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A B S T R A C T

Predicting the non-linear loading response is the key to the design of suction caissons. This paper presents
a systematic study to explore the applicability of deep learning techniques in foundation design. Firstly, a
series of three-dimensional finite element simulations was performed, covering a wide range of embedment
ratios and different loading directions, to provide training data for the deep neural network (DNN) model.
Then, hyper-parameter tuning was performed and it is found that the basic Fully-Connected (FC) neural
network model is sufficient to capture the non-linear response of suction caissons with excellent accuracy and
robustness. Furthermore, the optimized FC neural network model was also successfully applied to a database
of suction caissons in sand, demonstrating its broad applicability. By comparing three typical DNNs, i.e., FC,
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), it was observed that the FC
neural network model excels over others in terms of simplicity, efficiency and accuracy. More importantly,
by looking into the model’s generalization performance, the FC neural network model can also identify the
change in foundation failure mechanisms. This study demonstrates the DNN’s powerful mapping ability and
its potential for future use in offshore foundation design.
1. Introduction

Suction caissons have been applied successfully in the oil and gas
industry for decades as supporting foundations or anchors (Randolph
and Gourvenec, 2017; Byrne et al., 2002). Recently, the foundation is
also used in offshore wind farms for both bottom-fixed and floating
wind turbines. In offshore applications, due to complex environmental
actions (i.e., wind, waves, and currents), the substructures of offshore
infrastructures are subjected to three-dimensional loads. It is, therefore,
critical for foundation design to understand its load–deflection response
and develop accurate and efficient design approaches. Traditionally,
foundation design is mainly focused on the ultimate bearing capacity.
In this regard, the combined foundation capacity under complex verti-
cal (V), horizontal (H) and moment (M) loads are normally represented
by a failure envelope (Roscoe, 1956). Extensive studies have been
conducted to investigate the failure envelope of the suction caisson
foundation in drained sand and undrained clay (Bransby and Randolph,
1998; Bransby and Yun, 2009; Gourvenec and Barnett, 2011; Hung and
Kim, 2014; Karapiperis and Gerolymos, 2014; Gerolymos et al., 2015;
Vulpe, 2015; Mehravar et al., 2016). Many approximating expressions
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have been proposed to capture the VHM failure envelopes, as sum-
marized in Table 1. It should be noted that the foundation deflection
required to mobilize the bearing capacity is normally very large and
exceeds the service limit condition, while the external loads on the
offshore wind turbines are relatively small. Instead of the ultimate limit
state, the foundation design is normally governed by the stiffness at
small deflection (Byrne et al., 2002). Therefore, it is more important to
accurately predict the foundation’s non-linear load–deflection response.

Traditionally, the macro-element model is usually used to model
the non-linear load–deflection response of a foundation under three-
dimensional loads (Ibsen et al., 2014; Villalobos Jara, 2006; Byrne,
2000; Pisanò et al., 2016; Skau et al., 2018a; Yin et al., 2020). For ex-
ample, Houlsby and Cassidy (2002), Zhang et al. (2014) and Wang et al.
(2021) proposed macro-element models of spudcan for integrated dy-
namic analysis of the jack-up system; Salciarini and Tamagnini (2009)
and Jin et al. (2019) proposed macro-element models for shallow foun-
dations, and Li et al. (2016) proposed macro-element model for piles.
For the suction caisson in undrained clay, Cassidy et al. (2006), Skau
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Table 1
Summary of existing approximating expressions for the VHM failure envelope.

Reference Soil type Proposed equation

Murff (1994) Sand 𝑓 =
(

𝑉
𝑉𝑢

)2
−
(

1 + 𝑉t
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)

𝑉
𝑉𝑢

+ 𝑉t
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+
[

(

𝐻
𝐻𝑢

)2
+
(

𝑀
𝑀𝑢

)2
]0.5

= 0

Bransby and Randolph (1998) Clay 𝑓 =
(

|

|

|

𝑉
𝑉𝑢

|

|

|

)2.5
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(

1 − |

|

|
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|

|

|
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|

|
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|

|

|

)

+ 1
2

(

|

|
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𝑀𝑢

|

|

|

) (

|

|

|

𝐻
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|
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|

)5

Taiebat and Carter (2000) Clay 𝑓 =
(

𝑉
𝑉u

)2
+
[

𝑀
𝑀u

(

1 − 𝛼1
𝐻𝑀
𝐻u |𝑀|

)]2
+
|

|

|

|

(

𝐻
𝐻u

)3
|

|

|

|

− 1 = 0

Gourvenec and Barnett (2011) Clay 𝑓 =
(

ℎ
ℎ∗

)𝛼
+
(

𝑚
𝑚∗

)𝛼
+ 2𝛽

(

ℎ𝑚
ℎ∗𝑚∗

)

− 1 = 0

Hung and Kim (2014) Clay 𝑓 =
(

𝑀
𝑀𝑢

)2
− 𝛼𝛽𝜆

(

𝐻
𝐻𝑢

)(

𝑀
𝑀𝑢

)

+
(

𝐻
𝐻𝑢

)2
+
(

𝑉
𝑉𝑢

)2
− 1 = 0

Karapiperis and Gerolymos (2014) Clay 𝑓 =
(

𝐻
𝐻𝑢

)2
+
(

𝐻
𝐻𝑢

)2
+ 𝑚

(

𝐻
𝐻𝑢

)(

𝑀
𝑀𝑢

)

− 1 = 0

Vulpe et al. (2014) Clay 𝑓 =
(

|

|

|

ℎ
ℎ∗
|

|

|

)𝛼
+
(

𝑚
𝑚∗

)𝛼
+ 2𝛽 ℎ𝑚

ℎ∗𝑚∗ − 1 = 0

Gerolymos et al. (2015) Clay 𝑓 =
(

𝐻
𝐻𝑢

)𝑛1
+
(

𝑀
𝑀𝑢

)𝑛2
+ 𝑛3

(

𝐻
𝐻𝑢

)(

𝑀
𝑀𝑢

)

− 1 = 0

Where: 𝐻𝑢 ,𝑀𝑢 , 𝑉𝑢 are the ultimate bearing capacity; 𝑀∗ is the moment calculated about a reference point; 𝛼1 is factor that depends on the
soil profile; ℎ =

(

𝐻∕𝐻ult
)

, 𝑚 =
(

𝑀∕𝑀ult
)

; ℎ∗ and 𝑚∗ are functions of 𝑣 =
(

𝑉 ∕𝑉ult
)

; 𝜆 is the function of the shape of failure envelope; 𝛼, 𝛽
are the fitting parameters of the embedment ratio; 𝑛1 , 𝑛2 , 𝑛3 are the coefficients with respect to the embedment ratio
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t al. (2018b) and Yin et al. (2020) also developed different macro-
lement models based on the traditional plasticity theory, hypoplastic
heory or the multi-surface concept.

However, the flow rule and the hardening law in these models are
trongly dependent on the geometrical configuration of the foundations
e.g., embedment ratio L/D, where D is foundation diameter and L is the
oundation embedment length) (Zhang et al., 2014) and the geotechni-
al properties of the seabed (e.g., the stiffness and strength) (Cremer
t al., 2002). Using one macro-element model to capture the non-
inear deflection response in all three-dimensional directions is still
ery challenging. A different set of model parameters may be required
or foundations of different geometric configurations and in differ-
nt seabeds (Skau et al., 2018b). Alternatively, finite element (FE)
odelling can explicitly model the soil-foundation system and predict

he foundation response under complex loading. Benefiting from the
dvances in soil constitutive modelling and computational power, it
ecomes more common to directly model the foundation and soil as
ontinuum bodies in the FE model (Jagota et al., 2013). However, FE
nalysis requires professional knowledge, making it less preferable in
ndustry design (Szabo and Babuska, 2021; Houlsby, 2016). In addition,
he computation efficiency of the three-dimensional (3D) FE modelling
annot satisfy the requirement of industry projects (Qu, 2004). For
xample, due to the iterative design process of the offshore wind
urbine, extensive simulations must be conducted to design a typical
oundation. It is unrealistic to perform all these simulations using a 3D
E model (Feng and Shen, 2017). It is, therefore, necessary to develop
model that inherits the accuracy and flexibility of the finite element
odel but is simpler and more efficient.

Recently, the powerful ability of deep learning (DL) technique to
eal with non-linear regression problems has offered an alternative
olution for foundation design (Reimers and Requena-Mesa, 2020). The
L technique does not need to pose any pre-assumption (compared
ith the pre-defined mathematical equations of yield surface, flow rule
nd hardening law in macro-element models) and has significant flex-
bility compared with traditional explicit design approaches, e.g., the
acro-element model. Benefiting from its powerful non-linear map-
ing ability, the DL technique has been applied successfully in many
eotechnical problems (Nejad and Jaksa, 2017; Shahin, 2014; Momeni
t al., 2014; Tarawneh, 2013; Kuo et al., 2009). For instance, Zhang
t al. (2020) successfully developed a surrogate model using the long
hort-term memory (LSTM) model to predict the load–deflection re-
ponse of the suction caisson foundation in sand. However, it should
e noted that the study was limited to the foundation behaviour in the
wo-dimensional H-M space.

In light of the above premises, this study aims to develop a DL-based
esign model to predict the non-linear response of suction caissons
nder three-dimensional loads. As the first exploratory study in this
rea, this paper is limited to the suction caissons in undrained clay
2

nder combined loads in the same plane (i.e., three degrees of vertical, t
orizontal and rotation movement in the same plane). A following
tudy is undergoing to develop a DL-based model for caissons in sand
nd layered soil. A series of three-dimensional (3D) finite element simu-
ations were performed first to provide the training database for the DL
odel. The response of the suction caissons with a wide range of aspect

atio (L/D) from 0.1 to 1 in both homogeneous (i.e., 𝑠𝑢 is constant) and
heterogeneous soil (i.e., 𝑠𝑢 is linear with depth) was studied. For each
oundation in each soil profile, 96 different displacement loading paths
ere simulated to obtain the foundation response in three-dimensional
HM space. The numerically generated data was then used to train

he deep neural network (DNN) model, which could directly learn the
apping relationship between the foundation deflection and external

oads from the raw numerical data. In this study, the FC neural net-
ork model is adopted to develop the surrogate foundation model.
he developed FC neural network model with the optimized hyper-
arameters was further applied to the database of suction caissons in
and (Zhang et al., 2020). Meanwhile, the robustness and generalizabil-
ty of the trained DL-based surrogate model are thoroughly discussed.
n particular, the evolution of the foundation failure mechanism was
nvestigated by looking into the model generalization performance.
n extra example application of this trained surrogate model is also
rovided to demonstrate the computational efficiency of the model.
n the end, several typical neural network models, i.e., convolutional
eural network (CNN) and LSTM models, are also compared to further
valuate the performance and applicability of the FC neural network
odel for suction caissons in clay.

. Model training database

.1. Numerical modelling

The finite element software Abaqus 6.14 was used in this study to
imulate the behaviour of suction caisson foundations installed in clay
eabed under combined loads (Systèmes, 2014). The influence of the ge-
metrical configurations of the foundation and the properties of the soil
n the shape and size of the envelope were systematically investigated.
he suction caissons are thin-walled large-diameter steel cylinders,
pen-ended at the bottom and closed at the top, typically less than 20

in foundation diameter (𝐷) with an aspect ratio (𝐿∕𝐷, 𝐿 is the foun-
ation embedment depth) typically less than 1 (Cassidy et al., 2006; Fu
t al., 2020) and thickness ratio (𝐷∕𝑡) ranging between 80–300 (Gour-
enec and Cassidy, 2005). In this study, a fixed foundation diameter
nd wall thickness of 10 m and 0.1 m were adopted in all simulations,
espectively. As all the computed results will be analysed after nor-
alization with the foundation dimensions and soil untrained strength,

t is believed the absolute value of the diameter will not affect the
esults (Gourvenec and Barnett, 2011). A total of 10 embedment depth-

o-diameter ratios of 𝐿∕𝐷 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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Fig. 1. A typical FE model mesh of caisson with a diameter of 10 m and aspect ratio of 1.
Fig. 2. Boundary conditions of the FE model.
were studied to cover the suction caisson foundations used in the
field. The foundations were modelled through the well-established
wished-in-place approach without considering the installation effect.

A typical mesh of the suction caisson FE model with a diameter
of 10 m and an embedment depth of 10 m is presented in Fig. 1.
By taking advantage of the symmetry of the problem, only half of
the soil-foundation system was modelled to save computation time.
Roller supports were applied around the mesh circumference while
the base boundary was fully fixed, illustrated in Fig. 2. The model
diameter and model depths are 15D and 4𝐷 beneath the foundation
base, respectively. A fine mesh domain was constructed around the
foundation skirts, while a coarser mesh domain was used in the far
field to reduce computing expenditure. An additional simulation with
a model twice the dimension and mesh density results in a change
of 1% regarding the load–deflection response. A fully rough interface
with no separation between the foundation and the soil was used
in all simulations. The suction caisson and clay soil were modelled
with eight-node linear strain brick elements with reduced integration
(i.e., ‘C3D8R’ in Abaqus terminology) and hybrid eight-node linear
strain brick elements (i.e., ‘C3D8H’ in Abaqus terminology) (Gourvenec
and Barnett, 2011), respectively.

A linearly elastic and perfectly plastic material, obeying the Tresca
yield criterion, was assumed for clay. The elastic response of clay is
defined by the shear modulus and Poisson’s ratio. The soil modulus
G of clay is defined from the undrained strength (s𝑢) and equal to
500s𝑢 (Hu and Randolph, 1998; Jeanjean et al., 2017). The effective
unit weight of the soil was 𝛾 ′ = 6 kN/m3. a Poisson’s ratio 𝜈 of 0.495
and a dilation angle of 0.01◦ was used to simulate the undrained loading
3

conditions. Two different shear strength profiles, i.e., a homogeneous
shear strength (𝑠𝑢 = 10 kPa, simulating over-consolidated clay) and a
linear increasing shear strength (𝑠𝑢 = 𝑘𝑧 kPa, where z is depth below
the ground surface and k is the strength increasing gradient with depth,
simulating a normal-consolidated clay) were studied for each suction
caisson. A fully elastic response was assumed for the suction caisson
foundations. Young’s modulus E and Poisson’s ratio 𝜈 of steel were
used for the foundations. Details of all the mechanical properties in FE
modelling are summarized in Table 2.

In DNN model training, the embedment ratio 𝐿∕𝐷 was used in-
stead of the absolute values of D and L to accommodate as many
combinations of feasible embedment depths as possible while ignoring
the impact of the foundation dimensions. The chosen range of the
𝐿∕𝐷 ratio was partitioned into 10 equal parts from 0 to 1, while
embedment ratios larger than 1 and no-skirt foundations (embedment
ratio = 0) were not taken into consideration. The same simulations
were performed in both homogeneous and heterogeneous soil, respec-
tively. The response force is continuously mobilized with increasing
displacement and rotation in each direction until reaching the bearing
capacity. As recommended by Butterfîeld et al. (1997), the sign system
for displacements and loads described in this study uses right-handed
axes and clockwise positive signs, as illustrated in Fig. 3.

To better illustrate the 3D loading direction, a spherical coordinate
system is employed, which provides a better representation of the
ellipsoidal surface compared to the traditional Cartesian coordinate
system. After determining the three axes of the ellipsoid, each loading
direction can be defined with only two parameters 𝜃 and 𝜙, where 𝜃 is
the positive angle to the 𝑥-axis when rotating counterclockwise and 𝜙
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Table 2
Mechanical properties in FE modelling.

Suction caisson Outer diameter (𝐷) 10 m

Length (𝐿) 1–10 m

Clay Angle of internal friction
(

𝜙′) 0.01◦

Angle of dilation (𝜓) 0.01◦

Shear modulus to undrained shear strength ratio (𝐺∕𝑠u) 500
Poisson’s ratio

(

𝜈𝑠
)

0.495
Shear strength in OC clay

(

𝑠𝑢
)

10 kPa
Shear strength at mudline

(

𝑠𝑢𝑚
)

0.01 kPa
Strength increasing gradient with depth (𝑘) 1
Degree of heterogeneity (𝜅) 1000

Steel Young’s modulus
(

𝐸𝑠
)

210 ∗ 106 kPa
Poisson’s ratio

(

𝜈𝑠
)

0.25
Fig. 3. Sign convention for loads and displacements.

is the positive angle to the 𝑧-axis when rotating clockwise. For a better
understanding, 𝜃 can be considered as the longitude of the earth and
𝜙 can be considered as the latitude of the earth (as shown in Fig. 4).
In this study, only the compressing bearing capacity of the shallow
foundation was investigated, not its pull-out resistance. After weighing
the computational time against the size of the data set, 96 probe test
directions were established for each embedment depth. This means that
𝜃 takes 15◦, 45◦, 75◦, 105◦, 135◦, 165◦, 195◦, 225◦, 255◦, 285◦, 315◦,
345◦, respectively (30-degree increments for a total of 12 angles), while
𝜙 takes 15◦, 30◦, 60◦, 75◦, 80◦, 85◦, 88◦, 90◦, respectively (a total
of 8 angles). 𝜃 and 𝜙 should be equally spaced to cover the entire
computation range. It should be noted, however, when the spherical
coordinate system is converted to the Cartesian coordinate system, the
z (𝜌 ∗ cos𝜙) values are distributed unevenly. To better capture the
failure pattern at smaller vertical displacements, the distribution of 𝜙
will change from sparse to dense after 80◦.

The total 96 directions investigated in this study were plotted as a
hemispheric envelope in Fig. 5. In each simulation, it was found that
the first 100 data points already adequately represent the entire loading
path with the remaining data points exhibiting a negligible variation.
Therefore, the first 100 data points were intercepted in each direction,
generating a total of 9600 data points for each foundation. Each data
point set includes displacement information in three directions (𝑣, 𝑢,
𝜃), corresponding to three load components (𝑉 , 𝐻 , 𝑀), a foundation
configuration (L/D) and a degree of heterogeneity input (𝜅). The dis-
placement information of the skirted foundation was written directly
in the comma-separated values (CSV) files without any processing.
The force information of the skirted foundation is dimensionless and
can be represented by the bearing capacity factor (𝑁c𝑉 = 𝑉 ∕𝐴𝑠𝑢0,
𝑁c𝐻 = 𝐻∕𝐴𝑠𝑢0, 𝑁c𝑀 = 𝑀∕𝐴𝐷𝑠𝑢0, 𝐴 = 𝜋𝐷2∕4 is the foundation
area). The foundation configuration information was represented by the
embedment ratio (𝐿∕𝐷), and the shear strength profile was represented
by the soil strength heterogeneity index (𝜅). All data sets were saved
in CSV files for quick access by Python. These CSV files contain a total
4

Fig. 4. Spherical coordinate system.

Fig. 5. Ultimate displacement probes in 96 directions (created by 8 latitude and 12
longitude combinations in a spherical coordinate system).

of 1920 sets of FE simulations, which took about 640 h to build. All
the simulations and data post-processing were conducted automatically
using a Python script. Both the FE simulation data and the Python script
are available from the corresponding author upon request.

2.2. FE model validation

The FE model was first validated by comparing the computed
ultimate bearing capacity with those in the literature. Fig. 6 shows
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Fig. 6. Ultimate bearing capacity as a function of embedment ratio.
the variation of three bearing capacity factors (i.e., 𝑁c𝑉 , 𝑁c𝐻 , 𝑁c𝑀 )
against the foundation embedment ratio 𝐿∕𝐷. The calculated bearing
capacities in this paper and the analytical and numerical solutions
calculated by Vulpe (2015) and Fu et al. (2017) are also shown in
Fig. 6. It is clear that the computed results are consistent with the
results from existing studies. The maximum relative differences in
vertical, horizontal, and moment bearing capacities are less than 2.1%,
14.2%, and 9.6%, respectively, compared with the calculated from the
proposed equations in Fu et al. (2017).

Fig. 7 presents the typical three-dimensional VHM failure envelopes
of foundations in homogeneous soil as three 2-dimensional envelopes
(i.e., H-M, V-H, V-M), respectively. As shown in the figure, both the
size and shape of failure envelopes vary with the foundation embed-
ment ratio. In particular, an elliptical shape of the failure envelope
in the H-M space is observed, which is also well reported in existing
studies (Bransby and Randolph, 1998; Bransby and Yun, 2009). The
consistency of the computed results in this study with those reported
in the literature demonstrated the reliability of the FE model in this
study.

2.3. Data pre-processing

As the foundation displacement and rotation values are not dimen-
sionless, different scales of the input and output parameters will affect
the model performance. Therefore, the following normalizing equation
was adopted to eliminate the size effect:

𝑥norm =
𝑥 − 𝑥min

𝑥max − 𝑥min

(

�̄�max − �̄�min
)

+ �̄�min (1)

where 𝑥max and 𝑥min are the maximum and minimum of the parameter
𝑥; �̄�min is the threshold to be scaled and �̄�max is the upper boundary
to be scaled. The upper boundary is typically set to 1, and the lower
boundary is set to −1 in this paper.

This normalization operation was implemented through the Keras
framework, an advanced deep learning library developed based on the
Python programming language (Gulli and Pal, 2017). The subsequent
programming and construction of DNN models are also based on the
Keras framework. After normalization, the complete data is separated
into three sub-datasets, consisting of 64% training data, 16% validation
data, and 20% test data (Géron, 2022). Specifically, the DNN model will
be trained on the training set, and the 20% validation dataset will be
used to supervise the training process. Importantly, the 20% test dataset
will not be used for training and will only be utilized for the purpose
of evaluating the trained model. The research framework adopted to
train a DNN model is illustrated in Fig. 8. The deep learning-based
methodology will be described in more detail in Section 3.

3. Deep learning based methodology

3.1. Deep neural networks

In this paper, the fully-connected neural network is adopted (Hop-
field, 1982), which is stacked by several adjacent layers (e.g., Fig. 9).
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All layers are composed of neurons to impart information. Specifically,
layer 0 is referred to as the input layer, while the final layer and
the intermediate layers are referred to as the output layer and the
hidden layers, respectively. According to the universal approxima-
tion theorem (Hornik et al., 1989), a neural network can be treated
as an ideal ‘‘universal’’ function to tackle the non-linear regression
problem by approximating any input and output dataset. However,
designing an appropriate model structure and learning model param-
eters poses a non-trivial challenge. The model’s structure inherently
plays a crucial role in determining its fitting ability. If the model is
under-parameterized, it may lead to underfitting, whereas an over-
parameterized model may give rise to the overfitting issue (Zhou
et al., 2022; Brutzkus et al., 2017). Therefore, appropriate hyper-
parameters related to model structure design (i.e., the number of
hidden layers, and the number of neurons in each layer) should be
selected. Besides, the process of learning model parameters in a neural
network model is highly sensitive to the selection of training hyper-
parameters (e.g., learning rate, batch size, training iterations), which
can significantly impact the training process. The strategy for selecting
hyper-parameters in model structure design and network training will
be elaborated in the next section.

3.2. Hyper-parameter tuning and training details

The performance (e.g., convergence, training efficiency) of a model
is highly dependent on the setting of the hyperparameters, including
both model structure hyperparameters and model training hyperparam-
eters. The model structure hyperparameters (e.g., the number of neu-
rons in each layer) define the size and complexity of neural networks.
The model training hyperparameters (e.g., learning rate) determine the
prediction accuracy and the model convergence. A few examples of the
hyperparameters are also illustrated in Fig. 10.

3.2.1. Hyper-parameters in model structure design
The model structure hyper-parameters are determined using the

grid search method (Pontes et al., 2016), which is a classical and
efficient method for hyperparameter screening. After preliminary ex-
periments, it was found that a FC neural network model with only a
single hidden layer was able to obtain good prediction performance.
However, to further improve prediction accuracy, especially the stabil-
ity and robustness of the prediction, more complex neural networks by
increasing the number of hidden layers were investigated. In addition,
as explained in Section 3.1, the balance between model complexity
and model accuracy should also be considered during model training.
Considering the factors above, a FC neural network model with two
hidden layers is adopted in the end. In typical neural network models,
to capture the non-linear response, the non-linear activation function
will be introduced after each hidden layer. The typical activation
functions include the sigmoid, rectified linear unit (ReLU), and hy-
perbolic tangent function (tanh) (Sharma et al., 2017). In this paper,
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Fig. 7. 3D failure envelopes at L = 1–10 m calculated using FE analysis with slices (H-M slice in red, H-V slice in green and M-V slice in blue).

Fig. 8. Schematic process of hybrid FE modelling and deep learning algorithm surrogate modelling.
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Fig. 9. Fully-connected neural network.

the ReLU (Nair and Hinton, 2010) activation function was adopted
to avoid the gradient vanishing problem and accelerate the gradient
descent convergence (Li and Yuan, 2017). Meanwhile, to maximize the
performance of parallel computing on the GPU, the batchsize is often
required to be a multiple of 8 (e.g., 32, 128) (Sanders and Kandrot,
2010). This paper investigates the influence of batchsize with different
numbers, i.e., 128, 256, 512, 1024, and 2048. The selection of the
number of neurons (i.e., 16, 32, 64, 128, and 256) in each layer is also
analysed.

By selecting a different batchsize and the number of neurons, a total
of 125 (5 ∗ 5 ∗ 5) sets of trials were implemented. Fig. 11 presents the
minimum mean squared errors generated in each trail. Obviously, the
larger the number of neurons and the smaller the batch size, the better
the performance of the model. However, it should be noted that the
continuous increase in the number of neurons does not contribute much
to improving the prediction accuracy of the model. In addition, a small
batch size may also reduce the generalization ability by trapping the
model in a local optimum (Keskar et al., 2016). Therefore, by analysing
the performance of the model in Fig. 11, the optimal batch size and the
number of neurons in each layer were set as 128 and 256, respectively.

3.2.2. Hyper-parameters in training process
This section focuses on choosing the loss function and optimizer,

as well as determining the learning rate and training epoch. The loss
function in the regression problem is mainly divided into mean absolute
error (MAE) loss and mean square error (MSE) loss, where MSE is
more stable and accurate in the optimization process (Goodfellow et al.,
2016). MSE calculates the mean of the squared discrepancies between
the prediction and the target value. Larger errors could be punished
more severely than smaller ones by square-rooting the error. Therefore,
the MSE loss is used in this paper to produce a more precise result.
Adam algorithm (adaptive moment estimation algorithm) is selected
as the optimizer (Kingma and Ba, 2014), which is a combination
of the momentum method and the RMSprop algorithm (an adaptive
learning rate approach (Tieleman et al., 2012)). The Adam algorithm
uses momentum as the direction of parameter update and alters the
learning rate adaptively. A comparison experiment was performed
to determine the initial learning rate. Fig. 12 compares the training
process at different learning rates. It should be noted that the value
of the training loss remains approximately stable at all learning rates
and converges to a constant value within 50 epochs. The model could
converge rapidly (less than 5 epochs) almost for all learning rates
except for the learning rate of 0.0001. However, at learning rates of
0.01 and 0.005, the training process shows fluctuations in loss value.
7

Table 3
Hyper-parameters used for training the neural networks model.

FC neural network

Hyperparameter Description Value

Nh Number of hidden layers 2
Nn Number of nodes in the hidden layer 256,256
𝜂 Learning rate in the optimizer 0.001
Batch_size Number of training samples utilized in one iteration 128
Epoch Number of iterations during training 50
validation_split Proportion of validation set in total training 0.2

The loss curve could remain stable at learning rates of 0.001 and 0.002.
After comparing with other learning rates, it was found that a learning
rate of 0.001 can make the training process smoothly converge to a
small loss faster. Therefore, the learning rate in model training was
set to 0.001. The final hyperparameters utilized for FC neural network
training are summarized in Table 3.

3.3. Evaluation metrics

In this study, the RMSE (Root Mean Squared Error) and 𝑅2 (Coef-
ficient of determination) are used as the primary evaluation metrics of
the regression results, while the MAE (Mean Absolute Error) serves as
the supplementary evaluation metric. RMSE is the root of MSE (Mean
Squared Error) and can give the most intuitive prediction error. It is
calculated as follows:

RMSE =

√

√

√

√

1
𝑚

𝑚
∑

𝑖=1
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The goodness of fit measures the degree to which a regression line
matches the observed values. The determination coefficient (𝑅2) is the
statistical indicator of the goodness of fit. The greater the 𝑅2, the better
the model predicts the results, which is optimal at a value of 1. In
contrast, when 𝑅2 is closer to 0, the model fits the data less well. The
𝑅2 could be calculated as follows:

𝑅2 = 1 −
∑
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Considering that certain data points are 0, the Mean Absolute
Percentage Error (MAPE) calculation would be biased. This metric
divides the difference between the actual value and predicted value
by the actual value. Consequently, the MAE is employed to assess
the performance and describe errors between the predicted value and
actual value:

MAE = 1
𝑚
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4. Model development and evaluation

4.1. Model prediction and applicability

In this section, the mechanical response prediction experiment was
carried out first to verify if the FC neural network model can provide
accurate predictions and accommodate the change in the soil profile.
A total of 192000 data sets of homogeneous and heterogeneous soils
(from Section 2) were fed to the FC neural network model. The soil
strength heterogeneity index was introduced into the model input to
differentiate between the two types of soils. As shown in Fig. 13, the
three load components can be perfectly predicted by the trained FC
neural network model. It demonstrates that even a very ‘‘shallow’’
FC neural network model of two layers can learn the intrinsic failure
mechanisms of the caissons from raw data and effectively predict their
non-linear mechanical responses under complex loading.

Similarly, Zhang et al. (2020) also successfully used deep learning
algorithms to predict the behaviour of caisson in sand soils, although
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Fig. 10. DNN model’s training process with hyperparameters marked in light blue, input parameters marked in red and output parameters marked in blue.
Fig. 11. The minimum loss of the model with different combinations of batchsize and
neurons.

Fig. 12. Training loss for the DNN model with different learning rates.

the study was limited to the response in 𝐻−𝑀 space. The training data

was generated from advanced numerical modelling using smoothed

particle hydrodynamics with the SIMSAND model. The database was
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validated by laboratory tests, physical model tests, and a caisson foun-
dation field test. Instead of the FC neural network model, the model
adopted in Zhang et al. (2020) was developed based on the LSTM,
which could obtain a better prediction result in the time-series domain
by incorporating history information (Hochreiter and Schmidhuber,
1997). To further test the application ability of the FC neural network
model, the FC model adopted in this study is also tested against the
database in Zhang et al. (2020). It should be noted that the training
parameters of the FC neural network model (e.g., number of epoch and
batch size) are changed to ensure that the training strategy is the same
as in Zhang et al. (2020), while the same model hyperparameters as
described in Section 3.2.1 were used. The FC neural network model
was then retrained, using the training set, validation set and test set
with the same data partitioning strategy as in Zhang et al. (2020).
Despite using an identical training strategy, it should be noted that
the trained model can be considered as a new model with the same
model structure but different internal parameters. These weight and
bias parameters stored in every neuron are fully renovated due to
the input of a completely different dataset. This also explains why
the same FC neural network model can fit two different soil response
mechanisms. The training results are summarized in Table 4. As shown
in the table, better prediction results were obtained using the FC neural
network model. This is mainly attributed to its much simpler structure
which is easy to train and the better prediction strategy. The essence
of the prediction is aiming to reproduce every possible loading path in
reality. When using different prediction strategies, the loading path can
be considered either as a continuous line (temporal prediction) or as
finite individual points (non-linear regression). While the LSTM model
in Zhang et al. (2020) follows the temporal prediction strategy, the
FC neural network in this study implements the nonlinear regression
strategy and exhibits better performance. Therefore, although the LSTM
could be very effective in dealing with complex temporal problems, its
unique gating mechanism did not perform well in simple point-to-point
regression problems (Hiransha et al., 2018). Instead, too much memory
in LSTM inevitably leads to more parameters and a more complex
model. This conclusion will be further elaborated in Section 4.4. In
addition, it was observed that the prediction accuracy in sand decreased
slightly compared to the predicted results in the clay dataset generated
in Section 2. This is because the foundation response data in sand cal-
culated using the smoothed particle hydrodynamics with the SIMSAND
model is very noisy with relatively large fluctuation. As the MSE loss
function will be affected by the noise, a prediction bias can be pro-
duced. Based on this extra test on the database of foundation in sand, it
is clear that the FC neural network model is equipped with outstanding
applicability and has excellent transfer learning capabilities.
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Fig. 13. Prediction results for 100 random samples on H, V, and M, respectively, in homogeneous and heterogenous soil (RMSE: 0.024, 𝑅2: 1.000, MAE: 0.016).
Table 4
Comparison of prediction errors of two models on sandy dataset.

Parameter LSTM in Zhang et al. (2020) FC neural network model

MAPE NSE MAPE NSE

H 25.07% 0.93 20.20% 0.99
M 42.15% 0.92 37.16% 0.99

.2. Model robustness

Fig. 13 has demonstrated that the FC neural network model can
chieve excellent predictions. However, it should be noted that good
redictions can come from the fortuitous selection of weights and
iases, which helps model training and makes convergence very fast.
n addition, it is also possible that the data were divided by chance,
hich put the challenging data in the training set, making the left
ata in the test set easily to be predicted. Both these issues are related
o the model setting of random number seeds, which symbolize the
andomness of the model. A random seed is a number used to initialize
pseudorandom number generator. The randomly generated number

ontrolled by seed influences not just the model’s initialization weights
nd bias parameters, but also the partitioning of the test and validation
ets. Therefore, to evaluate whether the model has stable performance,
he robustness of the model was investigated by repeating experiments
ith various random seeds (Madhyastha and Jain, 2019). The stability
f the model was then studied (Blundell et al., 2015). For the tested 50
andom number seeds, the corresponding MSE loss values for model
raining are shown below (Fig. 14). The blue line represents the mean
f the fifty training runs, while the red line represents the standard
eviation of each epoch. As shown in the figure, the training process
onverges rapidly and stabilizes after the fifth epoch. The error line
indicating the variance) reaches the highest at the twenty-fifth epoch,
nd the loss value at this moment swings by 0.0004, which is within an
cceptable range. The box plots of H, V, and M predictions from these
ifty experiments are represented by RMSE and 𝑅2 (shown in Fig. 15).
learly, the model can maintain a high prediction accuracy with the
MSE of predictions for the three forces being less than 0.012 and 𝑅2

emaining above 0.9985. The prediction error distribution of the 50
eplicate experiments demonstrates the high stability and robustness of
he FC neural network model.

.3. Model generalization ability

This study aims to train the model with existing data and produce a
NN model capable of predicting the response of any new embedment
epth foundation under a unique combination of loads. It necessitates
hat the trained DNN model not only can predict with high accuracy
nd robustness but also has the ability to generalize. The generalization
f the model can be demonstrated by mapping the failure envelope with
given embedment depth and soil strength profile only. The caisson

oundation with 𝐿 = 3 m in homogeneous soil is used as a showcase in
9

Fig. 14. The mean MSE loss under 50 random seeds.

Fig. 16. To better simulate the conditions in practice, data with 𝐿 = 3
m is excluded from the training set of the model. The data points on
each loading path were not intercepted to obtain the complete loading
process. A total of 109,032 data points were obtained for the remaining
nine embedment depths and were divided into 80% training set and
20% test set. After training, the interpolation prediction error on the
test set was RMSE = 0.028, 𝑅2 = 1.000, MAE = 0.018.

Once the model training was finished, the foundation mechanical
response can be obtained by simply inputting the direction, displace-
ment, or rotation. For the trained model, it is very free to set the case
number of loading directions, for example, the 3000 used in this case
study or even more. In fact, it will not cause any significant difference
in the computation time. Following the spherical coordinate calculating
equation, the displacement/rotation values at 3000 directions were
determined and inputted into the trained model. The capacity enve-
lope surface defined from the 3000 data from the trained model was
compared with those obtained from 3D FE simulations of 96 directions
in Fig. 16. The grey surface in the figure is the predicted envelope
fitted by 3000 points; the true values essentially fall on the surface,
indicating that the predictions are very accurate. The generalization
(i.e., extrapolation test) errors at 𝐿 = 3 m are RMSE = 0.025, 𝑅2 = 0.998,
MAE = 0.019. The accurate prediction demonstrates the excellent gen-
eralization ability of the FC model, which can predict the foundation
behaviour through limited FE simulation data and avoid complex FE
modelling. More importantly, the DL-based surrogate model can save
significant computation time compared to the traditional FE method.
Specifically, if this envelope with 3000 loading paths was simulated
in a normal computer (Legion Y7000P), it would take more than 42
days. On the contrary, when using the DNN model, it takes only one
second. In summary, the DNN-based surrogate model is more precise,
adaptable, and efficient than the macro element model and 3D FE
modelling.
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Fig. 15. Distributions of H, V, M prediction error under 50 random seeds.

Fig. 16. Comparison of predicted envelope and true value at 𝐿 = 3 m.

From a geotechnical perspective, the failure mechanism of the foun-
dation varies with the embedment depth. As a result, the generalization
ability at different embedment depths is very likely to vary as well. The
foundation’s failure mechanism should be continuous over the range of
embedment depths, i.e., the failure mechanism at a specific embedment
depth is close to the failure mechanisms at the two adjacent embedment
10
Fig. 17. Variation of 𝑅2 at different embedment depths in homogeneous and
heterogeneous soils.

depths. To reveal the evolution of the failure mechanism with founda-
tion embedment depth, another experiment was designed to train the
DNN model by utilizing data from two neighbouring embedment depths
and predict the response at a specific depth in between (e.g., train the
neural network using data from 𝐿 = 1 m and 𝐿 = 3 m and then predict
the response at 𝐿 = 2 m). Both homogeneous and heterogeneous soils
were tested, and the results are shown in Fig. 17.

From Fig. 17, it is clear that the heterogeneous and homogeneous
soils exhibit the same pattern of variation, with one poorly fitted
position appearing at the embedment depth of around 5 − 6 m. The
excellent fit at an embedment depth of 4 m suggests that embedment
depths of 3 m, 4 m and 5 m share the same failure mechanism. Similarly,
the excellent predictions for embedment depths of 7 m indicate the
same failure mechanism for embedment depths of 6 m, 7 m and 8 m.
On the contrary, the inferior prediction between 𝐿 = 5 m and 𝐿 = 6
m indicates a transition point (i.e., a switch of the failure mechanism)
between these two embedment depths. This clear change in the neural
network’s generalization ability highlights the corresponding variation
of the foundation failure mechanism.

To further highlight the changes in mechanism, the combined H-
M response of the foundations in different directions (Fig. 18) was
investigated in more detail. As shown in Fig. 18, a clear transition of
force path was identified between 𝐿 = 5 m and 𝐿 = 6 m for a loading
direction 𝜃 of 75◦. At 𝐿 = 4 m, the 𝜃 = 75◦ loading path develops in
a positive direction along the horizontal axis. In addition, the shape
of the loading path changes significantly, and the foundation response
is controlled by the scoop failure mechanism. As the load increases,
the ultimate moment-bearing capacity is first reached. Then, the force
path gradually develops towards the ultimate value of the horizontal
force along the positive axis. At 𝐿 = 5 m, the loading path is almost
perpendicular to the transverse axis. After reaching the ultimate state
of the moment, the path develops slightly along the positive horizontal
axis. In contrast, for the foundation with 𝐿 = 6 m, its loading path
shifts along the negative direction of the transverse axis and keeps
developing towards the negative ultimate horizontal bearing capacity
after reaching the failure envelope. As the embedment depth steadily
increases, the wedge caused by sliding vanishes at the mudline, and
the displacement vector shifts from the right (at 𝐿 = 4 m in Fig. 19(a))
to the left (at 𝐿 = 6 m in Fig. 19(c)). Therefore, the shift in the
general direction of the loading paths from the change of the failure
mechanisms makes it more difficult for neural networks to predict.
These observations suggest that the effect of the skirt geometry on the
suction caisson failure mechanisms can be detected from the fluctuation
of generalization ability. Therefore, the DNN model does not only
capture the relationship between inputs and outputs adaptively but also
mine the intrinsic patterns of data through the generalization ability.
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Fig. 18. Comparison of data at three embedment depths.
Fig. 19. Comparison of vector contour at three embedment depths.
Fig. 20. Ideal versus realistic soil profile.

4.4. Extended comparison with CNN and LSTM models

In the previous section, the FC neural network model was shown
to be able to predict the caisson response with excellent performance.
However, this is not enough to make a strong statement about the
superiority of the FC model without horizontal model comparisons.
This section will explore the performance of more complex DNN models
on this specific problem of the caisson response prediction. Specifically,
the predictions of the load–displacement relationship experiments were
also carried out on another two prevailing models against the same
dataset, i.e., the one-dimensional convolution neural network (1D-
CNN) (Kiranyaz et al., 2021) and the LSTM model. Both the 1D-CNN
and LSTM models are widely used in time-series problems by introduc-
ing convolutional algorithms and gating mechanisms respectively, and
have the essential ability to achieve nonlinear regression prediction.
The kernel size of 1D-CNN and the time length in LSTM share a
similar function, which controls how many past time steps are taken
11
Table 5
Main hyper-parameter of LSTM model for comparison experiment.

LSTM

Hyper-parameter Description Value

Nh Number of hidden layers 2
Nn Number of nodes in the hidden layers 256
𝜂 Learning rate in the optimizer 0.001
Batch_size Number of training samples utilized in one iteration 128
Epoch Number of iterations during training 50
Validation_split Proportion of the validation set in total training 0.2
Input_length Time length 1

into account in predicting the current response. In other words, they
have the ability to consider the entire loading path when making
predictions. So, for a fair comparison, these parameters are set to 1
to avoid introducing the temporal relationship between data. Other
parameters in the 1D-CNN model (e.g. stride, padding and dilations)
control the strategy of temporal input and will be defaulted to avoid
cheating. In addition, the number of hidden layers and hidden neurons
in these two models are the same as the setting in the FC neural network
model (noted that filters in 1D-CNN are equivalent to the neurons). The
detailed model hyper-parameters are summarized in Tables 5–6. Out of
96,000 sets of data from homogeneous soils, 76,800 sets were randomly
selected to train these models and 19,200 sets were retained for testing.

The prediction results of the three neural networks on the test
dataset are presented in Table 7, which compares all three evaluation
matrices. In the table, all three models show excellent predictions,
while the extremely small prediction loss demonstrates that the pre-
dicted result is close to the underlying values. However, compared to
the other two neural network models, the FC neural network model
has the simplest structure and the highest computational efficiency. The
computational approach of convolution and the gating mechanism have
proved effective in time-series prediction, but do not bring additional
accuracy in non-linear regression, since additional activated parameters
lead to a reduction in computational efficiency. Therefore, the FC
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Fig. 21. Comparison between mechanical prediction and simulation.
Table 6
Main hyper-parameter of 1D-CNN model for comparison experiment.

1D-CNN

Hyper-parameter Description Value

Nh Number of hidden layers 2
Filters Number of filters in the hidden layers 256
Kernel_size Length of the convolution kernel 1
Strides Step size of convolution kernel shift 1
Padding Padding mode valid
Dilations Convolutional kernel dilation [1]
𝜂 Learning rate in the optimizer 0.001
Batch_size Number of training samples utilized in one iteration 128
Epoch Number of iterations during training 50
Validation_split Proportion of the validation set in total training 0.2

Table 7
Prediction results of the three neural network models.

FC LSTM 1D-CNN

RMSE 0.031 0.045 0.049
𝑅2 1.000 0.999 0.999
MAE 0.021 0.024 0.028
Training time 135s 240s 161s

neural network model should be considered first in similar mechanical
prediction problems.

5. Limitations and recommendations

In this study, two uniform clay seabeds with relatively ideal
undrained shear strength profiles (i.e., constant and linear increase
with depth) were studied. However, in the field, the soil profile may
be layered with significant variation of the shear strength, as shown
in Fig. 20. The realistic soil profile in the figure was generated by
randomly using a mean value of 10 kPa. To highlight the influence of
soil strength variation on the foundation response, a specific foundation
with 𝐿 = 8 m in realistic soil was modelled. It can be observed that
the prediction performance decreases substantially in Fig. 21, where
the total prediction errors of RMSE, 𝑅2, and MAE are up to 0.760,
0.927, and 0.583, respectively. The predicted values are all lower than
the computed from 3D FE model, implying an underestimation of the
response. Therefore, a more complex nonuniform soil strength profile
should be considered in the future. It is envisaged that in situ seabed
characterization results, like CPT data, can be directly used as model
training input to account for the spatial variation of soil properties.

In addition, it should also be noted that, in this study, the elastic-
perfect plastic model with Tresca yield criterion was used for mod-
elling the clay, which cannot accurately model the pre-yielding non-
linearity of clay’s behaviour. Therefore, in the future, advanced non-
linear models such as the NGI-ADP (Grimstad et al., 2012), modified
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Cam-Clay (Matsuoka et al., 1999) or SaniClay (Dafalias et al., 2006)
will be employed to capture the non-linear response of soil and foun-
dation. The DNN models can then be refined with more accurate
and realistic experimental data from physical testing, for example,
centrifuge tests, field tests, etc.

Furthermore, this model is limited to shallow foundations with
embedment depth ratios less than 1. When extrapolating the model to
larger embedment depth ratio foundations in Fig. 22, the prediction
accuracy gradually decreases as the embedment depth ratios are away
from the training set range. The prediction accuracy of the model
is acceptable (𝑅2 > 0.96) in the range of the embedment ratio less
than 1.5. This implies that there is a change of failure mechanism for
𝐿∕𝐷 > 1.5 and makes it challenging for the trained model to predict
the foundation response. This demonstrates that the deep learning
algorithm is highly dependent on the validity and scope of the training
data. To further enhance the application of the model, more field data
is required for the training set. However, obtaining comprehensive and
practical training data is difficult, which limits the further evolution
of the model. Therefore, it is worth studying how to compensate for
the scarce data by improving the model’s generalization ability. In
addition, to highlight the influence of data amount, a new experiment
was designed to explore the minimum data set required for model
training. 10 random initialization and divisions are utilized to illustrate
the robustness of the model under different data amounts. The results,
as shown in Fig. 23, demonstrate that prediction accuracy decreases
and becomes unstable at datasets less than 35,000. It should be noted
that there is an optimum value of required data to ensure sufficient
accuracy and robustness of the trained model, which is around 15,000
data sets in this study. Therefore, in future studies, some trial runs
will be performed to find the optimum data amount to reduce the
computation cost.

6. Conclusion

In this study, a FC neural network model has been developed to
predict the mechanical response of the suction caisson in clay by simply
inputting foundation configuration and soil profile. It was found that
compared to the traditional general formulation, the FC neural network
model is more accurate and flexible, without the limitation of the pre-
assumptions in the conventional design models. More importantly, by
testing the FC model against an independent dataset in Zhang et al.
(2020), it was found that the FC neural network model can also well
capture the response of suction caisson in sand. Even better perfor-
mance of the FC model was observed than the original LSTM model
used in Zhang et al. (2020). This implies that increasing the complexity
of the DNN model does not necessarily improve the model performance.
The robustness and generalization ability of the FC model was further
evaluated, demonstrating that it possesses high reproductivity, high
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Fig. 22. Model prediction error for foundation responses with embedment ratios larger
than 1.

Fig. 23. The exploration of the minimal required data size.

stability, and good generalization ability. This suggests that even a
very ‘‘shallow’’ FC neural network model can learn the intrinsic failure
mechanisms of the caissons from raw data and predict their non-
linear mechanical responses under complex three-dimensional loads
effectively.

More importantly, this study also proves that the generalization
ability analysis can also be employed to reveal the evolution of the
intrinsic foundation failure mechanisms. This feasible strategy demon-
strates that DNN not only has the ability to simulate the relationship
between inputs and outputs adaptively, but also to mine the intrinsic
patterns of data. This finding provides a new direction of exploration
in the geotechnical field combined with deep learning techniques.
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