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Abstract

Natural disasters frequently cause casualties and property losses. Predicting and
mitigating the impact of such threats is crucial to the work of humanitarian organiza-
tions. The interactions between hazards are best represented through a multi-hazard
approach, and machine learning models are well suited for natural hazard prediction.
This study presents a systematized literature survey of machine learning in multi-
hazard disaster forecasting in the years 2019-2025, focusing on the used models and
performance metrics, their applications and feasibility of use, as well as potential cross-
applications. There is a wide variety of models and metrics used. The most commonly
used models are random forest and support vector machine and the most prevalent
performance metric is the ROC-AUC score. The machine learning models generally
perform well, with AUC scores above 0.8, though patterns in performance are difficult
to examine. Feasibility is defined here as readiness to be used in practice, and the
models are rated in the factors that define it. Most of the articles are feasible. Consid-
eration of cross-application is rare and should be extended. This research summarizes
the main trends in the field of disaster forecasting, providing a clear reference point for
other academics.

1 Introduction and Background
Natural hazards occur all across the world, often with devastating consequences to local
communities, including the cost of human lives, severe economic impacts and damage to
various infrastructure [1]. The ability to prepare for or avoid disasters at such scale is
therefore very valuable, leading to the existence of the field of disaster forecasting. Early
warning systems provide the ability to respond hours earlier [2], while susceptibility maps
can guide long-term development and inform infrastructure decisions [3].

Most papers in the field of hazard forecasting focus on predicting a single hazard. How-
ever, the forecasting of single hazard threats is often not as accurate, as many regions are
subject to multiple hazards with complicated interrelations [4]. To define the consideration
of more than one hazard at once, including the potential interaction between them, the term
“multi-hazard“ has been introduced in the 1992 Agenda 21 released by the United Nations
Environment Programme [5], which calls among other things for “complete multi-hazard re-
search“ as a part of disaster-management and human settlement planning in disaster-prone
areas.

With the recent surge in development of machine learning models, they have often been
applied to predict hazards due to their ability to process large amounts of data and find
overarching patterns. However, the usage presents challenges, as the performance, accuracy
and trustworthiness of the models can be doubted, in tandem with data availability and
reliability. The main research question of the paper is: What is the performance of ma-
chine learning models for multi-hazard disaster prediction and their feasibility
of application in humanitarian forecasting?

The field of machine learning in multi-hazard forecasting is relatively recent and has
been growing quite rapidly in recent years [6], and the most recent survey was executed in
2019 [7]. Given this, the purpose of the current study is to conduct a literature survey of
machine learning in multi-hazard humanitarian forecasting, with a focus on examining the
models used, their performance, as well as their feasibility of practical use within the field
of hazard forecasting, and particularly for the usage of humanitarian organizations.

The structure of the paper is as follows: Section 2 lays out the methodology of the
research. Section 3 contains the results of the survey, together with the discussion and
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limitations. Section 4 examines the potential ethical implications of the research, while
Section 5 contains the conclusions and the recommendations for future work.

2 Methodology
In order to answer the research question, a literature survey was executed following the
SALSA approach [8]. The SALSA approach specifies four stages of executing a literature
survey. The stages are search, appraisal, synthesis and analysis. Subsection 2.1 describes
the search stage, detailing the strategies used to find the initial set of papers. Subsection
2.2 details the inclusion criteria used to evaluate the articles, as well as reports on the final
scope of the survey. Subsection 2.3 introduces the sub-questions of the research question,
explains their groupings and the reasoning behind them, and finally subsection 2.4 lays out
the methods used in analyzing the gathered data and drawing conclusions. It is important
to note as part of the methodology that no Large Language Models were used in any way
in the course of creating this work.

2.1 Search
The first stage of the SALSA method, search, included defining the exact scope of the survey,
defining key terms and building the exact search query, as well as collecting the records found
through the query. The scope of the survey was decided by the last relevant literature survey
done in the field, which took place in 2019 [7]. Given the literature published since then has
not been included in a survey(save a more linguistically focused survey on the progress of
the field done in 2023 [6]), and the time constraints for this work, it was decided the survey
would consider academic literature published between 2019 and 2025.

The search query was also informed by the last survey, since it contained, in addition
to other things, an overview of the most common terminology used in the field. The search
engine that was used to find the papers was Scopus(CITE), as other search engines provided
results that were either not relevant to the subject matter or too numerous without sufficient
filtering options. The final search query used was the combination of the following two:

query 1: (multi-hazard OR compound hazard) AND (forecasting OR humanitarian fore-
casting OR disaster prediction) AND (machine learning OR AI OR prediction OR accuracy),
which individually yielded 47 results with a very high relevance rate.

query 2: (( earthquake* OR lightning OR ( sea AND surge* ) OR landslide* OR (
extreme AND rainfall* ) OR ( extreme AND waves ) OR ( extreme AND wind* ) OR (
river AND flood* ) OR ( volcanic AND eruption* ) OR ( extreme AND temperature* ) OR
hail OR tornado* OR drought* OR conflict* OR displacement* OR migration* OR ( food
AND security ) OR typhoon* ) AND ( humanitarian OR forecasting OR ( disaster AND
prediction ) ) AND ( ( multi-hazard ) OR compound OR cascade OR multi-risk OR ( multi
AND hazard ) OR interrelationship ) AND ( ( machine AND learning ) OR ( artificial AND
intelligence ) OR ai )), which individually yielded 176 results, with a medium relevance rate.

Note that the quotation marks in the queries have been omitted. The two queries were
joined by an “AND“, together yielding a reasonably high relevance rate. The results were then
filtered within the search engine to exclude articles published before 2019, as well as articles
in languages other than English. The number of papers gathered was 144. Additionally, the
snowballing method [9] was used throughout the course of the survey, gathering 36 articles
in total, so the final number of papers before the appraisal stage was 180.
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2.2 Appraisal
The next step was initial appraisal, which included defining detailed inclusion/exclusion
criteria for the gathered papers and screening them to find the relevant literature. The first
of the inclusion criteria was the purpose of the research to be the prediction, forecasting or
development of an early warning system for a natural hazard. The second required that the
paper include the development, usage or application of a machine learning model. Machine
learning is defined here as a subfield of artificial intelligence, concerning the usage and
development of statistical algorithms that are able to perform tasks without being explicitly
programmed to do so. This includes more traditional machine learning algorithms such as
logistic regression, support vector machine or random forest, but also the machine learning
sub-field of neural networks and deep learning. The paper also had to be multi-hazard
in nature. This meant more than one type of hazard was included within the article and
in the application of the models used. Finally, the performance of the machine learning
model used or developed in the study had to be reported on, including the declaration of
the performance metric used and the numerical values of the performance according to said
metric.

Additionally, as mentioned above, the exclusion criteria removed from consideration
articles written in a language other than English and articles published before 2019. Using
this set of criteria, the initial gathered papers were scanned and narrowed down into the final
set of surveyed papers. As seen in Figure 1, of the 180 papers gathered initially, 148 were
eventually rejected, an additional 4 could not be accessed, and 28 were read and included
in the survey. An overview of all of the surveyed literature can be found in Appendix A.1.

Figure 1: Sankey diagram of considered articles

2.3 Synthesis
This subsection details the synthesis stage, including the sub-questions of the main research
question, their grouping and the reasoning behind those choices. The sub-questions were
created to aid in answering the main research question, and are as follows:

1. What are the machine learning models used in the papers?

2. What are the metrics used to report on the performance of the models?

3. How does the choice of metric depend on model and domain?

4. What is the performance per metric, domain and model?

5. How to define and judge feasibility of practical application?
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6. What are the intended practical applications of the models?

7. What factors influence the feasibility of the intended use of the models?

8. What are possible cross-applications of the models in humanitarian forecasting?

9. What is the feasibility of practical application of the models?

They can be grouped into four sub-groups. Firstly, sub-questions 1 through 3 were
created to determine which machine learning models are most commonly used in the field
of multi-hazard forecasting, which metrics are chosen to evaluate their performance and
how those choices are influenced by each other or the specific hazards being predicted.
This is relevant because one of the goals of this survey is to provide a general overview
of the last years of machine learning in multi-hazard forecasting, and the popularity of
models and metrics is relevant to that end. Additionally, the results of these questions
help prioritize which model-metric combo’s are most relevant to examine in the next sub-
question. Secondly, sub-question 4 corresponds to analyzing the overall effectiveness and
performance of the models detailed in the surveyed papers, as machine learning models that
perform badly and cannot be relied upon cannot be used in practice. This sub-question
is crucial, as it corresponds directly to the main research question, and therefore forms a
sub-group of its own. The results again help inform the answers to the next sub-group, since
performance is one of the factors of feasibility.

Sub-questions 5, 6, 7 and 9 form another group, which is focused on defining and at-
tempting to evaluate feasibility of usage, meaning how practical and likely it is that the
models detailed in the surveyed papers can be of use to the functioning of local govern-
ments and humanitarian organizations. Since feasibility is not a clearly defined concept,
multiple smaller sub-questions were created to help make the process and reasoning clearer.
Feasibility forms the other main component of the overall research question, and so these
sub-questions form another sub-group. Lastly, sub-question 8 deals with the potential cross-
applications of the models, meaning the possible ways a model developed for one scenario
could be repurposed to work in another. While not directly taken from the main research
question, this subject is of interest due to its connection to humanitarian action, as it is
humanitarian organizations that are most interested in developing wider scale disaster pre-
diction models that could cover their entire area of operation. As it is independent from the
other sub-questions, it forms a group of its own.

2.4 Analysis
This subsection details the last stage, analysis [8]. It lays out the methods used in data
collection and analysis as well as how the research questions were answered. The process
was divided into several stages. During the initial pass over the articles, if the paper was
accepted into the survey, information about the examined hazards, the machine learning
models and the performance metrics used in the study were also written down in a note-
taking app. Once the initial pass was finished and the final set of literature decided, this
was compiled into the sets of all of the mentioned hazards, models or metrics.

Since the hazards ranged from general to very specific and as they are not the focus of
the study, they were grouped into nine categories, which are presented in Table 1. The total
list of models or metrics was not modified beyond merging synonyms, such as recall and
sensitivity. As the last part of this step, tables of all of the articles and the hazards, models
and metrics were created to aid in compiling the results.
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Landslides landslides, debris fall, rock fall, debris flow
Flood flood, flash flood
Fire wildfire, forest fire
Earthquake earthquake, seismic
Drought drought
Erosion coastal erosion, gully erosion, soil erosion, land subsidence
Snow avalanche snow avalanche
Storm storm, lightning, wind events
Extreme precipitation heavy rainfall, hail

Table 1: Categorization of hazards

Following the initial steps, all of the articles were read thoroughly. The relevant parts of
the text were highlighted, and general notes were taken from each one, detailing the model
performance, the final result, the intended uses as well as any mention of cross-application. It
informed a general overview of the surveyed literature, enabling the author to decide on the
feasibility factors, which are detailed in Section 3.3. To ensure fairness and avoid mistakes
from memory, a last pass was done over the articles, assigning and noting the reasoning
behind the given scores in another Excel table. Lastly, once all of the data had been
gathered into detailed tables, they were used to derive statistics and identify connections or
trends, both by hand and through the use of aggregation functions, for example to count
the number of appearances of each model type. The findings were compiled into a concise,
readable format and presented in section 3.

3 Results and discussion
This section contains the explanation and analysis of the results obtained through the lit-
erature survey, as well as their discussion. The subsections correspond to the sub-question
groupings detailed above. Subsection 3.1 gives an overview of the hazards, models and
performance metrics appearing in the articles, presenting results for sub-questions 1-3. Sub-
section 3.2 reports on the performance of the models, answering sub-question 4, while sub-
section 3.3 reflects on their feasibility of application, corresponding to sub-questions 5, 6, 7
and 9. Finally, subsection 3.4 considers the possible opportunities for cross-application of
the models and methods reported in the studies, reporting the findings of sub-question 8.

3.1 Models and metrics
This subsection will deal with the results of sub-questions 1 through 3.

3.1.1 Models

This subsection reports on the first sub-question: “What are the machine learning models
used in the papers?“. The models used in the papers are varied, with 22 of the 28 papers using
more than one model. In total, there are 36 distinct models present, with 84 implementations
across all papers, counting the repetitions. 22 of the models appear only once, with a further
6 appearing twice. Only eight models appear three or more times across the surveyed papers.
The most popular individual model is random forest(RF) [10], appearing in 16 papers. The
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most common reasons cited for it’s inclusion is it’s ability to handle large datasets without
overfitting and robustness to outliers and missing values, both of which prove relevant in
the field of disaster forecasting. Additionally, many papers mention its successful usage in
previous literature. It is followed by support vector machine(SVM) [11], included in ten, with
the main reasons being it’s ability to perform well in high-dimensionality datasets, as well as
precedent in literature. Boosted regression trees(BRT) [12] and logistic regression(LR) [13]
have six and five appearances respectively. Finally, extreme gradient boosting(XGBoost) [14]
and generalized linear models(GLM) [15] appear four times each, while maximum entropy
algorithm(MaxEnt) [16] and K-nearest-neighbours(KNN) [17] three times each. Table 2
gives an overview of the distribution of the most common models in each category, with
rarely used models in the last row of every category, and summarized by “Others“ if necessary.
While the table does present a complete overview of the papers surveyed in the study, the
complete overview of the all of the models can be found in Appendix A.2.

Categorization

Category Model Articles

Supervised SVM [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]
LR [28], [18], [29], [27], [30]
GLM [31], [32], [26], [33]
MaxEnt [34], [24], [35]
KNN [18], [29], [30]
CART, MARS, BJSR, NB [18], [20], [3], [23], [36], [30]

Unsupervised DA [26], [33]
K-means [37], [30]
PCA, SPLS [31], [37]

Deep learning/NN MLP [18], [19]
FNN, CNN, DeepNDF, Others [38], [39], [40], [29]

Ensemble RF [28], [18], [19], [20], [41], [21], [22], [31]
RF cont. [3], [42], [24], [43], [25], [27], [33], [30]
BRT [20], [31], [3], [24], [32], [33]
XGBoost [28], [18], [25]
BART, AdaBoost, CatBoost, Others [18], [22], [40], [44], [43], [25]

Table 2: Overview of machine learning models in the surveyed papers

This sub-question is ultimately a supporting question to determining performance, and
since so many of the models appear only several times and reporting on individual data
points does not carry much relevance, the overview of the frequency of model usage was
used to help analyze performance. Though RF and SVM are the most popular models
individually, as a group boosting models appear often, with the most popular being BRT
and XGBoost. Additionally, though the individual models rarely repeat, deep learning
and neural network models appear ten times. The least popular are unsupervised learning
models, appearing only seven times. Curiously, the number of models used in a study does
not appear correlated with the number of hazards being evaluated. Only six studies use a
single model, of which two use RF, two their own custom built models, and, as a point of
interest, the remaining two use MaxEnt, which is only used three times overall.
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3.1.2 Metrics

This subsection presents the results for the second sub-question: “What are the metrics
used to report on the performance of the models?“. The metrics used across the surveyed
papers are numerous, with 20 different metrics repeated a total of 84 times. Table 3 gives an
overview of which metrics are applied by which articles. Area under the receiver operating
curve(ROC-AUC) is by far the most common metric, appearing in 23 out of the 28 surveyed
articles. The receiver operating curve(ROC) is a graph that can be used to show how
well a classification model performs by plotting the true positive rate to the false positive
rate at different thresholds [45]. The area under the curve(AUC) is a numerical value that
represents well the meaning in the graph. It takes values between 0 and 1, with a value
below 0.5 meaning the model is guessing, and values between 0.7 to 1 considered acceptable
to excellent.

To help with readability, the metrics have been grouped by the model type they generally
evaluate and ones used less than three times grouped together. Metrics used in classification,
originating from the confusion matrix [46] appear most often - 10 distinct metrics appearing
a total of 43 times. The most popular are recall at ten appearances and precision at eight
[47], followed by F1 at seven and accuracy at six [48]. These metrics are often used together,
particularly precision with recall, which occur together eight times. Specificity and negative
predictive value(NPV) occurring four and three times respectively [48]. The other metrics
used less than three times can be found in Table 3. Regression is measured by metrics such
as root mean squared error(RMSE), mean absolute error(MAE), R squaredR2 and total
sum of squares(TSS) [49]. They are the second most common group among the surveyed
literature, appearing 13 total times in 7 articles - RMSE four times and the others three
times each. Lastly, several metrics used to evaluate clustering or other specifics appear
several times and form the last two groups in Table 3. The complete list of metric details
can be found in Appendix A.3.

Categorization

Category Metric Articles

Classification ROC-AUC [28],[18], [38], [34], [20], [39], [41], [21], [22], [31], [3], [44]
ROC-AUC cont. [23], [42], [24], [43], [35], [32], [36], [29], [26], [27], [33]
recall [18],[19], [38], [20], [41], [40], [31], [42], [32], [30]
precision [19], [38], [20], [41], [40], [31], [32], [30]
F1 [19], [38], [41], [40], [35], [25], [30]
accuracy [18],[19], [40], [29], [27] , [30]
specificity [20], [31], [42], [32]
NPV [20], [31], [32]
kappa, FAR, HSS, CSI [18], [39], [27]

Regression RMSE [22], [36], [29], [27]
MAE [22], [29], [27]
R2 [22], [36], [29]
TSS [23], [42], [25]

Clustering R-index, CCI, Silhouette [21], [42], [37]
Others IoU, Gini co. [40], [42], [35]

Table 3: Overview of performance metrics in the surveyed papers
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As a point of interest, only one article uses neither ROC-AUC nor at least one of the
confusion matrix metrics - it is Rocchi et al. [37], which makes use only of the silhouette
method. It is important to note that the naming is not uniform across the surveyed liter-
ature, and the synonyms have been grouped together, with the most common term as the
name. For example precision is also called positive predictive value(PPV), and recall can be
alternatively named sensitivity, true positive rate or possibility of detection [47].

3.1.3 Connections

This subsection deals with the third sub-question: “How does the choice of metric depend
on model and domain?“. There does not appear to be a very clear connection between the
metrics and the models chosen in a study, mostly due to the prevalence of ROC-AUC as
a metric, as well as the majority of studies using more than one model. There are five
studies that did not use ROC-AUC, three of which use recall, precision, F1 and accuracy.
Rocchi et al. is the only user of the silhouette method, which is well-matched with their
combination of PCA and K-Means [37]. Lastly, Ye et al. chose to only use F1 and TSS [25].
Eight of the papers chose to exclusively use ROC-AUC as a metric. Of those, five use RF,
three BRT, two GLM, two MaxEnt, and two FDA. The seven articles making use of the
regression metrics all use RF, SVM or LR, with the exception of Tang et al. using Bayesian
spacial joint regressions [36]. However, since RF, LR and SVM are the most commonly used
models among the whole study, used in 19 articles out of 28, this is rather to be expected.
The connection between the predicted hazards and the choice of metric also seems non-
existent. The variety of model and metric types, combined with the fact the majority of
surveyed articles use several models and several metrics, makes it very difficult to identify
a pattern, and indeed one has not been found by the author. It is also connected to the
fact the most common occurring hazards, landslides and floods, both appear in 21 papers,
with fire appearing in 9, erosion in 6 and earthquakes in 5. The average study, therefore,
applies RF and SVM to predict landslides and floods, and measured their performance using
ROC-AUC.

ROC-AUC seems close to a universal metric, appearing in 23 out of the 28 studies. While
it’s popularity is undeniable, and most of the surveyed articles are confident in it’s choice
as a metric, some argue that it is not sufficient as an individual metric. Pourghasemi et
al. mention “The success rate is not the best tool to evaluate the prediction capacity of the
models, however, as it uses the same training data that generated the predictions. It does
help to assess the correlation of the multi-hazard maps to the inventory of hazards“ [23,
p. 11]. Many articles also use additional metrics, often mentioning the need for additional
detail or verification as the reason.

3.2 Performance
This subsection deals with sub-question number 4: “What is the performance per metric,
domain and model?“. It analyzes the most often occurring models and their performance in
predicting various hazards, as given by the AUC metric. Since the ROC-AUC metric is by
far the most common among the surveyed literature, it is the scores in this metric that are
compared and counted, with results from articles that did not use ROC-AUC not included
in the results of this section. An AUC score of 0.5 to 0.6 is poor, 0.6 to 0.7 average, 0.7
to 0.8 good, 0.8 to 0.9 very good and 0.9 to 1 excellent [45]. The models occurring most
commonly are RF, SVM, BRT, LR and XGBoost.
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The RF model [10] is used thirteen times for landslide prediction, ten times for floods,
four times for fires and twice for erosion. It performs very well overall, with an average
AUC score of 0.93 in landslides, 0.91 floods, 0.89 in fire prediction and 0.9 in erosion. It is
also used once each for droughts and earthquakes, scoring 0.79 and 0.78. SVM [11] is used
eight times each for landslide and flood prediction, with an average AUC score of 0.84 and
0.89 respectively. It is also used four times for fires(AUC of 0.76), twice for erosion(AUC of
0.94) and once for snow avalanche prediction(0.89). While both models generally gain very
good or excellent scores, there are six studies where both models were applied to landslides
and floods, and RF does outperform SVM, by 15% in landslide prediction, and 4% in flood
prediction. The BRT model [12] is utilized seven times for landslides, with an average
score of 0.89, as well as twice each for flood(0.89), fire(0.78) and erosion(0.88), and once
for droughts(0.79). While generally it performed slightly worse than both RF and SVM,
it does outperform SVM in landslide prediction. The LR model [13] appears five times for
landslides, with an average AUC score of 0.86, four times for floods with a score of 0.88, as
well as once each for fire(0.94) and earthquake(0.69) prediction. Lastly, the XGBoost model
is used twice for landslides and floods, scoring excellent for landslides with an average AUC
score of 0.95, and less well for floods, with AUC of 0.83. It is also used once for fire(0.99)
and once for earthquake prediction(0.78). RF does outperform all of the other models listen
in landslide prediction, with the exception of XGBoost which gains a slightly better AUC
score of 0.95, but it’s two data points compared to RF’s thirteen lend it less credibility.

Unfortunately, the possibilities for effective analysis in this regard are extremely limited.
The wide variety of hazards, models and performance metrics used in the surveyed articles
leads to a very sparse matrix, without many chances for comparison. The vast majority of
present combinations occurs only once or twice, and detailing singular data points is neither
informative not insightful. Given the very noticeable differences in performance of predicting
different hazards for the same model, it would not be informative to present the average
model performance in all of the hazards it was applied to. The models, too, are significantly
different, and treating, for example, all of the deep learning models as one group would
be misleading and not lead to meaningful results. The same issue applies to the various
performance metrics - the F1 score gained by one model cannot effectively be compared
to the ROC-AUC score gained by a different one in predicting the same hazard. Due to
these severe limitations, further analysis of model performance is outside of the scope of the
survey.

3.3 Feasibility and intended use of the models
This subsection will deal with the answers to sub-questions 5-9 with the exception of sub-
question 8.

5. How to define and judge feasibility of practical application?
6. What are the intended practical applications of the models?
7. What factors influence the feasibility of the intended use of the models?
9. What is the feasibility of practical application of the models?

3.3.1 Intended applications of the models

This subsection answers sub-question 6. “What are the intended practical applications of
the models?“. The given result of all but four of the surveyed articles is a multi-hazard
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map. Interestingly, the naming of the maps is inconsistent and seemingly interchangeable.
The maps created are called (multi-hazard) susceptibility maps, risk index maps, exposure
maps, probability maps or risk maps. While “multi-hazard susceptibility map“ seems to be
the most common term, many of these are used interchangeably or no difference can be
found between the style of map created. While most of the maps include the specific hazard
combinations as part of the multi-hazard map, some only mark the level of risk, without
mentioning which hazards the given spot may be vulnerable to. This is not in any way
correlated with the specific naming of the type of map, and seems just as likely with any of
the particular types.

In line with the relative similarity of the generated results, the intended applications
of the models and their results are echoed in the various surveyed papers. The created
maps are meant to give insights for disaster risk reduction and resilience planning, aid in
prioritizing high-risk zones for hazard management and mitigation strategies, serve as a
tool in sustainable and safe land-use planning and infrastructure development, as well as be
helpful for the conservation of natural resources and the environment. The intended users
are named to be planners, policy makers, decision makers, stakeholders, local governments
as well as emergency managers.

Two of the four articles that do not create a multi-hazard map echo those same inten-
tions. Padmaja et al. created a model that provides disaster segmentation and say it offers
“actionable insights for disaster preparedness and mitigation“ [40, p. 159] while Rocchi et al.
assign a general risk score to each municipality and say their tool can “can assist governments
and stakeholders in decision making and prioritization of interventions“ [37, p. 1]. The last
two articles focus more on applications in early warning systems. Dal Barco et al. whose
model assigns a daily risk index per municipality in the studied region, and whose model’s
intended applications are to aid in the mitigation planning process, report the model “can
also be used as an early warning system when applied to short term weather forecasts“ [19,
p. 17]. Leinonen et al. developed a nowcasting model for thunderstorms and intended for it
to serve as an early warning system that can issue storm warnings a short time in advance
[39].

This sub-question grants some insight into the intentions behind the surveyed literature.
Both the final products and their intended applications are very closely aligned across the
articles. It is interesting to note that humanitarian organizations are not directly mentioned
among the intended users, focusing more on local authorities. This is perhaps connected to
how few of the models attempt to predict the time a disaster may occur. Most anticipatory
actions carried out by humanitarian organizations require early warning of a specific event,
several hours to several months in advance, depending on the disaster. This does not seem
to be a focus or intention currently common in the field, though some articles do mention
it as a possible extension point. Another point of interest is that none of the articles report
on cooperation with the local authorities or the other detailed stakeholders, nor do they
mention contacting anybody to share the created maps or models with them. This could
be simply because they did not deem it relevant to the academic research, but it may also
suggest a widespread approach to the potential applications that is purely academic, with
little care for the results being utilized.

3.3.2 Definition and factors of feasibility

This subsection answers sub-question 5: “How to define and judge feasibility of practical ap-
plication?“, as well as sub-question 7: “What factors influence the feasibility of the intended

10



use of the models?“. As the questions are strongly related to each other, the results for
them are presented together. In the context of what this work is examining, the feasibility
of practical application is meant as the usefulness and readiness of the tools developed in
the surveyed literature in preventing or foreseeing natural disasters that have the potential
to cause harm to humans. Simply put, it is the ease with which a stakeholder could use the
developed tool, and how effective that tool would be. To judge this concept, the surveyed
articles and their final result have been evaluated on four factors of their development, each
on a scale from 1 to 5, with 1 being unsuitable for usage in disaster prediction and human-
itarian forecasting, and 5 being excellent, summing up to maximum 20. The result is then
scaled to a percentage value for easy understanding.

The development factor represents the simple fact that for a model to be useful, it needs
to be fully developed and functional. The score reflects how finalized the model development
is. A model that is still a work-in-progress would receive a low score, while one that is fully
fleshed out and complete would receive a high score. It is worth noting that this is partially
based on what the articles report as potential future work and the importance of that work,
so a model may receive a high development score if the authors did not elaborate on potential
future development. The reliability factor corresponds to the integrity and reproducibility
of the models. If the development process, like reliable data sources, feature selection or
choice of model hyper-parameters, is reported on and thoroughly done, an article would
receive a high score. If the model creation is not reproducible or the results could not be
trusted without additional verification, a low score would be assigned.

The performance of a model is also crucial, as a model whose results cannot be trusted is
not suitable to be used, particularly when an incorrect prediction about a disaster may well
cost human lives. A model would receive a score of five if it performs excellently, a three if
the performance is satisfactory, and lower if it performs badly. As a note, if an article does
not report the performance clearly, a score of three is given as an average score. Lastly,
the amount of detail given by a model is represented by its own factor. To be effective, a
model needs to give sufficient information on disaster types, locations and potentially time
frames. The way the information is presented should also be readable. For example, a map
giving a general multi-hazard risk index to each district in a province would receive a lower
score than an article that created detailed landscape maps that report on the specific hazard
combinations present.

Note that these factors were created by the author as a way to represent what is meant
by feasibility in the context of this research. It is not a strict definition, nor a commonly
used one, and is meant more as an understandable structure to present the findings than as
completely reliable and objective model.

3.3.3 Feasibility of the models

This subsection answers sub-question 9: “What is the feasibility of practical application of
the models?“. As detailed in subsection 3.3.2, the feasibility of application is judged through
four factors: development, reliability, performance and detail. Table 4 gives the feasibility
scores for each article. To keep the table small, the factor names were shortened to “Dev“,
“Rel“, “Perf“ and “Det“, respectively. The overall average sum was 15.75, corresponding to
a 78.75% feasibility score. Seven of the articles scored 90% or above, demonstrating good
feasibility, while nine scored below 75% and twelve received a total score in between, which
the authors considers below average and average, respectively.

The performance scores were based only on the performance of the model used to create
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Reference Dev. Rel. Perf. Det. Total Score

[28] 5 5 4 4 18 90%
[18] 5 5 4 3 17 85%
[19] 2 3 3 2 10 50%
[38] 4 4 4 3 15 75%
[34] 4 3 5 3 15 75%
[20] 4 2 5 3 14 70%
[41] 3 3 4 3 13 65%
[39] 4 5 5 3 17 85%
[21] 3 3 4 4 14 70%
[22] 5 4 4 4 17 85%
[40] 4 3 5 2 14 70%
[31] 5 4 4 4 17 85%
[3] 3 3 4 5 15 75%
[44] 4 3 3 4 14 70%

Reference Dev. Rel. Perf. Det. Total Score

[23] 4 5 4 4 17 85%
[42] 3 2 4 4 13 65%
[24] 4 2 4 4 14 70%
[43] 4 5 5 4 18 90%
[37] 3 4 3 2 12 60%
[35] 3 4 4 5 16 80%
[32] 4 5 5 4 18 90%
[36] 5 5 4 4 18 90%
[29] 4 4 5 5 18 90%
[25] 5 5 4 5 19 95%
[26] 4 2 5 4 15 75%
[27] 4 5 5 5 19 95%
[33] 5 4 4 4 17 85%
[30] 4 4 4 5 17 85%

Table 4: Feasibility scores of the articles

the final results. Most likely as a consequence, the best scores overall were received in
the performance factor, with an average score of 4.2 compared to the average scores of
development, reliability and detail, which are 3.96, 3.79 and 3.79 respectively. This is
possibly caused by the majority of articles testing several models and choosing the ones
with the best performance to generate the results. A strong limitation of this method is
that it can only rely on what the authors of the surveyed articles have chosen to report
on. The development factor is particularly vulnerable to this, since it is influenced almost
exclusively by the self-assessed completeness. Therefore, a model that is very well-developed
but reports several additional potential improvements may receive the same or even lower
score than one that reports no improvements at all, even if it is less extensive. Additionally
due to various metrics there may be slight differences in performance scores given to models
that use ROC-AUC as a metric compared to ones only using alternative metrics. It is also
important to note the scores were assigned by the author by hand, and cannot be guaranteed
to be completely objective.

As an example of the reasoning behind the score assignments, Ye et al. received 5 for
development, since their only note is a need for a little extra detail. They report very
thoroughly on their data sources, the variables and model creation, so they also receive a 5
for reliability. The best model scores are between 0.8 and 0.9 in F1-score, which led them
to receive a 4 in performance. Lastly, they create many maps, including individual ones
per hazard and per model, as well as a very detailed multi-hazard map, also gaining a 5 in
detail.

3.4 Potential cross-application
This subsection answers sub-question number 8: “What are possible cross-applications of
the models in humanitarian forecasting?“. The capacity for cross-application is meant here
as the potential to apply the model or methodology outside of the case study area, or
extend it to new hazards. Fifteen of the articles do not mention cross-application in any
way [20, 41, 22, 31, 3, 44, 23, 42, 24, 37, 35, 32, 36, 25, 33]. A further seven report that their
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methodology could be replicated in other areas [28, 34, 21, 43, 26, 27, 30]. Choubin et al.
use the word “framework“ without additional details given [18], while Padmaja et al. writes
“The proposed model provides a robust framework for integrating real-time remote sensing
data into early warning systems“, but also does not provide any additional details [40, p.
159]. These models have been counted in the methodology replication group, bringing the
number up to nine articles.

Only four of the articles truly call their models cross-applicable. Dal Barco et al. report
that “The same algorithm can be applied to other geographic areas, with the same or different
indicators and assessment endpoints, provided that the algorithm is retrained or fine-tuned
on local data.“ [19, p. 16]. Hasnanoui et al. describe their model as a scalable, adaptive and
reproducible framework. They mention it can be used in other regions, though warn that
it’s application has not been tested for any region other than the case study [38]. Leinonen
et al. note that their model architecture “can use a combination of many data sources to
predict various hazards from thunderstorms“ and that they chose “different approaches for
different hazards in order to demonstrate the flexibility of the model, which can be adapted
to the users’ needs with minor changes to the training procedure“ [39, p. 8]. Lastly, Ullah
et al. say that “the proposed method is also applicable to other environmental hazards“, as
well as claim that “ ‘it can be applied to similar geo-environments, especially in mountainous
areas with sparse data“ [29, p. 14].

It is important to note that the results presented in this section are based only on the
information given directly in the articles - no additional interpretation is done by the author
to judge the potential for cross-application. The results indicate that cross-application is not
a common consideration in the field of machine learning multi-hazard disaster prediction.
This is likely due to the unique relationship between the data available for a given region
and the decisions made in model development - there is no model without data, and as the
potential data sources strongly vary between regions, a lack of universal data sources stands
as the biggest challenge to cross-application.

4 Responsible Research
This section reflects on the ethics of this study, including the methodology and the rec-
ommendations made by the author. Humanitarian forecasting and more generally disaster
prediction is by itself a highly ethical pursuit, as it can save human lives and prevent much
damage. Nevertheless, there are some ethical risks present in the execution of this study.

The validity and trustworthiness of the surveyed articles is an implicit assumption made
by the author, since the survey only considers literature published in academic journals.
However, the author has strong reasons to believe one of the articles found during the initial
pass was created mostly through the use of an LLM, as it lacked cohesiveness, repeated frag-
ments of text and cited non-existent research. This calls into doubt the assumed reliability,
which poses something of an ethical concern, but since the other articles showed none of the
same flaws and verifying their validity in detail is outside of the scope of this survey, the
author chose to upkeep the general assumption of trustworthiness.

The research does not deal with sensitive data relating to human subjects, so that is not
a concern. The validity of the data sources reported by the surveyed literature, however,
impacts the validity of the literature itself. In line with the above assumption and due to
time constraints, the data sources have not been validated and are assumed to be trust-
worthy. Additionally, as detailed in section 2, the survey is systematized and not systemic.
As a result, articles relevant to the research may have been omitted due to language dif-
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ferences or being published before 2019. This reduces the completeness of the survey and
implies possible bias in the results towards English language research, but was found to be
unavoidable given the time constraints and scope of the research.

Lastly, the conclusions and recommendations made in this work are logically sound and
reasoned to the best of the author’s ability. As reliable disaster predictions can make the
difference between life and death, an unsound model recommendation could have severe
consequences. In addition, no individual is free of bias, and it is a relevant ethical risk that
the conclusions may have been unknowingly influenced by the author’s personal beliefs.
Given the small scope of the research, it is highly unlikely that the recommendations made
in this work would be followed blindly by relevant parties without additional verification.

5 Conclusions and Future Work
This section contains the conclusions of this work, as well as the author’s recommendations
for future research. The contribution of this work is an up-to-date systematized literature
survey of machine learning multi-hazard disaster prediction, including the types of models
and performance metrics used, the performance of the models, their feasibility of use as well
as the potential for cross-applications. The survey contains 28 articles published between
2019 and 2025.

The most widely predicted hazards are landslides and floods, and there is a wide variety
of both models and metrics used. The most common models are RF and SVM, followed by
BRT and LR. Boosting models are also becoming more popular and show a lot of potential.
The most used metric is ROC-AUC, with precision and recall also appearing often. No
apparent connection has been found between the model, hazard and metric choice, which is
likely due to the amount of diversity and potential combinations in all three. The overall
performance of machine learning models is very good and reaffirms the suitability of machine
learning methods for disaster prediction and humanitarian forecasting. The best performing
model by AUC-ROC score overall is RF, which performs excellently for landslides and floods.
It narrowly outperforms SVM and XGBoost. Due to the sparseness of the model metric
hazard combinations, it is difficult to identify patterns in performance, and further work is
needed on this subject.

The most common result of the studies is a multi-hazard susceptibility map. Their in-
tended applications are broadly to give insights for disaster risk reduction, aid in prioritizing
and planning of mitigation strategies and help in sustainable and safe land-use planning.
Feasibility of practical application was defined as the usefulness and readiness of the created
models to be applied in disaster prediction in practice. It was decided it would be judged
with four factors: development, representing the development stage of the model; reliability,
responsible for integrity and reproducibility; performance, correspondingly simply to the re-
ported performance metric scores; and detail, representing the amount of information given
by the model. The four factors sum up to a general percentage score. Seven of the models
have excellent feasibility, with scores above 90%, nine score below average with scores below
75% and twelve have acceptable feasibility. Cross-application is not considered by most of
the surveyed articles, but nine report their methodology can be replicated in other areas,
and four of the models can be retrained on data from another area.

Recommended further work for this survey is to broaden the scope to include work
published before 2019, as well as extend it into a fully systemic survey. Additionally, further
work is needed to better analyze the model performance, the data sources of the surveyed
articles should be verified, and a more in-depth analysis of factors that make a model
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suitable for cross-application carried out. Recommendations for further development in the
field would be to focus on developing models that predict specific hazard occurrences in
time, prioritize creation of cross-applicable models, as well as generally more international
cooperation.

A Appendix
The appendix contains supporting materials that were not necessary to include in the main
body of the work, but are still relevant to include for more detailed readers and for the sake
of further clarity or reproducibility.

A.1 Surveyed papers
This subsection contains details of all of the surveyed articles, presented in Table 5 and
Table 6.

A.2 Model details
This appendix contains the details on the models present during the work. The full model
names, the shortcuts used for them, as well as the citations can be found in Table 7. Note
the table does not contain custom ensemble models unique to one study.

A.3 Metric details
This subsection contains the naming details and citations of the performance metrics present
in the work, presented in table 8. Note that the “Full name(s) of metric“ column contains
all of the synonyms found in the surveyed articles.
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Title Author Year Journal Cite
Multi-hazard probability assessment and
mapping in Iran

H.R. Pourghasemi
et al. 2019 Science of The Total

Enviroment [44]

Multi-hazard exposure mapping using
machine learning for the state of Salzburg,
Austria

T.G. Nachappa et
al. 2020 Remote Sensing [21]

Is multi-hazard mapping effective in as-
sessing natural hazards and integrated
watershed management?

H.R. Pourghasemi
et al. 2020 Geoscience Frontiers [23]

Assessing and mapping multi-hazard risk
susceptibility using a machine learning
technique

H.R. Pourghasemi
et al. 2020 Scientific Reports [42]

A machine learning framework for multi-
hazards modeling and mapping in a
mountainous area

S. Yousefi et al. 2020 Scientific Reports [26]

Evaluation of multi-hazard map produced
using MaxEnt machine learning technique N. Javidan et al. 2021 Scientific Reports [34]

Modelling multi-hazard threats to cul-
tural heritage sites and environmental
sustainability: The present and future
scenarios

A. Saha et al. 2021 Journal of Cleaner
Production [32]

Evaluation of debris flow and landslide
hazards using ensemble framework of
Bayesian- and tree-based models

S.C. Pal et al. 2022
Bulletin of Engineer-
ing Geology and the
Environment

[31]

Multi-hazard mapping of droughts and
forest fires using a multi-layer hazards ap-
proach with machine learning algorithms

Y. Piao et al. 2022 Geomatics, Natural
Hazards and Risk [3]

Multi-hazard susceptibility and exposure
assessment of the Hindu Kush Himalaya J. Rusk et al. 2022 Science of the Total

Environment [35]

Multi-hazard susceptibility mapping
based on Convolutional Neural Networks K. Ullah et al. 2022 Geoscience Frontiers [29]

Landslides and flood multi-hazard assess-
ment using machine learning techniques A.M. Youssef et al. 2022

Bulletin of Engineer-
ing Geology and the
Environment

[27]

A Machine Learning Framework for
Multi-Hazard Risk Assessment at the Re-
gional Scale in Earthquake and Flood-
Prone Areas

A. Rocchi et al. 2022 Applied Sciences [37]

A Hybrid Multi-Hazard Susceptibility As-
sessment Model for a Basin in Elazig
Province, TÃŒrkiye

G. Karakas et al. 2023
International Journal
of Disaster Risk Sci-
ence

[41]

Thunderstorm Nowcasting With Deep
Learning: A Multi-Hazard Data Fusion
Model

J. Leinonen et al. 2023 Geophysical Research
Letters [39]

Table 5: Surveyed papers: part 1
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Title Author Year Journal Cite
Multi-resource potentiality and multi-
hazard susceptibility assessments of the
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P. Prasad et al. 2023 Environmental Earth
Sciences [43]

Multi-hazards (landslides, floods, and
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A.M. Youssef et al. 2023 Journal of African
Earth Sciences [33]

Flood, landslides, forest fire, and earth-
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learning techniques and their combination

H. R. Pourghasemi
et al. 2023 Natural Hazards [24]

Multi-hazard assessment using machine
learning and remote sensing in the North
Central region of Vietnam

H.D. Nguyen et al. 2023 Transactions in GIS [22]

Machine learning-enabled regional multi-
hazards risk assessment considering social
vulnerability

T. Zhang et al. 2023 Scientific Reports [30]

A machine learning approach to evaluate
coastal risks related to extreme weather
events in the Veneto region (Italy)

M.K. Dal Barco et
al. 2024

International Journal
of Disaster Risk Re-
duction

[19]

Development of risk maps for flood, land-
slide, and soil erosion using machine
learning model

N. Javidan et al. 2024 Natural Hazards [20]

Risk assessment of landslide and rockfall
hazards in hilly region of southwestern
China: a case study of Qijiang, Wuxi and
Chishui

P. Ye et al. 2024 Environmental Earth
Sciences [25]

Machine learning and GIS-based multi-
hazard risk modeling for Uttarakhand:
Integrating seismic, landslide, and flood
susceptibility with socioeconomic vulner-
ability

V. Chauhan et al. 2025
Environmental and
Sustainability Indica-
tors

[28]

A spatially explicit multi-hazard frame-
work for assessing flood, landslide, wild-
fire, and drought susceptibilities

B. Choubin et al. 2025 Advances in Space
Research [18]

Transfer learning-based deep learning
models for flood and erosion detection in
coastal area of Algeria

Y. Hasnaoui et al. 2025 Earth Science Infor-
matics [38]

Deep Learning in Remote Sensing for
Climate-Induced Disaster Resilience: A
Comprehensive Interdisciplinary Ap-
proach

S.M. Padmaja et al. 2025
Remote Sensing in
Earth Systems Sci-
ences

[40]

Spatial joint hazard assessment of land-
slide susceptibility and intensity within a
single framework: Environmental insights
from the Wenchuan earthquake

Z. Tang et al. 2025 Science of the Total
Environment [36]

Table 6: Surveyed papers: part 2
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Short name Full Model Name Citation

LR logistic regression [13]
RF random forest [10]
XGBoost extreme gradient boosting [14]
SVM support vector machine [11]
CART classification and regression tree [50]
MLP multi-layer perceptron [51]
NB NaÃ¯ve Bayes [52]
KNN k-nearest neighbours [17]
DeepNDF deep neural decision forests [53]
FNN feedforward neural network [54]
autoencoders autoencoders [55]
Bi-RNN bidirectional recurrent neural networks [56]
MaxEnt maximum entropy [16]
BRT boosted regression trees [12]
MARS multivariate adaptive regression spline [57]
AdaBoost adaptive boosting [58]
BGLM Bayesian generalized linear models [59]
SPLS sparse partial least squares [60]
PCA principal component analysis [61]
KM k-means clustering [62]
BART Bayesian additive regression trees [63]
BSJR Bayesian spacial joint regression [64]
CNN convolutional neural network [65]
LightGBM light gradient-boosting machine [66]
CatBoost CatBoost [67]
GLM generalized linear model [15]
FDA functional discriminant analysis [68]
MDA multivariate discriminant analysis [69]

Table 7: Models present in the study
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Shortcut Full name(s) of metric Citation

ROC-AUC receiver operating characteristics and area under the curve [45]
accuracy accuracy [48]
precision precision, positive predictive value(PPV) [70]
recall recall, sensitivity, true positive rate(TPR), probability of detection(POD) [48]
F1 balanced f-score [48]
FAR false alarm ratio, false discovery rate [71]
HSS Heidke Skill Score [72]
kappa Cohen’s kappa [48]
specificity specificity, true negative rate(TNR) [70]
NPV Negative predictive value [70]
CSI critical success index [73]
R-Index Rand index [74]
RMSE Root Mean Squared Error [48]
MAE mean absolute error [48]
R^2 R squared [48]
IoU Intersection over union [75]
TSS total sum of squares [49]
CCI cosine clustering index [76]
Gini co. Gini coefficient [77]
Silhouette silhouette method [78]

Table 8: Complete list of performance metrics used in the surveyed literature
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