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Abstract

Throughout the long history of 
architecture, the effect of gravity 
is always present in any structures. 
Surprisingly in tensegrity composition, 
this primary law of nature seems to be 
absent. This is because the discontinuous 
set of struts in the continuous network 
of proportionally thin cables makes the 
structures look like floating in the 
air. However, there has not been much 
application of tensegrity principle in 
the construction field due to the lack 
of design methods and its complexity. By 
developing a large-span structure using 
tensegrity systems, a design method and 
an analysis technique are introduced 
along to define double-surface tensegrity 
systems. The design approach explores an 
innovative way to determine the structural 
topology and geometry of such the systems. 
The form-finding process and structural 
analysis are conducted to discover an 
appropriate way of analyzing tensegrity 
and ensuring that the systems are stable.

Keyword: tensegrity, double-surface 
tensegrity, form-finding, complex geometry, 
large-span structure, structural topology
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Chapter 1. Introduction

The Introduction is dedicated to the 
research framework which is the starting 
point of this graduation thesis towards a 
new tensegrity system.

1.1. Background

For more than 50 years, tensegrity is 
considered an innovative structural 
concept and it has the potentials to 
become a super-efficient structural system. 
In this system, the coupling between 
forces and forms is very tight, and this 
relation is made visible by structural 
components themselves. Everyone is 
fascinated by seeing the very particular 
type of structural composition in which 
struts seem to float in the air. This 
character is also the key point since 
people, engineers and architects more than 
the others, are surprised by this new kind 
of flow of forces. They are used to gravity 
effect, and in this case, gravity seems to 
be absent. 

Regardless its potentials, there has 
not been much application of tensegrity 
principle in the construction field. 
Examples have remained at the prototype 
state for lack of adequate technological 
design studies. By studying the complexity 
of tensegrity and applying it to a 
football stadium, this thesis focuses on 
exploring a design method which could help 
to realize this structural composition in 
architectural practice. 

1.2. Problem Statement

The issue of form-finding is central in 
the study of tensegrity system due to the 
lack of design and analysis techniques, 
especially when the system is complex 
with a large number of struts and cables. 
The composition of struts in a network 
of cables could not be manually handled 
anymore. On the other hand, spherical 
and domical structures of tensegrity are 
enormously sophisticated which can lead to 
difficulties in fabrication and assembling. 
When the structure spans a long distance, 
it is almost impossible to predict the 
structural behavior to ensure whether or 
not they are stable in reality. 

Hypotheses

By designing a large-span structure using 

1.1. Tensegrity needle tower, Kenneth Snelson

1.2. Tensegrity dome, Buckminster Fuller

© kenneth snelson

© b. fuller
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tensegrity systems, a design method and 
an analysis technique will be developed 
along to define the structural composition 
of struts and cables, visualize structural 
performance, and ensure the stability of 
such a complex system.

1.3. Research Question

Main question:
How to design a stable tensegrity system 
for a large span structure to cover a 
stadium?

Sub-questions:
How can a software work-flow help in 
designing tensegrity structure? 
What is the tessellation of tensegrity 
that should be investigated?
What is the structural morphology of 
tensegrity systems? 
What is the topology of tensegrity 
systems? 
How to apply structural principles to 
analyze tensegrity systems? 
How to translate mathematical principles 
of tensegrity to digital tools? 
How to study tensegrity structures using 
physical models? 
How to visualize mechanic behaviors of 
tensegrity systems?  
How can designers optimize the geometric 
form, the material efficiency, and the 
cross section of structural components in 
tensegrity systems? 

1.4. Design Assignment

Design a new roof for Feyenoord stadium 
using tensegrity structure.

In the 1930s, Leen van Zandviet, 
Feyenoord’s president came up with the 
idea of building an entirely new stadium, 
unlike any other on the continent, with 
two free hanging tiers, and no obstacles 
blocking the view. This design was an 
incredibly innovative use of technology 
for structure in architecture, which 
inspires several great stadiums around 
Europe, Camp Nou is a famous example. 
After almost 80 years in service, De Kuip 
needs to have a new roof structure which 
could continue its innovative tradition.

Tensegrity structure could write the 
next chapter of the story. By using this 
type of structure, the efficiency of 
the structure would be maximized, the 
slenderness of structural members would 
be pushed to the edges. As a result, the 
pressure on the existing system can be 
decreased, and the transparency can be 
achieved. Eventually, an extraordinary 

space inside the stadium would be 
absolutely an ideal present for football 
lovers.

1.5. Method Description

The research is started with literature 
studies related to tensegrity systems, 
rigidity theory, and large-span 
structures. Studies in areas of form-
finding, pattern, tessellation, morphology, 
and topology of the structure systems 
would be further investigated. Along 
with literature review, modeling 
techniques will be conducted manually 
and computationally to acquire more 
understanding about computational design 
as well as the structural composition of 
tensegrity systems. 

After that, a generic design method will 
be introduced to construct a large-
span dome (240x200x45m) with a huge 
central opening. The technique would be 
transformed into the design of a new 
tensegrity roof for Feyenoord stadium 
in Rotterdam, the Netherlands. Based 
on this particular case, there would 
be practical inputs and requirements 
for the performance of the structural 
model and optimization regarding cross-
sectional properties, material efficiency, 
geometrical rigidity, stability, and 
constructibility. 

Finally, a fabrication method and 
technique will be produced according to 
the structural model in a way that it 
would help the model to perform better 
structurally. For the constructibility, 
important details would be developed to 
help the construction process of the 
tensegrity structure in large scales.  

1.6. Relevance

On the scientific aspect, this thesis 
would contribute to constructing to the 
library of tensegrity structures with a 
design method for application in large-
scale construction. It helps to resolve 
the obstacles posed by the complexity of 
such the systems by the innovative use 
of computational tools. Besides, a way 
of improving the rigidity and usability 
of tensegrity in mega-structure is 
explored, which paves a way to realize 
the construction and fabrication of the 
buildings using this structural system. 

The collaboration between the architect 
and the engineer would be developed along 
with the process of this graduation 
project. The work-flow proposed by this 
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thesis could lead to better communication 
between different disciplines working on a 
common parametric platform.

On the social aspect, a new way of 
tensegrity application can reflect the 
technological innovation of our time in 
a complex type of building covering a 
vast open space, a stadium. A stadium is 
a major component in social interaction 
in the culture around the world. It is 
currently the place where people can 
come together to celebrate sport, enjoy 
a concert, or congregate for self-
expression, or some other similar social 
events. Society will obviously benefit from 
the impact of using tensegrity systems 
for the redevelopment of a current urban 
context. 

1.3. Tesegrity structures based on twisted prisms. a 
- 4 struts, b - 5 struts, c - 6 struts
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Chapter 2. Tensegrity Structures

2.1. Introduction to Tensegrity Structures

The term ‘tensegrity’ was invented from 
the words ‘tensile’ and ‘integrity’ by 
Fuller (1962). In his patent, tensegrity 
was described as ‘Islands of compression 
inside an ocean of tension’. Fourteen 
years later, Pugh (1976) introduced a 
comprehensive definition: ‘A tensegrity 
system is established when a set of 
discontinuous compression components 
interacts with a set of continuous tensile 
elements to define a stable volume in 
space’. In practice, tensegrity structures 
are usually modeled as a set of weightless 
discontinuous struts and continuous 
cables connected by frictionless ball 
joints. The struts bear compression, while 
the cables carry tensile forces. Both 
struts and cables are pre-stressed and 
subjected to an axial load. Over the last 
few decades, tensegrity structures have 
attracted considerable attention from many 
fields, such as architecture, mathematics, 
material sciences, and biology.

2.2. Rigidity Theory

To be able to understand structural 
principles of tensegrity structures, 
one needs to understand the essential 
knowledge about rigidity.

There are several compositions of 
tensegrity systems which need to prove 
that whether or not a given tensegrity 
structure is rigid. This question is 
obviously difficult to answer. Most of the 
cases, tensegrity structures were tested 
with a physical model, and there are a 
few the systems that were conducted using 
computational tools.

In two dimensions, the easiest way of 
constructing a rigid truss is by arranging 
the bars to form a sequence of triangles. 
A triangle consisting of pin-jointed bars 
is the simplest two-dimensional rigid 
structure, and two triangles with a side 
in common also form a rigid structure 
in two dimensions (but not in three 
dimensions, as one of the triangles can 
move out of plane by rotating about the 
common side).

To extend this approach to three 
dimensions, i.e. to construct in a three-
dimensional (Euclidean) space, one can use 
the simplest three-dimensional structure 
that is rigid, i.e. the tetrahedron; 

© pbs.org

2.1. Buckminster Fuller with his tensegrity sphere. 

2.2. Double-X(a), simplex(b), 
triple-X(c)

(a) (b)

(c)

© R. Motro
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or alternatively one can form a closed 
surface that is completely triangulated. 
These approaches are often followed in 
the design of practical structures, but 
there are also many rigid structures that 
are not triangulated. Therefore, it is 
important to have a general way of proving 
whether or not a given three-dimensional 
structure is rigid.

According to Miura and Pellegrino, in two 
dimensions, each joint has two degrees of 
freedom, i.e. two independent translation 
components, and hence for a structure with 
j joints the total number of degrees of 
freedom is 2j. Denoting by k the total 
number of kinematic constraints, where 
– for example – connecting a joint to 
a foundation counts as two because it 
suppresses both translation components, 
and by b the total number of pin-jointed 
bars – each bar counts one as it imposes a 
single ‘distance’ constraint between the 
joints it connects – we require that 

2j – k – b ≤ 0 (1.1)

This is known as Maxwell’s equation 
(Maxwell, 1964). Consider, for example, 
the structure shown in figure 2.3(a). It 
consists of four triangles, the first 
of which is connected to a foundation, 
and therefore, it is obviously a rigid 
structure. Substituting j = 6, k = 4, b = 
8 (obviously, there is no need for a bar 
between the two foundation joints) into 
Eq. 1.1. this is obtained:

2 x 6 - 4 - 8 = 0

Therefore, it could be concluded that this 
structure has sufficient amount of bars to 
be rigid.

It is crucial to realize that a structure 
that has enough bars to be rigid may not, 
in fact, be rigid, as its bars maybe 
‘incorrectly’ placed. For example, if in 
figure 2.3(a) we relocate the bar bracing 
the left-hand square, so that the right-
hand square is now doubly braced, as shown 
in figure 2.3(b), we obtain a structure 
that still satisfies Eq. 1.1. and yet is 
clearly not rigid. In this case, we have a 
single-degree-of-freedom mechanism, figure 
2.3.c). 

A structure that admits no mechanisms is 
called kinematically determinate.

Note that the doubly-braced square on 
the right-hand side of the structure in 
figure 2.3(b) declares a state of self-
stressed, there is a set of non-zero bar 

© Miura + Pellegrino

© Miura + Pellegrino

(a)

(c)

(b)

2.4. Examples of simple three-dimensional trusses.

2.3. 2-d trusses. 

(a) (b)

(c) (d)
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forces that are in equilibrium with zero 
external forces, as shown in figure 2.3(d). 
A structure that admits no states of self-
stressed is called statically determinate.

Denoting by m the number of independent 
mechanisms of a structure, and by s the 
number of states of independent states of 
self-stress, for the structure of figure 
we have s = 0 and m = 0 (statically and 
kinematically determinate), whereas for 
the structure of figure 2.3(b) we have s = 
1 and m = 1 (statically and kinematically 
indeterminate). Here, by independent we 
mean that if any mechanism is represented 
by a vector, whose components correspond 
to the tangent motions of the joint, and 
any state of self-stress by a vector whose 
components correspond to the bar forces, 
it is not possible to obtain one of the 
vectors as a linear combination of the 
others.

Therefore, Maxwell’s equation in the form 
of equation 1.1. is the only necessary 
condition for the kinematic determinacy 
of pin-jointed structures, but not a 
sufficient condition. It will be shown in 
the general, most useful way, of writing 
Maxwell’s equation is 

dj – b – k = m - s (1.2)

where d = 2, or 3 depending on the 
dimensions of the (Euclidean) space in 
which the structure is considered.

Considering the three-dimensional 
structures, d = 3, shown in figure 2.4 
The tripod structure in fig 2.4(a) has 
a single free joint plus three fully 
constrained joints; so j = 4 and k = 9. 
The unconstrained joint is connected by 
three non-coplanar bars, b = 3, to the 
foundation joints. It has no states of 
self-stress, s = 0, as the condition for 
the joint to be equilibrium in three 
directions without external forces 
requires that the bar forces be zero. 
Substituting into Eq. 1.2 gives

3 x 4 - 3 - 9 = 0 = m - 0 (1.3)

Having established that s = 0 for the 
structure of fig 2.4(a), obviously, s will 
remain unchanged if a bar is removed, 
figure 2.4(b). Hence, for this structure j 
= 3, k = 6, and b = 2. Substituting into 
Maxwell’s equation

3 x 3 - 2 - 6 = m - 0 (1.4)

This gives m = 1. The mechanism involves 
a rotation of the two bars about an axis 

passing through the two foundation joints, 
as shown in figure 2.4(b).
By an analogous argument, the structure of 
figure 2.4(a), has m = 0, from Maxwell’s 
equation, s = 1. 
 
The existence of structures with 
infinitesimal mechanisms was first 
discovered by J. Clerk Maxwell (1864), 
but it was only more recently that it 
was realized that they could be given a 
first-order (geometric) stiffness through 
a state of pre-stress (Calladine, 1986). 
This property has been successfully 
exploited in the design of pre-stressed 
cable nets and tensegrity structures.

Cubic Truss

The next example provided by Pellegrino 
is the cubic truss in figure 2.5(a), with 
members of length a lying on the edges 
of a cube plus four diagonal bracing 
members on the side faces, of length a√2. 
The four joints at the bottom are fully 
constrained. This truss has j = 8, b = 12, 
and k = 12; substituting these values into 
Maxwell's equation

3 x 8 - 12 - 12 = 0 = m - s (1.10)

Giving m - s = 0. It can be shown by the 
matrix method that this truss is both 
statically and kinematically determinate 
(m = s = 0).

Now, consider varying the shape of this 
truss by rotating the upper square in an 
anti-clockwise sense, without translating. 
Obviously, the lengths of both the 
diagonal members and of the members that 
were originally vertical, e.g. AF and AE 
respectively, vary during this process. 

According to Tarnai, the coefficient matrix 
of the system of equilibrium equationshas 
full rank, equal to 12, normally. However, 
the matrix becomes rank deficient, with 
rank of 11, in four special configurations. 
Of these, the configurations that are of 
greatest practical interest are those that 
are obtained for a rotation of the upper 
square though 45, figure 2.5(b), and 135, 
figure 2.5(c).

In each of these configurations the static 
and kinematic properties of the structure 
change from m = s = 0 to m = s = 1. The 
states of self-stress and mechanisms 
for these configurations are shown in 
figures 2.6 and 2.7. In figure 2.3 note 
that the bar forces in the top square 
are alternatively positive and negative 
as one goes round the square, whereas in 
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fig. 2.7 the bar forces in the top square 
are all of the same sign. There is an 
important difference between these two 
special configurations: in the first one, 
the mechanism allows a finite amplitude 
distortion of the structure, whereas the 
mechanism of the second configuration 
allows only an infinitesimal motion. 

In practice, imposing a state of pre-
stress on the first structure, e.g. by 
varying the length of one of its members 
with a turnbuckle, is impossible, as the 
structure will change shape instead of 
becoming self-stressed. On the other hand, 
the structure of figure 2.5(c) has the same 
type of behavior of the structure in figure 
2.6(b). It is an example of a tensegrity 
structure.

According to Tarnai, the existence of 
special configurations that are both 
statically and kinematically indeterminate 
is a general feature of trusses based 
on two interconnected regular polygons 
with n-sides (in figure 2.5 n = 4) and, 
in particular, configurations that admit 
finite amplitude inextensional mechanisms 
exist for all trusses with n even and ≥ 
4. However, for n odd, there are no such 
special configurations. 

Truss structures with a layout similar to 
figure 2.5(b) have been used for several 
applications, often in preference to the 
layout in figure 2.5(a), because their 
higher degree of symmetry leads to the 
expectation of a ‘more uniform’ stiffness 
distribution. 

2.3. Topology

The tensegrity pattern can be interpreted 
mathematically and structurally through a 
connectivity topology of the tessellation. 
In such the system, the relationships 
between vertices, edges, and faces are 
informed. A topology does not provide 
information about the distance, magnitude 
or geometry of structural members in 
Euclidian space. Therefore a multitude of 
different physical representations of one 
topology can be identified. However, the 
same joints are always connected via the 
similar bars.
A connectivity topology consists of data 
about the unique identifiers of joints and 
bars, and the start and end nodes of every 
bar. This information describes a singular 
way of connection the bars via nodes. As 
identifiers, the joints and bars often get 
a numeric label, to distinguish between 
joints and bars the latter can be written 
between square brackets.

(a) (b)

(a) (b)

© Miura + Pellegrino

© Miura + Pellegrino

© Miura + Pellegrino

2.6. (a) state of self-stress and (b) inextensional 
mechanism of first special configuration of cubic 
truss.

2.5. Cubic truss

2.7. (a) state of self-stress and (b) inextensional 
mechanism of second special configuration of cubic 
truss.

(b)

(a)

(c)
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Consider the example in figure 2.8 
consisting of three bars and four joints. 
In one matrix or with two named arrays 
we can describe the connectivity of this 
simple framework.

There are also other possibilities of 
connectivity matrices for the same 
configuration. This depends on the chosen 
numbering and which is considered as start 
joint for a bar and which is considered 
as end joint. In graph theory, this can 
be considered a simple directed graph. 
In combination with joint coordinates, 
this approach is useful for creating the 
equilibrium matrix of a framework. The 
directedness of the graph is not strictly 
necessary to describe frameworks since 
the topology does not change by reverting 
bars. So mathematically a connection 
topology can be written as the ordered 
pair: G = (V, E), where V is the set of 
vertices or nodes (joints), and E is the 
set of edges. 

Looking at figures 2.9 and 2.10, there is 
an introduction of using a combination 
of a face-vertex graph in combination 
with the vertex-vertex graph for the 
description of a topology of a given 
geometry. For the equilibrium matrix 
setup, a network graph will be used with 
its directional ordered pair written in 
form D = (V, A), where the order of every 
2-element in A determines the start and 
end joint of a bar.

Cubic Graph

In the mathematical field of graph theory, 
a cubic graph is a graph in which all 
vertices have degree three. In other 
words, a cubic graph is a 3-regular graph. 
Cubic graphs are also called trivalent 
graphs. 

Cubic graphs arise naturally in topology 
in several ways. For example, if one 
considers a graph to be 1-dimensional CW 
complex, cubic graphs are generic in that 
most 1-cell attaching maps are disjoint 
from the 0-skeleton of the graph. Cubic 
graphs are also formed such as the graphs 
of simple polydedra in three dimensions, 
polyhedra such as the regular dodecahedron 
with the property that three faces meet at 
every vertex.

An arbitrary graph embedding on a two-
dimensional surface may be represented 
as a cubic graph structure known as a 
graph-encoded map. In this structure, 
each vertex of a cubic graph represents a 

2.8. Topology of a frame

2.9. Face-vertex topology of a cube

2.10. Vertex-vertex topology of a cube

edge
[b]
[c]
[d]

start vertex
A
A
A

end vertex
B
C
D

A

[b]

[c]

[d]

B

C

D

© David Dorfman

© David Dorfman
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flag of the embedding, a mutually incident 
triple of a vertex, edge, and face of the 
surface. The three neighbors of each flag 
are the three flags that may be obtained 
from it by changing one of the members of 
this mutually incident triple and leaving 
the order members unchanged.

2.4. Single-surface Tensegrity Structures

As discussed previously, there exist a 
number of methods to assemble tensegrity 
structures based on elementary cells. 
For example, the triplex and quadruplex 
tensegrity prisms have often been selected 
as the elementary cells. A triplex 
tensegrity prism has three struts and 
nine cables, and a quadruplex tensegrity 
prism contains four struts and 12 cables. 
It is a more flexible method to assemble 
tensegrity structures based on much 
simpler elementary cells containing only 
one strut. In contrast to the existing 
methods, the elementary cells adopted here 
are not complete tensegrity structures 
by themselves, but they can be used to 
construct almost all types of tensegrity 
structures. The provement and examples in 
this section are rooted from the work of 
Y. Li et al. in 'Constructing tensegrity 
structures from one-strut elementary 
cells'. 

The definition of the elementary cells will 
follow Pugh’s definition of tensegrity in 
that no connection is allowed between two 
struts. Only those tensegrity structures 
in which each node has one and only one 
strut is considered. The elementary cell 
adopted will consist of one strut and a 
few cables. In such a design approach, the 
number of elementary cells, c, will always 
be equal to the total number of struts, 
b, in a structure. As each strut has two 
nodes, the total number of nodes, n is 
then twice c, i.e.

n = 2b = 2c (2.1)

Assuming each node in the structure is 
shared by two elementary cells, we have

n = ½.(n
c
)c (2.2)

where n
c
 denotes the number of nodes in 

each cell and <n
c
> is the expectation 

of n
c
. It follows from equations (2.1) 

and (2.2) that <n
c
> = 4. If a tensegrity 

structure is assembled from elementary 
cells with the same topology, then there 
should be four nodes in each cell, i.e. 
<n

c
> = 4.

Figure 2.11 lists all of the ten possible 

topology graphs of elementary cells 
containing one strut and four nodes. They 
are classified into four groups according 
to the number of cables. The type-0 cell 
has five cables, and it can be considered 
as the basis for other cells. By removing 
one, two, or three cables from the type-
0 cell, we obtain elementary cells of the 
other nine types. 

The elementary cells can be used to 
assemble almost all types of tensegrity 
structures. For example, the expandable 
octahedral, cylindrical and truncated 
regular tetrahedral tensegrity structures 
can be assembled from type-1, type-4, 
and type-3, respectively, while planar 
tensegrity structures can be constructed 
from the type-7 cell.

In the sequel, the type-3 will be 
selected, referred as ‘Z-shaped cell’ for 
its shape, as the main elementary cell 
to construct tensegrity structures. The 
reason for this selection is as follow. 
Firstly, if a node in a tensegrity 
structure has only two cables and one 
strut connected, force balance would 
require that they must lie in the same 
plane and the corresponding structure 
will be planar. Therefore, in a three-
dimensional tensegrity structure, there 
should be at least three cables connected 
to a node, i.e. 

s
n
 ≥ 3 (2.3)

Where s
n
 denotes the number of cables 

connected to each node. As each cable in 
the constructed structure has two nodes, 
it follows from equations (2.1) and (2.3) 
that the total number of cables must 
satisfy

s = ½.ns
n
 ≥ ½.3n = 3c (2.4)

If no cable is shared by two cells, the 
number of cables, sc, in each cell of 
a spatial tensegrity structure should 
satisfy

s
c
 = s/c ≥ 3 (2.5)

The cells of type 7-9 contains only 
two cables each and cannot be used to 
construct three-dimensional tensegrity 
structure. Secondly, adding cables to a 
stable tensegrity structure will not make 
it unstable, while removing cables is 
likely to lead to instability. Therefore, 
it is focused on tensegrity structures 
in which the ratio between the numbers 
of cables and struts is as small as 
possible. Therefore, the cells of types 
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0-2, which contain four or five cables, 
will not be considered further in this 
section. Thirdly, among the cells of type 
3-6 each of which contains three cables, 
the type-3 or Z-shaped cell can be made a 
pre-stressed and self-equilibrated one-
dimensional structure, while the other 
three types cannot. This means that it 
should be easier to design a structure 
under pre-stress stability based on 
the Z-shaped cell than on the other 
three types. Therefore, the tensegrity 
structures assembled from the Z-shaped 
cell will be focused to develop further. 
The obtained assemblies will be referred 
to as the Z-based tensegrity. 

Topology of Z-based Tensegrity

Topology determination is the first and an 
important step to designing tensegrity 
structures. In this study, the topology of 
a Z-based tensegrity will be determined 
in two steps. The first step is to specify 
the topology of cables, and the second 
is to add struts into the cable network. 
Provided that the process of adding struts 
is achievable for the specified topology 
of cables, one can readily obtain the 
topology of a Z-based tensegrity. From 
equation (2.4) and (2.5), it is known that 
each note in a Z-based tensegrity must be 
connected by three cables, i.e. s

n
 = 3. 

In the terminology of the graph theory, 
the topology of the cables is said to be 
a cubic graph, also called a 3-regular 
graph. 

It should be noted that there are a large 
number of cubic graphs. The following 
questions then arise: can all the cubic 
graphs be used to construct Z-based 
tensegrity; and if not, what are the 
conditions for a cubic graph to be 
selected? 

As the three cables in a Z-shaped cell 
are linked end to end, their topology 
constitutes a path including three edges 
according to the graph theory. The two 
end vertices of the cable path also 
correspond to the two nodes of the strut 
in the same cell. Therefore, once a 3-path 
decomposition of the cubic graph is 
admitted, one can easily add the struts 
into the topology. Here a pertinent 
theorem proved by Heinrich et al. (1999) 
is quoted.

Theorem

Let G be a simple connected 3m-regular 
graph, which, when m is odd, has no cut 
edge. Then G admits a balanced 3-path 

2.12. Typical tensegrity structures assembled from 
elementary cells
(a)octahedral tensegrity from type-1 cells
(b)cylindrical tensegrity from type-4 cells 
(c)truncated tetrahedral from type-3 cells
(d)planar tensegrity from type-7 cells

2.11. The topology graph of all elementary tensegrity 
cells containing one strut and 4 nodes.

© Li et al

© Li et al
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to achieve such a pre-stressed state is to 
set the strut length in each cell to be 
longer than the total length of its three 
cables.

Example

To illustrate some applications of the 
proposed topology design method, a 
number of simple examples will be given 
in the following. It can be shown that 
all polyhedra with three edges connected 
at each node satisfy the topology 
requirements in the corollary. This 
has inspired us to construct Z-based 
tensegrity structures following the 
topology of a polyhedron.
 
For cable nets with a regular cubic graph 
topology, struts can be manually added 
for tensegrity. For instance, take the 
pentagonal prism as the topology of a 
cable net, as shown in figure 2.13.(a). The 
topology after adding struts is shown in 
figure 2.13.(b), and the final form-finding 
result of the tensegrity is shown in figure 
2.13(c). The obtained structure is named 
as D1,2

5
 prismatic tensegrity, which is 

also special case of tradition cylindrical 
tensegrity consisting of five struts. As 
all the prisms are cubic graphs, many 
other cylindrical tensegrity structures 
can be constructed in a similar way.

Next, there is a more interesting 
example, in which the topology of cable 
is a sphericon-like polyhedron assembled 
from two half-prisms, as shown in figure 
2.14(a). The corresponding typology after 
adding struts and form-finding are given 
in figure 2.14(b,c), respectively. This 
structure resembles a configuration of 
two half-cylindrical Tensegrities fused 
together. 

Another cubic graph family is the 
hexagonal mesh shown in figure 2.15(a). 
For the hexagonal topology, there are 
two different modes of adding struts, as 
colored by cyan and magenta in figure 5a, 
respectively. Such hexagonal configuration 
has been used by Motro (2006) to classify 
and define the geodesic ‘Z’ tensegrity 
system, which always has a spherical 
shape. Here, nanostructures such as Bucky 
balls (figure 2.15(b)) and capped carbon 
nanotubes (figure 2.16(a)) are taken as 
inspirations. After adding struts and 
form-finding, it is possible to construct 
not only spherical structures resembling 
a Bucky ball but also tubular structures 
like a carbon nanotube, as shown in figure 
2.15(c) and 2.16(b), respectively.

decomposition. 

In the case of m = 1, this theorem is 
reduced to following proposition: ‘Every 
simple bridgeless cubic graph G admits a 
balanced 3-path decomposition’.

Here, balanced path decomposition means 
that ‘each vertex of G is an end of s 
paths of the decomposition for some 
fixed s’ (Heinrich et al. 1999). It is 
evidence that s can only be equal to 1 
for the 3-path decomposition of a cubic 
graph. From the viewpoint of a tensegrity 
structure, this ensures that there is no 
connection between struts. The balanced 
decomposition also excludes the situation 
where the two end vertices of a path 
coincide. This means that the two nodes 
of an added strut must be different or, 
in other words, no strut of zero length 
can exist in a tensegrity structure. 
Such a structure perfectly matches the 
tensegrity definition. Therefore, the above 
proposition provides a sufficient condition 
for those cubic graphs, which can be 
used as the cable topology of a Z-based 
tensegrity. Furthermore, we can prove 
that the restrictions of the cubic graphs 
in the proposition are also necessary 
for designing a practical tensegrity 
structure. Firstly, the topology of cables 
in the tensegrity structures of interest 
must also be bridgeless. In the graph 
theory, a bridge is defined as an edge (or 
a cable in the tensegrity structure under 
study) whose removal will disconnect the 
graph into two separate parts. Thus, a 
structure with a ‘bridge’ is unstable and 
impractical.
From the above proposition and 
discussions, the following corollary for 
Z-based tensegrity structures is achieved.

Corollary

A Z-based tensegrity structure can be 
constructed by adding to a cable net if 
and only if the topology of cables is a 
simple and bridgeless cubic graph. 
Based on this corollary, one can construct 
the topology of the structure from a cubic 
graph. Once the topology is determined, 
the next step is to set proper original 
lengths and stiffness of the struts 
and cables before using a form-finding 
procedure. As the two parameters are not 
independent for the form-finding of a 
tensegrity, for the sake of simplicity, 
we set the stiffness of all elements as 
unity. Generally, to keep a tensegrity 
structure in a state of pre-stress 
stability, its cables are all in tension 
and struts in compression. An obvious way 
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2.5. Further Developments

By now it may be apparent that there are 
more Tensegrity systems than could be 
described in this research. This part 
describes various methods by which further 
systems can be evolved, and gives brief 
descriptions of a few families of figures 
which have not been mentioned previously.

Four Methods of Evolving New Tensegrity 
Systems

One way of evolving new figures is to define 
a new concept of Tensegrity or to modify 
an existing idea. For example, it might be 
possible to find a different interpretation 
of the soap bubble analogy.  

A second method is to discover a new 
relationship between struts and cables. 
There are several ways of doing it, as 
will be suggested later. 

A third method, will be discussed in 
detail later on, is to discover or develop 
new polyhedral figures which can be used 
as bases for Tensegrity systems using an 
already established relationship between 
struts and cables. 

A fourth method is to extend an existing 
idea or figure.

New Relationship between Struts and Cables

According to Pugh, there are several ways 
of discovering new relationships between 
struts and cables, the first being to 
interpret the relationship between the 
struts and cables of an existing figure in 
a different way. For example, the expanded 
octahedron could be regarded as a figure 
composed of six struts, each of which is 
surrounded by a diamond arrangement of 
cables. Alternatively, the same system 
could be regarded as a figure composed of 
six struts which are contained by eight 
triangles of cables. Though this new 
description of the relationship does not 
produce further figures, in this case, it 
does illustrate the general idea. 

Another method of evolving a new 
relationship between struts and cables is 
to manipulate the struts and cables of 
an existing figure until a new pattern is 
produced. A good example of this method 
appears in the truncated tetrahedron, 
with its zigzag arrangement of struts 
and cables, is evolved from the expanded 
octahedron, with its diamond patterns of 
struts and cables.

2.13. Construction of Z-based tensegrity based on a 
pentagonal prism. (a) The topology of a pentagonal 
prism (b) The topology of the pentaplex tensegrity 
prism (c) The form-finding result of the pentaplex 
tensegrity prism

2.14. Construction of Z-based tensegrity based 
on a sphericon-like polyhedron. (a) The topology 
of a sphericon-like polyhedron assembled by two 
perpendicular half-prisms (b) The topology of struts 
(c) The form-finding result

2.15. Construction of Z-based Bucky ball tensegrity. 
(a) A hexagonal mesh. There are two different modes 
of adding struts, which are colored by cyan and 
magenta, respectively (b) The topology of C

60
 Bucky 

ball (c) The form-finding result

2.16. Construction of Z-based tensegrity resembling a 
capped carbon nanotube. (a) The topology of a capped 
(5,5) carbon nanotube (b) The form-finding result

© Li et al

© Li et al

© Li et al

© Li et al
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A final approach is to consider the various 
ways in which struts and cables can be 
related to each other. For example, most 
of the systems described have had a 
strut on the other side of each strut. 
In the diamond-pattern systems, they 
were directly opposite one another, and 
in zigzag-pattern systems they were 
staggered. Since there must be a strut end 
on the other side of each strut, so that 
its cables can be fixed to something, then 
the only other possibility would appear to 
be to have more than one strut on one or 
both sides. 
All the relationships shown so far have 
had single struts suspended in space 
or joined end-to-end in circuits. Other 
relationships could be established by 
joining more than two strut ends together 
and then creating stable configurations by 
adding components. 

Basing Tensegrity Systems on Other 
Polyhedra

Perhaps the easiest way of evolving 
further Tensegrity systems is to find 
additional polyhedra which can be used as 
bases for such figures. Further polyhedra 
often are found in various publications 
or evolved from one’s own studies. In 
the latter case, a background knowledge 
of polyhedra is invaluable. In this 
case, a polyhedron is used to determine 
the approximate configuration of the 
tensegrity structure in design and obtain 
the topology of cables by its vertex 
truncation. The polyhedron is truncated 
by cutting all its original vertical and 
creating a new polygonal facet around 
each vertex. No matter how many edges are 
connected at a vertex in the original 
polyhedron, the truncation will make 
each new vertex having just three edges 
connected. That is, the new polyhedron 
is guaranteed to be an appropriate cubic 
graph for the design of Z-based tensegrity 
structures. For instance, figure 2.17(a) 
shows a pyramid, which is originally not 
a cubic graph because the vertex G has 
four edges. However, the polyhedron, after 
truncation, has evidently become a cubic 
graph with three edges at each vertex.

The truncation method is not convenient 
in constructing cubic graphs to be used 
as the topology of cables but also in the 
addition of struts. We still take the 
pyramid in figure 2.17(a) as an example. 
The red lines denote the new edges 
generated owing to the truncation, named 
the ‘truncating-edge cables’, and the 
magenta lines denote the remaining segment 
of the edges in the original pyramid, 

2.17. Construction of Z-based tensegrity from a 
truncated pyramid. (a) A truncated pyramid. The red 
lines stand for new edges produced by truncation, the 
megenta lines stand for the remaining edges of the 
original pyramid and the blue line stands for the 
added strut (b) The form-finding result

2.18. Construction of Z-based tensegrity from (a) A 
truncated triplex prism and (b) regular truncated 
octahedral

2.19. Construction of Z-based tensegrity from a 
concave polyhedron (a) A concave shaped polyhedron 
(b) The form-finding result

© Li et al

© Li et al

© Li et al
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called the ‘remaining-edge cables’.
Once the topology of cables has been 
obtained, we can add the struts in a 
truncated polyhedron according to the 
following two rules:

(i) Each cell contains only one 
remaining-edge cable, and this cable must 
be in the middle of two others;
(ii) The two nodes of each strut must be 
on two different polygon faces.

If one adds a strut between D and E as 
the blue line in figure 2.17(a), the 
cell containing the next remaining-edge 
cable CI will be uniquely determined by 
repeating the same procedure. The final 
form-finding result of the truncated 
pyramid tensegrity structure is shown in 
figure 2.17(b).

Examples

Comparing figure 2.17(a,b), it is seen 
that the equilibrium configuration of the 
obtained tensegrity is similar to the 
shape of a truncated pyramid. Therefore, 
this method makes it convenient to 
design tensegrity structures from specific 
polyhedra. To construct a tensegrity 
structure with a required configuration, 
one just needs to choose a polyhedron with 
a similar shape and to perform the above 
described manipulation in a canonical 
manner.

Using the polyhedral truncation scheme, 
for instance, we have constructed 
tensegrity structures having the 
approximate shapes of a truncated 
triangular prism and a truncated regular 
octahedron from the corresponding 
polyhedra. The form-finding results are 
shown in figure 2.18(a,b), respectively. 
Similarly, the structure in figure 5c can 
also be achieved easily by this truncation 
scheme from an icosahedron.

It is worth pointing out that the 
truncation method is applicable not only 
for polyhedra, but one can also use this 
scheme to design tensegrity structures of 
many other different shapes, e.g. concave 
polyhedron shapes. As an example, figure 
11a shows a concave polyhedron, which then 
leads to a heart-shaped tensegrity, as 
shown in figure 2.19(b). 

2.6. Constructing Physical Models of based 
on the Outputs of Digital Models

A proper understanding of Tensegrity can 
only be gained by building and studying 
models of the figures. Depending on the 

type of tensegrity models, the different 
methods are applied, there is no method 
especially in favor. However, with 
large and complex model of tensegrity 
structures, it is recommended that one 
should build the model bottom-up, and 
one by one at a time, in the end the 
finished model will be achieved and minor 
adjustments can be added. The physical 
model techniques presented in this thesis 
represents the combination of cutting-edge 
technology and the craftsmanship of low-
tech construction.

Nowadays tensegrity structures are still 
designed in a way that purely based 
on physical models or mathematical 
complexity. From the beginning of the 
design process, designers would use 
all struts with the same length and 
approximate the length of rubber bands 
based on the elastic performance of these 
bands. This way limited the development of 
tensegrity structures enormously because 
the figure achieved in the end may be a 
different version of what the designer 
expected. The other way is that designers 
would use complex mathematical equations 
and computations to solve the geometrical 
complexity of tensegrity to figure the 
exact lengths of structural elements in 
such the system. This way demands very 
high background knowledge of mathematics 
which is normally not applicable for most 
of designers who think visually. 

The method I propose is that by studying 
some principles of the topology of 
tensegrity structures, the relationships 
between struts and cables, one could 
make easily the 3d model in a computer 
program, Rhinoceros for example, and 
export all the information, lengths of 
structural elements, structural topology 
and geometry, from this digital model to 
build the physical ones. There is always 
a need to check between the computational 
result and physical model because having 
a tensegrity on the screen does not mean 
that it can stand stably in reality. This 
seems similar to the way of checking back 
and forth between hand calculation and 
computational results because it is very 
easy to come up with a mistake in the 
computer or the process simulated in the 
software does not match with what happens 
in reality. 

In reality, one needs to pay attention 
that the length of the cable will be 
slightly shorter than the length in the 
digital model to provide pre-stress 
forces to the cables. One could make the 
fastening system for every single cable 
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and adjust after finishing the construction 
of the whole model. But this way is very 
time-consuming and not very practical for 
such a small scale model of tensegrity. 
Also without pre-stress from the 
beginning, a tensegrity structure cannot 
achieve its equilibrium state. So I would 
suggest that making a 3D digital model 
is a necessary condition, and building a 
physical one is a sufficient condition to 
have a successful tensegrity design. 

It is best to creat a model in two stages. 
In the first stage a set of rough ‘working’ 
struts and cables is assembled, to form a 
crude model of the figure. In the second 
stage, the struts and cables of that model 
are replaced, one at a time, by better 
component, to complete the model. Though 
this may appear time-consuming, it is 
actually quicker and results in much more 
accurate models than if the final version 
were built straight away.

Most of the simple tensegrity figures 
described in this thesis are based on 
polyhedra or prism, and it is useful 
to be able to refer to a model of the 
appropriate polyhedron when constructing 
a model. Larger and more complex models 
are the combination or multiple of one or 
several types of simple tensegrity figures.

Struts

One of the best materials for struts is 
dowel – long, circular wooden rods which 
can be bought at many hardware stores, 
hobby shops, and stationary shops. 
Dowel 3-5mm in diameter is suitable for 
most models. Because dowel is a natural 
material, so its properties are not 
guaranteed. In additional, one should 
select lengths which are as straight as 
possible, as bent dowel often has a grain 
which is not straight and so many splits 
when being loaded. Also if they are not 
straight, bending moment will be created 
within the system, which will cause the 
impurity of the system.
Dowel usually comes in 1m lengths, so each 
length can be cut with a knife to provide 
several struts following the length given 
by the digital models. At two ends of one 
strut, there is 5mm extra in length as the 
space for fitting the cables. The ones, 
which are shorter or longer than this 
range, are difficult to handle by human 
hands. 

Fitting Cables

As mentioned above, while cutting the 
struts, one should pay attention to cut 

2.20. The simplex

2.21. A hexagonal cylindrical tensegrity 
and A tensegrity column

2.22. Icosahedral tensegrity 

2.23. Dodecagonal tensegrity
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extra 5mm at each end of the stick to 
leave space to fit cables. The other side 
of a knife is used to make a convex ring 
at two ends to keep the cable knots in 
places that it will not slip along the 
strut. By doing this, it helps to prevent 
of splitting if one driving a nail into a 
strut. 

Also, all joints in a tensegrity system 
are pin-jointed nodes. By using a knotting 
technique, it makes the joints becoming 
very flexible and can be well-considered 
pin-jointed connections. 

Cables

The best cable material I have found is 
braided nylon fishing line can be easily 
found in every fishing shop in town. A line 
with a breaking strength of 10 kg is stiff 
enough for most models. They are slender, 
transparent and very lightweight.
One of the main advantages of a nylon 
line is that it is slightly elastic, but 
not over-elastic, so it can be tied very 
tightly to produce high tensioned models. 
The slight elasticity helps take up the 
inevitable inaccuracies; if the cables 
are inelastic and one cable slightly too 
long, the figure would be slack and look 
very untidy. The fishing line can return 
to its original length after it has been 
loaded as well. In fact, I always make 
the cables shorter than the lengths from 
digital models to give it slightly more 
pre-stress, so in the end, the figure will 
be better self-equilibrium.

Tying the Cables

When one started tying the cables, one 
should cut the fishing lines as few times 
as possible. This way will save time, 
as each time the line is cut, its ends 
must be tied securely to prevent their 
coming undone. A lot of time can be also 
saved if the cables are tied with simple 
loops formed by thumb knots and half 
hitches. Though fancier knots can be used, 
they take longer to tie and are no more 
efficient. 

Once the line has been fastened to the 
strut, a cable can be measured and tied to 
the next strut. Rather than measure each 
length with a ruler, it is quicker to cut 
a measuring stick of an appropriate length 
from a waste piece of dowel and measure 
each cable against it. This saves all 
the time involved in trying to read the 
calibrations on a ruler. 

There are several points concerning 

the length of the cables. The first is 
that it is important to measure all the 
cables when they are pulled tight and to 
measure every length at about that same 
tension. The second point is that as one 
builds, allowances must be made for the 
elasticity of cables; otherwise, a very 
floppy model will result. Often, especially 
with a large figure, it may appear that 
the cables are much too short and that 
the saucer-shaped figure being produced 
cannot possibly become spherical. However, 
it is important not to try to compensate 
by tying the rest of the cables slightly 
longer. The rest of the cables should be 
tied the same length. When the figure is 
complete, they will all stretch equally to 
produce a spherical model. 

Since so many hinges on the degree 
of model-making accuracy and on the 
stretching quality of fishing line, one 
of the best ways of finding out how long 
to tie the cables is by the experience 
of building models. The lessons gained 
from one model can be used on the other, 
related models, even if they are not 
exactly similar. 

The only way to know the lengths of struts 
and cables is using computational modeling 
and extract the lengths of these elements 
from the digital model. For strut cutting, 
the distance between two convex rings is 
the same with the lengths from the digital 
model. The distance from the convex ring 
to the end is 5 mm. For cable tying, the 
distances between two knots are always 
(5 mm) shorter than the lengths of the 
element from a digital model. 

2.7. Geiger’s Dome

A number of long span 'Tensegrity' dome 
type structures have been realized in the 
previous decade following the inventions 
of R. Buckminster Fuller (Fuller) and 
David H. Geiger (Geiger). These structures 
have demonstrated structural efficiency in 
many long-span roof applications. While 
these domes can be covered with a variety 
of roof systems, all the tensegrity 
domes built to date have been clad with 
tensioned membranes. As a consequence 
of the sparseness of the Cable-dome 
network, these structures are less than 
determinate in classical linear terms and 
have a number of independent mechanisms 
or inextensional modes of deformation 
(Pellegrino). In these modes, a load is 
primarily resisted by changes in the 
geometry of the tensile network. The 
relative flexibility of these structures 
to asymmetric loading has made the use of 
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tensile membranes for the roof a logical 
choice.

In 1984 David Geiger developed the idea 
of the “Cable-dome” and realized for the 
Sun Coast Dome in St Peterburg, Florida 
(diameter 210 m). Figure 2.24 shows 
the dome during construction. This is a 
lightweight membrane roof supported by a 
pre-stressed cable-and-strut structure 
that was invented by David Geiger (Geiger, 
Stefaniuk, and Chen 1986). Geiger's 
structure was a successful, practical 
realization of an earlier tensegrity dome 
concept invented by Buckminster Fuller 
(1964).

The cable-and-strut structure consists of 
24 radial cable-and-strut trusses, which 
are pre-stressed by four cable hoops, 
two inner tension rings, and a perimeter 
compression ring. Each of the radial 
trusses, see figure 2.25 for nomenclature 
details, consists of a ridge cable that 
connects the top tension ring to the 
perimeter, of 5 vertical struts and five 
diagonal cables, which join the ridge 
hoops, also the top tension ring to the 
bottom one. Note that the cable hoops are 
connected only to the bottom ends of the 
struts. 

The concept of the supporting structure 
for this dome is best explained with 
reference to the smaller version shown 
in figure 2.25 following Pellegrino's 
explaination. This dome consists of only 
twenty-four cable segments and eight 
struts.

Structural Behavior

In figure 2.26, it will now be shown that s 
= 1 for this structure. A radical, taken 
in isolation from the rest of the dome, is 
in equilibrium if two forces of magnitude 
√2 are applied at joints 1 and 5, and a 
force of magnitude 2√2 is applied at joint 
13, all forces act radically inwards, 
as shown in figure 2.26. This loading 
induces tensile forces of magnitude √3 in 
the ridge element 1-9 and the diagonal 
element 5-9, and of magnitude 2√3 in 9-17 
and 13-17. It also induces compressive 
forces in the vertical elements 1-5 and 
9-13, respectively of magnitude 1 and 2. 
A similar set of three radical forces 
can be applied to the other three beams 
in the dome. Now, turning to the two 
tension rings and the hoop, we note that 
they are in equilibrium if radical forces 
of equal magnitude are applied at each 
corner: outward forces of magnitude √2 
would induce tensile forces of magnitude 1 

© Geiger Engineers

2.24. Sun Coast dome during construction

© Miura + Pellegrino

2.25. Small-scale version of structure of Sun Coast 
dome

2.26. State of self-stress

© Miura + Pellegrino
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in the hoops, etc., figure 2.26. However, 
these external forces can be transmitted 
by the joints between the beams, the 
rings and the hoop, and therefore the 
set of axial forces obtained above is in 
equilibrium without any external loads. 
Having found one state of self-stress 
for the structure, it is natural to ask 
whether any more independent states of 
self-stress can be generated by a similar 
process. For equilibrium of the rings 
and the hoop, all states of self-stress 
must be 4-fold rotationally symmetric. 
In addition, the forces applied to each 
radical truss can only be radical and in 
the ration 1:1:2, or in-plane equilibrium 
would be violated. With these constraints, 
there is only one independent solution, 
for zero external forces.
For s = 1, m = 13, Pellegrino classified 
these mechanisms into following four 
groups:
- Out-of-plane displacement of the mid-
ridge joints. There are four independent 
mechanisms of this type, which involve 
displacements of joints 9, 10, 11, 12. For 
instance, in one of these four mechanisms:
– joint 9 moves by equal amounts in the 
direction x and –y.
- Rotation of the two tensions and the 
hoop about the z-axis, see figure 2.27. 
These three mechanisms are independent.
- In-plane distortion of the square ‘four-
strut’ links formed by two corresponding 
elements of the top and bottom inner 
rings, and the two struts which connect 
them. The four joints at the corner of 
the square move in a diagonal direction, 
alternatively in and out as shown in figure 
2.27. 

Although the dome contains four different 
square ‘four-strut’ links, only (any) 
three mechanisms of this type are 
independent. The fourth mechanism can be 
obtained as a linear combination of the 
other three mechanisms in this set, and 
of the two ring rotations in the previous 
set. 

- Global mechanism, such as a rigid-body 
rotation of the prism formed by the inner 
rings and the four struts joining them, 
about any horizontal axis through the 
centre of the prism.

2.8. La Plata Stadium

La Plata, in Buenos Aires, Argentina, is 
a 53,000-seat capacity stadium originally 
opened in 2003, is formed from the 
intersection of two 85 m circles, with 
48 m between their two centers. Designed 

2.27. Mechanisms of the simple dome

2.28. Physical model of the simple dome

© Miura + Pellegrino
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by architect Roberto Ferreira, the 
stadium is receiving a 29,036 m2 tensile 
roof featuring Birdair’s steel cable 
systems and PTFE, a Teflon®-coated woven 
fiberglass membrane. Around the perimeter 
is the octet steel tube compression ring 
consisting of 45 octahedron/tetrahedron 
modules, forming a load bearing ring that 
will support the roof. The top chords of 
this ring are the starting line for a dome 
formed by a triangulated cable network. 
The system features tensioned steel 
cable hoops at three different levels, 
together with vertical columns, diagonal 
cables, and ridge cables, thus deploying a  
tensegrity design. True to its tensegrity 
deployment, PTFE panels will be added as 
cladding, and will not play a supporting 
function; they will float in the tensegrity 
structure, pulled stiff in the same way 
that a drum head is tautened.

2.29. The tensegrity roof of La Plata stadium

© estadiolp.gba.gov.ar
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Chapter 3. Computational Design of 
Tensegrity Systems for Large-span 
Structures

This chapter is a collective of several 
discoveries done using computational 
tools, specifically: Rhino+Grasshopper, 
two associative parametric 3D modeling 
programs, and Oasys GSA, a structural 
finite elements analysis (FEA) software. 
Several experiments on structural design 
are conducted to develop the idea on how 
to use computational structural design at 
the beginning of the design process. 

The purpose is to investigate the use 
of computational structural tools 
for designers. During the process of 
investigation a variety methods, the 
way in which a designer interacts with 
the model were explored. This is only 
the modest part of the wide range of 
possibilities that can be done. 

Combining computational design and 
structural design brings several 
advantages. It is a reduction of the 
workload when analyzing multiple and 
complex models. While traditionally one 
would have to export the geometry of the 
structure to FEM software and then add 
structural properties to the geometrical 
model; this step has become obsolete: the 
structural data (beams, nodes, loads, 
constraints) have become part of the 
computational model. 

The combination of structural design 
and computational tools also allows for 
direct feedback on the model in the very 
early stage of design to show whether or 
not the proposed design alternative is 
feasible. This supports a concept that it 
is possible to obtain more information 
about the structural performance in early 
stages of the design when all design 
goals are still vague. Exploring this 
possibility can give the power to a 
designer to be aware of the possibilities 
and impossibilities of the design and to 
make informed decisions on choosing design 
directions. In a way, the method helps 
to bring back the position of a master-
builder in the computational era of 21st 
century.

3.1. Programs in use

Computational 
Modeling

Form-finding and 
Structural Analysis

+GEOMETRYGYM
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3.2. Design method

STRUCTURAL TOPOLOGY + GEOMETRY
TESSELLATION

GEOMETRIC COMPUTATIONAL MODEL

SIMILAR 
STRUCTURAL
 BEHAVIORS

COMPARING STRUCTURAL
 BEHAVIORS

COMPUTATIONAL 
FORM-FINDING METHOD

EXPECTED FORM

STRUCTURAL ANALYSIS

ANALYSIS RESULTS

PHYSICAL MODEL STRUCTURAL MODEL

Y
E
S

Y
E
S

NO

(1)

(2.1) (2.2)

(3)

(4)

(5)

(6)

(0)

NO

manual

digital
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3.1. A Design Method

This section is a summary of the design 
method for a computational and structural 
model of complex tensegrity structures 
using Rhinoceros, Grasshopper and Oasys 
GSA in combination. The implementation of 
the workflow is shown by these steps in 
diagram 3.2 which identifies several stages 
in the construction of a computational 
structural model. Sometimes, it costs a 
enormous amount of time to go back and 
forth within options before figuring out 
the appropriate way to go.

(1) Geometric Computational Model

Acquiring topological and geometrical 
knowledge about tensegrity structures 
(0), one can start design some simple 
alternatives with a smooth surface as the 
starting point. This simple surface can 
always be simplified to a rectangular shape 
with u, v divisions which can be built 
on a quadrangular grid of vertices. One 
needs to transform this surface into a 
tessellation of singe-surface tensegrity 
and then double-surface tensegrity systems 
having networks of struts and cables 
spatially articulated (will be explained 
in detail later on). A new computational 
method of constructing double-surface 
tensegrity systems will be extensively 
discussed in this chapter.

(2.1) Building Physical Model

By taking information of element 
dimensions from a geometric computational 
model (1), one can build a physical model 
to see if the designed tensegrity works in 
reality with the real influence of gravity. 
Understanding behaviors of tensegrity 
structures through the real models remains 
the best way to study such a complex 
structural system.

(2.2) Build Structural Model

Using GeometryGym - a plugin of 
Grasshopper, all structural elements 
(nodes, beams, supports, sectional 
properties, materials) are defined 
beforehand in Grasshopper as a parametric 
model. Then this model is exported to 
Oasys GSA which is only considered a 
calculation platform in this case. There 
is a possibility to even conduct the 
calculation in Grasshopper, but since 
structural performances of tensegrity 
systems are complex, it is better to do it 
in Oasys GSA.

(3) Comparing structural behavior

One can try to apply some similar load 
cases (Gravity, Node loading) to both 
the physical model and structural model 
to see whether they perform similarly. 
If the performances are similar (the way 
they deform), the right form-finding method 
is achieved. Otherwise, one needs to go 
back to the structural model and try other 
form-finding options.

(4) Form-finding

The appropriate form-finding method found 
in (3) with the option 'ignore form-finding 
properties' in Oasys GSA together with the 
right way of applying pre-stress forces to 
the systems. One can continue to find the 
expected form which has some similarities 
with the designed structure in (2).

(5) Structural Analysis

When the expected form is achieved, some 
more load cases are applied to the model 
to check its structural performances and 
stability. 

(6) Analysis Results

After all the experimentations, some 
conclusions on the way of doing will be 
provided as well as some recommendations 
for further studies and developments.
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3.2. Bucky's Dome with a Central Opening

Bucky’s dome and Geiger’s dome were 
investigated previously, and these designs 
were realized in large-scale projects 
such as stadium or concert hall. But they 
are all fully closed domes, without any 
openings. To achieve a good design for 
an open-air stadium, it should have a 
large opening in the center as a typical 
typology; otherwise, they will become 
a place for indoor sports which is a 
different type. 

Digital Model

For studying this type of topology, 
Bucky’s design of the dome was taken, and 
a big opening was added in the center 
of the dome. This combination forms a 
new concept of tensegrity for large-
span projects. The dome has a span of 80 
meters in diameter, and the diameter of 
the central opening is 40 meters without 
any interrupting structural elements in 
the opening. From outside in, there is 
a large compression ring providing 12 
pinned supports for the entire dome. These 
supports are connected to 12 struts in the 
next circle with 48 cables. The tops of 
these struts are connected to 12 struts 
in the next round with again 48 cables. 
The logic is continued to the third ring 
with other 12 struts, and the final ring 
will be formed by 12 struts connected, one 
by one. This inner ring is in tension, 
which means it only needs to be made from 
cables to bear the forces. But cables 
are very flexible, and there are a lot 
of displacements so that the inner ring 
is made by bar elements to from a stiff 
circle. 

Regarding structural principles of 
behaviors, the dome performed similarly to 
Bucky’s dome. This can be explained by the 
similarity of structural composition or 
structural topology of cables and struts. 
To simplify, it can also be explained in 
the way of K. Miura and S. Pellegrino in 
‘Structural Concepts’ for categorizing its 
state of self-stress and mechanisms. 

The dome could be considered constructed 
from a simple cell which is the 
combination of one strut, five cables, 
and four nodes. In total, the system 
contains 24 struts of 10 meters, 12 struts 
of 11 meters, 216 cables Ø10 with three 
different lengths. 

Physical Model

The physical model was built pretty much 

3.4. Digital model of Bucky's dome with a central 
opening in Rhinoceros

3.3. Bucky's dome, B. Fuller, 1964

3.5. Generating structural model
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3.6. Bucky's dome with a central opening

(b) Bucky's dome with a central opening

(a) Plan of Bucky's dome

3.8. Form-finding result3.7. Physical model

Analysing this simple system helps to 
understand and to figure out the right 
form-finding method for more complex 
systems afterward.

After conducting form-finding with option 
‘ignore form-finding properties’ in Oasys 
GSA, the tops of struts slightly deformed 
inwards, which is similar to the physical 
model. So this form-finding technique is 
the right choice for more complex ones.

Diameter: 80m
opening diameter: 40m
cantilever: 20m
Strut length: 10M
Cable: Ø10MM
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(a)

(c)

(e)

(b)

(d)

(f)

3.9. Physical model of Bucky's dome with a central 
opening
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(a) Beam displacements | Max: 100 mm

(b) Beam displacements | Max: 100 mm

(c) Axial stresses | Max: 20e9 Pa

3.11. Structural performance under Pre-stress forces, 
Gravity and Node loading

3.10. Structural performance under Pre-stress forces 
and Gravity

(a) Beam displacements | Max: 1.25mm

(b) Node displacements | Max: 0.1mm

(c) Axial stresses | Max: 20e9 Pa
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(a) Creating structural nodes and supports

a
p
p
l
y
 
p
r
e
-
s
t
r
e
s
s
 
f
o
r
c
e
s

(b) Creating bar element, section, material for struts

(c) Creating tie element, section, material for cables

(d) Creating load case: Gravity 

(e) Creating load case: Pre-stress forces in cables(f) Double click this component to export the model 

3.12. Building structural model using GeometryGym in 
Grasshopper
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3.13. A network of struts within a network of cables 
with octagonal pattern, based on Z-topology

similar to the digital model. There are 
a number of minor differences. The model 
has been constructed bottom-up from the 
compression ring first and then adding 
struts one by one, from the outer ring 
to the inner ring. The physical model 
performed as expected in structural 
principles following the Geiger’s dome 
analysis of Pellegrino. In the physical 
model, it is observed that there are a 
number of cables which are not in loading 
so they can be removed. But on the 
other hand, for safety reason, they can 
stay in case other cables are broken in 
unexpected situations. The compression is 
clearly in loading. It can be seen that 
there are several struts bent (because 
of buckling, not bending forces, it is 
all axial forces). All structural members 
are subjected to axial forces following 
exactly the principle of tensegrity. No 
strut touches the others, and they are all 
floating in the network of cables.

Form-finding 

After conducting form-finding with option 
‘ignore form-finding properties’ in Oasys 
GSA, the tops of struts slightly deformed 
inwards, which is similar to the physical 
model. So this form-finding technique is 
the right choice for more complex ones.

Gravity 

There is pure compression in struts 
and pure tension in cables. The entire 
structure became very rigid after form-
finding, and it mostly works in tension 
strength. The inner ring deforms the most 
(0,1mm). From the outer ring to the inner 
ring, the magnitudes of pre-tensional 
forces decrease.

Nodal Loading

When a nodal load (-1000kn) is applied, 
the surrounding areas are affected in all 
directions. This behavior is also similar 
to the physical model. The rigidity of 
tensegrity structures depends on the pre-
stress forces in cables that gives the 
structure the state of self-stress. Soap 
film and force density method cannot be 
applicable in this type of tensegrity, 
only ‘ignore form-finding properties’ 
works. This technique takes the deformed 
shape and internal loading from form-
finding as the input for the next analysis.

3.3. Toward New Structural Topology and 
Geometry of Tensegrity Systems

Re-constructing Z-based Single-surface 
Tensegrity Structures 

To construct Z-based single-surface 
tensegrity systems based on a polygonal 
tessellation, one needs to start with a 
certain polygon in the pattern, and then 
find adjacent polygons on the initial 
one. After that, using Z-based elementary 
cells, one can create a strut by 
connecting two vertices of two neighboring 
polygons in a way that it forms Z-shape, 
figure 3.13. In this method of constructing 
tensegrity systems, the relationship 
between the tessellation of cables and 
struts is critical. One has to define a 
network of cables beforehand to be able 
to determine struts by knowing adjacent 
polygons. Translating this logic directly 
to programming is challenging. 

There is a better way to achieve such 
the systems. The method is going back 
to the fundamental of geometry: points. 
Everything will start from a quadrangular 
grid of vertices, considering u and v 
dimensions, in which one can set location 
(i,j) index pairs to every point. Taking 
this quadrangular grid as a platform, one 
can creaet a logic to build a network 
of cable and various networks of struts 
independently. In this step, there is 
no need to relate struts to the cable 
network. In the end, the pattern of struts 
will fit perfectly the network of cables, 
and exactly folloy Z-topology because they 
are initially defined on the same platform.  
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3.16. Two typical compositions of struts around an 
octagon or a square in the tessellation.

3.14b. Numbering the generic quadriangular grid which 
is the base for defining the network of struts and 
network of cables. 

n0

n1

n2

n3 n4

n5

n6

n7

n0 = (i+1, j)
n1 = (i, j+1)
n2 = (i, j+2)
n3 = (i+1, j+3)
n4 = (i+2, j+3)
n5 = (i+3, j+2)
n6 = (i+3, j+1)
n7 = (i+2, j)

3.14a. Tessellation from a generic grid of vertices

n2 = (i, j+2)
n6 = (i+3, j+4)

n0 = (i+4, j)
n4 = (i+2, j+3)

n0

n2

n4

n6

3.15. Procedural descriptions of struts and cables 
based on generic quadriangular grid
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(a) Quadriangular grid based 
on grid of points

(c) Define the location 
of cable network on the 
quadriangular grid

(b) Define the location of strut network on the quadriangular grid

+

(d) Strut network + cable 
network

3.17. The network of struts and network of 
cables are independently defined based on 
the generic quadrangular grid of points. 
In the end, they are assembled together 
to form a single-surface tensegrity 
structure. There is no need to figure out 
the z-topology or adjacent hexagons to 
define strut network which is no longer 
depending on the network of cable but the 
generic quadrangular grid.
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3.18. Tesselatizing and tensegritizing a simple dome with a central 
opening for an octagonal pattern (8-gon) | Single-surface tensegrity

(b)

(b)

(c)

(c)

(a)

(a)

3.19. Adding normal struts (in pink) in the center of hexagonal cells 
to increase the thickness of the shell and handle out-plane loading 
applying to octagonal pattern (8-gon)
The in-plane struts (In blue) remain in the same reference surface
extra cables are added to connect normal struts to in-plane struts
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(b)

(c)

(a)

3.20. Adding outer bracing cables (thin lines in pink) to limit the 
rotation of pin-jointed connections
Applying to octagonal pattern (8-gon)
These bracing cables connect tops of normal struts in order
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Double-surface Tensegrity Structures 

As mentioned previously, with one-bar 
elementary cells, almost all kind of 
tensegrity systems can be constructed. 
But actually, this type of tensegrity is 
only based on one reference surface which 
is relatively fragile when the structure 
becomes large and complex because the 
entire structure almost has no height 
to handle out-plane loads. To achieve 
expected structural performance, the shell 
of tensegrity needs a certain height. One 
can argue that the height of the structure 
can be acquired by rotating every strut 
to make them out of the surface. This way 
would consume a lot of time, and it is 
difficult to rotate struts that way since 
the rotating axis needs to be defined and 
this axis will keep changing over the 
spherical (or even free-form) surfaces. 

One simple way to add thickness to the 
system is to add normal struts in the 
center of n-gonal (hexagonal, octagonal) 
cells of the above system. In such a 
tessellation, at the center of every 
n-gon of the tensegrity shell, a normal 
strut will be added along with several 
cables to connect it to the vertices 
(the ends of struts) of these n-gons. 
Doing this way helps to increase the 
thickness of the system, and it performed 
better in the physical model. But there 
are two issues of this method. First of 
all, other struts still stay on a non-
height surface, so it does not seem to be 
strong enough; thicknesses are desired 
locally in the system. Also because the 
number of struts is large, they are going 
to touch each other. So these struts 
should be made out of the co-surface to 
be better structurally. This requirement 
can be achieved by having a tensegrity 
with two reference surfaces; the second 
one could be simply the offset of the 
first reference surface from the one-
bar elementary cells system. Using the 
similar logic of adding struts that Li et 
al proposed in ‘Constructing tensegrity 
structures from one-bar elementary cells’, 
but instead of staying on the same surface 
the first end of a strut will be on the 
first tessellation and then the second end 
will be the second tessellation. Repeating 
the logic, an expected space-shell of 
tensegrity structure will be achieved in 
the end. 

From two reference shells of tessellation, 
one can build a space-shell of tensegrity 
structure in another way which is based 
on cylindrical tensegrity cell, one of 
the most popular and simplest tensegrity 

structures so far. Again, one needs to 
do the offsetting of the first reference 
of tessellation. When two reference 
tessellations are achieved, there are 
several n-gonal cylindrical geometries are 
automatically created; they are sitting 
next to each other. With a cylindrical 
2n-gon, one can build n-gonal cylindrical 
tensegrity cells. For example, with a 
hexagonal cylindrical figure, one can add 
three struts evenly, or with an octagonal 
cylindrical figure, one can add four struts 
evenly to the network of cables, and so 
on. These cells are not tensegrity by 
themselves since they have more cables 
than they need and the topology is not 
exact for them as independent figures, but 
as a whole, they can form a very well-
performed tensegrity structure.

In summary, there are two types of space-
shell tensegrity structures that are based 
on two reference surfaces of tessellation. 
The tessellation should be a bridgeless 
cubic graph. The first one would have 
struts constructed following Z-based 
typology; the second one would have 
struts constructed based on cylindrical 
tensegrity types. To reinforce these 
systems, normal struts with extra cables 
are needed. In the first one, the two 
reference tessellations will be merged 
in the end into a single network of 
cable, the geometry of struts remain 
spatial. In the latter, the two surfaces 
of tessellation will stay; some extra 
cables will be introduced to connect these 
two separated networks of cables. Struts 
remain floating in both cases. 

With double tensegrity, it is more 
convenient to locally vary the thickness 
of the tensegrity space-shell.  
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MAKE IT SPATIAL!?

3.21. Based on Z-topology
(Mentioned in previous chapters)

3.22. Based on cylindrical tensegrity structures - 2n-gonal tesselation (n>2)
(The most popular tensegrity systems)

3 struts 4 struts 6 struts
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3.23. Using two reference surfaces with the same way of tessellating
applying the method of single-surface tensegrity structures with 
z-topology, but in this case, two ends of a strut are located on two 
different surfaces. By doing this, the structure has the thickness, 
becomes more spatial. And touching between struts is avoided.
In this figure, the tesselation is an octagonal pattern. 

(b)

(b)

(c)

(c)

(a)

(a)
3.24. After having the network of struts, two reference cable networks 
are merged into one. In terms of topology, the system becomes similar 
to single-surface tensegrity structures again, but the geometry is 
different, and better in structural performance.
In this case, the tessellation is octagonal pattern. 

Type A: Double-surface tensegrity system based-on Z-topology
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3.25. Cables and struts based on grid of vertices

Procedure: Tessellating and tensegritizing of octagonal pattern based on quadrangular 
grid, Z-topology, type A.
Inputs: 
srf  #first reference surface
srfx #second reference surface
udiv #u count, udiv % 3 == 0
vdiv #v count, vdiv % 3 == 0
Outputs:
nods #list of structural nodes
cabs #list of lines of cables
stra, strb  #list of lines of struts

#Define the generic quadrangular grid of vertices which have (u, v) coordinates
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        n0 = (i/udiv, (j+1)/vdiv, 0)
        n1 = (i/udiv, (j+2)/vdiv, 0)
        n2 = ((i+1)/udiv, (j+3)/vdiv, 0)
        n3 = ((i+2)/udiv, (j+3)/vdiv, 0)
        n4 = ((i+3)/udiv, (j+2)/vdiv, 0)
        n5 = ((i+3)/udiv, (j+1)/vdiv, 0)
        n6 = ((i+2)/udiv, j/vdiv, 0)
        n7 = ((i+1)/udiv, j/vdiv, 0)
        n8 = (i/udiv, (j+1)/vdiv, 0)

#Make the network of vertices to reference surfaces
        Evaluate (n0, n2, n4, n6) on srfx as (newn0,…,newn6)
   Evaluate (n1, n3, n5, n7) on srf as (newn1,…, newn7)
   AddPoint (newn0,…,newn7) to nods

#Define the network of cables or Constructing network of octagons
        AddLine ((newn0, newn1), (newn1, newn2), (newn2, newn3), (newn3, newn4), 
(newn4, newn5), (newn5, newn6), (newn7, newn0)) to cabs

#Define the list of struts a
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        a0 = (i/udiv, (j+2)/vdiv, 0)
        a1 = ((i+3)/udiv, (j+4)/vdiv, 0)
        Define a0 on srf as newa0
        Define a1 on srfx as newa1
        
        AddLine (newa0, newa1) to stra
        
#Define the list of struts b
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        b0 = ((i+2)/udiv, (j+3)/vdiv, 0)
        b1 = ((i+4)/udiv, j/vdiv, 0)
        Define b0 on srf as newb0
        Define b1 on srfx as newb1
        
        AddLine (newb0, newb1) to strb

n0

n1

n2

n3 n4

n5

n6

n7

b0

b1

a0

a1
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X

X

a3

a3 a3 a3

a3 a3a4

a4 a4 a4

a4 a4

a0

a0
a0

a0

b0 b0 b0

b1 b1 b1

b2 b2 b2

b3 b3 b3b4 b4 b4

b5 b5 b5

b7 b7 b7

a0 a0a7

a7 a7
a7

a7 a7

a1

a1 a1 a1

a1 a1a6

a6 a6 a6

a6 a6

a2

a2 a2 a2

a2 a2a5

a5 a5 a5

a5 a5

3.26. Within an octagonal tessellation, the 
system of quadrex tensegrity (quadrangular 
prism) can be constructed. n = 4
(x) Eliminated option because of touching 
struts in their centre points

(a)

(a)

(b)

(c)

(b)

(d)

(c)

3.27. Three different ways of placing 
struts in cable networks, which is creating 
different tessellations.

3.28. The cell of this system is a quadrex tensegrity inside an octagonal 
cylindrical geometry. They will be then combined in the way that struts do not 
touch each other. 

Type B: Double-surface tensegrity system based-on cylindrical topology
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Procedure: Tessellating and tensegritizing of octagonal pattern based on quadrangular 
grid, cylindrical topology, type B. (for cell 3.25(a))
Inputs: 
srf #first reference surface
srfx #second reference surface
udiv #ucount, udiv % 3 == 0
vdiv #v count, vdiv % 3 == 0
Outputs:
nods #list of structural nodes
cabs #list of lines of cables
strs #list of lines of struts

#Define the generic quadrangular grid of vertices which have (u, v) coordinates
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        a0 = (i/udiv, (j+1)/vdiv, 0)
        a1 = (i/udiv, (j+2)/vdiv, 0)
        a2 = ((i+1)/udiv, (j+3)/vdiv, 0)
        a3 = ((i+2)/udiv, (j+3)/vdiv, 0)
        a4 = ((i+3)/udiv, (j+2)/vdiv, 0)
        a5 = ((i+3)/udiv, (j+1)/vdiv, 0)
        a6 = ((i+2)/udiv, j/vdiv, 0)
        a7 = ((i+1)/udiv, j/vdiv, 0)
        a8 = (i/udiv, (j+1)/vdiv, 0)

#Make the network of vertices to reference surfaces
        Evaluate (a0,…,a7) on srfx as (xnewa0,…,xnewa7)
   Evaluate (a0,…,a7) on srf as (newa0,…,newa7)
   AddPoint (newa0,…,newa7) to nods

#Define the network of cables or Constructing network of octagons
        AddLine ((newa0, newa1), (newa1, newa2), (newa2, newa3), (newa3, newa4), 
(newa4, newa5), (newa5, newa6), (newa7, newa0)) to cabs #cable network on srf
   AddLine ((xnewa0, xnewa1), (xnewa1, xnewa2), (xnewa2, xnewa3), (xnewa3, 
xnewa4), (xnewa4, xnewa5), (xnewa5, xnewa6), (xnewa7, xnewa0)) to cabs #cable network 
on srfx
   AddLine ((newa0, xnewa1), (newa1, xnewa2), (newa2, xnewa3), (newa3, xnewa4), 
(newa4, xnewa5), (newa5, xnewa6), (newa7, xnewa0)) to cabs #connect two networks of 
cables

#Define the network of struts
   AddLine ((newn0, xnewn2), (newn2, xnewn4), (newn4, xnewn6), (newn6, xnewn0)) to 
strs #for each strut, one end is in srf, the other is in srfx
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3.29. Applying to the dome with a central opening. There are a 
certain amount of cables which will be added to connect two reference 
tessellations. In this case, these reference tessellations are not 
merged. 
With an octagonal pattern, a network of quadrex tensegrities is achieved.

(b)

(c)

(a)
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3.4. Digital Form-finding of Double-surface 
Tensegrity Structures

GsRelax

GsRelax is a non-linear analysis solver 
in windows GSA. As a non-linear analysis 
solver, GsRelax can take the following 
special features into account in the 
analysis: 
- Geometric non-linear effects 
(automatically considered)
- Geometric stiffness of beam elements (it 
can be turned on or off, default is on)
- Material non-linearity (Once non-linear 
material is defined for beam, bar, tie, and 
strut elements)

The advantages of using GsRelax solver in 
structure analysis:
- Since GsRelax analysis does not rely 
on small displacement assumption and 
geometric non-linear effects are always 
considered, GsRelax can produce more 
accurate and realistic results compared 
to linear analysis solver especially when 
the structure deformations are relatively 
large.
- Because a vector approach (Dynamic 
Relaxation) rather than a stiffness matrix 
method is used in GsRelax analysis, it 
does not impose any special requirements 
to the stiffness of the structure, for 
example, zero stiffness of some nodes in 
some directions are allowed in GsRelax 
analysis. Therefore, GsRelax can analyse 
virtually any type of structures even a 
mechanism, for example, normal structural 
analysis programs cannot cope with the 
following two special types of structures, 
but GsRelax will be able to give a 
solution as that in the real world. 

Non-linear Analysis

To understand GsRelax and interpret its 
analysis results, it is important to know 
the differences between linear and non-
linear analysis. 

The linear structural analysis is using 
the following two assumptions: 
- Material stress-strain relationship 
is linear (material Young's Modulus is 
constant)
- Displacement and strain relationship is 
linear (small displacement problem)

These two assumptions are acceptable in 
most cases of structural analysis since 
a majority of the structures (except 
light-weight structures) in practice are 
quite stiff and the deformations of the 
structures are relatively small compared 

with the size of the structure. In these 
situations, using linear analysis will 
not result in any significant error of 
the analysis results. However, if a 
structure is flexible or the deformation 
is relatively large compared with the size 
of the structures and/or real material 
property needs to be considered, these two 
assumptions become invalid and non-linear 
analysis should be used. 

Ignoring Form-finding Properties
 
With simple tensegrity structures, soap 
film form-finding technique can be used 
efficiently to find the equilibrium state of 
the structures. But soft film form-finding 
requires the use of spacer elements. 
When the structure become complex, it is 
extremely difficult to set up these spacer 
properties. This is because a spacer 
should not be discontinued or bifurcated. 
That is why 'ignore form-finding 
properties' is used for complex tensegrity 
structures.

To start with the form-finding process, 
pre-stress forces should be applied 
firstly. After this form-finding, there 
are internal loads inside cables that 
lead to tensioning in a cable network. 
Consequently, discontinuous struts are 
in compression because of pre-stress 
forces. This step can be repeated several 
times until the system achieves a certain 
stiffness. At this point, we conduct the 
last form-finding which is the combination 
of the last internal loads from latest 
form-finding and self-weight before doing 
structural analysis. After this form-
finding, the model will not deform under 
the similar load case. 

3.5. Structural Analysis

Structural analysis in this chapter is 
only for checking the stiffness of the 
structural after form-finding. For this 
reason, only some simple load cases are 
considered such as self-weight and nodal 
loading.

The geometry received after the form-
finding process deformed quite a lot 
compared to the original shape, but the 
general form is reserved. This shape can 
be improved by adjusting pre-stress forces 
in the cables. The model became very stiff 
and handled the nodal load well. There is 
some minor imperfection which does not 
seem to affect the global performance of 
the entire system. Therefore, it is time 
to move on with the design for Feyenoord. 
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3.30(a). Double-surface tensegrity structures. octagonal tessellation. 
z-base topology. normal struts. bracing cables.

3.30(b). Designed form

Applying the form-finding method from ‘bucky’s dome with a central hole’ to the structure. It deformed as 
expected and did behave the similar way to physical model which is a quater of the full model. In this case,it 
is also interesting that we see some large local deformations which are because of the imperfection in the 
modeling, but the model stand. So tWhe minor imperfection does not affect the global results, the model can be 
stable in case there are very small amount of local imperfections. 
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3.31. Form-finding result

3.32. Nodal displacements

3.33. Beam displacements
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3.34. Physical model

(b)

(a)

(c)

(e) (f)

(d)
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(a)

(a)

(d)

(d)

(b)

(b)

(e)

(e)

(c)

(c)

(f)

(f)

3.35. The double-surface tensegrity structures can be applied to given free-form, with 
two reference surfaces are slightly different, to locally change the thickness of the 
tensegrity shell, following structural purpose, architectural quality, and so on.

3.36. Double-surface tensegrity as a result of programming using Python in Grasshopper
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Python coding on constructing double-surface tensegrity structures (can be applied to 
any free-form surfaces)

#Input reference surfaces (srf, srfx), two dimensions of the surfaces (udiv, vdiv)

import rhinoscriptsyntax as rs

pts = [] #Quadrangular grid of vertices
noc = [] #Network of cables
nosa = [] #Network of struts a
nosb = [] #Network of struts b

#Define the network of vertices
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        n0 = (i/udiv, (j+1)/vdiv, 0)
        n1 = (i/udiv, (j+2)/vdiv, 0)
        n2 = ((i+1)/udiv, (j+3)/vdiv, 0)
        n3 = ((i+2)/udiv, (j+3)/vdiv, 0)
        n4 = ((i+3)/udiv, (j+2)/vdiv, 0)
        n5 = ((i+3)/udiv, (j+1)/vdiv, 0)
        n6 = ((i+2)/udiv, j/vdiv, 0)
        n7 = ((i+1)/udiv, j/vdiv, 0)

#Make the network of vertices to surfaces
        srfxp = rs.SurfaceParameter (srfx, n0)
        newn0 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newn0))
        srfp = rs.SurfaceParameter (srf, n1)
        newn1 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newn1))
        srfxp = rs.SurfaceParameter (srfx, n2)
        newn2 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newn2))
        srfp = rs.SurfaceParameter (srf, n3)
        newn3 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newn3))
        srfp = rs.SurfaceParameter (srf, n4)
        newn4 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newn4))
        srfxp = rs.SurfaceParameter (srfx, n5)
        newn5 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newn5))
        srfp = rs.SurfaceParameter (srf, n6)
        newn6 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newn6))
        srfxp = rs.SurfaceParameter (srfx, n7)
        newn7 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newn7))

#Define the network of cables or Constructing network of octagons
        noc.append(rs.AddLine(newn0, newn1))
        noc.append(rs.AddLine(newn1, newn2))
        noc.append(rs.AddLine(newn2, newn3))
        noc.append(rs.AddLine(newn3, newn4))
        noc.append(rs.AddLine(newn4, newn5))
        noc.append(rs.AddLine(newn5, newn6))
        noc.append(rs.AddLine(newn6, newn7))
        noc.append(rs.AddLine(newn7, newn0))

#Define the network of struts a
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
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        a0 = (i/udiv, (j+2)/vdiv, 0)
        a1 = ((i+3)/udiv, (j+4)/vdiv, 0)
        srfp = rs.SurfaceParameter (srf, a0)
        newa0 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newa0))
        srfxp = rs.SurfaceParameter (srfx, a1)
        newa1 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newa1))
        
        nosa.append(rs.AddLine(newa0, newa1))
        
#Define the network of struts b
for i in range (0, udiv - 2, 3):
    for j in range (0, vdiv - 2, 3):
        b0 = ((i+2)/udiv, (j+3)/vdiv, 0)
        b1 = ((i+4)/udiv, j/vdiv, 0)
        srfp = rs.SurfaceParameter (srf, b0)
        newb0 = rs.EvaluateSurface (srf, srfp[0], srfp[1])
        pts.append (rs.AddPoint(newb0))
        srfxp = rs.SurfaceParameter (srfx, b1)
        newb1 = rs.EvaluateSurface (srfx, srfxp[0], srfxp[1])
        pts.append (rs.AddPoint(newb1))
        
        nosb.append(rs.AddLine(newb0, newb1))

a = pts #Structural nodes
b = noc #Network of cables
c = nosa #Network of struts a
d = nosb #Network of struts b

3.37. The grasshopper script to build double-surface tensegrity systems applied to any type of free form 
surfaces with the is Python code
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Chapter 4. Design a Tensegrity 
Structure to Cover Original 
Feyenoord Stadium 

4.1. History and Typology of Stadium Roof

Throughout almost 40 centuries of sports 
architecture construction, across five 
continents, the innovations of stadium 
engineering lie in the size of the 
stadium, stand's supporting structures and 
most recently the roof megastructures. 
From the ancient Greek to the 1900s, 
almost all stadiums around the world did 
not have a roof to cover people watching 
sports games. 

In the beginning, it is obviously an 
impossible mission to build large-span 
structures in stone which is extremely 
heavy material. In Roman time, there are 
a number of technological innovations in 
construction but not any stadium roof 
was realized. This is because they mostly 
built in pure concrete which is relatively 
heavy material as well. 

Until the beginning of 20th century, with 
the invention of reinforced concrete 
and the wide application of steel in 
construction, stadiums started having the 
roof to protect their spectators from 
extreme weather conditions, and bring a 
more comfortable environment for people to 
enjoy the games. But in these early years, 
there was a need of adding many columns to 
withstand the roof, these columns were in 
between the seats, and blocked the views 
of spectators. 

Overtime, engineers explored solutions 
to get rid of those obstacles and step 
by step improved the structure of the 
roof with several methods of using 
megastructures. Since then, stadium 
roof becomes one of the most important 
parts of the stadium that expresses the 
characteristics of the site, of the people 
living there and their sports team. The 
roof helps to build up the sporting 
spirit and provides unique atmosphere and 
memories to all sports lovers.  

In contemporary stadium design of the 
roof, there are mainly five typologies 
which are commonly applied nowadays: 
(1) Geometrical stiffness
(2) Cantilevering from mega-columns
(3) Suspending from mega-columns
(4) Suspending from mega-trusses
(5) Tensioning to the mega-compression 
ring

4.2. Feyenoord Stadium 

Feyenoord stadium is the home of Feyenoord 
football club the south of Rotterdam, the 
Netherlands. The stadium is more commonly 
known by its nickname De Kuip, meaning 
the Tub. It was designed by the famous 
Rotterdam's architect Leendert van der 
Vlught in 1935 and the construction was 
completed in 1937, making one of the most 
innovative football stadia at that time. 

The capacity of the original stadium was 
64.000. In World War II, the stadium was 
occupied by Nazis. After the war, it 
was expanded to 69.000 in 1949, stadium 
light was added in 1958. In 1994, it was 
renovated for a capacity of 51.117. In 
1999, a significant amount of renovation 
work took place for UEFA Euro 2000 
tournament, but the capacity was not 
primarily affected. 

De Kuip was named in the monumental list 
of Rotterdam on 29 October 1991. The 
renovation in 1994 brought the stadium 
to its present form, the Olympic running 
pitch was transformed to all-seater, and 
the roof was extended to cover all the 
seats. The structure to support the roof 
was painted white to distinguish with 
the black part of original slender steel 
frames. 

4.3. Design Proposal

After several renovations, the original 
characteristics of the stadium were lost. 
The innovative image of the extreme 
slender steel frame holding two floating 
tiers was replaced by the banal structure 
of the roof. After 20 years since the last 
renovation, De Kuip needs to have a new 
life, one more time. 

The proposal is to take off the 
existing roof structure and four light 
flooding posts. The original structure 
of the stadium, which is used to be 
technologically innovative, is preserved. 
A new tensegrity roof will be added to 
cover the entire original stadium with an 
integrated lighting system. 

The new tensegrity roof will show the 
extreme ability of structural engineering 
and architecture as well as the dynamicity 
of city of Rotterdam which has the second 
biggest harbor in the world. The floating 
compressional struts in the network of 
cable frankly against gravity will bring a 
real spiritual atmosphere to the Feyenoord 
area, and perfectly interacts with the 
monumental design of van der Vlugt. 
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4.1. Evolution of stadium engineering

4.2. Stadium roof structural typology
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4.3. Feyenoord stadium, Google Earth, 2017

4.4. Feyenoord stadium, Bouwkundig weekblad magazine, 
1936

4.5. Feyenoord stadium, Remy de Milde, flickr, 2011
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4.6. Current Feyenoord Stadium
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(a) Slender, minimum steel frames (c) Emergency stairs outside

(b) Two hanging tiers (d) New tensegrity roof

4.7. Adding new tensegrity structure to the original stadium rooted from 1936
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4.8. The new roof on site
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(a) Two reference surfaces

(c) Tessellatizing

(b) Two reference surfaces 
are slightly different, cre-

ating vairied height

(d) Tensegritizing

(e) Merging two reference 
surfaces

(f) Adding normal struts

4.9. Constructing the tesegrity roof
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4.10. The original and the new are blending
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4.11. Bird-eye perspective
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4.12. The original + The new

The entire structure: 200m x 240m x 37,5m
Cantilivering 37,5m

The central opening: 155m x 115m
4200 struts, 2,16-9,98m - CHS139,7X10

Cables: Ø10
Material: Steel (E = 2,05*E+11 PA)
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4.13. A cloud of struts
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(a)

(b)

(c)

4.15. Full-scale model deformed because of gravity during and after form-finding. In the end, after form-
finding, the structure became very stiff as well. This is because of pre-stress forces, as well as the large 
number of structural element. the geometry found is smoother and closer to the original version compared to 
form-finding of simplified version. 

4.14. Full-scale model deformed because of gravity 
after form-finding. While form-finding is being 
conducted, the inner ring tends to from a circle 
which is the minimal figure to find its own state of 
self-stress while form-finding. But in the end, in 
the equilibrium, the final shape will be close to the 
original designed geometry.

(a) Node displacements (b) Beam displacements

4.4. Form-finding

Failure of Complexity 

Using the method constructed in the 
previous chapter, the full structural 
model of the design was set up, added 
properties and exported to Oasys GSA for 
first form-finding analysis. 

The size of the entire roof is 
240x200x37,5 m. The distance between the 
opening and the perimeter is 42,5 m. The 
opening is 155x115 m. It has 4200 struts 
CHS 139,7x10, length from 2,16 to 2,98 m. 
The cable is steel cable Ø10, the lengths 
vary. 

It turned out that this structural model 
is extremely computationally expensive. 
Or in other words, it costs an enormous 
amount of time to run a non-linear 
analysis form-finding in Oasys GSA. I 
realized it was a step too far from the 
generic models built in chapter 3. So I 
needed to take a step back. 

Simplified Model

The simplified model is ten times smaller, 
concerning the real scale model might 
not work for the calculation, and has 
a smaller amount of structural elements 
(302 struts). But the structural topology 
and geometry are completely similar. CHS 
48.3x5 and steel cable Ø10 are used. 

The size of the entire simplified roof 
is 24x20x3,75 m. The central opening is 
15,5x11,5 m. There are 211 spatial struts, 
0,72 to 2,67 m. There are 91 normal 
struts, 0,56 to 1,34 m. 
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The entire structure: 20m x 24m x 3,7m
Cantilivering 3,7m
The central opening: 15,5m x 11,5m
211 spatial struts, 0,72-2,67m - CHS48,3X5
91 normal struts, 0,56-1,34m - CHS48,3X5
Cable: Ø10
Material: Steel (E = 2,05*E+11 PA)

4.16. Simplified version of the structure
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4.17. Form-finding work-flow

4.18. Designed form

4.19(a). Form-found 1

4.19(b). Form-found 2
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(a) (b)

(c) (d)

(e) (f)

The form-found shapes depend on the pre-stress forces. One has to repeat the form-finding process several times 
to make the structure less flat, becoming more domical geometries. the inner ring needs to be made out of a 
stiff 3d-frame which should be as lightweight as possible. 

4.20. Form-finding results
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(a) (b)

(c) (d)

(e) (f)

4.21. Node displacements caused by gravity

After form-finding processes in oasys gsa, the structures became very stiff, and it handled very well the gravity 
load. The displacements are relatively small, much smaller than the limts (l/250 = 3700/250 = 14.8mm).

The areas around the inner ring are the weakest areas. It is expected because of the large central opening.



67

(a) (b)

(c) (d)

(e) (f)

Similar to node disppacements, beams deformed mostly around the central opening. the more pre-stress forces are 
applied, the stiffer the systems are. there are also displacements in the middle of struts which are caused by 
the large axial forces inside the structural elements.

When the bottom struts are fixed, the structure performed more equally. in other models, the largest deformations 
are in the middle on the edge of the inner ring. 

4.22. Beam displacements caused by gravity
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(a)

(c)

(b)

4.23. Axial stresses caused by gravity

4.24. Displacements caused by nodal loading

Both struts and cables are subjected to axial stresses. 
in these models, maximum axial stresses are relatively 
small compared to young’s modulus of steel: 2,05e+11 
pa. 

(a) Node deformations (b) Beam deformations

When a nodal load is applied, the surrounding areas are affected in all directions. This behavior is also 
similar to the physical model. The rigidity of tensegrity structures depends on the pre-stress forces in 
cables which gives the structure the state of self-stress. Soap film and force density method cannot be 
applicable in this type of tensegrity, only ‘ignore form-finding properties’ works. This technique takes the 
deformed shape and internal loading from form-finding as the input for the next analysis.



69

(a) (b)

(c) (d)

Checking the affect of lateral, asymetrical loading is crucial for such a flexible system like tensegrity. the 
roof performed very well. The displacement is relatively small compared to the span. 

4.25. Wind loaidng
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4.5. Final Structural Model

After several experiments with form-
finding of simplified structural models, 
the real scale model is tested. This final 
model has the same amount of struts with 
the simplified model, but the size is in 
the real dimensions 240x240x45 m. In this 
model, a top truss and a bottom truss are 
introduced. Both of them are triangular 
truss. The top one is to stabilize the 
shape during the form-finding process and 
ensure a better structural performance 
after that. The bottom one is to lift 
up the entire tensegrity structure from 
the ground because of security reason 
in an emergency situation as well as to 
facilitate the circulation of such a 
complex public building. These following 
steps are applied: 

(1) Constructing double-surface tensegrity 
roof within the perimeter using the Python 
code achieved from chapter 3. There is 
still a need to edit struts on the edges 
of the two surfaces. 

(2) Adding structural properties to the 
geometric computational model. Bar element 
and tie element are chosen for struts 
and cables respectively. Struts have a 
CHS406,4x6,3 section. Steel cables are Ø40 
and spiral. Bar element is also chosen for 
the top and bottom truss, the top ones 
have a CHS406,4x6,3 section, and the top 
ones have a CHS193,7x5 section. Different 
from previous models in which only the 
bottom of the model is pinned, the top 
is left free, this time both the top and 
bottom of the model are pinned initially. 

(3) Adding load cases (will be explained 
with description for every load case as 
well as load combination)

(4) Form-finding. After (4.7), top truss 
nodes are unpinned for the last form-
finding (4.8).
 (4.1) Form-finding 1: Cable pre-

stress forces (500 kN)
 (4.2) Form-finding 2: Cable pre-
stress forces (500kN) + Gravity
 (4.3) Form-finding 3: Cable pre-
stress forces (500 kN)
 (4.4) Form-finding 4: Cable pre-
stress forces (500 kN)
 (4.5) Form-finding 5: Cable pre-
stress forces (500 kN)
 (4.6) Form-finding 6: Cable pre-
stress forces (500 kN)
 (4.7) Form-finding 7: Cable pre-
stress forces (500 kN)
 (4.8) Form-finding 8: Cable pre-
stress forces + Gravity + Dead loads. 
After this, the model will not deform 
under gravity and dead loads
(5) Structural analysis (Serviceability 
Limit State - SLS, Ultimate Limit State - 
USL) 
 (5.1) Load combination 1
 (5.2) Load combination 2
 (5.3) Load combination 3
 (5.4) Load combination 4

Load Cases

There are five major load cases one should 
consider. These are the pre-stress forces, 
self-weight (or gravity), dead loads, 
snow load, and wind load. For each load, 
a description is given as well as an 
estimation of the magnitude of the load. 
Dead loads and live loads are always 
applied on struts as point loads. This 
means that when a surface load is given, 
the relevant area for the strut must be 
calculated. The pre-stress force is an 
axial load (or beam loading), and the 
self-weight is a line load.

Load case 1. Internal load given by form-
finding process

After the form-finding process, cables (tie 
elements) have internal tensile forces 
and struts (bar elements) have internal 
compressive forces. Initial pre-stress 
forces given to cables is 5000 kN. 

4.26. Restraint condition for form-finding 4.27. Internal loads from form-finding
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4.28. Final Structural Model

(a) Perspective

Top truss

Bottom truss

Bracing cable

Spatial strut

Spatial cable

Normal strut

Normal cable

(b) Plan

(c) Elevation

240m

2
0
0
m

4
5
m

4
5
m
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Load case 2. Self-weight

Self-weight represents a significant load 
case for tensegrity structures since it 
provides the presence of gravity. Oasys 
GSA can calculate the self-weight of the 
model by itself after applying structural 
properties to the system. This load 
depends on the sectional properties of 
structural elements and materials in use.
 
Load case 3. Dead load

Dead loads are loads consisting of the 
roof cladding, technical installations, 
and possible service walkways which 
are suspended from the roof structure. 
It is not possible to know these loads 
beforehand, yet these loads should be 
included depending on the function of the 
building on which the tensegrity dome is 
fitted. In the Netherlands, the number of 
installations suspended from the roof is 
very limited in, for example, football 
and ice-skating stadiums. Walkways and 
technical facilities are thus neglected. 
A small amount of dead loading can be 
determined. 

Cladding: 

ETFE foil: 2 to 3,5 kg/m2
Suppose 2 sheets (for instance when 
pneumatic cushion are used)
100kg = 1kN
3,5*2/100 = 0.07 kN/m2
Possible support system for the cladding:
Phi35 steel cable, with a weight of 6,8 
kg/m2
Suppose a 3x3 grid, then 6 meters of cable 
per 9 m2 of roof surface
6,8*6/9 = 4,53 kg/m2 = 0,5 kN/m2
Total dead load:
0,07 + 0,05 = 0,12 kN/m2
The surface loads are applied on the 
struts. To simplify the load case, let's 
assume that the weight of cladding is 
distributed equally over the tensegrity 
netwrok on 600 nodes as ends of 300 
struts. 
Area of the roof: 13800 (m2)
Nodal load: 13800*0,12/600 = 2.76 kN

Load case 4: Snow load 

Snow loading is a variable load. It was 
chosen to use a uniform snow load, on a 
surface with an angle not steeper than 30o. 
It is convenient to define a uniform load 
per m2. The load is determined using the 
(Dutch) Eurocode. 
q
snow

 = S = ν
I
 (at 0o inclination) = 0,8

Ce = 1,0
Ct = 1,0

4.30. Cladding layer is underneath the structure

4.29. Self-weight diagram

4.31. Cladding load diagram

4.32. Snow load diagram
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Sk = 0,7 kN/m2
q
snow

 = S = 0,8*1,0*1,0*0,7 = 0,56 kN/m2
It was chosen to only investigate a 
uniform snow load. It is possible that a 
non-uniform load will be normative in some 
cases, but due to time restrictions, it is 
not included. 

Load case 5: Wind load

In the case of a tensegrity structure 
which rises from the ground up to 45 m, 
the wind load is the non-uniform live 
load. To be able to calculate the winds 
on the roof, assumptions must be made for 
instance the location of the structure 
and the attitude of the structure. 
It was chosen to use the geological 
features for a tensegrity structure in 
Rotterdam since this is the location of 
the Feyenoord stadium. Suction pressures 
are assumed to operate perpendicular to 
the surface of the structure with wind 
area II (Rotterdam, the Netherlands), 
built environment (in the city) and the 
presumed height above ground level of 
the tensegrity structure is 45m. This 
indicates: 

q
wind

 = q
p(Ze)

= 1,10 kN/m2

C
s
*C

d
 = 1

The wind load becomes: 

W
e
 = q

wind 
*C

s
*C

d 
=
 
q
p(Ze)

It is also noted that the wind loads 
are largely simplified and do not always 
represent the actual wind loading on a 
real structure. The schematization may not 
reflect the load conditions on a concave 
shaped top cable that well. 

Load Combinations

For the ultimate limit state load 
combinations, safety factors are used. 
The factors are chosen so that they 
represent the most unfavorable case. 
For the Serviceability Limit State, 
no safety factors are used. Not that 
no safety factor is included for the 
presentation load case. This is due to the 
measurability of this load case during 
construction. 

The load combinations are: 

Load combination 1: Pre-stress forces, 
self-weight and dead loads (LC1 + LC2 + 
LC3)

Ultimate Limit State (axial forces, 

4.33. Grasshopper components for Snow load and Wind 
load

4.34. Wind load diagram, simplified the direction to 
horizontal y direction

Structural nodes 
to apply loads 

Export load cases 
to Oasys GSA
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weights, and support reactions): 
LC1 + 1,35*LC2 + 1,35*LC3

Serviceability Limit State (node 
displacement):
LC1 + LC2 + LC3

Load combination 2: Pre-stress forces, 
self-weight, dead loads, and snow load 
(LC1 + LC2 + LC3 + LC4)

Ultimate Limit State (axial forces, 
weights, and support reactions):
LC1 + 1,2*LC2 + 1,2*LC3 + 1,5*LC4

Serviceability Limit State (node 
displacement):
LC1 + LC2 + LC3 + LC4

Load combination 3: Pre-stress forces, 
self-weight, dead loads, and wind load 
(LC1 + LC2 + LC3 + LC5)

Ultimate Limit State (axial forces and 
support reactions)
LC1 + 0,9*LC2 + 0,9*LC3 + 1,5*LC5

Serviceability Limit State (node 
displacement):
LC1 + LC2 + LC3 + LC5

Note: in this case, multiplying self-
weight and the dead loads with a safety 
factor of 0,9 which is usually considered 
a favorable safety factor, results in the 
normative analysis case. 

A very particular combination has been 
examined. 

Load combination 4: Pre-stress forces 
(LC1)

Ultimate Limit State (axial forces and 
support reactions): 
LC1

This load combination is needed to figure 
out the distribution of the pre-stress 
forces in the tensegrity system so that 
these pre-stress forces can be applied 
directly to the cables and struts. In 
this way, the actual distribution of pre-
stress forces in the system is preserved. 
The pre-stress forces are varied over 
the system, which made an impact on the 
final form of the tensegrity shell. The 
relationship between sizes of structural 
elements and axial forces is essential in 
a tensegrity system.

This load combination is never normative 
for the finding the required sectional 
properties in the tensegrity system. It is 

only used to find the correct distribution 
of pre-stress forces to form the expected 
geometries. 

Structural Requirements

The primary requirements for a building 
are strength, stiffness, and stability. 
This is an essential distinction for the 
requirements of the structural design 
of a building. Suppose a tensegrity 
shell is strong enough to withstand any 
occurring forces, then the structure 
may still be considered unsafe due to 
stiffness requirements. Stiffness is 
required for building materials because 
large displacements can break or tear 
materials apart. But it is also required 
for providing a safe feeling to the 
users of a building. A well-performing 
tensegrity structure must, therefore, 
meet some safety requirements. Normally, 
safety is divided between the Ultimate 
Limit State (ULS) and the Serviceability 
Limit State (SLS). Each of those states 
has safety factors which are multiplied 
by the occurring loads to simulate the 
most extreme circumstances to which a 
tensegrity structure may be exposed. 
From analyzing the structure, there are 
some observations that three cases of 
failure can occur for a tensegrity shell: 
1. The nodal displacements are too much
2. The distribution of pre-stress forces 
are not expected
3. Element strengths can be small, which 
leads to buckling
When an investigation is made to find the 
lowest amount of required pre-stress 
forces in the tensegrity structure, at 
least one of the first two cases will be 
the normative case. The element strengths 
are always applicable. 
Other structural requirements like 
vibrations are also possible. To limit the 
scope of the investigation, this is not 
considered. 

Displacements

The nodes in a tensegrity structure will 
deformed because of the loads on the 
system. It could be due to external loads, 
pre-stress forces, and also there is 
difference in node location between the 
original design and the structure under 
the dead loads inly (load combination 1), 
since a tensegrity must always deform to 
find equilibrium. 

The deformation requirements are chosen to 
be relative to the tensegrity structure 
under dead loads.  This means the two 
extreme cases (snow and wind) and their 
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added nodal displacements must be within a 
certain margin. 

The possible locations of a single node 
are provided in different conditions: 
1. The original design location of the 
node
2. The location of that node when the 
tensegrity is loaded with pre-stress 
forces, self-weight, and dead load
3. The location under snow load
4. The location under wind load

Displacements for nodes under snow and 
wind conditions (3 and 4) are limited by 
the dashed boundary and are about the 
dead load case. The maximum displacement 
condition gives the distance between the 
dashed line and node location two. 

Usually, the ratio between vertical nodal 
deformation and span length for roofs in 
the Netherlands is: 

σ
max
 = l

span
 / 250 (mm)

So that for a span of 25 m, the maximum 
allowed deformation would be 100 mm. The 
ratio may, however, be less applicable 
for tensegrity domes since the nodal 
deformations are in any direction x, y, z 
and the ration is usually used for shorter 
spans. Since the length of the span is 
equal to the diameter of the entire 
structure, ‘S’ can be substituted for 
lspan.
Finally, it was chosen to limit the 
direction of node deformation using:

σ
max
 = S/200 (mm)

The maximum displacement for a 25m span is 
then 125mm in any direction.  
Only the nodes at the tops of the struts 
are considered in the investigation. 
This choice is based on the idea that 
the bottom nodes are not connected to 
cladding system. Therefore, it cannot tear 
or break the cladding. It will be very 
difficult to notice node translation at the 
bottom parts of the struts for the general 
public, since it cannot be referenced 
to another point very well, unlike the 
top nodes, which relate directly to the 
cladding. 
There are a few factors which influence the 
stiffness of the tensegrity dome. These 
are: 
1. Geometry and topology of the dome
2. Young’s modulus (E)
3. Sectional properties (A)
4. Pre-stress forces  (F

p
)

5. Steel grades (f
Rk
 or f

y
)

The Young’s modulus and the steel grades 
are kept constant. The choices are very 
critical, but they are dependent on the 
availability of products in the market. 

It is evident that if a comparison among 
the various geometries and topologies 
is to be made, the other factors must 
be allowed to change between different 
tensegrity structures. Of course, when the 
geometry and topology are deliberately 
set at the given specifications beforehand 
in the variant study, we should optimize 
the system using the height of pre-stress 
forces and sectional properties. 

If we were to build a tensegrity 
structure, we would choose different 
sectional properties for each element 
type. Changing the sectional properties 
leads to the changes in the stiffness 
and therefore the structural behavior of 
the entire system. Doing so will result 
in an iterative design process. This is, 
of course, demanding a lot of work, and 
limiting the time available to investigate 
other variations of geometry and topology. 
Sections can be chosen for each element 
group. It is noted that this will lead to 
an unknown error margin. Ideally, all the 
section sizes should be optimized for each 
comparison. 

There is a large difference in the way 
the tensegrity system deforms under each 
type of load. The difference is caused 
by the magnitude, the direction, and the 
location of the load. Since the dead load 
combination and snow load combination 
consist of a uniformly distributed load, 
we expect all similar type nodes to 
perform identically. 

The wind, on the other hand, is a non-
uniformly distributed load due to the form 
factors. As a result, some nodes will 
deform more than others. 
In these figures, the dashed lines indicate 
the design position of the elements. The 
normal lines indicate the deformation that 
the tensegrity experiences. In order to 
give a good impression, the deformations 
are scaled. 

Distribution of Forces

If the distribution of forces is correct 
throughout the tensegrity structure, 
collapse can occur. Often the load on the 
outermost struts (the struts belonging to 
tension hoop number one) is the highest, 
due to the surface area which must be 
carried by that strut. The result is a 
failure mode which visually resembles 
lateral torsional buckling in steel beams. 
The top cable is not stiff enough for 
the occurring forces and also lacks any 
lateral support. The struts consequently 
overturn. Of course, deformations will 
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also increase largely when the collapse 
occurs. 

The failure mode can only occur when loads 
are in the z direction. When decreasing 
the pre-stress forces, or when applying 
too much snow load, an element in the 
system can reach 0 kN axial force, after 
which the system can fail. This is not 
always the case; for instance, when a 
single element is unloaded, the system can 
still be stable. 

It would be good engineering practice to 
set a minimally needed axial tension or 
compression forces for all elements so 
that a pre-specified amount of pre-stress 
is always available. This ensures the 
desired structural behavior always occurs. 
This is done by setting a margin for the 
minimal normal force in an element in the 
tensegrity structure. 

Element Strengths 

In structural design, it is a priority 
to choose the smallest section possible 
for an element in the structural system. 
This reduces the mass in the structure 
that helps to save materials and the 
construction budget at the same time. For 
each type of geometry and topology, the 
optimization of the sectional properties 
can be quite different. Basically, in such 
a system of double-surface tensegrity, 
every element is working in a different 
direction which may lead to differences 
in sections. To make it simpler for 
construction, it can be classified into 
some kinds:
(1) Spatial strut: initial struts from 
tessellation of reference surfaces
(2) Normal strut: added struts 
perpendicular to the two surfaces 
(3) Spatial cable: connecting spatial 
struts
(4) Normal cable: connecting normal struts 
to spatial struts
(5) Top truss 
(6) Bottom truss

For determination of the appropriate 
section of cables, the normative tension 
is used, meaning that some cables will be 
oversized slightly. Individual sections 
can be chosen for all types, but this will 
lead to a challenging and lengthy search 
for equilibrium. 

According to the Eurocode, all sections 
must satisfy unity check: 

N
Ed
/N

Rd
 + M

y;Ed
/M

y;Rd
 + M

z;Ed
/M

z;Rd
 ≤ 1

For sections in tension (the cables), the 
unity check can be reduced to: 

N
Ed
/N

c;Rd
 ≤ 1,0

In which
N
Ed
: The occurring tension force in the 

element
N
c;Rd

: The capacity for tension force in the 
element

The cable products of Pfeifer Cable 
Structures are chosen for the system. The 
assumed cables are full locked cables, 
which allow limit tensions from 250 
to 15000 kN. This is at the same time 
the maximum allowable tension in the 
tensegrity system when higher strengths 
are needed, the tensegrity will be assumed 
not to be efficient designed, and omitted 
from the analysis. 

Choosing the best cable section is very 
important for the mass of the tensegrity 
shell. If a section is chosen which leads 
to a unity of 0,4, the section is strong 
enough for the load which is applied, but 
60% of the section is not used. This is 
called over-dimensioning. To prevent this, 
a minimum unity check value was chosen at 
0,8. This can occur when the load is too 
much to withstand (unity > 1) or when the 
section is over-dimensioned (unity check < 
0,8). Therefore, the unity check becomes: 

0,8 ≤ N
Ed
/N

c;Rd
 ≤ 1,0

For sections in compression, a distinction 
can be made between members subjected to 
buckling (compression only) and lateral-
torsional buckling (compression and 
bending). 

Buckling occurs in compression members in 
the tensegrity structure. The unity check 
is: 

N
Ed
/(χ*A*f

y
/γ

M1
) ≤ 1,0 

In which 
χ: The reduction factor for the applicable 
buckling condition
A: The sectional area of the member
f
y
: The yield tension of the member

γ
M1
: A partial safety factor (assumed to be 

equal to 1)

Over-dimensioning can also be a problem 
for the struts, so (analogous to cables) 
the unity check is modified to: 

0,8 ≤ N
Ed
/(χ*A*f

y
/γ

M1
) ≤ 1,0  

 
Because of their favorite properties, hot 
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rolled circular hollow sections (CHS) are 
assumed in the tensegrity systems. It is 
also convenient to have the same moments 
of inertia for both axes; the buckling 
checks can then be reduced to a single 
check. 

4.35(a). Pfeifer Cable Structure, GALFAN Coated Steel - FUll Locked Strands

4.35(b). Pfeifer Cable Structure, GALFAN Coated Steel - Open Strands
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4.37. Form-found

(a) Perspective (a) Perspective

(b) Plan (b) Plan

(c) Elevation, short side (c) Elevation, short side

(d) Elevation, long side (d) Elevation, long side
4.36. Designed form

Form-finding Result

Compare to the previous form-finding 
results, the final one improved enormously. 
Although struts are slightly displaced 
locally, the shape, composition, and 
structural topology are reserved. The 
top ring helps to stabilize the geometry. 
Fixing while the form-finding were 
conducting leads to redistribute the right 
pre-stress forces until the structure 
achieves the right state of re-stress that 
it can stand by itself remarkably. 

After the form-finding process, the top 
ring slightly deforms following sine-
shape. On the long edge, it deformed 
upwards. On the short edge, it deforms 
downwards. The conners stay the same level 
with the pre-form-finding structure. 
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Structural Analysis Result

Displacement

Considering the span is 240m, the maximum 
deformation of 240/200 = 1.2m (1200mm) is 
allowed. 

With load combination 1 (Pre-stress forces 
+ Self-weight + Cladding), the maximum 
deformations are 0.3mm and 100mm for SLS 
and ULS respectively. These displacements 
are incredibly small that proves the 
stability of the structure against gravity 
with the help of appropriate pre-stress 
forces. In SLS case, critical deformations 
appear in the middle of the structure. In 
ULS case, the critical deformations appear 
in the middle of the longer edges of the 
top ring. 

With load combination 2 (Pre-stress forces 
+ Self-weight + Cladding + Snow), the 
maximum deformations are 400mm and 700mm 
for SLS and ULS respectively. They are in 
the limits. The largest displacements are 
in the middle of long edges of the top 
ring, and they are smaller towards the 
bottom ring. 

With load combination 3 (Pre-stress forces 
+ Self-weight + Cladding + Wind), the 
maximum deformations are 650mm and 1058mm 
for the SLS and ULS respectively. These 
numbers are large but they remain in the 
limits. Also, considering the height of 
the total structure is 45m, these numbers 
are obviously acceptable. When the wind 
hits the structure, it distorts the top 
part following sine-shape. One side of the 
structure directed to the wind deforms 
downwards while the opposite site deforms 
upwards.

With the last load combination, only 
pre-stress forces are taken into 
consideration. The structure deforms all 
the way upwards, the maximum deformation 
is 300mm on the mid-span of the long edges 
of the top ring. This explains that with 
the effect of gravity to its self-weight 
and cladding, the structure will move 
downwards to the designed levels. 

Support Reaction

The results of support reactions are 
stable over different load combinations. 
Especially, in the last combination, there 
is no influence of gravity, the support 
reactions are very similar to other load 
cases. This proves that the pre-stress 
forces are the main factor which surpasses 
the impact of other load cases, such as 

gravity, snow, and wind. In almost all 
the cases, support reactions range from 
2500 kN to 9000 kN. In the extreme case of 
the wind hitting the larger sides of the 
structure, the maximum increases slightly 
to 10000 kN. 

Axial Force

The axial forces vary from -1500 kN to 
1250 kN which is the range of 40mm GALFAN 
Coated Steel - Full Locked Strands cable 
from Pfeifer Cable Structure from Germany.  
Axial forces inside normal cables are 
relatively small compared to the rest. 
There are pure compressive forces in 
struts and pure tensile forces in cables. 
Compression and tension both occur in the 
top and bottom truss, the magnitudes are 
small compared to forces inside struts 
and cables. In most of the cases, these 
numbers remain stable.

Axial Stress

Axial stresses vary from -400 MPa to 1000 
MPa while the modulus of elasticity of 
cable is 160000 Mpa. The results are in 
the limits. Axial stresses in the elements 
in the middle of the structure are the 
largest numbers. These numbers become 
smaller towards the top and bottom rings. 

From 300 Struts to 4200 Struts

There are 300 struts in structural 
model due to computational expensive 
calculation. In reality, the structure 
will have 4200 struts. Therefore, the 
maximum axial forces and stresses will 
be smaller. As a result, the structural 
element will be more optimized. This mean 
diameter of cables can be decrease from 
40mm to 12mm or smaller, picture 4.35-
36. And the diameter of CHS struts can be 
decrease from 400mm to 150-100mm. 

the number of struts in reality 4200
0,07the number of struts in model 300

= =

F
compression;max;reality 

= 1500.0,07 = 105 kN

σ
compression;max;reality 

= 400.0,07 = 28 MPa 
F
tension;max;reality 

= 1250.0,07 = 87.5 kN

σ
tension;max;reality 

= 1000.0,07 = 70 MPa

Buckling of Struts

The longest strut is 10 [m] with two ends 
pinned K = 1, CHS139x10, I = 868.104 [mm4]. 
Maximum load can be handled by strut 
following Euler’s formula: 
F
max (139.3x10)

= π2.EI/(KL)2 

=  3,142.210000.868.104/(1.10000)2 
= 85810 [N] = 179,72 [kN] 
F
max(139x10) 

> F
compression;max;reality

, so there is no 
buckling.
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4.38. Load combination 1 (SLS): Pre-stress forces + Gravity + Cladding

(a) Nodal displacements

(b) Support reactions
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4.38. Load combination 1 (SLS): Pre-stress forces + Gravity + Cladding

(c) Axial forces

(d) Axial stresses
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4.39. Load combination 1 (ULS): Pre-stress forces + Gravity + Cladding

(a) Nodal displacements

(b) Support reactions
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4.39. Load combination 1 (ULS): Pre-stress forces + Gravity + Cladding

(c) Axial forces

(d) Axial stresses
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4.40. Load combination 2 (SLS): Pre-stress forces + Gravity + Cladding + Snow

(a) Nodal displacements

(b) Support reactions
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4.40. Load combination 2 (SLS): Pre-stress forces + Gravity + Cladding + Snow

(c) Axial forces

(d) Axial stresses
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4.41. Load combination 2 (ULS): Pre-stress forces + Gravity + Cladding + Snow

(a) Nodal displacements

(b) Support reactions
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4.41. Load combination 2 (ULS): Pre-stress forces + Gravity + Cladding + Snow

(c) Axial forces

(d) Axial stresses
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4.42. Load combination 3 (SLS): Pre-stress forces + Gravity + Cladding + Wind (y direction)

(a) Nodal displacements

(b) Support reactions
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4.42. Load combination 3 (SLS): Pre-stress forces + Gravity + Cladding + Wind (y direction)

(c) Axial forces

(d) Axial stresses
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4.43. Load combination 3 (ULS): Pre-stress forces + Gravity + Cladding + Wind (y direction)

(a) Nodal displacements

(b) Support reactions
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4.43. Load combination 3 (ULS): Pre-stress forces + Gravity + Cladding + Wind (y direction)

(c) Axial forces

(d) Axial stresses
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4.44. Load combination 4: Pre-stress forces

(a) Nodal displacements

(b) Support reactions
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4.44. Load combination 4: Pre-stress forces

(c) Axial forces

(d) Axial stresses
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4.6. Detailing and Construction

Connections 

One of the crucial parts of tensegrity 
design is the connection, or the joint. 
In a true tensegrity system, the typical 
connection is the one in which there is 
only one strut linking with many other 
cables, and the minimum amount is three 
cables. Normally there are six cables in 
a joint connecting to one strut. At most, 
the number of cables is eight. So it is 
utterly essential that the connection has 
to accommodate forces coming from all 
directions but creating no bending moment. 
To achieve this, a connection needs to 
hold all the structural elements in a way 
that the central lines of these elements 
are meeting at one point. Aesthetically, 
the size of the joint should be as 
small as possible, so that it is not 
distinguished from the body of struts. At 
best, they should naturally be a part of 
struts to receive cables coming. Achieving 
this, there will be no connection anymore 
but only the network of struts and cables. 
The connections between the tensegrity 
shell and the bottom truss as well as top 
truss are also necessary, they are pinned 
joints. 

Foundation

Although the new structure is covering 
the whole Feyenoord stadium is massive, 
it remains a lightweight structure which 
does not put much mass to the ground. 
Pre-stress forces play an important role 
to give the pressure on the foundation. 
It is assumed that the existing ground 
condition is already stiff enough with the 
construction of Feyenoord stadium over 
these years. For this reason, there is no 
need to introduce more piles to the ground 
to support the new structure, and only a 
shallow concrete foundation is necessary 
to fix the bottom truss of the tensegrity 
shell to the ground. The connections 
between the shallow foundation and the 
bottom truss are pinned. 

Construction Sequence

The construction of the new roof for 
Feyenoord stadium will follow these steps: 

(1) Taking off the roof and four lighting 
posts of the current stadium, steel 
material from these structures can be 
recycled for the new roof. This way is 
very sustainable.
(2) Setting the concrete shallow 
foundation ring to the ground. Moving 

steel elements of the bottom truss to the 
site.
(3) Installing the bottom truss. Moving 
the struts and cables for the first ring of 
tensegrity to the site. 
(4) Installing the first round of struts, 
for the first time, every longer strut will 
be fixed to its designed positions in space 
by three cables to the ground. The shorter 
struts will be fixed to bottom truss and 
longer struts by cable with measured 
lengths. Moving material of the next round 
to the site. 
(5) Lifting normal struts to fix them to 
the first round of tensegrity by normal 
cables. Making sure that all cables will 
be in tension. Moving material of the next 
round to the site.
(6) Keep adding struts and cables bottom-
up until the last round of tensegrity 
part. Moving material of top truss to the 
site. 
(7) Installing the top truss on the 
ground, lifting it up to the designed 
level, fixing it to the tensegrity shell 
with pinned joints. 
(8) Adjusting the tension in the cable 
network to get expected geometry, 
stiffening the entire structure. Moving 
cladding material to the site.  
(9) Installing ETFE roof underneath the 
new structure to cover all the stadium's 
stands.
(10) Finishing
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45. Construction sequence
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46. Final model 1:200 (above)
47. Construction of the final model (next page)
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(1)

(4)

(7)

(10)

(13)

(16)

(2)

(5)

(8)

(11)

(14)

(17)

(3)

(6)

(9)

(12)

(15)

(18)
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4.48. Foundation - Bottom truss - Tensegrity (Strut and cable network)

Concrete foundationAnchor bolt

Bottom truss
CHS 406.4x6.3mm

Spiral cable 

Strut
CHS 139.7x10mm

Rigging hardware

Casting Mortar

Steel ball connection

Steel ball connection

Base steel plate
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4.49. Bottom truss - Strut - Cables

Bottom truss
CHS 406.4x6.3mm

Spiral cable Ø12

Strut
CHS 139.7x10mm

Rigging hardware

Steel ball connection



100

4.50. Tensegrity joint - Side view

Spiral cable Ø12

Molded steel piece with 6 wings
Can receive up to 18 cables

Steel cap
Can integrate LED lighting 

Strut
CHS 139.7x10mm

Rigging hardware
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4.51. Tensegrity joint - Horizontal section

Spiral cable Ø12

Molded steel piece with 6 wings
Can receive up to 18 cables

Strut
CHS 139.7x10mm

Rigging hardware
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4.53. Perspective view 

4.52. Connection profile

(b) (c)(a)

Spiral cable Ø12

Molded steel piece with 6 wings
Can receive up to 18 cables

Steel cap
Can integrate LED lighting 

Strut
CHS 139.7x10mm

Rigging hardware

The connection contains 3 pieces which 
can rotate independently around an 
axis to receive cables from almost all 
directions. The movement of these pieces 
in one connection also helps to reduce 
bending moments created because of the 
imperfection of details. Since tensegrity 
systems are enormously flexible, it is 
almost impossible to create a perfect 
connection taken into account that the 
angles of cables vary. In addition, 

my intention is to create a generic 
connection which can use in almost all 
location rather than specify for each 
position of detail. By doing that, it 
would be more efficient and economical 
in mass production which contributes to 
buildability of tensegrity structures. 
Although there are rooms for developments 
of this detail in terms of element 
strength and its flexibility of minimizing 
bending moments. 
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4.54. Connecting to the cladding at the bottom of strut

Teflon®-coated woven fiberglass membrane

Spiral cable Ø12

Molded steel piece with 6 wings
Can receive up to 18 cables

Steel cap
Can integrate LED lighting 

Strut
CHS 139.7x10mm

Rigging hardware
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Chapter 5. Conclusion and 
Discussion

5.1. Conclusion

- The new design method for double-surface 
tensegrity systems is generated along this 
thesis. There are two families of double-
surface tensegrity structures that are 
discovered.

- Double-surface tensegrity structures are 
buildable.

- Based on a generic grid of vertices, 
the structural can be computationally 
generated by programming which will bring 
a lot of possibilities to develop such a 
system.

- The modeling is conducted in rhino and 
grasshopper, so the model is not entirely 
parametric yet. Structural model can be 
built in grasshopper along with all the 
structural properties, such as material, 
element type, sectional profile. 

- Oasys GSA is only a calculation 
platform, and the design time is 
shortened. 

- After form-finding, the found shapes are 
very stiff. The geometries handle very 
well its own weight as well as some other 
loading conditions, such as dead loads, 
snow load, and wind load. 

- Finding the right pre-stress forces is 
the key of a successful form-finding using 
‘ignore form-finding properties’ in Oasys 
GSA.

- The areas around inner ring deformed the 
most.

- The more elements a structure has, the 
smoother it is after form-finding.

- The process is not linear, but it is 
expected. There is always a need to go 
back to check and redo to be able to move 
forward.

- It is crucial to compare behaviors 
of physical models and digital model 
to direct the research and design to 
the right direction. This is similar to 
checking hand calculation and the results 
given by the computer.

5.2. Recommendation

- Making an entire parametric model

- Develop programming part of other 
typologies presented in the appendix

- Integrating calculation part 
to Grasshopper, and exploring a 
computationally cheap way for form-finding

- Optimization of pre-stress forces and 
sections to deal with complex load cases 
and ultimate situations

- Experimenting carbon fiber for cables, 
and wood or bamboo for struts

5.3. Reflection

On the Theme Graduation Lab and the Chosen 
Method, Topic, Outputs of the Thesis

This thesis contributed to constructing 
the library of tensegrity structures 
with a design method for application 
in large-scale construction. There is 
a new method of making double-surface 
tensegrity structures that is created. In 
fact, there are some studies on double 
tensegrity structures, but in these 
systems, struts are touching each other. 
The method propose by this thesis makes 
sure that one can build a pure tensegrity 
structure with almost any given geometry, 
struts are completely floating in the 
network of cables, the connections between 
compression members are prevented. It 
helps to resolve the obstacles posed by 
the complexity of such the systems by the 
innovative use of computational tools. 
Also, a way of improving the rigidity and 
usability of tensegrity in mega-structure 
is explored, which paves a way to realize 
the construction and fabrication of the 
buildings using this structural system. 

The thesis provides a plenty of 
possibilities to develop further in terms 
of structural composition, computational 
programming, topological mathematics, 
and possibly the combination of them. 
The thesis constructs a new way of 
structural approach towards structural 
skin to potentially make the systems more 
transparent and integrated within urban 
contexts, architectural quality, technical 
installations, and services. The design 
helps to make the building honest in its 
own way of structural performance and 
raises attractions from the general public 
as a sort of inspiration for technological 
innovation in architectural design. It not 
only celebrates the innovation but also 
technologically uses the advanced method 
to build. 

On Wider Social Context
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A new way of tensegrity application can 
reflect the technological innovation of 
our time in a complex type of building 
covering a huge open space, a stadium. A 
stadium is a major component in social 
interaction in the culture around the 
world. It is currently the place where 
people are able to come together to 
celebrate sport, enjoy a concert, or 
congregate for self-expression, or some 
other similar social events. Society would 
obviously benefit from the impact of using 
tensegrity systems for the redevelopment 
of a current urban context. 

Throughout the history of stadium 
construction, the stadium roof is always 
reflecting the technological innovation in 
structural engineering of that time, which 
is an inspiration to push architecture 
going forwards. The structural span of 
a stadium roof is always enormously 
large, and normally coming along with a 
big central opening which makes it even 
more challenging. Being able to use new 
composition of tensegrity structures 
for a stadium roof is absolutely an 
innovation. Feyenoord stadium, as well 
as the city of Rotterdam, has its own 
tradition of applying high-end technology 
and innovation in architecture. To 
continue this avant-garde tradition, the 
singularity of a tensegrity structure will 
be the right answer. 

On Relationship between Design and 
Research 

There is a strong coherence from 
design method, structural principles, 
constructing digital models, physical 
models, and structural models towards 
the construction in real scale. Research 
and design have always been going along. 
They have a dialectical relationship. One 
has always been moving back and forth to 
achieve positive results at the end of 
the process. Since nothing comes from the 
blue, one cannot design without research. 
They are not two separate areas. Research 
provides inputs to design process, and 
in turn, design helps to redirect the 
research procedures, programs. One cannot 
create an invention from scratch, but by 
transforming the existing materials, one 
can acquire a new thing. 

One could choose either ‘Research by 
Design’ or ‘Design by Research’ or 
the combination of them as the way of 
conducting the thesis. ‘Research by 
Design’ seems to fit me well since I feel 
it is very enjoyable while I was trying 

out a number of design options, comparing 
them, and sometimes a new design appears 
in-between these options. The physical 
modeling, critical thinking, and the 
combination of computational tools are 
crucial in both design or research process 
of tensegrity study. 

Evaluating the Design Process

The process was not linear from one step 
to another as expected in the research 
framework, but it is always moving back 
and forth, evaluating, redirecting, 
redoing, resetting, and recalculating. I 
went from very generic model to specific 
one, then to very complex one. But with 
the complex one which is computationally 
expensive, it is almost impossible to 
calculate in the beginning, even with the 
computer, the calculation time is just 
too long, for days. For this reason, I 
had to simplify the complex model to the 
simplest version of the type to be able 
to perform simulations in Oasys GSA. For 
computational form-finding, physical models 
are essential. One has to play around with 
these form-finding techniques in Oasys GSA 
many times to achieve the right method. 
When the behavior of physical models and 
form-finding models are similar, the right 
form-finding method is selected. To do 
the form-finding, the model needs to be 
designed beforehand, concerning structural 
topology and geometry. The form-finding 
did give some interesting alternatives. 
In the end, it is mostly about giving the 
right pre-stress forces to the tensegrity 
structures, and it needs to be locally 
customized. 

To sum up, I successfully created a new 
design method for new types of tensegrity 
structures which can stand by itself 
in reality. I have gone through all 
the steps planned in P2 and achieved 
positive results. Although the full-scale 
structural model of Feyenoord stadium 
still has some difficulties to analysis, 
it can be handled afterward. Also, I have 
not managed to have a fully parametric 
structural model, which is a pity. But 
in a way, doing certain parts manually 
helps me build up the understanding of 
tensegrity structures very well. I could 
consider that the lack of programming 
part helps me to construct the new design 
method for double-surface tensegrity 
structures. I realized that slowing down 
the process is essentially valuable for 
both research and design. 



106

Reference

- R. W. Burkhardt, A Practical Guide to 
Tensegrity Design, 2nd Edition, Cambridge, 
USA. 
- R. Motro and N. Vassart, Tensegrity 
Systems, Laboratoire de Mecanique et Genie 
Civil, Universite de Montpellier, France.
- K. Miura and S. Pellegrino, Structural 
Concepts - Structural Concepts and Their 
Theoretical Foundations, Chapter 1 and 
Chapter 4.  
- A. Puth, An Introduction to Tensegrity, 
University of California Press, 1976, USA. 
- R. Motro, Tensegrity: from Art to 
Structural Engineering, 2012 IASS-APCS 
Symposium, May 2012, Seoul, South Korea.
- T. Tachi, Interactive Freeform Design 
of Tensegrity, the University of Tokyo, 
Japan.
- H. Ohmori, Computational Morphogenesis 
– Its Current State and Possibility for 
the Future, IASS-IACM 2008, Cornell 
University, Ithaca, New York, USA.
- Q. Li, A. Borgart, Y. Wu, How to 
understand “Structural Morphology”?, 
Journal of the International Association 
for Shell and Spatial Structures, 145 p., 
Vol. 57 (2016) No. 2, Madrid, Spain.
- A. van Waart, Exploring Structural 
Design – An Introduction to A Workflow for 
Parametric Structural Design, August 2012. 
- R.E. Skelton, J.P. Pinaud, D.L. Mingori, 
Dynamics of the Shell Class of Tensegrity 
Structures, Journal of the Franklin 
Institute 338 (2001) 255-320.
- M. Lazzari, R.V. Vitaliani, M. 
Majowiecki, A.V. Saetta, Dynamic Behavior 
of a Tensegrity System Subjected to Follow 
Wind Loading, Computers and Structures 81 
(2003) 2199-2217.
 - R. Motro, Structural Morphology of 
Tensegrity Systems, Meccanica 46 (2011) 
27-40.
- R. Issa, Robert McNeel & Associates, 
Essential Mathematics for Computational 
Design, Second Edition. 
- J. Wallgren, Tension at Saltholm, The 
Royal Danish Academy of Fine Arts, School 
of Architecture, 2013.
- V. G. Jauregui, Tensegrity Structures 
and Their Application to Architecture, 
School of Architecture, Queen’s University 
Belfast.
- M.V. van Telgen, Parametric Design and 
Calculation of Circular and Elliptical 
Tensegrity Domes, TU Eindhoven, Department 
of Architecture, Building and Planning, 
2013.
- D.M. Smidt, Freeform Follows Functions, 
TU Delft, Faculty of Architecture and 
Built Environment, 2014.



107

Appendix

The content following is the logic and 
design development for double-surface 
tensegrity with other tessellations, such 
as hexagonal or dodecagonal patterns, with 
both type 1 (based on Z-based elementary 
cells) and type 2 (based on cylindrical 
tensegrity cells).
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Two typical compositions of struts around a hexagon 
in the tessellation.
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Numbering the generic quadriangular grid which is the 
base for defining the network of struts and network of 
cables.

n0

n0 = i
n3 = n0 + 5u + 2

Z-topology tensegrity, hexagonal tessellation, single-surface

n1 = i
n4 = n1 + 4u - 4

n5 = i
n2 = n5 + u + 6
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n1 = n0 - u + 2
n2 = n1 + u + 2
n3 = n2 + 2
n4 = n3 + u - 2
n5 = n4 - u - 2
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n1

n2 n3

n4
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Procedural descriptions of struts and cables based on 
generic quadriangular grid.
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Z-topology tensegrity, hexagonal tessellation, single-surface

Quadriangular grid based on grid of 
points

Define the location of cable network 
on the quadriangular grid

Define the location of strut network 
on the quadriangular grid

Strut network + cable network

The network of struts and network of cables are independently defined based on the generic quadriangular 
grid of points. In the end, they are assemblied together to form a single-surface tensegrity structure. 
There is no need to figure out the z-topology or adjacent hexagons to define strut network which is no 
longer depending on the network of cable but the generic quadriangular grid.
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Bucky’s half-sphere class-1

Bucky’s half-sphere class-1
with opening

Bucky’s half-sphere class-0

Bucky’s half-sphere class-0
with opening

Topology type 1 Topology type 2

Z-topology tensegrity, hexagonal tessellation, single-surface
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Tesselatizing and tensegritizing a simple dome with a central opening
using hexagonal pattern (6-gon)

Adding normal struts (in pink) in the center of hexagonal cells, to 
increase the thickness of the shell,to handle out-plane loading 
applying to hexagonal pattern (6-gon)
The in-plane struts (In green) remain in the same reference surface
extra cables are added to connect normal struts to in-plane struts

Z-topology tensegrity, hexagonal tessellation, single-surface
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Adding outer bracing cables (thin lines in pink) to limit the rotation 
of pin-jointed connections
Applying to hexagonal pattern (6-gon)
These bracing cables connect tops of normal struts in order

Z-topology tensegrity, hexagonal tessellation, single-surface
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Using two reference surfaces with the same way of tessellating
applying the method of single-surface tensegrity structures with 
z-topology, but in this case, two ends of a strut are located on two 
different surfaces. by doing this, the structure has the thickness, 
becomes more spatial. and touching between struts are avoided.
In this figure, the tesselation is hexagonal pattern. 

After having the network of struts, two reference cable networks are 
merged into one. so in terms of topology, the system becomes similar 
to single-surface tensegrity structures again, but the geometry is 
different, and better in structural performance.
In this case, the tessellation is hexagonal pattern. 

Z-topology tensegrity, hexagonal tessellation, double-surface
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Tesselatizing and tensegritizing a simple dome with a central opening
using dodecagonal pattern (12-gon)

Z-topology tensegrity, dodecagonal tessellation, single-surface
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Using two reference surfaces with the same way of tessellating
applying the method of single-surface tensegrity structures with 
z-topology, but in this case, two ends of a strut are located on two 
different surfaces. By doing this, the structure has the thickness, 
becomes more spatial. and touching between struts are avoided.
In this figure, the tesselation is octagonal pattern. 

After having the network of struts, two reference cable networks are 
merged into one. so in terms of topology, the system becomes similar 
to single-surface tensegrity structures again, but the geometry is 
different, and better in structural performance.
In this case, the tessellation is dodecagonal pattern. 

Z-topology tensegrity, dodecagonal tessellation, double-surface
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In this case, n = 2. these are tensegrity structures, but not pure types since there are a certain amount of 
struts touching the others. In general, the network of struts is discontinuous while the cable network is 
continuous. 

Cylindrical tensegrity, n = 2, hexagonal tessellation, double-surface
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within a hexagonal tessellation, the system of 
simplex tensegrity (triangular prism) can be 
constructed. n = 3 in this case.
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The cell of this system is a simplex 
tensegrity inside a hexagonal cylindrical 
geometry.They will be then combined in the 
way that struts do not touch each other. 

Cylindrical tensegrity, n = 3, hexagonal tessellation, double-surface
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Applying to the dome with a central opening. There are a certain amount 
of cables which will be added to connect two reference tessellations. 
in this case, these reference tessellations are not merged. 
With a hexagonal pattern, a network of simplex tensegrities is achieved.

Cylindrical tensegrity, n = 3, hexagonal tessellation, double-surface
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There are five possible compositions of six struts 
within a dodecagonal prism. The last one is useless 
because struts touch each other in the middles.
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By combining these five possible types of cells together, 
5 different tessellations are achived.

Cylindrical tensegrity, n = 6, dodecagonal tessellation, double-surface
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X

The cell of this system is a hexagonal tensegrity 
inside a dodecagonal cylindrical geometry. They will 
be then combined in the way that struts do not touch 
each other. 

Applying to the dome with a central opening. There are a certain amount of cables which will be added to connect 
two reference tessellations. In this case, these reference tessellations are not merged. 
with a dodecagonal pattern, a network of hexagonal tensegrities is achieved. There are five alternatives of 
them. two of these systems are visualized in the figure.

Cylindrical tensegrity, n = 6, dodecagonal tessellation, double-surface


