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Abstract

This thesis considers solutions to the discrete Nagumo equation

u̇n = d(un−1 − 2un + un+1) + f(un), n ∈ Z.

For sufficiently large d, the solutions are of the form un(t) = U(n+ ct) with c > 0. This thesis
contains the proof of existence of traveling wave solutions of the discrete Nagumo equations
and originates from Bertram Zinner’s article ”Existence of Traveling Wavefront Solutions for
the Discrete Nagumo equation” [Zin90]. In the first chapter, all the prerequisite knowledge
needed to understand the proof, such as Brouwer’s fixed point theorem, is presented. The
proof starts by considering f(un) as a linear function and thus simplifying the problem. The
simplified problem is converted into a fixed point problem by considering a Poincaré map
which can be solved using Brouwer’s fixed point theorem. Finally, the proof ends by
confirming that the solutions of the approximated, simplified problem have a limit point which
corresponds to the traveling wave solutions of the discrete Nagumo equation.
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Chapter 1

Introduction

In this thesis solutions to the discrete Nagumo equation

u̇n = d(un−1 − 2un + un+1) + f(un) (1.1)

are considered. Zinner’s article [Zin90] discusses the proof of existence of solutions of the form
un(t) = U(n+ ct) with c > 0 of the discrete Nagumo equation. This proof will be discussed in
detail in this thesis.
The thesis starts with chapter 2 which describes how electric impulses being transmitted from
one membrane of a nerve cell to another can be modelled. The discrete Nagumo equation
(1.1) models myelinated axons between nervous cells where un represents the membrane
potential at cell n.

Chapter 3 gives the needed prior knowledge to understand Zinner’s article. In section 3.1.1
the Picard-Lindelöf theorem will be stated and proven. This theorem states the existence of a
unique local solution of an initial value problem. The section continues by describing how the
solution of the initial value problem is dependent on the initial value. Brouwer’s fixed point
theorem 3.2.5 will be discussed in section 3.2. This theorem states that every continuous
mapping in Rn from a closed ball to itself contains at least one fixed point. The “hairy ball”
theorem 3.2.4, stated in section 3.2.1, proves that there is no continuous tangent vector field
on even-dimensional n-spheres and will be used to prove Brouwer’s fixed point theorem 3.2.5.
The final section 3.3 of chapter 3 contains the general homotopy theorem (3.3.4). This
theorem states that the fixed point index, which “counts” the number of fixed points of a map
hλ from an open subset of a closed subspace to that space, is independent of λ of the chosen
homotopy hλ.

The article by Zinner [Zin90] will be discussed in chapter 4. In section 4.4 the discrete
Nagumo equation (1.1) will be simplified by considering the linear function h0(x) = x− 1

4
instead of f(un) and by restricting un to take values between 0 and 1. In this section it will
also be proven in theorem 4.4.2 that the number of solutions to the simplified equation (4.2) is
finite. In section 4.5 it will be concluded by the Picard-Lindelöf theorem 3.1.2 that the
simplified equation (4.2) with initial values un(0) = xn has a unique solution u(x; t) which
depends continuously on the initial value x. Then the shifted Poincaré map

(Tx)n =

{
0 for n = 0

un−1(x; τ) for n = 1, .., N

is defined and it follows by Brouwer’s fixed point theorem 3.2.5 that the map T0 has a fixed
point which corresponds to the traveling wave solution un(t). So far, the construction of T0
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depended on the linear function h0. In section 4.7 a homotopy hλ will be defined which
deforms h0 into a Lipschitz continuous function h1. The general homotopy invariance theorem
3.3.4 will be used to conclude that the number of fixed points of Th1 is independent of λ. In
the final section 4.7 f will be approximated by hk. It will be proven that if the traveling wave
ukn is a solution to

v̇n = d(un−1 − 2un + un+1) + hk(un)

then ukn is a traveling wave solution of the discrete Nagumo equation (1.1). This concludes the
proof of theorem 4.1.1.
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Chapter 2

Application

Neurons in animal nerve systems are connected by “wires”, called axons. Axons carry
electrical signals from one membrane of a neuron to another. Myelin is a material that
surrounds parts of nerve cell axons. It increases the rate at which the nervous cells send out
electrical impulses, also called action potentials [Bea07]. Myelin does not form a single long
cover for an axon but rather multiple, small covers. Therefore the action potential “jumps”
from one cover to another [MW 07]. When the signal reaches the final axon, this electrical
signal starts a chemical reaction. Myelin is crucial for the nerve system to work accurately.

When waves fail to transmit the action potential, it can lead to failure of the nerve system.
For example, when the cardiac action potential fails, it can lead to fatalities. Therefore,
studying models of action potentials of animal cells is highly relevant for neurophysiology.

The goal is to model the action potential between animal neuron cells [Kee87]. Suppose that
un represents the membrane potential at cell n, where n ∈ N. In figure 2.1 a visualisation of
the structure of a simplified neuron is visible.

Figure 2.1: Structure of simplified neuron

Kirkchhoff’s laws deal with potential difference in electrical circuits. Currents between cells
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satisfy Kirchhoff’s laws and it is assumed that all n cells are coupled. Furthermore, it is
assumed that the potential is equal for every cell. This gives the following equation

u̇n = d(un+1 − 2un + un+1) + f(un).

Here d is the coupling coefficient, d = 1
R , where R is the intercellular resistance. Thus d

represents the “amount” of lost transmitted electrical signal.
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Chapter 3

Prerequisite knowledge

3.1 Ordinary differential equations

The simplified discrete Nagumo equation (4.3) with initial condition vn(0) = xn with
0 ≤ xn ≤ 1 for n = 0, ..., N is an initial value problem. The Picard-Lindelöf theorem proves
the existence of a unique local solution of an initial value problem. This section starts with
the Contraction Principle which will be used to prove the Picard-Lindelöf theorem.
Furthermore, in this section the dependence of the initial value on the solution of the problem
will be described. Theorems stated in this section originate from “Ordinary differential
equations and Dynamical Systems” by Gerald Teschl[Tes12].

3.1.1 Picard-Lindelöf

A fixed point of a mapping K : C ⊂ X → C is an element x ∈ C such that K(x) = x. K is a
contraction if there exists a constant θ ∈ [0, 1) such that ∥K(x)−K(y)∥ ≤ θ∥x− y∥ for
x, y ∈ C. The following theorem is called the Contraction principle or Banach’s fixed point
theorem.

Theorem 3.1.1 (Contraction principle). Let C be a nonempty, closed subset of a Banach
space X and let K : C → C be a contraction. Then K has a unique fixed point x̄ ∈ C such
that ∥Kn(x)− x̄∥ ≤ θn

1−θ∥K(x)− x∥ for x ∈ C.

Proof. Suppose x0 ∈ C and consider the sequence xn = Kn(x0). It follows that

∥xn+1 − xn∥ ≤ θ∥xn − xn−1∥ ≤ ... ≤ θn∥x1 − x0∥.

Then for n > m by the triangle inequality

∥xn − xm∥ ≤
n∑

j=m+1

∥xj − xj−1∥

≤ θm
n−m−1∑
j=0

θj∥x1 − x0∥

= θm
1− θn−m

1− θ
∥x1 − x0∥

=
1− θn

1− θ
∥x1 − x0∥

≤ θm

1− θ
∥x1 − x0∥.
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Thus xn is a Cauchy sequence and converges to a limit x̄. Since

∥K(x̄)− x̄∥ = lim
n→∞

∥xn+1 − xn∥ = 0,

it follows that x̄ is a fixed point. Furthermore,

∥Kn(x)− x̄∥ ≤ θn

1− θ
∥K1(x)−K0(x)∥ =

θn

1− θ
∥K(x)− x∥.

Now suppose that K has two fixed points, namely x̄ and x̃. Then

∥x̄− x̃∥ = ∥K(x̄)−K(x̃)∥ ≤ θ∥x̄− x̃∥

which implies that x̄ = x̃. Therefore, it follows that K has a unique fixed point x̄ ∈ C such
that ∥K(x)−K(y)∥ ≤ θ∥x− y∥ for x, y ∈ C.

The contraction principle will be used to show existence and uniqueness of solutions of the
general initial value problem

ẋ = f(t, x), x(t0) = x0. (3.1)

The following theorem states this result.

Theorem 3.1.2 (Picard-Lindelöf). Suppose f ∈ C(U,Rn), U is an open subset of Rn+1 and
(t0, x0) ∈ U . If f is locally Lipschitz continuous in the second argument, uniformly with
respect to the first, V = [t0, t0 + T ]×Bδ(x0) ⊂ U , and M denotes the maximum of |f | on V ,
then there exists a unique local solution x̄(t) ∈ C1([t0, t0 + T0]) and the solution remains in
Bδ(x0) of the initial value problem 3.1, where T0 = min{T, δ

M }.

Proof. Integrating both sides of the general initial value problem (3.1) with respect to t gives
the following result

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Since x0(t) = x0 is an approximating solution for small t, it can be substituted in the integral
equation

x1(t) = x0 +

∫ t

t0

f(s, x0(s)).

Iterating this procedure, gives the following sequence of approximating solutions

xm(t) = Km(x0)(t), K(x)(t) = x0 +

∫ t

t0

f(x, x(s))ds.

Now without loss of generality t0 is set to 0 and t ≥ 0. Furthermore, X is defined as
X = C([0, T ],Rn) for some suitable T > 0 Since (0, x0) ∈ U and U is open, V is defined as
V = [0, 0 + T ]×Bδ(x0) ⊂ U where Bδ(x0) = {x ∈ Rn||x− x0| < δ}. The maximum M of |f |
exists by continuity of f and compactness of V . When {(t, x(t))|t ∈ [0, T ]} ⊂ V , it follows that

|K(x)(t)− x0| ≤
∫ t

0
|f(s, x(s))|ds ≤ tM.

Hence, for t ≤ T0 it follows that T0M ≤ δ and the graph of K(x) restricted to [0, T0] is again
in V . If M = 0, then this implies that δ

M = ∞ such that T0 = min{T,∞} = T . Since

[0, T0] ⊂ [0, T ], the same constant M will also bound |f | on V0 = [0, T0]×Bδ(x0) ⊂ V .
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Since f is Lipschitz continuous, it holds for every compact set V0 ⊂ U that

L = sup
(t,x)̸=(t,y)∈V0

|f(t, x)− f(t, y)|
|x− y|

is finite. If both graphs of x(t) and y(t) lie in V0, then

∥K(x)−K(y)∥ ≤
∫ t

0
|f(s, x(s))− f(s, y(s))|ds

≤ L

∫ t

0
|x(s)− y(s)|ds

≤ Lt sup
0≤s≤t

|x(s)− y(s)|

≤ LT0∥x− y∥

for x, y ∈ C. Now choosing T0 < L−1, it follows that K is a contraction. Then by the
contraction principle 3.1.1 it follows that there exists a unique solution to the initial value
problem (3.1).

3.1.2 Dependence on initial condition

Lemma 3.1.3 (Gronwall’s inequality). Suppose ψ(t) satisfies ψ(t) ≤ α(t) +
∫ t
0 β(s)ψ(s)ds for

t ∈ [0, T ] with α ∈ R and β(t) ≥ 0. Then ψ(t) ≤ α(t) +
∫ t
0 α(s)β(s)e

(
∫ s
t β(r)dr)ds for t ∈ [0, T ].

Moreover, if in addition α(s) ≤ α(t) for s ≤ t, then ψ(t) ≤ α(t)e
∫ t
0 β(s)ds for t ∈ [0, T ].

Proof. Define ϕ(t) = e−
∫ t
0 β(s)ds. Then since it was assumed that ψ(t) ≤ α(t) +

∫ t
0 β(s)ψ(s)ds

it follows that

d

dt
(ϕ(t)

∫ t

0
β(s)ψ(s)ds) = β(t)ϕ(t)

(
ψ(t)−

∫ t

0
β(s)ψ(s)ds

)
≤ α(t)β(t)ϕ(t).

Integrating this inequality with respect to t and dividing the resulting equation by ϕ(t) gives∫ t

0
β(s)ψ(s)ds ≤

∫ t

0
α(s)β(s)

ϕ(s)

ϕ(t)
ds.

Adding α(t) to both sides gives∫ t

0
β(s)ψ(s)ds+ α(t) ≤

∫ t

0
α(s)β(s)

ϕ(s)

ϕ(t)
ds+ α(t).

Since ϕ(t) was defined as ϕ(t) = e−
∫ t
0 β(s)ds it follows that

ϕ(s)

ϕ(t)
=
e−

∫ s
0 β(r)dr

e−
∫ t
0 β(r)dr

= e−
∫ s
0 β(r)dr+

∫ t
0 β(r)dr

= e(
∫ t
s β(r)dr).

Since ψ(t) ≤ α(t) +
∫ t
0 β(s)ψ(s)ds was assumed to be true, it follows that

ψ(t) ≤
∫ t

0
α(s)β(s)

ϕ(s)

ϕ(t)
ds+ α(t) =

∫ t

0
α(s)β(s)e(

∫ t
s β(r)dr)ds+ α(t).
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If in addition the function α is non-decreasing, the fundamental theorem of calculus implies
that

ψ(t) ≤ α(t) + (−α(t)e(
∫ t
s β(r)dr))|s=t

s=0

= α(t)e(
∫ t
0 β(r)dr).

This concludes the proof.

Corollary 3.1.4. If ψ(t) ≤ α+
∫ t
0 (βψ(s) + γ)ds for t ∈ [0, T ] for given constants α ∈ R, β ≥ 0

and γ ∈ R and α is non-decreasing, then ψ(t) ≤ αe|βt| + γ
β (e

(βt) − 1) for t ∈ [0, T ].

Proof. Suppose β ̸= 0. Then ψ(t) + γ
β ≤ α+ γ

β +
∫ t
0 (βψ(s) +

γ
β )ds. By Gronwall’s inequality

3.1.3, it follows that

ψ(t) +
γ

β
≤ (α+

γ

β
)e

∫ t
0 β(s)ds

= (α+
γ

β
)eβt.

Rewriting gives

ψ(t) ≤ (α+
γ

β
)eβt − γ

β

= αeβt +
γ

β
(eβt − 1).

If β = 0, then it follows that ψ(t) ≤ α+ γt. This concludes the proof.

Suppose x(t) is a solution of the initial value problem

ẋ = f(t, x), x(t0) = x0

and y(t) is a solution of the initial value problem

ẏ = g(t, y), y(t0) = y0.

The following theorem states the dependence of the solution of the initial value problems on
the initial values.

Theorem 3.1.5. Suppose f, g ∈ C(U,Rn) and let f be locally Lipschitz continuous in the
second argument, uniformly with respect to the first. Then

|x(t)− y(t)| ≤ |x0 − y0|eL|t−t0| +
M

L
(eL|t−t0| − 1)

where

L = sup
(t,x)̸=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y|

, M = sup
(t,x)∈V

|f(t, x)− g(t, x)|

, with V ⊂ U some set containing the graphs of x(t) and y(t).

Proof. Without loss of generality t0 is set to 0. The triangle inequality gives

|f(s, x(s))− g(s, y(s))| ≤ |f(s, x(s))− f(s, y(s))|+ |f(s, y(s))− g(s, y(s))|
≤ L|x(s)− y(s)|+M.
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If for t ∈ [0, T ], ψ(t) ≤ α+
∫ t
0 (βψ(s) + γ)ds then for given constants α ∈ R, β ≥ 0 and γ ∈ R,

it follows by corollary 3.1.4 that for t ∈ [0, T ], ψ(t) ≤ αeβt + γ
β (e

βt − 1). Combining these
results gives

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

0
|f(s, x(s))− g(s, y(s))|ds

≤ |x0 − y0|+
∫ t

0
L|x(s)− y(s)|+M

≤ |x0 − y0|eL|t−t0| +
M

L
(eL|t−t0| − 1),

and the conclusion follows.

3.2 Brouwer’s fixed point theorem

In section 4.5 the simplified initial value problem (4.2) will be converted into a fixed point
problem. To conclude that the shifted Poincaré map (4.9) has a fixed point, Brouwer’s fixed
point theorem is used. This theorem states that every continuous mapping in Rn from a
closed ball to itself contains at least one fixed point. Brouwer’s fixed point theorem will be
proven using the ”hairy ball” theorem, which states that there is no continuous tangent vector
fields on even-dimensional n-spheres. This section starts with the proof of the ”hairy ball”
theorem and continues with the proof of Brouwer’s fixed point theorem. Every lemma,
theorem and their proofs stated in this section originate from the article “Analytic proofs of
the ‘hairy ball theorem’ and the Brouwer fixed point theorem” by John Milnor [Mil78].

3.2.1 ”Hairy ball” theorem

The sphere Sn−1 is defined as the set of all vectors u = (u1, ..., un) in the Euclidean space Rn

such that the Euclidean length ∥u∥ equals 1. A vector v(u) in Rn is tangent to Sn−1 at u if
the inner product u · v(u) is equal to zero.

Suppose A is a compact region in Rn, x 7→ v(x) is a continuously differentiable vector field
which is defined throughout a neighborhood of A and v(x) are arbitrary vectors in Rn.

Lemma 3.2.1. If the real number t is sufficiently small, then the mapping ft(x) : A→ ft(A)
by ft(x) = x+ tv(x) is one-to-one and the volume of region ft(A) can be expressed as a
polynomial function of t.

Proof. Suppose A is a cube with edges parallel to the coordinate axes and suppose x, y ∈ A.
Since v(x) is continuously differentiable on A, the Mean Value theorem states that there exists
a point c ∈ (x, y) such that

vi(x)− vi(y) =
d

dt
vi(x+ t(y − x))|t=θ · 1

= (∇vi(x+ θ(y − x)) · (y − x)

= ∇vi(c) · (y − x)

=
n∑

j=1

∂vi
∂xj

(c) · (yj − xj)
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where c = x+ θ(y − x) and θ ∈ (0, 1). This implies

|vi(x)− vi(y)| ≤
n∑
j

sup
A

| ∂vi
∂xj

||yj − xj |.

Therefore,

∥v(x)− v(y)∥ ≤
∑
i

|vi(x)− vi(y)| ≤
∑
i,j

sup
A

| ∂vi
∂xj

||yj −xj | ≤
∑
i,j

sup
A

| ∂vi
∂xj

|∥x− y∥ ≤ n2sup
A

| ∂vi
∂xj

|.

Hence there exists a Lipschitz constant d such that

∥v(x)− v(y)∥ ≤ d∥x− y∥

for all x and y in A, namely d = n2sup
A

| ∂vi∂xj
|.

An arbitrary compact set A in Rn can be covered by finitely many open cubes Ii where
i ∈ {1, n} such that the following holds

∥v(x)− v(y)∥ ≤

sup
A

| ∂vi∂xj
|∥x− y∥ if x, y ∈ Ii

e∥x− y∥ if x ∈ Ii and y ∈ Ii with i ̸= j

where e ∈ Z and e ̸= 0. Now define

g =

n
2sup

A
| ∂vi∂xj

| if x, y ∈ Ii

e if x ∈ Ii, y ∈ Ij and i ̸= j.

Then for every x, y ∈ A, it follows that there exists a Lipschitz constant g so that
∥v(x)− v(y)∥ ≤ g∥x− y∥.
Let t be arbitrary with |t| < g−1. If ft(x) = ft(y) then x+ tv(x) = y + tv(y) and thus
x− y = t(v(y)− v(x)). Due to the Lipschitz condition it then follows that

∥x− y∥ = ∥t(v(y)− v(x))∥ ≤ |t||g|∥x− y∥

which implies that x = y. Since x = y whenever ft(x) = ft(y), it can be concluded that the
function ft is one-to-one.
The matrix of first derivatives of ft can be written as I + t[ ∂vi∂xj

], where I is equal to the

identity matrix. The determinant of this matrix is a polynomial function of t, of the form
1 + ta1(x) + ...+ tnan(x). By integrating over A, the volume of the image region is as follows

vol ft(A) = b0 + b1t+ ...+ bnt
n

where bk =
∫
A akdx1...dxn. Hence it follows that the volume of ft can be expressed as a

polynomial function of t and the conclusion follows.

Now suppose the sphere Sn−1 has a continuously differentiable field u 7→ v(u) of unit tangent
vectors. Define ωn as the unit sphere in Rn.

Lemma 3.2.2. If the parameter t is sufficiently small, then the transformation u 7→ u+ tv(u)
maps ωn onto the sphere of radius

√
1 + t2
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Proof. For any real number t the vector u+ tv(u) has length
√
1 + t2. The matrix of first

derivatives of ft was defined in the proof of Lemma ??. If t is sufficiently small, the
determinant 1 + ta1(x) + ...+ tnan(x) will be close to 1 and therefore the matrix is
non-singular throughout the compact region A. The Inverse Function theorem states that if a
function f is continuously differentiable on some open set containing a point a and
det Jf(a) ̸= 0, then there is some open set V containing a and an open W containing f(a)
such that f : V →W has a continuous inverse f−1 :W → V which is differentiable for all
y ∈W . From this theorem it follows that ft maps open sets contained in the interior of A to
open sets. Thus the image ft(S

n−1) is an open subset of the sphere of radius
√
1 + t2. But the

image ft(S
n−1) is also compact and thus also closed. Since Sn−1 is connected, an open and

closed subset must be the entire sphere. And therefore the transformation u 7→ v(u) maps ωn

onto the sphere of radius
√
1 + t2.

Theorem 3.2.3. An even-dimensional sphere does not possess any continuously differentiable
field of unit tangent vectors.

Proof. Define region A as A = {x ∈ Rn|a ≤ ∥x∥ ≤ b} where a, b ∈ N. The vector field v is
extended throughout this region by setting v(ru) = rv(u) for a ≤ r ≤ b. By Lemma 3.2.1 and
Lemma 3.2.2, for sufficiently small t the mapping ft(x) = x+ tv(x) is defined throughout the
region A, and maps the sphere of radius r onto the sphere of radius r

√
1 + t2. Since

ft(ru) = ru+ tv(ru) = ru+ trv(u) = r(u+ tv(u)) = rft(u),

ft maps A onto the region {x ∈ Rn|a
√
1 + t2 ≤ ∥x∥ ≤ b

√
1 + t2}. It then follows that

vol(ft(A)) = vol (ωn)(b
n(
√
1 + t2)n − an(

√
1 + t2)n)

= (
√

1 + t2)n vol(ωn)(b
n − an)

= (
√

1 + t2)n vol(A).

If n is odd, this volume is not a polynomial function of t. This is a contradiction to Lemma
3.2.1 and therefore it can be concluded that an even-dimensional sphere does not possess any
continuously differentiable field of unit tangent vectors.

Theorem 3.2.4 (”Hairy ball” theorem). An even dimensional sphere does not admit any
continuous field of non-zero tangent vectors.

Proof. Suppose that the sphere Sn−1 possesses a continuous field of non-zero tangent vectors
v(u). Define m = minu∈Sn−1 ∥v(u)∥. The Weierstrass Approximation theorem states that
there exists a polynomial mapping p from Sn−1 to Rn satisfying

∥p(u)− v(u)∥ < m

2

for all u. The differentiable vector field w(u) is defined by the formula w = p− (p · u)u for
every u. Since u is a unit vector, u · u = 1 and it thus follows that

w · u = (p− (p · u)u) · u
= p · u− (p · u)(u · u)
= p · u− p · u
= 0.
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Therefore, w(u) is tangent to Sn−1 at u. Again since u is a unit vector, it follows that

∥w − p∥ = ∥p− (p · u)u− p∥
= ∥(p · u)u∥
= |p · u|
= |p · u− v(u) · u|
= |(p− v(u)) · u|
≤ ∥p− v(u)∥ · ∥u∥

= ∥p− v(u)∥ < m

2
,

where the Cauchy-Schwarz inequality was applied. By the triangle inequality

∥w − v(u)∥ ≤ ∥w − p∥+ ∥p− v(u)∥

<
m

2
+
m

2
= m

and by the reverse triangle inequality

∥w∥ ≥ ∥v(w)∥ − ∥w − v(u)∥
≥ m− ∥w − v(u)∥.

Since it has been shown that ∥w − v(u)∥ < m this implies that w ̸= 0. Therefore, the quotient
w(u)

∥w(u)∥ is an infinitely differentiable field of unit tangent vectors on the sphere Sn−1. If n− 1 is
even, this is impossible by Theorem 3.2.3. Thus an even-dimensional sphere does not admit
any continuous field of non-zero tangent vectors.

3.2.2 Brouwer’s fixed point theorem

Now that the ”hairy ball” theorem has been proven, it can be used to prove Brouwer’s fixed
point theorem. The disk Dn is defined as Dn = {x ∈ Rn|∥x∥ ≤ 1}.

Theorem 3.2.5. Every continuous mapping f from the disk Dn to itself possesses at least
one fixed point.

Proof. Define w(x) = x− y(1−x·x)
(1−x·y) where y = f(x) ̸= x. Whenever x · x = 1, it follows that

w(x) = x. When x and y are linearly independent, it follows that w(x) ̸= 0. When x and y are
linearly dependent, then (x · x)y = (x · y)x implies that

w(x) = x−y(1− x · x)
(1− x · y)

=
x(1− x · y)
(1− x · y)

−y(1− x · x)
(1− x · y)

=
x− x(x · y)− y + y(x · x)

1− x · y
=

x− y

1− x · y
̸= 0.

Hence w is a non-zero vector field on Dn which points directly outward everywhere on the
boundary.

Rn is identified as Sn with the hyperplane xn+1 = 0 which passes through the equator. The
goal is to find a projection s(x) : Dn → Us where Us = {u ∈ Sn|un+1 < 0} is the southern
hemisphere of the unit sphere Sn in Rn+1.

The construction of s(x) will be demonstrated using a 2D-plot. Define s as the intersection
the projection makes with the sphere, define β as the angel the projection makes with the
sphere and define l as the length of point s to the north pole. An illustration of this
construction is visible in figure 3.1
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Figure 3.1

x

s

α

β
l

Then

tanβ = x

cosβ =
l

2

1− (cosβ)2

(cosβ)2
= x2

1− (cosβ)2 = x2(cosβ)2

1

1 + x2
= (cosβ)2

(cosβ)2 =
l2

4
1

1 + x2
=
l2

4
.

Furthermore,

(sinβ)2 = 1− (cosβ)2

= 1− 1

1 + x2

=
x

1 + x2
.

s(x) is equal for xj with j ∈ {1, n}, namely

s(x) = sinβ · l

=

√
x

1 + x2
·
√

4

1 + x2

=
x√

1 + x2
· 2√

1 + x2

=
2x

1 + x2
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and for xj with j = n+ 1

s(x) = 1− cosβ · l

= 1− 1

1 + x2
· 4

1 + x2

= 1− 2

1 + x2

=
x2 − 1

1 + x2
.

Therefore the precise formula for s(x) is

s(x) =
(2x1, ..., 2xn, x · x− 1)

(x · x+ 1)
.

Figure 3.2

x w(x)

s(x)=u
W(u)

xn+1 = 0

The tangent vector W (x) is defined as W (x) = ds(x+tw(x))
dt . Therefore, W (x) ∈ Us and

W (x) ̸= 0. W (u) is then W (x) at the image point s(x) = u at t = 0. An illustration of vectors
s(x) and W (x) are visible in Figure 3.2.

At every point of the equator of Sn, so when u = s(u), it follows thatw(u) = u. By the
definition of w(x), the vector w(u) = u points directly outward on the boundary. Then the

corresponding tangent vector W (u) = ds(x)
dt = (0, ..., 0, 1) points away from Us. Now define

Un = {u ∈ Sn|un+1 > 0} as the northern hemisphere of the unit sphere Sn in Rn+1. Repeating
these steps to the vector field −w(x) : Dn → Un, then gives a vector field with W (u) pointing
away from Un. Combining w(x) and −w(x) gives a non-zero tangent vector field W which is
defined continuously everywhere on Sn.

If n is even, then this is a contradiction to Theorem 3.2.4. Therefore, it can be concluded that
it cannot be possible that f(x) ̸= x for all x in Dn.

Now suppose n = 2k − 1, then for any map f from D2k−1 to itself with f(x) ̸= x for
x ∈ D2k−1, this map can be transformed to F (x1, ..., x2k) = (f(x1, ..., x2k−1), 0). This is a map
from D2k to itself, and since n = 2k is even, this is again in contradiction to Theorem 3.2.4.
Hence, the claim is true for all n ∈ N and it can be concluded that every continuous mapping
f from the disk Dn to itself possesses at least one fixed point.
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3.3 Index theory

When simplifying the discrete Nagumo equation (1.1) h1 will be substituted by a linear
function h0. In section 4.6 a homotopy hλ : [0, 1] → R will be constructed that deforms h0(x)
into h1(x) continuously and it will be proven using the general homotopy invariance theorem
3.3.4 that this construction is independent of λ. The fixed point index “counts” the number of
fixed points of a map from an open subset of a closed subspace to that space. The general
homotopy invariance theorem 3.3.4 states that the fixed point index is well-defined and
independent of λ.

The proof of the general homotopy theorem 3.3.4 uses the Leray-Schauder degree, which
“counts” the number of fixed points of a map from an open subset of a normed linear space to
that space. The Leray-Schauder degree is constructed by extending the Brouwer degree,
however this construction exceeds the content of this thesis. In this section the
Leray-Schauder degree will be defined and the general homotopy theorem 3.3.4 will be stated.
For this section, X is a metric space, I = [0, 1], A ⊂ X × I, and for λ ∈ I, the “slice” at λ is
defined as Aλ = {x ∈ X : (x, λ) ∈ A}.

3.3.1 Leray-Schauder degree

The following definition of the Leray-Schauder degree originates from the article
“Leray-Schauder degree: a half century of extensions and applications” by Jean Mawhin
[Maw99]. If U ⊂ X is an open bounded set, f : U → X is compact, and z ̸∈ (I − f)(∂U), the
Leray-Schauder degree is notated by degLS [I − f, U, z] of I − f in U over z. This degree
“algebraically counts” the number of fixed points of f(·)− z in U .

Theorem 3.3.1. The Leray-Schauder degree satisfies the following properties.

1. (Additivity) If U = U1 ∪ U2, where U1 and U2 are open and disjoint, and if
z /∈ (I − f)(∂U1) ∪ (I − f)(∂U2), then
degLS [I − f, U, z] = degLS [I − f, U1, z] + degLS [I − f, U2, z].

2. (Existence) If degLS [I − f, U, z] ̸= 0, then z ∈ (I − f)(U).

3. (Homotopy invariance) Let σ ⊂ X × I be a bounded open set, and let F : σ → X be
compact. If x− F (x, λ) ̸= z for each (x, λ) ∈ ∂σ, then degLS [I − F (·, λ), σλ, z] is
independent of λ.

3.3.2 Fixed point index

The following presentation of the fixed point index is based on the article “fixed point
equations and nonlinear eigenvalue problems in ordered Banach spaces” by Herbert Amann
[Ama76]. A nonempty subset A of a metric space X is called a retract of X if there exists a
continuous map r : X → A such that r|A = idA. Every retract is a closed subspace of X. The
following theorem describes the properties of the fixed point index.

Theorem 3.3.2. Let X be a retract of some Banach space E. For every open subset U of X
and every compact map f : U → X which has no fixed points on ∂U , there exists an integer
i(f, U,X) satisfying the following conditions:

1. (Normalization) For every constant map f mapping U into U , i(f, U,X) = 1;
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2. (Additivity) For every pair of disjoint open subsets U1, U2 of U such that f has no fixed
points on U\(U1 ∪ U2),

i(f, U,X) = i(f, U1, X) + i(f, U2, X),

where i(f, Uk, X) = i(f |Uk, Uk, X), k = 1, 2;

3. (Homotopy invariance) For every compact interval Λ ⊂ R, and every compact map
h : Λ× U → X such that h(λ, x) ̸= x for (λ, x) ∈ Λ× δU ,

i(h(λ, ·), U,X) (3.2)

is well-defined and independent of λ ∈ Λ.

4. (Permanence) If Y is a retract of X and f(U) ⊂ Y , then i(f, U,X) = i(f, U ∩ Y, Y ),
where i(f, U ∩ Y, Y ) = i(f |U ∩ Y , U ∩ Y, Y )

The family {i(f, U,X)|X retract of E, U open in X, f : U → X compact without fixed points
on ∂U} is uniquely determined by properties (1.)-(4.), and i(f, U,X) is called the fixed point
index of f over U with respect to X.

This theorem can be proven using the properties of the Leray-Schauder degree. However, this
exceeds the scope of this thesis.

Corollary 3.3.3. The fixed point index has the following further properties:

• (Excision) For every open subset V ⊂ U such that f has no fixed point in U\V ,
i(f, U,X) = i(f, V,X);

• (Solution property) If i(f, U,X) ̸= 0, then f has at least one fixed point in U .

Now let Λ ⊂ R be an arbitrary interval and let A be a subset of Λ×X. The “slice” at λ Aλ is
open in X if A is open in Λ×X.

Theorem 3.3.4 (General homotopy theorem). Let Λ be a nonempty compact interval, let X
be a retract of some Banach space E, and let U be an open subset of Λ×X. Suppose
h : U → X is a compact map such that h(λ, x) ̸= x for every (λ, x) ∈ ∂U . Then
i(h(λ, ·), Uλ, X), λ ∈ Λ is well-defined and independent of λ ∈ Λ.
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Chapter 4

Article ”Existence of Traveling
Wavefront Solutions for the Discrete
Nagumo Equation” by Bertram
Zinner

4.1 Introduction

The discrete Nagumo equation is defined for n ∈ Z as

u̇n = d(un−1 − 2un + un+1) + f(un). (4.1)

Here d is a positive real number and f denotes a Lipschitz continuous function satisfying the
following properties

• f(0) = f(a) = f(1),

• f(x) < 0 for 0 < x < a,

• f(x) > 0 for a < x < 1,

•
∫ 1
0 f(x)dx > 0,

where a ∈ (0, 1). A typical example of a function satisfying these properties is the cubic
polynomial f(x) = x(x− a)(1− x) where 0 < a < 1

2 .

Figure 4.1: Example of cubic polynomial
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In Figure 4.1 an example of a cubic polynomial is visible where a = 0.3. A result known for
this discrete Nagumo equation is that traveling wave solutions of equation 1.1 exist. The
following theorem states this result.

Theorem 4.1.1. Suppose f is a Lipschitz continuous function satisfying f(0) = f(a) = f(1),
f(x) < 0 for 0 < x < a, f(x) > 0 for a < x < 1 and

∫ 1
0 f(x)dx > 0. Then there exists some

d∗ > 0 such that for d > d∗ the discrete Nagumo equation 1.1 admits a solution
un(t) = U(n+ ct), where c > 0, U ∈ C1(R, (0, 1)), U(−∞) = 0, U(∞) = 1, and U ′(x) > 0 for
all x ∈ R.

The previous chapter 3 contained all the prerequisite knowledge needed to understand the
proof of Theorem 4.1.1 and thus the existence of traveling wavefront solutions for the Discrete
Nagumo equation by Bertram Zinner [Zin90]. In this chapter the content of this proof will be
discussed and expanded. The chapter starts with a general strategy of the proof.

4.2 General strategy

The proof of the discrete Nagumo equation given in this chapter can be broken into 5 steps.
Step 1: Providing a basis for the proof
The unique solution of the fixed point problem (4.3) u(t) is defined as {un(t)}Nn=0. In section
4.3, several lemmata will be stated and proven describing certain properties of initial values
that are invariant under the flow of u(t). The first section provides a basis on which the rest of
the proof will be built.
Step 2: Simplifying the problem
Instead of the discrete Nagumo equation, in this step the following simplified equation is
considered for n ∈ Z

v̇n = d(un−1 − 2un + un+1) + h(un) (4.2)

where un = P (vn) and h(un) = un − 1
4 . Here P (vn) is defined as

P (vn) =


0 for vn < 0,

vn for 0 ≤ vn ≤ 1,

1 for 1 < vn.

The simplified problem is to find a monotone traveling wave solution of equation 4.2 on an
interval [0, τ ] satisfying the following conditions

1. un(τ) = un+1(0),

2. vn(0) ≤ vn+1(0),

3. d(un−1(0)− 2un(0) + un+1(0) + h(un(0)) > 0 if un(0) > 0,

4. limn→−∞vn(0) = 0 and limn→∞vn(0) = 1.

It turns out that the conditions imply the existence of a function U : R → R with U(−∞) = 0,
U(∞) = 1 and 0 ≤ U ≤ 1 such that un(t) = U(n+ ct) and τ = 1

c for all n ∈ Z, t ∈ [0, τ ]. In
section 4.4 it will also be shown that it suffices to consider only finitely many solutions of the
simplified equation 4.2.
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Step 3: Converting the simplified problem into a fixed point problem
In section 4.5 it will be concluded that by the Picard-Lindelöf theorem the initial value
problem for u−1 = 0 and un+1 = 1

v̇n = d(un−1 − 2un + un+1) + h(un),

un = P (vn),

vn(0) = xn with 0 ≤ xn ≤ 1 for n = 0, ..., N.

(4.3)

has a unique solution u(x; t) = {un(x; t)}Nn=0 which depends continuously on the initial value
x = {xn}Nn=0. The set X is defined as

X =
{
{xn}Nn=0 ∈ RN+1 : x0 = 0, x1 =

−h(0)
d

, xn ≤ xn+1,

d(xn−1 − 2xn + xn+1) + h(xn) > 0,

xn ≥ n

N
, for n = 1, .., N,where xN+1 = 1

}
and the following shifted Poincaré map T : X̄ → RN+1 is considered

(Tx)n =

{
0 for n = 0

un−1(x; τ) for n = 1, .., N
(4.4)

where τ is defined by u0(x; τ) = x1. The map T0 has a fixed point by Brouwer’s fixed point
theorem 3.2.5 if the map satisfies the following four properties:

• C0 ∩O0 is a closed, bounded, and convex subset of RN+1,

• T0(C0 ∩O0) ⊂ C0 ∩O0,

• T0 is continuous,

• C0 ∩O0 is nonempty.

This will be proven in section 4.5. Finally, this fixed point x corresponds to the traveling wave
{un(t)}∞−∞.
Step 4: Deforming h0 into h1
The construction of T0 depended on the linear function h0 so far. The function h0 can be
deformed continuously into h1 using a homotopy hλ where h1 ∈ Bapp. The set Bapp is defined
as

Bapp =
{
h : [0, 1] → R : h is Lipschitz continuous, h(0) < 0, h(1) > 0,

h has a unique zero in (0, 1), and

∫ 1

0
h(s)ds > 0

}
.

The fixed points of Th0 are then continued into the fixed points of Th1 . The general homotopy
invariance theorem 3.3.4 will be used to conclude that the number of fixed points of Th1 is
independent of λ. It then again follows that the fixed point of T1 corresponds to a traveling
wave solution.
Step 5: Convergence of the approximate solutions
In the final step f is approximated by hk. Suppose {ukn} is a traveling wave of

v̇n = d(un−1 − 2un + un+1) + hk(un),

un = P (vn)
(4.5)
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for n ∈ Z. Assuming that ∥f − hk∥2 → 0 as k → ∞, it will be proven in section 4.7 that the
traveling wave solution ukn to (4.5) is a traveling wave solution to the discrete Nagumo
equation (1.1). This concludes the proof of Theorem 4.1.1.

4.3 Invariance results

The fixed point problem (4.3) has a unique solution u(t) = {un(t)}Nn=0 by the Picard-Lindelöf
theorem 3.1.2. Here h is an arbitrary element of Bapp. In this section it will be shown that
certain properties of initial values x = {xn}Nn=0 ∈ RN+1 are invariant under the flow of u(t).

Lemma 4.3.1. Suppose x0 = 0, x1 =
−h(0)

d and d > −h(0) and suppose x = {xn}Nn=0 ∈ RN+1

satisfies the following properties

1. 0 ≤ x0 ≤ ... ≤ xN ≤ 1,

2. xn < xn+1 whenever 0 < xn < 1,

3. d(xn−1 − 2xn + xn+1) + h(xn) > 0 whenever 0 < xn, where xN+1 = 1 and x−1 = 0.

Then u(t) satisfies properties 1,2 and 3 for all t ≥ 0.

Proof. Define t1 as t1 = sup{t ≥ 0 : u(s) satisfies properties 1.,2. and 3. for all 0 ≤ s ≤ t}.
Because u(0) = x satisfies properties 1,2 and 3, t1 is well defined. To prove Lemma 4.3.1, it

suffices to show that t1 = ∞. Since x1 =
−h(0)

d and d > −h(0) it follows that x1 > 0. By
property 1 it then follows that xn > 0 for n = 1, 2, ..., N and thus by property 3 that
v̇n(0) = d(xn−1 − 2xn + xn+1) + h(xn) > 0 for n = 1, 2, ..., N . u0(t) is differentiable at t = 0 if

the limit limt→0 |u0(t)−u0(0)
t | exists. Since

v̇0(0) = d(x−1 − 2x0 + x1) + h(x0) = dx1 + h(0) = 0,

by the Mean Value theorem and u0(0) = 0 it follows that for θ ∈ (0, 1)

lim
t→0

|u0(t)− u0(0)

t
| = lim

t→0
|u0(t)
t

|

= lim
t→0

|P (v0(t))
t

|

= lim
t→0

|P (v0(0) + v̇0(θ)t)

t
|

= lim
t→0

|P (v̇0(θ)t)
t

|

≤ lim
t→0

| v̇0(θ)t
t

|

= lim
t→0

|v̇0(θ)|

= lim
t→0

|v̇0(0)|

= 0.

Thus u0(t) is differentiable at t = 0 and u̇0(0) = 0. Since h is Lipschitz continuous, there exists
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a real constant L such that for all u0, |h(u0(t))− h(u0(0))| ≤ L|u0(t)− u0(0)|. Therefore,

lim
t→0

|h(u0(t))− h(u0(0))

t
| ≤ lim

t→0
L|u0(t)− u0(0)

t
|

= lim
t→0

L|u̇0(0)|

= L · 0
= 0

and it follows that h(u0(t)) is differentiable at t = 0 and this derivative is equal to 0. Since

v̈0(0) = d(u̇−1(0)− 2u̇0(0) + u̇1(0)) +
d

dt
h(u0(0))

= d(0− 2 · 0 + u̇1(0)) + 0

= d2(u0(0)− 2u1(0) + u2(0)) + h(u1(0))

> 0,

it can be concluded that v̇0(t) > 0 for all sufficiently small t > 0. And since v̇n and un are
continuous, it follows that t1 > 0. Now suppose that t1 <∞. Then either

1. un(t1) = un+1(t1) for some 0 < un(t1) < 1

2. v̇n(t1) = 0 for some un(t1) > 0.

Suppose 1 is true. Because uN+1 = 1, n is chosen such that un(t1) = un+1(t1) < un+2(t1). It
then follows that

d

dt
(vn+1 − vn)(t1) = d(un(t1)− 2un+1(t1) + un+2(t1)− un−1(t1) + 2un(t1)− un+1(t1))

+ h(un+1(t1))− h(un(t1))

= d(3un(t1)− 3un+1(t1) + un+2(t1)− un−1(t1)) + h(un+1(t1))− h(un(t1))

= d(un+2(t1)− un−1(t1))

> 0

and therefore un+1(t1 − ϵ) = vn+1(t1 − ϵ) < vn(t1 − ϵ) = un(t1 − ϵ) for sufficiently small ϵ. This
is a contradiction, since u(t) satisfies un < un+1 whenever 0 < un < 1. Thus there does not
exist an un(t) such that 0 < un(t1) < 1 for which un(t1) = un+1(t1).
Now suppose 2 is true. Consider un(t) on the interval [0, t1]. If there exists a t0 ∈ (0, t1) such
that un(t0) = 1, then because vn(t) is non-decreasing on [0, t1], the following three cases may
occur for all t ∈ [t0, t1],

1. un(t) = vn(t) for all t ∈ [0, t1],

2. un(t) =

{
vn(t) for all t ∈ [0, t0]

1 for all t ∈ (t0, t1]
,

3. un(t) = 1 for all t ∈ [0, t1].

Let a ∈ (0, t1] be arbitrary.

lim
t→0−

|un(t)− un(a)

t
| = lim

t→0−
|P (vn(t)− P (vn)(a)

t
|.
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so for the first case where un(t) = vn(t) for all t ∈ [0, t1] it follows that

lim
t→0−

|P (vn(t)− P (vn)(a)

t
| = lim

t→0−
|vn(t)− vn(a)

t
| = v̇n(a).

For the second case it holds that

lim
t→0−

|P (vn(t)− P (vn)(a)

t
|

{
= limt→0− |vn(t)−vn(a)

t | = v̇n(a) for all t ∈ [0, t1]

= limt→0−
1−1
t = 0 for all t ∈ (t0, t1],

For the final case where un(t) = 1, for all t ∈ [0, t1] it holds that

lim
t→0−

|P (vn(t)− P (vn)(a)

t
| = lim

t→0−
|1− 1

t
| = 0.

Since the left derivative of un(t) exists for every case, it exists for every t ∈ (0, t1] and is
denoted by u̇n(t−). Since 2 was assumed to be true, it follows that u̇n(t1) = 0 since un(t) = 1
for all t ∈ [t0, t1]. Then

v̈n(t1−) = d(u̇n−1(t1−)− 2u̇n(t1−)+ u̇n+1(t1−))+h(u̇n(t1−)) = d(u̇n−1(t1−)+ u̇n+1(t1−)) ≥ 0

where u̇n−1(t1−) ≥ 0 and u̇n+1(t1−) ≥ 0.
If v̈n(t1−) > 0, this would imply that v̇n(t1 − ϵ) < 0 for some small positive ϵ, which is
impossible. Therefore v̈n(t1−) = 0 and thus

u̇n−1(t1−) = 0 and u̇n+1(t1−) = 0.

The inequality vn−1(t1) > 1 would give v̇n(t1) = h(1) > 0 which is not possible. Therefore it
holds that v̇n−1(t1) = u̇n−1(t1−) = 0. By repeating this argument for j ∈ {0, n− 1} it follows
that

u̇j(t1−) = 0 for j = 0, 1, ..., n− 1. (4.6)

If vn+1 > 1 then un+1(t) = 0 for t sufficiently close to t1 and since 0 ≤ u0 ≤ ... ≤ uN ≤ 1, it
follows that u̇n+1(t1) = ... = u̇N (t1−) = 0. If vn+1 ≤ 1, then v̇n+1 ≤ 1, then
v̇n+1(t1) = u̇n+1(t1−) = 0. So together with equation (4.6) it can be concluded that

u̇n(t1−) = 0 for n = 0, 1, ..., N.

Let n1 be the maximal n ∈ {0, 1, ..., N} for which un(t) < 1 for all 0 ≤ t < t1. Then there
exists t0 ∈ [0, t1) such that u̇n = d(un−1 − 2un + un+1) + h(un) for n = 0, 1, ..., n1, where
un1+1 = 1 for t ∈ [t0, t1]. Since u̇n(t1−) = 0 for n = 0, 1, ..., N , one has u̇n(t1) = 0 for
n = 0, 1, ..., n1 and by the uniqueness of the initial value problem un(t) = un(t1) for
t ∈ [t0, t1], n = 0, 1, ..., n1. Therefore v̇n(t) = 0 for all t ∈ (t0, t1) and n ∈ {0, 1, ..., n1} in
contradiction to the choice of t1. Therefore, it can be concluded that t1 = ∞ and therefore the
unique solution u(t) of the initial value problem satisfies properties 1, 2, and 3 for all t ≥ 0.

For d > −h(0) and N ∈ N, the sets C(h, d,N) and O(h, d,N) are defined as

C(h, d,N) =
{
x ∈ RN+1 : x0 = 1, x1 =

−h(0)
d

≤ x2 ≤ ... ≤ xN ≤ 1, and xn ≥ n

N
,

for n = 1, 2, .., N
}
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O(h, d,N) =
{
x ∈ RN+1 : d(xn−1 − 2xn + xn+1) + h(xn) > 0,

for n = 1, 2, ..., N,where xN+1 = 1
}
.

Note that every element in C ∩O satisfies Lemma 4.3.1. Furthermore, the function
t∗ : C ∩O → (0,∞] is defined by t∗(x) = sup{t : u0(x; t) < −h(0)

d } and the map
T : {x ∈ C ∩O : t∗(x) <∞} → RN+1 is defined by

(Tx)n =

{
0 for n = 0

un−1(x; t
∗) for n = 1, ..., N.

Lemma 4.3.2. T{x ∈ C ∩O : t∗(x) <∞} ⊂ O

Proof. Suppose x ∈ C ∩O. If x satisfies xn < xn+1 whenever 0 < xn < 1 then by Lemma 4.3.1
it follows that Tx ∈ O. If x does not necessarily satisfy xn < xn+1 whenever 0 < xn < 1, it
will be proven that it still follows that Tx ∈ O. Define n1 as the largest n ∈ {0, 1, ..., N} for
which xn < 1 and define for ϵ > 0

xϵn =

{
xn + nϵ for n = 0, ..., n1

xn for n = n1 + 1, ..., N.

For ϵ small it follows that xϵ ∈ C ∩O and xϵn < xϵn+1 whenever 0 < xϵn < 1. By Lemma 4.3.1
u(xϵ, t∗(x)) satisfies d(un−1 − 2un + un+1) + h(un) > 0 whenever 0 < un, where uN+1 = 1 and
u−1 = 0. Now since xϵ → x as ϵ→ 0 and u is continuous, it follows that y = u(x; t∗) satisfies
d(yn−1 − 2yn + yn+1) + h(yn) ≥ 0 whenever 0 < yn. In the proof of Lemma 4.3.1 the
contradiction that d(yn−1 − 2yn + yn+1) + h(yn) = 0 was derived. This contradiction thus
implies that d(yn−1 − 2yn + yn+1) + h(yn) > 0 whenever 0 < yn. Therefore again by Lemma
4.3.1 Tx ∈ O. Now suppose x ∈ C ∩O. Then there exists a sequence {xk} in C ∩O such that
xk → x as k → ∞. Since u(xk, t∗(x)) also satisfies d(un−1 − 2un + un+1) + h(un) > 0 whenever
0 < un for each k, using the same argument as before, the same result applies for u(x, t∗(x)).
Therefore Tx ∈ O and thus for every x ∈ {x ∈ C ∩O : t∗(x) <∞}, x ∈ O and it can be
concluded that T{x ∈ C ∩O : t∗(x) <∞} ⊂ O.

Lemma 4.3.3. For every h ∈ Bapp there exists a positive δ such that
T{x ∈ C ∩O : t∗(x) <∞} ⊂ C for N ≥ 1

δ .

Proof. Define y = Tx. Since t∗(x) is defined as t∗(x) = sup{t : u0(x; t) < −h(0)
d }, it follows that

y0 = 0 and y1 =
−h(0)

d . By the same argument as in the proof of Lemma 4.3.2 the result that
y1 ≤ y2... ≤ yN ≤ 1 follows. To prove that for N ≥ 1

δ , T{x ∈ C ∩O : t∗(x) <∞} ⊂ C it
remains to prove that there exists a δ > 0 such that yn ≥ n

N for n = 1, ..., N , whenever N ≥ 1
δ .

Define δ = min{δ1, δ2, δ3, δ4, δ5, δ6}, the values of δi for i = 1, ..., 6 will be constructed along the
way. Define a, b,m1 and m2 such that

• a ∈ (0, 1) is the unique zero of h,

• b(x) = maxa≤s≤x h(s) for x ∈ [a, 1],

• m1 = d+ sup0≤s≤1 |h(s)|,

• m2 = m1(4d+ sups ̸=t |
h(s)−h(t)

(s−t) |).
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Now suppose that N ≥ 1
δ and suppose that yn ≤ a. Because y ∈ O(h, d,N) it follows that

d(yn−1 − 2yn + yn+1) + h(yn) > 0

d(yn−1 − 2yn + yn+1) > −h(yn)

yn−1 − 2yn + yn+1 >
−h(yn)

d

yn−1 − yn > yn − yn−1 −
h(yn)

d
.

Since yn ≤ a and thus h(yn) ≤ 0,it follows that

yn−1 − yn > yn − yn−1. (4.7)

By induction it will be proven that for i = 1, ..., n+ 1, yi+1 − yi > y1 − y0. When i = 1,
y2 − y1 > y1 − y0 follows from equation (4.7). Hence, the equation fulfills the basis step. Now
assume that the following induction hypothesis is true: for i = k, yk+1 − yk > y1 − y0. Then
for i = k + 1

yk+1 − yk+1 > yk+1 − yk > y1 − y0

again by equation (4.7). Hence by induction, yi+1 − yi > y1 − y0 for i = 1, ..., n+ 1. Define

δ1 =
−h(0)

d . Then y1 − y0 =
−h(0)

d = δ1, and it follows that yi − y0 =
∑i

j=1 yj − yj−1 and thus

yi − y0 > i(−h(0)
d ) = iδ1 and thus yi > iδ + y0 ≥ iδ1 ≥ iδ = i

N for i = 1, ..., n+ 1. If yN−1 ≤ a,
then the conclusion follows. Otherwise there is an index n0 such that yn0−1 ≤ a and yn0 > a.
Hence to prove the lemma, it remains to check that yn ≥ n

N for n = n0 + 1, ..., N . Now define

δ2 = max{x− a : a < x ≤ 1 and b(x) ≤ (d2)δ1}. Either yn ≤ a+ δ2 in which case

yn0+1 − yn0 > (yn0 − yn0−1)− (
1

d
)h(yn0) ≥ δ1 −

1

2
δ1 =

1

2
δ1

or yn0 > a+ δ2. Now define δ3 = min{1
2δ1, δ2}. Then it suffices to show that yn ≥ n

N for
yn ≥ a+ δ3. This will be proven by contradiction. Let n1 be the smallest index for which
yn1 ≥ a+ δ3 and yn1 <

n1
N . Then

n1 − 2

N
≤ xn1−2 ≤ xn1−1 ≤ yn1 <

n1
N

and xn1−1 ≥ a+ δ3
2 . Now define δ4 =

δ3
2 and δ5 = min{h(s)

4d : a+ δ3
2 ≤ s ≤ 1}. Since

1
N ≤ δ5 ≤

h(xn1−1)

4d , it follows that

xn1−1 − xn1−2 <
n1
N

− n1 − 2

N
=

2

N
≤ h(xn1 − 1)

2d
.

Suppose 0 < un(0) < 1 and 0 < un(t) < 1. The goal is to find an estimation for
|u̇n(t)− u̇n(0)|. Firstly,

|u̇n(t)− u̇n(0)| = |d(un−1(t)− 2un(t) + un+1(t)) + h(un(t))

− d(un−1(0)− 2un(0) + un+1(0))− h(un(0))|
= |d(un−1(t)− un−1(0)− 2un(t) + 2un(0)

+ un+1(t)− un+1(0)) + h(un(t))− h(un(0))|
≤ |d||(un−1(t)− un−1(0)− 2un(t) + 2un(0) + un+1(t)− un+1(0))|
+ |h(un(t))− h(un(0))|

≤ d

∫ t

0
|u̇n−1(s)− 2u̇n(s) + u̇n+1(s)|ds+

|h(un(t)− h(un(0))|
|un(t)− un(0)|

|un(t)− un(0)|.
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Filling in the formula again then gives

|u̇n(t)− u̇n(0)| ≤ d

∫ t

0
|d(un−2(s)− 2un−1(s) + un(s)− 2un−1(s) + 4un(s)− 2un+1(s)

+ un(s)− 2un+1(s) + un+2(s) + h(un−1(s))− 2h(un(s)) + h(un+1(s))|ds

+
|h(un(t)− h(un(0))|

|un(t)− un(0)|

∫ t

0
|d(un−1(s)− 2un(s) + un+1(s)) + h(un(s))|ds

≤ d2
∫ t

0
|un−2(s)− 4un−1(s) + 6un(s)− 4un+1(s) + un+2|ds

+ d

∫ t

0
|h(un−1(s))− 2h(un(s)) + h(un+1(s))|ds

+
|h(un(t)− h(un(0))|

|un(t)− un(0)|
d

∫ t

0
|un−1(s)− 2un(s) + un+1(s)|ds

+
|h(un(t)− h(un(0))|

|un(t)− un(0)|

∫ t

0
|h(un(s))|ds.

Let’s first examine the first part of this equation. It can be rewritten as

d2
∫ t

0
|un−2(s)− 4un−1(s) + 6un(s)− 4un+1(s) + un+2|ds =

d2
∫ t

0
| − (un−1 − un−2) + 3(un − un−1)− 3(un+1 − un) + (un+2 − un+1)|ds.

Since it was assumed that 0 < un(0) < 1 and 0 < un(t) < 1 and the un’s follow the ordering
property, it follows that 0 ≤ uj − uj−1 ≤ 1 for j = 1, ..., N . Suppose (un − un−1) = 1. Then
un = 1, un−1 = 0 and by the ordering property it follows that un+1 = un+2 = 1 and
un−1 = un−2 = 0. Then | − (un−1 − un−2) + 3(un − un−1)− 3(un+1 − un) + (un+2 − un+1)| = 3.
The same conclusion follows if (un+1 − un) = 1. Therefore, the maximum value of
| − (un−1 − un−2) + 3(un − un−1)− 3(un+1 − un) + (un+2 − un+1)| is 3. Thus it follows that

d2
∫ t

0
|un−2(s)− 4un−1(s) + 6un(s)− 4un+1(s) + un+2|ds ≤ d2

∫ t

0
3ds

= d23t.

For computation purposes, define the following

M = sup
0≤s≤1

|h(s)|,

L = sup
s ̸=t

|h(s)− h(t)|
|s− t|

.

Then it follows that

d

∫ t

0
|h(un−1(s))− 2h(un(s)) + h(un+1(s))|ds ≤ d

∫ t

0
4Mds

= d4tM.
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By the same argument as before

|h(un(t)− h(un(0))|
|un(t)− un(0)|

d

∫ t

0
|un−1(s)− 2un(s) + un+1(s)|ds ≤ dL

∫ t

0
|un−1(s)− 2un(s) + un+1(s)|ds

≤ dL

∫ t

0
|(un+1 − un)− (un − un−1)|ds

= dL

∫ t

0
1ds

= dLt.

Finally it follows that

|h(un(t)− h(un(0))|
|un(t)− un(0)|

∫ t

0
|h(un(s))|ds ≤ LM

∫ t

0
1ds

= LMt.

Recall that m1 = d+ sup0≤s≤1 |h(s)| and m2 = m1(4d+ sups ̸=t |. Combining these results then
gives

|u̇n(t)− u̇n(0)| ≤ d2
∫ t

0
|un−2(s)− 4un−1(s) + 6un(s)− 4un+1(s) + un+2|ds

+ d

∫ t

0
|h(un−1(s))− 2h(un(s)) + h(un+1(s))|ds

+
|h(un(t)− h(un(0))|

|un(t)− un(0)|
d

∫ t

0
|un−1(s)− 2un(s) + un+1(s)|ds

+
|h(un(t)− h(un(0))|

|un(t)− un(0)|

∫ t

0
|h(un(s))|ds

≤ d23t+ d4tM + dLt+ LMt

= t(3d2 + d4M + dL+ LM)

≤ t(4d2 + d4M + dL+ LM)

= t(d+M)(4d+ L)

= t(d+ sup
0≤s≤1

|h(s)|)(4d+ sup
s ̸=t

|h(s)− h(t)|
|s− t|

)

= t(m1(4d+ sup
s ̸=t

|h(s)− h(t)|
|s− t|

))

= tm2.

Thus an estimation for |u̇n(t)− u̇n(0)| has been found, namely

|u̇n(t)− u̇n(0)| ≤ tm2.

This implies that u̇n(t) ≥ u̇n(0)− tm2 and thus u̇n(t) ≥ 1
2 u̇n(0) for 0 ≤ t ≤ u̇n(0)

2m2
. This gives

un(t)− un(0) =

∫ t

0
u̇n(s)ds ≥ t

1

2
u̇n(0)
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for 0 ≤ t ≤ u̇n(0)
2m2

. Then deriving

u̇n1−1 = d(un1−2(0)− 2un1−1(0) + un1(0)) + h(un1−1(0))

≥ h(un1−1(0))− d(un1−1(0)− un1−2(0))

= h(xn1−1)− d(xn1−1 − xn1−2)

≥ h(xn1−1)

2
.

and using this for n = n1 − 1, gives

un1−1(t)− xn1−1 ≥ t
1

2
u̇n1−1(0) = t

1

2

h(xn1−1)

2
= t

h(xn1−1)

4

for 0 ≤ t ≤ h(xn1−1)

4m2
. The definition t∗(x) = sup{t : u0(x; t) < −h(0)

d } can be used to find that

−h(0)
d

= u0(t
∗)− u0(0) =

∫ t∗

0
u̇0(s)ds ≤ t∗supsu̇0(s)

and since u̇0(t) = d(u1(t)− 2u0(t)) + h(u0(t)), it follows that

t∗supsu̇0(s) ≥
−h(0)
d

t∗ ≥ −h(0)
d

1

supsu̇0(s)
.

Since sups(u1(s)− 2u0(s)) = 1 it follows that

sup
s
u̇0(s) = sup

s
d(u1 − 2u0)(s) + h(u0)(s)

, ≥ d+ sup
0≤s≤1

|h(s)|.

Thus it can be concluded that t∗ ≥ −h(0)
dm1

. Finally, define δ6 = min{dδ5
m2
, −h(0)

dm1
}dδ5. Tt then

follows that
un1−1(t

∗)− xn1−1 ≥ δ6

and thus
un1−1(t

∗) ≥ δ6 + xn1−1 ≥
n1
N
.

This is a contradiction to yn1 <
n1
N . Hence, it can be concluded that there exists a δ > 0,

namely δ = min{δ1, δ2, δ3, δ4, δ5, δ6}, such that yn ≥ n
N whenever N ≥ 1

δ .

4.4 Simplified problem

In this section, the simplified equation (4.2) is discussed. Since un = P (vn), the variable un
takes values in [0, 1]. Suppose un is a solution of this simplified equation on an interval [0, τ ]
satisfying the following conditions

1. un(τ) = un+1(0),

2. vn(0) ≤ vn+1(0),

3. d(un−1(0)− 2un(0) + un+1(0) + h(un(0)) > 0 if un(0) > 0,
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4. limn→−∞vn(0) = 0 and limn→∞vn(0) = 1.

By the Picard-Lindelöf theorem the solution to (4.2) exists on t ∈ [0, τ ] and is unique. By
Lemma 4.3.1 the initial values x are invariant under the flow of u(t). By theorem 3.1.5 the
solution u(t) is independent of t. Then un(τ) = un+1(0) implies that un+1(t) = un(t+ τ).
Iterating n times then gives

un(t) = u0(t+ nτ)

= u0(τ(n+
t

τ
)).

Furthermore, un(−∞) = limn→−∞vn(0) = 0 and un(∞) = limn→∞vn(0) = 1. Now define
U(s) = u0(τs). Then the conditions imply the existence of a function U : R → R with
U(−∞) = 0, U(∞) = 1 and 0 ≤ U ≤ 1 such that un(t) = U(n+ ct) and τ = 1

c for all
n ∈ Z, t ∈ [0, τ ]. Therefore, the solution to (4.2) is a traveling wave solution.

Suppose a is the unique zero of h ∈ Bapp in (0,1).

Lemma 4.4.1. Suppose x is a fixed point of T , and let τ = t∗(x). Let e(h) = mina
4
≤s≤a

2

−h(s)
d ,

m(h) = min
{a(h)

4 , e(h)
}
and M(h) = max0≤s≤1{2d+ h(s)}. Then τ ≥ τ0(h) =

m(h)
M(h) > 0.

Proof. Suppose there exists an integer n such that a
4 ≤ xn ≤ a

2 . Tx ∈ O by Lemma 4.3.2, so
we have

d(xn−1 − 2xn + xn+1) + h(xn) > 0

d(xn−1 − 2xn + xn+1) > −h(xn)

xn−1 − 2xn + xn+1 >
−h(xn)

d

−2xn + xn+1 >
−h(xn)

d
− xn−1

xn+1 − xn >
−h(xn)

d
+ xn − xn−1

xn+1 − xn > e(h) + xn − xn−1

xn+1 − xn > e(h).

Suppose there does not exist an integer n such that a
4 ≤ xn ≤ a

2 . Then this inequality also
holds for n+ 1. Since xn+1 ≥ xn it follows that xn+1 − xn >

a
4 . Either way, there exists an

integer n such that xn ≤ a
2 and xn−1 − xn ≥ m(h). Since u̇n(t) ≤M(h) for all t ≥ 0, the

following result follows

m(h) ≤ un+1(0)− un(0) = un(τ)− un(0) =

∫ τ

0
u̇n(t)dt ≤ τM(h)

from which it follows that τ ≥ m(h)
M(h)

Lemma 4.4.1 will be used to prove the following lemma that shows that for a monotone
traveling wave only finitely many of the values xn = un(0) are different from 0 and 1.

Lemma 4.4.2. Let ϵ0 =
1
2min{a,1-a} and for x = {x0}N0 let #(x, e) be the number of x′ns in

x such that ϵ < xn < 1− ϵ. Then for all ϵ ∈ [0, ϵ0] there exists a bound S(e, h) independent of
N such that #(x, ϵ) ≤ S(ϵ, h) for all x ∈ {x ∈

⋃
N C ∩O : Tx = x}.
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Proof. Let h ∈ Bapp and ϵ ∈ [0, ϵ0] be arbitrary and assume x is a fixed point of T . Define
p(ϵ, h) as p(ϵ, h) = maxϵ≤s≤a

2

d
−h(s) and suppose ϵ < xi ≤ xi+1 ≤ ... ≤ xj ≤ a

2 . It follows that

j + 1− i ≤ p(ϵ, h) as

1 ≥ xj+1 − xi

=

j∑
n=i

(xn+1 − xn)

≥
j∑

n=i

(xn − xn−1)−
1

d

j∑
n=i

h(xn)

≥ −1

d

j∑
n=i

h(xn)

≥ j + 1− i

p(ϵ, h)
.

Thus the number of x′ns with ϵ < xn ≤ a
2 is bounded above by p(ϵ, h). In the proof of Lemma

4.4.1 it is shown that there exists an integer n0 such that xn0 ≤ a
2 and xn0+1 − xn0 ≥ m(h)

where m(h) is defined as in Lemma 4.4.1. Since for all 0 ≤ xn ≤ a

xn+1 − xn > xn − xn−1 −
1

d
h(xn)

≥ xn − xn−1

it follows that for all a
2 ≤ xn ≤ a, xn+1 − xn ≥ m(h). Therefore, the number of xn’s with

a
2 ≤ xn ≤ a is bounded above by 1 + a

2m(h). Now define

• b(x, h) = maxa≤s≤x
h(s)
d ,

• σ1(h) = max{x− a : a ≤ x ≤ 1, b(x, h) ≤ m(h)
2 },

• σ2(h) = min{σ1(h), m(h)
2 }.

Since σ1 > 0 and m(h) > 0, it follows that σ2(h) > 0. Either xn0 ≤ a+ σ1(h) or
xn0 > a+ σ1(h). If xn0 ≤ a+ σ1(h), then

xn0+1 − xn0 > (xn0 − xn0−1)−
1

d
h(xn0)

≥ m(h)− 1

2
m(h)

=
m(h)

2
.

In both cases, there is at most one xn such that a < xn ≤ a+ σ2(h). Suppose
a+ σ2(h) ≤ xn ≤ xn+1 < 1− ϵ. For τ = t∗(x) and 0 ≤ s ≤ τ , u̇n(s) is estimated as follows

u̇n = d(un−1 − 2un + un+1) + h(un)

≥ h(un)− d(un − un−1)

≥ min
xn≤s≤xn+1

h(s)− d(xn+1 − xn−1).
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Then

xn+1 − xn−1 > xn+1 − xn

= un(τ)− un(0)

=

∫ τ

0
u̇n(s)ds

≥
∫ τ

0
min

xn≤s≤xn+1

h(s)− d(xn+1 − xn−1)ds

= τ( min
xn≤s≤xn+1

h(s)− d(xn+1 − xn−1))

= τ( min
xn≤s≤xn+1

h(s))− dτ(xn+1 − xn−1)).

It follows that

xn+1 − xn−1 + dτ(xn+1 − xn−1) ≥ τ( min
xn≤s≤xn+1

h(s))

(1 + dτ)(xn+1 − xn−1) ≥ τ( min
xn≤s≤xn+1

h(s))

xn+1 − xn−1 ≥
τ

dτ + 1
( min
xn≤s≤xn+1

h(s)).

Since τ
dτ+1 ≥ τ0

τ0+1 for τ ≥ τ0, one concludes by Lemma 4.4.1 that

xn+1 − xn−1 ≥ τ3 =
τ0(h)

dτ0(h) + 1
( min
a+τ2≤s≤1−ϵ

h(s)).

So since it was assumed that a+ τ2 ≤ xi ≤ ... ≤ xj+1 < 1− ϵ, then

2 ≥
∑j

n=i(xn+1 − xn−1) ≥ (j + 1− i)τ3(h) and therefore that j − i ≤ 2
τ3(h)

+ 1. Therefore, this

shows that the number of xn’s such that a+ τ2 ≤ xn < 1− ϵ is bounded above by 2
τ3(h)

+ 1.
The following conclusions have thus been drawn:

• The number of xn’s with ϵ < xn ≤ a
2 is bounded above by p(ϵ, h),

• The number of xn’s with
a
2 ≤ xn ≤ a is bounded above by 1 + a(h)

2m(h) ,

• There is at most one xn such that a < xn ≤ a+ τ2(h),

• The number of xn’s such that a+ τ2 ≤ xn < 1− ϵ is bounded above by 2
τ3(h)

+ 1.

Summarizing these conclusions gives

#(x, ϵ) ≤ p(ϵ, h) + (1 +
a(h)

2m(h)
+ 1 + (

2

τ3(h)
+ 1) = S(ϵ, h)

for ϵ < xn < 1− ϵ.

Therefore it suffices to consider only finitely many solutions of the simplified problem 4.2.

4.5 Fixed point problem

For this section the following initial value problem is considered

v̇n = d(un−1 − 2un + un+1) + h(un),

un = P (vn),

vn(0) = xn with 0 ≤ xn ≤ 1 for n = 0, ..., N.

(4.8)
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Then for u−1 = 0 and uN+1 = 1 the initial value problem has a unique solution by the Picard
Lindelöf theorem 3.1.2. By Theorem 3.1.5 it follows that this solution depends continuously
on the initial value x = {xn}Nn=0. For computation purposes, the set X is defined as

X =
{
{xn}Nn=0 ∈ RN+1 : x0 = 0, x1 =

−h(0)
d

, xn ≤ xn+1,

d(xn−1 − 2xn + xn+1) + h(xn) > 0,

xn ≥ n

N
, for n = 1, .., N,where xN+1 = 1

}
.

Note that X = C ∩O and thus every element of X satisfies Lemma 4.3.1. Then the following
shifted Poincaré map T : X̄ → RN+1 is considered

(Tx)n =

{
0 for n = 0

un−1(x; τ) for n = 1, .., N
(4.9)

where τ is defined by u0(x; τ) = x1. Further details on Poincaré maps can be examined in the
book of Teschl [Tes12].
The following two lemmata will be used to show that for d sufficiently large t∗(x) <∞ for all
x ∈ C ∩O.

Lemma 4.5.1. Let x ∈ C(h, d,N) ∩O(h, d,N), u̇(t) = u̇(x, t), and D > 0. Suppose that for
all n ∈ {1, 2, ..., N}, 0 < un(t) < 1 implies u̇n(t) < D. Then for all k ∈ N for which
d ≥ k2(D + sup |h|), un(t)− un−1(t) ≤ 2

k for n = 1, 2, ..., N .

Proof. To simplify the notation, let △n = un(t)− un−1(t). For 0 < un(t) < 1 one has
u̇n = d(un−1 − 2un + un+1) + h(un) and therefore

△n+1 −△n = un+1(t)− un(t)− (un(t)− un−1(t))

= un+1(t)− 2un(t)− un−1(t)

=
1

d
(u̇n(t)− h(un(t)).

Now using the assumption that u̇n(t) < D and d ≥ k2(D + sup |h|), it follows that

|△n+1 −△n| = |1
d
(u̇n(t)− h(un(t))|

< |1
d
(D − h(un(t))|

≤ 1

k2

if 0 < un < 1. Now suppose that un(t) = 0, then n = 0, t = 0, and u1(0) =
−h(0)

d . Since

d(△n+1 −△n) + h(un) > 0, it follows that |△n+1 −△n| = −h(0)
d < 1

k2
. If un(t) = 1, then

△n+1 = 0. Again since d(△n+1 −△n) + h(un) > 0, it follows that −d△n > −h(un) and thus

|△n+1 −△n| = h(1)
d < 1

k2
. In both cases, one has |△n+1 −△n| ≤ 1

k2
. Now contradiction will be

used to prove that un(t)− un−1(t) ≤ 2
k for n = 1, 2, ..., N . Suppose by contradiction that there

exists an n0 such that △n0 >
2
k . Then

△n0+m = △n0 −
m∑
i=1

(△n0+i−1 −△n0+i) >
2

k
− m

k2
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and thus for m = 0, 1, ..., k for △n0+m > 1
k . Since △N+1 = 0, this implies that n0 + k ≤ N .

Therefore

1 ≥ un0+k(t)− un0−1(t) =

k∑
m=0

△n0+m >

k∑
m=0

1

k
=
k + 1

k

which leads to a contradiction. Thus for all k ∈ N, for which d ≥ k2(D + sup |h|) it follows
that un(t)− un−1(t) ≤ 2

k for n = 1, 2, ..., N .

Lemma 4.5.2. There exists a number d1 which depends only on sup |h|, sups ̸=t
h(s)−h(t)

(s−t) and∫ 1
0 h(s)ds, such that for all x ∈ C(h, d,N) ∩O(h, d,N), t ∈ [0, t∗), d > d1, the following holds

sup
n
u̇n(t) ≥

1

2

∫ 1

0
h(s)ds.

The supremum here is taken over all n for which 0 < un < 1.

Proof. Let n1 > 0 be such that un1(t) < 1. For this proof assume that t is fixed. The
definition of u̇n = d(un−1 − 2un + un+1) + h(un) for n = 0, ..., n1 implies that

u̇n(un+1 − un) = (d(un−1 − 2un + un+1) + h(un))(un+1 − un)

= d(un+1un−1 − unun−1 − 2unun+1 + 2u2n + u2n+1 − unun+1) + h(un)(un+1 − un)

and

u̇n(un − un−1) = (d(un−1 − 2un + un+1) + h(un))(un − un−1)

= d(un−1un − u2n−1 − u2n + 2unun−1 + un+1un − un+1un−1) + h(un)(un − un−1).

Adding the two results gives the following

u̇n(un+1 − un) + u̇n(un − un−1) = h(un)(un+1 − un + un − un−1)+

d(un+1un−1 − 2unun+1 + u2n+1 − un−1un + 2u2n − unun+1

+ un−1un − 2u2n + unun+1 − u2n−1 + 2un−1un − un−1un+1)

= h(un)(un+1 − un−1) + d(−2unun+1 + u2n+1 + 2un−1un − u2n−1)

= (un+1 − un−1)(h(un) + d(un−1 − 2un + un+1))

= (un+1 − un−1)u̇n

≤ ( max
0≤n≤n1

u̇n)(un+1 − un−1).

Adding this result over n from 0 to n1 gives

n1∑
n=0

h(un)(un+1 − un) + h(un)(un+1 − un) + d(u2n+1 − u2n−1 + 2un−1un − 2unun+1) =

n1∑
n=0

h(un)(un+1 − un) +

n1∑
n=0

h(un)(un − un−1) +

n1∑
n=0

d(u2n+1 − u2n−1 + 2un−1un − 2unun+1) =

n1∑
n=0

h(un)(un+1 − un) +

n1∑
n=0

h(un)(un − un−1) + d((un1+1 − un1)
2 − u20) ≤

( max
0≤n≤n1

u̇n)(un1+1 + un1 − u0)
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and therefore

n1∑
n=0

h(un)(un+1 − un) +

n1∑
n=0

h(un)(un − un−1) ≤ ( max
0≤n≤n1

u̇n)(un+1 + un1 − u0)

− (d((un1+1 − un1)
2 − u20))

≤ du20 + 2 max
0≤n≤n1

u̇n.

Since u0 ≤ u1 =
−h(0)

d , it follows that

n1∑
n=0

h(un)(un+1 − un) +

n1∑
n=0

h(un)(un − un−1) ≤
h(0)2

d
+ 2 max

0≤n≤n1

u̇n.

The conclusion will be proven by contradiction. Suppose u̇n < D = 1
2

∫ 1
0 h(s)ds for

n = 0, 1, ..., n1. The variable n1(d) is defined as the largest n ∈ {0, ..., N} such that un < 1. By

Lemma 4.5.1 there exists a number d1 such that d1 >
2(h(0))2∫ 1
0 h(s)ds

. Then for d > d1, it follows that

|
n1(d)∑
n=0

h(un)(un+1 − un)−
∫ 1

0
h(s)ds| < 1

4

∫ 1

0
h(s)ds

and

|
n1(d)∑
n=0

h(un)(un − un−1)−
∫ 1

0
h(s)ds| < 1

4

∫ 1

0
h(s)ds.

Since d > d1
h(0)2

d
<
h(0)2

d1
= h(0)2

∫ 1
0 h(s)ds

2h(0)2
=

1

2

∫ 1

0
h(s)ds.

Then

n1(d)∑
n=0

h(un)(un+1 − un) +

n1(d)∑
n=0

h(un)(un − un−1) > 2

∫ 1

0
h(s)ds− 2 ∗ 1

4

∫ 1

0
h(s)ds− h(0)2

d

=
3

2

∫ 1

0
h(s)ds− h(0)2

d

>

∫ 1

0
h(s)ds.

But this leads to a contradiction by the assumption

n1∑
n=0

h(un)(un+1−un)+
n1∑
n=0

h(un)(un−un−1)−
h(0)2

d
≤ 2 max

0≤n≤n1

u̇n < 2
1

2

∫ 1

0
h(s)ds =

∫ 1

0
h(s)ds

and thus the conclusion follows. Note that d1 only depends on sup |h|, sups ̸=t
h(s)−h(t)

(s−t) and∫ 1
0 h(s)ds.

Now define d2 = max{8, d1}, where d1 is chosen according to Lemma 4.5.2. δ is defined as
min{δ1, δ2, δ3, δ4, δ5, δ6} such that the conclusion of Lemma 4.3.3 holds. Now assume that
d > d2 and N ≥ 1

δ . Recall that h was assumed to be a linear function, namely h0(x) = x− 1
4 .
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For shorter notation, C0 = C(h0, d,N) and D0 = D(h0, d,N). By Lemma 4.3.1 and the proof
of Lemma 4.3.2 it follows that all un’s are nondecreasing. Then for t ∈ (0, t∗), by Lemma 4.5.2

N ≥
N∑

n=0

un(t)−
N∑

n=0

un(0) =

∫ t

0

N∑
n=0

u̇n(v−)dv ≥
∫ t

0
sup
n
u̇n(v−)dv ≥

∫ t

0

1

2
dv

∫ 1

0
h0(s)ds = t

1

2

∫ 1

0
h0(s)ds.

Therefore

t∗(x) ≤ 2N∫ 1
0 h0(s)ds

=M∗.

Now define T0 = T (h0). T was defined as T : {x ∈ C ∩O : t∗(x) <∞} → RN+1 by

(Tx)n =

{
0 for n = 0

un−1(x; τ) for n = 1, .., N
(4.10)

where τ is defined implicitly by u0(x; τ) = x1. The map T0 is well-defined on C0 ∩O0 as
t∗(x) ≤M∗. The map T0 has a fixed point by Brouwer’s fixed point theorem if the map
satisfies the following four properties

• C0 ∩O0 is a closed, bounded, and convex subset of RN+1,

• T0(C0 ∩O0) ⊂ C0 ∩O0,

• T0 is continuous,

• C0 ∩O0 is nonempty.

Lemma 4.5.3. C0 ∩O0 is a closed, bounded, and convex subset of RN+1.

Proof. By definition of the closure of a set, it follows that C0 ∩O0 is a closed set. Since for
every xn, it holds that 0 ≤ xn ≤ 1 the set has a lower and upper bound. Hence C0 ∩O0 is
bounded. It remains to prove that the set is convex. Suppose {a}Nn=0 and {b}Nn=0 are in RN+1

and that {a}Nn=0, {b}Nn=0 ∈ C0 ∩O0. Define θ as an arbitrary constant in [0, 1]. Since

a0 = b0 = 0, θa0 + (1− θ)b0 = 0. Furthermore, a1 = b1 =
−h0(0)

d and thus

θa1 + (1− θ)b1 = θ
−h0(0)
d

+ (1− θ)
−h0(0)
d

= θ
−h0(0)
d

+
−h0(0)
d

+ θ
h0(0)

d
=

−h0(0)
d

.

Since an ≤ an+1 and bn ≤ bn+1

θan + (1− θ)bn ≤ θan+1 + (1− θ)bn+1.

Since θ is a nonnegative constant, if d(an−1 − 2an + an+1) + h0(an) > 0, then also
θd(an−1 − 2an + an+1) + θh0(an) > 0. In a similar way, since (1− θ) is a nonnegative constant,
this implies that (1− θ)d(bn−1 − 2bn + bn+1) + (1− θ)h0(bn) > 0. So combining these results
gives

θd(an−1 − 2an + an+1) + θh0(an) + (1− θ)d(bn−1 − 2bn + bn+1) + (1− θ)h0(bn) > 0.

Finally, an ≥ n
N and bn ≥ n

N for n = 1, ..., N where aN+1 = bN+1 = 1 implies that

θan + (1− θ)bn ≥ θ
n

N
+ (1− θ)

n

N
=

n

N

for n = 1, ..., N where θaN+1 + (1− θ)bN+1 = 1. Therefore, it can be concluded that
θan + (1− θ)bn ∈ C0 ∩O0. Hence by definition the set is convex. In conclusion, C0 ∩O0 is a
closed, bounded and convex subset of RN+1.
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Lemma 4.5.4. T0(C0 ∩O0) ⊂ C0 ∩O0.

Proof. By Lemma 4.3.2 it follows that T0(C0 ∩O0) ⊂ O0. By Lemma 4.3.3 it follows that for
N ≥ 1

δ , T0(C0 ∩O0) ⊂ C0. Thus it can be concluded that T0(C0 ∩O0) ⊂ C0 ∩O0.

Lemma 4.5.5. T0 is continuous.

Proof. Define r : C0 ∩O0 × [0,M∗] → R by r(x, t) = u0(x; t), where M
∗ = 2N∫ 1

0 h0(s)ds
. Since

u0(x; t) = x1, this function is continuous. Furthermore, define s : C0 ∩O0 X [0,M∗] → R by

s(x, t) = −h(0)
d which is also a continuous function. Now let

G(t∗) = {(x, t) : x ∈ C0 ∩O0, t = t∗(x)} be the graph of t∗. Since u0(x; t) = x1, then
G(t∗) = {(x, t) : r(x, t) = s(x, t)}. Since G(t∗) is the pre-image of a closed set of a continuous
function, G(t∗) is closed in C0 ∩O0 × [0,M∗]. As C0 ∩O0 × [0,M∗] is compact, it follows that
G(t∗) is compact. Now suppose that t∗ is not continuous at a point x ∈ C0 ∩O0 × [0,M∗].
This implies that there exists ϵ > 0 and a sequence {xn}n∈N in C0 ∩O0 such that xn → x as
n→ ∞ and

|t∗(xn)− t∗(x)| ≥ ϵ (4.11)

for all n ∈ N. Since t∗(xn) ∈ [0,M∗] for all n ∈ N and is thus bounded, it follows by the
Bolzano-Weierstrass theorem that {xn}n has a subsequence {xnk

}n such that t(xnk
) → t

where t ∈ R. By equation (4.11) it follows that |t− t∗(x)| ≥ ϵ. For any x ∈ C0 ∩O0 and t ∈ R,
(x, t) ∈ G(t∗) implies that t = t∗(x) by the definition of the graph. It then follows that
(x, t) ̸∈ G(t∗). Hence, if (xnk

, t∗(xnk
)) ∈ G(t∗) then as n→ ∞, (x, t) ̸∈ G(t∗). Then G(t∗) is

not closed and therefore not compact. Hence, a contradiction has been reached. Thus it can
be concluded that t∗ is continuous. Then T0 is continuous by its definition. This concludes the
proof.

Lemma 4.5.6. C0 ∩O0 is nonempty.

Proof. To show that C0 ∩O0 is nonempty, it suffices to show that there exists at least one x
such that x ∈ C0 ∩O0. Recall that h0(x) = x− a. Let x0 = 0 and define inductively
xn+1 = xn + (n+ 1)ad for n = 0, 1, ..., n0 where n0 is such that xn0 ≤ a and xn0+1 > a. Then
for n = 1, ..., n0

d(xn−1 − 2xn + xn+1) + h0(xn) = d((xn+1 − xn)− (xn − xn−1)) + h0(xn)

= d(n+ 1)
a

d
− n

a

d
) + xn − a

= (n+ 1)a− na+ xn − a

= a+ xn − a

= xn

> 0.

Because of how xn+1 was defined inductively, it follows that xn+1 − xn = (n+1)a
d and

xn − xn−1 =
na
d . Now xn can be rewritten to

xn = (x1 − x0) + (x2 − x1) + ...+ (xn − xn−1

=
a

d
(1 + 2 + ...+ n)

=
a

d

n

2
(n+ 1)
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where the well-known result
∑n

n=1 k = n(n+1)
2 is used. Then since xn0 ≤ a < xn0+1, it follows

that a
d
n0(n0+1)

2 ≤ a < a
d
(n0+1)(n0+2)

2 . This then implies that 2d < (n0 + 1)(n0 + 2). So since
(n0 + 1)(n0 + 2)− 2d > 0, it follows that n20 + 3n0 + 2− 2d > 0 and moreover
n20 + 4n0 + 4− 2d > 0. Solving this inequality using the abc-formula gives

n0 >
−4 +

√
42 − 4(4− 2d)

2

=
−4 +

√
16− 16 + 8d

2

=
−4 +

√
8d

2

=
−4 + 2

√
2d

2

=
√
2d− 2.

Since d > 8, it follows that n0 >
√
2d− 2 > 2. Hence

xn0+1 = xn0 + (n0 + 1)
a

d
≤ a+

2a

n0
< a+

2a

2
= 2a.

Since a < xn0+1 < 2a, it follows that xn0+1 <
1
2 . Now define xn+1 = xn + (n0 + 1)ad for

n = n0 + 1, ..., n1 where n1 is such that xn1 ≤ 1
2 and xn1+1 >

1
2 . If n0 = n1, then no new xn’s

are constructed. Hence, suppose that n1 ≥ n0 + 1. Then for n = n0 + 1, ..., n1

d(xn−1 − 2xn + xn+1) + h0(xn) = xn − a > 0.

Next let xn+1 = xn + (n1 + n0 + 1− n)ad for n = n1 + 1, ..., n0 + n1. Then for
n = n1 + 1, ..., n0 + n1, it follows that

d(xn−1 − 2xn + xn+1) + h0(xn) = xn − 2a > 0.

Since

xn0+n1+1 = xn1+1 + (

n0∑
n=1

n)
a

d
= xn1+1 + xn0

and

xn1+1 = xn1 + (n0 + 1)
a

d
≤ 1

2
+ xn0+1 − xn0 < 1− xn0

it can be concluded that

xn0+n1+1 = xn1+1 + xn0 < 1− xn0 + xn0 = 1.

Define xn+1 = xn + a
d for n = n0 + n1 + 1, ..., n2 where n2 is such that 1− a

d ≤ xn2+1 < 1.
Then for n = n0 + n1 + 1, ..., n2, it follows that

d(xn−1 − 2xn + xn+1) + h0(xn) = xn − a > 0.

Finally let xn = 1 for all n = n2 + 2, ..., N . Then for n = n2 + 1, ..., N , it follows that

d(xn−1 − 2xn + xn+1) + h0(xn) > xn − 2a > 0.

Therefore, there exists an x ∈ C0 ∩O0 and thus it can be concluded that C0 ∩O0 is
nonempty.
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Thus by lemmata 4.5.3, 4.5.4, 4.5.5 and 4.5.6 it follows that the Poincaré map satisfies the
following properties

• C0 ∩O0 is a closed, bounded, and convex subset of RN+1,

• T0(C0 ∩O0) ⊂ C0 ∩O0,

• T0 is continuous,

• C0 ∩O0 is nonempty.

Then by Brouwer’s fixed point theorem 3.2.5, it follows that the map T0 has a fixed point.
Since the initial values x are invariant under the flow of u(t) by Lemma 4.3.1 and the solution
u(t) is independent of t by Lemma 3.1.5, it follows that the fixed point x corresponds to the
traveling wave {un(t)}∞−∞ of the simplified equation 4.2 where

un(t) =


0 for n ≤ −1

un(x; t) for 0 ≤ n ≤ N

1 for n ≥ N + 1

and t ∈ [0, τ ], where τ is defined implicitly by u0(x; τ) = x1.

4.6 Solution for general h

So far, the construction of T0 : X → RN+1 depends on h0. It was shown that, for certain
values of d, a traveling wave solution of the simplified discrete Nagumo equation (4.2) with
h0(x) = x− 1

4 was found. The goal is now to deform continuously h0 into h1, where h1 ∈ Bapp

such that the fixed points of Th0 are continued into the fixed points of Th1 . Let h1 ∈ Bapp.
The unique zero of h0 is defined as a0 and similarly, a1 as the unique zero of h1. Define the
following

h(λ, x) =


(1− λ

a0
)h0(x) +

λ
a0
g(a0, x) for 0 ≤ λ ≤ a0

g(λ, x) for a0 ≤ λ ≤ a1

( 1−λ
1−a1

)g(a1, x) +
λ−a1
1−a1

h1(x) for a1 ≤ λ ≤ 1

where g(λ, x) : [a0, a1]× [0, 1] → R is defined by

g(λ, x) = max{− (1−λ)2

4λ , x− λ}.

Therefore ∫ 1

0
g(λ, x) ≥

∫ λ

0
−(1− λ)2

4λ
+

∫ 1

λ
x− λ

=
−(1− λ)2

4
+

1

2
− λ− 1

2
λ2 + λ2

=
−(1− λ)2

4
+

(λ− 1)2

2

=
(λ− 1)2

4
> 0
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for a0 ≤ λ ≤ a1. Then since hλ = h(λ, ·) ∈ Bapp it follows that hλ = h(λ, ·) is a homotopy that
deforms h0(x) continuously into h1(x) in the set Bapp. Define the following

Cλ = C(hλ, d,N)

Oλ = O(hλ, d,N)

C = {(λ, x) : λ ∈ [0, 1], x ∈ Cλ}
O = {(λ, x) : λ ∈ [0, 1], x ∈ Oλ}.

By Lemma 4.5.2 there exists a constant d3 > d2 such that supn u̇n(t) ≥ 1
2

∫ 1
0 hλ(s)ds for all

(λ, x) ∈ C ∩O. For the rest of this section let d > d3. The definition of δ depends continuously
on h. Therefore a δ can be chosen such that the conclusion of Lemma 4.3.2 holds for all hλ.
For the rest of this section let N be some integer greater than 1

δ . Let t
∗ : C ∩O be defined by

t∗(λ, x) = sup{t : u0(x, hλ; t) < −hλ(0)
d }.

Then for t ∈ (0, t∗), by Lemma 4.5.2 it follows that

N ≥
N∑

n=0

un(t)−
N∑

n=0

un(0) =

∫ t

0

N∑
n=0

u̇n(v−)dv ≥
∫ t

0
sup
n
u̇n(v−)dv ≥

∫ t

0

1

2
dv

∫ 1

0
hλ(s)ds = t

1

2

∫ 1

0
hλ(s)ds.

Therefore

t∗(x) ≤ 2N∫ 1
0 hλ(s)ds

≤ 2N

(min0≤λ≤1

∫ 1
0 hλ(s)ds)

=M∗.

In section 4.5 it was proven that t∗(x) is continuous. Let T (λ, x) be defined by

(T (λ, x))n =

{
0 for n = 0

un−1(x, hλ; t
∗(λ, x)) for n = 1, ..., N.

Then by the definition of (T (λ, x))n and t∗(λ, x), it follows that T is continuous. Define
ϕ : [0, 1]× RN+1 → [0, 1]× RN+1 with ϕ(λ, x) = (λ, y), where y = {yn}Nn=0 is given by

yn =

{
hλ(0)
h0(0)

xn for n = 1

xn for n ̸= 1
(4.12)

Then ϕ : [0, 1]×RN+1 → [0, 1]×RN+1 is a homeomorphism. Let U = ϕ−1(C∩O) and A = C0.
Since C0 is closed and convex, there exists a function r : RN+1 → A such that r(a) = a for all
a ∈ A. Therefore, A is a retract of RN+1. The restriction of F : X → RN+1 to the slice Xλ is
denoted by Fλ : Xλ → RN+1. Define

F : U → A by F (λ, x) = ϕ−1
λ (T ). (4.13)

By lemmata 4.3.2 and 4.3.3 for (λ, x) ∈ C ∩O it follows that T (λ, x) ∈ Cλ ∩Oλ. Then by the
same arguments as in the proof of the second property of Lemma 4.3.1, for (λ, x) ∈ C ∩O it
follows that T (λ, x) ∈ Cλ ∩Oλ. Therefore, F (U) ⊂ A. Since O is an open set,
U = ([0, 1]×A)∩ ϕ−1(O) is an open subset of [0, 1]×A. Now the general homotopy invariance
theorem 3.3.4 can be used to conclude that i(Fλ, Uλ, A) is well defined and independent of
λ ∈ [0, 1]. Since

ϕ0(x) = ϕ(0, x) = (0, y) = (0, x) (4.14)
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it follows that F0 = T0 and U0 = C0 ∩O0. Since C0 is convex, it follows that U0 is also convex.
Therefore, the map F0 : U → U0 is constant and by the normalization property of Theorem
3.3.2 it follows that

i(F0, U0, A) = 1. (4.15)

Since i(Fλ, Uλ, A) is independent of λ ∈ [0, 1], it can be concluded that

i(F1, U1, A) = 1. (4.16)

Then by the solution property of the index of corollary 3.3.3, there exists an x ∈ U1, such that
F1x = x. Therefore ϕ1(x) is a fixed point of T1. This fixed point of T1 corresponds to a
traveling wave solution of (4.3).

4.7 Convergence of approximate solutions

In the simplified problem, f was substituted by h(un). Let {hk} be a sequence in Bapp that
converges to f in the norm defined by

∥h∥ = sup |h|+ sup
s ̸=t

|h(s)− h(t)

s− t
|

where s, t ∈ [0, 1]. By the previous chapters, there exists a number d3(hk) such that for every
hk ∈ Bapp

v̇n = d(un−1 − 2un + un+1) + hk(un),

un = P (vn)

for n ∈ Z has a traveling wave solution for d > d3(hk). According to Lemma 4.5.2, d3 depends

only on sup |hk|, sups ̸=t |
hk(s)−hk(t)

s−t | and
∫ 1
0 hk(s)ds. Therefore there exists a number d∗ <∞

such that equation (4.5) has a traveling wave solution for all d > d∗. Hence for the rest of this
section, suppose d is any number greater than d∗. Then for every k ∈ N there exists a
traveling wave solution vk to (4.5). Let xk = {xkn}∞n=−∞ ∈ ℓ∞ be defined by xkn = vkn(0). Then
there exists an integer nk such that

xknk
≤ 1

2
< xknk+1.

Then xk is shifted to the sequence yk such that yk0 ≤ 1
2 < yk1 . So let yk = {ykn}∞−∞ be defined

by ykn = xkn+nk
for n ∈ Z. Recall from Lemma 4.4.2 that for all ϵ ∈ [0, ϵ0] there exists a bound

S(ϵ, h) independent of N for the number of yn’s in y such that ϵ < yn < 1− ϵ. This bound was
defined as

S(ϵ, h) = p(ϵ, h) + (1 +
a(h)

2m(h)
) + 1 + (

2

σ3(h)
+ 1).

Since {hk} converges it follows that

lim sup
k→∞

S(ϵ, hk) = lim sup
k→∞

(p(ϵ, hk) + (1 +
a(hk)

2m(hk)
) + 1 + (

2

σ3(hk)
+ 1))

<∞.

Therefore, the number of fixed points of yn is finite. Since the sequence {yk} is bounded, the
sequence has a convergent subsequence in ℓ∞. Therefore,

lim
k→∞

yk = y for some y ∈ ℓ∞ with lim
n→−∞

yn = 0 and lim
n→∞

yn = 1.
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Define τk = t∗(xk), where t∗ = t∗(x) = sup{t : u0(x; t) < −h(0)
d }. Since τk is bounded, it follows

that

lim
k→∞

τk = τ for some 0 < τ <∞.

By Lemma 4.4.1, it follows that 0 < τ0(hk) ≤ τ . Furthermore since

1 =
∑
n

(un+1(0)− un(0))

=
∑
n

(un(τ)− un(0))

=
∑
n

∫ τ

0
u̇n(s)ds

=

∫ τ

0

∑
n

u̇n(s)ds

≥ τ inf
0≤t≤τ

(sup
n
u̇n(t)),

then by Lemma 4.5.2 it can be concluded that

τk ≤ 1

inf0≤t≤τ (supn u̇n(t))

≤ 1

supn u̇n(t)

≤ 1
1
2

∫ 1
0 hk(s)

=
2∫ 1

0 hk(s)

<∞.

Now consider the following initial value problem

u̇n = d(un−1 − 2un + un+1) + f(un)

vn(0) = yn

for n ∈ Z. It will now be shown that he solution {un} of this initial value problem is a
traveling wave with velocity c = 1

τ . {un} satisfies 0 ≤ un(t) ≤ 1 for all n ∈ Z and all t ≥ 0,
since un = 0 is a lower solution and un = 1 is an upper solution. Therefore {vn} where
vn = un is the unique solution of

v̇n = d(un−1 − 2un + un+1) + f(un)

un = P (vn)

vn(0) = yn

for n ∈ Z. Since the solution of this initial value problem depends continuously on its initial
condition y and on the function f , it can be concluded that un(t) is nondecreasing and
un(τ) = un+1(0). For all j ∈ Z and all s ∈ R, it holds that u̇j(s) ≥ 0. Suppose that u̇n(t) = 0
for some n ∈ Z and some t ∈ R. Then ün(t) exists and

ün(t) = d(u̇n−1(t) + u̇n+1(t)).
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Since u̇n−1(t) ≥ 0 and u̇n+1(t) ≥ 0, it follows that ün(t) ≥ 0. Now ün(t) > 0 would imply that
u̇n(t− ϵ) < 0 for sufficiently small ϵ > 0, which leads to a contradiction. Therefore, ün(t) = 0
and this implies that u̇n−1(t) = u̇n+1(t) = 0. Since this is true for every n ∈ Z, it follows that
u̇n(t) = 0 for all n ∈ Z. But this implies that the wave {un} has zero speed in contradiction to
c = 1

τ > 0. Therefore, it can be concluded that u̇n(t) > 0.
In this final step it has been shown that there exists some d∗ > 0 such that for d > d∗ the
discrete Nagumo equation 1.1 admits a continuous solution un(t) with 0 ≤ un(t) ≤ 1 for all
n ∈ Z and all t ≥ 0 and u̇n(t) > 0. This therefore completes the proof of Theorem 4.1.1.
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