
 
 

Delft University of Technology

A closed-form shear resistance model for regions of prestressed beams without flexural
cracks

Roosen, Marco A.; Yang, Yuguang; van der Veen, Cor; Schaafsma, Dick G.; Hendriks, Max A.N.

DOI
10.1002/suco.202100695
Publication date
2022
Document Version
Final published version
Published in
Structural Concrete

Citation (APA)
Roosen, M. A., Yang, Y., van der Veen, C., Schaafsma, D. G., & Hendriks, M. A. N. (2022). A closed-form
shear resistance model for regions of prestressed beams without flexural cracks. Structural Concrete, 23(3),
1304-1315. https://doi.org/10.1002/suco.202100695

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/suco.202100695
https://doi.org/10.1002/suco.202100695


AR T I C L E

A closed-form shear resistance model for regions of
prestressed beams without flexural cracks

Marco A. Roosen1,2 | Yuguang Yang2 | Cor van der Veen2 |

Dick G. Schaafsma1 | Max A. N. Hendriks2,3

1Dutch Ministry of Infrastructure and
Water Management, Utrecht, The
Netherlands
2Delft University of Technology
(TU Delft), Delft, The Netherlands
3Norwegian University of Science and
Technology (NTNU), Trondheim, Norway

Correspondence
Marco A. Roosen, Rijkswaterstaat,
Griffioenlaan 2, 3526 LA, Utrecht,
The Netherlands.
Email: marco.roosen@rws.nl

Abstract

When the shear resistance of prestressed beams with stirrups is determined

with the current Eurocode, no distinction is made between regions with and

without flexural cracks. This while it may be expected that a region without

flexural cracks will have a higher shear resistance. This is due to the lower lon-

gitudinal strains and the narrow crack widths, resulting in a higher contribu-

tion of aggregate interlock. Also, the Eurocode does not take into account that

in regions without flexural cracks, a significant part of the shear force is trans-

ferred through the uncracked flanges. This article proposes therefore a shear

resistance model, based on Modified Compression Field Theory (MCFT), that

does consider the low longitudinal strains and shear transfer through the

uncracked flanges. From a comparison it was found that the proposed model

can determine shear resistance as accurately as the most comprehensive level

III approach of the Model Code 2010. However, the proposed model was found

to be much easier to use in engineering practice as no iterations are necessary.

KEYWORD S

existing structures, prestressed concrete, regions without flexural cracks, shear resistance,
web-shear failure

1 | INTRODUCTION

A significant part of the concrete bridges in the Dutch
Highway network contains stirrups and is prestressed.
When carrying out structural assessments, it is frequently
found that the shear resistance of these prestressed

structures is insufficient, especially in the regions around
the end supports. On the other hand, in these regions no
flexural cracks are present in the flanges due to the pre-
stressing present, so that the longitudinal strains are low.
Due to the low longitudinal strains, the possible crack
widths in the web will be small, so that the contribution
of the aggregate interlock to the shear resistance will be
significant. Moreover, a considerable part of the shear
force will be transferred through the flanges because they
remain uncracked. These phenomena are not included in
the models used in the Eurocode1 or the additional Dutch
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assessment guideline.2 It is therefore unclear whether the
shear resistance of the assessed bridges is really too low.

Therefore, it was first evaluated whether these issues
can be solved with well-known existing shear resistance
models. This concerns, in addition to the variable angle
truss model3 as used in the Eurocode,1 other models such
as an empirical model derived by MacGregor et al.4 as
used in ACI,5 arch action models combined with truss
analogy as used in the Model Code 19906 and models
based on the MCFT as used in the Model Code 20107 and
the CSA.8 None of these models distinguish between
shear resistance in regions with and without flexural
cracks. This is apparent from the observation that all
these models relate the shear resistance to the effective
depth of the prestressing and reinforcing steel. While this
is a suitable assumption for regions with flexural cracks,
it is not for regions without flexural cracks. This is
because the prestressing and reinforcing steel are located
in the uncracked flange, making the location irrelevant
for the shear resistance. On the other hand, the models
based on the MCFT are strain-based and therefore do
take into account the higher aggregate interlock in
regions without flexural cracks. However, a disadvantage
of these current strain-based models is that the use is
laborious because many comparisons and iteration steps
are required to determine the shear resistance.

This article therefore proposes a closed-form, strain-
based shear resistance model that is suitable to determine
the shear resistance in the regions without flexural cracks.
The work is based on a recently published dissertation9 at
Delft University of Technology. In addition to the PhD
research, this article compares the proposed model with the
Level III approach as described in the Model Code 2010.

2 | SHEAR TRANSFER
MECHANISMS IN REGIONS
WITHOUT FLEXURAL CRACKS

Figure 1 shows a free-body diagram for a region without
flexural cracks and with diagonal tension cracks.

Diagonal tension cracks occur when the maximum prin-
cipal tensile stress in the web is equal to the tensile
strength of concrete. The diagonal stress crack can then
open further. This is possible, despite the longitudinal
strains being approximately zero, due to the increase in
transverse strains. This is for instance observed in strain
measurements of εz in experiments that failed in a region
without flexural cracks performed by Rupf.10

Along the edge of the free-body diagram, shear force
can be transmitted by three mechanisms:

1. Shear transfer along the diagonal tension crack by
stirrups crossing the diagonal tension crack, as
shown in the left part of Figure 1. The shear force
that is resisted by the stirrups (VR,s) equals the num-
ber of stirrups crossing the crack (zcr cotθ/s) multi-
plied by the force in the stirrups (Asw σw,cr). In these
equations, zcr is the cracked height, θ is the angle of
the crack, s is the distance between the stirrups, σw,cr
the stress in the stirrups in the crack and Asw the
area of shear reinforcement. The shear force resisted
by the stirrups can also be expressed as a distributed
stress, τs, by dividing VR,s by zcr and the cross-
sectional width bz. In this way a τs that equals to ρz
σw,cr cotθ is found, in which ρz denotes the ratio of
reinforcing steel in z direction.

2. Shear transfer by aggregate interlock stresses, τci,
along the diagonal tension crack, as shown in the
right part of Figure 1. The shear force that can be
resisted by aggregate interlock (VR,ci) can be found by
integrating τci over the cross-sectional width (bz) and
the cracked height (zcr).

3. Shear transfer by shear stresses in the uncracked con-
crete, τuncr, above and below the diagonal tension crack,
as shown in the right part of Figure 1. The shear force
that can be resisted by the uncracked parts (VR,uncr) can
be found by integrating τuncr over the cross-sectional
width (bz) and the uncracked height (zuncr).

The vertical component of prestress is not considered
a shear transfer mechanism because this article assumes

FIGURE 1 Possible shear transfer mechanism for a girder with stirrups in regions without flexural cracks
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the equivalent prestressing method, where prestress is
considered a load.

3 | SHEAR FAILURE MODES IN
REGIONS WITHOUT FLEXURAL
CRACKS

In regions without flexural cracks, two possible failure
modes of the web are distinguished, namely slipping of
the crack while the stirrups are yielding and crushing
of the concrete while the stirrups are yielding. For very
large amounts of shear reinforcement, it would theo-
retically also be possible for the concrete to crush with-
out the stirrups yielding. It is noted that the Model
Code 2010 (MC2010) distinguishes these same failure
modes.11

The shear failure modes are investigated by using
Response,12 which is a nonlinear sectional analysis pro-
gram based on the MCFT.13 The MCFT is a theory capa-
ble of determining the load-deformation response of a
membrane. Since the MCFT describes the behavior of
reinforced concrete subjected to shear and normal in-
plane stresses, it is also suitable to determine the resis-
tance of the web of a beam. Moreover, since the longitu-
dinal strain is a parameter in the MCFT, it is possible to
account for the low longitudinal strain and its effect on
the aggregate interlock. In addition to the MCFT,
Response assumes that the beam theory is valid and that
no transverse stresses are present.

The first failure mode to be investigated is the slip-
ping of the crack and the simultaneous yielding of the
stirrups. For this, a Response analysis was performed for
beam HX1-A, which was part of a series of experiments

by Hanson.14 Figure 2 shows the contribution of shear
transfer mechanism and associated parameters for the
load step at which the maximum shear resistance is
found. In this figure, τci is the shear stress on the crack
surface by aggregate interlock, w is the crack width, σw,cr
is the stress in the stirrups, θ is the angle of the crack, bz
is the width of the cross-section and τR is the total shear
stress that can be resisted according to Response. Slipping
of the crack is the governing failure mode because the
maximum shear resistance is found at the load step at
which τci equals τci,max. It is noted that the stirrups yield
at the crack width where τci equals τci,max.

At the maximum shear force, the associated stresses
in the compression field (σ2) are not governing for this
girder, as these are smaller than the maximum (σ2,max) as
shown in Figure 3.

The light gray area in Figures 2 and 3 show the part
of the cross-section that is cracked and the dark gray
areas show the uncracked parts. Because the longitudinal
stresses are affected by the bending moment, a small part
in the top of the web remains uncracked, whereas a small
part of the skew bottom flange is cracked.

The added contributions of aggregate interlock and
stirrups (bz τR) were found to be rather constant over the
cracked height (Figure 2). It is noted that, despite that
the maximum cracks width is decisive for the shear resis-
tance at crack sliding, the distribution of the aggregate
interlock stresses is not affected by the distribution of the
crack width, as for this failure mode the crack width only
determines τci,max. The stresses of the stirrups at the crack
(σw,cr) were found to be equal to the yielding strength
(fywm). Figure 2 also shows that the crack angle θ is
rather constant over the cracked height. Only at the
cracked part of the bottom flange the crack angle is

FIGURE 2 Contribution of shear transfer mechanism at failure of experiment HX1-A14
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higher than average, what causes a decrease in the con-
tribution of the stirrups. On the other hand, for the total
resistance bz τR, this decrease is compensated by an
increase in the contribution of the aggregate interlock
due to the increasing width of the cross-section.

The second failure mode under investigation is
crushing in the compression field and simultaneously
yielding of the stirrups. For this, a Response analysis was
performed on beam HCP1TE, which was part of a series
of experiments by Choulli.15 Figure 4 shows the stresses
in the compression field (σ2) and the maximum allowable
compressive stresses in the compression field (σ2,max) at
the load step where the maximum shear force was found.
Crushing of the concrete is the governing failure mode
because the maximum shear resistance is found at the
load step at which σ2 equals σ2,max.

Figure 5 shows the contribution of shear transfer
mechanism at failure and associated parameters for
HCP1TE. As with beam HX1-A, the cracked area extends

more into the bottom of the cross-section than the top,
because the moment affects the longitudinal stresses.

Also for this failure mode, both the added contribu-
tions of aggregate interlock and stirrups (bz τR) were
found to be rather constant over the cracked height
(Figure 5). In contrast to the girder HX1-A, the girder
HCP1TE could resist additional shear force after
τci = τci,max. As a consequence, w is decisive for the distri-
bution of τci for a considerable part of the cross-section
(height over which τci = τci,max), as shown in Figure 5. As
for beam HX1-A, the decrease in the contribution of the
stirrups in the lower flange due to the decrease in the
crack angle is compensated by an increase in the contri-
bution of the aggregate lock due to the increasing width
of the cross-section.

4 | DERIVATION OF A CLOSED-
FORM SHEAR RESISTANCE MODEL

4.1 | Mean shear resistance along
diagonal tension crack

The first step in the development of the proposed closed-
form shear resistance model is to derive the mean shear
stress that can be resisted along the diagonal tension
crack (τR) by aggregate interlock (τci) and stirrups (τs).
These stresses are derived using the MCFT which allows
to determine the shear resistance for each of the failure
modes described previously. The resistance to crack slid-
ing is equal to the shear at the load step where the aggre-
gate interlock at the crack (τci) is equal to the maximum
aggregate interlock (τci,max). The resistance to crushing in
the compression fields is equal to the shear at the load
step where the stress in the compression field (σ2) corre-
sponds to the maximum compression stress (σ2,max).

The resistance for each of these failure modes has
been determined using the MCFT for different combina-
tions of parameters (Table 1). Although the concrete cyl-
inder compressive strengths are assumed to vary between
fcm = 40 N/mm2 and fcm = 100 N/mm2, the intermediate
strengths of fcm = 60 and fcm = 80 N/mm2 are also con-
sidered. This is because when using the MCFT, dmax,
which is the maximum aggregate size, is linearly reduced
from its actual value at fcm = 60 N/mm2 to zero at
fcm = 80 N/mm2. This reduction takes into account that
for higher strength concrete the cracks run through the
aggregates due to the strong paste, resulting in a lower
contribution of aggregate interlock.

Fixed values have been used for a number of other
parameters. In regions without flexural cracks, the longi-
tudinal strains in the web (εx) will be slightly less than
zero. Since the longitudinal strain will not vary much

FIGURE 3 Stresses and maximum stresses in compression

field at failure of HX1-A14

FIGURE 4 Stresses and maximum stresses in compression

field at failure of HCP1TE15
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over the region without flexural cracks, the shear resis-
tance will also be approximately constant and the
moment will have no significant influence on the loca-
tion of failure. For simplicity, zero longitudinal strain will
be assumed to derive the shear resistance for the regions
without flexural cracks. Moreover, a diagonal cracking
spacing sθ of 300 mm is considered as a conservative
assumption for elements that contain both transverse
and longitudinal reinforcement. A fixed value for dmax of
31.5 mm was used, since this was used as standard in
bridges in the Dutch Highway network that were
designed before the 1974 design code16 came into effect.
In the Section 5, the effect of the presence of smaller
maximum aggregate sizes on the accuracy of predictions
will be investigated to clarify whether the proposed
model can also be applied for beams with a smaller maxi-
mum aggregate size. Considering the number of parame-
ters of Table 1, the resistances were determined for
40 combinations of parameters per failure mode.

The shear resistance is equal to the highest resistance
of both failure modes. This can be explained considering
a membrane element where the crack is just beginning to
slip (τci = τci,max). When the shear strain increase further
at the next load steps, two opposite phenomena occur:
(i) by the decreasing angle of the cracks, a higher number
of stirrups will be activated, increasing the shear that can
be transferred by the stirrups, while (ii) the crack width
will increase, reducing the shear that can be transferred
by aggregate interlock. If the shear transfer by aggregate
interlock decreases faster than the shear transfer by the
stirrups increases, then crack sliding will be governing. If
the contribution of the stirrups increases faster than the

aggregate interlock decreases, then ultimately crushing
in the compression field will be governing (σ2 = σ2,max).

Figure 6 shows τR that was found from the MCFT cal-
culations for fcm = 60 N/mm2 and fcm = 80 N/mm2 and
for different values of ψ which is defined as ρw fywm/fcm.
The resistance associated with crack sliding is plotted
with black circles and the resistance associated with
crushing in the compression field is plotted with gray dia-
monds. The shear resistance is equal to the highest resis-
tance of both failure modes. For fcm = 60 N/mm2 crack
sliding is found to be the highest and thus governing fail-
ure mode for zero longitudinal strain, independently of ψ
(this is also the case for fcm = 40 N/mm2). For
fcm = 80 N/mm2 it is also possible that crushing in the
compression field becomes the governing failure mode
for the condition of zero longitudinal strain (this is also
the case for fcm = 100 N/mm2). This is due to the phe-
nomenon that for fcm ≥ 80 N/mm2 the maximum aggre-
gate interlocking decreases as the cracks run through the
aggregates and thus the resistance to crack sliding
decreases. As a result, crushing the concrete turns out to
be the highest and thus governing failure mode for these
higher strengths of concrete for higher values of ψ .

The intent of the proposed model is to be able to
determine approximately the same resistance as that
found with a full MCFT analysis, but in a much simpler
way. Therefore, the resistance found using the MCFT at
zero longitudinal strain has been approximated with
closed-form equations. This prevents the need for exten-
sive MCFT analyses for each considered cross section of
each bridge assessed. The shear resistance at zero longitu-
dinal strain along the diagonal tension crack (τ'R) consists

FIGURE 5 Contribution of shear transfer mechanism at failure of experiment HCP1TE15

TABLE 1 Considered parameters

for proposed model
fcm fywm ρw εx dmax sθ

N/mm2 N/mm2 % mm/m mm mm

40, 60,80, 100 250, 600 0.10, 0.25, 0.50, 0.75, 1.00 0 31.5 300
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of a contribution of aggregate interlock (τ'ci, which corre-
sponds to β√fcm) and the contribution of the stirrups (τ's,
which corresponds to ρz fywm cotθ), as shown by
Equation (1). The apostrophe is introduced for parame-
ters that are related to the region without flexural cracks.

τ0R ¼ τ0sþ τ0ci ¼ ρwf ywcotθþβ
ffiffiffiffiffiffiffi

f cm
p

ð1Þ

To derive an equation for the contribution of aggregate
interlock, a linear equation β = ea + bψ was assumed.
The parameters a and b define a linear relation for β, for
fcm ≤ 60 N/mm2. The parameter e takes into account the
decrease in aggregate interlock contribution for
fcm ≥ 80 N/mm2. To derive an equation for the contribu-
tion of stirrups, a linear equation θ = c + dψ was
assumed. The parameters c and d define a linear relation
for θ. Initial values for a, b, c, d, and e were selected and
the resistance according to the approximation equations
was determined, which was then compared with the
resistance according to the MCFT. Subsequently,
the mean values of the ratio of both resistances and the
associated coefficient of variation were determined for
the 40 membranes. The values of a, b, c, d, and e were
then adjusted until the mean value of the ratio of the
resistances equals unity and a minimum coefficient of
variation was found (which was ultimately 4%). This
resulted in values for a, b, c, d, and e of 0.38, �2.5,
26, 0.0, and 0.8, respectively. In this way, the equations
β = 0.38–2.5ψ and β = 0.30–2.5ψ are found for, respec-
tively, fcm ≤ 60 N/mm2 and fcm ≥ 80 N/mm2. Moreover,
a fixed crack angle θ is found of 26�. The resistances
resulting from these equations are also shown in
Figure 6 as a solid black line. This figure shows that the
resistance predicted with the approximation equations
agrees well with the shear resistance found with the

MCFT, which is the maximum of the resistances to
crack sliding (black circles) and concrete crushing (gray
diamonds). The approximation equations for τ'R will be
used in the proposed model.

4.2 | Effective shear depth

The second step in the development of the proposed closed-
form shear resistance model is to relate τ'R to the shear force
that can be resisted (V'R). The way in which τci, τs, and τuncr
can be related to the shear forces is described in Section 2.
In the proposed model, the shear resistance is simply deter-
mined by multiplying τ'R by the web width (bw) and a
parameter defined as the effective shear depth z' (Figure 7).
The effective shear depth which is used in the proposed
model is derived based on the following assumptions:

• Failure occurs in the web. It is noted that while failure
occurs in the web, the flanges may contribute signifi-
cantly to the shear resistance V'R (Figures 2 and 5).

• In regions without flexural cracks, the shear resistance
of the web (V'R,w) is equal to the maximum shear stress
at zero longitudinal strain (τ'R), multiplied by web
height (hw) and width of the web (bw). This assumption
is supported by Figures 2 and 5 which show that, at
failure, the shear stress is evenly distributed over the
height of the web and is approximately the same for
the uncracked parts of the web as for the uncracked
part of the web.

• The linear elastic stress distribution is representative
for the distribution of the shear force at failure
between the web and the flanges.

The effect of these assumptions will be examined at
the end of this section by comparing the shear resistance
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according to Response and the proposed model for vari-
ous cross-sections.

Based on the above assumptions, the total shear resis-
tance for a beam in the regions without flexural cracks
(V'R) can be found by increasing the resistance of the web
(V'R,w = τ'R hw bw) by the shear forces transmitted by the
uncracked flanges. The proposed model accounts for this
increase by replacing the web height (hw) with the effec-
tive shear depth (z') as shown in Figure 7.

Given the assumption of linear elasticity, the distribu-
tion of shear stresses depends only on the geometric
properties of the cross-section. Based on this assumption
the ratio of the total shear force (V'R) and the shear force
transferred by the web (V'R,w) can be determined analyti-
cally. The effective shear depth z' can then be found by
dividing V'R by V'R,w and multiplying this ratio by the
height of the web hw (in formula form: z' = hw V'R/V'R,w).
In this way, the effective shear depth z' was determined
as ratio of h for different relative combinations of the geo-
metric properties (Table 2).

For all investigated combinations, heights of the
straight top flange (htf,str) are taken between 0.05 and
0.30 times the beam height (h) in steps of 0.05 h. For the
web width (bw), widths between 0.1 and 0.3 times the
width of the top flange (btf) have been used (using 0.2 as
a base value). In principle, the same width of the top
flange and bottom flange (bbf) is assumed, but as a vari-
ant, the width of the bottom flange is taken to be equal to
0.30 times the width of the top flange. This variant has

been combined once, assuming equal heights of the top
flange and bottom flanges (hbf,str), which is typically for
an edge girder of a box-girder bridge, and once with a
height of the bottom flange that is three times as high as
the height of the top flange, which is typically for a bulb
T-girder. The presence of skew flanges was also investi-
gated, for a height of the skew flanges (htf,skw) equal to
the height of the top flange and a width equal to the
flange width.

The results of the parameter study are shown in
Figure 8. On the vertical axis, the calculated effective
shear depth is shown as ratio of the height of the girder.
The half of the summed height of the straight flanges is
shown on the horizontal axis, to which a quarter of the
summed height of the skew flanges has been added
(if present). All considered combinations of geometric
parameters show a comparable trend. The effective
shear depth was found to depend mainly on the relative
height of the straight and skew flanges. The relative
width of the flanges did not significantly affect the effec-
tive shear depth. The mean of the lines found can be
approximated by using an effective shear depth z' as
defined in Equation (2), below. For a symmetrical I-
beam with straight flanges, z' is simply the beam height
minus the flange height. The ratio of z' and h found with
this equation is also shown in Figure 8 (black solid line).
Although the line for z'/h found with Equation (2) dif-
fers slightly from the other lines, the way of formulating
is attractive because of its simplicity.

z0 ¼ h� htf,strþhbf,strð Þ=2� htf ,skw�hbf,skwð Þ=4 ð2Þ

The proposed equation for the effective shear depth is
evaluated by comparing the resistance according to
Response (which integrates the shear stresses over z and
bz) and the proposed model using Equation (2). Since it is
not the intention to evaluate τ'R, the resistance for the pro-
posed model is determined based on the τ'R at mid-depth
as follows from the Response analyses. For this analyses,
26 cross-sections were used that correspond to beams from
different series of experiments.14,15,17,18 A mean ratio of
the resistance according to Response and the proposed

FIGURE 7 Distribution of shear stress times the cross-

sectional or web width

TABLE 2 Considered geometric properties to determine the effective shear depth

I-girder with small web
I-girder
with wide web

Edge girder
of box girder Bulb T-girder

I-girder with
skew flanges

htf,str/h 0.05–0.30 0.05–0.30 0.05–0.30 0.05–0.30 0.05–0.30

htf,str/hbf,str 1 1 1 3 1

htf,skw/htf,str 0 0 0 0 1

bw/btf 0.1 0.3 0.2 0.2 0.2

bbf/btf 1 1 0.3 0.3 1
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model using Equation (2) was found of 0.99 with an asso-
ciated coefficient of variation of 2%. Apparently, the
assumptions used to derive the equation for the effective
shear depth, hardly affects the predicted resistance com-
pared with the more advanced Response analysis.

4.3 | Proposed closed-form RBK-model

The proposed closed-form shear resistance model is referred
to as RBK-model, after the guideline in which this model
will be included (which is the “Richtlijnen Beoordeling
Kunstwerken”, abbreviated as RBK2). The RBK-model for
the shear resistance in regions without flexural cracks corre-
sponds to Equation (3). This equation is found by multiply-
ing τ'R, according to Equation (1), by bw and z' according to
Equation (2). The equation can be used for beams with a
shear reinforcement ratio up to 1% (Table 1).

V 0
R,RBK ¼ β

ffiffiffiffiffiffiffi

f cm
p

bwz
0 þAsw=s f ywm z0cotθ ð3Þ

The shear resistance in regions without flexural cracks
V'R,RBK can be determined using θ = 26�, β = 0.38–2.5ψ
for fcm ≤ 60 N/mm2, β = 0.30–2.5ψ for fcm ≥ 80 N/mm2.
In these equations, ψ equals ρw fywm/fcm. The model is
applicable if the tensile force in the most tensioned flange
is lower than the resistance of the flange to cracking.
Thus, the model is still applicable when shallow flexural
cracks are present in the flange, but the flange is not yet
completely cracked.

5 | VALIDATION OF THE
PROPOSED RBK-MODEL

To validate the RBK-model, a database of experiments
from the literature of prestressed beams with stirrups that
failed in shear has been compiled.9 Experiments from

this database were considered suitable for the validation
(i) if they failed in the regions without flexural cracks,
(ii) if they could resist additional shear after diagonal ten-
sion cracking and (iii) if the shear span to depth ratio
was larger than 2.5. Ultimately, 21 experiments were
selected from five test series (Table 3), consisting of both
simply and continuously supported beams, beams with
posttensioned and pretensioned prestressing steel and
beams with straight, draped and curved geometries of the
prestressing steel. The shear reinforcement ratio ρw var-
ied between 0.06% and 0.79%, the mean value of concrete
cylinder compressive strength fcm varied between
28 and 91 N/mm2 and the mean yield strength of shear
reinforment fywm varied between 298 and 585 N/mm2.
The accuracy of the RBK-model has been determined
by dividing the experimentally found resistance
(V'R,exp) and the predicted resistance (V'R,model or
V'R,RBK). For the 21 selected experiments, a mean value
of the test-to-predicted shear resistance ratio was found
of 1.33 with an associated coefficient of variation 15%
(Table 3).

The assumption of a dmax of 31.5 mm leads to an
overestimation of the predicted resistance because lower
values of dmax were used for the experiments. On the
other hand, when deriving the RBK-model a diagonal
crack spacing sθ of 300 mm has been conservatively
assumed, which leads to an underestimation of the
predicted resistance for the experiments. To investigate
the effect of these both assumptions on the accuracy, the
maximum shear stress that can be resisted was also deter-
mined by using the MCFT and explicitly taking into
account dmax and sθ. For this examination, sx is equalized
to the vertical distance between the bars in longitudinal
direction at mid-depth and sz is equalized to the center to
center distance of the stirrups. Using this approach, the
mean value of the test-to-predicted shear resistance ratio
decreased from 1.33 to 1.23 and the corresponding coeffi-
cient of variation from 15% to 13% (Table 3). The effect of
the overestimation of dmax was found to be more limited

FIGURE 8 Ratio of the effective

shear depth and beam height for

different combinations of geometric

properties
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than the effect of the conservatively assumed diagonal
crack spacing. Therefore, the proposed model can also be
applied for beams with smaller values of dmax.

The conservatively assumed diagonal crack spacing
can be regarded, to some extent, as an explanation for
the conservativeness of the predicted resistance. How-
ever, the main explanation for the conservative predic-
tions seems to lie in the disregard of direct load transfer.
This can be seen in Figure 9, which shows the ratio of
V'R,exp and V'R,model as a function of the shear span to
effective depth ratio (a/d). In this figure, five experi-
ments with an a/d <2.5 were added to the 21 selected
experiments to get a more complete picture of the trend.
This figure shows that the predictions become less con-
servative for lower values of a/d. It is plausible that for
these lower values of a/d, more load will be transferred
directly to the support.

Finally, with regard to validation, it should be noted
that with empirical models, which are still often used in
practice, there is a risk that new experimental research
will yield insights that make it necessary to adapt the
model. This risk does not exist with the RBK-model
because it is based entirely on the MCFT without cali-
brating the model with experimental data.

6 | COMPARISON OF THE RBK-
MODEL WITH THE MODEL CODE
2010 MODELS

Figure 6 shows not only the shear resistance τR according
to the RBK-model, but also the shear resistance according
to three approaches of the MC2010. The mean resistance
according to the MC2010 models are determined by using

TABLE 3 Accuracy of models for 21 experiments with a/d > 2.5

Research Experiment V'R,exp V'R,exp/V'R,model

– – kN –

Closed-form RBK-model

dmax

mm
Assuming sθ = 300 mm
and dmax = 31.5 mm

Taking into
account sθ and dmax

MC2010 Level III

Elzanaty et al.17 cw10 175 12.7 1.38 1.28 1.27

cw11 158 12.7 1.26 1.26 1.21

cw12 142 12.7 1.23 1.19 1.18

cw13 184 12.7 1.45 1.31 1.33

cw14 189 12.7 1.19 1.07 1.13

cw15 152 12.7 1.19 1.14 1.09

cw16 188 12.7 1.48 1.33 1.29

Choulli15 HCP1TE 796 12.0 1.65 1.45 1.52

HCP1TW 746 12.0 1.55 1.36 1.42

HAP1TE 648 12.0 1.31 1.15 1.21

HAP1TW 749 12.0 1.51 1.32 1.40

Hanson14 FX1A 168 19.1 1.56 1.43 1.56

FX1B 144 19.1 1.33 1.22 1.34

F4B 171 19.1 1.64 1.50 1.65

F5B 145 19.1 1.48 1.34 1.52

Rupf et al.10 SR23 275 16.0 1.02 0.89 1.08

SR25 324 16.0 1.14 1.05 1.22

SR26 293 16.0 1.07 0.97 1.17

SR27 441 16.0 1.25 1.17 1.21

Xie19 lb2 172 10.0 1.21 1.26 1.17

lb10 215 10.0 1.04 1.09 1.01

Mean 1.33 1.23 1.29

CoV (%) 15 13 13
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the equations according to the MC2010 with partial fac-
tors for concrete (γc) and steel (γs) of unity and by
replacing the characteristic material properties by the
mean material properties. For the comparison of the
models, the ψ (in contrast to the graph 7.3-11 in the MC
2020, a factor is used without the brittleness factor ηfc) is
limited to parameters considered to derive the proposed
RBK-model (Table 1). The figure shows that the level I
approach (presenting the variable angle truss model) and
the level II approach (based on the generalized stress
field approach) result in a lower resistance than that
found with the MCFT. However, for the level III
approach (based on the Simplified Modified Compression
Field Theory), the predicted resistance agrees well with
the resistance found according to the MCFT. The agree-
ment is similar to that found with the RBK-model. This is
not surprising as both the RBK and Level III models are
based on the MCFT.

The first considered value for ψ in the graphs for
the MC2010 models is ψmin. This concerns the value of
ψ where the shear reinforcement ratio ρ is equal to its
minimum ρmin. This ρmin is required “to ensure that
failure does not occur immediately upon shear crack-
ing and truss action can develop” (art 7.13.5-2 of the
MC2010). The amount of shear reinforcement when
using ρmin must therefore ensure that the resistance of
an element with shear reinforcement is higher than the
element without shear reinforcement. According to the
MC2010, ρmin is equated to 0.08√fck/fyk. However, in
regions without flexural cracks of elements without shear
reinforcement, the shear resistance is equal to the resis-
tance to shear tension failure. This resistance is largely
determined by the compressive stresses due to pre-
stressing, especially when these are significant.4,5,9 Since
this parameter is missing in the given equation for ρmin,
this equation it is not suitable for areas without flexural
cracks. For assessing existing structures, the shear resis-
tance can also simply be determined from the maximum

of the resistance of the element with and without shear
reinforcement, without considering ρmin. The graph in
Figure 6 for the RBK-model is not limited to ρmin, so that
this comparison is also possible for lower values of ρ.

Although the graphs (Figure 6) show that the
predicted failure mode according to the MC2010 (crack
sliding up to the kink in the graph and concrete crushing
from the kink in the graph) does not always correspond
to the prediction according to the MCFT (the highest
resistance of both failure modes), the trend in failure
modes is well described by the MC2010. The RBK-model,
on the other hand, describes both failure modes with
only one equation which simplifies the application of the
RBK-model in practice.

The accuracy of the proposed RBK-model has been
compared with the MC2010 Level III approach. Of the
three possible levels of approximation, level III is chosen
as the reference for the MC2010, despite requiring the
use of many equations and iteration steps. This choice
was made because this approximation will result in the
least conservative predicted shear resistance (Figure 6).
For the 21 experiments, a mean value of the test-to-
predicted shear resistance ratio was found of 1.29 with an
associated coefficient of variation 13% (Table 3).

When comparing the determination of the shear
resistance for both models, the following observations
can be made:

• Using the many equations and iteration steps associ-
ated with the level III approach, does not lead to a sig-
nificant increase in accuracy compared with the
proposed closed-form RBK-model.

• The shear resistance according to the MC2010 model
turned out to be slightly less conservative than found
with the RBK-model. This is because the effective
shear depth based on the effective depth of the pre-
stressing and reinforcing steel is on average higher
than based on the concrete properties. Since the steel
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is in the uncracked flanges, the location does not
determine the height of the crack over which aggre-
gate interlock occurs and the stirrups are activated.
The observation that the shear resistance is predicted
less conservatively using the MC2010 is therefore not
based on a physical explanation but can be regarded
as a coincidence.

• Figure 9 shows that the predictions according to both
models become less conservative with higher values of
the ratio between shear stress and effective depth. This
is not surprising because both models are based on the
MCFT and do not consider direct load transfer.

• The proposed RBK-model is derived for shear rein-
forcement ratios up to 1%. The MC2010 Level III
approach can on the other hand also be used for
higher shear reinforcement ratios.

• Both the RBK-model and the MC2010 level III
approach do not relate the shear resistance to dmax or
the diagonal crack spacing. Although this simplifica-
tion will affect the accuracy of the predicted shear
resistance to some extent, it is attractive because it sim-
plifies the application of the models.

7 | CONCLUSIONS

This article proposes a closed-form model, referred to as
the RBK-model, that can be used to determine the shear
resistance in regions without flexural cracks. The
RBK-model is easy-to-use in engineering practice as no
iterations are necessary. The use of the RBK-model is
simplified even further because two possible shear failure
modes have been described with only one equation. The
shear resistance can be determined with the RBK-model
as accurately as with the most comprehensive level III
approach of the MC2010.

A simple equation for effective shear depth is
included in the RBK-model, which is suitable for
regions without flexural cracks. Unlike the MC2010,
the effective shear depth is not based on the location of
the reinforcing and prestressing steel because these
have no influence on the shear resistance in the
regions without flexural cracks. The effective shear
depth is instead based on the cross-sectional properties
of concrete. In this way, the transfer of the shear force
through the uncracked flanges is taken into account in
a physically logical way.
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