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a b s t r a c t 

The l 1 -regularized least square problem has been considered in diverse fields. However, finding its solu- 

tion is exacting as its objective function is not differentiable. In this paper, we propose a new one-layer 

neural network to find the optimal solution of the l 1 -regularized least squares problem. To solve the 

problem, we first convert it into a smooth quadratic minimization by splitting the desired variable into 

its positive and negative parts. Accordingly, a novel neural network is proposed to solve the resulting 

problem, which is guaranteed to converge to the solution of the problem. Furthermore, the rate of the 

convergence is dependent on a scaling parameter, not to the size of datasets. The proposed neural net- 

work is further adjusted to encompass the total variation regularization. Extensive experiments on the 

l 1 and total variation regularized problems illustrate the reasonable performance of the proposed neural 

network. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The l 1 -regularized least squares, or the lasso [1] , has received a

onsiderable amount of attention over the last decade and much

esearch in recent years has focused on solving its non-smooth

onvex optimization problem 

in 

x 

1 

2 

‖ y − Ax ‖ 

2 
2 + λ‖ x ‖ 1 (1) 

here x ∈ R 

l , y ∈ R 

n , A is an n × l matrix consisting of l data points,

is a non-negative parameter, ‖ v ‖ 2 indicates the Euclidean norm,

nd ‖ v ‖ 1 = �| v i | is the l 1 -norm of v , which encourages the small

omponents of x to be zero. 

The lasso has a broad range of applications, such as signal re-

onstruction [2] , curve fitting and classification [3] , subspace clus-

ering [4,5] , sparse coding [6,7] , and robot control [8] , to name just

 few. In these applications, it is critical to solve the minimization

1) efficiently. Therefore, myriad methods have been developed for

olving (1) more quickly and effectively [9–12] . 

One promising way to find the optimum of the minimization

1) is to utilize the recurrent neural network. One of the main ad-

antages of such an approach is that the structure of RNNs can
∗ Corresponding author. 

E-mail address: m.mohammadi@tudelft.nl (M. Mohammadi). 
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925-2312/© 2018 Elsevier B.V. All rights reserved. 
e implemented using very-large-scale integration (VLSI) and op-

ical technologies. Furthermore, it is well-known that neural net-

orks have the ability to process real-time applications. Hence,

hen there are demands on real-time processing, it is necessary

nd desirable to employ parallel and distributed approaches, like

eural networks. Despite having such unique merits, solving the

inimization (1) via RNNs is thoroughly neglected (with the ex-

eption of the RNNs for general non-smooth problems). And, it is

he principal incentive to develop a novel recurrent neural network

specially tailored for the lasso. 

The tremendous challenge of solving the minimization (1) is

ts non-differentiability due to its l 1 -regularization. There are two

ptions to put forward the neural network by circumventing the

on-differentiability of the lasso. The first approach is to take

dvantage of the dual problem of the minimization (1) . This is

he modus operandi of various methods in the recent literature

10,11,13] . The interior-point method is arguably the most famous

echnique used to solve the dual problem. Contrary to conven-

ional interior-points methods, it is claimed that this technique

s suitable for large-scale problems; a problem with millions of

ariables is soluble in several minutes on an ordinary PC. However,

he main difficulty in solving the dual problem is finding the

ptimal solution of the primal problem, e.g. x in the minimization

1) , from the dual solution. The calculation of the primal solution

 from the dual variable has usually enmeshed the computation

https://doi.org/10.1016/j.neucom.2018.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.07.007&domain=pdf
mailto:m.mohammadi@tudelft.nl
https://doi.org/10.1016/j.neucom.2018.07.007


136 M. Mohammadi et al. / Neurocomputing 315 (2018) 135–144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

r  

v  

i

x

w  

fi  

t  

l

m  

w

2

 

n  

c  

t  

t  

t{
 

F  

f

∇  

T  

i  

r  

a

T  

o

�  

a  

m

P  

m

 

p

 

w  

b  

s  

i  

s

(A 

T A ) −1 . Mathematically speaking, such an inverse does not

theoretically exist for all matrices A. On top of that, the inverse

calculation is both time- and memory-consuming for large-scale

problems. Therefore, this approach is not taken into account. 

Another approach to solve the minimization (1) is to convert it

into a smooth problem by splitting the variable x into its positive

and negative parts. The resultant smooth problem can be readily

solved using gradient-based methods. The gradient projection for

sparse reconstruction (GPSR) [9] solves the smooth problem and

is of immense popularity among other methods. Further studies

on the gradient projection concentrated on accelerating the con-

vergence [14,15] . 

In this article, we use the second approach to come up with a

neural network in order to avoid the calculation of the inverse ma-

trix. However, splitting the variable into its positive and negative

parts results in dimension escalation of the consequent smooth

problem. We further investigate whether the dimension increase

can be dealt with more economically than it appears at the first

sight. 

The proposed neural network is guaranteed to find the optimal

solution of the smooth problem equivalent to the minimization (1) .

Then, the solution of the original problem can be readily obtained

by conducting the subtractions among the outcomes of the neural

network. Further, the proposed neural network has a simple one-

layer structure that can be smoothly implemented. From the speed

point of view, the convergence of the neural network is reliant on

a positive parameter determined by the user, not on the size of

the dataset. Such a salient feature is desired when large datasets

are available. We further adjust the proposed neural network to

solve the total variation-regularized problems. Similar to the lasso,

the total variation-regularized problems are not differentiable. The

efficiency of the proposed neural network is demonstrated by con-

ducting experiments over several real and simulated datasets from

the signal and image processing and bioinformatics domain. 

In a nutshell, the contributions of this article can be summa-

rized as follows: 

• A novel recurrent neural network is proposed for solving the

lasso. 

• The neural network is guaranteed to converge to the solution

of the problem. 

• The escalation in dimensions stemming from the variable split

is discussed, and the computation cost is reduced. 

• The neural network is then extended to solve the total

variation-regularized problem. 

• Extensive experiments are presented to illustrate the perfor-

mance of the proposed neural network. 

The paper is organized as follows. In Section II, we first derive

the smooth problem of the minimization (1) , and then a neural

network is proposed accordingly. Further, we also analyze the ef-

fect of dimension and the complexity of the neural network in

this section. The convergence of the neural network and its con-

vergence rate are investigated in Section III. Extensive experimen-

tal results with application to compressed sensing and image and

signal recovery are discussed in Section IX, and we conclude this

paper in Section X. 

2. Neural network for smooth equivalent problem 

In this section, a smooth problem for the minimization (1) is

derived by splitting the desired variable x into its positive and neg-

ative parts. The subsequent escalation of dimension and a one-

layer neural network are investigated afterward. The proposed

neural network is then adjusted to solve the total variation reg-

ularized problem. 
.1. Smooth equivalent problem 

To solve the minimization (1) using the neural network, we first

estate it as a smooth quadratic problem. This is done by splitting

ariable x into its positive and negative parts. Let u, v ∈ R 

n be aux-

liary variables such that 

 = u − v u ≥ 0 , v ≥ 0 

here u i = (x i ) + , v i = (−x i ) + and (. ) + denotes the positive part de-

ned as (x ) + = max { 0 , x } . Now, let 1 2 n = (1 , 1 , . . . , 1) ∈ R 

2 n , then

he problem (1) can be rewritten as the following quadratic prob-

em: 

in 

z 
F (z) = 

1 

2 

z T Bz + c T z (2)

s.t. z ≥ 0 

here 

z = 

[
u 

v 

]
, c = λ1 2 n + 

[
−A 

T y 

A 

T y 

]

B = 

[
A 

T A − A 

T A 

−A 

T A A 

T A 

]

.2. One-layer neural network 

The smooth problem (2) is a convex minimization with non-

egativity constraints. Therefore, the Karush–Kuhn–Tucker (KKT)

onditions [16] are necessary and sufficient for the optimality of

he solution. As stated by K.K.T conditions, z ∗ is the optimal solu-

ion of the minimization (2) if and only if there exists w 

∗ ∈ R 2 l such

hat ( z ∗, w 

∗) satisfies the following conditions: 

∇F (z) − w = 0 , w ≥ 0 

w 

T z = 0 , z ≥ 0 . 
(3)

rom the first equality in Eq. (3) , it is drawn that ∇F (z) = w . The

oregoing equations could be thus restated as 

F (z) ≥ 0 , z ≥ 0 , ∇F (z) T z = 0 . (4)

he inequalities (4) are known as the nonlinear complementar-

ty problem (NCP) [17] . With the aid of the next theorem, a neu-

al network for the minimization (2) is proposed according to the

bove NCP. 

heorem 2.1. For the problem (2) , z ∗ is the optimal solution if and

nly if �(z ∗) = 0 , where 

(z) = min { z, ∇F (z) } , (5)

nd �( z ) is a vector value function, and “min” represents the mini-

um value of each element of z and ∇F ( z ) . 

roof. It can be easily drawn from the inequalities (4) (see [18] for

ore information). �

Based on the above theorem, the following dynamic system is

roposed to solve the problem (2) 

dz 

dt 
= −α�(z) (6)

here α > 0 is a scaling parameter. The dynamic system (6) can

e recognized as a recurrent neural network with a single-layer

tructure. Before examining its structure, however, we first probe

nto the effect of the dimension escalation caused by the variable

plit. 
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Fig. 1. Block diagram of the proposed recurrent neural network (6) taking the computational reduction into account. The aa ij is the element at the ith row and jth column 

of A T A , and the triangle and � represent the multiplication and addition, respectively. 
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.3. Dimension effect and complexity of neural network 

It is observed that the size of the problem (2) is twice as large

s the original problem (1) while x ∈ R 

l but z ∈ R 

2 l . However, this

ncrease in dimension does not have a significant impact since the

atrix operation to obtain B can be performed more efficiently

han it might seem. To illustrate the minority of this effect, let us

onsider the complexity of the system (6) by computing the num-

er of multiplications and additions/subtractions in each iteration.

he most costly computation belongs to Bz while B is a 2 l × 2 l ma-

rix and z ∈ R 

2 l . Such a calculation requires 4 l 2 multiplications and

 l 2 − 2 l additions. 

However, the computation can be significantly reduced. For a

iven z = (u T , v T ) T , one can rewrite Bz as 

z = B 

[
u 

v 

]
= 

[
A 

T A (u − v ) 
−A 

T A (u − v ) 

]
. 

he computation of Bz only requires l 2 multiplications and l 2 ad-

itions/subtractions, considering that A 

T A should be computed be-

orehand. Hence, the number of operations has dropped from 4 l 2 

ultiplications to l 2 , and from 4 l 2 − 2 l additions/subtractions to l 2 .

n the aggregate, as c is also a pre-process computation, l 2 multi-

lications and l 2 + 2 l additions/subtractions are done in each iter-

tion of the dynamic system (6) . 

In the element form, the dynamic system (6) can written as 

dz i 
dt 

= �(z i ) = min ((Bz) i + c i , z i ) 

= min (sign (l − i ) 
∑ 

j 

(aa i j (u − v ) j + c i , z i ) (7) 
here aa ij is the element in the ith row and jth column of the

atrix A 

T A . As regards the element-wise equation of the proposed

eural network, its structure is displayed in Fig. 1 . In this figure,

he modification for dimension escalation is also considered to re-

uce the complexity of the network. The outputs of the neural net-

ork are u i ’s and v i ’s, which are recursively entered in the first

ayer. They are then multiplied by aa ij , which are shown as the

riangle in the figure and are explained in Eq. (7) . In the view of

ig. 1 , the circuit consists of 2 l integrators, 2 l activation minimum

unctions, 4 l summers, and some connection weights. 

.4. Total variation-regularized problem 

The total variation-regularized problem is another non-smooth

inimization. The corresponding minimization function for total

ariation-regularized problem is 

in 

q 
‖ p − q ‖ 

2 
2 + λ‖ q ‖ T V 

here p ∈ R l is the observation, q ∈ R l is the desired variable, λ is

he regularization parameter and ‖ x ‖ T V = 

∑ l−1 
i =1 | x i − x i +1 | is the to-

al variation norm. This problem can be equivalently rewritten as 

in 

q 
‖ p − q ‖ 

2 
2 + λ‖ Dq ‖ 1 (8) 

here D ∈ R l−1 ,l is defined as 

 = 

⎡ 

⎢ ⎢ ⎣ 

1 −1 0 . . . 0 0 

0 1 −1 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . 1 −1 

⎤ 

⎥ ⎥ ⎦ 

. 
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To all appearances, the problem (8) is similar to the minimization

(1) ; however, the total variation-regularized problem has more ma-

jor challenges as the variable in the l 1 -regularization has been mul-

tiplied by a matrix. 

Harchaoui and Levy-Leduc [19] solved the total variation reg-

ularized minimization (8) through the problem (1) . The following

theorem summarizes their main result. 

Theorem 2.2 [19] . By the following change in variables, the mini-

mizations (1) and (8) are equivalent: 

x = Dq 

A = D 

T (DD 

T ) −1 

y = D 

T (DD 

T ) −1 Dp (9)

where D, p, and q are the variables in the total variation problem.

Further, the variable q in the minimization (8) is obtained as 

q = p + D 

T (DD 

T ) −1 (x − Dp) . (10)

In other words, the total variation-regularized problem (8) can

be solved by the minimization (1) with the initialization (9) . Then,

the optimal solution q is calculated by Eq. (10) . 

Based on this theorem, the proposed recurrent neural network

can be adjusted to solve the total variation-based regularization as

well. The major elements for the neural network computation are 

A 

T A = (DD 

T ) −1 

A 

T y = (DD 

T ) −1 Dp 

In the experiment section, two applications of the total variation

regularization are investigated. 

3. Convergence analysis 

To assess the reliability of the proposed dynamic system, we

first discuss its stability and convergence, and further investigate

the properties of the presented RNN. The system is proved to be

globally convergent and stable in a Lyapunov sense. 

Definition 3.1. A continuous-time neural network is said to be

globally convergent if the trajectory of the corresponding dynamic

system converges to an equilibrium point for any initial point z ( t 0 ).

In other words, the equilibrium z e is convergent if 

∃ δ > 0 s.t. ‖ z(t 0 ) − z e ‖ < δ �⇒ lim 

t −→∞ 

z(t) = z e . 

Lemma 3.2. The function �(.), defined in the system (5) , is a Lips-

chitz continuous function. Therefore, there exists a positive constant L

such that 

‖ �(x ) − �(y ) ‖ ≤ L ‖ x − y ‖ , ∀ x, y ∈ R 

2 n . (11)

Proof. For any arbitrary x, y ∈ R 

2 n , we have 

‖ �(x ) − �(y ) ‖ = ‖ min { x, ∇F (x ) } − min { y, ∇F (y ) }‖ 

= ‖ 

x + ∇F (x ) − | x − ∇F (x ) | 
2 

− y + ∇F (y ) − | y − ∇F (y ) | 
2 

‖ 

= ‖ 1 / 2 { (x − y ) + (∇F (x ) − ∇F (y )) − | x − ∇F (x ) | 
+ | y − ∇F (y ) |}‖ 

≤ 1 / 2 {‖ x − y ‖ + ‖∇F (x ) − ∇F (y ) ‖ + ‖| x − ∇F (x ) | 
− | y − ∇F (y ) |‖} 

≤ 1 / 2 {‖ x − y ‖ + ‖∇F (x ) − ∇F (y ) ‖ + ‖ x − ∇F (x ) − y + ∇F (y ) ‖}
≤ ‖ x − y ‖ + ‖ (Bx + c) − (By + c) ‖ 

= (1 + ‖ B ‖ ) ‖ x − y ‖ , 

Now, let L = (1 + ‖ B ‖ ) and the proof is complete. �

The upcoming discussion elaborates the convergence and sta-

bility of the system (6) . 
heorem 3.3. For any initial point z 0 , there exists a unique continu-

us solution z ( t ) for (6) within the finite time. Moreover, the equilib-

ium point of (6) is the solution of the minimization (2) . 

roof. According to Lemma 3.1, the function �( z ) is Lipschitz con-

inuous and so is the right-hand side of the system (6) . Thus, based

n the Peano’s theorem for ODEs [20] , there exists a unique con-

inuous solution z ( t ) for (6) defined on t 0 ≤ t ≤ T f . The interval [ t 0 ,

 f ) is the so-called maximal interval of existence. 

Furthermore, we show that T f = ∞ if the set of all pos-

ible solutions, � = { z ∈ R 

2 n | z ≥ 0 } , is bounded. To do so, let

be bounded and z 0 ∈ �; and let | z − ∇F (z) | represent (| z 1 −
 F (z) 1 | , . . . , | z 2 n − ∇ F (z) 2 n | ) . We have 

 �(z) ‖ = ‖ min { z, ∇F (z) }‖ = ‖ 

z + ∇F (z) − | z − ∇F (z) | 
2 

‖ 

≤ 1 / 2(‖ z + ∇F (z) ‖ + ‖ z − ∇F (z) ‖ ) 

≤ 1 / 2(‖ z‖ + ‖∇F (z) ‖ + ‖ z‖ + ‖∇F (z) ‖ ) 

≤ ‖ z‖ + ‖∇F (z) ‖ 

n the other hand, since � is bounded, there exists a vector K such

hat for any z ∈ R 

n we have ‖∇F ( z ) ‖ ≤‖ K ‖ ( [21] ). It is obtainable

hat 

 z(t) ‖ ≤ ‖ z 0 ‖ + α

∫ t 

t 0 

‖ �(z(s )) ‖ ds 

≤ ‖ z 0 ‖ + α

∫ t 

t 0 

‖ z(s ) ‖ + ‖∇F (z) ‖ ds 

≤ ‖ z 0 ‖ + α(‖ K‖ (t − t 0 )) + 

∫ t 

t 0 

‖ z(s ) ‖ ds ) 

urthermore, by Gronwall inequality [22] 

 z(t) ‖ ≤ ‖ z 0 ‖ + α‖ K‖ (t − t 0 ) exp (α(t − t 0 )) . 

hus, the solution z ( t ) is bounded on [ t 0 , T f ), which implies T f = ∞
nd this completes the proof of the first part. 

Now, if z ∗ is the equilibrium point of system (6) , then �(z ∗) =
 , and according to Theorem 2.1 his equilibrium point is the opti-

al solution of problem (2) . �

heorem 3.4. The proposed neural network (6) with the initial point

 0 ∈ R 

2 n is stable in the sense of Lyapunov and globally converges to

he solution of (2) . Moreover, the convergence rate of the neural net-

ork (6) escalates as α increases. 

roof. According to Theorem 3.1, there exists a unique solution z ∗

or the system (6) within the interval [ t 0 , T f ). Let z ∈ � and consider

he following Lyapunov function: 

(z) = F (z) − F (z ∗) . 

t is readily seen that E ( z ) ≥ 0 because z ∗ is the optimal solution of

he minimization (2) . Further, z ∗ is the optimal solution of problem

2) if and only if �(z ∗) = 0 (according to Theorem 2.1 ), and the

olution of �(z) = 0 is unique (by Theorem 3.3 ), so is the solution

f the problem (2) . Thus, E(z) = 0 if and only if z = z ∗. Moreover,

e have 

dE(z) 

dt 
= 

(
dE(z) 

dz 

)T dz 

dt 

= −α∇F (z) T (�(z)) 

= −α∇ F (z) T ( 
z + ∇ F (z) − | z − ∇F (z) | 

2 

) 

= −α

2 

(∇F (z) T z + ‖∇F (z) ‖ 

2 − ∇F (z) T | z − ∇F (z) | ) 
≤ α

2 

(−∇F (z) T z − ‖∇F (z) ‖ 

2 + ∇F (z) T | z| + ‖∇F (z) ‖ 

2 ) = 0 , 

(12)



M. Mohammadi et al. / Neurocomputing 315 (2018) 135–144 139 

Fig. 2. Convergence of the proposed neural network (6) with α = 10 and different initializations: (a) with the initialization z = 1;(b) with the initialization z = 0; (c) with 

the random initialization. The x -axis is the iteration and y -axis is the value of elements of the desired variable x in the lasso problem. 
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here | z| = z since z ≥ 0. Hence, the system (6) is stable in the

ense of Lyapunov. We further investigate the global convergence

f the proposed system and show that d z/d t = 0 if and only if

 E/d t = 0 . To do so, let d z/d t = 0 which implies �(z) = 0 , then

learly 

dE 

dt 
= −α∇F (z) T �(z) = 0 . 

onversely, if d E/d t = 0 , then 

F (z) T (�(z)) = 0 . 

n this equation, �(z) = 0 results in d z/d t = 0 and the proof is

omplete. But if �( z ) � = 0 and ∇F (z) = 0 , we get (since z ≥ 0) 

dz 

d t 
= −α�(z) = min { z, ∇F (z) } = ∇F (z) = 0 . 

herefore, the presented system (6) is stable in the sense of Lya-

unov and globally converges to the optimal solution of (2) . 

Moreover, the inequality in (12) implies that as α increases, the

onvergence rate also increases. �

. Experiment results 

This section presents the experimental results regarding the

roposed neural network. First, the convergence analysis of the

eural network was empirically investigated, and its dependency

n the parameter α was verified. Then, the proposed neural net-

ork was applied to three different applications. The first was to

ecover a sparse signal from noisy observations. The other two

ere an image restoration and an aCGH data recovery, in which

he total variation-regularized minimization is utilized. The pro-

osed neural network is implemented in MATLAB by the ordinary

ifferential equations (ODE) solvers. 

.1. Empirical convergence analysis 

The convergence of the proposed neural network has been the-

retically investigated. We now present empirically exploration of

he convergence of the proposed neural network (6) as a comple-

ent to the theoretical studies. To do so, the WINE benchmark

roblem, which consists of 178 data with four attributes, was se-

ected. To check the convergence, y was set to one of the data

oints randomly selected from the dataset, and A was the remain-

ng data. Thus, the minimization of the problem (1) obtained a

oefficient vector that enabled us to write the randomly selected

ample as a linear combination of other data points. This is known

s the self-expressiveness property , which is utilized in recent works

5,23] . The convergence is scrutinized by various initializations in

rder to check the sensitivity of the neural network to the ini-

ialization. Let α = 10 , Fig. 2 plots the convergence of the neu-

al network trajectory with the initial point z = [1 , . . . , 1] ∈ R 

356 ,

 = [0 , . . . , 0] ∈ R 

356 and random initialization, respectively. The x-

xis in this figure is the iteration and y -axis is the value of each
lement of the vector x . In this figure, it is clear that most of

he coefficients z converge to zero, which is the reason for the

 1 -regularization. Further, the non-zero coefficients converge to the

ame values (one around 0.22 and another around 0.61). This indi-

ates that the neural network is globally convergent to the optimal

olution, and its convergence is not reliant on the initializations. 

Furthermore, we explored the convergence rate behavior of the

eural network (6) . To do so, we repeated the previous experiment

ver the WINE benchmark and assumed that α is 10, 15 and 20 in

he dynamic system (6) . The energy error of the proposed neural

etwork can be defined as 

R (z) = ‖ �(z) ‖ 2 . (13) 

ccording to the dynamic system (6) , ER (k ∗) = 0 if and only if k ∗

s an optimal solution. Fig. 3 shows the transient behavior of the

rror. It is readily observable that the bigger value of α acceler-

tes the convergence of the proposed neural network on the same

roblem. Thus, one can accelerate the convergence simply by in-

reasing the parameter α. 

.2. Signal reconstruction 

In this section, we consider a sparse signal recovery problem

ith a signal x ∈ R 

4096 . In this example (shown at the top of Fig. 4 ),

here are 160 spikes with ± 1 amplitude. The matrix A ∈ R 

1024 ×4096 

s filled with independent samples of the standard normal distri-

ution with orthonormalized rows. The observation y is generated

ccording to 

 = Ax + n (14) 

here n is a noise drawn according to the normal distribution N (0,

.01) on R 

1024 . The parameter λ is also chosen by 

= 0 . 01 ‖ A 

T y ‖ ∞ 

; (15) 
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Fig. 4. Sparse signal reconstruction. Top: the original signal. Middle: the minimum 

energy reconstruction. Bottom: the reconstructed signal using the neural network 

(6) . 
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as for λ> ‖ A 

T y ‖ ∞ 

, the unique minimum of (1) is the zero vector

[24] . 

Fig. (4 ) shows the reconstruction results. The original signal is

presented at the top of the plot. The middle plot shows the sig-

nal x = A 

† y, which is known as the minimum energy reconstruc-

tion. The bottom plot delineates the reconstructed signal by the

proposed neural network (6) . As can be readily grasped form this

figure, the proposed neural network can faithfully recover the cor-

rupted signal even though only a few of the non-zero measure-

ments are available in comparison to all elements. 

4.3. aCGH data recovery 

Array comparative genome hybridization (CGH array or aCGH)

is a new technique to discover the aberration in the DNA copy

number [25,26] . The greatest challenge in finding the aberrations is

that aCGH data are highly corrupted by various noises so that the

boundaries of the normal and aberrant genomes cannot be readily

detected. As a result, it is of the utmost importance to remove the

noises from the raw aCGH data prior to the aberration detection. 

The most popular way of denosing aCGH data is to solve a

problem regularized by the total variation norm. These method-

ologies process either all the aCGH samples in a dataset simulta-

neously [27–30] or each sample separately [31,32] . 

We applied the proposed neural network for noise removal

from the aCGH data and compared it with state-of-the-art algo-

rithms such as total variation and spectral regularization (TVSp)

[33] , piece-wise and low rank approximation (PLA) [34] , low rank

recovery based on the half-quadratic minimization (LRHQ) [30] ,

and group fused lasso segmentation (GFLseg) [28] . TVSp takes ad-

vantage of the nuclear norm regularization along with the total

variation norm. By the same token, PLA and LRHQ have similar

formulation, with more sparsity constraints in the former method

and more robust information-theoretic loss function in the latter

method. GFLseg is yet another technique that utilizes the weighted

l1 − l2 norm with the integral total-variation regularization. All of

these methods have more parameters to be tuned (at least two),

and are of higher complexity due to the various regularizations

they employed. In the following, we show that the proposed neural
etwork is competitive with the state of the art despite its simplic-

ty and lower number of parameters. 

The performance comparison was twofold. First, The compar-

son was conducted based on receiver operating characteristic

ROC) curves across simulated datasets contaminated by different

ypes of noise. Second, two real-world aCGH datasets were used to

arry out the recovery. 

.3.1. Experiment on simulated data 

In this subsection, the methods mentioned above are compared

cross synthesized datasets. In the experiment, 50 samples with a

ength of 500 were generated according to the methodology pre-

ented in [33] . The simulated data were corrupted by a Gaussian

oise with different signal-to-noise (SNR) ratios. For the first com-

arison, we plot the ROC diagram for the methods. The ROC is a

urve plotting the true positive rate (TPR) against the false positive

ate (FPR) for different thresholds. Given a threshold T, the true

nd false positive rates are defined as 

 P R (T ) = 

| P T | 
| A | F P R (T ) = 

| F P T | 
| N| 

here A and N are respectively real aberrations and normal

enomes, P T and FP T are respectively the truly and falsely discov-

red aberrations, and |.| is the cardinality operator. These elements

an be easily obtained as the study was on the simulated data.

n the ROC curve, more deviation from the diagonal indicates the

uperiority of the methods. Fig. 5 plots the ROC diagram for differ-

nt SNRs. The proposed neural network consistently outperforms

LA and GFLseg in all scenarios as it has more digression from

he diagonal. However, TVSp and LRHQ are slightly better than the

roposed neural network. For SNR = 0 . 5 , the superiority of TVSp

nd LRHQ is more evident while the proposed neural network is

ompetitive for other SNRs. The reason for such a difference is the

omplexity of TVSp and LRHQ. Both utilize the nuclear norm (be-

ides the total variation) in their problem to induce the low rank

n the recovered profiles. Such a regularization increases the com-

lexity and requires the interminable singular value decomposition

n each iteration. Despite its simplicity, the recurrent neural net-

ork has a reasonable performance in removing the noise from

CGH data. 

.3.2. Experiment on real datasets 

The performance of the proposed neural network was then in-

estigated across real datasets. To do so, two datasets were em-

loyed: the Pollack et al. dataset [35] , which includes 44 breast

umors of 6691 human mapped genes, and Chin et al. dataset [36] ,

hich consists of 2149 clones from 141 primary breast tumors. 

These datasets were subjected to the proposed neural network

o obtain the recovered profiles. Fig. 6 plots the heat and bar di-

grams for the retrieved profiles of the datasets mentioned above.

he heat maps are plotted at the top and the bar diagram, which

s the sum of the number of grains across all samples given a

hreshold, is at the bottom. As the color bar suggests, the yellowish

egments in the heat map indicate the duplication and the bluish

egments indicate the loss in the aCGH data. The greenish parts,

hich are indeed prevalent in the heat map, are where there is no

berration. The results from the bar diagrams indicate that probes

78–184 from the Pollack et al. dataset and probes 38–39 from the

hin et al. dataset are amplification regions. Regarding their loca-

ions on the chromosome, the discovered areas from both datasets

re in accordance with each other and are also in line with other

tudies on breast cancer [35,36] . 

To show the efficient data recovery by the neural network,

everal recovered profiles from the proposed neural network,

VSp [33] and PLA [34] are presented in Fig. 7 . Each column
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Fig. 5. The performance comparison of the proposed recurrent neural network (RNN), TVSp [33] , PLA [34] , LRHQ [30] and GFLseg [28] via the ROC curve. The ROC curves of 

different methods on the simulated data corrupted by the Gaussian noise with different SNRs: (a) SNR = 0.5; (b) SNR = 1.0; (c) SNR = 1.5; (d) SNR = 2.0. The x -axis and 

y -axis of each figure is the false positive rate and the true positive rate, respectively. 

Fig. 6. The profiles retrieved by the proposed neural network; (a) the recovered profiles of the Pollack et al. dataset [35] ; (b) the recovered profiles of the Chin et al. dataset 

[36] . The yellowish color in the heat map (the top figure) indicates the duplication and the bluish shows the loss in the chromosome. The greenish areas are the normal 

regions. The bottom is the bar diagram which plots the sum of the number of aberrations with the threshold 1. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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n this figure is dedicated to one sample, and each column cor-

esponds to a recovery method. Further, the red dots are the

eal data, and the blue lines indicate the data recovered by each

ethod. From the smoothness perspective, the proposed neural

etwork consistently outperforms PLA and TVSp, since the recov-

red data are much smoother than those recovered by PLA and

VSp. 

.3.3. Time complexity 

The proposed neural network was empirically evaluated in

erms of the execution time. To this end, 50 aCGH samples with

 different number of probes were generated and corrupted with
 random Gaussian noise. The resulting corrupted data were then

ubjected to different methods for recovery, and the time needed

o do so is the parameter based on which the various algorithms

re contrasted. The numbers of probes for this experiment were

0, 50 0, 10 0 0, and 10,0 0 0. The experiments were performed on a

C with a 3.2 Core-i5 CPU and 4 GB of RAM. 

Fig. 8 plots the time in seconds that each method needed to

omplete the recovery task with different numbers of probes. The

roposed neural network significantly outperforms RCLR, and is

uite competitive with TVSp. PLA and GFLSeg are much faster than

he others, mainly due to the fact they have implemented a part of

heir algorithm in C/C++, which is inherently swift. 
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Fig. 7. Five selected samples from the Pollack et al. dataset recovered by various methods. Each row in this figure corresponds to a sample and each column tallies with a 

recovery method. The three methods are the proposed neural network, PLA [34] and TVSp [33] . The red dots are the real data from the datasets, and the blue lines are the 

data retrieved by each method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. The time required for each method to complete the recovery task over a dataset with 50 sample and different numbers of probes. The x -axis is the number of probes, 

and y -axis is the time in seconds for each method to complete the task. 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The mean square errors of the proposed 

neural network and the primal-dual splitting 

method (PDSM) [37] across three images. 

Image RNN PDSM 

MRI 3 . 08 × 10 −3 5 . 75 × 10 −5 

Lena 6 . 49 × 10 −5 9 . 13 × 10 −5 

Cameraman 7 . 47 × 10 −5 9 . 54 × 10 −5 

f  

e  

c  
4.4. Image restoration 

The final experiment was to recover the original image from

noisy observations. To do so, three images were selected and con-

taminated by the Gaussian noise with σ = 0 . 05 . The first and sec-

ond columns of Fig. 9 correspond to the original and noisy images

under study, respectively. The total variation-regularized problem

(8) was utilized to recover the original images from the contami-

nated observations. The recovery was carried out by the proposed

neural network and the primal-dual splitting method (PDSM) [37] .

The images recovered by PDSM and the proposed neural network

are presented in the third and fourth columns, respectively. This

figure clearly shows that the proposed neural network has faith-
 i
ully recovered the images. We further tabulate the mean square

rror of two methods for each image in Table 1 . The table also

onfirms that the proposed neural network retrieves the original

mages with high confidence and is competitive with PDSM. 
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Fig. 9. Image recovery by the proposed neural network and PDSM [37] . The columns from left to right correspond to the original image, noisy image, the image recovered 

by PDSM, and the image retrieved by the neural network, respectively. 
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. Conclusion 

This paper presented a one-layer recurrent neural network to

nd the optimal solution of the l 1 -regularized least square prob-

em. The proposed neural network is guaranteed to globally con-

erge to the solution of this problem while its convergence is re-

iant not upon the size of the datasets but upon a constant pa-

ameter. The experiments further investigated the convergence of

he neural network and its dependence on the constant param-

ter. The proposed recurrent neural network was applied to sev-

ral problems including sparse signal recovery, image restoration,

nd aCGH data recovery. These applications showed the reason-

ble performance of the proposed neural network in comparison

ith other state-of-the-art methods. 
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