



5.2. Oneweb scenario 25

x = [ −3.044E +5 −6.542E +4 7.585E +6 4.973E +3 −5.267E +3 1.535E +2
][

m m/s
]

P =



9.167E +3 −3.331E +2 −3.901E +2 3.412E +0 −4.321E −1 −3.537E +0
−3.331E +2 9.165E +3 3.976E +2 −5.312E −1 3.223E +0 3.380E +0
−3.901E +2 3.976E +2 9.126E +3 −1.587E +0 1.318E +0 9.914E +0

3.412E +0 −5.312E −1 −1.587E +0 3.482E −2 6.663E −3 8.223E −3
−4.321E −1 3.223E +0 1.318E +0 6.663E −3 3.487E −2 −7.790E −3
−3.537E +0 3.380E +0 9.914E +0 8.223E −3 −7.790E −3 2.377E −2


[

m2 m2

s
m2

s
m2

22

]

A single propagated orbit, starting from this initial state, is shown in Figure 5.4. The duration of this propagation
is set to T = 6600.0 seconds, resulting in t f = 13-02-25 08:27:02.991 UTC. For a simulation lasting Nor bi t orbital
revolutions, the propagation end time is determined by t f = t0 + Nor bi t ·T , also shown in Table 5.5 for the
various number of revolutions chosen to simulate.
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Figure 5.4: A single propagated orbit of the Oneweb test case scenario.

Nor bi t [−] t0 [UTC] t f [UTC]
1 13-02-25 06:37:02.992 13-02-25 08:27:02.991
2 13-02-25 06:37:02.992 13-02-25 10:17:02.991

10 13-02-25 06:37:02.992 14-02-25 00:57:02.991
20 13-02-25 06:37:02.992 14-02-25 19:17:02.991
50 13-02-25 06:37:02.992 17-02-25 02:17:02.991

Table 5.5: Propagation start and end times for different numbers of orbital revolutions simulated, for the Oneweb scenario.

The propagator and integrator settings for the Oneweb scenario have been analysed for the maximum number
of revolutions, Nor bi t = 50, such that both the integration error and the model error (compared to the highest
fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis is docu-
mented in Appendix C, and the final settings are repeated here for the high-fidelity and low-fidelity dynamics
in Table 5.6 and Table 5.7.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-6)

Propagator Cowell
Table 5.6: Propagation settings used for the high-fidelity dynamics of

the Oneweb scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-6)

Propagator Cowell
Table 5.7: Propagation settings used for the low-fidelity dynamics of

the Oneweb scenario

5.3. Cosmos scenario
Figure 5.5 shows an illustration of the orbit of the COSMOS 2518 satellite, on which the Cosmos test case sce-
nario is based.

Figure 5.5: Illustration of the orbit of the COSMOS 2518 satellite, at 18-02-2025 20:00:00 UTC via Wayfinder [115].

Based on the available data of the satellite’s state vectors and covariance matrices, the initial state of the test
case scenario is selected at t0 = 13-02-25 02:28:47.055 UTC, resulting in an initial state vector close to the orbit’s
perigee. The initial uncertainty is characterised by a Gaussian distribution with the following values:
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x = [ −2.546E +5 −4.494E +6 −6.260E +6 6.861E +3 −6.054E +3 2.150E +3
][

m m/s
]

P =



8.990E +3 −1.610E +2 5.496E +2 4.011E +0 1.324E +0 3.056E +0
−1.610E +2 8.625E +3 −3.708E +1 5.416E −1 3.538E +0 1.350E +0

5.496E +2 −3.708E +1 9.233E +3 2.027E +0 2.502E +0 9.390E +0
4.011E +0 5.416E −1 2.027E +0 2.670E −2 1.678E −3 −7.867E −3
1.324E +0 3.538E +0 2.502E +0 1.678E −3 2.949E −2 −2.846E −3
3.056E +0 1.350E +0 9.390E +0 −7.867E −3 −2.846E −3 1.822E −2


[

m2 m2

s
m2

s
m2

22

]

A single propagated orbit, starting from this initial state, is shown in Figure 5.6. The duration of this propagation
is set to T = 43050.0 seconds, resulting in t f = 13-02-25 14:26:17.054 UTC. For a simulation lasting Nor bi t orbital
revolutions, the propagation end time is determined by t f = t0+Nor bi t ·T , also shown in Table 5.8 for the various
number of revolutions chosen to simulate.
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Figure 5.6: A single propagated orbit of the Cosmos test case scenario.

Nor bi t [−] t0 [UTC] t f [UTC]
0.5 13-02-25 02:28:47.055 13-02-25 08:27:32.054
1 13-02-25 02:28:47.055 13-02-25 14:26:17.054

1.5 13-02-25 02:28:47.055 13-02-25 20:25:02.054
2 13-02-25 02:28:47.055 14-02-25 02:23:47.054

Table 5.8: Propagation start and end times for different numbers of orbital revolutions simulated, for the Cosmos scenario.

The propagator and integrator settings for the Cosmos scenario have been analysed for the maximum number
of revolutions, Nor bi t = 2, such that both the integration error and the model error (compared to the highest
fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis is docu-
mented in Appendix C, and the final settings are repeated here for the high-fidelity and low-fidelity dynamics
in Table 5.9 and Table 5.10.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon, Venus

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon, Venus)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 1E-3)

Propagator Cowell
Table 5.9: Propagation settings used for the high-fidelity dynamics of

the Cosmos scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 1E-3)

Propagator Cowell
Table 5.10: Propagation settings used for the low-fidelity dynamics of

the Cosmos scenario

5.4. Spirale scenario
Figure 5.7 shows an illustration of the orbit of the SPIRALE B satellite, on which the Spirale test case scenario is
based.

Figure 5.7: Illustration of the orbit of the SPIRALE B satellite, at 18-02-2025 20:00:00 UTC via Wayfinder [115].

Based on the available data of the satellite’s state vectors and covariance matrices, the initial state of the test
case scenario is selected at t0 = 13-02-25 06:24:19.159 UTC, resulting in an initial state vector close to the orbit’s
perigee. The initial uncertainty is characterised by a Gaussian distribution with the following values:
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x = [
2.772E +6 6.216E +6 1.960E +5 −9.483E +3 2.745E +3 −2.042E +2

][
m m/s

]

P =



9.522E +3 2.765E +2 2.915E +1 7.296E +0 5.152E +0 2.237E −1
2.765E +2 8.865E +3 1.175E +1 3.673E +0 7.006E +0 1.827E −1
2.915E +1 1.175E +1 8.649E +3 1.948E −1 2.229E −1 2.777E +0
7.296E +0 3.673E +0 1.948E −1 1.896E −2 −6.324E −3 −5.099E −4
5.152E +0 7.006E +0 2.229E −1 −6.324E −3 2.498E −2 −3.324E −4
2.237E −1 1.827E −1 2.777E +0 −5.099E −4 −3.324E −4 3.316E −2


[

m2 m2

s
m2

s
m2

22

]

A single propagated orbit, starting from this initial state, is shown in Figure 5.8. The duration of this propagation
is set to T = 28800 seconds, resulting in t f = 13-02-25 14:24:19.158 UTC. For a simulation lasting Nor bi t orbital
revolutions, the propagation end time is determined by t f = t0 + Nor bi t ·T , also shown in Table 5.11 for the
various number of revolutions chosen to simulate.
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Figure 5.8: A single propagated orbit of the Spirale test case scenario.

Nor bi t [−] t0 [UTC] t f [UTC]
0.5 13-02-25 06:24:19.159 13-02-25 10:24:19.158
1 13-02-25 06:24:19.159 13-02-25 14:24:19.158

1.5 13-02-25 06:24:19.159 13-02-25 18:24:19.158
2 13-02-25 06:24:19.159 13-02-25 22:24:19.158

Table 5.11: Propagation start and end times for different numbers of orbital revolutions simulated, for the Spirale scenario.

The propagator and integrator settings for the Spirale scenario have been analysed for the maximum number
of revolutions, Nor bi t = 2, such that both the integration error and the model error (compared to the highest
fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis is docu-
mented in Appendix C, and the final settings are repeated here for the high-fidelity and low-fidelity dynamics
in Table 5.12 and Table 5.13.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon, Mars,
Jupiter

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon, Mars, Jupiter)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-3)

Propagator Cowell
Table 5.12: Propagation settings used for the high-fidelity dynamics

of the Spirale scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Atmospheric drag CD = 2.0 (US76)
Environment models

Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(abs. tolerance: 2E-3)

Propagator Cowell
Table 5.13: Propagation settings used for the low-fidelity dynamics of

the Spirale scenario

5.5. Meteosat scenario
Figure 5.9 shows an illustration of the orbit of the METEOSAT 12 satellite, on which the Meteosat test case
scenario is based.

Figure 5.9: Illustration of the orbit of the METEOSAT 12 satellite, at 18-02-2025 20:00:00 UTC via Wayfinder [115].

Based on the available data of the satellite’s state vectors and covariance matrices, the initial state of the test
case scenario is selected at t = 12-02-25 10:51:32.136 UTC, resulting in an initial state vector close to the orbit’s
perigee. The initial uncertainty is characterised by a Gaussian distribution with the following values:
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x = [
2.421E +7 −3.450E +7 −5.241E +5 2.517E +3 1.767E +3 −9.749E +0

][
m m/s

]

P =



9.866E +3 −5.327E −1 −9.708E −3 4.211E +0 −2.893E −2 −3.945E −4
−5.327E −1 9.863E +3 −1.238E −2 −2.776E −2 4.272E +0 9.126E −4
−9.708E −3 −1.238E −2 9.865E +3 −3.848E −4 9.239E −4 4.195E +0

4.211E +0 −2.776E −2 −3.848E −4 1.866E −2 7.944E −4 1.125E −5
−2.893E −2 4.272E +0 9.239E −4 7.944E −4 1.751E −2 −2.127E −5
−3.945E −4 9.126E −4 4.195E +0 1.125E −5 −2.127E −5 1.913E −2


[

m2 m2

s
m2

s
m2

22

]

A single propagated orbit, starting from this initial state, is shown in Figure 5.10. The duration of this propaga-
tion is set to T = 86172.0 seconds, resulting in t f = 13-02-25 10:47:44.135 UTC. For a simulation lasting Nor bi t

orbital revolutions, the propagation end time is determined by t f = t0 +Nor bi t ·T , also shown in Table 5.14 for
the various number of revolutions chosen to simulate.
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Figure 5.10: A single propagated orbit of the Meteosat test case scenario.

Nor bi t [−] t0 [UTC] t f [UTC]
1 12-02-25 10:51:32.136 13-02-25 10:47:44.135
2 12-02-25 10:51:32.136 14-02-25 10:43:56.135

Table 5.14: Propagation start and end times for different numbers of orbital revolutions simulated, for the Meteosat scenario.

The propagator and integrator settings for the Meteosat scenario have been analysed for the maximum number
of revolutions, Nor bi t = 2, such that both the integration error and the model error (compared to the highest
fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis is docu-
mented in Appendix C, and the final settings are repeated here for the high-fidelity and low-fidelity dynamics
in Table 5.15 and Table 5.16.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
fixed rkf8
(time step: 1800s)

Propagator Cowell
Table 5.15: Propagation settings used for the high-fidelity dynamics

of the Meteosat scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
fixed rkf8
(time step: 1800s)

Propagator Cowell
Table 5.16: Propagation settings used for the low-fidelity dynamics of

the Meteosat scenario



6
Uncertainty Propagation Analysis Results

For each of the scenarios and the number of orbital revolutions described in Chapter 5, the initial uncertainty
is propagated using the different UP methods described in Chapter 3, with various different settings. Using
each method, a final probability distribution is obtained, which is compared to the distribution obtained using
MC with 105 samples, to obtain an accuracy metric for each set of method and settings. Each uncertainty
propagation is also timed from start to finish, to use as the computation time metric in the evaluation. For
each scenario, the UP methods are all run simultaneously on the DelftBlue supercomputer [118], to minimise
the effect of varying factors on the run time of the uncertainty propagations.

The various settings used for each UP method are summarised in Table 6.1. For methods with multiple settings,
the values for the different settings are cross-matched, resulting in 21 MF, 14 PCE, 15 GMM_UT, 30 GMM_MF
and 30 AEGIS propagations, per scenario per number of revolutions. For AEGIS, a range of ϵent values is de-
termined for each scenario and number of revolutions separately, based on the relative difference in entropy
of the covariances calculated at multiple epochs along a single UT and LinCov propagation. A custom range of
values is selected that ensures a wide range of resulting number of splits in the propagations.

Method Setting parameter Values used
LinCov N.A. N.A.
UT N.A. N.A.

MF
Nsampl es {103, 5 ·103, 104}
ϵl f {1, 5, 10, 50, 100, 500, 1000} [m]

PCEs (regression)
Pe {2, 3}
N /P {0.9, 1, 2}

PCEs (projection)
Pe {1, 2}
Q {2, 3, 4}

GMM_MF
Split size {(3,1), (5,1), (3, 3), (5, 5), (5, 3)}
Split direction {(Vmax ,Vmax ), ( âr,r , âr,v ), ( âv,v , âv,r )}
ϵl f {1, 10} [m]

GMM_UT
Split size {(3,1), (5,1), (3, 3), (5, 5), (5, 3)}
Split direction {(Vmax ,Vmax ), ( âr,r , âr,v ), ( âv,v , âv,r )}

AEGIS
Split size {3, 5}
ϵent Custom range of 15 values

Table 6.1: The various values used for the different settings for each UP method.

For the splitting directions for GMMs in Table 6.1, Vmax refers to the eigenvector that corresponds to the max-
imum eigenvalue of the uncertainty’s covariance matrix. The other directions represent specific vectors in the
Cartesian 3-dimensional space, where the first subscript indicates whether the split is applied to the position
or the velocity uncertainty, and the second subscript references the vector, according to:

âr,r =



r x

r y

r z

0
0
0

/
∣∣r ∣∣ âr,v =



v x

v y

v z

0
0
0

/
∣∣v

∣∣ âv,r =



0
0
0

r x

r y

r z

/
∣∣r ∣∣ âv,v =



0
0
0

v x

v y

v z

/
∣∣v

∣∣ (6.1)
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Note that, unlike the eigenvector Vmax , which is a 6-dimensional vector, these splitting directions are originally
3-dimensional, and are extended with zeros to be applied to a 6-dimensional covariance matrix. This means
that in the other 3 dimensions, for which the splitting direction vector contains zeros, the uncertainty is not
split and in these directions all new components have the same variances and covariances as in the original
covariance matrix.

The splitting directions are chosen based on the nonlinearity metric N L (â) defined in Equation 3.33. The
tested splitting directions are chosen as the unit vectors of the ECI and RSW coordinate frames, applied to both
the position and velocity [119]:



âr,x

âr,y

âr,z

âv,x

âv,y

âv,z

âr,r

âr,v

âr,h

âv,r

âv,v

âv,h



=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

r x r y r z 0 0 0
v x v y v z 0 0 0

hx h y hz 0 0 0
0 0 0 r x r y r z

0 0 0 v x v y v z

0 0 0 hx h y hz



/
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1
1
1
1
1
1∣∣r ∣∣∣∣v
∣∣∣∣∣h∣∣∣∣∣r ∣∣∣∣v
∣∣∣∣∣h∣∣∣



(6.2)

where the division by the second matrix is applied uniformly per row, such that all vectors are normalised to
unit vectors. The directions with the highest N L (â) are the âr,r and âv,v , which are chosen as the first splitting
direction. For GMM settings with two splits at t0, the second splitting direction is chosen to complement the
first direction, such that the position or velocity is split along both the r and the v direction.

To compare the accuracy and computational efficiency of the various uncertainty propagation methods, the
N L2 distance is used to define the accuracy of the propagated uncertainties at t f , where a value of 0 represents
a perfect agreement, and a value of 1 indicates that the two distributions are completely different. The N L2

distance is calculated between each propagated uncertainty using the various methods and settings, and the
propagated uncertainty using 105 MC samples. For uncertainties that consist of a set of sample points, such
as when using MC samples, but also with MF or PCEs, a GMM is fitted on the sample points, consisting of 9
components, as described in Section 3.8, which is used to calculate the N L2 distance.

By showing the N L2 distance of the propagated uncertainty versus the computation time of the propagation,
the trade-off between accuracy and computationally efficiency can be analysed for the different methods. An
optimal uncertainty propagation method shows a low N L2 distance, as well as a low computation time. In
the following sections, only a selection of figures is shown to demonstrate the most important results, leading
to an asynchronous discussion between the different scenarios. For a complete set of figures showing the N L2

distance versus the computation time of the propagation methods, for all scenarios and number of revolutions,
the reader is referred to Appendix E.

The following section discusses the effects of increasing propagation times in Section 6.1, followed by analyses
of the performance of the different uncertainty propagation methods in Sections 6.2 to 6.6. Afterwards, Sec-
tion 6.7 discusses the HEO cases in more detail. Finally, the chapter concludes with an overview of the most
optimal uncertainty propagation methods in Section 6.8

6.1. Influence of Propagation Time
The PDF of the propagated uncertainty using 105 MC samples is shown in Figure 6.1 for increasing propagation
times of the Velox scenario. These distributions are used as the true uncertainty and are used to calculate the
N L2 distances for each propagated uncertainty. Therefore, it is important to know how these uncertainties are
distributed before analysing the accuracy of other propagation methods. From Figure 6.1 it can be seen that
for a LEO orbit, the uncertainty becomes increasingly non-Gaussian after a higher number of orbital revolu-
tions. For long propagation times, the PDF turns into a banana shape, positioned along the along track (S)
direction with its curvature towards the negative radial (R) direction, that becomes thinner as the propagation
time extends.
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This banana-like shape is caused by a difference in the phase along the orbit of the various sample points.
The different state vectors cause a change in the orbital period of each sample. However, since all samples are
propagated with the same propagation time (corresponding to a full revolution of the mean orbit), a difference
in orbital periods results in a difference in the phase of the sample points at t f . This difference in phase ac-
cumulates after multiple orbital revolutions, where for long propagation times this difference in state vectors
becomes significantly larger than the initial deviation in state vectors at t0, thus turning the PDF into a thin
banana shape along the orbit trajectory.
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Figure 6.1: Correlations between each of the 6 dimensions in the RSW coordinate frame, shown with 105 propagated MC samples for the
Velox scenario after 1, 10 and 50 revolutions.

Figure 6.2 shows the accuracy and computational efficiency of the various methods for a short and long propa-
gation time of the Oneweb scenario. In this figure, the N L2 distance, which is a normalised metric ranging from
0 (indicating no overlap with the MC samples) to 1 (indicating identical distributions), represents the accuracy
of the propagated uncertainties, where lower values indicate higher accuracies. The results are shown for the
different uncertainty propagation methods with various settings, and are grouped per method.
In Figure 6.2 it can be seen that for a short propagation time, i.e. after 1 orbital revolution, all methods are able
to approximate the distribution relatively well, with N L2 values tending towards 0. Only for some settings of MF
(including GMM_MF) and PCEs, the solutions have not converged and the resulting N L2 distances are larger,
with some even at 1.0. For the higher number of revolutions, the trend is the opposite, where most results are
clustered near an N L2 distance of 1, and only the N L2 distances of MF and PCEs reach towards 0 depend-
ing on the settings used. This behaviour is expected, since for longer propagation times the final uncertainty
becomes non-Gaussian, which is more difficult to approximate, especially for methods that assume Gaussian
distributions.
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Figure 6.2: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
the Velox scenario after 1 and 50 revolutions.
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6.2. Linearised Covariance and the Unscented Transform
Both LinCov and the UT are methods that assume a final Gaussian distribution, and their approximations of
the probability distribution are also Gaussian. These methods show a steep rise in the N L2 distance as the
propagation time increases, shown in Figure 6.3. For longer propagation times, the true PDF (approximated
by MC) becomes non-Gaussian and the approximations of LinCov and the UT start to deviate more. For 50
revolutions of the Velox scenario, shown in Figure 6.2, LinCov has almost no overlap with the MC samples,
where UT performs slightly better.
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Figure 6.3: The N L2 distance and computation time of the LinCov and UT for different numbers of revolutions of the Velox scenario.

This difference can also be seen by comparing the final position uncertainty in the R-S frame of both LinCov
and the UT with the MC samples, shown in Figure 6.4. The LinCov method captures the size of the spread at the
mean quite well, with a very ’thin’ shape, while the UT covers more area of the distribution’s tails with a more
spread out approximation, which is slightly favoured by the calculation of the N L2 distance metric.
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Figure 6.4: The position uncertainty in the Radial and Along-track frame compared against MC samples, after 50 revolutions of the Velox
scenario, for the LinCov and UT method.

6.3. Polynomial Chaos Expansions
PCEs are able to approximate the final uncertainty with high accuracy, even for non-Gaussian cases. Figure 6.5
shows the high performance of PCEs in a case where most methods are not able to approximate the non-
Gaussian uncertainty, as well as in a case where multiple methods perform well. In both cases, PCEs stand out
as the best scoring method on the N L2 distance, with some settings reaching towards 0 even for long propaga-
tion times, though at the cost of computation time. Similar results can be found for almost all other scenarios,
documented in Appendix E.
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Figure 6.5: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
two different scenarios after the maximum number of orbital revolutions.

There are some settings for PCEs, which perform very poorly on the N L2 distance, while also taking long com-
putation times. These are the settings for which the expansion can not approximate the distribution, or for
which the least squares regression does not converge. Figure 6.6 shows this behaviour for the non-Gaussian fi-
nal distribution of Oneweb after 50 orbits, where the Pe = 1 expansion can not approximate a non-Gaussian dis-
tribution, and the N /P = 0.9 regression is not converged yet, while their counterparts with Pe = 2 and N /P = 1
respectively provide very similar results to MC.
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(c) Least Squares Regression with Pe = 2 and N /P = 0.9.
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(d) Least Squares Regression with Pe = 2 and N /P = 1.

Figure 6.6: The position uncertainty in the Radial and Along-track frame compared against MC samples, after 50 revolutions of the Oneweb
scenario, for different settings of the PCEs.
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6.4. Multi-Fidelity
In Figure 6.5, shown in the previous section, it can be seen that the MF method also performs well for both
cases. While it scores slightly worse on the N L2 metric compared to PCEs, it takes less computation time to do
so. For almost all cases, especially with long propagation times, MF can provide better results than LinCov or
UT in terms of the N L2 distance. At the same time, in most cases the MF method also has shorter computation
times than PCEs, even for the settings that reach the very low N L2 distances. Figure 6.7 clearly shows this
difference in computation time for comparable N L2 distances. The reader is reminded that the x-axis uses a
log scale, thus the MF method typically has a computation time that is an order of magnitude smaller than
that of PCEs. It can be seen that the difference in computation time also increases when the propagation
time becomes longer. For the most optimal settings of both methods, MF requires the propagation of fewer
sample points with HF dynamics than PCEs. When the propagation time becomes long, the propagation of
samples becomes the most important factor in the computation time, leading to the increased difference in
computational efficiency.
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Figure 6.7: The N L2 distance and computation time of MF with Nsamples = 5000 and ϵl f = 5m, and a PCE with Pe = 3 and N /P = 2, for
different numbers of revolutions of the Oneweb scenario.

The two main setting parameters of MF that have been tuned in this analysis are: the low-fidelity tolerance ϵl f

and the total number of sample points propagated Nsamples . Since the rank of the MF method is increased until
the ϵl f is satisfied, a lower value for ϵl f generally results in a higher number of important samples used. The ef-
fects of using different settings on the computation time and N L2 distance can be seen when plotting the N L2

distance against the computation time again, but this time only for the MF method, and grouping the results
based on the settings used. In Figure 6.8, it is seen that most values of ϵl f result in an N L2 distance near 1. This
is due to there not being enough important samples to accurately map the relation to all samples in the distri-
bution. However, for smaller values of ϵl f , the N L2 distance starts around 0 for short propagation times, and
ends around 0.7 for long propagation times, indicating that with more important samples, the approximation
of the final uncertainty improves.

In Figure 6.8 it can be also be seen that for a larger Nsamples , the computation time also increases, and the N L2

distance slightly decreases. Although a higher Nsamples leads to slightly lower N L2 distances, adjusting the ϵl f

leads to much bigger changes in the N L2 distance, with smaller differences in the computation time. It should
be noted that in this analysis not all settings of every method are explored, thus this N L2 distance of 0.6 is not
necessarily the limit of the MF method. For instance, tuning the complexity and accuracy of the HF and LF
models could provide propagations with shorter computation times or lower N L2 distances.
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Figure 6.8: The N L2 distance and computation time of MF with various settings, where the various data points along the plotted lines
correspond to different numbers of revolutions, for the Oneweb and Meteosat scenario.

Figure 6.9 shows the distribution of one of the optimal settings, meaning a low ϵl f and a high Nsampl es , which
results in a N L2 distance of 0.7 for the Oneweb scenario after 50 revolutions. From the combination of Fig-
ure 6.8a and Figure 6.9, which both concern the same scenario, it is clear that even though the N L2 distance is
not close to 0, the shape of the MC samples is still very well approximated by the MF propagation.
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Figure 6.9: The position and velocity uncertainty in the Radial and Along-track frame compared against MC samples, after 50 revolutions of
the Oneweb scenario, for the MF method with ϵl f = 1 and Nsamples = 10000.

6.5. Gaussian Mixture Models
In almost all scenarios, the GMMs (both with UT and with MF) perform similar to or worse than LinCov in terms
of N L2 distance, while having much longer computation times. Figure 6.10a demonstrates that the GMMs al-
ready fall behind when the LinCov can still approximate the MC propagated uncertainty with a low N L2 dis-
tance. Additionally, Figure 6.10b demonstrates that when the uncertainty becomes non-Gaussian, the GMMs
can still not perform any better than the LinCov, and also have N L2 distances of near 1.
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Figure 6.10: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
the Oneweb scenario after 2 and 10 orbital revolutions.

The idea of the GMMs is that by splitting the initial Gaussian distribution into multiple smaller components,
these components will remain Gaussian for a longer time and by combining the smaller Gaussian compo-
nents at the final propagation time, the non-Gaussian shape of the PDF can be approximated. The method
is expected to outperform LinCov, especially for long propagation times where the final distribution is non-
Gaussian, but fails to approximate the shapes of these PDFs itself, shown in Figure 6.11b.

From Figure 6.11a it is clear that the components are initially spread out, and do approximate the initial distri-
bution well in the R-S frame of the position. However, in Figure 6.11b it seems that the individual components
all end up very close to each other in the final propagated uncertainty, resulting in a near Gaussian distribution
again that does not include the tails of the banana-shaped distributions that arise from MC samples.
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Figure 6.11: The components of the GMM created by splitting in the âr,r and âr,v directions with a split size of 5 and 3 respectively,
compared against MC samples at different time epochs for the Oneweb scenario.
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This effect of ending up with a centred collection of GMM components can be due to the way that the individual
components are propagated, using the UT (or in the case of GMM_MF, the MF method is applied to these same
sample points generated by the UT). It is possible that by propagating the individual GMM components using
a different method, such as LinCov, different results could be obtained. Similarly, using a larger splitting library
could lead to better results in approximating the tails of the MC uncertainty. It should also be noted that the
entire propagation, as well as the splitting of components, occurs in the Cartesian coordinate frame, in which
the nonlinearity deforms the uncertainty into a non-Gaussian distribution in multiple directions, as shown in
Figure 6.1 in Section 6.1. Thus, by splitting/propagating in a different coordinate frame, such as the modified
equinoctial elements, better results can be expected [30].

In all of the scenarios, the uncertainties propagated using GMM_MF have much shorter computation times
than those of GMM_UT, while for most scenarios the GMM_MF propagations with a low ϵl f achieve approxi-
mately the same levels of N L2 distance as the GMM_UT method. Examples of this can be found in the pre-
viously shown Figures 6.2 and 6.10. To provide a more direct comparison between the methods, only the
GMM_MF runs with the smaller value for ϵl f are taken and are compared one by one directly against the
GMM_UT run with the same settings for split size and splitting direction. The results are presented as rel-
ative differences in percentage, shown in Figure 6.12. A clear pattern emerges where the propagations us-
ing GMM_MF decrease the computation time by ≈ 80% compared to GMM_UT, while the N L2 distance only
changes by less than 20% and does not favour any of the two methods.
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Figure 6.12: The relative difference of GMM_MF propagations compared to GMM_UT propagations in the N L2 distance and computation
time, for different scenarios and different number of orbital revolutions.

6.6. Adaptive Entropy-based Gaussian Information Synthesis
The AEGIS method shows a clear trend between increasing computation times and smaller N L2 distances in
most scenarios, as seen in Figure 6.13. This is in line with the expectation that the final uncertainty is approx-
imated better when the uncertainty is split more often, which increases the number of components to propa-
gate and thus also the computation time. However, in all scenarios AEGIS falls short to the other methods in
either the N L2 distance, the computation time, or both. Unsurprisingly, since it combines the LinCov and UT
at each propagation step, while also increasing the number of components after splitting, it has higher com-
putation times than both of these methods. The smallest N L2 values reached by the AEGIS method without
causing out-of-memory errors are comparable to that of PCEs in only a few scenarios and number of revo-
lutions. However, in these cases, the PCEs require less computation time and AEGIS does not provide any
benefits. Compared to MF, for almost all propagations using the AEGIS method, there are propagations done
with MF that provide equal or better results in both the N L2 distance and computation time. The exceptions
here can be attributed to a lack of variety in MF data points, but still show that the results from MF provide a
more optimal Pareto front than those of AEGIS.
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Figure 6.13: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
the Velox scenario after 2 and 20 orbital revolutions.

The settings that cause AEGIS to propagate a single component, thus when the change in entropy during the
full propagation time does not reach the selected tolerance level, essentially results in the UT, but with a small
increase in computation time. This increase in computation time is shown in Figure 6.14, indicated with red
arrows between the UT and a single component AEGIS propagation. The addition in computation time has
two causing factors that are related to the differences between the UT and AEGIS.

The UT propagates all sigma points separately from t0 to t f , and can apply different time steps during the inte-
gration for each sigma point, as long as the state vectors at t f are determined for all sigma points. Conversely,
AEGIS requires the calculation of the change in differential entropy at each time step to determine whether
the propagation should be stopped, to split the component. This calculation requires the propagation of the
STM, and an extra number of computations performed at each time step. Additionally, it requires that all sigma
points are propagated simultaneously, in order to combine them into a covariance matrix and determine the
nonlinear entropy. When using a variable step integrator, this simultaneous integration of all sigma points
leads to a minimum time step being applied uniformly.
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Figure 6.14: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
the Velox scenario after 2 revolutions. The difference in computation time between the UT and a single component AEGIS propagation is

highlighted with red arrows.

Figure 6.13 also shows the effect of long propagation times on the N L2 distance after propagating with AEGIS.
For 2 revolutions, the N L2 distance decreases significantly when the computation time increases, and some
settings even reach an N L2 distance close to 0. However, for 20 revolutions, the N L2 distance is close to 1 for
all settings of AEGIS, and only goes to 0.8 for very long computation times. A possible explanation for this is
related to the results of the GMMs. In Figure 6.11 it is seen that the components of a GMM at t0 end up towards
the centre of the distribution at t f . For short propagation times, the AEGIS method can still approximate the
final distribution well, since the difference between the AEGIS method and GMMs here is that AEGIS can keep
splitting the components repeatedly, and thus also later on in the propagation, depending on the value for
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ϵent . However, for long propagation times, due to the exponential increase in the number of components due to
splitting, the number of splits required to keep splitting each component at short intervals leads to unreachable
computation times. A smaller number of splits here will increase the interval between splitting components,
which increases the propagation time of each component and thus also increase the deviation between the
Gaussian approximation and the true PDF (which becomes non-Gaussian over time) of each component. It
is expected that for long propagation times, a large number of splits can still reach low N L2 values along the
trend of increasing the computation times for decreasing N L2 values, however, this results in unreasonably
long computation times, and would not be more efficient than a propagation using MC samples.

6.7. Elliptical Orbits
In Figure 6.15 the correlations between the 6 dimensions in the RSW frame are shown for the LEO orbits of
the Oneweb scenario after 10 and 50 revolutions, with the state vector’s components along the mean orbital
trajectory shown on top of the graphs in red. Note that the scales of the axes are determined by the spread of
the uncertainty, thus the orbits are shown with deformed proportions, for the sake of a direct comparison with
the probability distribution. With this view, it can be seen that the banana-shaped probability distribution in
the R-S frame is mostly formed by differences in the phase of the various sample points along similar orbits.
This is in line with the phenomenon that when the uncertainty is propagated in Keplerian elements, only the
true anomaly θ changes significantly, which also represents the phase along the orbit, while the other elements
are relatively inert.
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Figure 6.15: Correlations between each of the 6 dimensions in the RSW coordinate frame, shown with 105 propagated MC samples for the
Oneweb scenario after 10 and 50 revolutions, with the components of the state vector in each dimension shown in red in the same frames.

In Figure 6.16, the same type of figures are shown for one of the HEO scenarios, where it can be seen in Fig-
ure 6.16b that after a full number of revolutions, near periapsis again, the uncertainty is also distributed along
the orbital trajectory, in a non-Gaussian shape. Note that the banana shape is present in Figure 6.16b, though
more difficult to see due to the diagonal alignment along the R-S frame, which is likely caused by the mean state
vector being slightly away from the periapsis, combined with the elliptical shape of the orbit. However, after
1.5 orbital revolutions shown in Figure 6.16a, thus being near apoapsis, the probability distribution deviates
significantly from the path of the orbit trajectory.
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Figure 6.16: Correlations between each of the 6 dimensions in the RSW coordinate frame, shown with 105 propagated MC samples for the
Spirale scenario after 1.5 and 2 revolutions, with the components of the state vector in each dimension shown in red in the same frames.

By measuring the uncertainty at a different point along the orbit, the difference in state vectors between MC
samples is not only caused by a difference in phase, but also by the different orbit trajectories of each sample.
After a full number of revolutions, samples with similar position vectors but different velocity vectors at t0, have
similar position vectors again at t f (disregarding perturbations). However, this does not apply to non-integer
number of revolutions, since different velocity vectors change the paths of the rest of the orbit. It is suspected
that the highly elliptical shape of the orbit magnifies the effect that a different velocity vector at periapsis has
on the state vector at apoapsis. This can cause the large spread of the uncertainty along a different direction
than the orbit trajectory seen in Figure 6.16a.

In a similar way, the highly elliptical shape can increase the effect that a change in the state vector at periapsis
has on the orbital period of a sample, which results in larger differences in the phase of samples. This can
explain why the HEO scenarios show a non-Gaussian distribution even after a single orbital revolution, while
for the other scenarios, this takes much longer, demonstrated in Figure 6.17. This is even the case for the GEO
orbit of Meteosat, which has a larger orbital period than both HEO scenarios.
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Figure 6.17: Correlations between each of the 6 dimensions in the RSW coordinate frame, shown with 105 propagated MC samples for
different scenarios, after specific numbers of revolutions.

For both HEO scenarios, after 1 or 2 revolutions, the N L2 distance of most results are near 1.0, except for some
settings of MF, PCEs and AEGIS, shown in Figure 6.18a. This is due to the uncertainty being non-Gaussian al-
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ready after a single orbital revolution, thus the methods and combinations that can only approximate Gaussian
distributions do not score well on the N L2 metric. A surprising result can be seen in Figure 6.18b, where the
propagation time of 1.5 revolutions is longer than that of 1 revolution in Figure 6.18a, yet the N L2 distances
of most methods and settings are lower. Both LinCov and the UT approximate the MC samples relatively well
after 1.5 revolutions with N L2 ≈ 0.5, suggesting that the spread of the uncertainty at apoapsis deviates less from
a Gaussian probability distribution than the uncertainty at periapsis.
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Figure 6.18: N L2 distance compared against MC samples, versus the computation time for different UP methods with various settings, for
the Spirale scenario after 1 and 1.5 orbital revolutions.

In Figure 6.18b it is also seen that the AEGIS method still performs poorly. Only the settings for AEGIS which
result in the lowest computation times have the same N L2 distance as the UT, and all other settings have higher
computation times and higher N L2 distances. This implies that splitting the uncertainty into multiple GMM
components (while splitting in the direction corresponding to the largest eigenvalue) only results in worse
approximations of the true uncertainty. Finally, for both integer and non integer numbers of revolutions for the
HEO scenarios, the performances of MF and PCEs are the same as the results for the circular orbits discussed
above, where both methods reach the lowest N L2 distances, especially for non-Gaussian uncertainties. A small
difference is that for the HEO scenarios, MF and PCEs have roughly equal computation times, whereas for the
LEO and GEO scenarios, for most settings the MF method has smaller computation times than PCEs.

6.8. Optimal Uncertainty Propagation Methods
Looking at the trade-off between short computation times and small N L2 distances, the methods that stand
out are LinCov, MF and PCEs. These three methods provide the best options to use, depending on the desire
for low computation times or high accuracy estimations, or a combination of both.

LinCov is the fastest method of all implemented methods, and scores well on the N L2 distance when the final
uncertainty is Gaussian. However, the method fails to approximate non-Gaussian uncertainties, and thus loses
its effectiveness for long propagation times or highly elliptical orbits. While the method can not approximate
the curvature of the non-Gaussian uncertainties in the R-S frame, it does capture the spread along the along-
track (S) direction, as well as the thickness of the distribution shape in the R-S frame.

On the other hand, PCEs are able to approximate all uncertainties accurately, performing very well on the N L2

distance metric, especially for non-Gaussian uncertainties. However, PCEs have significantly longer computa-
tion times than LinCov, typically 1-2 orders of magnitude larger, and also have longer computation times than
most other methods, except MC.

Finally, MF provides an excellent alternative to the shortcomings of both methods. It scores well on the N L2

distance, also for non-Gaussian uncertainties, and has shorter computation times than PCEs. The MF method
also contains various setting parameters that influence both the computation time and the accuracy of the es-
timation. A lower LF tolerance level leads to the propagation of more important points, which increases the
accuracy of the estimation while also increasing the computation times. This can be used to obtain an uncer-
tainty propagation that satisfies the desired trade-off between a high accuracy and low computation times. The
combination between low computation times and high accuracy estimations, with the potential to adjust set-
ting parameters to increase the accuracy or shorten the computation time, makes MF a viable and potentially
useful UP method for conjunction assessments.



7
Conjunction Analysis Test Setup

Two different satellite conjunction scenarios have been set up, to analyse the capabilities of the MF method
when used to propagate the uncertainties for a conjunction analysis. The scenarios include a high relative
velocity conjunction, as well as a low relative velocity conjunction, based on real conjunctions predicted in
Privateer Wayfinder [115]. Due to the high density of space objects in LEO, and the goal to simulate realistic
conjunctions, both scenarios contain two LEO satellites.

In Wayfinder, the mean states and covariance matrices of both satellites are given at the TCA. To simulate a
proper conjunction analysis scenario, the mean states and covariance matrices of both objects at a start time
t0 are required, where t0 is at a chosen distance of ∆tpr op seconds before tT C A . This ∆tpr op determines the
length of the uncertainty propagations, and represents how far ahead a conjunction event would be analysed.
In this study, a ∆tpr op of both 48h and 96h is chosen, further referenced as the ’short’ and ’long’ versions, to
demonstrate the effects of a long uncertainty propagation on the methods used.

The mean states at t0 are obtained by back propagating from the mean states at tT C A using Tudat, where the
required accuracy of the propagation is determined by comparing the backwards and forwards propagation of
the mean state, described in Appendix C. To obtain a realistic covariance matrix, the ephemerides from each of
the objects in the conjunction are taken from Wayfinder, and a covariance matrix is retrieved from the reported
epoch t0,cov that is closest to tTC A −∆tpr op . The true t0 is then taken to be the midpoint between t0,cov of both
objects, and used to back-propagate the mean states. Note that due to the limited availability of the reported
covariance matrices of the space objects, this final t0 differs from tTC A −∆tpr op .

Since Wayfinder uses an unknown method to propagate the covariance, in which the size of the uncertainty
does not seem to grow in time, taking a covariance matrix from Wayfinder at t0 and propagating it forward with
the implemented UP methods from Chapter 3 will result in a larger uncertainty at tTC A than intended with
the conjunction scenario. This effect is demonstrated in Figure 7.1, where the covariance matrix taken from
Wayfinder at t0 is propagated forward using the UT, and compared against the reported covariance matrices at
later epochs. The volume of the covariance matrix is calculated as the product of the eigenvalues. To mitigate
this effect, the covariance matrices found for t0 are scaled by a factor of 10−4 (resulting in a reduction of the
standard deviations of 10−2), for both objects in each scenario. The full covariance matrices used for each case
are documented in the scenario descriptions, in Sections 7.1 and 7.2 below.
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Figure 7.1: Comparison of the volume of the covariance matrix over time of the UT with the reported covariance matrices by Wayfinder

Additionally, to properly evaluate the accuracies of the conjunction analyses, a scenario with a significant prob-
ability of collision is desired. Thus for all scenarios, to increase the probability of collisions, the mean separa-
tion between the objects at tTC A is decreased to 2.5m by shifting the second object’s position vector towards

46
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the first object, after which the new mean states are back propagated to t0. The new mean states at tTC A are
calculated according to:

r S,new = r S,ol d + (
r P,ol d − r S,ol d

)(
1− ∆rnew∣∣r P,ol d − r S,ol d

∣∣
)

(7.1)

v S,new = v S,ol d (7.2)

xP,new = xP,ol d (7.3)

Where xP = [
r P , v P

]
and xP = [

r P , v P
]

are the mean state of the primary and secondary object, ol d and new

indicate the vectors before and after the transformation respectively, and∆rnew is the desired mean separation
at tTC A .

Finally, to obtain a low relative velocity scenario with a relative velocity of approximately 100m/s, the velocity
components in the mean vectors at tTC A are artificially adjusted, starting from two vectors with a slightly higher
relative velocity. The new mean states are calculated according to:

v S,new = vr ati o v S + (1− vr ati o) v P (7.4)

r S,new = r S,ol d (7.5)

xP,new = xP,ol d (7.6)

Where vr ati o =∆vnew /∆vol d is the ratio between the desired relative velocity and the old relative velocity.

7.1. High Relative Velocity Scenario
The first scenario is a conjunction between the UniSat B and PNE04 satellite. An illustration of the orbits of
both objects around tTC A is shown in Figure 7.2. The chosen time windows of the short and long version for
this scenario start at 2025-04-28 04:51:31.814503 UTC and 2025-04-26 09:55:31.814484 UTC respectively.

Figure 7.2: Illustration of the conjunction between the UniSat B and the PNE04 satellite at 2025-04-30 04:57:13.256749 UTC via Wayfinder
[115].

The Gaussian distributions of the objects’ uncertainties at t0 for the short version of this scenario are given
by:
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xP = [ −4.857E +5 6.918E +6 −1.136E +6 1.088E +3 −1.132E +3 −7.349E +3
][

m m/s
]

xS = [ −4.857E +5 6.918E +6 −1.136E +6 1.088E +3 −1.132E +3 −7.349E +3
][

m m/s
]

P P =



8.816E −1 −1.209E −2 −1.326E −2 2.138E −4 −1.486E −4 −1.238E −5
−1.209E −2 9.190E −1 6.274E −2 −9.724E −5 1.131E −3 8.406E −5
−1.326E −2 6.274E −2 9.348E −1 −4.793E −5 4.692E −4 2.323E −4

2.138E −4 −9.724E −5 −4.793E −5 5.489E −6 4.456E −7 3.721E −7
−1.486E −4 1.131E −3 4.692E −4 4.456E −7 2.634E −6 −1.311E −6
−1.238E −5 8.406E −5 2.323E −4 3.721E −7 −1.311E −6 3.710E −6


[

m2 m2

s
m2

s
m2

22

]

P S =



9.389E −1 2.321E −2 5.871E −2 1.161E −3 2.163E −4 −1.115E −4
2.321E −2 8.856E −1 1.877E −2 2.697E −4 2.629E −4 −3.322E −5
5.871E −2 1.877E −2 9.095E −1 2.667E −4 5.838E −5 1.575E −4
1.161E −3 2.697E −4 2.667E −4 2.360E −6 −9.179E −7 −9.519E −7
2.163E −4 2.629E −4 5.838E −5 −9.179E −7 5.316E −6 −4.287E −7

−1.115E −4 −3.322E −5 1.575E −4 −9.519E −7 −4.287E −7 4.212E −6


[

m2 m2

s
m2

s
m2

22

]

Similarly for the long version of this scenario:

xP = [
5.615E +5 −6.863E +6 −1.031E +6 −9.198E +2 −1.179E +3 7.436E +3

][
m m/s

]
xS = [

5.615E +5 −6.863E +6 −1.031E +6 −9.198E +2 −1.179E +3 7.436E +3
][

m m/s
]

P P =



9.999E −1 −9.133E −6 −1.876E −5 −5.440E −4 −1.806E −4 −1.637E −4
−9.133E −6 9.999E −1 2.457E −5 −1.806E −4 8.763E −4 6.776E −4
−1.876E −5 2.457E −5 1.000E +0 −1.637E −4 6.778E −4 3.339E −4
−5.440E −4 −1.806E −4 −1.637E −4 1.057E −5 6.179E −7 9.604E −7
−1.806E −4 8.763E −4 6.778E −4 6.179E −7 3.578E −6 −1.306E −6
−1.637E −4 6.776E −4 3.339E −4 9.604E −7 −1.306E −6 4.158E −6


[

m2 m2

s
m2

s
m2

22

]

P S =



1.000E +0 2.944E −5 2.156E −5 1.288E −3 3.820E −4 −6.868E −5
2.944E −5 9.999E −1 1.759E −5 3.820E −4 −4.977E −4 4.983E −5
2.156E −5 1.759E −5 9.999E −1 −6.851E −5 4.987E −5 −1.314E −4
1.288E −3 3.820E −4 −6.851E −5 2.768E −6 −1.687E −6 4.610E −9
3.820E −4 −4.977E −4 4.987E −5 −1.687E −6 1.037E −5 −7.826E −7

−6.868E −5 4.983E −5 −1.314E −4 4.610E −9 −7.826E −7 5.301E −6


[

m2 m2

s
m2

s
m2

22

]

The settings and acceleration models used for the propagations with high-fidelity dynamics have been anal-
ysed for the long version of this scenario, such that both the integration error and the model error (compared to
the highest fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis
is documented in Appendix C, and the final settings are repeated here in Table 7.1.



7.2. Low Relative Velocity Scenario 49

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body rotation model Constant rotation rate determined at t0

3rd body position model (Moon) Keplerian 2-body orbit determined at t0

position model (Sun Retrieved every epoch from Spice
Propagator settings

Integrator variable rkdp87 (tolerance: 2E-6)
Propagator Cowell

Table 7.1: Propagation settings used for the high-velocity scenario

The specifications of the satellites are shown in Table 7.2. The mass and cross sectional areas are taken from
ESA DISCOS (Database and Information System Characterising Objects in Space)1. The HBR is calculated using
HBR =p

AP /π+p
AS /π, where AP and AS are the average cross sectional area of the primary and secondary

object respectively.

Primary object
Satellite mass 26 kg
Average cross sectional area 0.238 m2

Secondary object
Satellite mass 922 kg
Average cross sectional area 12.145 m2

Joint properties
HBR 2.24 m

Table 7.2: Specifications of the satellites in the high-velocity scenario.

7.2. Low Relative Velocity Scenario
The second scenario is a conjunction between the Starlink-2046 and Starlink-3671 satellite. An illustration
of the orbits of both objects around tTC A is shown in Figure 7.3. The chosen time windows of the short and
long version for this scenario start at 2025-05-05 07:16:10.814592 UTC and 2025-05-03 08:52:10.814565 UTC
respectively.

Figure 7.3: Illustration of the conjunction between the Starlink-2046 and the Starlink-3671 satellite at 2025-05-07 07:31:00.105278 UTC via
Wayfinder [115].

1https://discosweb.esoc.esa.int/
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The Gaussian distributions of the objects’ uncertainties at t0 for the short version of this scenario are given
by:

xP = [
5.158E +6 −4.295E +6 −1.714E +6 4.142E +3 2.684E +3 5.763E +3

][
m m/s

]
xS = [

5.158E +6 −4.295E +6 −1.714E +6 4.142E +3 2.684E +3 5.763E +3
][

m m/s
]

P P =



8.655E −1 1.107E −2 5.601E −3 3.467E −4 −1.968E −4 −1.280E −4
1.107E −2 9.200E −1 5.707E −2 −4.425E −4 7.194E −4 3.401E −4
5.601E −3 5.707E −2 9.473E −1 −4.144E −4 4.968E −4 5.009E −4
3.467E −4 −4.425E −4 −4.144E −4 4.844E −6 5.930E −7 4.468E −8

−1.968E −4 7.194E −4 4.968E −4 5.930E −7 3.866E −6 −1.962E −6
−1.280E −4 3.401E −4 5.009E −4 4.468E −8 −1.962E −6 3.614E −6


[

m2 m2

s
m2

s
m2

22

]

P S =



8.643E −1 7.488E −3 1.936E −3 3.892E −4 −2.179E −4 −1.497E −4
7.488E −3 9.211E −1 5.729E −2 −4.635E −4 6.763E −4 3.314E −4
1.936E −3 5.729E −2 9.474E −1 −4.457E −4 4.691E −4 5.014E −4
3.892E −4 −4.635E −4 −4.457E −4 4.763E −6 6.500E −7 1.711E −7

−2.179E −4 6.763E −4 4.691E −4 6.500E −7 3.947E −6 −1.955E −6
−1.497E −4 3.314E −4 5.014E −4 1.711E −7 −1.955E −6 3.611E −6


[

m2 m2

s
m2

s
m2

22

]

Similarly for the long version of this scenario:

xP = [
1.022E +6 −4.511E +6 −5.160E +6 7.204E +3 −8.683E +2 2.188E +3

][
m m/s

]
xS = [

1.022E +6 −4.511E +6 −5.160E +6 7.204E +3 −8.683E +2 2.188E +3
][

m m/s
]

P P =



1.000E +0 −6.079E −6 4.468E −5 −5.983E −5 1.263E −4 4.213E −4
−6.079E −6 9.999E −1 5.371E −5 1.262E −4 1.570E −5 8.754E −4

4.468E −5 5.371E −5 9.999E −1 4.211E −4 8.755E −4 6.478E −4
−5.983E −5 1.262E −4 4.211E −4 5.436E −6 7.654E −7 −1.854E −6

1.263E −4 1.570E −5 8.755E −4 7.654E −7 8.177E −6 −3.948E −6
4.213E −4 8.754E −4 6.478E −4 −1.854E −6 −3.948E −6 5.834E −6


[

m2 m2

s
m2

s
m2

22

]

P S =



1.000E +0 −1.490E −6 4.106E −5 −7.747E −5 1.187E −4 3.608E −4
−1.490E −6 9.999E −1 5.655E −5 1.186E −4 3.286E −5 9.018E −4

4.106E −5 5.655E −5 9.999E −1 3.607E −4 9.018E −4 6.485E −4
−7.747E −5 1.186E −4 3.607E −4 5.352E −6 5.834E −7 −1.589E −6

1.187E −4 3.286E −5 9.018E −4 5.834E −7 8.261E −6 −4.061E −6
3.608E −4 9.018E −4 6.485E −4 −1.589E −6 −4.061E −6 5.830E −6


[

m2 m2

s
m2

s
m2

22

]

The settings and acceleration models used for the propagations with high-fidelity dynamics have been anal-
ysed for the long version of this scenario, such that both the integration error and the model error (compared to
the highest fidelity model available in Tudat) induced by the propagation are kept below 1m. The full analysis
is documented in Appendix C, and the final settings are repeated here in Table 7.3.
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Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body rotation model Retrieved every epoch from Spice
3rd body position model (Moon) Keplerian 2-body orbit determined at t0

3rd body position model (Sun) Retrieved every epoch from Spice
Propagator settings

Integrator variable rkdp87 (tolerance: 2E-6)
Propagator Cowell

Table 7.3: Propagation settings used for the low-velocity scenario

The specifications of the satellites are shown in Table 7.4. The mass and cross sectional areas are taken from
ESA DISCOS (Database and Information System Characterising Objects in Space)2. The HBR is calculated using
HBR =p

AP /π+p
AS /π, where AP and AS are the average cross sectional area of the primary and secondary

object respectively.

Primary object
Satellite mass 260 kg
Average cross sectional area 13.562 m2

Secondary object
Satellite mass 260 kg
Average cross sectional area 13.562 m2

Joint properties
HBR 4.16 m

Table 7.4: Specifications of the satellites in the low-velocity scenario.

7.3. Sampling at Time of Closest Approach
To determine the collision probability with the propagated uncertainties of both objects at tTC A , a large number
of samples are needed, from which only a small number of pairs will result in a collision. For a lower estimated
PC , a higher number of sample pairs is needed to keep the same error on the value of PC . The minimum
number of samples needed can be determined by [63]:

Nsamples >
4(e−2)(1−PC )

PC ·e2
pc

log

(
2

1−β
)

(7.7)

where β is the confidence level and epc is the relative error of the collision probability. Both the high-velocity
and low-velocity scenarios have been adjusted such that the final PC values are in the order of 10−4 or higher.
However, even though these values are relatively high for a conjunction assessment, they still lead to a high
number of Nsamples needed. Using a confidence level of β=95% and a PC value of 1E-4, getting a relative error
of 0.1 requires approximately 107 sample pairs.

With the limited computational power available in this research, propagating all 107 samples for both objects
from t0 to tTC A is not feasible, at most 105 samples can be propagated for the full propagation time. Therefore,
an extra step is introduced at tTC A to generate the required 107 sample pairs from the propagated uncertainties,
using a conversion of the uncertainty to a Gaussian distribution in MEE, based on the method used in the Brute
Force Monte Carlo from-TCA mode in [112].

The uncertainties of both objects are first propagated in Cartesian coordinates from t0 to tTC A , for instance
using 105 MC samples, or using MF. These samples at tTC A are then converted from Cartesian coordinates to

2https://discosweb.esoc.esa.int/



52 7. Conjunction Analysis Test Setup

MEE, using the conversions described in Appendix B. From the state vectors in MEE, a Gaussian distribution is
created by calculating the mean and covariance, using Equations 4.8 and 4.9 described in Section 4.2. Using the
mean vector and covariance matrix of this Gaussian distribution, all 107 required samples can be generated in
MEE, using Equation 4.10. Finally, these 107 generated samples for both objects’ uncertainties are converted to
Cartesian coordinates using the conversions described in Appendix B, and can be used to calculate PC .

The conversion to a Gaussian distribution in MEE enables the generation of a large number of samples, that
follow the same non-Gaussian distribution in Cartesian coordinates as the smaller number of propagated sam-
ples. This is possible when the propagated non-Gaussian uncertainty in Cartesian coordinates follows a (near)
Gaussian distribution in MEE. This is the case for long propagation times, since the uncertainty distributes it-
self along the orbital trajectory, as described in Section 6.7, which corresponds to a Gaussian distribution in the
6th element in MEE: the true longitude L.

The final uncertainty of the Velox scenario after 20 orbital revolutions, is shown in Figure 7.4 with 105 propa-
gated MC samples, in Cartesian coordinates as well as in MEE. This shows that even for the highly non-Gaussian
distribution in Cartesian coordinates, the uncertainty becomes a Gaussian distribution when all samples are
converted to MEE. Additionally, Figure 7.5 shows the original Cartesian MC samples, together with contour
lines of the Gaussian distribution created in MEE and converted to Cartesian coordinates. The contour lines
of the Gaussian distribution in MEE show no deviation from the original MC samples in Cartesian coordi-
nates.
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(a) In the RSW frame in Cartesian coordinates.
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Figure 7.4: Correlations between each of the 6 dimensions in two different coordinate systems, shown with 105 propagated MC samples for
the Velox scenario after 20 revolutions.
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Figure 7.5: The position uncertainty of a Gaussian distribution created in MEE from 105 propagated MC samples, shown in Cartesian
coordinates in the Radial and Along-track frame, compared against the original MC samples in Cartesian coordinates, after 20 revolutions

of the Velox scenario.

Finally, it is noted that this approach is only used with uncertainty propagation methods that propagate a set
of samples points from t0 to tTC A , such as MC and MF. For uncertainty propagation methods that result in a
final Gaussian distribution, or a GMM, this approach is not needed, since all samples required at tTC A can be
directly sampled from this Gaussian distribution or GMM in Cartesian coordinates.
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Conjunction Analysis Results

For each of the four scenarios described in Chapter 7, the PC is calculated with the MC method, by generating
107 sampled state vectors for the primary and secondary object at tT C A , and calculating the DC Atr ue of each
sample pair in a one-on-one analysis. Using Equation 4.6, the PC is calculated as the fraction of sample pairs
for which the DC Atr ue is smaller than the chosen HBR for that scenario. To generate the sampled state vectors
at tTC A , the uncertainties propagated with MC samples or MF are transformed into Gaussian distributions in
MEE, from which 107 samples are generated and converted back to Cartesian coordinates, using the approach
described in Section 7.3. The uncertainties propagated using LinCov are sampled directly from the Gaussian
distribution in Cartesian coordinates at tTC A .

The uncertainties are propagated from t0 to tT C A with 105 MC samples as a baseline, as well as with 104 and 103

samples, with MF using various different settings, and with LinCov, to determine the effects of using a different
UP method on the final value of PC . The methods and settings used to propagate the uncertainties from t0

to t f are the same for each scenario, and are documented in Table 8.1. The settings for the MF method are
cross-matched, resulting in 45 different simulations using MF.

Method Setting parameter Values used
MC Nsamples {103, 104, 105}
LinCov N.A. N.A.

MF
Nsamples {103, 104, 105}
ϵl f {0.5, 1, 4, 10, 100}
LF dynamics {Kepler 2-body, low, medium}

Table 8.1: The various values used for the different settings of the UP methods, used for the propagation of the uncertainty from t0 to tT C A .

The Kepler 2-body dynamics indicates that the LF samples are propagated using only 2-body dynamics be-
tween the state vector and the Earth, using the procedure described in Algorithm 3. With the ’low’ setting for
LF dynamics, the sample points are propagated using Tudat, where the Earths spherical harmonics of degree
and order (2,2) are included, as well as the 3rd body point mass perturbation of the Sun and the Moon. With
the ’medium’ setting, the Earth’s spherical harmonics of degree and order (2,2), the 3rd body point mass pertur-
bation of the Sun and Moon, as well as the atmospheric drag and solar radiation are included as acceleration
models using Tudat. It is also noted that when using 105 samples for MF, this is done using 10 batches, in each
of which 104 samples are propagated using MF, with their own separate calculation and propagation of impor-
tant samples. This is done to avoid out-of-memory errors in the process of computing the pivoted Cholesky
decomposition, where a 105 ×105 matrix becomes too large to handle in Python.

8.1. True Time of Closest Approach
To determine the effect of calculating the distance at the true time of closest approach for each individual sam-
ple pair rather than using the distance at the same mean time of closest approach for all samples, the two
methods are compared to each other using 106 MC sample pairs. The state vectors are sampled at tTC A,mean

using Gaussian distributions in MEE, based on the uncertainty propagated from t0 to tT C A,mean using 105 MC
samples. Figure 8.1 shows the differences in the closest distances between the sample pairs. While the distribu-
tions seem almost similar for the sample pairs with large distances (> 50m), the distributions differ significantly
for distances near 0m. The DC Atr ue captures a lot more occurrences of distances between 0 and 10m, which
is expected, since for a given pair of samples, the tT C A,mean is most likely not the actual TCA for that pair, and
the miss distance can be equal or smaller than the distance at tTC A,mean . The difference in the distribution
for small values of DC A is especially important for the calculation of PC using a small HBR, since it directly
changes the values for Nc . A comparison between different UP methods can still be done using the PC values

54
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determined with the DC Amean , as long as the comparison is consistent. However, as seen in Figure 8.3, the Nt

will be much smaller, and thus many more samples are required to generate accurate results. Therefore, the
use of the DC Atr ue is essential for this study.
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Figure 8.1: The distribution of the Euclidean distance between sampled pairs at tT C A,tr ue and at tT C A,mean for 106 sample pairs, for the
short version of the low-velocity scenario, with zoomed-in views for smaller distances.

To determine the tTC A,tr ue and subsequently DC Atr ue , an iterative algorithm is used to repeatedly shrink the
time interval around the tT C A,tr ue until the time interval is small enough that the midpoint can be used as
the value for tTC A,tr ue , which is described in Algorithm 2 in Appendix A. To use this algorithm, an initial time
window of twi ndow around the tTC A,mean is needed to start with, which should contain the tT C A,tr ue of all
samples. A smaller time window leads to a faster convergence, and thus less computation time. An initial guess
for twi ndow is taken based on the spread of the position uncertainty of 8.5σ (suggested by Chan [81]) divided
by the relative velocity of the mean state vectors. The resulting differences between tT C A,tr ue and tTC A,mean are
visualised for one of the scenarios in Figure 8.2. For each scenario, it is deduced that for the number of sample
pairs used in this study (107), the tTC A,tr ue can be found within ±2 seconds of the tTC A,mean for all sample pairs,
leading to a use of twi ndow = 2s.
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Figure 8.2: The distribution of the time difference between the mean time of closest approach and the true time of closest approach of
sample pairs, for the short version of the low-velocity scenario

8.2. Influence of Relative Velocity
In Figure 8.3 it can be seen that the differences between the DC Atr ue and DC Amean are much more visible
for the high-velocity scenario than those for the low-velocity scenario shown in Figure 8.1. The different dis-
tances no longer follow the same distribution for sample pairs with high distances, and the difference between
the counts of pairs with a small DC Atr ue or DC Amean differs even more. For both scenarios, a sample pair
that reaches a small DC Atr ue , can have a higher DC Amean when the tTC A,tr ue differs from the tTC A,mean . The
DC Amean depends on the distributions of both uncertainties at tTC A,mean , which follow the orbital trajectories
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and cross each other at a higher angle for the high-velocity scenario than for the low-velocity scenario, due to
the differences in the magnitude of the relative velocity between both objects. Therefore, in the high-velocity
scenario, the samples have higher distances at tTC A,mean compared to tT C A,tr ue than for the low-velocity sce-
nario, for the sample pairs that result in small distances at tTC A,tr ue , thus leading to the increased difference in
distributions for the high-velocity scenario.
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Figure 8.3: The distribution of the Euclidean distance between sampled pairs at tT C A,tr ue and at tT C A,mean for 106 sample pairs, for the
short version of the high-velocity scenario, with zoomed-in views for smaller distances.

A second difference in the effects of calculating the DC Atr ue can be seen in Figure 8.4, where the differences
between the tTC A,tr ue and tT C A,mean are much smaller than those for the low-velocity scenario, shown in Fig-
ure 8.2. This can be explained by the higher relative velocity between the objects in each sample pair. The high
relative velocity means that variations in the velocity vectors between sampled states and the mean states have
smaller effects on the relative velocity between the states of the sample pair. For lower relative velocities, a sim-
ilar change in the velocity vectors of the objects results in a larger change in the time of the closest approach.
While this means that for the high-velocity scenario, a smaller twi ndow can be taken to calculate DC Atr ue , it
does not mean that using DC Atr ue instead of DC Amean is less important for the high-velocity scenario. In-
stead, the opposite is true, as indicated by the bigger difference in distributions in Figure 8.3.
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Figure 8.4: The distribution of the time difference between the mean time of closest approach and the true time of closest approach of
sample pairs, for the short version of the high-velocity scenario

Figure 8.5a and Figure 8.5b show the collision probability PC calculated using the uncertainties propagated by
the different methods and settings listed in Table 8.1, for the short version of the high-velocity and low-velocity
scenario respectively. In these figures, the baseline PC , which is calculated using the uncertainties that have
been propagated with 105 MC samples, is shown together with the 95% confidence interval, which is based
on the number of samples used in the PC calculation. The coloured results show the PC values and relative
computation times when the uncertainties are propagated to tT C A using MC with smaller sample sizes, MF
with various settings, or LinCov.
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For both scenarios, shown in Figure 8.5, the PC is within the same order of magnitude as the baseline PC for all
settings used for the MF method, as well as when using LinCov or MC with smaller sample sizes. Both scenarios
also have a similar number of outliers and when the results are grouped for the Nsamples setting of MF, the only
visible pattern is found in the computation time per group, indicating that the propagation of all the samples
with LF dynamics makes up most of the computation time. However, there are no clear differences visible
between the results of the high-velocity scenario and the results of the low-velocity scenario.
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(a) High-velocity scenario.
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Figure 8.5: The probability of collision between the uncertainties propagated using various methods and settings plotted against the
computation time, and compared to the baseline PC of the uncertainties propagated with 105 MC samples, for the short versions of the

high-velocity and low-velocity scenario, with the MF settings grouped by Nsamples .

In Figure 8.6, the PC values are again shown for the different methods and settings, but this time the MF settings
are grouped and coloured by the ϵl f setting, and the results are shown for the long versions of both scenarios. It
can be seen that for the low-velocity scenario, the outliers are clearly characterised by the two highest values for
ϵl f , thus the MF propagations with the least accurate requirements lead to the largest deviations in the PC . For
the low-velocity scenario, MF settings with ϵl f of 0.5m, 1.0m or 4.0m all result in a very accurate PC value, with
deviations within the 95% confidence interval. For the high-velocity scenario, the outliers also include the ϵl f

value of 4.0m, indicating that the resulting PC value in the high-velocity scenario depends more on the accuracy
of the expansions used in the MF propagation from t0 to tT C A , than in the low-velocity scenario. This can have
several explanations, a likely reason being the difference in orbital trajectories and accelerations experienced
between the two different scenarios. It can also be that the high relative velocity and short duration of the close
encounter places more importance on the accuracy of the uncertainty propagation.
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(a) High-velocity scenario.
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(b) Low-velocity scenario.

Figure 8.6: The probability of collision between the uncertainties propagated using various methods and settings plotted against the
computation time, and compared to the baseline PC based on the uncertainties propagated with 105 MC samples, for the long versions of

the high-velocity and low-velocity scenario, with the MF settings grouped by ϵl f .

8.3. Influence of Propagation Time
The short versions of both scenarios have a propagation time of ≈ 48h while the long versions have a propaga-
tion time of ≈ 96h. In Chapter 6 it has been shown that for longer propagation times, the uncertainty becomes
increasingly non-Gaussian. An exception to this is a highly elliptical orbit, where the phase along the orbit
matters, however, both the high-velocity and the low-velocity scenarios contain near-circular orbits. Figure 8.7
shows the distribution of the uncertainty of the primary object for the low-velocity case, both for the short and
long version. While a sharp eye can notice a slight curvature in the R-S frame for the long version in Figure 8.7b,
the distribution for both the short and long version still look Gaussian.
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Figure 8.7: Correlations between each of the 6 dimensions in the RSW coordinate frame, of the uncertainty of the primary object at tTC A ,
shown with 105 propagated MC samples for the short and long version of the low-velocity scenario.

It should be noted that the shape of the distribution in the R-S frame are aligned along the diagonals for both
cases, which prevents the axes from being scaled such that the curvature is as clearly visible as in the figures
shown in Figure 6.1 in Chapter 6. The propagated uncertainty of the short version is shown in Figure 8.8 again,
where the 6 directions are the 6 eigenvectors of a covariance matrix fitted on the MC sample states. This ensures
that the directions with the largest spread are taken as separate axes, which can be scaled independently such
that curvatures in the shapes of the uncertainty are more easily visible. While the eigenvectors themselves
are 6-dimensional and can not be used to make clear deductions about the distribution of the uncertainty in
position or velocity respectively, it does clearly show that the propagated uncertainty is non-Gaussian already,
even for the short version.
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Figure 8.8: Correlations between the projections of the state vector along each of the 6 eigenvectors of a fitted covariance matrix, of the
uncertainty of the primary object at tTC A , shown with 105 propagated MC samples for the short version of the low-velocity scenario.

In Figure 8.9 the relative position vectors are shown in the conjunction plane for both the short and long version
of the low-velocity scenario. From Figure 8.9 it can be seen that the distribution of sample pairs along the
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conjunction plane becomes more spread out for the long scenario, where the shape follows a strong curvature
that is already partially visible in the short version. In the zoomed versions, it can be seen that due to the
larger spread of the uncertainty in the long version, the density of sample pairs with relative position vectors
near [0,0,0], the area where collisions are counted, becomes more sparse. Thus, the PC values become smaller,
since the total number of sample pairs are the same in both versions, and thus the confidence interval of 95%
becomes larger too.
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Figure 8.9: The relative position in the conjunction plane for 106 sample pairs, including a zoomed version with the HBR added for scale,
for the short and long version of the low-velocity scenario.

For a direct comparison between the short and long versions of both scenarios, the reader is referred to Fig-
ures F.1 and F.2 in Appendix F. Despite the difference in the spread of samples between the versions noted
above, no clear differences are seen between the short and long versions when comparing the PC values of the
propagations with different settings of MF to the baseline PC using MC samples. While for the low-velocity
scenario the spread of the relative error of PC using MF seems to be slightly larger for the long version, the op-
posite is true for the high-velocity scenario. A possible cause can be that the initial uncertainty at t0 has been
scaled down too much, such that the distribution of the uncertainty does not spread out as much as expected,
based on the effects of the propagation times seen in the comparison study, described in Section 6.1.

8.4. Multi-Fidelity Settings
In Figure 8.10 the PC values are shown for the long version of the low-velocity scenario, where the colour group-
ings of the MF results are based on the three different settings changed: ϵl f , Nsamples and the LF dynamics.
Figure 8.10a and Figure 8.10b demonstrate clear correlations between the Nsamples and the computation time
as well as between the LF dynamics and the computation time. For a higher number of points, the compu-
tation time increases. Similarly, for a higher level of accuracy of the LF dynamics (medium > low > Kepler),
the computation time also increases significantly. Both of these settings are closely related to the computation
time required to propagate the LF sample points, which evidently makes up most of the total computation time
of the MF propagation. Surprisingly, the accuracy of the LF dynamics does not seem to have any clear influ-
ence on the PC values, suggesting that the mapping using the important samples can adequately correct the
LF samples, even when using Kepler dynamics.

Figure 8.10c shows that the ϵl f setting is the most important influence on the final PC values. The largest values
of 100m and 10m are the only settings for which the PC falls outside of the 95% confidence interval. On the
contrary, the ϵl f does not show any significant influence on the computation time.
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(a) Grouped by Nsamples settings.
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(b) Grouped by LF dynamics.
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(c) Grouped by ϵl f settings.

Figure 8.10: The probability of collision between the uncertainties propagated using various methods and settings plotted against the
computation time, and compared to the baseline PC , for the long version of the low-velocity scenario, with different colour groupings of the

MF settings.

In Figure 8.11 the effect of the ϵl f setting on the PC values is investigated further, by plotting the PC values
against the number of important samples used in the MF propagation, which is directly influenced by the ϵl f

setting. From Figure 8.11 it is clear that for a low number of important samples, rm f < 6, the PC value deviates
significantly from the true PC (defined here by the baseline PC calculated using a MC propagation with 105

samples). Whereas for rm f ≈ 7-8, the PC value is within the 95% confidence interval, which is a relative error
of smaller than 4% from the actual value in this case. Figure 8.11 also shows that with 7-8 important samples,
the PC values are close to the baseline irrespective of the Nsamples or LF dynamics. This suggests that when
using a low value for ϵl f to ensure enough important samples, the Nsamples and accuracy of LF dynamics can
be taken as low values, to obtain a PC value close to the baseline using MC, while having a very large speed-up
in computation times compared to using MC (more than 4 orders of magnitude).
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Figure 8.11: The probability of collision between the uncertainties propagated using MF plotted against the number of important samples
used in the MF propagation and compared to the baseline PC , for the long version of the low-velocity scenario.

The results shown in Figure 8.11 are also documented for the other scenario and versions in Appendix F. While
the patterns between the number of important samples and the PC values are less clear for the other scenar-
ios/versions, it is still the case that for rm f = 8, the PC values generated with all settings of Nsamples and LF
dynamics are within the 95% confidence interval.

8.5. Linearised Covariance
A surprising result that has not been mentioned yet, is the performance of using LinCov as the UP method
from t0 to tTC A . This method has been included in the comparison to show the need for an accurate UP that
can propagate the uncertainty even without assumptions of Gaussianity. It is shown in Chapter 6 that when
the uncertainty becomes non-Gaussian, such as after 50 orbital revolutions of the Velox scenario (which corre-
sponds to ∆t = 78.83h), that LinCov can no longer approximate the shape of the distribution generated using
MC samples. Yet, in the long version of both scenarios (which also contain LEO orbits, for a longer ∆t than
the 78h of the Velox scenario after 50 revolutions), the PC values generated using the uncertainties propagated
with LinCov are nearly identical to that when using MC.

A possible explanation could lie in the way that LinCov approximates the non-Gaussian uncertainty, as shown
in Figure 8.12a. Comparing LinCov to the MC samples, the mean state vectors are identical, as well as the
spread of uncertainty in each of the directions except for the radial (R) direction. This becomes clear when
comparing the results to using the MF method shown in Figure 8.12b, where the non-Gaussian distribution in
the radial direction is approximated better. In the R-S frame of LinCov, where the curvature of the distribution
is not approximated well, the ’length’ and ’width’ of the shapes are the same as for the MC samples. This result,
combined with the results of the PC values, suggests that an accurate approximation of the curvature in the
R-S frame is not necessary to accurately predict the collision probability of two space objects. However, it is
possible that this result arises only when both object have similar orbits (same altitude and eccentricity), their
uncertainties at t0 are of the same size, and/or the uncertainties of both objects are propagated with the same
propagation time.
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(b) MF with Kepler LF dynamics, Nsamples = 104 and ϵl f = 1m.

Figure 8.12: Correlations between each of the 6 dimensions in the RSW coordinate frame, of the propagated uncertainty of the primary
object at tTC A using different UP methods, shown as contour lines placed on top of 105 propagated MC samples in gray, for the long version

of the high-velocity scenario.

Besides the specifics of the scenarios chosen for the simulations, the effect that using a Gaussian distribution
in MEE to generate all the sample pairs at tT C A has on the differences between the PC values using different
UP methods is also unknown. Similarly, the calculation of the true time of closest approach for each individual
sample pair, after propagating the full uncertainty to the mean time of closest approach, can also influence the
way that inaccuracies in the propagated uncertainties affect the final collision probability. To quantify these
effects requires more research, which is outside the scope of this study. However, the insignificant differences
between PC values when using MC as the UP method with 103 or 104 samples, does suggest that the sampling
method used at tTC A plays a role in the relation between the UP method used and the final PC value.



9
Conclusions

In the introduction of this report, the main objective of the research has been stated as:

Reduce the safety risks of space debris by improving the efficiency of computationally expensive tasks in conjunc-
tion analysis.

To achieve this, this study aimed to answer the following research question:

How can novel orbit uncertainty propagation methods contribute to the improvement upon the calculation
of the collision probability between two space objects?

9.1. Sub-questions
To build up an answer to this main research question, a number of sub-questions are answered individually,
from which a final conclusion to the main research question is developed afterwards.

How do different orbit uncertainty methods compare to each other in terms of accuracy
and computational efficiency?
To answer this question, 7 different orbit uncertainty propagation methods have been analysed and compared
to results generated with Monte Carlo samples. The uncertainty propagation methods are used with various
different settings to propagate the uncertainty of a space object in 5 unique test case scenarios, for various
numbers of orbital revolutions for each test case. The orbits of the scenarios differ in altitude, eccentricity and
inclination, and include two low Earth orbits, two highly elliptical orbits and one geostationary orbit. The accu-
racy of each propagated uncertainty is determined using a normalised distance metric between the propagated
uncertainty and 105 propagated MC samples. The methods analysed are the Linearised Covariance method
(LinCov), the Unscented Transform (UT), the Multi-Fidelity method (MF), Gaussian Mixture Models (GMMs)
combined with the UT and MF, Adaptive Entropy-based Gaussian-mixture Information Synthesis (AEGIS), and
Polynomial Chaos Expansions (PCEs).

It is found that for all scenarios and propagation lengths, LinCov is the most computationally efficient method.
Although it has the lowest computation times, it is only able to approximate the MC samples well when the
final uncertainty is still Gaussian, with a significant drop in accuracy for long propagation times or highly el-
liptical orbits. The UT has a similar performance in accuracy as LinCov, but has a longer propagation time.
While both methods assume a Gaussian final uncertainty, and perform similarly on the distance metric with
respect to the MC samples, the approximations are slightly different. Where LinCov ignores the curvature of
the uncertainty and captures the size and location of the uncertainty well near the propagated mean state vec-
tor, the UT spreads out more, and captures more of the tails of the uncertainty. For the implemented splitting
directions in Cartesian coordinates, the GMMs produce poor results. While it has a higher computation time
than LinCov, the various settings result in similar or worse results in terms of accuracy. The implementation
combining GMMs with MF produces similar accuracies to the combination of GMMs with UT for all scenarios,
and provides a significant speed-up of 1-2 orders of magnitude. The PCEs have shown the highest accuracies
when compared to MC samples, and excel for non-Gaussian uncertainties compared to most other methods
tested. When using an expansion order of 2 and a number of samples equal or larger than the number of coeffi-
cients in the expansion, the PCE is shown to converge to the MC samples, even for non-Gaussian distributions.
The MF method has shown to be an excellent alternative between LinCov and PCEs. Most settings used for MF
require less computation time than PCEs, while also being able to approximate the final uncertainty well, even
for non-Gaussian uncertainties where LinCov fails. Using a higher number of samples only has a small effect
on the accuracy of MF, while influencing the computation time significantly. The low-fidelity tolerance level,
which determines the number of important samples used, has very small effects on the computation time, but
majorly influences the accuracy of the final uncertainty. While the optimal values for the low-fidelity toler-
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ance level varies per scenario, it is recommended to use a value within one order of magnitude as the smallest
tolerance level that can be reached by the low-fidelity approximation.

Is Multi-Fidelity a feasible orbit uncertainty propagation method to use for conjunction
analysis?
The MF method has been shown to be a feasible method to propagate the uncertainties of two space objects
from a time of observation to the time of closest approach in a conjunction assessment. The MF method has
been used to propagate the uncertainty of both objects for 48h and 96h for two realistic conjunction assess-
ment scenarios, one with a high relative velocity between both objects, and one with a low relative velocity,
leading to 4 test cases. In each test case, the collision probability PC is calculated using the uncertainties prop-
agated by various different settings of MF, as well as using the uncertainty propagated with 105 MC samples to
generate a PC value that can be used as a baseline to compare to. For almost all of the settings used of MF, the
PC value is within the same order of magnitude as the baseline PC , where for most settings the deviation falls
within the 95% confidence interval, which has a relative error of ≈0.05. It is found that when using small val-
ues for the low-fidelity tolerance level, such that enough important samples are propagated, the propagation
model used for the low-fidelity propagation can be as simple as two-body Kepler dynamics while still produc-
ing PC values near-identical to the baseline PC . This leads to a significant speed-up over the computation time
of MC samples, of up to 4 orders of magnitude.

How do challenging scenarios such as long time horizons, highly elliptical orbits and low
relative velocities, affect the performance of High-Fidelity orbit uncertainty propagation
in conjunction assessment?
The 4 test cases for which the MF method has been used to propagate the uncertainties of the two space objects
before calculating the PC , consist of two short propagation times (∆t = 48h) and two long propagation times
(∆t = 96h), as well as two scenarios with a high relative velocity and two scenarios with a low relative velocity.
The long versions have demonstrated that even for long time horizons, the MF method can be used to generate
accurate results for the PC value. While a longer time horizon results in lower PC values overall, due to the
growing size of the uncertainty during the propagation resulting in more dilution, the differences between the
PC values when using MF and the baseline PC value do not show different behaviour for the longer propagation
times compared to the short propagation times. For the low relative velocity scenarios, the deviation of the PC

value from the baseline has been shown to be a clear result of the number of important samples used in the MF
method for the uncertainty propagation, while for the high relative velocity scenarios this result is less visible.
Compared to those of the high relative velocity scenario, the results for the low relative velocity scenario show
no decrease in performance of the MF method when used in a conjunction assessment.

9.2. Main Research Question
Based on the answers to the sub-questions discussed above, a final conclusion can be presented towards the
main research question of this study:

How can novel orbit uncertainty propagation methods contribute to the improvement upon the calculation
of the collision probability between two space objects?

In this study, the Multi-Fidelity method has been proven to be an adequate alternative to the currently used
methods for uncertainty propagation. It combines computationally efficient low-fidelity propagations with
a limited use of high-fidelity propagations to obtain an optimal combination of low computation times and
high accuracy estimations. The MF method performs especially well for propagating non-Gaussian uncertain-
ties, for which it is more computationally efficient than the available alternatives: using PCEs or Monte Carlo
samples. The other methods implemented in this study, LinCov, the UT, AEGIS and GMMs, show declining
performance in accuracy for test case scenarios with long propagation times.

Furthermore, the Multi-Fidelity method has been used as a successful substitute for using Monte Carlo samples
to propagate the uncertainty of two space objects in several conjunction assessments. Using Multi-Fidelity as
the method to propagate uncertainties from an initial epoch up to the time of closest approach, as opposed to
using Monte Carlo samples, caused only small and converging changes in the calculated collision probabilities,
while providing a significant speed up in the computation time. When using a small tolerance level in the MF
method, such that at least 8 important samples are used in the propagation, the collision probability can be
calculated with a relative error of approximately 5% compared to using MC samples. Using the MF method
in these cases results in a smaller computation time of up to 4 orders of magnitude. These results have been
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found for a conjunction assessment with a high relative velocity as well as with a low relative velocity between
the objects, and for time windows of up to 4 days.

Additionally, the LinCov method has been included in the conjunction assessment study, which has shown
surprising results that an uncertainty propagation method that assumes final Gaussian uncertainties, still per-
forms well in the conjunction assessment where both objects have non-Gaussian uncertainties. This suggests
that poor performing methods in the uncertainty propagation comparison study still have the potential to
accurately predict the collision probability in conjunction assessments. Finally, it is concluded that the Multi-
Fidelity method tested in this study, can significantly improve upon the computation times of calculating the
collision probability between two space objects.

9.3. Discussion
This study has been limited both in time and resources, and thus the research that has been performed can
be improved upon in specific areas, or benefit from additional analyses. In this section, the limitations of
this research are discussed in more detail, as well as the effects thereof on the results and conclusions pre-
sented.

In the comparison study of the uncertainty propagation methods, 8 different approaches have been imple-
mented, to attempt to provide a broad discussion of the different methods available in literature. However,
while these 8 methods are deemed promising prospects or commonly used methods, they do not encompass
all available uncertainty propagation methods, and some alternatives are left out. Examples of uncertainty
propagation methods that have not been included are the use of intrusive polynomial chaos expansions and
differential algebra techniques. Similarly, newly developed techniques, such as artificial intelligence (e.g. neu-
ral networks [120–122]) could provide better alternatives to the uncertainty propagation methods implemented
in this study.

On the contrary, the large number of complex methods implemented in this study has resulted in a limited
depth of the investigation into each uncertainty propagation method. Since only a single comparison study
is done, albeit with various settings used and different test cases, the full potential of some methods are not
reached. The GMMs have been shown to perform better when the nonlinearity is restricted to a small number
of dimensions, such as when using sets of osculating elements rather than a Cartesian coordinate system. Sim-
ilarly, the UT and AEGIS could provide better results when combined with sets of osculating elements. PCEs
provide many options to use, such as intrusive, non-intrusive, choice of integration schemes, coefficient solv-
ing techniques and expansion orders, which have not all been utilised. Finally, for the MF method, the level of
accuracy of both the high-fidelity and low-fidelity dynamics used has not been altered in the comparison study,
which could have shown more potential in the computation times of MF compared to other methods. While
many methods may not have been used in the most optimal way for the test case scenarios, a wide variety of
settings is used where possible, at a similar level of complexity for each method, such that a generic widespread
comparison between the various methods can still be made.

In the conjunction assessment study, the research has been limited by the total computation time of the uncer-
tainty propagations and collision probability calculations. Since critical conjunction events often have collision
probabilities as low as 10−4, a number of samples of 107, or even more, is desired to provide statistically accurate
information. In this study, 107 is the upper limit on the number of samples that can realistically be used in the
simulations due to a limit of computing power. This restricted the possibilities of test cases with low collisions
probabilities, such as when using longer time horizons, larger miss distances or larger uncertainties.

The finite computing power also means that not all 107 samples can be propagated from the start of the prop-
agation, neither for the MC method nor for the MF method, which has led to the use of a Gaussian distribution
in modified equinoctial elements (MEE) to sample from at the time of closest approach. The effect of using
this Gaussian distribution, which has been fitted on the 103-105 samples propagated using MF and MC, has
not been studied in this research. While it has been verified that the shape of the uncertainty propagated with
MC and MF can be approximated well by a Gaussian distribution in MEE, it is well possible that the inclusion
of this intermediate step at the time of closest approach mitigates the effect that a less accurate uncertainty
propagation method has on the final collision probability.

A surprising result that could be a consequence of this effect, is that the use of the LinCov method to propagate
the uncertainties to the time of closest approach does not lead to significant deviations in the collision proba-
bility either. Since the LinCov method fails to approximate non-Gaussian uncertainties, the high performance
of this method in conjunction assessment test cases that include non-Gaussian uncertainties can indicate that
the test cases are not harsh enough to truly test the performance of the Multi-Fidelity method either. However,
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using the diverse test cases of this study, the results shown for the Multi-Fidelity method are still promising and
indicate high potential for the use of the method in conjunction assessments.

9.4. Recommendations
Following the limitations of this research outlined above, a number of recommendations for further research
can be made, to provide further insights in the problems investigated in this study, or to complement it with
more attention to areas that are not fully covered in this research.

It is recommended that for further comparison studies between various uncertainty propagation methods, the
representation of the uncertainty in osculating elements is considered. The comparison study performed in
this research has been limited to the propagation of uncertainties in Cartesian coordinates, whereas combining
methods such as GMMs, the UT and AEGIS with modified equinoctial elements could provide much better
results, possible shifting the relative advantages and disadvantages of the various methods.

While the second part of this research has been focused on the MF method, the comparison study also high-
lights the capabilities of the PCEs to accurately approximate non-Gaussian uncertainties. Studying the use of
PCEs in conjunction assessment is not new, but can certainly benefit from more attention, possibly even by
applying PCEs to the same test case scenarios and methods used to calculate the collision probability in this
research.

The different settings used for MF in the conjunction assessment show that using Keplerian 2-body orbits for
the low-fidelity dynamics with small values for the low-fidelity tolerance provides very low computation times,
while still resulting in similar collision probabilities compared to propagating with MC samples. For further
research, it is recommended to use these settings for the MF method, and to perform more extensive testing
on the collision probabilities generated, to determine the accuracy of this method in different circumstances,
with more reliable results. Test cases can include highly elliptical orbits, longer time windows, different sizes of
initial uncertainties, and varying sizes of the hard-body radius. These different test cases will result in different
values for the calculated PC , which will likely be smaller values, since the test cases used in this research result
in relatively high values of PC to allow accurate estimations with a limited number of samples. For further
research, larger sample sizes are recommended, to extend the range of PC values that can be estimated with
MF.

Besides different test case scenarios, the optimal settings of MF can also be investigated further using different
methods to calculate the collision probability. This research focused on a single method to determine the col-
lision probability with a large number of MC sample pairs generated at the time of closest approach, while in
reality there are many different methods used to determine the collision probability with varying computation
times and significances of their results. The use of MF as an uncertainty propagation method can be investi-
gated in combination with analytical methods, such as Foster’s, Alfano’s or Hall’s method. Similarly, with small
modifications to reduce the size of the required matrix multiplications (such as using batches to determine the
important samples), the MF method can be used to propagate all required samples from the initial epoch to
the time of closest approach, thereby eliminating the need for the Gaussian distributions in MEE as discussed
above. With this direct generation and propagation of the samples using MF, the effectiveness of the method
can be assessed further.

Finally, the surprising result of LinCov used in the conjunction assessment study sparks the question whether
LinCov can also be used to propagate the uncertainties of the objects to the time of closest approach, before
calculating the collision probability with the Monte Carlo method. Further research can investigate the perfor-
mance of LinCov in conjunction assessment when combined with Monte Carlo collision probability methods,
to determine its potential utility. Additional research can also focus on the effects of the accuracy of the prop-
agated uncertainty on the final collision probability, when the true time of closest approach is determined in-
dividually per generated sample pair after sampling at the mean time of closest approach. This can potentially
lead to an explanation of these surprising results in this study.
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A
Algorithms

Algorithm 1: Identification of rm f important samples [52].

Data: X L (Ξ) and rm f

Result: ordered list of indices I corresponding to important samples and decomposition C H

V = X L ;
[w c ]ℓ =V :,ℓ ·V :,ℓ for ℓ= 1, . . . ,nst ate ;
I =;;
C H = 0 ∈Rnst ate×rm f ;
for n = 1, ...,rm f do

ec , i = argmaxℓ∈{n,...,nst ate }
(
[w c ]ℓ

)
;

if ec < ϵnum then
n = n +1;
stop

end
I =I ∪ {i };
Swap the n’th and i ’th columns in V ;
Swap the n’th and i ’th values in w c ;

[C H ]n,n =√
[w c ]n ;

[CH ]t ,n =
(
V T

:,t V :,n −∑n−1
j=1 [C H ]t , j [C H ]n, j

)
/[CH ]n,n for t = n +1, . . . ,nst ate ;

[w c ]t = [w c ]t − [C H ]2
t ,n , for t = n +1, . . . ,nst ate ;

end
C H = [C H ]1:n,1:n ;

Algorithm 2: Determination of true time of closest approach, using bisection.

Data: xP
(
tTC A,mean

)
, xS

(
tT C A,mean

)
, twi ndow , Nbi sect , ϵTC A , ϵDC A

Result: Time tTC A,tr ue and distance DC Atr ue at the actual point of closest approach.
∆t = [−twi ndow ,+twi ndow ];
I = [0,1];
while max

(∣∣[d r el ]2:n − [d r el ]1:n−1

∣∣)< ϵDC A and max(|[∆t ]2:n − [∆t ]1:n−1|)) < ϵDC A do
Replace ∆t with the combined set of [∆t ] j−1: j+1 for each j in I ;
Expand ∆t with Nbi sect evenly spaced points in 〈t j , t j+1〉 for each t j in [∆t ]1:n−1;

Determine X k
P (∆t ) using Algorithm 3 with x t0 = xP

(
tTC A,mean

)
and ∆t =∆t ;

Determine X k
S (∆t ) using Algorithm 3 with x t0 = xS

(
tTC A,mean

)
and ∆t =∆t ;

d r el (∆t ) = |r P (∆t )− r S (∆t )|;
I = indmin(d r el );

end
tTC A,tr ue =∆t [I [0]];
DC Atr ue = d r el [I [0]];
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Algorithm 3: Parallel propagation of states with Kepler 2-body dynamics.

Data: x t0 , ∆t , and ϵθ
Result: Propagated Cartesian state vectors at the relative time epochs X k (∆t )
Calculate

[
at0 ,et0 , it0 ,ωt0 ,Ωt0 ,θt0

]
using Equations B.2 to B.7 with x t0 ;

Et0 = 2arctan

(√
1−et0
1+et0

tan
(
θt0
2

))
;

Mt0 = Et0 −et0 sin
(
Et0

)
; /* M and E must be expressed in [rad] */

M (∆t ) = Mt0 +
√

µ

a3
t0

(∆t − t0);

E (∆t ) = M (∆t );
while max

(∣∣E (∆t )−M (∆t )−et0 sin(E (∆t ))
∣∣)> ϵθ do

E (∆t ) = M (∆t )+et0 sin(E (∆t ));
end

θ (∆t ) = 2arctan

(√
1+et0
1−et0

tan
(

E(∆t )
2

))
;

Calculate Rcar t
r e f using Equation B.8 with it0 , ωt0 andΩt0 ;

Calculate X k (∆t ) using Equations B.9 and B.10 with at0 , et0 and θ (∆t );



B
Coordinate transformations

The various different coordinate systems and frames used to represent states in this study are clarified in the
following sections, as well as the methods used to convert between them. The main coordinate system used
in this study is that of the Earth Centred Inertial (ECI) J2000 frame with Cartesian coordinates. Thus, all state
representations used in different frames and coordinate systems are obtained by converting to and from the
ECI J2000 frame / Cartesian coordinates.

A state vector of a satellite in Cartesian coordinates is represented by:

x =
[

r
v

]
=



r x

r y

r z

v x

v y

v z

 (B.1)

The ECI J2000 coordinate frame is defined by the equatorial and ecliptic plane of the Earth at J2000 (2000-01-01
12:00:00 TDB) [123], as shown in Figure B.1. The x vector points towards the intersection of both planes, the
z vector is the normal to the equatorial plane, and the y vector completes the right handed coordinate system
with y = z ×x.

Figure B.1: The ECI J2000 coordinate frame, based on [123].
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B.1. Keplerian elements
In this study, the Keplerian elements used are defined by [a,e, i ,ω,Ω,θ]. Each element is defined in Table B.1,
of which the angles are shown in Figure B.2.

Symbol Keplerian element
a Semi major axis
e Eccentricity
i Inclination
ω Argument of periapsis
Ω Longitude of ascending node
θ True anomaly

Table B.1: The Keplerian elements.

Figure B.2: Keplerian elements shown in the ECI J2000 frame [124].

To convert from Cartesian coordinates to Keplerian elements, the following equations can be used [125]:

r = |r | v = |v | h = r ×v η=
0

0
1

×h (B.2)

a = 1
2
r − v2

µ

e =
(
v2 − µ

r

)
r − (r ·v ) v

µ
(B.3)

cos(i ) = hz

|h| (B.4)

cos(Ω) = ηx

|η| if
(
ηy < 0

)
:Ω= 360°−Ω (B.5)

cos(ω) = η ·e

|η||e| if (ez < 0) :ω= 360°−ω (B.6)

cos(θ) = e · r

|e||r | if (r ·v < 0) : θ = 360°−θ (B.7)

To convert back from Keplerian elements to Cartesian coordinates, a reference frame is introduced, by aligning
the x-axis and y-axis in the orbital plane, with the x-axis pointing towards perigee, as shown in Figure B.3.
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Object

velocity

Perigee

Earth

Figure B.3: Illustration of the reference frame aligned along the orbital plane, used to transform from Keplerian elements to Cartesian
coordinates, based on [124]

Using the radius and the angular momentum, the Keplerian elements can be expressed in the coordinates of
the reference frame, after which a composed rotation matrix is used to obtain the position and velocity vector
in Cartesian coordinates in the ECI J2000 frame. By combining both these processes, the following equations
can be used to transform Keplerian elements to Cartesian coordinates [124]:

Rcar t
r e f =

cos(Ω) −sin(Ω) 0
sin(Ω) cos(Ω) 0

0 0 1

1 0 0
0 cos(i ) −sin(i )
0 sin(i ) cos(i )

cos(ω) −sin(ω) 0
sin(ω) cos(ω) 0

0 0 1

 (B.8)

r = a
(
1−e2

)
1+e cos(θ)

H =
√
µa

(
1−e2

)
(B.9)r x

r y

r z

= Rcar t
r e f

r cos(θ)
r sin(θ)

0

 v x

v y

v z

= µ

H
Rcar t

r e f

 −sin(θ)
e +cos(θ)

0

 (B.10)

B.2. Modified Equinoctial Elements
The set of Modified Equinoctial Elements (MEE) used in this study is set k in [126], where the state vector is
represented by:

[
p, f , g ,h,k,L

]
. The MEE can be obtained from the Keplerian elements and vice versa, using

the following equations [126]:

p = a
(
1−e2) (B.11)

f = e ∗cos(ω+ IΩ) (B.12)

g = e ∗ sin(ω+ IΩ) (B.13)

h = tanI (i /2)∗cos(Ω) (B.14)

k = tanI (i /2)∗ sin(Ω) (B.15)

L =ω+ IΩ+θ (B.16)

Where I is the retrograde factor, which is set to I = +1 and I = −1 for prograde and retrograde orbits respec-
tively. To convert from a Cartesian state to MEE and vice versa, the conversions between a Cartesian state and
Keplerian elements can be used together with the conversions between Keplerian elements and MEE.

B.3. RSW frame
The Radial (R), Along-track (S) and Cross-track(W) coordinate frame, also known as the RIC frame or RTN
frame, is centred on a satellite’s position and oriented with the R-S frame in its orbital plane. It can be used
to represent relative coordinates between multiple satellites, or between sampled state vectors and the mean
state vector in the case of probability distributions. An illustration of the coordinate frame is shown in Fig-
ure B.4.
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Figure B.4: The RSW coordinate frame shown together with the ECI J2000 coordinate frame.

To convert between the ECI and the RSW frame requires a translational and a rotational transformation. The
coordinates of the basis vectors of the RSW frame can be expressed in the ECI frame by:

R̂ = r Ŝ = h × r Ŵ = h (B.17)

Where h = r ×v and r and v are the position and velocity vectors of the mean state, in the ECI frame.

The conversions of the position and velocity vectors between the frames are then given by:

ω=


0
0∣∣∣h∣∣∣
|r |2

 RRSW
EC I =

 R̂x R̂y R̂z

Ŝx Ŝy Ŝz

Ŵx Ŵy Ŵz

 REC I
RSW =

R̂x Ŝx Ŵx

R̂y Ŝy Ŵy

R̂z Ŝz Ŵz

 (B.18)

r RSW = RRSW
EC I

(
r EC I − r EC I

)
r EC I = REC I

RSW r EC I + r EC I (B.19)

v RSW = RRSW
EC I

(
v EC I −v EC I

)−ω× r RSW v EC I = REC I
RSW

(
v RSW +ω× r RSW

)+v EC I (B.20)

Where r RSW and v RSW represent the position and velocity vector in the RSW frame, r EC I and v EC I the position
and velocity in the ECI frame, and r EC I and v EC I the position and velocity vector of the mean state around
which the RSW frame is centred.

B.4. Conjunction Plane
The conjunction-plane coordinate frame is defined in Cartesian coordinates, centred on the primary object,
and aligned such that the z-axis lies along the relative velocity vector. The choice of x- and y-axis of the con-
junction plane remain free, but are chosen in this study such that the x-axis of the conjunction plane aligns as
close as possible to the z-axis of the ECI frame in Cartesian coordinates [112].

To determine the relative position of the secondary object with respect to the primary object in the conjunction
plane, the following transformation can be used:

r r el ,cp =
X̂ x X̂ y X̂ z

Ŷ x Ŷ y Ŷ z

Ẑ x Ẑ y Ẑ z

× r r el ,EC I (B.21)

Where X̂ , Ŷ and Ẑ are the unit vectors of the axes of the conjunction plane expressed in Cartesian coordinates
of the ECI j2000 frame, which can be found by [112]:

Ẑ = v S −v P

|v S −v P |
X̂ = Ẑ × K̂∣∣Ẑ × K̂

∣∣ Ŷ = Ẑ × X̂ (B.22)



C
Integrator Analysis

This appendix describes the process of selecting the integrator and propagator settings in Tudat, to be used for
each test case scenario. This process is done in several steps, which follow the same structure for each test case
scenario.

First, a benchmark propagation is created, with a fixed step integrator and a spherical harmonic gravitational
acceleration from the Earth with degree and order 2. The error of this benchmark is analysed by comparing a
benchmark propagation with a second propagation that uses a time step twice as small. Under the assumption
that the numerical error is the dominant source in the integration error, which grows when the time step is
increased, the second propagation can be considered to have a smaller integration error and can be used as a
truth to compare the benchmark propagation to. When the time step becomes small, rounding errors become
a larger source of the integration error, which show erratic behaviour. By choosing a time step from a range for
which the integration error increases linearly with increasing time steps, it is ensured that the numerical error
is the dominant source, such that the maximum position error with respect to the smaller time step can be used
as an error estimate for the chosen time step. In this way, several time steps are analysed, and a benchmark
time step is chosen for each scenario.

With the benchmark propagation, various integrators can be compared and analysed for their integration er-
rors. A number of multistage integrators, both with fixed step and variable step, are analysed with various
settings, by ranging the fixed time step from large to small, or ranging the absolute tolerance levels ϵa from
large to small with a relative tolerance of 10−13. The integration error is deduced by comparing the propaga-
tion to the earlier obtained benchmark, and the number of function evaluations is recorded, to use as a direct
estimation of the relative propagation time compared to other integrators. From this, an integrator and its
settings are selected.

In Tudat, the absolute and relative tolerances are combined at each step by:

ϵi nt = ϵa +x t ·ϵr (C.1)

where ϵi nt is the combined tolerance applied in the integration step, ϵa and ϵr are the absolute and relative
tolerances, and x t is the state vector at the current epoch. To allow for an analysis of tolerance levels with a
single changing variable, it is decided to keep one of the tolerances fixed at a negligibly small value, while vary-
ing the other tolerance. To simplify the analysis further, only the absolute tolerance is varied, while keeping
the relative tolerance at 10−13 for all cases. This choice is made based on the smoother and more predictable
behaviour of the time step over time, when using the absolute tolerances rather than relative tolerances. An
example of this is demonstrated for one of the elliptical cases, shown in Figure C.1. It can be seen that for tol-
erance settings that result in similar levels of position error over time, varying the absolute tolerance produces
more predictable time steps. Thus, in all further analyses, the tolerance used is the absolute tolerance, where
the relative tolerance is always set at 10−13, such that it does not influence the final tolerance.
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(a) Varying the absolute tolerance, with a relative tolerance of 10−13.
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(b) Varying the relative tolerance, with a relative tolerance of 10−13.

Figure C.1: The position error (left) and the time step (right) over time, for various values of absolute or relative tolerance, using the variable
step rkdp87 integrator and Cowell propagator for the Cosmos scenario.

Additionally, during the analysis of the integrators, it is found that the variable step integrators induce much
higher values of rounding errors in the integrator error, compared to the fixed step integrators or the benchmark
propagation, such that the variable step integrators are unable to reach the desired error level for the various
test case scenarios. The rounding errors are found to be caused by an accumulation of floating point errors
of the time steps on to the determined time epochs. While the floating point errors are small, approximately
10−8s, the accumulation of these after 103 time steps reaches 10−5s , which can be translated into a position
error of approximately 1m, since the orbital velocity reaches 104m/s for LEO objects. To solve this problem,
the pre-developed propagation software of Tudat is adjusted for the variable step integrators, such that at every
time epoch, the new time step is converted to the nearest integer, before being used to calculate the next time
epoch. Since the time steps used in the variable step integrators are larger than 102 for all scenarios, this change
has negligible effects on the time steps, which means that neither the computation times nor the numerical
errors are affected by these changes, while the high accumulation of rounding errors is removed.

Finally, with the integrator and propagator selected, the various acceleration and environment models are anal-
ysed. A nominal model is created with all available accelerations in Tudat included, shown in Table C.1, and
compared to various propagations in which a single acceleration is removed or reduced in complexity, one at
a time. The effect of removing/reducing these accelerations is then compared to a position error threshold,
and all accelerations that have an effect small enough are excluded from the final model. In this way, the fi-
nal model represents an accuracy set by the final error threshold, often set to 1m in this study. The following
changes are made to the accelerations: The solar radiation pressure, atmospheric drag and relativistic correc-
tion, are removed. The central body gravity is reduced to degree and order 2x2, and to a point mass gravity
(both with the 100x100 model as a baseline). The 3rd body spherical harmonics are reduced to 3rd body point
mass perturbations, and the 3rd body point mass perturbations are removed. To reduce the complexity of the
environment models, the rotation models (of the central body as well as of 3rd bodies with spherical harmonics
included in the accelerations) are changed to a linear rotation model, using the orientation and rotation rate of
the body at t0, which is retrieved from SPICE once per propagation. The 3rd body position models are changed
to Keplerian 2-body orbits around their respective central bodies, based on their state vectors at t0, retrieved
from SPICE once at the start of the propagation. These models replace the complex models, where the orien-
tations/positions are retrieved from SPICE at each time epoch for which the accelerations are required.
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Acceleration type
Central body gravity (Earth) 100 x 100 (GOCO05c)
3rd body spherical harmonics
(100 x 100)

Moon (gggrx1200), Mars (jgmro120d),
Venus (shgj180u), Mercury (jgmess160a)

3rd body spherical harmonics
(Zonal coefficients of degree 8)

Jupiter (Model described in [127])

3rd body perturbations
(point mass)

Sun, Saturn, Neptune, Uranus,
Io, Europa, Callisto, Ganymede, Amalthea,
Phobos, Deimos, Mimas, Enceladus,
Tethys, Dione, Rhea, Titan, Hyperion, Iapetus

Solar radiation pressure CR = 1.5 (Cannonball)
Relativistic Correction Sun (Schwarzschild)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body rotation model Retrieved every epoch from Spice
3rd body rotation model
(Moon, Mars, Venus, Mercury, Jupiter)

Retrieved every epoch from Spice

3rd body position model Retrieved every epoch from Spice
Table C.1: Propagation settings used for the full model in Tudat.

In the following sections, the results and selections of these settings and models are shown per test case sce-
nario of the uncertainty propagation comparison analysis, and for the long versions of the high- and low-
velocity scenario of the conjunction assessment study, following the structure outlined above. To ensure the
benchmark error and integrator error do not influence the results of the comparisons further on, the integra-
tor error threshold is set to 2 orders of magnitude smaller than the final model error threshold, and similarly
the benchmark error is set to two orders of magnitude below the integrator error threshold. The scenarios of
the conjunction assessment study include two space objects for each scenario. The effects of the integrator
settings and propagation models are shown for both objects, where the final chosen settings are the same for
both objects, and chosen based on a worst case scenario. The settings of the short versions of both scenarios
are taken to be identical to those of the long versions. The low-fidelity settings for the conjunction assessment
scenarios are determined once for all scenarios simultaneously and are described in Chapter 7.

C.1. Velox Scenario
For the Velox scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error of
10−2m and a benchmark error of 10−4m.

The benchmark analysis is shown in Figure C.2, from which a benchmark time step of 20s is selected.
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Figure C.2: Benchmark error analysis for the Velox scenario.
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Figure C.3: Integrator analysis for the Cowell propagator for the Velox scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.3. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 2.0E-6. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.4
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The effects of removing/reducing accelerations are shown in Figure C.5.
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Figure C.5: Acceleration model analysis of the Velox scenario.
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For this scenario, all 3rd body perturbations can be removed, except for the Sun and Moon, where for the Moon,
the spherical harmonics can be reduced to a point mass. Both the atmospheric drag and solar radiation are
kept, but the relativistic correction is removed from the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors, the final model
still contains the 100x100 spherical harmonics. Finally, both the position model of the Moon, as well as the
rotation model of the Earth are reduced in complexity.

All changes for which the effects remain below 1m have been included in the final model, which is shown in
Table C.2. Based on the effects shown in Figure C.5, a more lenient selection of accelerations and models is
made for the low-fidelity model (resulting in higher propagation errors and lower computation times), which
is shown in Table C.3.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-6)

Propagator Cowell
Table C.2: Propagation settings used for the high-fidelity dynamics of

the Velox scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Atmospheric drag CD = 2.0 (US76)
Environment models

Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-6)

Propagator Cowell
Table C.3: Propagation settings used for the low-fidelity dynamics of

the Velox scenario

C.2. Oneweb Scenario
For the Oneweb scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error of
10−2m and a benchmark error of 10−4m.

The benchmark analysis is shown in Figure C.6, from which a benchmark time step of 25s is selected.
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Figure C.6: Benchmark error analysis for the Oneweb scenario.
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Figure C.7: Integrator analysis for the Cowell propagator for the Oneweb scenario.

The integrator analysis is for the Cowell propagator is shown in Figure C.7. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 2.0E-6. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.8
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Figure C.8: the position error (left) and the time step (right) over time for various absolute tolerances using the variable step rkdp87
integrator and Cowell propagator for the Oneweb scenario.

The effects of removing/reducing accelerations are shown in Figure C.9.
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Figure C.9: Acceleration model analysis of the Oneweb scenario.

For this scenario, all 3rd body perturbations can be removed, except for the Sun and Moon, where for the Moon,
the spherical harmonics can be reduced to a point mass. Both the atmospheric drag and solar radiation are
kept, but the relativistic correction is removed from the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors, the final model
still contains the 100x100 spherical harmonics. Finally, both the position model of the Moon, as well as the
rotation model of the Earth are reduced in complexity.
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All changes for which the effects remain below 1m have been included in the final model, which is shown in
Table C.4. Based on the effects shown in Figure C.9, a more lenient selection of accelerations and models is
made for the low-fidelity model (resulting in higher propagation errors and lower computation times), which
is shown in Table C.5.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-6)

Propagator Cowell
Table C.4: Propagation settings used for the high-fidelity dynamics of

the Oneweb scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-6)

Propagator Cowell
Table C.5: Propagation settings used for the low-fidelity dynamics of

the Oneweb scenario

C.3. Cosmos Scenario
For the Cosmos scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error of
10−2m and a benchmark error of 10−4m.

The benchmark analysis is shown in Figure C.10, from which a benchmark time step of 30s is selected.
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Figure C.10: Benchmark error analysis for the Cosmos scenario.
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Figure C.11: Integrator analysis for the Cowell propagator for the Cosmos scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.11. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 1.0E-3. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.12
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Figure C.12: the position error (left) and the time step (right) over time for various absolute tolerances using the variable step rkdp87
integrator and Cowell propagator for the Cosmos scenario.

The effects of removing/reducing accelerations are shown in Figure C.13.
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Figure C.13: Acceleration model analysis of the Cosmos scenario.

For this scenario, all 3rd body perturbations can be removed, except for the Sun, Moon and Venus, where for
the Moon and Venus, the spherical harmonics can be reduced to a point mass. The atmospheric drag, solar
radiation and relativistic correction are all kept in the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors, the final model
still contains the 100x100 spherical harmonics. Finally, both the position model of the Moon and Venus, as well
as the rotation model of the Earth are reduced in complexity.
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All changes for which the effects remain below 1m have been included in the final model, which is shown in
Table C.6. Based on the effects shown in Figure C.13, a more lenient selection of accelerations and models is
made for the low-fidelity model (resulting in higher propagation errors and lower computation times), which
is shown in Table C.7.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon, Venus

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon, Venus)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 1E-3)

Propagator Cowell
Table C.6: Propagation settings used for the high-fidelity dynamics of

the Cosmos scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 1E-3)

Propagator Cowell
Table C.7: Propagation settings used for the low-fidelity dynamics of

the Cosmos scenario

C.4. Spirale Scenario
For the Spirale scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error of
10−2m and a benchmark error of 10−4m.

The benchmark analysis is shown in Figure C.14, from which a benchmark time step of 30s is selected.
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Figure C.14: Benchmark error analysis for the Spirale scenario.
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Figure C.15: Integrator analysis for the Cowell propagator for the Spirale scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.15. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 2.0E-3. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.16
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Figure C.16: the position error (left) and the time step (right) over time for various absolute tolerances using the variable step rkdp87
integrator and Cowell propagator for the Spirale scenario.

The effects of removing/reducing accelerations are shown in Figure C.17.
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Figure C.17: Acceleration model analysis of the Spirale scenario.

For this scenario, all 3rd body perturbations can be removed, except for the Sun, Moon, Mars and Jupiter, where
for the Moon, Mars and Jupiter, the spherical harmonics can be reduced to a point mass. The atmospheric
drag, solar radiation and relativistic correction are all kept in the final model. Furthermore, since the change
from Earths 100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors,
the final model still contains the 100x100 spherical harmonics. Finally, both the position models of the Moon,
Mars and Jupiter, as well as the rotation model of the Earth are reduced in complexity.
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All changes for which the effects remain below 1m have been included in the final model, which is shown in
Table C.8. Based on the effects shown in Figure C.17, a more lenient selection of accelerations and models is
made for the low-fidelity model (resulting in higher propagation errors and lower computation times), which
is shown in Table C.9.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon, Mars,
Jupiter

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon, Mars, Jupiter)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-3)

Propagator Cowell
Table C.8: Propagation settings used for the high-fidelity dynamics of

the Spirale scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Atmospheric drag CD = 2.0 (US76)
Environment models

Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
variable rkdp87
(tolerance: 2E-3)

Propagator Cowell
Table C.9: Propagation settings used for the low-fidelity dynamics of

the Spirale scenario

C.5. Meteosat Scenario
For the Meteosat scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error of
10−2m and a benchmark error of 10−4m.

The benchmark analysis is shown in Figure C.18, from which a benchmark time step of 600s is selected.
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Figure C.18: Benchmark error analysis for the Meteosat scenario.
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Figure C.19: Integrator analysis for the Cowell propagator for the Meteosat scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.19. The chosen integrator is the fixed
step rkf8 integrator with a time step of 1800s. The position error over time for the fixed step rkf8 integrator is
shown in Figure C.20. It is noted that a variable step rkdp87 integrator and a fixed step rkf12 integrator can
provide a faster propagation in this case. However, due to the small difference in performance, a fixed step
integrator is chosen for this scenario, to include at least one scenario with a fixed step integrator. The rkf12
integrator is not chosen due to the optimal time step being significantly larger than that for the rkf8. Here, a
smaller time step is preferred, to decrease interpolation errors.
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Figure C.20: The position error (left) and the time step (right) over time for various time steps using the fixed step rkf8 integrator and Cowell
propagator for the Meteosat scenario.

The effects of removing/reducing accelerations are shown in Figure C.21.
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Figure C.21: Acceleration model analysis of the Meteosat scenario.

For this scenario, all 3rd body perturbations can be removed, except for the Sun and Moon, where for the Moon
the spherical harmonics can be reduced to a point mass. Both the solar radiation and relativistic correction are
kept, but the atmospheric drag is removed from the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors, the final model
still contains the 100x100 spherical harmonics. Finally, both the position models of the Moon, Mars and Jupiter,
as well as the rotation model of the Earth are reduced in complexity.
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All changes for which the effects remain below 1m have been included in the final model, which is shown in
Table C.10. Based on the effects shown in Figure C.21, a more lenient selection of accelerations and models is
made for the low-fidelity model (resulting in higher propagation errors and lower computation times), which
is shown in Table C.11.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Relativistic Correction Sun (Schwarzschild)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

3rd body position model
(Moon)

Keplerian 2-body orbit
determined at t0

3rd body position model
(Sun)

Retrieved every epoch
from Spice

Propagator settings

Integrator
fixed rkf8
(time step: 1800s)

Propagator Cowell
Table C.10: Propagation settings used for the high-fidelity dynamics

of the Meteosat scenario

Acceleration type
Central body gravity
(Earth)

2 x 2 (GOCO05c)

Environment models
Central body
rotation model

Constant rotation rate
determined at t0

Propagator settings

Integrator
fixed rkf8
(time step: 1800s)

Propagator Cowell
Table C.11: Propagation settings used for the low-fidelity dynamics of

the Meteosat scenario

C.6. High-velocity Scenario
For the high-velocity scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error
of 10−2m and a benchmark error of 10−4m. The analysis is based on the long version of the scenario, for which
the results are shown below.

The benchmark analysis is shown for both objects in Figure C.22, from which a benchmark time step of 25s is
selected.
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Figure C.22: Benchmark error analysis for the high-velocity scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.23. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 2.0E-6. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.24.
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Figure C.23: Integrator analysis for the Cowell propagator for the high-velocity scenario.
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Figure C.24: The position error (left) and the time step (right) over time for various absolute tolerances using the variable step rkdp87
integrator and Cowell propagator for the high-velocity scenario.
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The effects of removing/reducing accelerations are shown in Figures C.25 and C.26.
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Figure C.25: Acceleration model analysis of the high-velocity scenario for object 1.
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Figure C.26: Acceleration model analysis of the high-velocity scenario for object 2.

For this scenario, all 3rd body perturbations are removed, except for the Sun and Moon, where for the Moon, the
spherical harmonics can be reduced to a point mass. Both the atmospheric drag and solar radiation are kept,
but the relativistic correction is removed from the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors for both ob-
jects, the final model still contains the 100x100 spherical harmonics. Finally, both the position model of the
Moon, as well as the rotation model of the Earth are reduced in complexity. All changes for which the effects
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remain below 1m for both objects have been included in the final model, which is shown in Table C.12.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body rotation model Constant rotation rate determined at t0

3rd body position model (Moon) Keplerian 2-body orbit determined at t0

position model (Sun Retrieved every epoch from Spice
Propagator settings

Integrator variable rkdp87 (tolerance: 2E-6)
Propagator Cowell

Table C.12: Propagation settings used for the high-velocity scenario

C.7. Low-velocity Scenario
For the low-velocity scenario, the final error is chosen to be below 1m, resulting in a maximum integrator error
of 10−2m and a benchmark error of 10−4m. The analysis is based on the long version of the scenario, for which
the results are shown below.

The benchmark analysis is shown for both objects in Figure C.27, from which a benchmark time step of 25s is
selected.
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Figure C.27: Benchmark error analysis for the low-velocity scenario.

The integrator analysis for the Cowell propagator is shown in Figure C.28. The chosen integrator is the variable
step rkdp87 integrator with an absolute tolerance of 2.0E-6. The position error over time for the variable step
rkdp87 integrator is shown in Figure C.29.
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Figure C.28: Integrator analysis for the Cowell propagator for the low-velocity scenario.
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Figure C.29: The position error (left) and the time step (right) over time for various absolute tolerances using the variable step rkdp87
integrator and Cowell propagator for the low-velocity scenario.
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The effects of removing/reducing accelerations are shown in Figures C.30 and C.31.
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Figure C.30: Acceleration model analysis of the low-velocity scenario for object 1.
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Figure C.31: Acceleration model analysis of the lowvelocity scenario for object 2.

For this scenario, all 3rd body perturbations are removed, except for the Sun and Moon, where for the Moon, the
spherical harmonics can be reduced to a point mass. Both the atmospheric drag and solar radiation are kept,
but the relativistic correction is removed from the final model. Furthermore, since the change from Earths
100x100 spherical harmonics to 2x2 or to a point mass gravity both result in high position errors for both ob-
jects, the final model still contains the 100x100 spherical harmonics. Finally, only the position model of the
Moon is reduced in complexity.
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All changes for which the effects remain below 1m for both objects have been included in the final model,
which is shown in Table C.13.

Acceleration type
Central body gravity
(Earth)

100 x 100 (GOCO05c)

3rd body perturbations
(point mass)

Sun, Moon

Solar radiation pressure CR = 1.5 (Cannonball)
Atmospheric drag CD = 2.0 (US76)

Environment models
Central body rotation model Retrieved every epoch from Spice
3rd body position model (Moon) Keplerian 2-body orbit determined at t0

3rd body position model (Sun) Retrieved every epoch from Spice
Propagator settings

Integrator variable rkdp87 (tolerance: 2E-6)
Propagator Cowell

Table C.13: Propagation settings used for the low-velocity scenario



D
Model Verification

This appendix contains the results of the verifications performed to ensure that the implemented uncertainty
propagation methods perform as expected, by comparing results produced with the implemented methods
to results found in literature, or to results generated by MC samples, for the same test case scenarios. The
implemented and verified methods that are shown below are: AEGIS, UT, LinCov, MF and PCEs. For each
method it is shown that there is a good agreement between the generated results and the baseline.

D.1. AEGIS verification
The implemented AEGIS method has been tested and compared against known results to verify that it functions
correctly and produces the expected results. In [108] the Splitting Gaussian Mixture Unscented Kalman Filter
(SGMUKF) is described. This is essentially the filter version of the Adaptive Entropy-based Gaussian-mixture
information Synthesis (AEGIS) described in [28], which is implemented in this research. When the method is
used to propagate an uncertainty forwards in time under the absence of observations, both methods function
identically. The test case scenario of an elliptical orbit, described in [108] is replicated and used to produce
results for, using the implemented AEGIS method. The mean vector of the initial uncertainty is transformed to
Cartesian coordinates from the following Keplerian elements:

a 35 ·106 m
e 0.2
i 0 deg
Ω 0 deg
ω 0 deg
θ 0 deg

Table D.1: The Keplerian elements of the mean vector at the initial epoch.

With the following covariance matrix:

P =



106 0 0 0 0 0
0 106 0 0 0 0
0 0 106 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


[

m2 m2

s
m2

s
m2

22

]
(D.1)

In Figures D.1 to D.8 the results are compared between the implemented AEGIS method and the SGMUKF
method documented in [108] for both the position and velocity elements in the projected x-y plane for sev-
eral propagation times. The results clearly demonstrate that the AEGIS method provides accurate and correct
results for this test case scenario, and functions as expected.
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Figure D.1: Position (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.
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Figure D.2: Velocity (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.
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Figure D.3: Position (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.4: Velocity (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.5: Position (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.
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Figure D.6: Velocity (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.



114 D. Model Verification

2.775 2.780 2.785 2.790 2.795 2.800

rx [m] ×107

−4

−2

0

2

r
y

[m
]

×106

(a) Own AEGIS implementation (b) SGMUKF from [108]

Figure D.7: Position (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.
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Figure D.8: Velocity (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.

D.2. Unscented Transform verification
The implemented UT method has been tested and compared against known results to verify that it functions
correctly and produces the expected results. In [108] the Unscented Kalman Filter (UKF) is described. This is
essentially the filter version of the UT implemented in this research, described in Section 3.3. When the method
is used to propagate an uncertainty forwards in time under the absence of observations, both methods function
identically. The same test case scenario of an elliptical orbit from [108] described in Section D.1 is used to
produce results using the implemented UT method. In Figures D.9 to D.16 the results are compared between
the implemented UT method and the UKF method documented in [108] for both the position and velocity
elements in the projected x-y plane for several propagation times. The results clearly demonstrate that the UT
method provides accurate and correct results for this test case scenario, and functions as expected.
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Figure D.9: Position (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.
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Figure D.10: Velocity (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.

2.797 2.798 2.799 2.800

rx [m] ×107

−1.5

−1.0

−0.5

0.0

0.5

r
y

[m
]

×106

(a) Own UT implementation (b) UKF from [108]

Figure D.11: Position (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.12: Velocity (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.13: Position (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.
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Figure D.14: Velocity (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.
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Figure D.15: Position (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.
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Figure D.16: Velocity (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.

D.3. Linearised Covariance Method
The implemented LinCov method has been tested and compared against known results to verify that it func-
tions correctly and produces the expected results. In [108] the Extended Kalman Filter (EKF) is described. This
is essentially the filter version of the LinCov implemented in this research, described in Section 3.2. When the
method is used to propagate an uncertainty forwards in time under the absence of observations, both meth-
ods function identically. The same test case scenario of an elliptical orbit from [108] described in Section D.1
is used to produce results for using the implemented LinCov method. In Figures D.17 to D.24 the results are
compared between the implemented LinCov method and the EKF method documented in [108] for both the
position and velocity elements in the projected x-y plane for several propagation times. The results clearly
demonstrate that the LinCov method provides accurate and correct results for this test case scenario, and func-
tions as expected.
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Figure D.17: Position (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.
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Figure D.18: Velocity (x-y projection) PDF contours with Monte Carlo samples at the initial epoch.
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Figure D.19: Position (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.20: Velocity (x-y projection) PDF contours with Monte Carlo samples after 1 orbit.
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Figure D.21: Position (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.
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Figure D.22: Velocity (x-y projection) PDF contours with Monte Carlo samples after 2 orbits.
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Figure D.23: Position (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.
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Figure D.24: Velocity (x-y projection) PDF contours with Monte Carlo samples after 3 orbits.

D.4. Multi-Fidelity verification
The implementation of the MF method closely follows the description by Jones et al. [71]. In [71] paper, results
for the MF method are shown for three test cases, with their initial distributions described by the following sets
of Kepler elements:

a [m] e [−] i [deg ] Ω [deg ] ω [deg ] θ [deg ]
Test Case 1 7078000 0.01 30 0 0 0
Test Case 2 26562000 0.74 63.4 0 0 0
Test Case 3 6878000 7.7E-4 45 0 90 0

σ 10000 0.001 1
36

1
36

1
36

1
36

Table D.2: Keplerian elements of the initial distributions (mean vector and 1 standard deviation σ) of the three test cases in [71]

The integrator analysis for these test case scenarios is combined with a set of acceleration models provided in
[71], which are used in the verification to reach a better comparison. The accelerations are repeated here in
Table D.3.
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Model Low-Fidelity High-Fidelity
Central Body Gravity Two-Body and J2 70×70

Third-Body Perturbations None Sun and Moon
Solar Radiation Pressure None Cannonball

Atmospheric Drag None Cannonball
Table D.3: Acceleration models used for low- and high-fidelity dynamics [71].

Finally, the satellite parameters used are:

Satellite Mass 500 kg
Satellite Drag and SRP Area 1 m2

CD 2.0
CR 1.5
t0 2000-01-29 22:00:00.500 UTC

Table D.4: Satellite parameters used for the test case scenarios [71].

In Figure D.25 the results are compared between the implemented MF method and the results documented
in [71] for all three test case scenarios. The results are presented in the RSW coordinate frame, based around
the propagated mean vector. The good agreement between the results demonstrates that the implemented MF
method provides accurate and correct results for these test case scenarios, and functions as expected.
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Figure D.25: Scatter of propagated samples in the RSW frame around the propagated mean vector,
for test case 1, at t = 24 hours.
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Figure D.26: Scatter of propagated samples in the RSW frame around the propagated mean vector,
for test case 2, at t ≈ 0.992 days.
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Figure D.27: Scatter of propagated samples in the RSW frame around the propagated mean vector,
for test case 3 at t = 24 hours.



D.5. Polynomial Chaos Expansion verification 125

D.5. Polynomial Chaos Expansion verification
To verify that the implementation of the PCEs produces the correct results, it is compared directly against
Monte Carlo samples for various different settings. The test case scenario chosen for this verification is the
highly elliptical orbit of the Spirale scenario, after 2 orbital revolutions. The results generated with PCEs, shown
with contour plots, are compared against 105 MC samples, shown in gray. The results are shown in the Radial
(R) and Along-track (S) frame, for both the positions and velocities.

From Figures D.28 and D.29 it is seen that, for the regression method, the final expansion can not fully approx-
imate the right shape of the MC samples yet for an N /P ratio below 1, whereas an N /P ratio of 1 or higher
does generate the same distribution as when samples are propagated using MC. From Figures D.30 and D.31
it is seen that, for the spectral projection method, an expansion of order 1 can not approximate the nonlinear
shape of the final uncertainty as shown by the MC samples, whereas an expansion order of 2 can generate a sim-
ilar distribution as when using MC samples. The clear convergence to the MC samples and the good agreement
between PCEs with sufficient values for N /P and Pe and MC samples demonstrates that the implementation
of the PCEs functions as expected.
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Figure D.28: Contour plots of a PCE using regression with Pe = 3 and N /P = 0.9 compared against 105 MC samples in the RSW frame.
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Figure D.29: Contour plots of a PCE using regression with Pe = 3 and N /P = 1 compared against 105 MC samples in the RSW frame.
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Figure D.30: Contour plots of a PCE using spectral projection with Pe = 1 and Q = 3 compared against 105 MC samples in the RSW frame.
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Figure D.31: Contour plots of a PCE using spectral projection with Pe = 2 and Q = 3 compared against 105 MC samples in the RSW frame.



E
Uncertainty Propagation Results

The following pages of this appendix contain the results to the uncertainty propagation comparison study. For
each scenario and number of orbital revolutions, the N L2 distance of the propagated uncertainties are shown
against the computation time, for all the uncertainty propagations included in the comparison study. The N L2

distance is a normalised metric that represents the distance of the propagated uncertainty to that propagated
with MC samples, where a value of 0 represents identical distributions, and a value of 1 indicates no agreement
at all.
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(a) Velox at 1 revolution.
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(b) Velox at 2 revolutions.
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(c) Velox at 10 revolutions.
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(d) Velox at 20 revolutions.
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(e) Velox at 50 revolutions.

Figure E.1: N L2 norm compared against MC samples, versus the propagation time for different UP methods with various settings, for 1, 2,
10, 20 and 50 orbital revolutions of the Velox scenario.
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(a) Oneweb at 1 revolution.

101 102 103

Computation time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
L

2
d
is

ta
n
ce

[-
]

UT

LinCov

MF

GMM UT

GMM MF

AEGIS

PCE

(b) Oneweb at 2 revolutions.
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(c) Oneweb at 10 revolutions.
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(d) Oneweb at 20 revolutions.
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(e) Oneweb at 50 revolutions.

Figure E.2: N L2 norm compared against MC samples, versus the propagation time for different UP methods with various settings, for 1, 2,
10, 20 and 50 orbital revolutions of the Oneweb scenario.
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(a) Cosmos at 0.5 revolutions.
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(b) Cosmos at 1 revolution.
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(c) Cosmos at 1.5 revolutions.
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(d) Cosmos at 2 revolutions.

Figure E.3: N L2 norm compared against MC samples, versus the propagation time for different UP methods with various settings, for 0,5, 1,
1.5 and 2 orbital revolutions of the Cosmos scenario.
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(a) Spirale at 0.5 revolutions.
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(b) Spirale at 1 revolution.
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(c) Spirale at 1.5 revolutions.
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(d) Spirale at 2 revolutions.

Figure E.4: N L2 norm compared against MC samples, versus the propagation time for different UP methods with various settings, for 0,5, 1,
1.5 and 2 orbital revolutions of the Spirale scenario.
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(a) Meteosat at 1 revolution.
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(b) Meteosat at 2 revolutions.

Figure E.5: N L2 norm compared against MC samples, versus the propagation time for different UP methods with various settings, for 1 and
2 orbital revolutions of the Meteosat scenario.



F
Conjunction Assessment Results

In this appendix, the results of the conjunction assessment study are shown for all 4 scenarios: the short and
long versions of the high- and low-velocity scenarios. The results include the collision probability after various
uncertainty propagations of the two objects shown against the relative computation time compared to the
baseline, as well as the collision probability after MF propagations shown against the number of important
samples used in the propagation.
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(b) Long version ∆t ≈ 96h.

Figure F.1: The probability of collision between the uncertainties propagated using various methods and settings compared to the baseline
PC based on the uncertainties propagated with 105 MC samples, for the short and long version of the high-velocity scenario.
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Figure F.2: The probability of collision between the uncertainties propagated using various methods and settings compared to the baseline
PC based on the uncertainties propagated with 105 MC samples, for the short and long version of the low-velocity scenario.
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(b) Long version ∆t ≈ 96h.

Figure F.3: The probability of collision between the uncertainties propagated using MF plotted against the number of important samples
used in the MF propagation and compared to the baseline PC , for the short and long version of the high-velocity scenario.
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Figure F.4: The probability of collision between the uncertainties propagated using MF plotted against the number of important samples
used in the MF propagation and compared to the baseline PC , for the short and long version of the low-velocity scenario.



G
Study planning

G.1. Work-Packages
To perform the research described in Chapter 2, a number of work-packages are created which (in the order
presented) collectively perform a research that aims to answer the research questions:

• investigate relevant literature
Research into literature surrounding the topic of uncertainty propagation and create a literature study of
all the scientific papers on this topic relevant for this research.

• propose and define research
Create a set of research questions and sub-questions to define the research to be performed, subdivide
this into work-packages and create a preliminary planning.

• implement uncertainty propagation methods
Implement a number of uncertainty propagation methods into code functions such that they can be used
later on. These include MC, the linearised method, UT, MF, GMMs, PCEs and DA.

• validate methods
Validate the implemented uncertainty propagation methods by comparing the results of the methods to
those described in literature, by applying the methods to test cases described in these papers.

• identify test scenarios
Choose and motivate a number of test scenarios to use to evaluate the efficiency and performance of the
different uncertainty propagation methods. Define all the parameters required to implement these test
scenarios.

• compare uncertainty propagation methods
Perform the comparison of the various uncertainty propagation methods using the described test sce-
narios by running each test scenario with each uncertainty propagation method and documenting the
results.

• analyse results
Analyse the documented results for the different methods and test scenarios and make a comparison
between the methods based on efficiency and accuracy.

• choose collision probability methods
Choose and motivate methods to be used to calculate the collision probability. Multiple methods can be
taken depending on the test case (short-term, long-term, etc.) or the method that it will be combined
with (e.g. methods assuming Gaussianity or not).

• implement first collision probability methods
Implement the first methods to calculate the collision probability into code. These first methods include
the methods to use MC and to use the Multi-Fidelity.

• validate methods
Validate the implemented collision probability methods by comparing the results of the methods to those
described in literature, by applying the methods to test cases described in these papers.

• identify test scenarios
Choose and motivate a number of test scenarios to apply the combined uncertainty propagation and
collision probability methods to to determine their efficiency and accuracy.
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• analyse multi-fidelity with collision probability
Apply the Multi-Fidelity method and the collision probability method to these test cases and determine
the performance of this combination compared to a MC simulation.

• implement more collision probability methods
Implement the other chosen collision probability methods into code. These are the methods required to
use the combined MF-GMM method as well as that of MF-GMM with Automatic Domain Splitting.

• analyse MF-GMM with collision probability
Calculate the collision probabilities in the test scenarios using the combined method of Multi-fidelity
and Gaussian Mixture Models for the uncertainty propagation, and compare these results to the previous
results obtained using only Multi-Fidelity and using MC.

• analyse MF-GMM with ADS
Calculate the collision probabilities in the test scenarios using the combined method of Multi-fidelity
and Gaussian Mixture Models equipped with a form of Automatic Domain Splitting for the uncertainty
propagation, and compare these results to the previous results obtained.

• analyse results
Analyse the agreements and differences in results between these various methods and determine the
levels of efficiency and accuracy of the different methods applied to collision probability.

• form conclusions
Form the proper conclusions on each of the research questions.

• finalise thesis documentation
Finalise all the documentation required for the thesis, such that all results, conclusions, methodologies,
and anything else that is important to this research, is documented in the proper formats, and no more
writing is needed.

• prepare thesis defence
Prepare for the final thesis defence presentation.

G.2. Provisional Planning
The performance of such a research requires a good planning to ensure a smooth execution. Since a planning
can not predict all future events, it can be said with almost certainty that there will be deviations from this
planning along the way when new information is presented. However, a provisional planning is still required
to provide guidance, clear objectives and deadlines, and a way to manage and achieve expectations.

The work-packages described in Section G.1 provide a good way to divide the timeline of the thesis. Due to the
uncertainty involved in planning a research beforehand, two possible scenarios are planned. The first scenario
is called the optimistic scenario, which represents the planning in the case that all work-packages are finished
according to or ahead of the planning, and includes all of the research objectives. The second scenario is called
the realistic scenario, which represents the case that delays arise or when the execution of work-packages takes
longer. This scenario does not include extra objectives and only schedules the minimal objectives. Figure G.1
and Figure G.2 show a Gantt Chart for both of these scenarios, in which the work-packages from Section G.1,
as well as additional miscellaneous tasks, are planned into a time window with a start and end date. The Gantt
charts are made at the level of weeks, to provide a detailed overview and division of tasks over time, while not
falling subject to the dangers of micromanaging. An important detail to note is that the Gantt charts do not
take into account the holiday weeks.

For more guidance on the structure of the thesis, a division of hours is made and shown in Figure G.3. Similarly
to the Gantt chart in Figure G.1 and Figure G.2, this division is made per week to contain the appropriate level
of detail. A significant amount of hours are scheduled to be spent on ’coding’, which includes the entire setup
of the numerical simulations, arguably the biggest part of the thesis. Such a large amount of time also provides
margins for the well-known concept of fixing bugs in code. Besides that, writing completes the larger part
of the time spent on the thesis, to ensure proper documentation being written along the way, and to avoid
time management issues during a sprint before the final deadline. Lastly, around specific deliverables, time is
devoted to miscellaneous tasks to account for administration work, review sessions, presentations and other
related duties. Especially near the end of the timeline this category becomes dominant, due to the preparation
of the thesis defence, where the research itself (related to coding and writing) should already be finished.
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Figure G.1: Gantt chart with the planning for the optimistic scenario, with week numbers based on the start date of the thesis.

Figure G.2: Gantt chart with the planning for the realistic scenario, with week numbers based on the start date of the thesis.
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