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a b s t r a c t

This paper concerns the fully nonlinear fluid–structure interaction (FSI) of Large-scale
floating photovoltaics (LFPV) in waves. The Euler Bernoulli–von Kármán beam models
the structure while potential flow represents the fluid. A set of coupled dynamical
equations is established. The fully analytic solution is sought with the unified Stokes
perturbation method. The characteristic equation is derived up to third order, which
has not been reported in literature before. The expressions obtained from the solution
are applied to two typical cases of a pontoon LFPV and a membrane LFPV, with
physical parameters from literature. The comparison with literature demonstrates our
methodology for the membrane-type in waters of arbitrary depth and pontoon-type in
relatively deep waters.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Large-scale floating photovoltaics (LFPV) are now creating a creative solution to clean and cost-effective renewable
nergy production and a heavy strain on land usage (Cazzaniga et al., 2018; Soukissian et al., 2021). LFPV’s nonlinear
ydroelastical properties are critical to the safety and reliability of offshore solar farms, but seldom studied.
LFPV’s supporting structures come in four categories: semi-submerged-type, assembled-type, pontoon-type, and

embrane-type. For all the designs above, mitigating the wave load is the foremost consideration in the offshore
nvironment (Ikhennicheu et al., 2021). The first kind of supporting device can be seen as a scaled-down semi-submersible
latform (see Rosa-Clot and Tina, 2018, for more detail). The second kind of flotation structure includes many geometrical
onfigurations and thus can only be roughly grouped according to machinery shape, which is reviewed by Oliveira-Pinto
nd Stokkermans (2020). Both of the last two kinds provide large flat platforms for the installation of the PV array. The
ourth category, see Fig. 1 and Bjørneklett (2018) for the only industrialized example, is considered superior to the third
ecause of its lower costs and higher reliability. Hence, polymer membrane LFPV has evoked academic interest (Trapani
nd Millar, 2014; Pringle et al., 2017; Kumar and Kumar, 2020; Gorjian et al., 2021). Detailed introductions of different
loating PV solutions and extensive comparisons of their merits and demerits are available in literature (see Trapani et al.,
013; Trapani and Redón Santafé, 2015; Sahu et al., 2016; Patil Desai Sujay et al., 2017; World Bank Group et al., 2019).
From a dynamic viewpoint, both pontoon and membrane LFPV can be modeled as a floating sheet coupling with

ater beneath, which is a typical fluid–structure interaction (FSI) problem. This FSI problem requires a choice of
ombinations of models such as: linear-structure-linear-flow, nonlinear-structure-linear-flow, linear-structure-nonlinear-
low, and nonlinear-structure-nonlinear-flow. A discussion on the choice can also be found in Peake (2001) that studied the
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Fig. 1. Large-scale floating photovoltaics (LFPV). The large floating polymer membrane provides the foundation for photovoltaic arrays.
Source: (Ocean Sun, 2021).

stability of a plate with mean flow loaded above. For both the pontoon and membrane LFPV, their hydroelastic models
share common fundamentals with ice engineering and very large floating structures (VLFS). The Euler–Bernoulli (EB)
model and linear potential flow are usually applied. Newman (1994) performed an early study near the new millennium
that directly combined the equation of motion (EOM) of EB instead of starting from the ‘‘stain-stress’’ material mechanics.

The floating sheet problem was initially developed for the dynamics of ice sheets. Forbes (1986, 1988) analyzed
the nonlinear hydroelasticity of the ice sheet in infinitely deep water. The structural nonlinearity was due to the full
expression of the Gaussian curvature over the thickness. A Fourier expansion with unknown coefficients dealt with the
nonlinearity. Singularities were found in the solution and explained as the breaking criterion. Balmforth and Craster (1999)
investigated the reflection and transmission of surface gravity waves incident on the ice-covered ocean. The Timoshenko–
Mindlin model was applied to consider the ice compression due to waves. Pǎrǎu and Dias (2002) introduced geometric
nonlinearity into the conventional linear ice-water model under a moving load (Squire et al., 1996) to tackle the infinite
amplitude around the critical moving speed (Strathdee et al., 1991). The nonlinearity also stemmed from the Gaussian
curvature; the ice’s inertia was neglected. Later on, the same nonlinear model was applied to investigate waves under
an ice sheet by Vanden-Broeck and Pǎrǎu (2011). Porter (2019) developed a semi-analytical method applying Fourier
methods and Rayleigh–Ritz methods in the modal analysis of rectangular ice sheet. The algebra-simplified system was
used to investigate the scattering and propagation problems of hydroelastic waves.

Hegarty and Squire (2008) summarized and compared three widely used nonlinear plate models, i.e., Forbes, von
Kármán and Drozdov: the Forbes method, as mentioned above, contains geometrical nonlinearity due to the curvature and
ignores the in-plane force; the von Kármán plate linearizes the curvature and considers the in-plane force; the Drozdov
model takes both nonlinearities in curvature and membrane force into account. The authors used a perturbation method
to order the partial differential equations (PDE) and solve the obtained PDE with the boundary integral method.

When entering the new millennium, VLFS evoked the interest of both academia and engineering (Suzuki et al., 2006).
The concept of VLFS aims to create available land for specific operations (floating airports, floating bridges, and floating
storage) and general usage (artificial islands). Among numerous studies, the only full-scale test is the coastal pontoon-type
Mega-Float program that used to be deployed in the Tokyo Bay for one year around the turn of the century (Lamas-Pardo
et al., 2015; Suzuki et al., 2017); all of the other projects are still in the laboratory phase at most.

Wang and Meylan (2002) performed one of the earliest studies on the modeling problem of floating structures. The
Euler Bernoulli (EB) beam modeled the finite-length floating plate while a linear potential wave modeled the infinite
water. The numerical results were computed with a boundary element method (BEM). Later on, the linear-potential and
linear-structure model was extended to circular plate in waves by Andrianov and Hermans (2003, 2005) both analytically
(in unenclosed integral forms) and numerically. The von Kármán plate was introduced by Chen et al. (2003b,a). Coupled
with linear wave forces, the response of nonlinear plates to multi-directional waves was studied numerically. Cheng et al.
(2014, 2016a,b) combined a linear structural model and a nonlinear wave model. They investigated the time-domain FSI
dynamics of VLFS edged with perforated and non-perforated plates and their combination with hybrid methods. In the
theoretical part, the finite length of the structure enabled the modal expansion technique. To investigate the nonlinear
influence, Cheng et al. (2017) applied the Euler Bernoulli–von Kármán (EBVK) theory in a numerical simulation utilizing
a nonlinear numerical wave tank. The numerical tool was based on higher-order BEM. The research objective was to
investigate the nonlinear behavior of the floating sheet when water waves traveled over a dam-shaped bathymetry. More
recent studies on FSI of floating structures can be found in Ilyas et al. (2018), Liu et al. (2020), Karperaki and Belibassakis
(2021a,b).

The multi-plate array is a solution to enlarge the area and decrease the vulnerability of VLFS. The theoretical model
can be seen as multiple beam segments with connections in between. Riyansyah et al. (2010) optimized the connection
2
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Table 1
Comparison of analytic models for VLFS.
FSI Model Structure Water

Ma et al. (2020) First-order Linear Second-order Nonlinear
Xu and Wellens (2021a) Third-order Nonlinear First-order Linear
The present article Third-order Nonlinear Third-order Nonlinear

design between two floating beam segments by numerical simulations. The EB beam was discretized with a finite element
method (FEM), while the fluid domain was discretized with BEM. Iijima and Fujikubo (2018) studied the FSI behavior
of a two-segment floating beam with a nonlinear plastic connection in both numerical (BEM+FEM) and experimental
approaches. Iijima and Fujikubo (2019) analytically investigated the same model where the hydro-force was modeled as
a distributed spring. Ren et al. (2019) looked into the hydrodynamic analysis of a modular floating structure and the design
of connectors. The numerical models were performed with HYDROSTAR

®
(linear potential flow) in the fluid domain and

IMO
®

in the structural domain.
Besides modeling the functional structure, VLFS’s nonlinear properties were also investigated by researchers. Xu and
ellens (2021b) analytically investigated the nonlinear vibration of a plate (e.g., a solar platform) subjected to static loads

e.g., hydrostatics). Three changes in the nonlinear dynamics due to statics were recognized, namely stiffening, asymmetry
nd softening. Yang (2017) developed an active–passive hybrid control system to limit the large nonlinear motions and
eflections of the VLFS in waves. The active control was achieved by actuators in the mooring system, while the passive
as provided by highly stiff connections between segments. Numerical simulations showed the better performance of
he proposed control system over the existing active control. Zhang et al. (2018) came up with a network model for the
loating airport (Zhang et al., 2015b), where a beam oscillator represented the runway, and discrete oscillators characterize
he linear-restoring buoys. Amplitude death (see also Zhang et al., 2015a) was analyzed using the fundamental solution
erived by the averaging method and calculated numerically.
From the literature, we found that fully nonlinear models suitable for LFPV’s hydroelastic waves and corresponding

nalytic solutions are rare. The analytic solution is preferred in the early design stage of engineering. Furthermore, the
implification of deep water is inapplicable because the first solar farms are likely deployed in coastal waters. Under these
onsiderations, two models, Ma et al. (2020) and our previous research (Xu and Wellens, 2021a), are recent additions
hat can be of interest. However, their FSI models are not fully nonlinear: the structural model is linear in the former,
hereas the fluid model is linear in the latter. This motivates us to perform a direct continuation of our previous research,
oupling the nonlinear EBVK theory with the nonlinear Stokes theory and solving the simultaneous system analytically.
he analytic solution is derived up to the third order, which to our knowledge has not been reported in the literature
efore. The comparison between the present research and those two recent articles can be found in Table 1.

. Mathematical model

.1. Problem definition

The elastic deformation on the membrane of a LFPV is more significant than its motion as a whole under the same
onsiderations as in Lamas-Pardo et al. (2015). Therefore, we restrict ourselves to hydroelastic waves with the following
ssumptions.

• Neglect the motion of LFPV as a whole.
A LFPV is subjected to wave, current and wind loads and held in place by mooring. However, the influence of the
global motion on the hydroelastic waves is small and negligible. Readers are referred to Ikhennicheu et al. (2021)
for analytical methodologies of calculating the three kinds of load and designing the mooring system.

• Neglect all the attachments.
The PV panels may add local mass onto the membrane. The fastenings of the PV panels may affect local stresses in
the membrane. And marine growth on the bottom side of the membrane may influence the friction between fluid
and membrane. However, these effects are considered small enough in our model not to affect the fundamental
mechanism of hydroelastic wave propagation through the structure.

• Neglect the boundary conditions of the upstream and downstream.
Offshore solar farms are deployed in coastal areas for reliability and maintainability. Waves in such waters are much
shorter than the size of the structure. In the interior, the wave propagation is hardly affected by boundary conditions.
This justifies the assumption of an infinite domain for the hydroelastic LFPV system. Similar infinite domains are also
argued by Kagemoto et al. (1997, 1998), Andrianov and Hermans (2003), Batyaev and Khabakhpasheva (2015), Ma
et al. (2020).

Based on the assumptions above, a mathematical model is abstracted from the engineering problem in the vertical
imension and one horizontal dimension (2D), with a beam of infinite length floating on the free surface of water without
orizontal confines (see Fig. 2). The LFPV can be modeled as a nonlinear EBVK beam that considers the membrane force,
hile the water can be modeled by potential flow. FSI takes place as structural deformations propagate as waves through

he structure.

3
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Fig. 2. The 2D sketch of hydroelastic waves in LFPV that floats on the sea surface. The structure is modeled by an EBVK beam, moving together
with the water.

2.2. Nonlinear Euler Bernoulli–von Kármán theory for beam

The EBVK model is described by the material density ρs, Young’s modulus E, Poisson’s ratio ν, the rectangular cross-
section S = bδ and the inertial moment I =

bδ3

12(1−ν2)
. Here, δ stands for the beam thickness (in z-direction) and b for the

beam width (in y-direction). Under the external (hydrodynamic) load, the EOM reads

ρsS
∂2w

∂t2
+ EI

∂4w

∂x4
−

3
2
SE
(

∂w

∂x

)2
∂2w

∂x2
= qw, (1)

where w (x, t) is the transverse displacement (in z-direction). The external excitation qw (x, t) has unit
[
Nm−1

]
because

it is a force per unit length of the beam.

2.3. Potential theory for water

The water has density ρw and a uniform depth of h. Velocity potential φ (x, z, t) describes the inviscid, irrotational and
incompressible flow as

∂2φ

∂x2
+

∂2φ

∂z2
= 0. (2)

The seabed is impenetrable:
∂φ

∂z
= 0 at z = −h. (3)

At the free surface, the nonlinear kinematic boundary condition is
∂η

∂t
+

∂φ

∂x
∂η

∂x
−

∂φ

∂z
= 0 at z = η, (4)

where η (x, t) is the free surface elevation. The dynamic boundary condition reads

p + ρw
∂φ

∂t
+

ρw

2

((
∂φ

∂x

)2

+

(
∂φ

∂z

)2
)

+ ρwgη = 0 at z = η, (5)

where p (x, t) is the water pressure with unit
[
Nm−2

]
and g = 9.81

[
ms−2

]
is the acceleration of gravity.

2.4. FSI conditions

The beam and water are coupled through the interface boundary conditions:

w = η and qw = pb. (6)

Note that the dynamic condition calculates qw by multiplying the hydrodynamic pressure p with beam width b.
Now the structure and fluid equations are coupled at the free surface:

∂w
+

∂φ ∂w
−

∂φ
= 0 (7)
∂t ∂x ∂x ∂z
4
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ρsδ
∂2w

∂t2
+

Eδ3

12
(
1 − ν2

) ∂4w

∂x4
−

3Eδ

2

(
∂w

∂x

)2
∂2w

∂x2
+ ρw

∂φ

∂t
+

ρw

2

((
∂φ

∂x

)2

+

(
∂φ

∂z

)2
)

+ ρwgw = 0. (8)

Here, S, I and η have been replaced or eliminated by S = bδ, I =
bδ3

12(1−ν2)
and Eq. (6).

After introducing normalized variables

κ =
δ2E

12ρs
(
1 − ν2

) , α =
3E
2ρs

and β =
ρw

ρsδ
, (9)

the dynamic interface condition Eq. (8) becomes

∂2w

∂t2
+ κ

∂4w

∂x4
− α

(
∂w

∂x

)2
∂2w

∂x2
+ β

∂φ

∂t
+

β

2

((
∂φ

∂x

)2

+

(
∂φ

∂z

)2
)

+ βgw = 0 at z = w. (10)

. Methodology

.1. Perturbation

For water waves, the wave steepness ak, or the wave slope equivalently, is a small parameter that can scale their
onlinear behavior (Stokes, 2009; Levi-Civita, 1925; Struik, 1926; Ursell, 1953; Schwartz, 1974; Holthuijsen, 2007). For
he hydroelastics of an EBVK beam, our previous study (Xu and Wellens, 2021a) has shown that the nonlinear stiffness is
wo orders higher than the linear stiffness, which is briefly summarized in Appendix A. Therefore, we introduce the wave
teepness as the perturbation

ε = Ak. (11)

The nonlinear potential in free surface conditions can be expanded into a series form in terms of the wave steepness
(Ak, A2k2, A3k3, · · · ). This perturbation is used to expand the independent time variable t (see Section 3.2), the structural
eformation w (x, t) and the velocity potential φ (x, z, t) (see Section 3.3).

.2. Time expansion

A new time-scale τ is introduced by the transformation

τ ∼ t
(
1 + ε2Ω + O

(
ε4)) . (12)

Notice that the series of the time coordinate is equivalent to the procedure for the frequency change

ω ∼ ω1
(
1 + ε2Ω + O

(
ε4)) . (13)

The fundamental idea of the expansion method of Eqs. (12) and (13) was initially brought forward by Stokes, and is
known as the Lindstedt–Poincaré Method nowadays. The reason why we use ε2 instead of ε1 in Eq. (13) is that secular
erms occur at the third order in both the structure and fluid domain (see Section 4.3). Even if we add a term in O

(
ε1
)

n Eqs. (12) and (13), the added term will turn out to be zero while deriving the second-order solution.
The partial derivatives about time t are also expanded according to Eq. (12):

∂

∂t
∼
(
1 + ε2Ω + O

(
ε4)) ∂

∂τ
and

∂2

∂t2
∼
(
1 + 2ε2Ω + O

(
ε4)) ∂2

∂τ 2 . (14)

Now the kinematic and dynamic conditions Eqs. (7) and (10) become(
1 + ε2Ω

) ∂w

∂τ
+

∂w

∂x
∂φ

∂x

⏐⏐⏐⏐
z=w

−
∂φ

∂z

⏐⏐⏐⏐
z=w

= 0 (15)

and (
1 + 2ε2Ω

)∂2w

∂τ 2 + κ
∂4w

∂x4
− α

(
∂w

∂x

)2
∂2w

∂x2
+ β

(
1 + ε2Ω

) ∂φ

∂τ

⏐⏐⏐⏐
z=w

+
β

2

((
∂φ

∂x

⏐⏐⏐⏐ )2

+

(
∂φ

∂z

⏐⏐⏐⏐ )2
)

+ βgw = 0.
(16)
z=w z=w

5
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3

A

.3. Solution expansion

The structural deformation in the proposed FSI model is expanded in terms of ε in the same manner of Stokes’ wave
theory (see also Ma et al., 2020; Xu and Wellens, 2021a):

w ∼ ε1w1 + ε2w2 + ε3w3 + · · · = wl + wq + wc + · · · , (17)

where the subscripts l, q and c indicate linear, quadratic and cubic, respectively.
The velocity potential in the water below the surface is also expanded like Eq. (17):

φ ∼ ε1φ1 + ε2φ2 + ε3φ3 + · · · = φl + φq + φc + · · · for − h ⩽ z ⩽ 0. (18)

At the free surface z = w, the velocity potential is expanded utilizing the Stokes expansion. The Stokes expansion is
an application of the Taylor expansion around z = 0 considering a small transverse displacement w

φ|z=w = φ|z=0 +
w1

1!
∂1φ

∂z1

⏐⏐⏐⏐
z=0

+
w2

2!
∂2φ

∂z2

⏐⏐⏐⏐
z=0

+ · · · . (19)

Substitution of Eqs. (17) and (18) into Eq. (19) yields

φ|z=w = ε1φ1 + ε2
(

φ2 + w1
∂φ1

∂z

)
+ ε3

(
φ3 + w1

∂φ2

∂z
+ w2

∂φ1

∂z
+

w2
1

2
∂2φ1

∂z2

)
+ O

(
ε4) . (20)

nd all the partial derivatives ∂φ

∂

⏐⏐
z=w

are expanded with the Stokes expansion, too.

In this article, we refer to our solution methodology as the unified Stokes perturbation method because the mathemat-
ical treatments to perturb and expand the PDE originate from Stokes (see also Section 3.2). Notice that all the φ-associated
terms on the right-hand side of Eq. (20) are evaluated at z = 0. Hereafter, we omit the ‘‘evaluate-at-zero’’ symbol in the
two interface boundary conditions for brevity.

3.4. Hierarchic partial differential equations

We substitute Eq. (18) into Eqs. (2) and (3), and substitute Eqs. (17) and (20) into Eqs. (15) and (16). Then terms are
collected and sorted according to the rational power of the perturbation ε and retained up to the third order. After these
manipulations, we obtain a series of hierarchic PDEs.

• O
(
ε1
)
:

∂2φl

∂x2
+

∂2φl

∂z2
= 0 (21)

∂φl

∂z

⏐⏐⏐⏐
z=−h

= 0 (22)

∂wl

∂τ
−

∂φl

∂z
= 0 (23)

∂2wl

∂τ 2 + κ
∂4wl

∂x4
+ βgwl + β

∂φl

∂τ
= 0 (24)

• O
(
ε2
)
∂2φq

∂x2
+

∂2φq

∂z2
= 0 (25)

∂φq

∂z

⏐⏐⏐⏐
z=−h

= 0 (26)

∂wq

∂τ
−

∂φq

∂z
= wl

∂2φl

∂z2
−

∂wl

∂x
∂φl

∂x
(27)

∂2wq

∂τ 2 + κ
∂4wq

∂x4
+ βgwq + β

∂φq

∂τ
= −βwl

∂2φl

∂τ∂z
−

β

2

((
∂φl

∂x

)2

+

(
∂φl

∂z

)2
)

(28)

• O
(
ε3
)
∂2φc

+
∂2φc

= 0 (29)

∂x2 ∂z2

6
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H

∂φc

∂z

⏐⏐⏐⏐
z=−h

= 0 (30)

∂wc

∂τ
−

∂φc

∂z
= − Ω

∂wl

∂τ
−

∂wl

∂x
∂φq

∂x
−

∂wq

∂x
∂φl

∂x

+ wl
∂2φq

∂z2
+ wq

∂2φl

∂z2
− wl

∂wl

∂x
∂2φl

∂x∂z
+

w2
l

2
∂3φl

∂z3

(31)

∂2wc

∂τ 2 + κ
∂4wc

∂x4
+ βgwc + β

∂φc

∂τ
= − 2Ω

∂2wl

∂τ 2 − βΩ
∂φl

∂τ
− βwl

∂2φq

∂τ∂z
− βwq

∂2φl

∂τ∂z

− β
∂φl

∂x
∂φq

∂x
− β

∂φl

∂z
∂φq

∂z
− βwl

∂φl

∂x
∂2φl

∂x∂z

+ α

(
∂wl

∂x

)2
∂2wl

∂x2
− βwl

∂φl

∂z
∂2φl

∂z2
−

βw2
l

2
∂3φl

∂τ∂z2

(32)

4. Analytical solution

4.1. First-order solution

For the application of separation of variables, we define

φl (x, z, τ ) = ϕl (τ ) ξ1 (x) ζ1 (z) . (33)

The substitution of Eq. (33) into Eqs. (21) and (22) provides solutions of the horizontal and vertical-space-dependent
functions ξ1 (x) and ζ1 (z):

φl = ϕl (τ ) cos (kx) cosh (k (z + h)) . (34)

Notice that two arbitrary integral constants arise for ξ1 (x) and ζ1 (z). We do not explicitly show the integral constants
but merge them into the undetermined time-dependent function ϕl (τ ).

Next, applying partial differentiation of Eq. (24) with respect to τ :

∂3wl

∂τ 3 + κ
∂5wl

∂x4∂τ
+ βg

∂wl

∂τ
+ β

∂2φl

∂τ 2 = 0. (35)

One can obtain an ordinary differential equation in terms of τ by inserting Eqs. (23) and (34) into Eq. (35):

(k tanh (kh) + β)
∂2ϕl

∂τ 2 + k tanh (kh)
(
k4κ + βg

)
ϕl = 0 (36)

The solution of Eq. (36) is:

ϕl (τ ) = C1 sin (ω1τ + θ) , (37)

where

ω1 =

√
k tanh (kh)

(
k4κ + βg

)
k tanh (kh) + β

. (38)

ere, the amplitude C1 contains the three arbitrary integral constants for ϕl, ξ1 and ζ1; the arbitrary phase shift θ is
omitted in the remainder of this article because it does not affect the properties of the propagating waves.

Combination of Eqs. (34) and (38) offers the general solution of φl:

φl = C1 sin (kx − ω1τ) cosh (k (z + h)) . (39)

Inserting Eq. (39) into Eq. (23) leads to

wl =
C1k sinh (kh)

ω1
cos (kx − ω1τ) . (40)

Then we introduce the amplitude of the first-order wave:

Al =
C1k sinh (kh)

ω1
, (41)

by means of which Eqs. (39) and (40) can be rewritten as

w = A cos kx − ω τ , (42)
l l ( 1 )

7
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nd

φl =
Alω1

k sinh (kh)
sin (kx − ω1τ) cosh (k (z + h)) . (43)

Eqs. (21)–(24), (42), (42), (43) and (43) demonstrate the linearity of the first-order system. The derived solution is
equal to the first-order solution of Xu and Wellens (2021a).

4.2. Second-order solution

At the second and third order, the constant coefficients are too long to show here in the article. Hence, we write these
coefficients in terms of cn (n = 1, . . . , 12). Their complete expressions can be found in Appendix B.

By separation of variables, one can solve the space-dependent part of φq using the same approach as Section 4.1

φq = ϕq (τ ) cos (2kx) cosh (2k (z + h)) . (44)

Take the derivative of Eq. (28) about τ :

∂3wq

∂τ 3 + κ
∂5wq

∂x4∂τ
+ βg

∂wq

∂τ
+ β

∂2φq

∂τ 2 = −β
∂wl

∂τ

∂2φl

∂τ∂z
− βwl

∂3φl

∂τ 2∂z
− β

∂φl

∂x
∂2φl

∂τ∂x
− β

∂φl

∂z
∂2φl

∂τ∂z
. (45)

Next, we insert Eq. (27) into Eq. (45) and make use of Eqs. (42)–(44). After some manipulations, we obtain

c1
∂2ϕq

∂τ 2 + c2ϕq = A2c3 sin (2kx − 2ω1τ) . (46)

The particular solution of Eq. (46) for the plane propagating wave is

ϕq = A2c4 sin (2kx − 2ω1τ) . (47)

Substitution of Eq. (47) into Eq. (44) yields

φq = A2c5 cosh (2k (z + h)) sin ((2kx − 2ω1τ)) + C2x + C3τ , (48)

here C2 and C3 are undetermined integral constants with dimensions of
[
ms−1

]
and

[
m2 s−2

]
, respectively. The constant

2 corresponds to a uniform velocity. The constant C3 gives a contribution to the mean pressure and is therefore related
o the mean free-surface level (see Dingemans, 1997). In absence of current and horizontal movement of the LFPV
ystem

C2 = 0. (49)

he other integral constant C3 will be determined after solving the second-order wave wq.
Inserting Eq. (48) into Eq. (27) leads to

wq = Aq cos (2kx − 2ω1τ) , (50)

here the second-order amplitude is

Aq = A2c6. (51)

Substitution of Eqs. (42), (43), (48) and (50) into Eq. (28) determines the integral constant C3 by equating the constant
terms to zero. The result is

C3 = −
A2ω2

1

4 sinh2 (kh)
. (52)

Now the second-order potential reads

φq = A2c5 cosh (2k (z + h)) sin ((2kx − 2ω1τ)) −
A2ω2

1

4 sinh2 (kh)
τ . (53)

Eqs. (25)–(28), (50) and (53) demonstrate that the second-order system is not related to the structural nonlinearity
but only to the nonlinearity in the fluid. In other words, our nonlinear model considers only the linear EB theory up to
the second-order system. The nonlinearity of EBVK will become apparent in the third order (see Section 4.3). Therefore,
our theory up to second-order fundamentally models the same hydro-elastic system as Ma et al. (2020), in which a linear
beam and nonlinear water waves are coupled. However, our results and those in Ma et al. (2020) differ significantly (see
Section 5) because of different potential expansions.

Note that both expressions of φq and wq can be rewritten in the form of A2k2 · (· · · ), which corresponds to the
second-order expansion as long as ω is replaced by Eq. (38).
1

8
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.3. Third-order solution

Sections 4.1 and 4.2 have given expressions of wave and potential up to the second order. What is left unknown
s the undetermined low frequency Ω and the third-order solution. This demonstrates that the nonlinear influence on
he dispersion relation, i.e., the amplitude dispersion, only occurs at the third order (see Section 4.3.1). This is logically
onsistent with the nonlinear models of the EBVK only, and the third-order Stokes free surface waves only, too.
The procedure for obtaining the third-order solution is performed in a similar way as that for the second order in

ection 4.2. However, all the mathematical expressions are too long to present here. Therefore, we do not show the
omplete mathematical expressions but articulate the procedure in eight steps.

Step (1): substitute Eqs. (42), (43), (50) and (53) into Eq. (31). This step is to express the unknown third-order variables
with the known first-order and second-order variables.

Step (2): substitute Eqs. (42), (43), (50) and (53) into Eq. (32). This step does the same as Step (1).
Step (3): substitute Step (1) into the time derivative of Step (2). This step is to represent wc by φc .
Step (4): collect and sort trigonometric functions of order one, two and three; avoiding secular terms requires that the

coefficient of the linear harmonic is zero.
Step (5): solve the undetermined frequency Ω using Step (4). The result of this step gives the most significant nonlinearity

of FSI wave propagation, i.e., amplitude dispersion.
Step (6): substitute Ω back into the equation of Setp (4); or, equivalently, eliminate all linear terms associated with

sin (kx − ω1τ).
Step (7): solve the third-order potential φ3 (x, z, τ ) via Step (6).
Step (8): solve the only remaining unknown, i.e., the third-order wave w3 (x, τ ), via Step (1).

4.3.1. Amplitude dispersion
In Step (4) one will find that only terms that scale with sin (kx − ω1τ) remain; there are no terms that scale with

cos (kx − ω1τ). Step (5) leads to the solution for the low frequency:

ε2Ω =
(
A2k2

) c7
c8

(54)

Substitution of Eq. (54) into Eq. (13) yields the nonlinear dispersion relation. During propagating, a group of waves
disperses with both frequency and amplitude. On the one hand, structural nonlinearity results in amplitude dispersion
that is two orders higher than linear in the decoupled EBVK beam. On the other hand, amplitude dispersion also occurs
in the third order if only Stokes waves are considered. Amplitude dispersion is an inherent feature of nonlinearity in
both EBVK and the third-order Stokes. Our solution also has amplitude dispersion at the third order in the considered FSI
model.

4.3.2. The third-order potential and waves
After inserting Eq. (54) into Eqs. (29)–(32), a similar procedure as in Section 4.2 – separating φc, taking the partial

differentiation of Eq. (32) about τ and substituting Eq. (31) – leads to the solution of the third-order potential φc, wave
wc and amplitude Ac:

φc = A3
l c9c10 sin (3kx − 3ω1τ) (55)

nd

wc = Ac cos (3kx − 3ω1τ) , (56)

here

Ac = A3
l
c11
c12

(57)

Note that both expressions of φc and wc can be rewritten into the form A3k3 · (· · · ) that corresponds to the third-order
expansion as long as ω1 is replaced by Eq. (38). This is similar to the second-order solution (see Section 4.2).

5. Case study and discussion

5.1. Two cases

As reviewed in Section 1, the steel pontoon-type LFPV is modeled as a less flexible plate, whereas the polymer
membrane-type LFPV is modeled as a more flexible membrane. The EBVK theory is applicable to both of these two models.
We perform the case study based on information from two published articles. The first one, Ma et al. (2020), is for the
plate-type and referred to as Case 1. The second one, Schreier and Jacobi (2020), is for the membrane-type and referred to
as Case 2. The former is a numeric–analytic hybrid study and has been reviewed in Section 1. The latter is an experimental
study that was carried out in a wave tank, investigating the hydroelastic behavior of highly flexible VLFS. Table 2 gives
the physical parameters of two cases.
9
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Table 2
Physical Parameters of Case 1 and Case 2.
Parameter Unit Case 1

Ma et al. (2020)
Pontoon-type

Case 2
Schreier and Jacobi (2020)
Membrane-type

ρs kgm−3 600 116
δ m 0.02 0.005
E Nm−2 1 641 600 560 000
ν − 0.3 0.4
ρw kgm−3 1000 1000
h m 0.8 1.0
Amax m 0.1 0.02
k radm−1 0.89-1.57 6.34-12.69
ω1 rad s−1 2.167-4.189 7.5-14

Fig. 3. Wave amplitudes varying with the wave number k in Case 1 and Case 2. The first-order amplitudes in the two cases are set to be consistent
with the characteristic values in Case 1 and Case 2, respectively.

5.2. Higher order waves

5.2.1. Existence
A higher-order wave cannot exist independently, but has to be enslaved to the primary wave. This can be demonstrated

by the following facts. Firstly, the higher-order amplitudes, Aq and Ac, are functions of the linear amplitude, Al (see
Eqs. (50), (51), (56) and (57)). In other words, Aq = Ac = 0 when Al = 0. Secondly, waves including higher-order waves
do not satisfy the linear dispersion relation.

5.2.2. Amplitudes
Fig. 3 shows the nonlinear amplitudes as a function of the wavenumber k given by Eqs. (51) and (57) for both cases.

The first-order amplitudes are fixed. Al = 0.1 and 0.5 < k < 2 for case 1 to be consistent with the characteristic values for
Case 1 (Ma et al., 2020, Fig. 6); Al = 0.02 and 6 < k < 14 for Case 2 (Schreier and Jacobi, 2020, Table 2). Fig. 4 presents the
variation of the second- and third-order amplitudes in Case 1 and Case 2 with wavenumbers k and the linear amplitudes
Al.

Fig. 4 indicates that the nonlinear amplitudes are proportional to the linear amplitude, which is physically expected.
The influence of wavenumber k is not identical in the different cases. In Case 1, the higher-order amplitudes are evidently
larger for small wavenumbers. In Case 2, the higher-order amplitudes increase with the wavenumber, meaning the
nonlinearity is pronounced for shorter waves.

The difference in k’s influence can be explained by singularities in Eqs. (51) and (57). k appears in both the numerator
and denominator. It is almost impossible to isolate k because of the trigonometrics and hyperbolics that are transcendental.
This results in possible singularity(ies) depending on the values of the chosen physical parameters. Fig. 3(a) shows that
k = 0 is a singularity given the parameters of Case 1. From the posterior viewpoint, the results imply that the solution is
suitable for Case 2, but not fully suitable for Case 1.

The water depth h plays an important role in the nonlinear solutions. The derived solution contains singularities when
approaching a zero wavenumber (the infinitely long wave) and zero water depth. The unexpected amplitude decrease
for the pontoon LFPV in very shallow water is obviously affected by these singularities. Fig. 5 illustrates the nonlinear
amplitude dependence on the water depth and the wavenumber. In deep water, starting from e.g., h = 10m, the
nonlinear amplitudes increase with the wavenumber. When the water depth h → 0, a singularity occurs in both cases. In
10



P. Xu and P.R. Wellens Journal of Fluids and Structures 109 (2022) 103446

c

d
m
w

5

C
1
t
S
p

5

r
o
F
A
f

g
s

Fig. 4. Higher-order wave amplitudes varying with the wave number k and the linear wave amplitude Al in Case 1 and Case 2. Ranges are roughly
onsistent with the characteristic values in literature.

eeper water, the nonlinear amplitudes in Case 1 are increasing with the wavenumber indeed. Therefore, the unexpected
onotonic decrease in Case 1 (see Figs. 3(a), 4(a) and 4(c)) can be explained by the influence of the singularity at zero
ater depth. Thus, for Case 1 our analytic solution is valid for relatively deep water.
Besides the singularity at h = 0, exceeding a threshold steepness is also a possible reason for nonphysical the

results. Case 1’s Ursell number, calculated with Eq. (58) (Fenton and McKee, 1990; Fenton, 1999), is in the range of
6.2563 ≤ Ur ≤ 19.4688 (according to Table 2). In free surface water waves, the Stokes expansion does not apply for
the range of Ur > 10 neither.

Ur =
2A
( 2π

k

)2
h3 (58)

.2.3. Wave forms
Fig. 6 visualizes the nonlinear wave of our solution up to the third order, using the physical parameters in Table 2. In

ase 1, k = 0.7134 (ω1 = 1.9) and 0.8848 (ω1 = 2.3) while Al = 0.05 so that 0.01 < ε < 0.1. In Case 2, k = 9.0 and
1.0 while A = 0.01 so that 0.01 < ε < 0.1, too. The example waves of Case 1 manifest strong nonlinearity because
he higher-order amplitudes are relatively large. The nonlinear amplitudes increase with longer waves, as discussed in
ection 5.2.2. In contrast, the waves in Case 2 are weakly nonlinear. The nonlinearity increases with shorter waves, as
hysically expected.

.2.4. Comparison
Fig. 7 compares the analytical solutions of the present article with Ma et al. (2020) in Case 1. Fig. 7(a) compares the

atio of the quadratic amplitude Aq over the linear amplitude Al where Al = 0.1m. The continuous solid line represents
ur results, where Al is calculated by Eq. (41) Aq by Eq. (51); the crosses are the data taken from Fig. 6 of Ma et al. (2020).
ig. 7(b) presents the time history of a particularly nonlinear wave with incident wave period T = 2 s and amplitude
l = 0.05m. The solid line is our results, in which the total amplitude is based on Eq. (17); the crosses are the data taken
rom Fig. 5 of Ma et al. (2020).

Fig. 7(a) displays the most significant difference between our analytical solution and Ma et al. (2020): their solution
ives unreasonably large nonlinear amplitudes in a common frequency range, but our solution does not. The distinction
tems from a different treatment of the potential φ on the interface boundary conditions (see Eq. (19)). The change in the
11
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Fig. 5. Higher-order wave amplitudes varying with the h and k in Case 1 and Case 2. The first-order amplitudes, Al , are set to 0.1m and 0.02m,
onsistent with Fig. 3. Ranges of k are roughly consistent with the characteristic values in literature.

Fig. 6. Examples of wave form in Case 1 and Case 2. k is set for consistency with Section 4.2 and Fig. 6 in Ma et al. (2020) and Table 2 in Schreier
and Jacobi (2020), respectively. Al is set in accordance with k to ensure ε ≈ 0.01.

ree surface position is taken into account in our model while it is not in Ma et al. (2020). Fig. 7(b) visualizes example

aves generated by our solution and Ma et al. (2020), respectively. Our solution leads to weakly nonlinear phenomena

s theoretically expected; Ma et al. (2020) leads to exaggerated nonlinear phenomena because of its singularity near

≈ 2.08 rad s−1.
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Fig. 7. Comparison with Ma et al. (2020) for Case 1. (a) is the comparison of Aq
Al

with the incident wave amplitude 0.1m, in which our results are
alculated by Eqs. (41) and (51) of the present article and the published results are measured from Fig. 6 of the literature. (b) is the analogy of the
onlinear wave up to the second order between two analytical models with the incident wave amplitude 0.05m, in which our results are calculated
y Eqs. (41), (51) and (57) of the present article and the published results are measured from Fig. 5 of the literature.

Fig. 8. Dispersion relations varying with wavenumber k in Case 1 and Case 2. The linear amplitudes are merged into the wave steepness to ensure
ε = 0.1 in both Case 1 and Case 2. Other parameters are consistent to Table 2.

5.3. Dispersion relations

The dispersion relation relates the time domain (frequency) and the space domain (wavenumber). The derivation in
Sections 4.1 and 4.2 shows that the dispersion relation does not feature quadratic terms. The hydroelastic dispersion
relation is linear up to the second order (see Eq. (38)). The third-order nonlinearity leads to amplitude dispersion that is
scaled by the wave steepness squared ε2

= A2k2 (see Eq. (54)). Recall the amplitude dispersion relations in the EBVK theory
for beam only and the Stokes theory for water waves only. In these two single-domain models, waves propagate faster
with larger amplitudes; the increased celerity also is also scaled by the steepness squared. The consistency of nonlinearity
verifies our solution that combines the third-order nonlinear EBVK beam and the third-order nonlinear Stokes wave, as
stated in Table 1.

Fig. 8 illustrates dispersion relations in Case 1 and Case 2 under four conditions: only water, the linear FSI, the nonlinear
FSI of nonlinear-structure-linear-water in Xu and Wellens (2021a), and the nonlinear FSI of nonlinear-structure-nonlinear-
water in this article. The 2D visualization merges amplitudes into the wave steepness to ensure the perturbation ε = 0.1.
The wavenumber range and other physical parameters are kept with Table 2.

The most obvious phenomenon is that the dispersion relation of the linear hydroelastics is close to that of only water
wave in both Case 1 and Case 2. These results are determined by the chosen parameters and agree with the design
objective of the articles where we took the physical parameters: the floating structure moves with the incident waves.
The comparison between Figs. 8(a) and 8(b) indicates that the nonlinear effect is relatively small in Case 1, but large in
Case 2. Fig. 8(a) indicates that the nonlinear effect on the dispersion relation is not significant. This can be explained by
the fact that the plate-like structure in long waves does not deflect enough to show nonlinearity. Fig. 8(b) demonstrates
13
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Fig. 9. Dispersion relations vary with wavenumber k and linear amplitude Al in Case 1 and Case 2. The ranges of k are consistent with Table 2. The
aximum of Al is equivalent to characteristic values in Case 1 and Case 2, respectively.

hat the membrane-like structure displays nonlinear behavior in the dispersion relation, with (this study) or without (Xu
nd Wellens, 2021a) nonlinear terms in the potential flow model for the fluid.
Fig. 9 provides 3D views of the frequency variation with both the wavenumber and amplitude. The maximum

mplitude in Case 1 is consistent with the characteristic value in Section 4.2 and Fig. 6 of Ma et al. (2020); the maximum
mplitude in Case 2 is consistent with the value in Table 2 of Schreier and Jacobi (2020). The wavenumber ranges are
oughly equal to that in Table 2.

As physically expected, the wave frequency monotonically increases with both the wavenumber and wave amplitude,
.e., with the wave steepness. However, amplitude behaves differently between the pontoon- and the membrane-LFPV.
he frequency increases fast with the amplitude in thin-film sheets (Case 2), whereas the increment is almost negligible
n stiff plates (Case 1).

. Conclusion

The present research considers the fully nonlinear FSI of LFPV with water beneath. It fills the gap between LFPV, which
s a new application, and the model of ice sheets and VLFS, which is extensively discussed by academia. Considering the
haracteristics of LFPV, we propose to model LFPV by the nonlinear EBVK theory and water waves by the nonlinear Stokes
heory. The fully analytical solution is derived up to the third order with the unified Stokes perturbation method. Building
n the exact expressions of the analytical solution, the authors present the numerical values and compare them with two
ecent studies. One is the plate model suitable for pontoon LFPV, and the other is the membrane model that is suitable
or membrane LFPV. The following remarks conclude our research:

• The nonlinear EBVK theory is suitable for LFPV, especially for the membrane-type structures. This EBVK model
introduces the rotation-associated nonlinearity in the in-plane strain–stress relation, taking the nonlinearity due
to the larger slope and the membrane force into account.

• The analytical solution unifies nonlinear paradigms in both the structural and the fluid domains. Hydroelastic waves
are dominated by the linear property; wave peaks and troughs are respectively enhanced and reduced by the
second-order nonlinearity; amplitude dispersion occurs in the third order term of the coupled system.

• Amplitude dispersion has a strong effect on the membrane-type LFPV, but almost no effect on the stiffer plate-type.
• Our theoretical model is especially suitable for membrane-type LFPV in all water depths. For the pontoon-type LFPV,

the solution is valid in relatively deep waters.

The present article provides a theoretical nonlinear paradigm for analyzing the hydrodynamic properties of LFPV.
uture research will be a systematic analysis of the singularity with very long waves and/or with very shallow waters.
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ppendix A

Considering the nonlinear EBVK beam and Airy wave, the nonlinear dynamic interface (free surface) boundary condition
eads

ρsδ
∂2w

∂t2
+

Eδ3

12
(
1 − ν2

) ∂4w

∂x4
−

3
2
Eδ

(
∂w

∂x

)2
∂2w

∂x2
+ ρwgw + ρw

∂φ

∂t
= 0 at z = 0. (A.1)

Other governing equations of the EBVK-Airy coupling system, namely the Laplace equation, the bottom condition, and
he kinematic interface condition, are linear and thus omitted here.

Introduce normalized variables⎧⎪⎨⎪⎩
X = kx, Z = kz, τA = kt, ε = Ak, H = kh,

κA =
δ2k2E

12
(
1 − ν2

)
ρs

, αA =
3E
2ρs

, βA =
ρwg
ρsδk2

, W =
w

A
, Φ =

kφ
Ag

.
(A.2)

With Eq. (A.2), Eq. (A.1) can be rewritten as

∂2W
∂τ 2

A
+ κA

∂4W
∂X4 + βAW + βA

∂Φ

∂τA
− ε2αA

(
∂W
∂X

)2
∂2W
∂X2 = 0 at Z = 0. (A.3)

Eq. (A.3) proves that the nonlinearity of the model that combines the nonlinear EBVK theory and linear potential theory
is linear in the primary order. The nonlinearity stemming from the membrane force exists on a level that is twice higher
than the primary hydroelastics. Therefore, it is third-order nonlinearity in the context of the present article.

Appendix B

c1 = β cosh (2kh) + 2k sinh (2kh) (B.1)

c2 = 32κk5 sinh (2kh) + 2βgk sinh (2kh) (B.2)

c3 =

ω1

(
β cosh2 (kh) ω2

1 −
k
2 sinh (2kh)

(
16k4κ + βg − 4ω2

1

)
−

3βω2
1

2

)
sinh2 (kh) cos (2kx)

(B.3)

c4 =

16k sinh (2kh) ω1

(
k4κ −

ω2
1
4 +

βg
16

)
− βω3

1 (cosh (2kh) − 2)

cos (2kx) (cosh (2kh) − 1)
(
4
(
β cosh (2kh) + 2k sinh (2kh) ω2

1

)
− 32k5κ sinh (2kh) − 2kβg sinh (2kh)

) (B.4)

c5 =

16k sinh (2kh) ω1

(
k4κ −

ω2
1
4 +

βg
16

)
− βω3

1 (cosh (2kh) − 2)

(cosh (2kh) − 1)
(
4
(
β cosh (2kh) + 2k sinh (2kh) ω2

1

)
− 32k5κ sinh (2kh) − 2kβg sinh (2kh)

) (B.5)

c6 =
βkω2

1 cosh (kh)
(
cosh2 (kh) +

1
2

)
2 sinh (kh)

(
2βω2

1 cosh
2 (kh) + k sinh (kh) cosh (kh)

(
4ω2

1 − βg − 16k4κ
)
− βω2

1

) (B.6)

c7 = cosh5 (kh)
((

−2ακ −
13
3

κ2β2
)
k8 −

7
3
αβ2κk6 −

11
3

(
β2κ −

3
22

α

)
gβk4 +

1
6
αβ3gk2 +

2
3
β4g2

)
+ cosh4 (kh) sinh (kh) βκ

(
−

13
3

ακk6 − 3βgκk4 +
2
3
αβgk2 − 4κ2k8 + β2g2

)
+ cosh3

((
4ακ +

28
3

β2κ2
)
k8 +

13
6

αβ2κk6 +
26
3

βg
(

β2κ −
3
26

α

)
k4 −

1
3
αβ3gk2 −

2
3
β4g2

)
− 2 cosh2 (kh) sinh (kh) βk

(
−4κ2k8 −

25
12

ακk6 − 3βκgk4 +
5
12

αβgk2 + β2g2
)

+ cosh
((

3
4
β2κ2

− 2ακ

)
k8 +

1
6
αβ2κk6 +

3
2

(
β2κ +

α

3

)
gβk4 +

1
6
αβ3gk2 +

3
4
β4g2

)
+

1
sinh (kh) αβk3

(
κk4 + βg

)

(B.7)
6
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