
Annotation Practices in Affective Computing
What are these algorithms actually trained on?

Suzanne Backer1

Supervisors: Cynthia Liem1, Andrew Demetriou1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 24, 2023

Name of the student: Suzanne Backer
Final project course: CSE3000 Research Project
Thesis committee: Cynthia Liem, Andrew Demetriou, Frank Broz

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
In the machine learning research community, sig-
nificant importance is given to the optimization
of techniques which are employed once a bench-
mark dataset is given. However, less importance
is assigned to the quality of these datasets and to
how these datasets are obtained. In this work,
we look into annotation practices in the research
area of affective computing, analysing datasets of
emotion classification tasks from text, video, au-
dio, EEG data and more. We find annotation prac-
tices of varying quality and recommend that anno-
tation practices be improved, especially with regard
to multiple annotator overlap.

1 Introduction
Applications of machine learning have an increasing potential
to impact human lives today. They are able to assist in all
kinds of decision-making, such as whom to grant loans to,
detecting diseases or predicting consumer behaviour.

These applications are trained on or evaluated against
datasets consisting of examples with a label, annotation or so-
called ’ground truth’ attached to them. These labels are the
values the algorithm should predict if it worked accurately.
As one can imagine, the quality of a machine learning appli-
cation is only ever as good as the quality of the data that it was
trained on. If the dataset contains inaccurately labelled ex-
amples, one can expect the predictions of the algorithm to be
inaccurate as well. This phenomenon is known as ’Garbage
in, garbage out’. Therefore, to obtain machine learning ap-
plications of high quality, having datasets of high quality is
essential.

Datasets of high quality are datasets which are carefully
annotated and accurately reflect data that can be encountered
when employed in society. If datasets of low quality are used,
there is the risk of data cascades. Sambasivan et al define data
cascades to be ‘compounding events causing negative, down-
stream effects from data issues, resulting in technical debt
over time’ [150]. After interviewing 53 AI practitioners, they
found that at least 92% of high-stakes projects encountered
at least one data cascade, often resulting in impacts like dis-
carding projects, having to redo data collection or harming
communities. These negative consequences are all results of
the fact that work on collecting high-quality datasets isn’t as
appreciated as the model work [150].

1.1 Data annotations
An important factor of data quality is the quality of the anno-
tations assigned to the data. Therefore, to prevent data cas-
cades, it is considered of great importance to ask ourselves
the question of what the quality of annotation practices in
machine-learning research is. Once this question is answered,
one could reason about whether this level of quality is high
enough, or that greater effort should be employed to obtain
and use high-quality datasets.

In an effort to gain more insight into annotation practices,
Geiger et al investigated a set of machine-learning papers

[37]. Specifically, they examined papers which utilized an-
notated data from tweets. The quality of the annotations in
this set of papers was found to be diverse. This could be an
indication of varying importance being assigned to the valid-
ity of annotations of a dataset.

While the work of Geiger et al is a significant contribu-
tion, the quality of annotation practices in machine learning
remains a largely unexplored area of research. To obtain a
clearer overview of the field, performing more reviews of dif-
ferent sub-domains within the machine learning community
is essential.

This work contributes to our understanding of annotation
practices by investigating how they are employed in the area
of affective computing specifically. The research question for
this work, therefore, is: ‘What are current data collection and
reporting practices of human annotations of machine learning
research in the area of affective computing?’

1.2 Affective computing
Affective computing is defined to entail the design and im-
plementation of systems that are able to detect, express or
‘feel’ an emotion [127]. Current research has mainly fo-
cused on sensing emotions through modes such as facial po-
sition, facial activity, speech, textual or electrodermal activ-
ity [30]. Often these channels have been used in unimodal
analysis. However, the prediction of emotions through multi-
modal analysis is increasingly explored in the community of
affective computing [132].

We choose to look into the annotation practices of affective
computing because we consider this domain one with poten-
tially significant societal impact. For example, affective com-
puting could be used for monitoring and interpreting affec-
tive behavioural cues. This could be important information
in the domain of security or justice, specifically for lawyers,
police officers or security agents [123]. However, as one can
imagine, the use of affective computing applications in these
domains could have severe consequences for the people in-
volved. Therefore it is of the utmost importance that these
applications are trained on properly annotated data.

Another argument to look into affective computing, is the
subjectivity of the domain. We know that humans perceive
emotions differently depending on gender [47] and culture
[38]. But the perception of emotion also differs from individ-
ual to individual [165]. This makes the determination of the
ground truth for an emotion dataset even more challenging.

This work answers the given research question by means of
a literature review of 100 works in affective computing. The
goal is to focus on the most recent and highly cited papers, so
as to analyse the papers with the most impact. Several ques-
tions relating to the annotation practices of the datasets these
papers use will be answered. As we will see, these annotation
practices are of varying quality. Both works of proper quality
and of lesser quality are found. In general, we argue that an-
notation practices should be improved, especially with regard
to multi-annotator overlap.

The remaining part of this paper is structured as follows.
Chapter 2 gives an overview of the methodology employed
in this study. It also gives the subquestions which were an-
swered for each dataset encountered in the literature review.



Chapter 3 gives an overview of the answers to these questions
and discusses the results of the study. Chapter 4 gives insight
into how responsibly this research was conducted. Chapter 5
discusses the general findings of this study and places them
in a broader context.

2 Data & Methodology
2.1 Data: a set of papers on affective computing
To analyse the annotation practices in affective computing
research, our goal was to find a set of papers in this domain
on which a literature review could be performed. To find
these papers, inclusion and exclusion criteria for the papers
were defined, after which the papers were collected and
filtered.

2.1.1 Inclusion and exclusion criteria
The first criterion was that the main focus of the paper must be
to either perform some kind of prediction of emotion or sen-
timent, or present a newly developed dataset from which this
could be predicted. Papers whose main focus did not match
this criterion were excluded, even when there was some over-
lap. An example of a paper that was excluded is one that
performed facial landmark detection and eye gaze estimation
but did not attempt to further process these estimations into
concrete emotions [9]. Another example of a paper that was
excluded was one that introduced a new natural language pro-
cessing technique and evaluated this technique on multiple
tasks [189]. Among these tasks was sentiment analysis, but
also question answering and textual entailment. Since per-
forming sentiment analysis was not the main focus of this
study, it was not included in the set of papers for this review.
To determine if this criterion was met, the abstracts of the
papers were read by the author.

The second criterion was that the paper must have been
published in the year 2018 or later. Since we are interested
only in current annotation practices, only papers that were
published in the last 5 years were taken into consideration.
The third criterion concerned the type of publication. Since
the aim of this study is to review annotation practices of new
scientific work, publications that perform a literature review
or a survey were excluded from the set of papers. The fourth
criterion for the search was for the paper to be in the final
stage of publication, as it was considered interesting to relate
annotation practices to publication venues. So papers that
were unpublished were excluded from the review. Lastly, for
practical reasons, the last criterion was for the scientific work
to be in English. A full list of the inclusion and exclusion
criteria can be found in Table 1.

2.1.2 Data collection
To collect papers that met the given inclusion criteria, a
search string was defined. To ensure that the right results
would be retrieved and no relevant results would be missed
by this string, several well-cited scientific works on affective
computing have been read [18, 118, 132, 166]. The purpose
of reading these works was to find keywords or synonyms
for tasks in affective computing. Apart from reading these
works, the titles of the papers that they referenced were

read and scanned for relevant keywords. This led to the
creation of a search string that included the keywords
‘emotion* detection’, ‘emotion* recognition’, ‘emotion*
analysis’, ‘emotion* classification’, ‘affect* computing’,
‘affect* classification’, ‘affect* recognition’, ‘affect* detec-
tion’, ‘affect* interpretation’, ‘affective state recognition’,
‘sentiment analysis’, ‘sentiment classification’, ‘sentiment-
mining’, ‘sentiment mining’, ‘sentiment prediction’, ‘facial
expression* detection’, ‘facial expression* recognition’,
‘facial expression* analysis’, ‘opinion-mining’, ‘opinion
mining’, ‘opinion analysis’, ‘opinion classification’, ‘predict-
ing emotion’, ‘recognizing emotion’, ‘recognizing affect’,
‘classification of affect*’, ‘emotional tagging’, ‘body gesture
detection’, ‘body gesture recognition’. These keywords were
all combined in the search string with the ‘OR’ operator.

The Scopus online database 1 was used to enter the search
string, specifically on the date of 07-05-2023. Scopus
allowed for automatic filtering for some of the inclusion and
exclusion criteria, so for example papers written in languages
other than English were automatically removed. Other filters
that were used were the paper being published in 2018 or
later and the publication stage being final. The search string
was searched for in the title, abstract and keywords of the
results.

2.1.3 Data filtering
The search results were processed by ordering them in
descending order based on citation count. This was done
because we sought a clear overview of the annotation prac-
tices in the affective computing research field. As Teplitskiy
et al found, highly cited papers influence the respective
research community much more than publications with lesser
citations [167]. And so it followed naturally to analyse the
papers with the highest citation count.

Next, the abstracts of the most cited papers were read to
determine whether all inclusion criteria were met. Due to
the time constraints of this study, the goal was to collect 100
papers for review.

2.2 Methodology
To analyse the annotation practices of the most cited work
in affective computing, a similar approach was taken to the
work from Geiger et al [37]. A list of questions was an-
swered for each dataset included in the study. These questions
were almost all taken from [37], with some additional ques-
tions added. The answers to these questions were collected
by reading relevant sections of the paper itself. Often, how-
ever, relevant sections of papers that were referred to were
also read in order to find the answers to the questions defined.

For each question, a set of possible answers was prede-
fined. During the process of collecting the results, these pos-
sible answers were updated according to newly discovered
possible answers. Sometimes this resulted in regrouping or
redefining already collected results.

The questions that were answered are the following:

1https://www.scopus.com/sources.uri



Inclusion Exclusion

Topic Emotion or sentiment must be estimated OR OtherA dataset must be introduced from which this can be estimated
Date published 2018 or later Before 2018
Publication type Article, conference paper or book chapter Review, survey
Publication stage Final In press
Language English Other

Table 1: The inclusion and exclusion criteria for scientific works in this study

1. What type of data was annotated?

2. What type of annotations were used in the paper?

3. What type of annotations were used in the original
dataset?

4. Was the work an original classification task?

5. Was the dataset annotated by humans?

6. Did the paper use original human annotation?

7. Did the paper use external human annotation?

8. Who were the human annotators?

9. Was the amount of annotators specified?

10. Was the amount of annotators estimated?

11. Were formal instructions provided to the annotators?

12. Was training provided for the human annotators?

13. Was there any pre-screening for annotators from crowd-
work platforms?

14. Was there multiple annotator overlap?

15. Did the paper report a metric of inter-annotator agree-
ment?

16. Did the paper report any other metric of label quality?

17. Did the paper link to the dataset?

3 Results & Findings
3.1 Study selection
The search string as defined in section 2.1.2 resulted in 37568
matches from the Scopus database. The abstracts of the most
highly cited of these papers were read until 100 papers were
identified to adhere to the inclusion criteria. In the end, the
abstracts of 150 papers were read. The number of papers that
did not meet the inclusion criteria was 50. All papers were
either excluded because their main topic was not affective
computing, or they were a survey or literature review. An
overview of the papers included and excluded from the study
can be found in Appendix A. For most papers, other sources
were also used to answer the questions as stated in Section
2.2. An overview of which sources were used for which pa-
pers can be found in Appendix B.

3.2 Amount of datasets
In this study, we will analyse the annotation practices from
the perspective of the datasets instead of from that of the pa-
pers. The results for each individual dataset are made publicly

available. 2 While some of the papers only used one dataset,
others used multiple. The 100 papers analysed in this study
used 215 datasets in total.

As all papers are in the domain of affective computing, it
follows naturally that some papers use the same datasets to
evaluate their work. Examples of datasets that were often
used are SemEval-2014 task 4 [131], IEMOCAP [16], CK+
[98] and SEED [214]. They respectively appear 12, 11, 9 and
8 times in the total of 215 datasets.

We argue that including the same dataset multiple times
is not undesirable, as the fact that the dataset is used multi-
ple times indicates its popularity. Including it multiple times
more accurately reflects the most commonly used annotation
practices.

Interestingly, for 8 datasets, almost no information could
be retrieved, namely 3 datasets that were used in [138] and
5 datasets that were used in [12]. Therefore, these datasets
received the label ‘no information’ for almost all questions,
except for the ‘original human annotation’ question. This is
because it was clear that if the datasets contained human an-
notations, the annotations were not originally defined in the
respective paper.

3.3 Type of data
Affective computing is defined as any kind of task in which
emotion is predicted, regardless of the type of data used.
However, one could also argue that classifying emotions from
different kinds of data could be considered entirely differ-
ent research fields. To have a clearer view of what type of
research was analysed, the type of data that was used in a
dataset was recorded. An overview can be found in Table 2.

Count Percentage
Text 89 41.4%
Images 47 21.86%
EEG and other physiological measures 24 11.16%
Audio and video 20 9.30%
Audio, video and text 16 7.44%
Social media content 10 4.65%
Audio 7 3.25%
Other 2 0.93%

Table 2: Type of data

Interestingly, in over 70% of cases, uni-modal datasets

2https://github.com/Suzanne108/Affective-Computing-
Annotation-Practices



were used, showing that uni-modal affective computing is
still widely researched as opposed to multimodal computing.

Next to the different types of data recorded, it is also inter-
esting to note that the data was obtained using multiple col-
lection methods. For datasets that contained text, often on-
line available reviews [131] or social media posts were col-
lected [33]. About half of the datasets which were labelled
with ‘text’ contained reviews and the other half contained so-
cial media posts, which were often tweets.

Tweets were not categorized under ‘social media content’
if just the text contained in a tweet was used. In that case,
they were classified as ‘text’.

The datasets that were classified as ‘social media content’
contained more information than just the text contained in a
social post. For example, they often contained information on
who the social media user is connected to or to which posts
the user responded. In other words, what separates the tweets
in the category ‘text’ and the category ‘social media content’
is that the datasets contained a form of metadata for the ‘so-
cial media content’ category.

3.4 Type of annotations
Apart from what kind of data is recorded in a dataset, the
types of annotations that were given to the data are interesting
to analyse as well. An overview of what kind of annotations
were used is given in Table 3.

The types of annotations used in the analysed papers can
differ from the kind that was used in the original dataset. For
example, some papers reduced a dataset that originally had 4
to 7 levels of positive and negative classification to just posi-
tive and negative. Another example is papers using a smaller
amount of discrete emotions than originally provided in the
dataset.

Used annot. Original annot.
Positive / negative 48 29
Positive / negative / neutral 36 31
Positive / negative, 4-7 levels 13 28
Discrete emotions, less than 5 15 6
Discrete emotions, 5 - 10 78 81
Discrete emotions, 10 - 15 4 8
Valence / Arousal, high / low 7 3
Valence / Arousal, range 12 24
FACS 0 2
No information 3 9

Table 3: Type of annotations. The first column indicates what anno-
tations were used in the paper from the set of 100 analysed papers.
The second column indicates what annotations the datasets origi-
nally contained. The difference indicates how many annotations
were changed with regard to the original dataset. When adding the
numbers in the columns, one achieves a higher number than the 215
datasets. This is because some datasets contained multiple types of
annotation. FACS stands for Facial Action Coding System and refers
to a system of coding facial movements in order to detect emotions.

3.5 Original classification task
Like in the original work by Geiger et al [37], an original task
was defined as a machine learning algorithm or model that

was novel or a novel combination of models. This does not
include works which simply take an existing technique and
apply it to a new dataset.

From the set of 100 papers, 92 performed an original task.
From the 8 papers which were not an original task, often they
performed some sentiment classification on text, such as for
example in [14]. An often-used technique in these studies
is to use existing lexicons, relating words to an emotion, to
classify the emotion of the overall text. Since these lexicons
are not original sentences or texts themselves, we do not see
them as a training set and they are not labelled as such.

3.6 Labels from human annotation
The majority of datasets were labelled by human annotators
(Table 4). 8 papers were labelled ‘no information’ as infor-
mation on these datasets could not be retrieved, as explained
in Section 3.2. In the following subsections, these 8 datasets
will not be included in the results.

Count Percentage
Yes 191 88.84%
No 15 6.98%
No information 8 3.72%
Unsure 1 0.47%

Table 4: Datasets with human annotation

While for most datasets it was obvious if the labels were
provided by humans, for some datasets this question was
harder to answer. This is mainly because of how the different
datasets were constructed.

For example, a dataset was constructed by recording par-
ticipants of the study who were asked to express a certain
emotion [55]. In this case, there is no explicit labelling of
data. However, the human participants decided how to cor-
rectly express the emotion, so this was recorded as human
annotation.

From the 215 datasets, 56 were found to record partici-
pants of a study being instructed to express an emotion. The
majority, 44 datasets, also used external annotators to label
the samples afterwards. Some papers provided the help of
professionals to participants in expressing the emotion. For
example, in [190] a psychologist explained how certain emo-
tions should be expressed.

Other examples of edge cases include cases where the re-
actions of participants were recorded as they watched a video
that should induce a certain emotion. From the 215 datasets,
30 were found to use this technique. A few of them also vali-
dated their choice of videos on a control group, as done in the
construction of the DEAP dataset [73].

The papers that used videos to elicit emotions, mostly
also asked the participants to self-assess their emotions after-
wards. This was done to verify that the right emotions were
elicited. 4 of them also had the recordings checked by ex-
pert annotators afterwards. But for the datasets that contained
EEG data, this was harder to do.

All of the cases where emotion was elicited in some
way were recorded as human annotation, even if only self-
assessment was provided as the label. However, one could



argue that the quality of the labels increased as more verifica-
tion steps are taken.

3.7 Original and external human annotation
Original human annotation was defined as the authors of a
paper obtaining new labels for examples of a dataset. From
the 100 analysed papers, 27 datasets were used which were at
least partly constructed by original human annotation (Table
5). Some datasets contained both original and external labels.

Yes No
Original annotation 27 169
External annotation 165 26

Table 5: Used original or external human annotation

For 8 datasets for which no information could be retrieved,
it was at least clear that no original human annotations were
used. That is why the total amount of papers that did use
original annotation and that did not is higher than the number
of papers that were annotated by humans, as shown in Table
5.

3.8 Human annotation source
The most common source for human annotations was human
experts (Table 6). The label ‘experts’ was used whenever the
paper mentioned that the labellers had more knowledge than
the average public. For example, some used linguists [129] or
psychologists [191]. Some of the datasets that were labelled
as ‘experts’ were both labelled by students and an expert. In
contrast, the category ‘students’ contains datasets that were
labelled only by students.

Count Percentage
Experts 52 27.23%
No information 30 15.71%
Paper’s authors 29 15.18%
Self-assessment 23 12.04%
Students 18 9.42%
Non-experts 17 8.90%
Amazon Mechanical Turk 14 7.33%
Other crowdwork 6 3.14%
Other 2 1.05%

Table 6: Human annotation source

Defining the source of human annotations was challenging
for studies that used videos or other tools to elicit emotions
from participants. One could argue that the authors of the pa-
per are the annotators, as they choose which video belonged
to which emotional state. However, if self-assessment was
performed after viewing such a video, the participants of the
study could also be defined as the source. A separate category
‘self-assesment’ was created for this purpose.

3.9 Number of annotators specified or estimated
The following two questions concerned whether the num-
ber of annotators was specified and estimated. Quite some

datasets specified the number of annotators, (Table 7). How-
ever, remarkably, none of them made an estimation of the
required amount of annotators. It could of course still be the
case that the creators of the dataset thought about this ques-
tion, and made an attempt to recruit the number of annotators
accordingly. However, none of this was reported.

Some datasets are labeled as ‘no information’ instead of
‘no’ here, because the original paper on the dataset could not
be tracked. However, they didn’t belong to the 8 as mentioned
before in Section 3.2, because the original paper using them
provided at least some further details on the dataset.

Yes No N/A No information
Annotators specified 136 50 2 3
Annotators estimated 0 185 2 4

Table 7: Number of annotators specified and estimated

3.10 Instructions and training for human
annotators

For the instructions question, a distinction was made between
annotators who have been given instructions with lengthy def-
initions or examples, and annotators that were just given a
question. This was done because in the second case, the au-
thors of the paper at least still provided some information on
the given instructions. The majority of papers did not provide
such information, (Table 8).

Count Percentage
Instr. with definitions or examples 69 36.12%
No instr. beyond question text 18 9.42%
No information 100 52.35%
N/A 4 2.09%

Table 8: Were instructions provided to annotators?

Most papers also did not provide any information on train-
ing for annotators, (Table 9). As opposed to instructions,
training was defined as an interactive process in which an-
notators could receive feedback about the quality of their an-
notations. About 5% of datasets explicitly reported that no
training was provided for the annotators.

Important to note is that for some datasets, the level of pro-
fessionality of the annotators is quite high. For example, pa-
pers using psychologists as annotators [191]. Since psychol-
ogists are educated on emotions, one could argue that training
is less relevant for these annotators.

Count Percentage
No information 132 69.11%
Some training details 45 23.56%
No 10 5.24%
N/A 4 2.09%

Table 9: Training for human annotators

3.11 Prescreening for crowdworking platforms
For the 20 datasets that were annotated with the use of crowd-
working platforms, 9 of them performed some kind of screen-



ing for the annotators, (Table 10).
Authors creating a dataset using a crowdworking platform

sometimes include some samples that are accurately anno-
tated by the authors themselves. Crowdworkers are then ran-
domly assigned to rate these as well. Sometimes, the la-
bels created by these crowdworkers are only kept in the final
dataset if their approval rate is above some certain threshold.
This reflects the ‘approval rate’ category in Table 10.

Count Percentage
No information 11 55.00%
Approval rate 5 25.00%
Location qualification 3 15.00%
Projec-specific prescreening 1 5%

Table 10: Prescreening for crowdwork platforms

3.12 Multiple annotator overlap
Multiple annotator overlap was defined as multiple annotators
annotating the same examples of a dataset. This was done at
least partially for about 65% of the datasets, (Table 11).

Count Percentage
Yes, for all items 98 51.31%
Yes, for some items 25 13.09%
No 22 11.52%
No information 44 23.04%
N/A 2 1.05%

Table 11: Multiple annotator overlap

For the papers that used self-assessment or a recording of
actors, multiple annotator overlap might be harder to achieve.
However, since external validators of the emotions could also
have been used, these papers still received the label ‘no’.

One notable example of a dataset that received a ‘yes’
on this question was a paper that used an already annotated
dataset, which did not have multiple annotator overlap, but
the authors of the paper validated the labels themselves [197].

3.13 Reporting of inter-annotator agreement or
another metric of label quality

Almost 60% of the datasets which performed multiple an-
notator overlap, reported the inter-annotator agreement, (Ta-
ble 12). It is worth noting, however, that different levels of
inter-annotator agreement were encountered while labelling
the datasets.

Count Percentage
Yes 73 59.35%
No 50 40.65%

Table 12: Reported inter-annotator agreement

Often, the paper’s authors also did not take any additional
measures when this agreement was on the lower side. For
example, the reported inter-annotator agreement for Affect-
Net [114] was 60.7%. In addition to that, only part of the

dataset was labelled by two annotators, the majority was la-
belled by one person. And so, one could argue that the labels
of this dataset are very dependent on the subjective interpre-
tation of this one annotator.

Next to inter-annotator agreement, papers which used hu-
man annotation were screened for reporting some other kind
of metric of label quality. The results of this analysis can be
found in Table 13.

Count Percentage
Yes 36 19.37%
No 152 79.58%
No information 2 1.05%

Table 13: Reported some other metric of label quality

3.14 Link to the dataset provided
The last question concerned the paper providing a link to the
dataset, such that it is accessible for people who might want
to use the dataset. An overview of the results can be found in
Table 14.

Count Percentage
No 88 40.93%
Yes, open source 51 23.72%
Yes, but link was broken 41 19.07%
Yes, but request access 34 15.81%
Unsure 1 0.47%

Table 14: Provided link to dataset

Often, the original 100 papers referred to other papers for
more information on the datasets that were used. If the links
to the datasets were provided in the linked papers, the answer
to this question was recorded as ‘yes’ as well.

However, it also often was the case that a paper provided
a link to a website which was no longer available. As seen
from Table 14, this happened in almost 20% of the cases.

For papers that did provide a link to the dataset, a distinc-
tion between two categories was made. On the one hand,
there were datasets that were directly available for download
from the web. Other datasets could be obtained by for ex-
ample filling in a request form or sending an email to the
academics who created the datasets. For the second case, it
often was clear that only researchers affiliated with a univer-
sity would receive the dataset upon request.

4 Responsible Research
It is of utmost importance that all research is conducted ethi-
cally and responsibly. On top of that, research should always
be reproducible. We will reflect on these matters related to
this study in this chapter.

4.1 Ethical concerns
Firstly, one should not forget that, as in many scientific works,
there is the risk of confirmation bias. If the researchers of a
study assume to find a certain result, they could see it, even
if it is not necessarily there. Because we originally assumed



that annotation practices would not be up to standards, there
is the risk that we do not judge the findings objectively.

Secondly, there is the risk of selection bias. Because of
the limited resources for this study, no more than 100 papers
could be analysed. This could potentialy be too small of a
sample size to conclude something about the entire field of
affective computing. Still, considering that these are the most
highly cited papers from the last 5 years, we are confident that
this is a representative sample.

4.2 Reproducibility
The PRISMA guidelines 3 for literature review have been fol-
lowed where applicable to ensure that the work presented is
reproducible. However, some steps in the process are inher-
ently subjective and might therefore not be entirely repro-
ducible. For example, the determination of whether a pa-
per should be included or excluded from the review, is, al-
though the inclusion and exclusion criteria have been defined
and followed, still inherently a subjective judgement. There-
fore, other researchers performing this study might decide to
include some studies which were excluded in this work or the
other way around.

5 Discussion
5.1 Varying Quality
Based on our experience of analysing 100 papers and 215
datasets on their annotation practices, we can say that in gen-
eral, the quality of the annotation practices varies greatly
from dataset to dataset and from paper to paper. We found
datasets that were constructed and annotated with quite some
care and attention. This for example holds for the RECOLA
dataset [142], which consists of audio and video from 46
French-speaking participants and was provided with anno-
tations from 6 French-speaking annotators. The authors re-
port that the annotators were given a document explaining the
procedure of the annotation process and some explanation of
emotional cues. Besides that, the paper reported that before
starting the annotation process, the annotators were given ex-
amples from another database, as a form of practice. The
authors also report a fairly good inter-annotator agreement.
The RECOLA dataset was only used one time in the total of
215 datasets.

On the other hand, we also found quite some papers that
took very little care of their annotation practices or even for
which no information could be found. For example, the
SFEW dataset [32], which only reported that the data was
annotated by two independent labellers. However, since no
inter-annotator agreement was reported, it is hard to tell if
this implies multiple annotator overlap. The SFEW dataset is
used four times in the total of 215 datasets.

Seeing such differences in the quality of annotation prac-
tices in the 100 most cited papers on affective computing is
concerning. Especially because high-quality annotations are
specifically important in affective computing, since this is a
domain in which the resulting predictions could be of high
societal impact.

3http://www.prisma-statement.org/

5.2 Multiple Annotator Overlap
Even for papers that put quite some effort into their anno-
tation practices, there are some parts that can be improved.
For example, the finding that no papers explicitly reported
an estimation of the number of annotators needed (Table 7,
is considered concerning. Estimating the necessary amount
of annotators is important because a high enough number of
annotators is needed to perform a good practice of multiple
annotator overlap.

Since even humans can perceive emotions differently from
each other [38,47,165], we consider multiple annotator over-
lap as one of the most important measures one could take to
construct an emotion dataset with high-quality annotations.
Taking this into account, we consider around 50% of datasets
using multiple-annotator overlap for the whole dataset (table
11) to be a quite low amount. When we find that in turn, only
60% of those report the inter-annotator agreement, this raises
even more concerns.

When using multiple annotator overlap, it is also impor-
tant to recruit a large enough number of annotators to label
the same items. One could imagine that a dataset that was
labelled by 20 people is more reliable than one that is la-
belled by only 2. A limitation of this study is that this num-
ber was not recorded. However, we have come across various
amounts of annotators during the collection of the results.

5.3 Other findings
Worth mentioning is that authors quite often do not report
parts of the information that we are interested in. For exam-
ple, for almost 15% of datasets, it is not clear who the an-
notators were (Table 6), and no information was provided on
instructions and training details for respectively around 50%
and 70% of all datasets (Table 8 and 9). For training, we can
imagine that no information provided, also means no training
provided. However, concerning instructions, we suspect that
most authors at least provided some kind of question to the
annotators. Yet, this was not reported. This is an indicator of
the lack of attention that is given to the reporting of annota-
tion practices.

Another remarkable finding is that for almost 60% of
datasets, there was no available link to the dataset provided
by the authors of the papers. This raises concerns about the
reproducibility of studies in affective computing.

Furthermore, we find that the type of annotations which are
given to datasets, but also used in practice by papers, differ
a lot (Table 3). We would argue that the field of affective
computing could use some unity in the annotations which are
given to examples, as this gives more clarity as to what a well-
performing model should exactly be able to predict.

5.4 Summary
All in all, we would argue that most of the annotation prac-
tices in affective computing are not necessarily very bad,
however, considering the importance of high-quality annota-
tions, especially in this domain, we would argue they could
and should be more up to standards. We would argue that the
most important point of improvement is the use of multiple
annotator overlap.



Furthermore, it is remarkable that we see both examples of
papers with annotation practices which would be considered
up to standards, and also examples of papers which almost
provide no information at all. This could be an indication of
the varying importance assigned to the quality of annotations.
As was already established by Sambasivan et al [150], we
notice that little attention is given to collecting high-quality
datasets compared to the attention which is given to building
high-performing machine learning models.

We only considered publications in the domain of affec-
tive computing, and are therefore hesitant to generalise our
findings to that of the whole field of machine learning. How-
ever, it is important to note that these findings are similar to
those found by Geiger et al [37]. And so, the two studies
together build a stronger case for machine learning datasets
having varying annotation qualities.

5.5 Limitations
A limitation of this work is that the annotations for the papers
and datasets were only collected by one person, the author
of this paper. It is realistic to consider that if they were an-
notated by multiple people, with some kind of discussion on
cases where there was disagreement, that datasets would have
been annotated differently. However, we would argue that the
general trend that can be seen from the results would remain
the same.

Another limitation of this work one should consider is that
the analysed datasets were constructed in varying manners.
This makes comparing their annotation practices a challeng-
ing task.

6 Conclusions and Future Work
This study analysed the annotation practices of the datasets
used in the 100 most cited works in affective computing. We
found that the annotation practices in affective computing
are of varying quality. In general, we recommend that they
should be improved, mainly by making more use of multiple
annotator overlap.

In general, we recommend the field of affective comput-
ing to create standards or guidelines for how data in affective
computing should be collected and annotated. Having con-
crete standards will make it easier for researchers to adhere
to these standards.

This work contributes to the understanding of annotation
practices in machine learning research in general. However,
to understand the entire field, more research should be con-
ducted in different domains.

A Papers excluded and included in the study

Table 15: Overview of papers included and excluded from the study

Publication
Excluded
Affective com-
puting not main
topic

[125] [189] [9] [10] [44] [93] [1]
[141] [6] [202] [140] [75] [28] [154]
[210] [77] [80] [169] [67] [194] [48]
[96] [182] [92] [49] [61] [178] [128]
[212] [115] [176] [7] [59] [40]

Survey or review [126] [72] [60] [184] [84] [70]
[201] [192] [31] [34] [13] [78] [24]
[54] [164] [135]

Included [85] [114] [211] [100] [112] [91]
[159] [197] [69] [215] [193] [213]
[183] [83] [152] [12] [186] [19]
[174] [68] [89] [20] [26] [27] [35]
[103] [180] [172] [199] [173] [56]
[203] [206] [161] [162] [151] [134]
[137] [52] [181] [58] [5] [87] [139]
[101] [17] [50] [138] [105] [86]
[163] [204] [21] [23] [36] [102]
[187] [55] [157] [14] [62] [148]
[121] [175] [79] [94] [63] [65] [22]
[188] [200] [116] [90] [216] [155]
[109] [4] [205] [95] [51] [2] [53]
[46] [82] [71] [64] [81] [39] [170]
[108] [110] [41] [66] [168] [25]
[145] [76] [74] [117]

B Other sources used for collecting results

Table 16: Other sources used for collecting results per paper part 1

Paper Other sources used
[211] [15, 16]
[100] [130, 146]
[91] [32, 83, 98, 114, 124, 209]
[159] [69, 214]
[197] [98]
[215] [73, 214]
[183] [129–131]
[12] [42, 171]

[186] [98, 124, 190, 191, 207–209]
[19] [119, 120, 143, 147, 156]

[174] [11, 32, 83, 114]
[68] [42, 144, 147]
[89] [33, 131]
[20] [133, 156]
[26] [15, 16]
[35] [33, 131]
[103] [16, 107]
[172] [179]
[199] [33, 129–131]
[173] [11, 83, 114]



Table 17: Other sources used for collecting results per paper part 2

Paper Other sources used
[56] [104]
[203] [15, 104, 177, 198]
[206] [98, 214]
[162] [131, 146]
[52] [16]
[181] [129, 131]
[58] [131]
[5] [129]

[87] [88, 185]
[139] [57, 122, 156]
[101] [130, 146]
[17] [32, 98, 124, 209]
[50] [73]
[117] [15, 16, 97]
[86] [73, 214]
[163] [33, 129, 131]
[204] [104, 177, 198]
[36] [33, 131]
[102] [16, 195]
[55] [104]
[121] [33]
[62] [15, 16, 97]
[175] [33, 131]
[79] [73, 214]
[63] [98, 99]
[22] [73]
[188] [73]
[200] [32, 45, 191]
[116] [16, 97]
[90] [33, 129–131]
[109] [8, 43, 98, 99]
[4] [29, 111]

[95] [106]
[51] [16, 107]
[53] [129–131]
[46] [73, 214]
[82] [73, 158, 214]
[71] [98, 99]
[64] [99, 124]
[81] [214]
[39] [11, 43, 114]
[170] [142]
[108] [15, 16]
[41] [16, 153]
[168] [3, 149, 196]
[25] [98, 99]
[76] [112, 113, 136, 160]
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