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Abstract—Maximum likelihood (ML) decision criteria have
been developed for channels suffering from signal independent
offset mismatch. Here, such criteria are considered for signal
dependent offset, which means that the value of the offset may
differ for distinct signal levels rather than being the same for all
levels. An ML decision criterion is derived, assuming uniform
distributions for both the noise and the offset. In particular,
for the proposed ML decoder, bounds are determined on the
standard deviations of the noise and the offset which lead to a
word error rate equal to zero. Simulation results are presented
confirming the findings.

Index Terms—Maximum likelihood decoding, offset mismatch,
signal dependent offset.

I. INTRODUCTION

In data communication and storage systems, noise is usually
an important issue, but other physical factors may hamper
the reliability of the transmitted or stored data as well. For
example, in flash memories, the number of electrons of a flash
cell decreases with time and some cells become defective over
time [1]. The amount of charge (electrons) leakage, which can
be modeled as offset mismatch, depends on various physical
parameters, such as the device’s temperature, the magnitude
of the charge, and the time elapsed between writing and
reading the data [2]. In digital optical recording, fingerprints
and scratches on the surface of discs result in offset variations
of retrieved signals [3]. For direct conversion receivers, the
local oscillator is the main source of dc-offset [4].

Consider transmitting a codeword x = (x1, x2, . . . , xn)
from a codebook S ⊆ Qn, where

Q = {0, 1, . . . , q − 1}

is a q-ary alphabet. In [5], the authors study a channel model
where the received sequence r = (r1, r2, . . . , rn) is

r = x + v + b1, (1)

i.e., the transmitted symbols of a codeword are corrupted by
noise, represented by the sequence v = (v1, v2, . . . , vn) of
independent noise samples vi, and by offset, represented by b1,
where 1 is the all-one vector of length n. Note that the offset
value b is independent of the signal levels in this model. In this
paper, however, we study a model in which it is assumed that
the offset value depends on the signal level. With every signal
level j ∈ Q we associate an offset value bj . The transmitted

symbols of a codeword are corrupted by noise, that varies from
symbol to symbol, and by offset, that is equal to bj for each
transmitted symbol equal to j. The symbols of the received
vector are thus

ri = xi + vi + bxi
, (2)

where vi is a noise sample and bxi represents the signal
dependent offset. We assume that the values of the offset, bj ,
j = 0, . . . , q − 1, may vary from codeword to codeword, but
that for each j it is fixed within a codeword of length n.
Like the noise values, the offset values are unknown to both
the receiver and the transmitter. The channel model in vector
form yields

r = x + v + bx, (3)

where bx = (bx1
, bx2

, . . . , bxn
). For example,

bx = (b0, b1, b0, b1)

when the binary word x = (0, 1, 0, 1) is transmitted.
Much of the current literature pays particular attention to

the critical role played by offset [5]–[8], where the offset
is the same for all signal levels. In [5], Immink and Weber
proposed Pearson distance-based decoders that are immune to
gain and/or offset mismatch, at the expense of higher noise
sensitivity. Blackburn [6] investigated a maximum likelihood
(ML) criterion for channels with Gaussian noise and unknown
gain and offset mismatch. In a subsequent study, ML decision
criteria were derived for Gaussian noise channels when assum-
ing various distributions for the offset in the absence of gain
mismatch [7]. Another relevant reference to this study is the
work in [8], where an ML decoding criterion is investigated
for channels with bounded noise and offset. This includes an
example case where both the noise and the offset are uniformly
distributed.

A common feature of these prior studies is the assumption
that the offset is independent of signal levels, i.e, it has a
fixed value b for all symbols within a transmitted codeword.
As stated, this paper is concerned with a different situation,
where the offset is a signal dependent parameter, i.e., it equals
bj for signal level j. The model (3) is appropriate in a
number of scenarios. For example, the binary input user data
is stored as the two resistance states of a spin-torque transfer
magnetic random access memory (STT-MRAM) cell [9]. A
signal dependent offset model is reasonable when process
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variation causes an asymmetric distribution of both the low
and high resistance states. The model is also appropriate for
the multilevel-cell storage capacity and retention of multilevel-
cell phase-change memory, which is adversely affected by
resistance states dependent drift and noise [10]. Moreover,
degradation of the data reliability can be modelled as signal
dependent offset model, for the situation that with the increase
of temperature, the low signal level hardly changes, while the
high signal level decreases, leading to a drift of the high signal
level to the low signal level [11].

In this paper, we present an ML decoding criterion for chan-
nels with uniform noise and signal dependent offset mismatch.
The uniform distribution and the Gaussian distribution are
two classical probability distributions of stochastic processes,
that are often used to model real-world noise and offset
phenomena. Which of the two is the most appropriate depends
on the situation under consideration. On the one hand, the
Gaussian model is a very natural one, but the fact that it
is unbounded may make it less suitable in some cases [12],
[13]. In flash memories, for instance, the impact of parameters
such as charge leakage on the retrieved data value should not
be arbitrarily large. Consequently, not taking into account the
bounded nature of stochastic variations may lead to imprac-
ticable model-based inferences. Therefore, the uniform model
is adopted in this paper. To the best of our knowledge, this is
the first paper investigating channels with uniform noise and
signal dependent offset. The case of Gaussian noise and signal
dependent offset is investigated in [14].

A consequence of having bounded noise and offset is that
a zero word error rate (WER) is achievable under certain
constraints. A major result of this paper is that we provide
sufficient conditions on the standard deviations of the noise
and offset in combination with the code properties to guarantee
the zero WER.

The outline of the rest of this paper is as follows. We
first review the classical Euclidean and Pearson distance-based
decoding criteria in Section II. In Section III, we present an
ML decoding criterion for channels with uniform noise and
signal dependent offset. In Section IV, a zero WER is shown to
be achievable if the standard deviations of the noise and offset
satisfy certain conditions. Finally, simulation results are given
for our ML decoder in comparison with Euclidean and Pearson
distance-based decoding criteria in Section V. Conclusion and
discussion in Section VI terminate the paper.

II. PRELIMINARIES

This section describes two well-known decoding criteria.
The first one is the Euclidean distance-based (ED) decoding
criterion, which outputs

xo = argmin
x̂∈S

δE(r, x̂),

for a received vector r, where

δE(r, x̂) =

n∑
i=1

(ri − x̂i)2. (4)

It is known to be optimal if the signal is only disturbed by
Gaussian noise, but may perform badly if there is offset.

A distance measure [5], inspired by the well-known Pearson
correlation coefficient, is proposed in situations which require
resistance towards unknown offset mismatch b. Note that here
the offset b is the same for all signal levels. For any vector
u ∈ Rn, let

ū =
1

n

n∑
i=1

ui

denote the average symbol value. The modified Pearson dis-
tance (PD) is defined by

δP (r, x̂) =

n∑
i=1

(ri − x̂i + ¯̂x)
2
. (5)

This is actually applying the squared Euclidean distance on
codewords which are normalized by subtracting their vector
average value from each coordinate. A PD decoder chooses a
codeword minimizing this distance, that is,

xo = argmin
x̂∈S

δP (r, x̂).

This criterion is immune to signal independent offset mis-
match, thus it is the ML choice for channels r = x+b1. Note
that decoders based on distance (5) cannot distinguish between
the vectors x and x + c1, c ∈ R. The use of the Pearson
distance demands that the set of codewords satisfies certain
special properties. Such sets are called Pearson codes [15].

III. MAXIMUM LIKELIHOOD DECODING

In this section, we present an ML decoding criterion for
channels suffering from uniform noise and signal dependent
offset. We start by specifying the noise and offset distributions
and introducing some further notation, and then present the
main result.

For the noise vector v = (v1, . . . , vn), we assume that the
vi are independently uniformly distributed with mean 0 and
variance σ2. Hence, the probability density function of each
vi, i = 1, 2, . . . , n, is

υ(vi) =


1

2
√
3σ
, −

√
3σ < vi <

√
3σ,

0, otherwise,
(6)

leading to a probability density function χ(v) =
∏n

i=1 υ(vi)
for v.

We assume that the bj are independently uniformly dis-
tributed with mean 0 and standard deviations βj . The proba-
bility density function of each bj , j = 0, 1, . . . , q − 1. is

ζ(bj) =


1

2
√
3βj

, −
√
3βj < bj <

√
3βj ,

0, otherwise.
(7)

For j = 0, 1, . . . , q − 1, let x(j) denote the index set
indicating the positions in x for which the symbol value equals
j. For example, in case q = 2,

x(0) = {1, 3} and x(1) = {2, 4}
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when x = (0, 1, 0, 1).
For the received vector r and a candidate codeword x̂ ∈ S,

we define

uj(r, x̂) = min
(
{ri − x̂i +

√
3σ
∣∣i ∈ x̂(j) } ∪ {

√
3βj}

)
,

lj(r, x̂) = max
(
{ri − x̂i −

√
3σ
∣∣i ∈ x̂(j) } ∪ {−

√
3βj}

)
,

for j = 0, 1, . . . , q− 1. These parameters correspond to upper
and lower bounds on the possible values of bj for x̂ when r
is received. Further, let

mj(r, x̂) = max{uj(r, x̂), lj(r, x̂)},

and

Ij(r, x̂) = max{uj(r, x̂)− lj(r, x̂), 0}

for j = 0, 1, . . . , q − 1. Next, we present a decoding criterion
and show that it is ML for the channel under consideration.

Theorem 1: If the noise and the offsets in (3) have proba-
bility density functions as (6) and (7), respectively, then ML
decoding is achieved by maximizing

q−1∏
j=0

Ij(r, x̂) (8)

over all codewords x̂ ∈ S.
Proof: If a vector r is received, ML decoding must

determine a codeword x̂ ∈ S maximizing P(r |x̂ ), that is, the
probability that r is received, given x̂ is sent. This satisfies

P(r |x̂ ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

χ(r− x̂− bx̂)
q−1∏
j=0

(ζ(bj)dbj)

=
1

(2
√
3σ)n

q−1∏
j=0

 mj(r,x̂)∫
lj(r,x̂)

1

2
√
3βj

dbj


=

∏q−1
j=0 Ij(r, x̂)

(2
√
3σ)n(2

√
3)q
∏q−1

j=0 βj
. (9)

The first equality is due to the channel model (3). The second
equality follows from the probability density functions (6)
and (7). The third equality follows from the observation that

mj(r,x̂)∫
lj(r,x̂)

dbj = mj(r, x̂)− lj(r, x̂) = Ij(r, x̂)

for all j. Since the denominator in (9) is a constant term
for all candidate codewords, we can ignore it during the
maximization process, which gives (8).

The bounded nature of the noise and the offset has interest-
ing consequences with respect to the WER of the ML decoder,
as will be further explored in the next section.

IV. ZERO WORD ERROR RATE ANALYSIS

Most interestingly, for the ML decoder based on (8), a word
error rate (WER) of zero is achieved if the standard deviations
of the noise and the offset satisfy certain conditions. This is
shown in the next theorem.

Theorem 2: If the noise and the offsets in (3) have proba-
bility density functions as (6) and (7), respectively, with

σ ≤ min
s,c∈S
s6=c

 max
i∈{1,...,n}

{|ci − si| −
√
3(βci + βsi)}

2
√
3

 (10)

or

σ ≤ min
s,c∈S
s6=c

max
j∈Q

{
max

i,k∈c(j)
{sk − si −

√
3(βsk + βsi)}

}
4
√
3

 ,

(11)
then the ML decoder achieves a WER equal to zero.

Proof: Assume that x ∈ S is sent and r = x + v +
bx is received. We will show that if (10) or (11) holds, then
P(r |x̂ ) = 0 for all codewords x̂ 6= x. First of all, note that

uj(r, x̂)− lj(r, x̂)

=min
(
{ri − x̂i +

√
3σ
∣∣∣i ∈ x̂(j) } ∪ {

√
3βj}

)
−max

(
{ri − x̂i −

√
3σ
∣∣∣i ∈ x̂(j) } ∪ {−

√
3βj}

)
=min

(
{ri − x̂i +

√
3σ
∣∣∣i ∈ x̂(j) } ∪ {

√
3βj}

)
+min

(
{−(ri − x̂i) +

√
3σ
∣∣∣i ∈ x̂(j) } ∪ {

√
3βj}

)
=min

(
{2
√
3βj} ∪ { min

i∈x̂(j)
{− |ri − x̂i|+

√
3σ +

√
3βj}}

∪{ min
i,k∈x̂(j)

{(ri − x̂i)− (rk − x̂k) + 2
√
3σ}}

)
,

=min

(
{2
√
3βj} ∪ { min

i∈x̂(j)
{− |ri − x̂i|+

√
3σ +

√
3βj}}

∪{ min
i,k∈x̂(j)

{ri − rk + 2
√
3σ}}

)
,

(12)
for j = 0, 1, . . . q − 1.

Next, we show that if (10) or (11) holds, (12) will be
negative for some j whenever x̂ 6= x. Note that the final
expression in (12) contains a union of three terms, where the
first term is always positive since βj is positive. We show that
the second term is negative for some j if (10) holds and that
the third term is negative for some j if (11) holds.

For each x̂ ∈ S, x̂ 6= x, let j0 be a symbol from Q such that
a position i0 in x̂(j0) ⊆ {1, . . . , n} maximizes the expression
|xi − x̂i| −

√
3(βxi

+ βx̂i
). That is,

i0 = arg max
i∈{1,...,n}

{
|xi − x̂i| −

√
3(βxi

+ βx̂i
)
}
,

j0 = x̂i0 .
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Note that this j0 is not necessarily the same for each x̂. If (10)
holds, then we have

min
i∈x̂(j0)

{− |ri − x̂i|+
√
3σ +

√
3βj}

= min
i∈x̂(j0)

{− |ri − x̂i| −
√
3σ −

√
3βxi +

√
3(2σ + βxi + βj)}

< min
i∈x̂(j0)

{− |ri − x̂i| − |vi + bxi |+
√
3(2σ + βxi + βj)}

= min
i∈x̂(j0)

{− |ri − x̂i| − |ri − xi|+
√
3(2σ + βxi + βj)}

≤ min
i∈x̂(j0)

{− |xi − x̂i|+
√
3(2σ + βxi

+ βj)}

= − max
i∈x̂(j0)

{|xi − x̂i| −
√
3(βxi

+ βx̂i
)}+ 2

√
3σ

= − max
i∈{1,...,n}

{|xi − x̂i| −
√
3(βxi

+ βx̂i
)}+ 2

√
3σ

≤ 0

The first inequality follows from the fact that |vi + bxi | ≤
|vi| + |bxi

| <
√
3σ +

√
3βxi

, the second inequality from the
triangular inequality, and the last inequality from (10). Thus
the second term of (12) is negative for some j whenever x̂ 6= x
if (10) holds.

Similarly, for each x̂ ∈ S, x̂ 6= x, let j1 be a symbol from
Q such that

j1 = argmax
j∈Q

{
max

i,k∈x̂(j)
{xk − xi −

√
3(βxk

+ βxi)}
}
.

If (11) holds, then we have

min
i,k∈x̂(j1)

{ri − rk + 2
√
3σ}

< min
i,k∈x̂(j1)

{ri − rk − (vi − vk)}+ 4
√
3σ

= min
i,k∈x̂(j1)

{xi − xk + bxi − bxk
}+ 4

√
3σ

< min
i,k∈x̂(j1)

{xi − xk +
√
3(βxi + βxk

)}+ 4
√
3σ

= − max
i,k∈x̂(j1)

{xk − xi −
√
3(βxi

+ βxk
)}+ 4

√
3σ

= −max
j∈Q

{
max

i,k∈x̂(j)
{xk − xi −

√
3(βxi

+ βxk
)}
}
+ 4
√
3σ

≤ 0.

The first inequality follows because vi − vk ≤ |vi| + |vk| <
2
√
3σ, the second inequality follows because bxi − bxk

≤
|bxi
|+ |bxk

| <
√
3(βxi

+ βxk
), and the last one from (11).

In conclusion, we have for any codeword x̂ 6= x that
Ij(r, x̂) = 0 for some j if (10) or (11) holds. Hence,

q−1∏
j=0

Ij(r, x̂) = P(r |x̂ ) = 0

for all codewords x̂ 6= x, while

q−1∏
j=0

Ij(r,x) > 0.

Hence, the transmitted codeword is always the outcome of the
decoding procedure maximizing (8), and thus ML decoding
achieves a WER equal to zero.

Next, we give a sufficient condition to achieve zero WER
for the ML decoder in the binary case, i.e., q = 2.

Corollary 3: If the noise and the offsets have probability
density functions as (6) and (7), respectively, with

2σ + β0 + β1 ≤
1√
3
, (13)

then the ML decoder achieves a WER equal to zero for a
binary codebook.

Proof: In the binary case, the expression |ci − si| −√
3(βci + βsi) in (10) has one of three values depending on

ci and si, i.e.,

|ci − si| −
√
3(βci + βsi) =
− 2
√
3β0, if (ci, si) = (0, 0);

− 2
√
3β1, if (ci, si) = (1, 1);

1−
√
3(β0 + β1), otherwise.

(14)

Since β0 and β1 are both positive, −2
√
3β0 and −2

√
3β1

are both negative, and thus if (13) holds then it immediately
follows from the fact that σ is positive as well that

1−
√
3(β0 + β1) > 0.

For any codewords s and c 6= s, there exists at least one
position, k, such that ck 6= sk, and then we have |ck − sk| =
1 and βck + βsk = β0 + β1. In conclusion, if (13) holds,
maximizing (14) over i ∈ {1, . . . , n} outputs 1−

√
3(β0+β1)

as its maximum value for any codewords s and c 6= s. Hence,
according to Theorem 2, the ML decoder achieves a WER
equal to zero when (13) holds.

Theorem 2 has important implications for developing zero
WER codes for channels suffering from uniform noise and
signal dependent offset. Code design for these channels is
beyond the scope of this paper, but in the next section we
provide a performance analysis for a simple example code
to show the advantage of the ML decoding technique in
comparison to the ED and PD decoders as presented in
Section II. Also, it will be illustrated that a zero WER indeed
appears in cases that the standard deviations of the noise and
the offsets are sufficiently small.

V. PERFORMANCE EVALUATION

Simulated WER results are shown in Fig. 1 for the binary
codebook

S∗ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

of length 3 and size 4, in combination with ED, PD, and ML
decoders. This simple codebook is used to demonstrate some
important WER characteristics. The standard deviations of the
signal dependent offsets are set to β0 = 0.2 and β1 = 0.15.
We observe that the performance of each of the three decoders
declines with increasing values of σ. The PD decoder has the
worst performance among these three. The performance of
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Fig. 1. WER versus the standard deviation σ of the uniform noise for S∗ in
combination with ED, PD, and ML decoders, when the standard deviations
of the uniform offsets are β0 = 0.2, β1 = 0.15.
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Fig. 2. WER versus the standard deviation σ of the uniform noise for S∗ in
combination with ML decoding, with different values of the uniform offset
standard deviations β0, β1.

the proposed ML decoder is better than for the ED and PD
decoders.

Simulation results for S∗ with various values of β0 and
β1 are shown in Fig. 2. The results from Fig. 2 confirm
Corollary 3. Zero WER of the ML decoder is indeed achieved
if 2σ + β0 + β1 ≤ 1/

√
3 ≈ 0.58. We can also observe this in

Fig. 1, where for the ML decoder zero WER is achieved when
the value of σ is less than (1/

√
3− 0.20− 0.15)/2 ≈ 0.11.

VI. CONCLUSION AND DISCUSSION

In this paper, we have considered channels with not only
noise, but also another important channel impairment, offset.
We have investigated the situation that the noise and the offset
are uniformly distributed, where, most importantly, the offset
is assumed to be signal dependent. An ML decoding criterion

is derived for such channels. This theoretical work can serve as
the basis for the design of advanced channel coding schemes
for the offset mismatch channel. We have also shown that
the ML decoder can achieve a zero WER when the standard
deviations of the noise and the offset are small enough. More
broadly, research is also needed to determine an ML decoding
criterion for the case that the signal dependent offsets have
some correlation. Perhaps the concept of copulas [16] could be
used in this case. Further investigations on how codebooks can
be generated satisfying the conditions as stated in Theorem 2
given σ, β0, and β1 will be of interest as well.
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