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Abstract
Brain-Computer Interfaces (BCIs) open avenues for com-

munication among individuals unable to use voice or gestures.
Silent speech interfaces are one such approach for BCIs that
could offer a transformative means of connecting with the ex-
ternal world. Performance on imagined speech decoding how-
ever is rather low due to, amongst others, data scarcity and the
lack of a clear starting and end point of the imagined speech
in the brain signal. We investigate whether using electroen-
cephalography (EEG) signals from articulated speech can be
used to improve imagined speech decoding in two ways: we in-
vestigate whether articulated speech EEG signals can be used to
predict the end point of the imagined speech and use the articu-
lated speech EEG as extra training data for speaker-independent
imagined vowel classification. Our results show that using EEG
data from articulated speech did not improve classification of
vowels in imagined speech, probably due to high variability in
EEG signals amongst speakers.
Index Terms: Brain computer interfaces, covert (imagined)
speech, electroencephalography (EEG).

1. Introduction
Neurodegenerative disorders such as Amyotrophic Lateral Scle-
rosis (ALS) or conditions like locked-in syndrome frequently
result in profound muscular impairment, rendering patients in-
capable of voluntary muscle movement and consequently un-
able to articulate speech [1]. This profound physical debilitation
presents significant obstacles for individuals affected by these
conditions when attempting to engage in effective communica-
tion with their external environment.

Brain-computer interfaces (BCIs) have emerged as a poten-
tial avenue to address this issue [1]. By analysing brain activ-
ity, BCI systems could facilitate communication solely based
on the patient’s thoughts. A promising approach in this context
involves using imagined speech (covert speech), wherein an in-
dividual imagines to produce speech without any muscle move-
ment nor audible or articulated speech. By decoding and in-
terpreting these neural signals, BCIs hold promise for enabling
communication in patients e.g., affected by ALS and multiple
sclerosis (MS), bypassing the physical limitations imposed by
their conditions. Different methods are used to capture the elec-
trical signals generated by neural activity, including electrocor-
ticography (ECoG) [2], Magnetoencephalography (MEG) [3],
and Electroencephalography (EEG) [4, 5], which can be ana-
lyzed to understand both imagined and articulated speech.

Research on imagined speech from EEG has focused on
classifying small sets of stimuli, e.g., vowels (English [6],
Dutch [7, 8], Japanese [9], Spanish [10]) and isolated words
(“yes” and “no” [11], nine Russian words [12]). For the task

of classifying EEG data of imagined speech, many different
machine and deep learning techniques have been used, includ-
ing, support vector machine [13], linear discriminant analysis
[14], random forest [15], vanilla deep neural networks (DNNs)
[16], and convolutional neural network (CNN) [17, 18]). How-
ever, DNNs require large amounts of data to properly generalize
for a given problem without having issues with overfitting [19]
which often is not available for this type of EEG data. More-
over, different discriminative features extracted from the EEG
signals have been used (e.g., wavelet domain features [20, 21]
and common spatial patterns (CSP) [22, 23]). Nevertheless, no
combination of classifier and features has proven to consistently
achieve high decoding performances [18]; although Residual
Network (ResNet) algorithms [12, 16] have been found to out-
perform other CNN algorithms on speaker-dependent imagined
speech classification tasks in both robustness and practicability.

Nevertheless, classification of imagined speech using EEG
remains a challenging task, with classification results close to
chance level [24]. Being a non-invasive solution, the record-
ing made using an EEG is not optimal, inducing noise from, for
example, blinks or muscle movement in the data [25]. More-
over, there is a lack of imagined speech EEG data. Although
different databases have been released [6, 8, 15, 26], they differ
in the number of speakers, language, the absence or presence
of articulated speech, and differences in the recording set-up,
e.g., the number of channels used to record the EEG signals
(e.g., 6 for Coretto et al[15] and 62 for DAIS [8]). On top of
that, EEG signals vary a lot, especially between different sub-
jects [27]. This makes it difficult for models to generalize and
validate their performance. A further difficulty is the lack of
an accurate ground truth: it is not easily verifiable if the sub-
ject performed the imagined task correctly, as is the case with
articulated speech. A roundabout way of testing whether par-
ticipants complied with the task of imagining speech is to visu-
ally investigate whether structural differences exist between the
event-related potentials (ERPs) of the EEG signals for rest and
imagined speech or run a classification task predicting whether
an EEG signal came from the rest state or imagined speech [8].

In this work, we focus on speaker-independent classifica-
tion of EEG signals from imagined speech. Research suggests
that imagined speech production can be seen as interrupted ar-
ticulated speech production without the actual muscle move-
ment required for producing sound [28]. Therefore, we inves-
tigate whether EEG data captured from articulated speech can
be used to improve classification accuracy and generalization of
EEG data captured from imagined speech in two ways: we in-
vestigate whether articulated speech EEG signals can be used
to predict the end point of the imagined speech in the EEG
signal and whether using the articulated speech EEG as ad-
ditional training data improves speaker-independent imagined
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Figure 1: Averaged event related potentials (ERP) for Partic-
ipant 12 from the DAIS dataset for rest (top panel), imagined
(middle panel) and articulated (bottom panel) speech[8].

vowel classification. If successful, articulated speech EEG data
from other speakers than the patient/user could be used to im-
prove performance. In all experiments, we compare perfor-
mance on different numbers of channels, to investigate whether
there is an influence of the number and location of the electrodes
from which the EEG signals are collected on imagined and ar-
ticulated speech EEG classification. In the first experiment, we
aim to predict the starting point of the articulated speech and
use that as the end point of the imagined speech, and use this
“pre-speech” part of the EEG signal to classify the EEG signals.
In the second experiment, we add the articulated speech EEG
as training data to the imagined speech EEG data for speaker-
independent Dutch imagined vowel classification from EEG.

2. Methodology
2.1. Database

This paper uses the Delft Articulated and Imagined Speech
(DAIS) dataset [8], which consists of EEG signals of imagined
and articulated Dutch and speech from 20 native Dutch subjects,
6 male and 14 female [8]. The subjects were asked to imagine
and articulate speech of 15 prompts: five vowels (a:, e:, i, o:,
u where “:” indicates long vowels) and 10 words. The 5 vow-
els constitute the different corners of the Dutch vowel quadrant.
The 10 words are 5 Dutch word-pairs that are also words when
read backwards: taal, laat, leeg, geel, niet, tien, toon, noot, soep,
poes (Eng: “language”, “late”, “empty”, yellow”, “not”, “ten”,
“tone”, “note”, “soup”, and “cat”). Each vowel is part of one
word pair. The EEG was recorded over 62 channels, placed ac-
cording to the standard 10-20 international system [29] using
the TMSi SAGA 64+ and with a BrainWave EEG Cap at a sam-
pling frequency of 1024 Hz and the TMSi SAGA interface for
MATLAB. The SAGA docking station was located outside the
sound-attenuating room. Impedances were kept below 50kΩ.
The audio is sampled at 44.1 kHz.

Each participant completed 20 runs of 15 trials, one for ev-
ery prompt (i.e., the 15 Dutch vowels and words), where a trial
consisted of 4 successive segments: rest, reading of the prompt,
imagining to produce the prompt, and articulating the prompt.
Each run was followed by (another) 2s rest. Each EEG record-
ing is divided into 2s segments, for each prompt [8].

2.2. Data Pre-processing: Filtering

First, the EEG data was band-pass filtered (Second order Butter-
worth filter) between 1 and 40 Hz to limit any electrical noise,
such as power line noise, present in the signal. Artifacts such as
blinks and muscle movement are removed where possible by us-
ing the low pass filter. If it is not possible to remove the artifact
from the sample, the sample is discarded. Lastly, when drop-
ping channels from the EEG data for different experiments, the
channels must be re-referenced to each other by subtracting the
average of all remaining channels combined from each channel.

2.3. Model Architecture

Based on pilot experiments in which we compared support vec-
tor machine (SVM), K-nearest neighbour (KNN) and random
forest (RF) machine learning models as well as Long short-term
memory (LSTM) and Convolutional Neural Networks (CNN)
deep learning models on articulated speech vowel classifica-
tion, we chose the best-performing model for the experiments
reported here. The model used is a CNN model with an input
size of 2048 timesteps with a variable number of features. The
feature count per timestep depends on the number of EEG chan-
nels used. The model consists of three repeated convolutional
layers followed by global average pooling and finally a fully
connected prediction layer, similar to commonly used convolu-
tional models for time series classification [30]. Each convo-
lutional layer has batch normalization and a dropout of 25% to
prevent overfitting with rectified linear activation at each layer.

Two versions of the CNN model were created: one for the
classification task (Experiment 2 below) and one for the start-of-
articulated-speech/end-of-imagined speech detection task (Ex-
periment 1 below). The speech detection model, being a re-
gression model, has one single output neuron that outputs the
estimated start of speech time, while the classification model
has one neuron for each vowel class to predict.

2.4. Predicting the End Point of Imagined Speech

Figure 1 shows the averaged ERP for participant #12 from the
DAIS dataset for rest (top panel), imagined (middle panel) and
articulated (bottom panel) speech [8]. Comparing the three ERP
signals shows clear differences between the EEG data of the rest
segment, imagined speech, and articulated speech. For rest (top
panel) only background EEG activity was found. Important to
our experiments, for both imagined and articulated speech ac-
tivity was observed around 0.25 - 0.3 seconds, which was fol-
lowed by a broad peak/trough (depending on the channel) start-
ing at 500 ms for articulated speech. This corresponds to start
of the articulated speech and is therefore associated with the
movement of the articulators.

The aim is to predict the point where imagined speech
ends. While we do not have a ground-truth for the endpoints in
imagined speech, for articulated speech, we know when speech
starts, and the time stamps of the speech are aligned with the
EEG signal of the articulated speech. We assume that the start-
ing point of articulated speech is the end of the preparations to
speak, and we take that as the endpoint of the imagined speech.
To determine at which timestamp speech starts for each data
sample, SileroVAD, a voice activity detection (VAD) algorithm
[31], is applied to the DAIS speech files. From this, a timestamp
is extracted at which speech starts in the articulated speech.
The period in the EEG signal prior to this point we refer to
as “pre-speech”. A CNN model was trained for 150 epochs
with articulated speech EEG signal segments as input and the
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Figure 2: Left panels: EEG segment of articulated speech (top)
and the acoustic signal (bottom); Right panels: EEG signal of
the “pre-speech”, after cutting the segment at the start of speech
(vertical line).

timestamps obtained from the VAD as target. All code used in
these experiments can be found at https://github.com/
ChrisSBras/imagined_vs_articulated_speech.

Figure 2 shows an example of a segment of articulated
speech (bottom left) and the accompanying EEG signal (top
left). The blue vertical line marks the onset of speech as pro-
vided by the VAD. The top right panel shows the EEG signal
after removing the EEG signals after the speech onset, i.e., it
only shows the “pre-speech” EEG signal.

3. Experimental Setup
For the experiments we used the vowel data /a:, e:, i, o:, u/. Data
of five participants were excluded: Participants 9 and 13 were
excluded because they are left-handed, participants 7 and 17
were excluded because their signals contained multiple noisy
channels, and participant 2 because a large part of the articu-
lated speech trials were rejected as they contained eye blinks,
causing an imbalance in the number of covert speech trials vs.
the articulated speech trials. For participant 1, channel FC2 dis-
connected during the experiment and was deleted. For the other
19 participants, data from all 62 EEG-channels is available.

After dropping faulty segments and subjects, a total of 1291
articulated speech segments and 1412 imagined speech seg-
ments remain. This gives per vowel an average of 258 segments
for articulated speech and 282 segments for imagined speech
and per subject an average of 86 segments for articulated speech
and 94 segments for imagined speech.

The experiments were run in a speaker-independent sce-
nario. Articulated and imagined data are both split in an 80%
training split and 20% test split. This results in 1039 articulated
and 1130 imagined speech training samples and 252 articulated
speech and 282 imagined speech test samples. These sets are
added together for the combined data experiments, resulting in
a total of 2169 training samples and 534 test samples for those
experiments. The same training and test sets were used for both
the detection and classification experiment. Each experiment is
repeated 5 after which an average accuracy is computed.

3.1. EEG Channel Selection

In both the speech detection and vowel classification exper-
iments, we compare performance on the vowel EEG signals
from four sets of electrodes:
• Channel Set 6: 6 channels {F3, F4, C3, C4, P3, P4}. Fol-

lowing the Coretto database [15], we use 6 channels, which is
the lowest number used in any database of imagined speech.

• Channel Set 8: 8 channels {Fz, C3, Cz, C4, Pz, PO7, Oz,
PO8} as used in [5]. These channels are chosen as they are
close to Broca’s and Wernicke’s regions of the brain, which
is assumed to produce good quality imagined speech-based
EEG signals [5].

• Channel Set 16: 16 channels {F7, F5, FT7, FC5, FC3, FC1,
T7, C5, C3, Cz, C4, TP7, CP5, CP3, P5, P3} that are located
on specific areas of the cortex that are known to be involved
in language processing. These 16 channels were also used in
the validation study reported in [8].

• Channel Set 62: All available channels are used.
Each channel subset is run 5 times for each combination of

train and test data (articulated, imagined and combined data) as
discussed in Section 3.3.

3.2. Predicting end point of imagined speech

In the first experiment, we aim to predict the starting point of
the articulated speech. Four models were trained to predict the
start of the speech signal in the EEG of the articulated speech,
one model for each channel set. The same training and test data
are used for the different channel sets. We evaluate the mod-
els’ performance on the articulated speech test set, in terms of
the Mean Squared Error (MSE) of the difference in timestamp
between the target timestamp and predicted timestamp in mil-
liseconds, calculated over the five runs of each model.

3.3. Using articulated speech EEG for improving imagined
speech EEG classification

We ran several experiments: 1) we trained and tested on the
articulated speech EEG to set an upper-bound for the task of
imagined Dutch vowel classification from EEG; 2) we trained
and tested on the imagined speech EEG to set a baseline; 3) we
carried out two cross-experiments where the model trained on
articulated speech EEG is tested on the imagined speech EEG
and vice versa. 4) To investigate whether using EEG from artic-
ulated speech during training improves imagined vowel classi-
fication, we combined the articulated speech EEG training data
and the imagined speech EEG training data to train a combined
model for each channel set. This model was tested on both the
imagined and articulated speech test sets.

Under the assumption that the pre-speech part for imagined
and articulated speech is similar, we predicted the end point of
the imagined speech from the imagined speech EEG using the
prediction model, and used the pre-speech part of the imagined
speech and articulated speech EEG to train the four models. We
then ran the same experiments as done with the full EEG sig-
nal, but only using the pre-speech of the imagined and the pre-
speech of the articulated speech EEG. The models are evaluated
using accuracy on the 5-vowels classification task.

4. Experimental Results
4.1. Predicting the End point of Imagined Speech

Table 1 shows the MSE and standard deviation (Stdev) of the
difference (in ms) between the ground-truth timestamp of start
time in the articulated speech EEG signal and the predicted
timestamp for the four models with different channel sets. First,
with increasing number of channels, the MSE and Stdev re-
duce, although the smallest standard deviation was found for the
model with only 6 channels. Importantly, all models show rel-
atively good prediction results, with a maximum MSE of only
5.65 ms, which is a lot less than the duration of a single sound.
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Table 1: The MSE and Stdev of the predicted start of the artic-
ulated speech (in ms).

Channels Set 6 Set 8 Set 16 Set 62

MSE (ms) 5.65 5.20 4.17 2.55
std dev (ms) 0.23 0.53 0.46 0.41

This indicates that the start of speech can be predicted from the
EEG signal of articulated speech with a reasonable error.

4.2. Using articulated speech EEG for improving imagined
speech EEG classification

Tables 2 and 3 show the classification results of the different
models on the EEG of articulated and imagined speech in terms
of accuracy together with the standard deviation for each chan-
nel subset when the full EEG signal is used (Table 2) and when
only the pre-speech is used (Table 3) for the four different chan-
nel sets. The results are grouped by the type of training and test
data used (articulated, imagined or a combination) and the num-
ber of channels.

The results for experiment 1 show a baseline of 53.8% ac-
curacy for speaker-independent articulated Dutch vowel clas-
sification when all available channels and the full EEG seg-
ments are used. This can be viewed as an upperbound for the
imagined vowel classification task. This performance drops to
43.9% when only the pre-speech part of the segments is used.
The information related to articulation in the EEG signal is thus
needed for improved classification of articulated vowels. The
results for experiment 2 show a baseline of 24.8% accuracy for
speaker-independent imagined Dutch vowel classification when
all available channels and the full EEG segments are used. This
increases to 27% accuracy when only using the pre-speech part
of the EEG segment, although this still falls within 1 standard
deviation from the baseline. Chance level in all cases is 20%.

The results from experiment 3 show a worse performance
for models trained on the other type of data than with which they
are evaluated. One thing to note for these cross-experiments
however, is that the pre-speech only models perform better than
the models trained on full EEG segments.

The final experiment investigated whether combining train-
ing data from articulated and imagined speech was beneficial
for vowel classification. The results show that overall there
is little benefit when training on both articulated and imagined
speech EEG for classification of both imagined and articulated
speech, with the exception of the imagined speech all-channels
full-EEG model, which in fact gave the best performance on
imagined vowel classification across all models.

Table 2: Accuracy (in %) of the classification experiments using
the full EEG frames, grouped by channel sets used.

Test Training 6 Chan. 8 Chan. 16 Chan. All Chan.

art. art. 28.4± 1.0 31.0± 0.9 45.5± 2.2 53.8± 4.9
art. img. 25.5± 0.8 27.4± 1.4 26.5± 1.7 30.1± 4.1
art. combined 28.8± 2.4 30.3± 1.8 42.0± 2.2 43.2± 2.9
img. art. 25.3± 1.7 23.9± 0.5 23.6± 1.3 24.8± 2.1
img. img. 24.1± 1.6 24.8± 1.2 27.1± 2.7 24.8± 1.8
img. combined 25.8± 2.0 24.9± 1.6 25.1± 1.4 27.5± 1.7
combined combined 26.1± 0.8 25.5± 1.5 30.5± 1.3 30.4± 1.0

5. Discussion and Conclusion
The aim of this paper is to use articulated speech EEG data to
improve classification results on imagined speech EEG data. An

Table 3: Accuracy (%) of the classification experiments using
the pre-speech, grouped by channel sets used.

Test Training 6 Chan. 8 Chan. 16 Chan. All Chan.

art. art. 29.7± 1.7 32.5± 1.6 37.3± 3.3 43.9± 2.3
art. img. 27.5± 2.7 25.8± 1.6 27.6± 2.7 29.4± 1.2
art. combined 28.0± 2.1 29.8± 1.9 33.9± 2.5 39.4± 2.9
img. art. 23.9± 0.8 24.4± 1.0 23.9± 1.7 26.1± 2.6
img. img. 24.9± 1.3 25.6± 0.9 25.7± 1.4 27.0± 2.4
img. combined 24.1± 0.8 25.9± 1.6 25.2± 0.8 25.9± 0.9
combined combined 24.8± 0.7 26.2± 1.6 26.8± 1.6 27.8± 1.4

onset of articulated speech detection model is created which is
then used to mark the end of imagined speech in the imagined
speech EEG segments. The experiment investigating the via-
bility of such a model showed potential for a speech detection
model based on EEG signals instead of audio signals when used
on articulated speech EEG data in a speaker-independent way.
We refer to the EEG signal before articulation onset as “pre-
speech”. One assumption made in this paper, is that this can
then be used to mark the point in the EEG data where imagined
speech ends. Due to the lack of ground truth data, we however
cannot validate this assumption. Future research could inves-
tigate the performance of our approach in a speaker-dependent
scenario, which will reduce the between-speaker variability in
the EEG signals.

In a second experiment, we investigated whether combin-
ing articulated and imagined speech EEG improved imagined
speech vowel classification, and whether there was a difference
when using the full EEG signal or only the pre-speech EEG
signal as a way to increase training data for imagined vowel
classification. First, overall, our results on speaker-independent
imagined vowel classification are in line with other research
where the focus is on speaker-independent models [32].

Second, from the results of experiment 3 in Tables 2 and 3,
it can be seen that there is usable information in the pre-speech
part of articulated speech EEG data as all results are above
chance level. Nevertheless, in general using pre-speech only
did not improve vowel classification of imagined nor articulated
speech. However, there are two interesting findings. For the all-
channels model trained on imagined vowel EEG and tested for
imagined vowel classification, using only the pre-speech gave
an improvement over using the full EEG, suggesting there is
information in the full signal that is unnecessary and reduces
performance. This is in line with the second interesting finding:
the 16-channel model trained on imagined speech outperforms
the all-channels model on imagined speech vowel classification.
Also here, using less data improved imagined vowel classifica-
tion. Future research should focus on investigating what infor-
mation is necessary for improved imagined vowel classification
and what information is better removed from the EEG signal.

The lack of an improvement when using pre-speech EEG
is not in line with our assumptions based on the literature: the
difference between imagined speech EEG and the phase before
speech in articulated speech EEG is too different to be used
together to train a classifier. Although, of course, we cannot
exclude that our speech onset detection in EEG algorithm is not
working well enough for imagined speech. However, due to a
lack of ground truth, this cannot be verified.

To conclude, the data scarcity problem in imagined speech
EEG classification cannot easily be solved by adding more data
from articulated speech EEG. Instead, research focus should lie
on investigating what information in the EEG signal to use for
imagined speech classification, and better ways to generalize
the EEG signals across speakers.
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