
 
 

Delft University of Technology

IoT-KEEPER
Detecting Malicious IoT Network Activity Using Online Traffic Analysis at the Edge
Hafeez, Ibbad; Antikainen, Markku; Ding, Aaron Yi; Tarkoma, Sasu

DOI
10.1109/TNSM.2020.2966951
Publication date
2020
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Network and Service Management

Citation (APA)
Hafeez, I., Antikainen, M., Ding, A. Y., & Tarkoma, S. (2020). IoT-KEEPER: Detecting Malicious IoT
Network Activity Using Online Traffic Analysis at the Edge. IEEE Transactions on Network and Service
Management, 17(1), 45-59. Article 8960276. https://doi.org/10.1109/TNSM.2020.2966951

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNSM.2020.2966951
https://doi.org/10.1109/TNSM.2020.2966951


1

IoT-KEEPER: Detecting Malicious IoT Network
Activity using Online Traffic Analysis at the Edge

Ibbad Hafeez*, Markku Antikainen‡, Aaron Yi Ding†, Sasu Tarkoma*

*University of Helsinki, Finland, ‡Aalto University, Finland, †Delft University of Technology, Netherlands

Abstract—IoT devices are notoriously vulnerable even to trivial
attacks and can be easily compromised. In addition, resource
constraints and heterogeneity of IoT devices make it impractical
to secure IoT installations using traditional endpoint and network
security solutions. To address this problem, we present IOT-
KEEPER, a lightweight system which secures the communication
of IoT. IOT-KEEPER uses our proposed anomaly detection
technique to perform traffic analysis at edge gateways. It uses a
combination of fuzzy C-means clustering and fuzzy interpolation
scheme to analyze network traffic and detect malicious net-
work activity. Once malicious activity is detected, IOT-KEEPER
automatically enforces network access restrictions against IoT
device generating this activity, and prevents it from attacking
other devices or services. We have evaluated IOT-KEEPER using
a comprehensive dataset, collected from a real-world testbed,
containing popular IoT devices. Using this dataset, our proposed
technique achieved high accuracy (≈ 0.98) and low false positive
rate (≈ 0.02) for detecting malicious network activity. Our eval-
uation also shows that IOT-KEEPER has low resource footprint,
and it can detect and mitigate various network attacks—without
requiring explicit attack signatures or sophisticated hardware.

Index Terms—IoT, Network, Security, Privacy, Activity Detec-
tion, Anomaly Detection, Traffic Classification

I. INTRODUCTION

IoT-enabled automation systems have opened homes and
industrial environments to countless new threats [1], [2]. There
are several reasons for the sad state of IoT device security. IoT
development teams often work without sufficient resources and
under strict time constraints. These factors make it tempting
for development team to cut corners, for example, by re-using
unverified code snippets [3], insecure third-party libraries [4],
and not following secure software development practices [5].
These, and several other factors, result in production of inher-
ently vulnerable IoT devices for consumer markets.

Due to prevalence of insecure IoT devices, network owners
can no longer rely on the assumption that all devices in their
network are well-behaving and trustworthy [6]. While this, to
some extent, applies to every network, it is a particular concern
in small office, home office (SOHO) environments where the
network owners do not have the know-how or resources to
improve security. This, together with the fact that IoT devices
are rarely updated [7], makes it probable that some devices in
the network will, eventually, get compromised by an attacker.

The number of device specific exploits is constantly increas-
ing due to growing number of IoT installations. Attackers can
also re-use existing exploits, from PC-platforms, against IoT
devices running a stripped down Linux [8] or Windows [9]
as device firmware. On several occasions, attackers have been

able to compromise IoT devices installed deep inside SOHO
networks, to launch extremely large scale attacks [10], [11] as
these devices have no security in place except for the network
address translation (NAT), which is done on the gateway.

To address the sorry state of IoT security, our goal in
this paper is to develop a system capable of securing the
communication of IoT in edge networks. Such a system should
be able to detect and isolate malicious IoT devices, with
high sensitivity and minimal false alarms. This system should
also be lightweight enough to operate efficiently using limited
resources available at network gateways, typically used to set
up edge networks.

We propose IOT-KEEPER, an edge system capable of
performing online traffic classification at network gateways.
IOT-KEEPER uses fuzzy C-Means clustering to differentiate
between network traffic generated by IoT devices—in different
modes of operation. It then uses fuzzy interpolation scheme to
classify whether a given traffic flow belongs to malicious or
benign network activity. Once an IoT device is identified as
source of malicious activity, IOT-KEEPER uses adhoc overlay
networks to restrict this device’s network access such that it
can perform normal operation, for example, communicate with
respective cloud service, but can not perform network attacks
against other device or services.

Given the challenges of collecting labeled traffic data, IOT-
KEEPER uses unlabeled traffic data for model training. It
uses a custom feature analysis technique to extract the set of
features used for traffic classification. Once the classification
model is trained, it can be represented as a set of rules. This
representation enables sharing of trained classification models
among multiple deployments of IOT-KEEPER, which reduces
the time required to train initial classification model at new
deployments, and improves scalability of system.

We made a prototype implementation of IOT-KEEPER to
demonstrate how a simple yet efficient classification algorithm,
combined with sophisticated feature analysis, enables us to
perform real-time traffic classification, using only limited re-
sources, available on a typical network gateway. It also shows
that our classification technique is robust and achieves good
classification performance in both closed-world and open-
world scenario. More specifically, our contributions are:
• We design and implement a robust traffic classification

technique for online detection of malicious network ac-
tivity of IoT devices. We also present a detailed study
of individual features and their relative importance to
formulate a set of most useful features for network traffic
classification problem.
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• We present IOT-KEEPER, a hardware-agnostic gateway
capable of detecting malicious network activity in real-
time. IOT-KEEPER uses adhoc overlay networks—a
novel mechanism to dynamically restrict network access
for IoT devices, depending on their network activity.

• We study the performance of IOT-KEEPER in closed-
world and open-world settings. Our evaluation shows that
IOT-KEEPER achieves high detection accuracy (0.982),
raises few false alarms (0.01), with low resource foot-
print, and minimal impact on latency experienced by
users (increment ≈ 1.8%).

• We provide a comprehensive dataset for IoT traffic anal-
ysis research [12]. This dataset contains traffic traces
collected from IoT devices commonly found in edge
networks.

II. CHALLENGES IN SECURING IOT

Conventional network and endpoint security solutions fall
short in addressing the challenges of securing IoT ecosystem
for a number of reasons.

C1 – Limited support for endpoint security solutions:
Due to large diversity in IoT devices’ firmwares, software
stacks, and APIs, it is challenging to develop generic endpoint
security solutions for IoT. Most IoT devices also lack the
resources required to operate such endpoint security solutions.
IOT-KEEPER does not require an agent, running on end hosts,
to detect malicious behavior. Instead, it analyzes network
traffic to identify malicious behavior of IoT devices. Since
IoT devices are designed to use cloud services for majority of
their operations, network activity of IoT devices gives fairly
accurate representation of device state. This method is also
device-agnostic as traffic footprint of malicious activity, such
as port scanning attack, is almost similar, irrespective of the
device used to perform the attack.

C2 – Securing device-to-device (D2D) communications:
Traditional network security solutions are installed at network
perimeter – where they only monitor network traffic entering
or leaving the network. As a result, these systems do not secure
D2D communications happening within local network. IOT-
KEEPER is designed to operate at network gateways and access
points, where it monitors D2D traffic within local network,
as well as device-to-infrastructure (D2I) traffic between IoT
devices and cloud services.

C3 – Diversity of IoT devices: Many traditional network
security solutions rely on traffic signatures for anomaly de-
tection. Due to large diversity of IoT devices, it is practically
infeasible to obtain enough labeled data from IoT devices to
generate these signatures [13], [14]. To address this limita-
tion, IOT-KEEPER uses an unsupervised learning algorithm,
which does not require labeled training data or device-specific
anomaly detection model to perform traffic classification.

C4 – Deployment and operational costs: High deploy-
ment and operational costs are also limiting factors in us-
ing traditional network security solutions for securing edge
networks [15], [14]. In comparison, IOT-KEEPER has lower
deployment costs as it can be deployed using low-cost de-
vices, with limited resources. It also has lower operational

costs because the traffic filtering mechanism is automatically
updated based on network activity of user devices.

C5 – Privacy and performance: To ensure privacy of
user-data and good performance (in terms of latency), traffic
classification tasks need to be performed at the edge. Due
to large resource footprint [16], [17] and special hardware
requirements [14], [15], use of existing traffic analysis methods
is not scalable for securing edge networks. IOT-KEEPER
performs traffic analysis at edge network gateways, using a
lightweight traffic classification technique, to ensure privacy
of user-data and low latency.

C6 – Ease of management: It is well known that due
to poorly designed interfaces and lack of support for auto-
mated configuration, edge networks are rarely configured by
users [14], [18], [19]. As a result, most edge networks are
vulnerable to external attacks due to improper configurations.
Adhoc overlay networks—introduced in this paper—resolve
this issue by automating security policy management. It en-
ables the gateway to apply appropriate network access control
for connected devices, depending on their network activity.

III. RELATED WORK

A number of techniques have been proposed to identify
anomalies in network traffic [20], [21], [22], [23]. Researchers
have studied various feature analysis and machine learning
techniques to identify anomalies in network traffic; due by bot-
net activity [24], denial-of-service [25] and other attacks [21].
Typically, anomaly detection techniques can be divided into
two categories: offline and online analysis technique.

Offline analysis techniques: These techniques use labeled
data for model training and the classification model is ob-
tained after several iterations of training and evaluation, using
complete training dataset. These techniques have high resource
footprint because model training process consumes lots of time
and resources. Most anomaly detection techniques perform
offline analysis and require labeled data [20], [26]. Given the
diversity of IoT devices, it is challenging to collect sufficient
labeled data for model training. Using crowd-sourcing model
for collecting training data has its own limitations [17], [27].

Signature-based solutions are another example of offline
analysis techniques. In addition to anomaly signatures, these
solutions may also require custom hardware, and have high
deployment and operational costs. Meanwhile, their perfor-
mance is limited by the quality and volume of data available
for generating anomaly signatures.

Recently proposed anomaly detection techniques use recur-
rent neural networks [28], [29] and gated recurrent units [17],
[30]. These techniques model network traffic as symbols in a
language and use a frequency based model to identify anoma-
lous sequence of symbols—indicating network attacks [31],
[17]. Such techniques have prohibitively high resource foot-
print and can not be deployed using edge network gateways.

Online analysis techniques: These techniques do not have
access to complete dataset during training phase, and they
mostly use unlabeled data to train classification model. Ideally,
online techniques should be efficient enough to ensure high
detection accuracy, at high packet arrival rates, using limited
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resource. Among online traffic analysis techniques, Securebox
was, to the authors’ knowledge, the first to propose a two
tier model, where a lightweight network gateway uses a cloud
service to analyze network traffic [19]. Securebox suffers from
privacy and latency concerns as traffic analysis is performed in
a remote environment. IOT-KEEPER addresses these concerns
by performing traffic analysis locally at network gateways.

IoT Sentinel [18] uses traffic traces from IoT devices,
captured during device setup, to identify device model and
manufacturer information. This information is later used to
set up (one time) network access control for identified devices.
Since IoT Sentinel uses traffic traces collected during device
setup, it can not identify (and set up access control) for IoT
devices which have already been taken into use. AuDI [16] has
been recently proposed to identify device-type information by
analyzing the packet timing information from IoT traffic.

Kitsune [32] is a lightweight, online anomaly detection tech-
nique, which uses an ensemble of autoencoders for anomaly
detection, whereas DIöT [17] uses the periodicity in IoT device
traffic and device-specific anomaly models to detect malicious
network activity.

IoT anomaly detection techniques mostly detect volumetric
attacks that produce large volume of network traffic, such as
Mirai [17]. However, these techniques fall short in detecting
attacks with sporadic network activity, such as Man-in-the-
Middle (MitM). Such techniques also use default behavior of
IoT devices as normal behavior and assume that all devices
are inherently benign [17], [18], [32]. Hence, they are unable
to detect malicious behavior of an IoT device that is inherently
compromised. Since our classification technique is not device
dependent, IOT-KEEPER can detect discrepancies in a devices’
“normal” network behavior and flag it as anomalous activity.

IV. THREAT MODEL

Edge networks typically contain a mixture of IoT and PC-
like devices, such as smartphones and tablet computers. With
IoT devices, the assumption about implicit trustworthiness of
connected devices does not hold, because it is fairly easy to
exploit vulnerable IoT devices [33], [34], and use them to
attack other devices in the network.

This section discusses some of the attacks commonly
observed in edge networks. Modern IoT malware, such as
Mirai [35], can use a combination of these attacks to achieve
desired results.

T1 – Network scanning: These attacks are commonly used
to scan target nodes before launching dedicated attacks against
the scanned targets. An attacker can use scanning attacks to
recognize TCP and UDP services running on target hosts,
detect firmware/operating-system version on target device, and
identify what kind of traffic filtering is being performed in the
network. In this paper, we consider three variants of network
scanning attack, namely, address-sweep, port-sweep, and port-
scan attacks.

T2 – Vulnerability scanning: These attacks are designed
to catalogue vulnerabilities in target devices based on their
software version and open services. This information can be
used to perform targeted attacks against target hosts.

SDN controller

Monitoring Detection Enforcement

IoT-KEEPER

IoT devices Device activity 
storage

Policy cache

EDGE NETWORK

INTERNET

3

1

2

Fig. 1: IOT-KEEPER architecture. The controller (1) is re-
sponsible for traffic monitoring, anomaly detection, and policy
enforcement, managing OF switch (2), and maintaining cache
(3) for security policies and device activity

T3 – Man-In-the-Middle (MitM): MitM attacks are per-
formed to snoop-in on network communication of user de-
vices, and modify network traffic to perform injection and
replay attacks. For example, an attacker can replay traffic,
intercepted from users’ smartphone to disable home security
system without users knowledge.

T4 – Data theft: Health IoT, smart appliances, and similar
devices collect a lot of data about their users. Typically, users
do not have discrete control over how this data is collected and
transmitted [36]. An attacker can compromise IoT devices to
steal user data.

T5 – Botnets: Modern botnets are generally comprised of
compromised devices deployed in edge networks [37], [26].
An infected device can also compromise and enroll other
devices in the botnet. Distributed denial-of-services (DDoS)
attacks are a common example of how seemingly benign user
devices in edge networks can be used to launch large scale
attacks [11], [35].

IOT-KEEPER focuses on detecting and blocking different
variations of these attacks in edge networks.

V. SYSTEM ARCHITECTURE

In this section, we describe the internal architecture of IOT-
KEEPER, as shown in Figure 1. Our proposed system design
is agnostic of underlying hardware as it can be deployed
using single board computers or consumer-grade edge network
gateways, such as Linksys [38] or Netgear routers [39].

IOT-KEEPER uses SDN controller and Open vSwitch
(OVS) [40] to monitor and analyze incoming traffic flows
and perform traffic filtering. In our prototype implementation,
both the controller and OVS run on same node. However,
IOT-KEEPER architecture supports hierarchical deployments,
where a single instance of IOT-KEEPER manages multiple
OpenFlow-enabled switches in the network. In such case, a
single controller can monitor, analyze and control traffic from
multiple switches.

IOT-KEEPER operates three modules for monitoring net-
work traffic, analyzing and detecting malicious traffic, and en-
forcing network access control for IoT devices in the network.
When a new traffic flow is detected by monitoring module, it
requests enforcement module to analyze given traffic flow. If
there is a security policy available in cache, which matches
given flow, it is used to setup flow table entries to allow or
deny given flow. Otherwise, detection module will analyze the



4

given flow to detect if the flow is malicious or not. The result
of analysis will be used to setup flow table entries in OVS,
and stored in policy cache for later use.

We now discuss the internal design of each of these three
modules in detail.

VI. MONITORING MODULE

This module is responsible for monitoring all traffic flows
processed by the gateway. It maintains up-to-date information
about traffic generated by devices connected to the network.
This information is consumed by detection module to analyze
how a devices’ network behavior changed over time.

VII. DETECTION MODULE

This module analyzes network traffic data to detect mali-
cious activity in the network. The result of traffic analysis is
used to generate security policies, which are then used by
enforcement module to set up device-level network access
control in the network.

In the following sections, we describe our proposed feature
analysis and traffic classification technique, which enable IOT-
KEEPER to perform online traffic classification, with low
resource footprint. The classification model trained using our
proposed technique can be represented as a set of rules, and
shared across multiple deployments of IOT-KEEPER. This
mechanism helps to improve classification performance of
existing deployments and speed up traffic classification process
on new deployments.

A. Feature Analysis

To make our traffic classification scheme device-agnostic
and lightweight, we only extract features from traffic data
observable on network link. We study the variance and modal-
ity of each feature to identify its contribution to classification
process. Any feature that does not contribute to the clustering
and classification process is removed from final feature set.
This results in speeding up classification tasks and reducing
the resource footprint of traffic classification process.

Table I lists the 38 attributes extracted from network meta-
data. We collect total number of observations (N ) for all
these features. We also compute sum of observations (So)
and sum of squares of observations (Ssq), using Eq. 1, for
data features. These statistics are collected for all traffic
streams, and summarized for individual device using source
and destination MAC, IP and ports.

µ = So/N σ =
√
| Ssq/N − (So/N)2 | (1)

We study the variance for each feature using cumulative dis-
tribution function (CDF), as shown in Fig. 2. We observed that
these feature distributions are not Gaussian but heavy tailed,
where smaller values constitute majority of probability mass.
For example, Fig. 2a shows that more than 70% IoT devices
connect to fewer than 20 unique destination IPs, whereas only
few devices (tail of distribution) may connect to more than
300 unique destinations. The data points comprising tail of
distributions are of primary importance because they capture

TABLE I: Feature extracted from network traffic data

Type Feature

Source,
Destination

[Total, Unique] destination IP addresses

Connection
counters

[Total, Unique] source ports, destination ports, connec-
tions, (same source, same destination, same service) con-
nections, connection durations (binned)

Packet
counters

ARP, LLC, IP(v6), ICMP(v6), EAPoL, TCP(v6),
UDP(v6), HTTP, FTP, HTTPS, DHCP, (M)DNS, NTP,
Router Alert, (SYN, REJ) (errors), Urgent, Padding

Data Total data, source to destination (SRC2DST) data, desti-
nation to source (DST2SRC), packet size

anomalous behavior of IoT devices, and this information is
helpful in identifying malicious behavior.

The study of feature value distributions also reveals possible
correlations among different features. For example, when an
attacker performs scanning attack, both total number of con-
nections initiated by attacker node, and number of connections
between source (attacker) and destination (target) increases.
Such correlations help us to identify and remove features
containing redundant information.

We use correlation-based feature selection (CFS) to identify
and remove any features which contain redundant information.
We calculate Pearson correlation coefficient R to measure the
dependencies among all features and discard one of any two
features that are strongly correlated.

B. Clustering

We use fuzzy C-means (FCM) clustering algorithm [41]
to partition the data points based on their mutual likeliness.
During clustering, all data points Xj (j = 1, 2, ..., n) are
initially assigned a membership value (µ) for all clusters
Ci (i = 1, 2, ..., c). Each data point Xj is represented as(
f
(1)
j , f

(2)
j , ..., f

(k)
j , ..., f

(h)
j

)
, where f

(k)
j is value for kth

feature in Xj and 1 ≤ k ≤ n, n = len(~F ).
The membership value for Xj ∈ Ci is given as µij , where

0 ≤ µij ≤ 1, and
∑c

i=1 µij = 1 ∀ 1 ≤ i ≤ c ∧ 1 ≤ j ≤ n.
The membership value µij (Eq. 2) for each data points and
cluster centers Vi (Eq. 3) for each cluster are optimized
to minimize objective function given in Eq. 4, where m is
fuzziness index [42] and

∥∥Vi −Xj

∥∥ is the Euclidean distance
between cluster center Vi (for cluster Ci) and data point
Xj . This algorithm is proven to converge to local minimum
or saddle point of objective function with linear rate of
convergence [43], [44], [45].

µij =

 c∑
d=1

(∥∥Vi −Xj

∥∥∥∥Vd −Xj

∥∥
) 2

m−1


−1

, 1≤i≤c
1≤j≤n (2)

Vi =

n∑
j=1

(µij)
m ×Xj

n∑
j=1

(µij)m
; 1≤i≤c
1≤j≤n (3)
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Fig. 2: Feature value distributions observed in network traffic of IoT devices, used in our testbed network.

Jm =

c∑
i=1

n∑
j=1

µm
ij

∥∥Vi −Xj

∥∥2 (4)

In order to make sure that no feature over-influences cluster-
ing, all features are normalized to range [0, 1] before cluster-
ing. After clustering, normalized feature score are computed
for each feature, in all clusters. Any features with same scores
(within a defined tolerance) in multiple clusters, such as REJ
errors, are considered non-contributing features and removed
from the final feature set.

At the end of clustering, a label is assigned to each cluster
based on normalized feature scores observed in the given
cluster. These labels correspond to different types of benign
and malicious traffic flows. Each cluster is represented as a
rule, where feature scores represent antecedent variables (f∗)
and cluster label is the consequent variable (y). This set of
rules will be used by FIS to perform traffic classification.

These rules capture the patterns observed in network traffic
used for training classification model. The patterns in network
traffic can vary across networks due to several factors, such as
number and types of connected devices, network configuration.
By sharing these rules among multiple deployments, the
classification performance of IOT-KEEPER can be improved.
A new gateway can also use these rules to bootstrap traffic
classification process.

C. Parameter Selection

The choice of number of clusters (i) can affect the per-
formance of traffic classification technique. Therefore, we use
both direct and statistical testing methods to choose an optimal
value of i.

Initially, we use NbClust package [46] to compute 30
different indices for a range of possible values for i. We
used agglomeration method for cluster analysis using Wards’
linkage method and euclidean distance metric. Figure 3a
shows the number of votes (minimum 3 votes) received by
different values of i, where one vote represents that one of
the 30 indices suggests that the given value of i is an optimal
choice. A detailed discussion on the indices computed by
NbClust package is out of scope for this paper.

Based on the voting results of NbClust, we select top
eight candidate values of i and analyze them using elbow
method and average silhouette heuristic [47] to get a measure
of global clustering characteristic. For elbow method, within-
cluster-sum-of-distances (WCSD) is calculated using Eq. 5,
where c is the number of clusters, Si is the set of data points
belonging to ith cluster, and xki is the kth variable of Vi.
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Fig. 3: The top 8 highest voted values of i (from NbClust)
voting are analyzed using elbow method, average silhouette
heuristics, and gap statistics to find the optimal value of i.

WCSD =

c∑
i=1

∑
j∈Si

p∑
k=1

‖xki − xi‖ (5)

Silhouette heuristics are calculated using Eq. 6, where
a(x) = 1

k

∑k
j=1

∥∥x− pj∥∥, pj ∈ Ci ∧ x ∈ Ci. Similarly,
b(x) = 1

k

∑k
j=1‖pk − x‖, where pk ∈ C ′i and C ′i is the closest

neighboring cluster for x such that C ′i = Ci ∈ C with
min(‖x− Vi‖) ∀ Ci ∈ C ∧ x 6∈ Ci. Figure 3 shows that
both elbow and silhouette method suggest i = 17 as optimal
number of clusters.

s(x) =
(b(x)− a(x))

max
(
a(x), b(x)

) (6)

We also studied gap statistic method [48] to get a statistical
formulation of WCSD and silhouette statistics. In general, the
optimal value for i should maximize gap statistic as well as
silhouette values, while minimizing WCSD. Using 1-standard-
error method [48], gap statistics analysis suggests i = 17 as
optimal number of clusters for given scenario. Our evaluation
shows that this value of i works effectively (to identify attacks
discussed in this paper) irrespective of the dataset.

D. Anomaly detection

We use fuzzy interpolation scheme [49], [41] (FIS) to
classify whether a given traffic flow is malicious or benign. FIS
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uses the sparse fuzzy rule base, consisting of n rules (n = c),
obtained from clustering, to detect malicious traffic flows. This
set of rules can be represented as.

Rule 1: if f1∈A11,f2∈A21, ... ,fk∈Ak1, ... ,fh∈Ah1 =⇒ y ∈ O1

Rule 2: if f1∈A12,f2∈A22, ... ,fk∈Ak2, ... ,fh∈Ah2 =⇒ y ∈ O2...
Rule Q: if f1∈A1q,f2∈A2q, ... ,fk∈Akq, ... ,fh∈Ahq =⇒ y ∈ Oq

Observation: f1∈A∗
1 , f2∈A

∗
2 , ... ,fk∈A

∗
k, ... ,fh∈A

∗
h ,

Conclusion: y=O∗

where Ri (1 ≤ i ≤ Q) is ith rule generated from cluster
Ci. Aki and Oi are triangular fuzzy sets for kth antecedent
feature fk, 1 ≤ k ≤ h and consequent variable y respectively.
For a new observation, A∗k and O∗ are triangular fuzzy sets
for antecedent and consequent variable obtained as a result of
interpolation of spare fuzzy rule base.

A fuzzy triangular set A is represented using three character-
istic points a, b, and c, where b is center point with maximum
membership value and a, c are left, right points respectively,
with minimum membership value [41]. The characteristic
points aki, bki, cki for fuzzy set Aki of kth antecedent feature
fk in rule Ri are calculated as:

bki = f
(k)
q , where µiq = max

1≤j≤n
µji, (7)

aki =

∑
j=1,2,...,n and f

(k)
j ≤bki

µij × f (k)j

∑
j=1,2,...,n and f

(k)
j ≤bki

µij

(8)

cki =

∑
j=1,2,...,n and f

(k)
j ≥bki

µij × f (k)j

∑
j=1,2,...,n and f

(k)
j ≥bki

µij

(9)

where bki has membership value of 1 and aki and cki have
membership value of 0. f (k)j is the kth feature’s value in
sample Xj with 1 ≤ k ≤ h. The defuzzified value of a
triangular set A is calculated as

Df (A) =
(a+ 2× b+ c)

4
(10)

The membership value for input feature f (k)j is µAk,i
(f

(k)
j ),

where min
1≤k≤h

µAk,i
(f

(k)
j ) > 0, 1 ≤ i ≤ p, and p is the number

of activated fuzzy rules. The inferred output O∗j based on fuzzy
rules activated by f (1)j , f

(2)
j , ..., f

(h)
j ∈ Xj is calculated as,

O∗j =

p∑
i=1

min
1≤k≤h

µAk,i
(f

(k)
j )×Df (Bi)

p∑
i=1

min
1≤k≤h

µAk,i
(f

(k)
j )

(11)

Df (Bi) is defuzzified value for consequent fuzzy set, in Ri

activated by Xj inputs and it can be calculated using Eq. 10.

We calculate the weight Wi of activated rule Ri, such that

0 ≤ Wi ≤ 1,
c∑

i=1

Wi = 1, on the basis of input observations

x1 = f
(1)
j , x2 = f

2)
j , ..., xh = f

(h)
j as:

Wi =

 c∑
d=1

(
‖r∗ − ri‖
‖r∗ − rd‖

)2
−1, (12)

where r∗ is the input feature vector
(
f
(1)
j , f

(2)
j , ..., f

(h)
j

)
and

ri is set of defuzzified values of Aki in Ri.(
Df

(
A1,i

)
, Df

(
A2,i

)
, ..., Df

(
Ah,i

))
, 1 ≤ k ≤ h. The final

inferred output is calculated as

O∗j =

c∑
i=1

Wi ×Df (Bi) (13)

In practice, clustering produces n clusters from the training
dataset. Based on these clusters, we generate a set of rules
containing r (r = n = 17 in this case) rules. For a new
observation (traffic flow), each feature triggers some fuzzy rule
from spare rule set. We predict the type of given observation
by calculating the weighted sum of all activated rules. For
example, if a traffic flow activates three fuzzy rules, two
representing benign traffic and one representing malicious, the
final prediction is made according to the weight of each rule.

VIII. ENFORCEMENT MODULE

IOT-KEEPER includes an enforcement module, which au-
tomatically restricts network access of a device exhibiting
malicious behavior. For example, if a smart bulb is performing
network scanning attack, IOT-KEEPER restricts its network ac-
cess such that it can only communicate with its manufacturers’
cloud service.

IOT-KEEPER enforcement module sets up network access
control using security policies. A security policy is generated
based on the result of traffic analysis performed by detection
module. It is used to generate flow table rules—deployed at
OVS—for handling network traffic. During operation, security
policies are stored in an in-memory policy cache with a
predefined time-to-live (TTL). Every time a security policy
is used to handle a traffic flow, its TTL is refreshed. If a
security policy remains unused until TTL expires, it will be
removed from cache. This mechanism ensures that majority
of traffic flows are handled using security policies from cache
(resulting in low latency overhead), while preventing cache
size from growing too large. Policy cache is also backed up
periodically to a file to persist after reboot. Since majority
of IoT traffic is destined to a handful of cloud services [50],
caching the security policies for such frequently visited cloud
services reduces the number of traffic analysis operations. This
reduces the resource footprint of detection module, minimizes
(additional) latency experienced by users, and improves overall
performance of IOT-KEEPER.

A. Adhoc Overlay Networks

Adhoc overlay networks (AON) are a novel approach for
blocking malicious activity of IoT devices—without severely
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affecting user experience. These are virtual networks overlayed
on same physical network, where each virtual network has
restricted network access and contains one or more devices.
Instead of completely blocking network access for a connected
device, AONs allow us to restrict network access for IoT
devices on local network and Internet.

IOT-KEEPER uses three types of AONs:
• No Access—where devices are completely blocked from

connecting to the network.
• Restricted Access—where devices can communicate with

other device(s) in the same (restricted) AON.
• Safe/Full Access—where devices have no restrictions on

network access.
All AONs allow IoT devices to connect to their respective

cloud services so that IoT devices can perform their basic
operations. This minimal connectivity is specified based on the
type and manufacturer of IoT device. The details of obtaining
this information are discussed in our earlier work [18].

Although it is possible to run multiple networks with legacy
gateways using VLANs or multiple SSIDs, there is only a
limited number of VLANs and SSIDs supported by routers
or access points available commercially. It is also difficult to
automatically setup and manage VLANs. In case of multiple
SSIDs, client devices need to (re)associate every time SSID is
updated, resulting in bad user experience.

Since AONs operate at software layer, the number of AONs
and their functionality is not limited by hardware support.
They are easy to set up, tear down, and update. The network
access for an AON is modified by updating security policies,
and this process does not require action from connected
devices. It is also possible to share the security policies (used
to setup AONs) with other gateways to achieve consistent
network access control across multiple networks.

IX. DATASET

This section presents the testbed and the process used to
collect the dataset used for evaluation of IOT-KEEPER.

A. Limitations of existing IoT traffic datasets

We found various limitations in existing IoT traffic
datasets [32], [18]. These datasets are collected for specific
device activity, and do not capture network activity of IoT
devices for D2D communication and user interactions. In
addition, these datasets contain traffic traces of short duration,
which do not capture the evolution of IoT devices’ network
behavior over a long period of time.

Most IoT datasets are collected in closed-world setting with
all IoT devices in a dedicated (isolated) network, and no
other device(s) connected to this network [18]. In contrast,
real world edge networks (open-world setting) are expected
to contain PC-like device(s)—generating large volume of
traffic—connected to same network as IoT. Even if traffic
analysis techniques use short duration traffic traces from IoT
devices only, it is important to use realistic open-world setting
to capture randomness in network traffic due to varying traffic
loads.

IoT datasets generally overlook D2D communication be-
tween IoT and PC-like devices. However, this data is useful to
detect attacks from malicious IoT, targeted at PC-like devices.
In some cases where PC-like devices were used during data
collection [32], their purpose was to introduce background
traffic only, and the datasets did not study the interaction
between IoT and PC-like devices.

To address these limitations, we have set up a real world test
network to collect long term network traces. In this testbed,
we also include PC-like devices to emulate a realistic edge
network and collect data for D2D communication among IoT
and PC-like devices.

B. Testbed Setup

Our testbed uses IOT-KEEPER as a network gateway. We
use tcpdump to collect all incoming and outgoing traffic,
from both wired and wireless interfaces on the gateway. In case
an IoT device communicates to Internet via an IoT hub using
Weave, ZigBee, or similar protocols, its D2I communication
are monitored by collecting network traffic of IoT hub. We
collect traffic data for both benign and malicious network
activity, where malicious activity is generated using Raspberry
Pis and Mirai-infected IoT devices. We configure the gateway
to drop all unfiltered outgoing traffic to prevent spread of
malicious traffic on public Internet.

C. Data collection

We divide data collection process in three phases:
Device setup: When an IoT device is being set up and it

connects to network for the first time, we collect all traffic
generated by IoT device itself and the device used to set it up,
such as a smart phone. During data collection, IoT device(s)
were reset and booted up from factory default state prior to
every setup.

Device background activity: For background activity, we
collect the traffic generated by an IoT device during its normal
operation, including the time when it connects or disconnects
from the network. For this purpose, we use an already set up
IoT device (i.e., setup phase traffic not included) and leave it
in connected state for a given time interval—ranging from 10
minutes to 72 hours No explicit user interaction is performed
with the IoT device during this time. The background activity
may vary with the kind of device, for example, single-
purpose IoT devices may only generate heartbeat or status
update messages, whereas multi-purpose IoT devices may
periodically fetch application updates, generate notifications,
and communicate with third party services.

Device activity: We also collect the traffic from IoT devices
when they are communicating with other devices (D2D) or
cloud services (D2I). This traffic is generated as a result of
device-to-device or user-to-device interactions. The network
activity during this phase also varies with the functionality
supported by the device. For example, smart power plugs only
support on/off functions, whereas a security camera allows
user to toggle video feed, video quality, and motion detection.

To collect IoT device activity traffic, we use an already set
up IoT device. For benign activity, a user repeatedly interacts



8

Classification Threats Activity Tool Description

Scanning
T1 Port Scan ZenMap, NMap Scanning network for open ports on different hosts in the

network
T1 Port Sweep ZenMap, NMap Scanning all TCP/UDP ports on one or more target hosts
T1 Address sweep ARPing, ARP scan,

Skipfish
Scanning all hosts on the network and service running on them

Vulnerability
scanning

T1, T2 OS Scan, Password
attacks

Nmap, WFuzz, Brutus,
Python

Discovering devices and their operating systems, guessing pass-
word for open services

Botnet T1, T4, T5 Mirai Telnet Find and infect devices by deploying Mirai malware
MitM T3 ARP Poisoning ARPspoof, EtterCap Using ARP poisoning attack to capture all LAN traffic
Data theft T4 Data hijacking Telnet Gain privileged access to other hosts and download collected

data.
Malware T4, T5 Malware injection Metasploit Upload malware to target hosts

Denial of Service T1, T5 SYN Flooding Python scapy, Hyenae Flood the target host with many SYN requests to block it from
performing any other task

T3, T5 SSL renegotiation tls-dos Flood the target with SSL renegotiation packets to disable its
packet stream

TABLE II: Types of network attacks executed by compromised and malicious devices.

with IoT device over a period of time, in no specific order,
with irregular wait intervals between repetitions. For malicious
traffic, we use Mirai infected IoT devices and Raspberry Pis.
During data collection, the network setup was reset after each
iteration to recover virgin state before subsequent iteration. Ta-
ble II gives a high level classification of IoT attacks considered
in this paper, and the tools used to simulate these attacks [51],
[52], [53].

X. EVALUATION

A. Implementation

Our prototype implementation of IOT-KEEPER uses a Rasp-
berry Pi set up as a WiFi access point using hostapd
module [54]. It runs a DHCP server and manages NAT for
both wired and wireless network. IoT and user devices can be
connected to this access point via wired or wireless network.

The SDN controller used by IOT-KEEPER prototype is
based on Floodlight [55], where we have implemented ad-
ditional modules for traffic monitoring, traffic filtering, state
management, security policy enforcement, and cache manage-
ment. All wired and wireless interfaces on IOT-KEEPER are
bridged to an OVS, managed by the SDN controller. With
this setting, IOT-KEEPER is able to monitor and restrict D2D
traffic among devices connected to same SSID. The feature
engineering and anomaly detection schemes are implemented
using Python libraries. The Rest-API used to manage gateway
functionality is implemented as part of SDN controller.

We use this prototype to evaluate IOT-KEEPER performance
in both closed-world and open-world settings. In closed-world
setting, we have complete information about IoT devices’
functions and attack mechanisms. The open-world setting
provides minimal prior information about IoT devices and
attacks, as it uses different attack nodes and attack mechanism
compared to the ones used for collecting training data.

B. Anomaly Detection

We study the performance of proposed traffic classification
technique in terms of true positive rate (TPR), false positive
rate (FPR), and F1-score. TPR gives a measure of reliability
of correctly identifying the type of traffic flows, and FPR

gives an estimate of false alarms (benign activity classified
as malicious). Meanwhile, false negative rate (FNR) explains
what percentage of malicious traffic was not detected correctly.

There is a trade-off between FPR and FNR. In some cases,
low FPR may be preferred as it improves user experience by
preventing false alarms. However, highly sensitive installations
require low FNR, so that no malicious traffic goes undetected.
Using IOT-KEEPER, false positives do not significantly impact
user experience because IOT-KEEPER only blocks malicious
activity and maintains minimal network access for IoT devices,
so that they can perform their normal operation. Therefore,
IOT-KEEPER can achieve lower FNR, for better security,
without affecting user experience, because any false positives
will not block network access for benign IoT devices.

We divide device activity recognition problem in two sub-
problems:
• Binary-class problem—differentiates between benign and

malicious network activity.
• Multi-class problem—detects the type of malicious activ-

ity exhibited by the device.
After detecting some malicious activity (binary-class prob-

lem), we detect the type of given malicious activity. This
provides us with more information that is used to enforce
appropriate network restrictions against the device generating
this activity. For example, an IoT device executing network
scanning attack should be allowed to only access its respective
cloud service, whereas an IoT device stealing user data should
be completely blocked from accessing the network.

To evaluate classification performance, we first study the
overall accuracy achieved by IOT-KEEPER for binary-class
and multi-class problem, in closed-world (CW) and open-
world (OW) settings. Table III shows that IOT-KEEPER
achieves better accuracy for activity recognition in closed-
world setting. The difference in TPR is more prominent for
multi-class problem because the number of classes (types of
attacks) is higher (10 versus 2), for multi-class problem, and
some attacks are misclassified as another attack. Later in this
section, we describe how this lower TPR does not affect
the security guarantee of IOT-KEEPER. Meanwhile, FNR for
binary-class problem in open-world setting is 0.04 compared
to 0.02 for closed-world setting. It shows that our technique
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Binary class Multi class
Closed world Open world Closed world Open world

TPR 0.98 0.96 0.95 0.93
FPR 0.06 0.09 0.20 0.29

F1-score 0.97 0.95 0.92 0.87

TABLE III: Results for binary-class and multi-class problem
in open and closed world setting

captures salient features of malicious activity, and is able to
detect variations of network attacks in open-world setting.

Table IV shows that IOT-KEEPER achieves good perfor-
mance in identifying different types of network attacks. It
should be noted that Tab. IV only presents the results for
distinguishing between different types of malicious activity,
and benign activity is not discussed here. Therefore, any
misclassifications only mean that one type of attack is detected
as another type of attack. As discussed in Sect. VIII, IOT-
KEEPER restricts network access for a device generating
malicious activity. Hence, these misclassifications do not un-
dermine the security provided by IOT-KEEPER because it can
distinguish malicious activity from benign activity with high
accuracy (see Tab. III).

TPR FPR FNR F1

Port scan CW 0.95 0.15 0.05 0.93
OW 0.91 0.24 0.09 0.88

Port sweep CW 0.98 0.16 0.02 0.93
OW 0.97 0.23 0.02 0.89

Address sweep CW 0.98 0.19 0.02 0.93
OW 0.97 0.31 0.03 0.89

Botnet CW 0.98 0.08 0.01 0.97
OW 0.97 0.18 0.03 0.95

Data theft CW 0.88 0.48 0.13 0.79
OW 0.85 0.52 0.15 0.76

Malware injection CW 0.88 0.41 0.12 0.85
OW 0.85 0.48 0.15 0.81

DoS CW 0.97 0.07 0.04 0.93
OW 0.92 0.15 0.08 0.86

TABLE IV: Performance of IOT-KEEPER for identifying dif-
ferent types of attacks.

Although we achieve high detection rate for network scan-
ning attacks—due to substantially different traffic footprint
compared to normal IoT traffic—we observed lower TPR and
high FPR when distinguishing between different variations of
scanning attacks, such as port scan, port sweep.

To investigate this discrepancy, we studied the feature value
distributions in network traffic generated by these attacks. In
case two attacks have similar traffic footprint, their feature
value distributions will be overlapping. This results in mis-

Closed world Open world

TPR 0.98 0.96
FPR 0.04 0.1
F1 0.98 0.93

TABLE V: Performance of IOT-KEEPER when port scan, port
sweep and address sweep attacks are considered together as
network scanning attacks.

classification of one attack as another. This phenomenon is
prominent for variants of network scanning attacks. For exam-
ple, port scan attacks were classified as port sweep because
both attacks open large number of connections between source
and target nodes, resulting in similar traffic footprint. Since
the network restrictions for a device performing any type of
network scanning attack are nearly similar, resulting security
implication of these misclassifications is negligible in this case.

IoT anomaly detection techniques register deviations from
normal network behavior as malicious. In case of volumetric
attacks, such as network scanning and botnet activity, these
deviations are clear because such attacks have voluminous net-
work activity. On the other hand, MitM and data theft attacks
have sporadic network activity, similar to normal IoT device
activity. Therefore, it is difficult to detect such attacks with
low network activity, without additional information. However,
IOT-KEEPER achieves good performance (accuracy ≈ 0.74)
in detecting these attacks, which often go undetected by
anomaly detection systems.

To assess the robustness of our classification technique in
open-world setting, we test IOT-KEEPER in scenario where
classification model is trained in one network, and is used
in another network to perform traffic classification. For this
purpose, we use publicly available IoT datasets to represent
different networks. The first dataset, YTY2018, reported by
Yisroel et al. [32], contains traffic traces for similar attacks
as listed in Tab. II. These network traces have been collected
from connected security cameras and digital video recorders.
Yisroel et al. used PC and IoT devices in their testbed to have
noise in network, but did not investigate D2D communication
among PC, IoT and security cameras [32]. MSI2017 dataset,
reported by Miettinen et al. [18], contains traffic traces col-
lected from IoT devices. Some of the IoT devices used in
MSI2017 are also included in our testbed. This dataset does
not contain traffic traces from PC-like devices.

In first experiment, we simulate closed-world (CW) setting
by using data from our testbed (Keeper dataset) for model
training, and YTY2018 for model testing. Open-world setting
uses YTY2018 for model training and Keeper dataset for
testing. The results reported in Tab. VI shows that our classi-
fication scheme is invariant of the data source used for model
training. We achieved better performance for CW setting
because Keeper dataset—used for model training—contains
traces for most attacks included in YTY2018. Compared to
Keeper dataset, YTY2018 has less diversity in attack traffic
traces, as this dataset was collected using IP cameras only.
However, we achieved good performance when model was
trained using YTY2018 (open-world setting). This shows that
our classification technique is independent of the type of
devices used for training data collection. Therefore, we can
train our model using traffic traces collected from different
networks, irrespective of the devices connected to that net-
work.

Further investigation (Fig. 5a) showed that the number of
IoT devices used for collecting training data does not signif-
icantly affect the performance of IOT-KEEPER because most
attacks have similar network activity irrespective of the device
used to perform these attacks. On the other hand, using dif-
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TPR FPR F1

Network scanning CW 0.98 0.07 0.96
OW 0.95 0.1 0.93

DoS CW 0.96 0.02 0.93
OW 0.93 0.3 0.88

MitM CW 0.92 0.03 0.84
OW 0.88 0.4 0.78

Botnet CW 0.99 0.08 0.98
OW 0.97 0.2 0.95

TABLE VI: Classification performance using YTY2018
dataset.
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Fig. 4: IOT-KEEPER classification performance using (a) dif-
ferent length traffic traces (b) different combination of features,
for model training.

ferent types of IoT devices improves detection performance—
especially for attacks with low network activity—as it helps
the system to learn variations of IoT devices’ network activity.

To study binary-class problem using public datasets, we
combined YTY2018 (contains network traces for malicious
activity) and MSI2017 (contains network traces for benign
activity) datasets. In closed-world setting, we trained clas-
sification model using Keeper dataset and tested it using
combined dataset, and did vice versa for open-world setting.
The slight decrease in performance, for closed-world setting
(see Tab. VII), can be attributed to the limitations of MSI2017
dataset that contains only two minutes long traces.

We studied the relationship between classification perfor-
mance and duration of traffic traces used for model training.
Figure 4a shows that IOT-KEEPER can detect volumetric
network attacks using traces of short duration. This is because
the traffic footprint for volumetric attacks is significantly
different from normal IoT traffic. On the other hand, longer
duration traces are useful for detecting attacks with small
network footprint, such as MitM, because over a longer period
of time, classification model learns network footprint of IoT
device in several modes and use this information to detect
these attacks with better accuracy.

When testing classification performance using different
combination of features, we noticed that IOT-KEEPER can
achieve good classification performance using a smaller subset
of features, namely packet count and data length features.
Figure 4b shows that IOT-KEEPER achieves TPR ≈ 0.81
and FNR ≈ 0.11 using only 15 features extracted from
packet timing and packet size information. This analysis shows
that packet size and packet timing related features are most
helpful in detecting attacks, especially when network traffic

Closed-world Open-world

TPR 0.97 0.96
FPR 0.05 0.08
FNR 0.03 0.04
F1 0.97 0.95

TABLE VII: Performance achieved for Binary class problem
using a combination of YTY2018 and MSI2017.
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Fig. 5: (a) IOT-KEEPER performance with different number
of IoT devices used for data collection. (b) Page load times
for top 1000 websites ranked by Majestic.

is encrypted. Meanwhile, a detailed feature set lowers FNR
and FPR as it enables the classification model to learn about
different types of IoT device activity.

C. System Performance

To study the impact of traffic classification on latency
experienced by users, we collected page load times (PLT) for
top 1000 websites ranked by Majestic [56]. The measurements
were taken for three different scenarios;

1) IOT-KEEPER disabled.
2) IOT-KEEPER enabled with 0% cache hit rate.
3) IOT-KEEPER enabled with 95% cache hit rate.
IOT-KEEPER disabled is the scenario where monitoring,

detection, and enforcement modules are disabled. 0% cache
hit rate means that the security policy cache is empty and all
traffic flows are analyzed by detection module, whereas 95%
cache hit rate means that 95% of traffic flows are handled
using a matching security policy available in the cache.

Figure 5b shows that when IOT-KEEPER is enabled, on
average, PLT increased by upto 4.76% and 15.89% for 95%
and 0% cache hit rate, respectively. The increase in PLT
is mainly due to analysis performed by detection module.
In our experiments, analyzing a single flow took, on aver-
age, 223ms(±67.4ms), which accounts for 13.93%(±9.55%)
percent of PLT. In comparison, feature extraction, security
policy generation and cache-lookup are inexpensive opera-
tions, taking 1.59ms(±0.534ms), 0.788ms(±0.121ms), and
0.007ms(±0.003ms), respectively. To study the additional de-
lay in terms of PLT, we use relative increase in PLT (PLTri),
which gives the additional delay due to traffic analysis in terms
of original PLT. PLTri is higher (up to 40%) for websites
with very small PLT (≤ 0.5s), such as google.com, which
means loading google.com can be up to 40% slower. However,
there are only a handful of webpages with such low PLT,

google.com
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therefore, high PLTri is not experienced commonly by users.
Meanwhile, PLTri is low (≤ 7%) for websites with larger
PLT (≥ 1s), such as instagram.com, qq.com, which is general
case (see Fig. 5b).

This additional delay (PLTri) is only experienced every
time a new traffic is analyzed. Since IOT-KEEPER caches
analysis results and only the pages that are not accessed for a
long time (cache TTL expired) need to be re-analyzed, users
will experience (almost) no additional delay for frequently
accessed pages. Our experiments show that for 100% cache
hit, PLTri is 1.8%(±1.49%) only. Meanwhile, PLTri does
not depend on the volume of data loaded for webpage because
IOT-KEEPER does not analyze payload data.

Clustering performance: We analyzed the hardware foot-
print of IOT-KEEPER classification technique by calculating
the time required to perform clustering over traffic data. We
collected 30 and 60 minute long traffic traces from a 1Gbps
network link. Using a Raspberry Pi (model 3B), we were able
to perform clustering on 30-min sample in less than 5 minutes,
when number of clusters (i) is 17. Average memory and CPU
consumption during this process were 64.1%(±6.9%) and
71.2%(±7.3%), respectively. This performance is attributed
to the observation that, in most cases, network footprint of
benign and malicious activity is non-overlapping (see Fig 2).
This results in clusters with clearly defined boundaries, where
adding a new data point will require fewer computations. The
time for clustering decreases to less than 60 seconds if we
use a consumer-grade laptop with 2.6GHz 4-core processor
with 32Gb memory. The time required for clustering increases
linearly with increase in number of data points and number
of clusters. In worst case—60-min sample and i = 50—it
took nearly 21 minutes to perform clustering using Raspberry
Pi. This experiment shows us that our classification process
is lightweight enough to perform online traffic analysis, using
resources available on an edge network gateway.

Memory consumption: In IOT-KEEPER, SDN controller is
responsible for traffic monitoring, analysis, and network access
control. Therefore, we studied the memory and CPU utilization
of IOT-KEEPER controller process. During experimentation,
we observed that vanilla Floodlight SDN controller process
consumes 12.0% (121MB) of total memory (1GB) available
on Raspberry Pi as resident set size (RSS) [59], and 38.1%
as virtual memory size (VMS) [60]. With additional modules
used by IOT-KEEPER, RSS and VMS increased to 12.13%
(122MB) and 38.9%, respectively.

IOT-KEEPER consumes additional memory for storing de-
vice data and security policies (used by AONs). It can con-
sume up to 5MB memory for storing data for 5,000 devices
and 5,000 security policies. Since majority of user traffic is
destined to a handful of websites and cloud services, we
expect to require few security policies to handle majority of
network traffic. We have observed that almost 600 security
policies (consuming 308 KB memory) can handle up to 95%
of network traffic from a typical smart home edge network.

CPU consumption: In our prototype, (fifteen minute) av-
erage CPU load, when running vanilla SDN controller, was
38%. Average CPU load increased by 4% when IOT-KEEPER
was enabled. The increase in CPU utilization is small because

monitoring and enforcement modules use the information
that is already extracted by SDN controller during normal
packet processing, irrespective of IOT-KEEPER functionality.
Only the detection module performs additional processing to
analyze traffic flows. Since IOT-KEEPER only analyzes new
flows in the network, the resulting increase in CPU utilization
is small. In worst case, that is, 0% cache hit rate, average CPU
load increases up to 83.3%.

Adhoc overlay networks (discussed in Sect. VIII-A) do not
incur CPU overhead as they do not perform additional packet
processing. Instead, AONs only introduce minor increase in
latency (≤ 0.01ms) because of reading security policy (used
to set up AON) from policy cache.

Network throughput: We studied the network throughput
performance of IOT-KEEPER by measuring layer-4 good-
put using iperf3 [61] and layer-7 goodput (for bulk data
transfer) using curl. We calculate TCP and UDP latencies
using qperf [62]. The experiments were conducted for D2D
(LAN↔LAN) and D2I (LAN↔WAN) communications, and
the performance was compared for scenarios where IOT-
KEEPER is enabled (secure) versus disabled (insecure).

Table VIII shows that traffic classification performed by
IOT-KEEPER does not introduce significant deterioration in
network performance in comparison to baseline performance
achieved using same hardware. It should be noted that our
testbed uses a (non-optimized) reference implementation of
IOT-KEEPER. As a result, network performance results may
vary with different hardware and software stacks used for
implementation.

XI. COMPARISON

Table IX presents a qualitative comparison of IOT-KEEPER
with state of the art in IoT anomaly detection and device-type
recognition.

Anomaly detection: We first compare the anomaly detection
performance of IOT-KEEPER with Kitsune [32]. Kitsune was
deployed using a Raspberry Pi to detect anomalies in traffic
generated by connected security cameras. Here, we also use
traffic from security cameras to compare anomaly detection
performance of Kitsune and IOT-KEEPER. Table X presents
the performance of both techniques to detect Mirai, DoS and
ARP poisoning attacks using following three datasets;

1) YTY2018: Kitsune dataset.
2) Keeper: Data collected from our testbed.
3) Combined: Combination of Kitsune and Keeper dataset.
We observed that the performance gap between Kitsune

and IOT-KEEPER widens when single-purpose IoT devices
are used to generate malicious traffic. We attribute this phe-
nomenon to low network activity of single-purpose IoT devices
which were not considered by Kitsune. However, it requires
further exploration to identify the factors affecting perfor-
mance of Kitsune in detecting malicious activity of single-
purpose IoT devices.

While Kitsune can detect anomalies in network traffic, it
does not provide a mechanism to protect the network against
the devices generating malicious traffic. Kitsune also does not
support classification model sharing among multiple deploy-
ments. Therefore, each new deployment needs to bootstrap

instagram.com
qq.com
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D2D D2I

Metric Direction Insecure Secure Insecure Secure

Layer 4 goodput Up 89.97 (±0.77) 89.69 (±0.03) 90.11 (±0.80) 88.91 (±0.10)
Down 90.46 (±0.34) 89.70 (±0.02) 91.01 (±1.53) 89.70 (±0.15)

Layer 7 goodput Up 87.67 (±1.32) 84.152 (±0.12) 89.94 (±0.60) 86.23 (±0.34)
Down 88.60 (±1.52) 88.17 (±2.42) 89.12 (±0.89) 87.78 (±1.22)

Bufferbloat latency (ms) (speedtest [57]) Up 2.11 (±0.40) 3.02 (±0.36) 3.77 (±0.24) 3.01 (±0.36)
Down 90.71 (±2.01) 92.02 (±2.31) 81.41 (±2.67) 82.83 (±2.10)

Bufferbloat latency (ms) (RRUL test [58]) Up 2.11 (±0.13) 2.82 (±0.44) 2.92 (±0.89) 3.22 (±0.77)
Down 45.81 (±1.73) 50.13 (±1.44) 54.11 (±1.87) 55.93 (±2.44)

Latency (ms) TCP 0.37 (±0.004) 0.42(±0.003) 0.38 (±0.003) 0.38 (±0.004)
UDP 0.38 (±0.003) 0.40 (±0.003) 0.39 (±0.004) 0.39 (±0.003)

TABLE VIII: Network performance achieved by IOT-KEEPER using Raspberry Pi based deployment
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IoT Sentinel [18] é Í é é é S H þ
AuDI [16] é Í é é é U L þ
Securebox [19] é é Ì Í þ þ L Í
Kitsune [32] Í é é þ é U L é
DIöT [17] Í é é é Í S H é
IoT-Keeper Í Ì Í Í Í U L Í

TABLE IX: Qualitative comparison with state of the art in IoT
device identification and anomaly detection. é: no support,
Í: full support, Ì: partial support, L: low, H: high, þ: not
applicable, U: Unsupervised, S: Supervised

Dataset YTY2018 Keeper Combined

Technique Kitsune IOT-
KEEPER

Kitsune IOT-
KEEPER

Kitsune IOT-
KEEPER

Mirai AUC 0.99 0.97 0.86 0.99 0.92 0.98
EER 0.003 0.01 0.17 0.01 0.1 0.01

DoS AUC 0.92 0.92 0.87 0.97 0.87 0.94
EER 0.13 0.09 0.21 0.03 0.18 0.04

ARP AUC 0.79 0.81 0.62 0.82 0.73 0.82
EER 0.23 0.24 0.44 0.21 0.32 0.22

TABLE X: Performance comparison of IOT-KEEPER and
Kitsune [32] for anomaly detection. AUC = area under curve,
EER = equal error rate.

a new classification model. This increases bootstrap time for
new deployments and limits scalable deployments especially
in networks containing multiple edge gateways.

DIöT [17] enables classification model sharing among mul-
tiple nodes using federated learning. It uses GRUs [30] to
achieve high detection rates for DoS (TPR = 0.89) and
scanning attacks (TPR = 1.0). However, this technique has
high resource footprint and can not be deployed using resource
constrained devices, such as network gateways [38], [39]. In
comparison to DIöT, IOT-KEEPER achieves TPR = 0.99
and TPR = 0.98 for different variants of DoS and scanning
attacks, and it can also detect other network attacks, such as
MitM.

The anomaly detection scheme used by DIöT is depen-

dent on device-type information. DIöT requires additional
services to first detect IoT device-type, and provide device-
type specific anomaly models which are used for anomaly
detection. Given the huge variety of devices, it is difficult
to develop and maintain such device-type-specific anomaly
models. Meanwhile, any errors in device-type identification
will severely affect anomaly detection performance as it will
be using wrong anomaly detection model. DIöT has been
evaluated against volumetric attacks, such as Mirai, whose
network footprint is very different from regular IoT traffic.
It is not currently tested for variations of Mirai, and other
attacks with small network activity. Like Kitsune, DIöT also
does not provide a mechanism to protect against IoT devices
performing malicious activity.

Device-type identification: Since IOT-KEEPER is designed
to analyze network traffic of IoT devices, we tested its
performance in terms of detecting IoT device types. For this
purpose, we analyze setup and background activity traffic to
distinguish between IoT devices based on their traffic patterns.
We used IOT-KEEPER dataset and MSI2017 to compare device
identification performance. The results reported in Tab. XI
show that IOT-KEEPER achieves better performance compared
to IoT-Sentinel [18] for device identification. AuDI [16] also
used a similar set of IoT devices and achieved TPR =
0.97,FNR = 0.02 with 98% accuracy. However, we can not
compare IOT-KEEPER performance with AuDI because AuDI
dataset is not publicly available yet.

IoT-Sentinel is designed to identify model and manufacturer
information, such as DLink D942L camera, for IoT devices.
While it can identify such information for 10 (out of 27)
IoT devices with high accuracy (Acc ≈ 1), IoT-Sentinel can
not differentiate between IoT devices with similar network
footprint, resulting in false identifications. IOT-KEEPER and
AuDI identify the type of IoT devices, such as security
camera. Therefore, the number of false identifications are
lower (≈ 0.02) compared to IoT-Sentinel (≈ 0.1). While
both IOT-KEEPER and AuDI identify device-type information
autonomously, AuDI requires more computational resources
for this purpose [16]. Since AuDI uses packet timing in-
formation for device-type identification, it is susceptible to
performance degradation as packet arrival rates vary due to
unexpected delays in packet processing at source and network
gateways. Although AuDI agent runs on gateway deployed in
edge network, it requires a cloud based service to perform



13

TPR FPR TNR FNR Accuracy

IoT Sentinel [18] 0.59 0.1 0.86 0.4 0.91
IOT-KEEPER 0.98 0.02 0.98 0.01 0.99

TABLE XI: Device-type identification performance

traffic analysis and device identification. This requirement
raises similar latency and user privacy concerns as Securebox
(discussed in Sect. III).

XII. DISCUSSION

Our evaluation demonstrates that IOT-KEEPER is able to de-
tect and block malicious network activity with high accuracy.
In this section, we discuss further aspects of IOT-KEEPER,
along with possible limitations of the system.

Deep packet inspection: For privacy concerns, IOT-
KEEPER does not perform deep packet inspection or analyze
user level data. Therefore, encrypted payload and user data is
not currently secured by IOT-KEEPER. This is an open topic,
which we intend to investigate further.

Evolution in device behavior: IOT-KEEPER can identify
firmware upgrades and configuration changes in IoT devices
by detecting change in their network behavior. The knowledge
of firmware versions of IoT devices allows us to readily update
security policies and to prevent attempts to exploit known is-
sues and vulnerabilities in the given firmware version(s). It also
helps in preventing false alarms raised due to changed network
behavior. Although IOT-KEEPER can identify firmware and
configuration updates, it does not detect minor updates such
as updating screen brightness or alarm sound level, which do
not affect device’ network behavior.

Securing Zigbee and BLE communications: Our classifi-
cation technique mainly uses features extracted from packet
counters, packet timing and inter-arrival delays. If similar
information is available from cellular, Zigbee or similar pro-
tocols, IOT-KEEPER can be extended to work with these
communications as well. We intend to explore this problem
in future work.

MAC address spoofing: IOT-KEEPER sets up network ac-
cess restrictions based on layer-2 MAC addresses. An attacker
can circumvent these restrictions by spoofing device MAC
address. In such scenarios, as long as the attacker does not
exhibit malicious activity, it will have the network access.
However, such behavior has no incentive for the attacker. On
the contrary, if attacker engages in malicious activity with
spoofed MAC address, IOT-KEEPER will detect this and limit
network access for spoofed MAC address.

Denial of Service: An attacker can exploit MAC address
spoofing to perform DoS attack against IOT-KEEPER. In that
case, caching will limit the number of times similar traffic
flows, coming from different MAC addresses, are analyzed by
the system as redundant requests will be handled by cache.
Moreover, our evaluation shows that IOT-KEEPER is able to
perform anomaly detection at line speeds without becoming a
bottleneck. An attacker can flood the upstream link but such
an attack will block all traffic flows in the network, including
attacker’s own traffic, giving no incentive to the attacker.

XIII. CONCLUSION

This paper presents IOT-KEEPER, a system capable of de-
tecting network attacks and enforcing necessary security mea-
sures to prevent IoT devices from performing these attacks.
This system secures both network-local (D2D) and remote
(D2I) communication of IoT. IOT-KEEPER is a lightweight,
hardware-agnostic solution, which can be deployed using
network gateways or single board computers. It uses custom
feature analysis technique to lower resource footprint of traf-
fic classification method, without compromising classification
performance. Our traffic classification scheme uses unlabeled
network traffic metadata for feature extraction, and does not
require side-channel information, such as device-type data, to
detect malicious activity of IoT devices. Our evaluation shows
that IOT-KEEPER can detect different types of malicious
activity, as well as IoT device-types, in both closed-world and
open-world settings. The evaluation results also demonstrate
that IOT-KEEPER can effectively integrate traffic analysis
functionality in network gateways, without significantly af-
fecting network performance and user experience. Moreover,
IOT-KEEPER does not require sophisticated hardware or mod-
ifications on existing IoT for its operations. We expect that the
dataset provided with this work will be helpful to researchers
working on IoT device identification, activity recognition,
anomaly detection, and other traffic analysis techniques.

REFERENCES

[1] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146 – 164, 2015.

[2] M. Nitti, V. Popescu, and M. Fadda, “Using an iot platform for
trustworthy d2d communications in a real indoor environment,” IEEE
Transactions on Network and Service Management, vol. 16, no. 1, pp.
234–245, March 2019.

[3] D. Pauli, “414,949 d-link cameras, iot devices can be hijacked over the
net,” https://www.theregister.co.uk/2016/07/08/414949 dlink cameras
iot devices can be hijacked over the net/, The Register, 2017, [Ac-
cessed: 2018-07-21].

[4] Z. Zorz, “Exploitable gsoap flaw exposes thousands of iot
devices to attack,” https://www.helpnetsecurity.com/2017/07/19/
exploitable-gsoap-flaw-iot-devices-exposed/, HelpNetSecurity, 2017.

[5] M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen,
“Uninvited connections: A study of vulnerable devices on the internet
of things (iot),” in 2014 IEEE Joint Intelligence and Security Informatics
Conference, Sept 2014, pp. 232–235.

[6] M. Wall, “How ’the invisible network’ poses a major security threat,”
http://www.bbc.com/news/business-41252203, BBC News, 2017.

[7] M. B. Barcena and C. Wueest, “Insecurity in the internet of things,”
Security Response, Symantec, 2015.

[8] E. Brown, “Linux and open source hardware for iot,” https://www.linux.
com/news/linux-and-open-source-hardware-iot, Linux.com, 2016.

[9] Microsoft, “Windows 10 internet of things,” https://developer.microsoft.
com/en-us/windows/iot, Microsoft, 2017.

[10] A. D. Rayome, “The stakes have changed: No end in sigh for ddos attack
size growth,” https://pages.arbornetworks.com/rs/082-KNA-087/images/
WISR Infographic NoEndInSight FINAL.pdf, Tech Republic, 2018.

[11] A. Networks, “Ddos attacks increased by 91% in
2017 thanks to iot,” https://www.techrepublic.com/article/
ddos-attacks-increased-91-in-2017-thanks-to-iot/, 2017.

[12] “Iot dataset,” https://bit.ly/31uuNK7, 2019.
[13] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection

systems in wireless sensor networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 1, pp. 266–282, First 2014.

[14] N. Feamster, “Outsourcing home network security,” in Proceedings of
the 2010 ACM SIGCOMM Workshop on Home Networks. ACM, 2010.

https://www.theregister.co.uk/2016/07/08/414949_dlink_cameras_iot_devices_can_be_hijacked_over_the_net/
https://www.theregister.co.uk/2016/07/08/414949_dlink_cameras_iot_devices_can_be_hijacked_over_the_net/
https://www.helpnetsecurity.com/2017/07/19/exploitable-gsoap-flaw-iot-devices-exposed/
https://www.helpnetsecurity.com/2017/07/19/exploitable-gsoap-flaw-iot-devices-exposed/
http://www.bbc.com/news/business-41252203
https://www.linux.com/news/linux-and-open-source-hardware-iot
https://www.linux.com/news/linux-and-open-source-hardware-iot
https://developer.microsoft.com/en-us/windows/iot
https://developer.microsoft.com/en-us/windows/iot
https://pages.arbornetworks.com/rs/082-KNA-087/images/WISR_Infographic_NoEndInSight_FINAL.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/WISR_Infographic_NoEndInSight_FINAL.pdf
https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
https://bit.ly/31uuNK7


14

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, Aug. 2012.

[16] S. Marchal, M. Miettinen, T. D. Nguyen, A. Sadeghi, and N. Asokan,
“Audi: Toward autonomous iot device-type identification using periodic
communication,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1402–1412, June 2019.

[17] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and
A. Sadeghi, “Dı̈ot: A crowdsourced self-learning approach for detecting
compromised iot devices,” CoRR, vol. abs/1804.07474, 2018.

[18] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), June 2017, pp. 2177–2184.

[19] I. Hafeez, A. Y. Ding, L. Suomalainen, A. Kirichenko, and S. Tarkoma,
“Securebox: Toward safer and smarter iot networks,” in Proceedings of
the 2016 ACM Workshop on Cloud-Assisted Networking. ACM, 2016.

[20] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys Tutorials, vol. 10, no. 4, pp. 56–76, Fourth 2008.

[21] A. Morichetta and M. Mellia, “Longitudinal exploration for network
traffic analysis from passive data,” IEEE Transactions on Network and
Service Management, vol. 16, no. 3, pp. 814–827, Sep. 2019.

[22] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3, pp.
800–813, Sep. 2019.

[23] A. Lara and B. Ramamurthy, “Opensec: Policy-based security using
software-defined networking,” IEEE Transactions on Network and Ser-
vice Management, vol. 13, no. 1, pp. 30–42, March 2016.

[24] W. Chen, X. Luo, and A. N. Zincir-Heywood, “Exploring a service-
based normal behaviour profiling system for botnet detection,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), May 2017, pp. 947–952.

[25] R. Mohammadi, R. Javidan, and M. Conti, “An sdn-based lightweight
countermeasure for tcp syn flooding attacks,” IEEE Transactions on
Network and Service Management, vol. 14, no. 2, June 2017.

[26] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering analysis
of network traffic for protocol- and structure-independent botnet detec-
tion,” in Proceedings of the 17th Conference on Security Symposium.
USENIX Association, 2008, pp. 139–154.

[27] H. Garcia-Molina, M. Joglekar, A. Marcus, A. Parameswaran, and
V. Verroios, “Challenges in data crowdsourcing,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 4, April 2016.

[28] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 1285–1298.

[29] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
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