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Introduction

Accurate flight delay predictions are important for many stakeholders throughout the aviation industry, in-
cluding airports, airlines, and passengers. As a result, numerous researches have attempted to predict flight
delays as accurately as possible. Although many are rather successful, and classification accuracies above 80%
are not uncommon, there is not much variation in the prediction target; almost all researches aim to predict
the flight delay as either a class or in minutes. While that might be sufficient information for some applica-
tions, this research expects that certain airport operation optimization models could be improved by including
an indication of how certain the model is about a specific flight delay prediction, ideally in the form of a com-
plete probability distribution. Another underexposed topic in existing literature is how well flight delays can
be predicted at regional airports. While larger airports might be the larger stakeholders, this research expects
that many regional airports could also benefit from accurate predictions.

The main research objective of this thesis is to gain insight into the possibility and potential effect of accu-
rately predicting flight delay probability distributions with machine learning algorithms at a regional airport.
To achieve this, the problem is divided into three parts. Since most existing flight delay studies evolve around
large, international airports, the first sub-goal of this thesis is to apply the same machine learning-based binary
classifiers to a regional airport. The second sub-goal is to evolve flight delay predictions from point estimates
to probability distributions by applying probabilistic machine learning algorithms, a novelty in the field of
flight delay predictions. The third and final sub-goal is to investigate the potential effect of the predicted flight
delay distribution by incorporating them into an existing Flight-to-Gate Assignment Problem.

This thesis research is conducted at the Air Transport and Operations department of the Aerospace Engi-
neering faculty of Delft University of Technology. Although this department collaborates with Rotterdam The
Hague Airport, the airport is not directly involved in the development of this thesis. All data comes from pub-
licly available sources. The research project is unique for its attempt to form a bridge between two research
fields; the field of flight delay predictions and the field of scheduling problems. Its results have the potential to
improve airport operations, including the scheduling of flights to gates, which could be beneficial for airports,
airlines and passengers. The applied methodology also has the potential to improve logistical operations out-
side the aviation industry, such as parcel delivery routing or the scheduling of other modes of transportation.

This thesis report is organized as follows. Firstly, the scientific paper is presented in Part I. The second part
re-states the literature study, which has previously been graded under a different course name. The final part
consists of detailed work supporting the paper.

ix
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Machine learning-based predictions of flight delay distributions at a1

regional airport2

Sarah Dutrieux ∗
3

Delft University of Technology, Delft, The Netherlands4

Abstract5

In an effort to improve an airport operation optimization model, this research investigates the possibility6

of predicting probability distributions of flight delays with machine learning algorithms. The research is7

centered around Rotterdam The Hague Airport, a regional airport in the Netherlands. The first objective8

is to test how well machine learning classifiers can predict whether a flight will be delayed for a regional9

airport. This results in accuracies of around 70%, while taking precision and recall into account. The second10

objective is to predict the probability distributions of flight delays, for which three models are selected: a11

modified Random Forest Regressor, a Mixture Density Network and a Dropout Network. The main finding12

is that accurately predicting distinctive delay probability distributions for individual flights is possible. As13

a final objective, the predicted flight delay distributions are incorporated into an existing Flight-to-Gate14

Assignment Problem. It is found that this improves the robustness of the resulting schedules, although15

associated with a small reduction in their efficiency. The overall conclusion of this research is that machine16

learning-based prediction of flight delay distributions is possible, sufficiently accurate, and can improve at17

least one airport operation optimization problem. Further research will have to show whether this approach18

can be extended to other airports, other aviation optimization problems, or even optimization problems in19

other research areas.20

1 Introduction21

Throughout the aviation industry, there are many stakeholders who can benefit from accurate flight delay22

predictions. Airports, who are optimizing the efficient use of their existing capacity to accommodate for the23

growing air travel demand. Airlines, who aim to minimize the propagation effect of disruptions in their schedule.24

And last but not least, the passengers, who prefer to know about delays as soon as possible. As a result, numerous25

flight delay researches have been performed within the field of air transport and operations.26

Simultaneously, numerous researches investigate how the operational processes of airports and airlines can be27

optimized. These optimizations, such as airport surface traffic optimization, aircraft routing optimization, and28

airline crew scheduling, all involve arriving and departing aircrafts, for which delays are inevitable. Subsequently,29

a number of these airport operation optimization models take uncertainty into account. However, they rarely30

take full advantage of research findings in the field of flight delay predictions. The hypothesis of this paper is31

that certain airport operation optimization models could be improved by directly incorporating an extensive32

flight delay prediction model.33

To prove the hypothesis, this paper attempts to improve the Flight-to-Gate Assignment Problem (FGAP)34

model as defined by van Schaijk and Visser (2017). This model, however, requires the flight delay predictions to35

be expressed as a probability distribution, which exposes a first limitation of the current state-of-the-art in the36

field of flight delay predictions. Most of the flight delay studies apply machine learning algorithms to predict37

whether or not a flight will arrive or depart within 15 minutes of its scheduled time, which corresponds to the38

delay reporting system of the U.S. Federal Aviation Administration (FAA). Several studies attempt to predict39

the delay in minutes. But while the majority of these studies properly state the overall performance accuracy of40

their models, they do not provide a confidence interval for the delay predictions of individual flights, let alone41

a complete probability distribution.42

A second limitation of the current state-of-the-art in the field of flight delay predictions is that the majority43

of the researches targets large, international airports with large, and available, historical flight delay datasets.44

A smaller, regional airport inherently has a smaller dataset, which might be challenging when applying machine45

learning algorithms. Furthermore, a regional airport likely serves an airline mixture with more low cost carriers,46

who might have less resources available to solve delaying situations. Flight-to-gate scheduling, however, is47

relevant for all airports that serve passenger airlines, which includes regional airports.48

∗Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
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Combining the potential improvement in airport operations and the limitations of current flight delay studies1

leads to the main objective of this paper: investigating whether it possible and potentially beneficial to accurately2

predict the probability distribution of flight delays with machine learning algorithms at a regional airport. The3

first research objective is to predict flight delays at a regional airport, by applying two established machine4

learning classifiers that are currently used for larger airports. The second objective is to investigate whether it5

is possible to accurately predict flight delay probability distributions. In order to do this, three machine learning6

algorithms that have successfully estimated probability distributions in other research fields are introduced to7

the field of flight delay predictions. The final objective is to show how enhancing flight delay predictions with8

a probability distribution can be beneficial for airport operations optimization by incorporating the newly9

predicted delay distributions into an existing flight-to-gate assignment problem.10

The remainder of this paper is divided as follows. Section 2 presents a literature review that elaborates on11

the current state-of-the-art in the field of flight delay predictions. A description of the data available for this12

research is given in section 3. Section 4 describes the methodology used for the prediction of flight delays and13

their distributions. The results are presented in section 5. In section 6, a case study is conducted to examine14

the potential impact of the predicted flight delay distributions. Finally, the conclusions and recommendations15

of this research are given in section 7.16

2 Literature Review17

Over the past two decades, many different approaches have been applied to the flight delay prediction problem.18

One of the earlier studies by Mueller and Chatterij (2002) approaches the flight delay problem by fitting different19

distributions to historical data. Although not strictly a prediction, the research concludes that arrival flights20

are best modeled by a Normal distribution, while a Poisson distribution best describes the departure flights. In21

(Xu et al., 2005), the problem is modeled as a Bayesian network, which requires the conditional probabilities22

between states to be known. Klein (2010) recognizes the importance of the weather and incorporates weather23

forecasts and observations in a multi-linear regression.24

The beginning of the previous decade highlights the start of a new trend in the field of delay predictions:25

machine learning techniques. A large contribution is made by Rebollo and Balakrishnan (2014), who are among26

the first to apply a binary Random Forest (RF) classifier to the flight delay problem and achieve an average27

accuracy of 80%. Both the method and the accuracy often function as a benchmark in successive research.28

Since tree-based models are relatively easy to interpret, almost all studies nowadays still incorporate at least29

one bagging or boosting extension of the Decision Tree (DT) model. However, in order to achieve more accurate30

results, many recent studies also include more complex models. A promising addition to the boosting algorithms31

is LightGBM, which allows for leaf-wise growth of a sequentially updated decision tree and outperforms all other32

models in both (Lambelho et al., 2020) and (Shao et al., 2019). Neural networks, a deep learning approach that33

requires many data points, are introduced to flight delay predictions in (Kim et al., 2016) and (Khanmohammadi34

et al., 2016). Another approach is the construction of a two stage model that first determines whether there35

is a delay, followed by how much delay (Thiagarajan et al., 2017). Even more recently, Yu et al. (2019) have36

developed a combination of a Deep Belief Network and a Support Vector Regression.37

For the input features, the trend of increasing complexity over time does not hold as strongly, although38

some researches specifically focus on the effects of innovative features. The minimum input requirement for39

predicting flight delays are the features related to flight schedule of the historical flight delay data, such as the40

origin, destination, and scheduled time of departure. In (Choi et al., 2016), weather forecast features are added41

to the prediction model. However, most researches that follow continue to use the actual, observed weather in42

the form of METAR data, which is easier to obtain. Interestingly enough, none of those researches identifies43

METAR as one of the most important features, even though de Neufville and Odoni (2013) and Mueller and44

Chatterij (2002) state that weather is often reported as the cause of delay. Finally, Yu et al. (2019) and Chen45

and Li (2019) emphasize the benefits of knowing the delay of the previous flight executed by a specific aircraft.46

The increased complexity of models and features is rewarded; the two stage model of Thiagarajan et al.47

(2017) results in an accuracy of 94.35%, Yu et al. (2019) report that 99.3% of the predicted delay minutes are48

within 25 minutes of the actual value, and the research of Chen and Li (2019) leads to a (relaxed) accuracy of49

92.7%. A critical note, however, is placed at the fact that not all of these specific studies, and similar ones,50

explicitly state their false negatives and false positives. This information is essential for the interpretation of51

these results, given that the dataset of flight delays is highly imbalanced. Furthermore, it should be noted from52

a practical perspective that the most accurate results are from predictions very shortly before the departure of53

the flight. For certain operational optimization solutions, this might be too late. Nevertheless, this literature54

review on flight delay predictions shows that very high accuracies can be achieved. Rather than aiming to55

improve them even further, this research focuses on two underexposed and potentially innovative topics within56

the field of flight delay predictions: regional airports and probabilistic forecasting.57

3



Regional airports1

Most existing flight delay researches revolve around large, international airports. Although these airports are2

large stakeholders, with large and available datasets, there are also many regional airports that could benefit3

from accurate predictions. With respect to flight delay predictions at an international airport, a regional airport4

differs in two ways. It has a different mixture of airlines, i.e. one with more low cost carriers, and it has a5

smaller historical flight dataset.6

An assumption associated with low cost carriers is that they might have less resources available to absorb7

delays within their schedule, resulting in more difficult-to-predict flight delays. However, both Horiguchi et al.8

(2017) and McCarthy et al. (2019) explicitly focus on low cost carriers and their prediction results are only9

slightly inferior to the results of large airports. With a prediction horizon of one day in advance, Horiguchi10

et al. (2017) achieve an AUC score of 0.647 which is only marginally lower that the 0.68 achieved in (Choi et al.,11

2016), a study at 45 major airports, likely serving a large share of legacy carriers.12

The smaller database that is inherently associated with a regional airport makes machine learning-based13

predictions more challenging and prone to overfitting, but not impossible. In (McCarthy et al., 2019), the14

transfer learning framework of Moon and Carbonell (2017) is used to enlarge a training dataset of a smaller low15

cost carrier with data from a much larger airline. With all other parameters remaining the same, the RMSE16

reduced from 10.2 to 9.2 when transfer learning was applied. Furthermore, Gui et al. (2020) show a good17

classification accuracy with a dataset of only 5,761 flights and the application of undersampling to counter the18

imbalanced dataset. Overall it is concluded that the main concerns associated with applying existing delay19

prediction models to regional airports, are not necessarily limiting factors according to literature.20

Probabilistic forecasting21

The second identified gap in literature relates to the target of the flight delay predictions. All of the encountered22

delay studies that involve machine learning algorithms aim to predict the delay in either minutes or a delay class.23

Almost none of them consider the importance and potential of adding probabilities to the estimate, let alone24

including an entire probability density function. The motivation for probabilistic forecasting therefore comes25

from promising studies in other research fields. Examples are (Zhu and Laptev, 2017), where neural networks26

with dropout are applied for the prediction of time series uncertainty, and (Vossen et al., 2018), which applies27

a mixture density network to predict power load peaks in energy networks. This research aims to introduce28

similar techniques to the field of flight delay predictions.29

3 Data description30

Conducting this research requires two types of data; data of the airport itself and data of its historical flights.31

Both are described in the following sections.32

Rotterdam The Hague Airport33

This research is centered around Rotterdam The Hague Airport (RTM), a regional airport located in the34

Netherlands. It serves flights to destinations across Europe, which is illustrated in figure 2(a). This figure is35

obtained by plotting the geographical coordinates of the airports in the available flight dataset. The five airports36

that occur most frequently are marked with their IATA code. As listed in table 1, RTM currently serves around37

two million passengers a year, divided over eight different airlines. Furthermore, the airport has one runway38

and one recently renovated terminal, which opened in December 2020. The new terminal has 11 gates, which39

is three more than the old terminal had. Since this research is based on flights that arrived or departed prior40

to December 2020, it is based on the old terminal. Its layout, including a marking of the eight gates, is given41

in figure 1.42

RTM
Gates 8

Terminals 1
Runways 1 (06/24; 2200m)
Airlines 8

Passengers 2019 2,133,976

Table 1: Information Rotterdam The Hague Airport 1

RTM
Number of flights 34,678

Arrivals 17,317
Departures 17,361

Time period May 2017 - Feb 2020

Table 2: Information available data

1https://www.rotterdamthehagueairport.nl
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Source: based on an original map of Rotterdam The Hague Airport1

Figure 1: Layout of the terminal of RTM prior to 2020

(a) Flight network (b) Historical arrival and departure delay

Figure 2: Visualization of the available RTM data

Available data and features1

This research is based on 34,678 historical passenger flights that arrived or departed from RTM airport in the2

period between May 2017 and February 2020, as listed in table 2. The historical arrival delays and departure3

delays in minutes are illustrated individually in figure 2(b). These histograms show that the arrival flights tend4

to arrive before their scheduled time, while the departing flights tend to depart slightly late.5

All data are publicly available and collected from two main sources: Flightradar242 and the Meteorological6

Aerodrome Report (METAR) database of Iowa State University 3. The first is a real-time global flight tracking7

service that collects its data with ADS-B receivers. For each tracked flight it provides flight schedule information,8

such as the origin, destination, airline, scheduled departure/arrival times , and the actual time of departure and9

arrival. The second source provides information regarding the weather in the form of the METAR weather code10

of the World Meteorological Organization. These codes are provided by airports and weather stations and are11

typically updated twice an hour.12

A number of features cannot be found directly in one of the two sources above, but are derived from the13

schedule. The first feature in this category is the distance, which can be estimated with the geographical14

2 https://www.flightradar24.com/
3 https://mesonet.agron.iastate.edu/request/download.phtml
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coordinates of the origin and destination airport. The second feature is the scheduled flight time, which is1

the difference between the scheduled time of departure and arrival. The final feature is the number of other2

flights scheduled at the airport in the time window of an hour before to an hour after the flight in question. An3

overview of all available and considered features can be found in table 3.4

Source Features

FlightRadar242
aircraft type, airline, country of destination, country of origin, day of week, day of year,
destination airport, flight number, month, origin airport, Scheduled Time of Arrival (STA),
Scheduled Time of Departure (STD), week, year

METAR database3 for both the destination and origin:
dew point temperature, pressure altimeter, temperature, wind speed

derived from schedule distance, scheduled flight time, other flights scheduled at airport

Table 3: All available features

4 Methodology of flight delay prediction5

The methodology of this research that is used for the prediction of flight delays, can roughly be divided into6

three parts; the encoding and selection of features, the binary classification of delays, and the prediction of7

flight delay distributions. All three are described in detail in the following sections.8

4.1 Features and data9

As stated in the data description, this paper is completely based on data from publicly available sources. Before10

the features in table 3 can be used in the predictions models, the data have to be encoded, selected, and balanced11

first.12

Encoding of categorical features13

Since a number of the available features described above are categorical, while machine learning algorithms14

only accept numerical features, feature encoding is required. This research uses three types of encoding, the15

first being the use of geographical coordinates. For all features that represent a certain location, e.g. the origin16

airport and country, the current label of the feature is replaced with its corresponding geographical coordinates.17

The second type of encoding is trigonometric encoding, which adds cyclical information to time-based18

features by projecting them on a unit circle. This is done with the following two formulas:19

sin
(
2πttime

tcycle

)
and cos

(
2πttime

tcycle

)
(1)

Here, ttime represents the time to be converted and tcycle the time span of one complete cycle, for example 36520

days or 24 hours. With this type of encoding, a single time-based feature is divided into two partial features;21

one representing the cosine part and the other representing the sine part.22

The final type of encoding is target encoding. When target encoding is used in a classification problem,23

the feature’s current label is replaced with the probability of the target being 1, given the feature’s categorical24

value. This can be formulated more formally as follows:25

Xi −→ Si
∼= P (Y |X = Xi) (2)

where Xi is the feature’s current categorical value, Si the new encoding and Y the binary target variable with26

value 1. When target encoding is used in a regression problem with a continuous target, the encoding analogously27

becomes the expected value of the target given the categorical value. Again, more formally formulated this28

becomes:29

Xi −→ Si
∼= E(Y |X = Xi) (3)

In this case Y represents the continuous target variable. The encoding used in the final feature selection is30

included in tables 4 and 5.31
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Feature selection process1

The main reason to deploy a feature selection is to avoid multicollinearity; the phenomenon that two or more2

explanatory variables are highly correlated to each other. For some machine learning algorithms, in particular3

regression models that assume all variables to be independent, multicollinearity reduces the performance. A4

proper feature selection contributes to prevent this.5

Another reason to apply feature selection is that not all features are appropriate for every application. The6

availability of weather related features strongly depends on the time between the prediction and the observation,7

also known as the prediction horizon. In a real life application, the model would be based on weather forecasts.8

However, for this research only actual weather observations, in the form of METAR data, are available. For9

predictions with a horizon of at most one day (1D), it is assumed that the weather forecasts would be accurate10

enough to approximate these forecasts with the actual METAR data. In fact, METAR data could be interpreted11

as perfect weather forecasts. For longer prediction horizons, for example one month (1M), this assumption does12

not hold. Instead, these predictions are based on the multiple year daily average of the METAR data.13

Furthermore, there is distinction between arriving flights and departure flights; not all features have to be14

equally useful for both. To accommodate for these differences, this flight delay research distinguishes between15

four different study groups: 1) 1D arrivals, 2) 1D departures, 3) 1M arrivals, and 4) 1M departures. For each16

of these groups the appropriate feature set is selected with a two step process.17

Step 1: Pearson correlation matrix18

The first step is a selection based on the Pearson correlation matrix of all features available for the study group.19

When two features have a correlation coefficient of 0.8 or higher at least one of the two features is removed, a20

decision that is based on domain knowledge. More details of this selection procedure can be found in appendix21

A of the associated thesis, where both the complete and resulting correlation matrices are presented.22

Step 2: Recursive Feature Elimination23

The second step is the Recursive Feature Elimination (RFE) method as described in detail in (Granitto et al.,24

2006). In summary this is an algorithm that eliminates redundant features by systematically running the model25

with different subsets and comparing the performance. Although thorough, this approach is also rather time26

consuming. Nevertheless, this research runs the model twice for verification purposes; once with the Random27

Forest model and once with LightGBM. Only features that are eliminated in both cases are removed from the28

final feature set, which results in the removal of the feature ’airline’ for all study groups. The final feature sets29

for the arrivals and departures are listed in table 4 and 5 respectively.30

Horizon Feature Type Encoding

Any

Origin airport C Target, geographical coordinates
Country of origin C Target
Aircraft type C Target
Distance [km] N -
Scheduled time of departure (STD) N Trigonometric
Year N -
Day of Year (DOY) N Trigonometric*
Day of Month (DOM) N Trigonometric*
Day of Week (DOW) N Trigonometric*
Other flights scheduled at RTM N -

1-Month
Average temperature [°F ] at origin/destination N -
Average pressure altimeter [cm] at origin/destination N -
Average wind speed [knots] at origin/destination N -

1-Day
Temperature [°F ] at origin/destination N -
Wind speed [knots] at origin/destination N -
Pressure [cm] at origin/destination N -

* These features are also included without trigonometric encoding

Table 4: Feature set for arrival flight delay predictions
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Horizon Feature Type Encoding

Any

Destination airport C Target, geographical coordinates
Country of destination C Target
Aircraft type C Target
Distance [km] N -
Scheduled time of departure (STD) N Trigonometric
Year N -
Day of Year (DOY) N Trigonometric*
Day of Month (DOM) N Trigonometric*
Day of Week (DOW) N Trigonometric*
Other flights scheduled at RTM N -

1-Month
Average temperature [°F ] at origin airport N -
Average wind speed [knots] at origin airport N -
Average Pressure [cm] at origin airport N -

1-Day
Temperature [°F ] at origin airport N -
Wind speed [knots] at origin airport N -
Pressure [cm] at origin airport N -

* These features are also included without trigonometric encoding

Table 5: Feature set for departure flight delay predictions

Imbalanced dataset1

When machine learning algorithms are applied to a classification problem, they often produce the best test2

results when trained on a well-balanced dataset, meaning that all classes are represented equally. When the3

training dataset is highly imbalanced, the model is trained with a bias towards the majority class, leading to4

missclassification of the minority class in the test case. As can be seen in figure 2(b), dividing the historical5

flight data of this research into the target groups ’less than 15 minutes delayed’ and ’delayed by 15 minutes or6

more’, leads to such an imbalanced (training) dataset.7

A solution to counter this bias is to even the number of samples in each class by oversampling or under-8

sampling the training data. Since the latter has the disadvantage of potentially removing valuable information,9

the commonly used oversampling method Synthetic Minority Oversampling Technique (SMOTE)(Chawla et al.,10

2002) is selected. In order to generate more samples of the minority class, SMOTE first draws a line between a11

random instance of the minority class and one of its randomly selected k-nearest neighbors. It then randomly12

identifies a point on this line as a new sample in the minority class and continues this process until both (or13

all) classes have the same sample size.14

4.2 Binary classification15

Once the features are selected and the dataset is balanced, binary classification models are applied. The aim16

is to predict whether flights will arrive (or depart) within 15 minutes of their scheduled time of arrival (or17

departure). In order to achieve this, this paper introduces classifiers that have previously been successful in18

flight delay studies at larger airports, together with appropriate performance metrics and a model-agnostic19

interpretability method to identify important features.20

Classification models21

To enable verification, this research uses two different machine learning classification models the Random Forest22

Classifier and the Light Gradient-Boosted Machine. A short description of both models is given in the following23

two sections. For a detailed description of the hyperparameter tuning process and resulting settings, this article24

refers to appendix B of the associated thesis.25

Random Forest Classifier26

The first model selected is the widely used Random Forest (RF) Classifier, an algorithm that originates from27

(Breiman, 2001). In principle this model is a collection of Decision Tree (DT) classifiers. Each tree in the28

collection is based on a bootstrap sample of the training data, meaning that the sample is drawn uniformly29

and with replacement. For classification, the RF determines its prediction by taking the majority vote of the30

test results of each individual tree. Analogously, when applied to a regression problem it determines its output31

by taking the average. This procedure of sampling and assembling is also known as bootstrap aggregating or32

bagging.33
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Light Gradient-Boosted Machine1

The second model is LightGBM, which was recently developed by Ke et al. (2017) and stands for Light Gradient-2

Boosting Machine. Similar to the RF, LightGBM is also an ensemble technique based on the DT algorithm.3

The main difference however is that this is a boosting algorithm, meaning that it is trained by by improving4

the decision tree in sequential steps. At each step, a random sample is used to construct a new tree, based5

on reducing the classification error of the previous tree. LightGBM stands out from other gradient boosting6

algorithms by applying leaf-wise growing of the tree instead of level-wise growing, which allows the trees to7

be more complex and more accurate. Furthermore, it introduces two new concepts to reduce the number of8

features and data samples, and therefore the computational time. The first one is Gradient Based One Side9

Sampling (GOSS), which selects the samples with large gradients and randomly downsamples features with10

smaller gradients, to reduce the number of data points with as little as possible information loss. The second11

is Exclusive Feature Elimination (EFE), which reduces the number of features by bundling features that are12

mutually exclusive, i.e. are never simultaneously zero.13

Performance metrics for classification14

Actual
Positive Negative

P
re

di
ct

ed Positive True Positive
(TP)

False Positive
(FP)

Negative False Negative
(FN)

True Negative
(TN)

Table 6: Confusion matrix

accuracy =
TP + TN

total
(4)

recall =
TP

TP + FN
(5)

precision =
TP

TP + FP
(6)

15

The most intuitive and commonly used metric to express the performance of a classification algorithm is the16

accuracy in equation 4, which is the fraction of correctly identified instances. In principle it holds that the17

higher the score the better, with the score bound between 0 and 1. Accuracy alone, however, is not sufficient18

when the dataset is highly imbalanced. It is also important to take the false positives and false negatives into19

account. Therefore, two additional metrics are used as well; the recall and the precision in equation 5 and 620

respectively. The recall is a measurement of how many of the actual positive instances are also classified as21

positive. The precision represents how many of the predicted positives are also actually positive. Again, both22

metrics are bound between 0 and 1, and a higher score is preferred for both.23

It is important to note that precision and recall are a trade-off; increasing either will decrease the other.24

This research assumes that the costs for falsely predicting a delay and falsely not predicting a delay are equal,25

which makes both metrics equally important. To find the optimal balance point between the two, the f1 score26

is used. This score combines both metrics in a single one by taking their harmonic mean:27

f1 =
2 ∗ precision ∗ recall
precision+ recall

=
2TP

2TP + FP + FN
(7)

Another widely used performance metric is the Area Under the Receiver Operating Curve (ROC)(AUC). The28

ROC is defined as follows:29

ROC =
TPR

FPR
=

TP
TP+FN

FP
FP+TN

(8)

The integrated AUC always falls between 0 and 1, and the closer to 1 the better. It should be observed, however,30

that randomly guessing the class results in a 0.5 AUC score. A prediction model should ideally perform better31

than this.32

Model-agnostic interpretability method33

While the use of more complex machine learning models might lead to more accurate predictions, it comes34

at the expense of explainability and interpretability. As opposed to for example a regression model, it is35

impossible to interpret the direction and impact of each individual feature directly from machine learning36

models. Therefore, model-agnostic interpretability methods are introduced. This research uses the SHAP37

(SHapley Additive exPlanations) values approach, as proposed by Lundberg and Lee (2017). The approach is38

based on Shapley values φi, which are calculated as follows (Lundberg and Lee, 2017):39
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φi =
∑

S⊆F\{i}

|S|!(|F |− |S|− 1)!

|F |! [fS∪{i}(xS∪{i})− fS(xS)] (9)

with F the set of all features, S ⊆ F \{i} a subset of the set of all features except feature i, and fS the expected1

output of the model for input feature set S. In other words, they represent the average contribution of a feature2

to the prediction, considering all permutations of the available features. The SHAP value approach calculates3

these values for all, or a sample of, the observations. For each observation, the summation of the SHAP values of4

all features is equal to the difference between the prediction of the model and the base value, which is the value5

obtained when predicting without any features. A higher absolute SHAP value indicates a higher contribution6

of the feature, the sign indicates the direction of that contribution.7

4.3 Prediction of distributions8

Following the binary classification, this section introduces the methodology for the prediction of flight delay9

distributions. Since this is a novelty in the field of flight delay predictions, three potential models are selected,10

accompanied with a set of performance metrics.11

Probabilistic forecasting models12

The probabilistic forecasting part of this research applies the Random Forest Regressor, the Dropout Network13

and the Mixture Density Network. A short description of each model is given in the following sections. For14

a detailed description of the hyperparameter tuning process and resulting settings, this article again refers to15

appendix B of the associated thesis.16

Random Forest Regressor17

The first model selected is a modified version of the Random Forest (RF) Regressor as described in (Breiman,18

2001). The RF Regressor is a tree-based ensemble learning method that uses the same bagging principle as19

previously described for the RF Classifier. Different than the classifier variant that is designed to predict a class,20

the regressor is built to predict a continuous numerical output. In the standard version of the RF Regressor,21

the outcomes of all individual trees are averaged to generate one single prediction. In this modified version of22

the RF Regressor, the outcomes of the individual trees are converted to a probability histogram.23

Dropout Network24

The second selected model is the Dropout Network, as defined by Gal and Ghahramani (2016). In neural25

networks, the term dropout refers to randomly deactivating certain neurons of the network. It is typically used26

in the training phase of a model as a regularization method to prevent overfitting. This model uses dropout27

in the prediction phase of a Deep Neural Network (DNN) to create a Bayesian approximation of the predicted28

delay. The general architecture of this network is presented in figure 3(a), where the shaded circles illustrate29

one example of a random dropout setting. By predicting the same input many times, each time with a different30

random dropout, a probability histogram can be obtained.31
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(b) Mixture Density Network

Figure 3: Neural Networks used for probabilistic forecasting
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Mixture Density Network1

The third and final model is the Mixture Density Network, as defined in (Bishop, 1994). This network aims to2

estimate a probabilistic density function by extending a standard Deep Neural Network with Gaussian mixture3

model. In order to achieve this, the output layer of the neural network consists of sets of tree neurons, each4

set representing a Gaussian function. The first neuron of the set estimates the mixture coefficient, the second5

neuron the standard deviation and the third the mean. The general architecture of this network is given in6

figure 3(b). The mixture model that follows the output layer constructs a probability density function based7

on the mixture coefficients, means, and standard deviations estimated by the network. Given that the resulting8

density is a mixture of Gaussians, it can approximate the shape of any smooth function, as accurately as the9

number of Gaussians, in this case determined by the number of neuron sets, allow.10

Estimated mean and variance11

Most of the performance metrics associated with the probabilistic forecasting models are based on two values;12

the estimated mean ȳi and variance s2i of the estimated probability histogram or density function. When applied13

to flight delay predictions, the RR Regressor and Dropout Network both produce a probability histogram for14

each flight in the test set. The mean and variance of these histograms can be estimated with the commonly15

used functions listed in equation set 10 - 11 for the RF Regressor and 12 - 13 for the Dropout Network.16

Random Forest Regressor

e : the number of estimators in the RF
ŷi,j : the delay prediction of estimator j for flight i

T : the set of test flights

ȳi =
1

e

e∑

j=1

ŷi,j , ∀i ∈ T (10)

s2i =
1

e

e∑

j=1

(ŷi,j − ȳi)
2 , ∀i ∈ T (11)

Dropout Network

h : the number of runs of the Dropout Network
ŷi,k : the delay prediction of run k for flight i

T : the set of test flights

ȳi =
1

h

h∑

j=1

ŷi,k, ∀i ∈ T (12)

s2i =
1

h

h∑

j=1

(ŷi,k − ȳi)
2 , ∀i ∈ T (13)

17

When the Mixture Density Network is applied to the flight delay prediction problem, it estimates a probability18

density function for each of the test flights. Each of these density functions is represented by a set of means,19

standard deviations and mixture coefficients. According to the original publication of this model (Bishop,20

1994), the overall mean and variance of the complete density function can be estimated with equations 14 - 15.21

Mixture Density Network

g : the number of Gaussians used for the Mixture Density Model
αi : the set of predicted mixture coefficients αi,l for each Gaussian l of flight i

µi : the set of predicted means µi,l for each Gaussian l of flight i

σi : the set of predicted standard deviations σi,l for each Gaussian l of flight i

T : the set of test flights

ȳi =
g∑

l=1

αi,l µi,l, ∀i ∈ T (14)

s2i =
g∑

l=1

αi,l

(
σi,l + ∥µi,l − ȳi∥2

)
, ∀i ∈ T (15)

22

Performance metrics for probabilistic forecasting23

The performance metrics for probabilistic forecasting can be divided into three groups; metrics for the associated24

estimated mean, metrics regarding the estimated variance, and metrics that take the complete density or25

histogram into account. The following sections elaborate on each group separately.26

Metrics for point estimates27

The first group consists of metrics that are commonly used for single point predictions. This research uses the28

ones listed in equation set 16 - 19, where ȳi is the previously explained estimated mean of the delay of flight i,29
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yi the actual delay of flight i, and ns the total number of samples in the test flight set. The Root Mean Squared1

Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Max Error all measure a2

variant of the error, meaning a lower value is considered better. The metrics are expressed in the same unit as3

the target variable of the prediction.4

RMSE =

√∑ns

i=1(ȳi − yi)2

ns
(16)

MSE =

∑ns

i=1(ȳi − yi)2

ns
(17)

MAE =

∑ns

i=1 |ȳi − yi|
ns

(18)

Max Error = max (|ȳi − yi|) (19)

5

Metrics for standard deviations6

Secondly, this research uses metrics for the standard deviation of the estimation. Ideally, the standard deviation7

of the prediction should be as small as possible, while still covering the actual value. To quantify this trade-off,8

two metrics are used. The first one is the average standard deviation, which is based on the previously explained9

estimated variance s2i of all flight samples i and is calculated as follows:10

savg =
1

ns

ns∑

i=1

√
s2i (20)

The second metric counts how often the actual value lies within one absolute standard deviation of the11

prediction. To calculate this, an additional variable zi is introduced that indicates whether this holds for each12

sample flight i. The Fraction of Samples within One Standard deviation (FSOS) can then be calculated by13

taking the sum over all sample flights i and dividing it by the total number of samples ns:14

zi =

{
1, if

(
ȳi −

√
s2i

)
≤ yi ≤

(
ȳi +

√
s2i

)
,

0, otherwise.
(21)

FSOS =
1

ns

ns∑

i=1

zi (22)

Metrics for predicted distributions15

The final category of performance metrics for probabilistic forecasting takes into account the entire predicted16

density or histogram. The first metric is the Continuous Ranked Probability Score (CRPS). This score originates17

from the field of weather forecasts and is defined as follows (Hersbach, 2000):18

CRPSi =

∫ ∞

−∞
(Fi(y)− 1(y − yi))

2dy (23)

The underlying idea of this score is to model the true value yi as a Heaviside step function 1(y − yi). The19

difference between the cumulative density Fi(y) of the predicted function and the corresponding step function,20

is then squared and integrated to quantify how well the prediction and actual value correspond. The score21

can be approximated for the samples of the histograms with the analogous Discrete Probability Ranking Score22

(DRPS):23

DRPSi =
1

B

B∑

b=1

(qi,b − oi,b)
2 (24)

oi,b =

{
1, if b ≥ yi
0, otherwise.

(25)

Here, qi,b is the cumulative probability of sample set i at bin b. Similar to the Heaviside step function, oi,b is24

zero for all bins below the actual value, and one for all bins larger than the actual value. The set of all bins of25

the histogram is represented by B.26

For both scores it holds that the more similar the cumulative probability function is to the actual value27

modeled as a step input, the lower the score becomes. The minimum score is zero, which is achieved if the28

algorithm predicts the exact value with a confidence interval width of zero, i.e. the perfect prediction. The29

further the point estimate of the curve is away from the true value, and the wider the confidence interval, the30

higher the CRPS or DRPS. The performance of the entire probabilistic forecasting algorithm can be measured31

by taking the average score over all test samples.32
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5 Results of flight delay prediction1

By applying the methodology of the previous section to the available data of Rotterdam The Hague Airport, two2

main results are obtained: the results of the binary classification, including an indication of the most important3

features, and the results of the probabilistic predictions. Together they cover the first two goals of this paper.4

5.1 Classification results5

The goal of the first part of this paper is to apply established machine learning classifiers to a regional airport,6

with the aim to predict whether or not a flight will be delayed by at least 15 minutes. An overview of the results7

of this binary classification is presented in table 7. All these results are based on a 5-fold prediction. This8

means that the data are split into five groups, each consisting of 20% of the data. For each group, a prediction9

is made with a model that is trained on the remaining 80% of the data. The mean and standard deviation for10

each metric in result table 7 are based on the resulting five predictions.11

The first thing to note is that the LightGBM model outperforms the RF Classifier in terms of accuracy.12

Nevertheless, the results are sufficiently close to interpret them as a verification of both models. All accuracies13

of the LightGBM model are above 0.7, which is not much inferior to similar studies at large, international14

airports. As stated earlier, this research considers the recall and precision equally important. The target is15

to have both scores above 0.5, as this indicates that there are more true positives than false negatives (recall)16

and more true positives than false positives (precision). It can be seen in table 7 that this is the case for all17

predictions of the departure delay. For the predictions of the arrival delay, these scores are lower than 0.5. This18

difference can be explained by the distribution of their historical data, which is illustrated in figure 2(b). Given19

that the split for the delay classification is 15 minutes, the arrival delay dataset has a higher imbalance ratio20

than the departure delay dataset. Apparently, oversampling the minority class was not sufficient to counter the21

majority class bias for the arrivals. Logically, this difference in recall and precision is also seen in the f1 score.22

Nevertheless, the AUC score is greater than 0.5 for all cases, which means that all models perform better than23

a randomly guessing classifier.24

A final thing to note is that there is not too much difference between the two different prediction horizons;25

the predictions that are made a month (1M) in advance are very similar to the predictions of a day (1D) in26

advance. As stated previously, the only difference between the two horizons is the type of weather features. The27

1D predictions use the actually observed METAR weather data, whereas the 1M predictions use an aggregated28

daily average based on several years of METAR data. Since the differences in performance metrics are small, and29

the METAR weather forecasts are more easily obtained in real life applications, the remainder of this research30

focuses on the 1D predictions. It is taken into account that using actually observed weather is impossible in31

real life predictions. However, this research assumes that the weather forecasts made one day in advance are32

sufficiently close to the actual weather to justify this approximation.33

Random Forest Classifier LightGBM
Classifier Metric Mean std Mean std

1M Departures

accuracy 0.674 6.9× 10−3 0.707 7.5× 10−3

precision 0.530 1.1× 10−2 0.592 8.7× 10−3

recall 0.590 1.9× 10−2 0.520 1.8× 10−2

f1 0.558 1.3× 10−2 0.554 1.1× 10−2

AUC 0.655 9.2× 10−3 0.664 7.5× 10−3

1M Arrivals

accuracy 0.690 1.1× 10−2 0.797 5.8× 10−3

precision 0.294 2.3× 10−2 0.391 1.7× 10−2

recall 0.527 2.0× 10−2 0.255 6.2× 10−3

f1 0.377 2.0× 10−2 0.308 4.0× 10−3

AUC 0.626 1.1× 10−2 0.584 2.0× 10−3

1D Departures

accuracy 0.674 8.8× 10−3 0.704 9.6× 10−3

precision 0.530 1.6× 10−2 0.586 2.5× 10−2

recall 0.587 6.3× 10−3 0.518 1.7× 10−2

f1 0.557 9.2× 10−3 0.550 1.7× 10−2

AUC 0.654 6.7× 10−3 0.661 1.1× 10−2

1D Arrivals

accuracy 0.715 9.5×10−3 0.800 4.6× 10−3

precision 0.292 1.6× 10−2 0.402 3.6× 10−2

recall 0.425 6.4× 10−2 0.255 1.0× 10−2

f1 0.344 2.8× 10−2 0.312 1.6× 10−2

AUC 0.602 2.2× 10−2 0.587 6.1× 10−3

Table 7: Results binary classification
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(a) 1D departures (b) 1D arrivals

Figure 4: SHAP values

Feature importance1

To gain insight into the contribution of individual features, the model-agnostic SHAP method is used. The2

summary plots of the SHAP values of the best performing model, the LightGBM model, are given for the 1D3

arrivals and 1D departures in figure 4(a) and 4(b) respectively. The features in this plot are listed in order of4

importance, the most important one being at the top. Each dot in the plot represents the SHAP value of a5

feature for a single observation. The color of the dot indicates the original feature value of the observation.6

The SHAP values, which for LightGBM are expressed in log-odd units, show the size and direction of the7

impact of the feature on the prediction. Combining the two gives a correlation. For example, the SHAP plot in8

figure 4(b) shows for the feature ’Distance’ that most observations with a high value (indicated by color) have9

a medium-sized, negative impact (indicated by the SHAP value) on the expected delay.10

Overall, the summary plots show that for both test groups the time-related features, such as the day of11

the month/year/week and the scheduled time of departure/arrival, contribute most to the prediction. For both12

the arrivals and the departures, the first non time-related feature is the aircraft type. Most of the weather-13

related features belong to the lower half of the feature ranking for both the departures and the arrivals. This is14

noteworthy since extreme weather is an often reported cause of delay. A possible explanation for this difference15

is that the currently used METAR weather reports of the arrival and departure airport do not capture the16

en-route weather situation. Although noteworthy, these results are not unexpected; they correspond to the17

small differences between the 1D and 1M predictions discussed in the previous section.18

5.2 Probabilistic forecasting results19

The second goal of this research is to investigate the possibility of accurately predicting flight delay distributions20

with machine learning algorithms. For each of the three models applied, the results are listed in table 8. Similar21

to the binary classification, the mean and standard deviation are based on a 5-fold prediction. As stated in22

the methodology, the predicted flight delay distributions are compared by three groups of metrics; metrics for23

a point estimate, metrics for a confidence interval, and metrics for a complete probability distribution.24

The first four metrics in table 8, which are the RMSE, MSE, MAE, and max error, belong to the point25

estimate metric group and are all expressed in minutes. All four are based on the difference between the26

expected delay, which is derived from the probability distribution, and the actual delay. This means that a27

lower score is preferred. The main difference between the RMSE and the MAE is that the RMSE squares the28

differences before averaging them, which emphasizes the contribution of the larger differences. For the prediction29

of flight delays, it seems reasonable to assume that large deviations have much more negative impact than small30

deviations; a deviation of a minute is considered a good result, whereas a deviations of an hour might have31

14



costly consequences. The RMSE scores in table 8 show that the standard deviation of the prediction errors is1

around 25 minutes for all three models, while the maximum error scores show that the prediction errors can be2

over 400 minutes. Although these values are rather high, it should be emphasized that predicting the delay in3

minutes is not a standalone goal of this research.4

The second group of metrics consists of two metrics; the savg, which is the average estimated standard5

deviation, and the FSOS, which is the fraction of test flights for which the actual delay lies within one standard6

deviation of the predicted value. Ideally, the FSOS is as high as possible, while the savg is as low as possible.7

However, as stated earlier, these two metrics are a trade-off. This becomes clear when comparing the results of8

the Mixture Density Network and the Dropout Network in table 8. For the 1D departures, the Mixture Density9

Network has a high FSOS score (0.921), but also a high savg (23.203). For the same departures, the savg (5.365)10

of the Dropout Network is much lower, but so is the FSOS score (0.316). Similar scores are found for the 1D11

arrivals.12

To determine which of the models of this research has the best probabilistic forecasting performance, the13

final and decisive metric is the CRPS, which takes the entire distribution into account. As explained in the14

methodology, a lower CRPS means that the prediction is closer to the perfect prediction. Despite the fact that15

the RF Regressor model neither has the best savg, nor the best FSOS, it does have the best CRPS score for both16

the 1D departures and the 1D arrivals. The second best performing model is the Mixture Density Network,17

whose CRPS score is only slightly greater. The overall least performing model is the Dropout Network. Since18

predicting probability distributions is a novelty in the field of flight delay predictions, it is difficult to put the19

obtained CRPS scores into a broader perspective to evaluate the accuracy of the models. Nevertheless, it can20

be concluded that the metric values of the RF Regressor and the Mixture Density Network are very close to21

each other, which is a first step in the verification of both models.22

Another observation is that all models perform better for the departures than for the arrivals, which is23

similar to the behavior of the binary classification models. For the classification models, this was explained by24

the difference in the imbalance ratio of the historical flight datasets. For the probabilistic forecasting, there is25

no imbalance ratio, as the target is continuous. Nevertheless, the historical flight delay data distributions of the26

arrivals and the departures are still different. As can be seen in figure 2(b), the arrival flights more frequently27

arrive prior to their scheduled time, which means that the dataset contains more negative delays. Furthermore,28

the spread of the arrival delay histogram appears to be wider, indicating more variation in the delays to be29

predicted. This aligns with the conclusion that the arrival flights are more difficult to predict.30

These metric scores, however, are not the only important measurements of performance. In order to improve31

airport operation optimization models, it is important that the delay prediction models are also able to estimate32

distinctive distributions for individual flights. If the flight delay model predicts the same delay distribution for33

every flight, the results might not be very useful for the airport operation optimization models. In that case,34

there might be simpler solutions for the optimization models to account for uncertainty, for example adding35

a time buffer to each scheduled flight. To test whether the delay prediction models are also able to predict36

distinctive distributions, a number of the predicted flight delay distributions are visualized in the following37

section.38

RF Regressor Mixture Network Dropout Network
Classifier Metric Mean SD Mean SD Mean SD

1D Departures

RMSE 24.634 9.0× 10−1 25.436 9.7× 10−1 25.998 9.4× 10−1

MSE 607.643 4.5× 101 647.944 5.0× 101 676.749 4.9× 101

MAE 12.556 2.7× 10−1 12.868 2.2× 10−1 12.645 2.9× 10−1

max. err. 428.071 5.5× 101 431.517 6.0× 101 433.595 6.1× 101

savg 16.438 1.2× 10−1 23.203 5.6× 10−1 5.365 4.9× 10−1

FSOS 0.837 4.8× 10−3 0.921 5.3× 10−3 0.316 3.2× 10−2

CRPS 8.643 2.5× 10−1 9.059 2.5× 10−1 10.448 3.5× 10−1

1D Arrivals

RMSE 26.141 1.2× 100 26.982 1.2× 100 27.967 1.1× 100

MSE 684.674 6.0× 101 729.547 6.6× 101 783.335 6.0× 101

MAE 15.188 2.1× 10−1 15.632 2.4× 10−1 16.625 2.0× 10−1

max. err. 411.908 5.8× 101 414.152 5.6× 101 411.650 5.3× 101

savg 19.356 2.4× 10−1 25.133 4.6× 10−1 3.253 3.8× 10−1

FOS 0.782 5.2× 10−3 0.870 6.6× 10−3 0.141 1.7× 10−2

CRPS 10.702 2.5× 10−1 11.223 3.4× 10−1 15.031 2.3× 10−1

Table 8: Results probabilistic forecasting
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Visualization of the predicted flight delay distributions1

To visualize the differences and similarities between the distribution predictions made by each of the models, four2

arriving and four departing flights are selected and listed in tables 9 and 10 respectively. The flights are selected3

in such a way that they cover a mixture of airlines, origins, aircraft, and scheduled times. The models, all trained4

on the same 80% of the available data, each predict the delay distribution of the selected flights. The resulting5

probability functions and histograms are presented in figure 5. For each flight, the predicted distribution, the6

associated expected delay, and the actual value are plotted. The y-axis represents the probability, while the7

x-axis represents the minutes of delay with respect to the Scheduled Time of Arrival (STA) or the Scheduled8

Time of Departure (STD), which are located at the zero minute time mark.9

The most important visible result is that all models are able to predict distinctive distributions for each of10

the flights. Both the shape of the predicted distribution and the associated expected delay vary throughout11

the tested flights. A more narrow distribution can be interpreted as a more certain prediction, a wider curve12

indicates more uncertainty. The previously discussed differences in savg and FSOS between the Dropout Network13

and Mixture Density Network are clearly visible for these eight example flights, especially when comparing the14

results of the 1D arrivals. The distributions predicted by the Dropout Network are more narrow (i.e. a lower15

savg), but as a result the actual values are more often outside one standard deviation of the expected value (i.e.16

a lower FSOS). The opposite is true for the Mixture Density Network.17

Figure 5 also shows that the Mixture Density Network and the RF Regressor do not only produce very18

similar metric scores, they also produce very similar delay distributions for individual flights. Although the19

RF Regressor predicts a probability histogram, as visualized in 5(a)-5(b), while the Mixture Density Network20

predicts a probability function, visualized in 5(c)-5(d), the similarity in their general shape is clearly visible.21

Considering that these results are obtained with two very different models, one with a tree-based framework and22

one with a neural network base, the similarity in scores and distribution shapes is interpreted as a verification of23

both models. The metric scores and the predicted distributions of the Dropout Network are less similar to the24

results of the other two models. However, it should be noted that finding the perfect hyperparameter settings25

is outside the scope of this research. Perhaps further optimizing the settings could decrease the difference with26

the other two models, and the difference between its 1D departures and 1D arrivals predictions.27

The overall result of the probabilistic flight delay forecasting, is that it shows that it is possible to accurately28

predict flight delay distributions with machine learning algorithms. The RF Regressor outperforms the other29

two models, and its average standard deviation of less than 20 minutes appears to be sufficiently small for the30

usage in airport operation optimization problems. The remainder of this paper investigates whether this is true,31

and whether the predictions can actually improve the airport operation optimization model.32

Legend STA Flight number Airline Origin Destination Aircraft
2288 2019-05-05 11:15:00 HV5068 Transavia GRO RTM B738
2291 2019-05-05 22:35:00 HV5008 Transavia DBV RTM B737
2274 2019-05-02 15:05:00 BA4455 British Airways LCY RTM E190
2284 2019-05-04 13:00:00 PC1261 Pegasus Airlines SAW RTM A20N

Table 9: Example arrival flights

Legend STD Flight number Airline Origin Destination Aircraft
2292 2019-05-03 06:55:00 HV6061 Transavia RTM BCN B737
2301 2019-05-03 18:40:00 HV5293 Transavia RTM VIE B737
2283 2019-05-01 10:50:00 BA4454 British Airways RTM LCY E190
2317 2019-05-06 14:35:00 PC1262 Pegasus Airlines RTM SAW A20N

Table 10: Example departure flights
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(a) Random Forest Regressor with 1D departures (b) Random Forest Regressor with 1D arrivals

(c) Mixture Density Network with 1D departures (d) Mixture Density Network with 1D arrivals

(e) Dropout Network with 1D departures (f) Dropout Network with 1D arrivals (with EIN)

Figure 5: Impression of the results of the probabilistic forecasts
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6 Description of the Case Studies1

The final part of this research is dedicated to the incorporation of the predicted flight delay distributions into an2

airport operation optimization model. The selected airport operation is the Flight-to-Gate Assignment Problem3

(FGAP), a challenge faced by both regional and international airports.4

6.1 Additional methodology Flight-to-Gate Assignment Problem5

Since the goal of this paper is to show the effect of incorporating flight delay predictions, rather than creating6

the optimal FGAP model, the additional methodology is assembled accordingly. It starts with a description of7

the standard FGAP model, which will function as a benchmark. The adjustments needed to convert this model8

into a probabilistic FGAP model, which includes the delay predictions, follow afterwards.9

Standard FGAP model10

The usual approach within the aviation industry is to model the Flight-to-Gate Assignment Problem (FGAP) as11

a Linear Problem (LP). This research follows the definition of van Schaijk and Visser (2017) with modifications12

of L’Ortye (2019). It starts with the following set of definitions:13

N : the set of flights to be scheduled
M : the set of gates available at the airport
K : the set of time steps
n : the total number of flights to be scheduled
m : the total number of available gates at the airport
k : the total number of time steps

ci,j : the cost of assigning flight i to gate j

It is important to emphasize that a flight in this context is defined from the airport’s perspective; it is a certain14

aircraft that is present at the airport for a certain amount of time. This research aims to schedule single15

days, each day divided into time steps of five minutes. This results in a total number of time steps k of 288.16

Furthermore, it assumes that all gates at RTM airport are available, which means that m is set to 8. It also17

assumes that there is no preference between the gates, therefore all ci,j have a value of 1. The number of flights18

n depends on the day to be scheduled. Additionally to the set above, a variable is introduced that indicates for19

each flight i whether it has a positive presence probability at time step i:20

si,t =

⎧
⎪⎨

⎪⎩

1, if flight i has a non-zero probability to be
present at time step t,

0, otherwise.
for i ∈ N, and t ∈ K (26)

In this standard, deterministic version of the FGAP model, the presence probability is either 1 when a flight is
scheduled to be present at the airport, or 0 when it is not. The binary decision variables of this Linear Program
are defined as follows:

xi,j,t =

{
1, if flight i is assigned to gate j at time step t,

0, otherwise.
for i ∈ N, j ∈ M, and t ∈ K (27)

The objective of the Linear Program is to minimize the costs of the assignment, summed over all flights, time21

steps and gates:22

min Z =
n∑

i=1

m∑

j=1

k∑

t=1

ci,jxi,j,t (28a)

s.t.
m∑

j=1

si,txi,j,t = si,t, ∀i ∈ N, ∀t ∈ K, (28b)

n∑

i=1

si,txi,j,t ≤ 1, ∀j ∈ M, ∀t ∈ K, (28c)

si,txi,j,t+1 − si,t+1xi,j,t = 0, ∀i ∈ N, ∀t ∈ K (28d)
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The standard Linear Program has three constraints. The first, stated in 28b, is to ensure that each flight1

is assigned to a gate for all time steps where its presence probability is positive. The purpose of the second2

constraint is to ensure that only one flight gets assigned to a certain gate in a certain time step. The final3

constraint ensures that once a certain flight is assigned to a certain gate, it remains assigned to the same gate4

for all following time steps where the flight is scheduled to be present.5

Probabilistic FGAP model6

A major assumption in the standard FGAP is that the presence probability of each flight is known in advance7

and fixed; the possibility of delays is not taken into account. As a solution, the research of van Schaijk and8

Visser (2017) proposes to replace constraint 28c with a new constraint that considers the presence of a certain9

flight as a probability rather than a binary:10

n∑

i=1

f(pi,t, r)pi,txi,j,t≤ 1, ∀j ∈ M, ∀t ∈ K (29)

Instead of allowing only a single flight to be scheduled at a certain gate in a certain time step, this constraint11

allows multiple flights, under the condition that the probability of multiple flights being present simultaneously12

is below a certain level. This level of maximum allowed overlap probability is set by input parameter r, which13

can be decomposed as follows:14

r = pi,t · pmax (30)

where, pi,t is the presence probability of flight i at time t, which is discussed in detail in the following section.15

The other variable, pmax, is the maximum allowable presence probability for a second flight. To incorporate16

this into the FGAP constraint, where all terms are summed instead of multiplied, the presence probabilities17

have to be scaled first. The scaling function f(pi,t, r) needs to fulfill the following condition:18

f(pi,t, r) · pi,t + f(pi,t, r)pmax = 1 (31)

which, in combination with rewriting equation 30 for pmax, leads to:19

f(pi,t, r) =
pi,t

r + p2i,t
(32)

Presence probability curve20

The probabilistic FGAP model uses a constraint that is based on presence probability pi,t; the probability that21

flight i is present at the apron at time t. To acquire this probability for each time step, a presence probability22

curve is constructed for each flight. In the work of of van Schaijk and Visser (2017), this presence probability is23

a relatively simple estimation, based on two parameters of the historical flights. This research proposes a new24

method for the construction of the probability presence function, which is based on the previously estimated25

flight delay distributions. As stated earlier, a flight in the FGAP model is a certain aircraft that is present at26

the airport for a certain amount of time. Each flight is characterized by two events; its arrival at the airport27

and its departure from the airport. For the probabilistic FGAP model it is assumed that the two events are28

independent. To determine the probability that flight i is present, the following two random variables are29

introduced:30

Xarr : a random variable that indicates the time step at which flight i arrives at the airport
Xdep : a random variable that indicates the time step at which flight i departs from the airport

The Cumulative Distribution Functions (CDF) that represent whether a flight arrives (for Xarr) or departs (for31

Xdep) before time step t are defined as follows:32

FXarr (t) = P (Xarr ≤ t) (33)

FXdep(t) = P (Xdep ≤ t) (34)

The corresponding Probability Density Functions (PDF) are:33

fXarr (t) =
d(FXarr ≤ t)

dt
(35)

fXdep(t) =
d(FXdep ≤ t)

dt
(36)
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As shown in section 5, the probability density functions can be approximated with machine learning algorithms.1

By taking the cumulative of these approximations, the cumulative density functions can be approximated. An2

example is given in figure 6(a). Here, the upper two subfigures show the delay distributions of an arrival3

flight and its subsequent departing flight. Both are predicted by the modified Random Forest (RF) Regressor,4

which was previously identified as the best performing model. The delay predictions are estimated against5

the scheduled arrival or departure times, which are centered at zero. The lower two subfigures show their6

corresponding Empirical Cumulative Distribution Functions (ECDF).7

To be in the state ’present at the airport’, a flight has to fulfill two requirements: 1) the aircraft considered8

has arrived at the airport and 2) it has not yet departed. Since it is assumed for this model that these events9

are independent, the requirements lead to the following presence probability function:10

gpres = FXarr · (1− FXdep) (37)

An example is given in figure 6(b). In the upper subfigure, the ECDF of the arrival and departure are11

placed on the same timeline, with their zero minute delay points aligned at their respective scheduled times of12

arrival or departure. Since the presence probability function is based on the probability that the flight is not13

yet departed, the ECDF of the departure is converted to one minus the ECDF, an approximation of 1−FXdep .14

In the example in figure 6, the aircraft of the illustrated flight arrives and departs on the same day. When a15

flight stays at the airport overnight, the flight either misses an arrival or departure delay prediction, since this16

research schedules for individual days only. If this is the case, the absent CDF approximations are replaced17

with a unit step input. For a flight that departs after staying overnight, this step input for the approximation18

of FXarr is placed at an hour before the scheduled time of departure. For a flight that arrives at the airport19

and stays overnight, FXdep is approximated with a step input at an hour after the scheduled arrival time.20

The lower subfigure of figure 6(b) shows the approximation of the complete presence probability function21

as defined in equation 37. The time between the scheduled time of arrival and scheduled time of departure,22

as used in the deterministic FGAP schedule, is also indicated. For this particular example, it can be seen23

that the presence probability curve is wider, and centered around a later time, than its deterministic schedule24

counterpart. By constructing a presence probability curve for each flight in the schedule, the corresponding pi,t25

can be determined for every time step.26

(a) Approximated arrival and departure PDF and CDF (b) Presence probability function

Figure 6: Constructing the presence probability function

Re-assignment process27

A limitation of the probabilistic FGAP is that the scaling function in equation 32 is based on a maximum of28

two flights overlapping. However, both in theory and in practice this number could be greater. When this is29

the case, the scaling function decreases the presence probabilities pi,t in probabilistic constraint 29 too much.30

As as result, the constraint may accept a greater overlap probability than the maximum specified by input31

parameter r. To counter any overlap probability violations, this research uses an iterative process, similar to32

the one presented by L’Ortye (2019). The general idea consists of the following steps:33

20



Step 1: Make a flight-to-gate assignment with the probabilistic FGAP model1

Step 2: Check if there are any overlap probability violations2

(a) If there are violations: add a constraint to the FGAP model to reduce the number of flights3

allowed to be scheduled at a gate at the same time and repeat the previous steps4

(b) If there are no violations: the schedule is approved5

To formalize step 2, the following sets of flights are introduced:6

Fj,t : the set of flights i assigned to gate j at time t

Cj,t : the set of all possible combinations with at least two flights i from Fj,t

To give an example, if flight 1, 2, and 3 are all assigned to gate j at time step t, Fj,t becomes {1, 2, 3} and7

Dj,t becomes {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. To calculate the true overlap probability, two complementary8

probabilities are taken into account; the probability that a flight is present pi,t and the probability that it is not9

present, denoted by 1− pi,t. The flights listed in a combination in Cj,t are assumed to be present, the missing10

flights are assumed to be not present. For each combination in Cj,t, the presence probability is calculated11

by multiplying the corresponding probabilities. By adding the results of all combinations, the true overlap12

probability is calculated for each gate j and time step t. This can be written more formally as:13

rtruej,t =
∑

c ∈Cj,t

∏

i ∈Fj,t

pi,t1i∈c + (1− pi,t)1i ̸∈C , ∀j ∈ M, ∀t ∈ K (38)

where the indicator 1 is one if the sub-scripted statement is true and zero otherwise. A violation takes place14

if any of the true overlap probabilities is larger than input overlap probability r. As stated in step 2(a), the15

solution to overlap probability violations is to reduce the maximum number of flights allowed to be assigned16

to a gate at a certain time. In order to do this, the current maximum number of flights assigned at a gate is17

calculated first:18

β = max{
n∑

i=1

xi,j,t, ∀j ∈ M, ∀t ∈ K } (39)

To reduce this maximum, this research proposes the following additional constraint:19

n∑

i=1

xi,j,t ≤ β − 1, ∀j ∈ M, ∀t ∈ K (40)

This constraint ensures that the maximum number of flights in the following iteration of solving the FGAP20

model, is at least one less than the current maximum. All steps of solving the FGAP, checking for violations21

and reducing the maximum number of flights, are repeated until the schedule no longer contains any violations.22

FGAP performance metrics23

To measure the performance of the probabilistic FGAP model, which includes the predicted flight delay distribu-24

tions, the resulting schedules are compared to the schedules obtained with the standard FGAP model. A good25

flight-to-gate schedule is robust enough to withstand disruptions without too much re-scheduling. However, a26

good schedule should also maximize the available capacity. Assigning only one flight per gate per day might be27

very robust, but it is not efficient. To quantify this trade-off between robustness and efficiency, two metrics are28

introduced.29

Efficiency - average number of scheduled occupied time slots30

To express the efficiency of a flight-to-gate schedule, the average number of time slots that are scheduled to be31

occupied is calculated. A time slot is defined as a certain time step at a certain gate. As can be seen in figure32

6(b), the presence probability curve is often much wider than the difference between the scheduled arrival and33

departure time. To allow for a better comparison between the standard and the probabilistic FGAP model, the34

lower presence probabilities are not taken into account when determining the scheduled occupation. Specifically,35

only the time steps where a flight is more likely to be present (pi,t ≥ 0.5) than not, are counted towards the36

efficiency metric. This concept is illustrated in figure 7(a). To express the metric more formally, the following37

set is defined:38

Gj,t : the number of flights scheduled at gate j at time t with presence probability pi,t ≥ 0.5

21



A time slot is considered occupied if it at least one of the flights assigned to it has a presence probability of at1

least 0.5. This is captured with the following indicator:2

vj,t =

{
1, if Gj,t ≥ 1

0, otherwise.
for j ∈ M, and t ∈ N (41)

To calculate the efficiency score η for an entire flight-to-gate schedule, vj,t is summed over all time slots, i.e. all3

time steps and gates:4

η =
m∑

j=1

k∑

t=1

vj,t (42)

Finally, the efficiency performances of the standard FGAP and probabilistic FGAP model are compared by5

taking the average of the efficiency metric over multiple test days:6

η̄ =

∑
ηd

∥D∥ , for each test day d ∈ D (43)

(a) Efficiency metric (b) Robustness metric

Figure 7: FGAP metrics support

Robustness - average number of conflicts7

In this research, the robustness of a flight-to-gate assignment is measured by the number of conflicts that arise8

when executing the schedule. In this context, a conflict is defined as a situation where upon the arrival of a9

flight at the airport its assigned gate is already occupied. Since this situation would always require some form of10

re-scheduling, regardless of how long the overlap at the gate is, the metric measures the frequency of occurrence11

rather the duration of the overlap. Different than the efficiency metric, which is based on the assigned gate and12

the scheduled times of arrival and departure, this metric is based on the assigned gate and the actual time of13

arrival and departure of all flights in the schedule.14

To illustrate which conflict scenarios the metric should capture, two examples are given in figure 7(b). The15

upper subfigure shows that a conflict should be defined per time step. For a newly arriving aircraft it does not16

matter how many other flights are already present at the gate, it should count as one new conflict. Following17

the same reasoning, the lower subfigure shows that two flights arriving at the gate at the exact same time should18

also only count as one conflict. Furthermore, the lower subfigure shows that simply counting the flights per time19

step, or calculating the differences between time steps, does not capture all conflicts. Even though the number20

of flights at gate 1 remains exactly the same between time steps 110 and 115, there is a new conflict. Capturing21

all these different conflict scenarios with one robustness metric, starts with defining the following flight set:22

Hj,t : the set of flights i present at gate j at time t

Since a conflict only arises when the number of flights at the gate is at least two, the first requirement of a23

conflict is ∥Hj,t∥ ≥ 2. The second requirement is based on the interpretation that a new conflict can only arise24

when a new flight arrives at the gate. Therefore the set of flights present at the time of the conflict cannot be25

a subset of the flights present at the previous time step, i.e. Hj,t ̸⊆ Hj,t−1. Combining these two requirement26
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leads to the following conflict indicating variable:1

wj,t =

{
1, if ∥Hj,t∥ ≥ 2 and Hj,t ̸⊆ Hj,t−1

0, otherwise.
for j ∈ M, and t ∈ N (44)

To calculate the robustness score ρ for an entire flight-to-gate schedule, wj,t is summed over all time slots, i.e.2

all time steps and gates:3

ρ =
m∑

j=1

k∑

t=1

wj,t (45)

To compare how well the standard and probabilistic FGAP models perform in terms of robustness, the average4

of the robustness metric over multiple test days is calculated:5

ρ̄ =

∑
ρd

∥D∥ , for each test day d ∈ D (46)

6.2 Case study results6

The final goal of this research is to quantify the effect of incorporating the predicted flight delay distributions7

into the FGAP model. The underlying hypothesis is that this incorporation leads to an improvement in terms8

of the robustness and/or the efficiency of the resulting flight-to-gate schedules. In order to test this, both the9

standard FGAP model and the probabilistic FGAP model are applied to the same test days. Their performances10

are measured and compared by calculating the efficiency and robustness of the resulting flight-to-gate schedules.11

The case study is based on the same RTM data as previously described. The selected test days are the days12

between the 1st of July and the 31st of August in 2019. Both models are trained on all available data prior to13

the test date.14

Resulting flight-to-gate schedules15

In principle, a flight-to-gate schedule is a list of which flights are assigned to which gates at which time steps.16

Figure 8 gives an example of the flight-to-gate schedules obtained with both FGAP models. The example is17

based on the flights at RTM on the 14th of July, 2019, and an overlap probability r of 0.1. Subfigures 8(a) and18

8(b) present the resulting schedules, each showing the time of presence (with pi,t > 0) and the assigned gate of19

all flights. The probabilistic schedule in 8(b) is visibly fuller than the deterministic schedule in 8(a), despite the20

fact that a certain overlap between flights is allowed here. To verify that the maximum overlap probability is21

indeed not exceeded, the presence probabilities of the fights, assigned according to the probabilistic schedule,22

are given in figure 8(c).23

(a) Schedule obtained with the standard FGAP model
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(b) Schedule obtained with the probabilistic FGAP model (c) Presence probabilities

Figure 8: Example of flight-to-gate schedules obtained with the standard and probabilistic (r = 0.1) FGAP
model. More information about the flights in this example can be found in appendix D of the thesis.

Evaluation of gate schedules1

To measure the performance of both FGAP models, the models are applied to the same set of test days. An2

important factor for the results of the probabilistic FGAP model, is input parameter r, which sets the maximum3

allowed overlap probability. Since its value strongly depends on the preference of the user, all values for r in the4

range {0.01, 0.02, ...1} are tested for every day in the test set. For the standard, deterministic FGAP model, r is5

irrelevant, which means that the same schedule is obtained for every r. The resulting robustness and efficiency6

metric are averaged over all test days for each value of r. The variation in r and the prediction for multiple test7

dates are simultaneously interpreted as a sensitivity analysis for the probabilistic FGAP model.8

In figure 9(a), the average number of conflicts, accompanied with an indication of the standard deviation9

within the test group, is given per r for both FGAP models. As expected, r does not influence the standard10

FGAP model, which explains the constant number of conflicts. For the lower values of r, the probabilistic11

schedule outperforms the standard schedule in terms of conflicts, i.e. in terms of robustness. The reverse is true12

for the higher values of r. This makes intuitive sense; if the schedule allows for a higher overlap probability,13

more actual overlapping conflicts can be expected. For this particular combination of test days and airport,14

the probabilistic FGAP model outperforms the standard model for values of r between 0.01 and 0.4. It appears15

that the lower the overlap r, the lower the average number of conflicts. It should be noted, however, that there16

is a minimum value of r required to find a feasible solution with the probabilistic FGAP model. This minimum17

value depends on the test day; days with many flights and/or wide presence probability distributions might18

require a larger minimum r than other days.19

The improvement in robustness does come at the cost of a reduction in efficiency, as can be seen in figure20

9(b). Here, the average number of scheduled slots is presented as a function of overlap probability r. For the21

entire range of r where the probabilistic FGAP model outperforms the standard model in terms of conflicts,22

which is between 0.01 and 0.4, the number of scheduled occupied slots in the probabilistic schedule is greater23

than in the deterministic equivalent. Only for overlap probabilities close to 1, both models have the same24

average number of scheduled to be occupied slots. The small dip in the average number of scheduled occupied25

slots for values of r between 0.01 and 0.05, initially seems contradicting, as less overlap would typically lead26

to assigning more time slots. The reduction is explained by the fact that for these low values of r the fuller27

test days become infeasible, which eliminates them from the test sample. Effectively, this reduces the average28

number of scheduled occupied slots for the lowest values of r.29

Even when ignoring the lowest values of r, as they are not suitable for every test case and their average30

number of scheduled slots is likely underestimated, there is still a large range of r values for which the proba-31

bilistic FGAP model outperforms the standard model. For the values of r between 0.05 and 0.4, the average32

number of conflicts is reduced by potentially more than 50%, at the cost of an increase of roughly 11% in33

the average number of scheduled occupied slots. Ultimately, the level of acceptable overlap, and the trade-off34

between robustness and efficiency, would be determined by the end user of the models at the airport. For this35

research, the main result of this case study is that it is possible to improve the robustness of flight-to-gate36

schedules, albeit at the cost of efficiency, by incorporating flight delay distribution predictions into a standard37

FGAP model.38
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(a) Robustness metric (b) Efficiency metric

Figure 9: Evaluating the performance of the FGAP models

7 Conclusions1

The aim of this research paper is to investigate whether it is possible and potentially beneficial to accurately2

predict the probability distribution of flight delays with machine learning algorithms at a regional airport. This3

leads to the following insights.4

First of all, it is found that the machine learning classifiers that are often used for the prediction of flight5

delays at large airports, also perform satisfactory at a regional airport. The best performing model is the6

LightGBM model, which achieves an accuracy for departure delays of around 0.7, with a recall and precision7

above 0.5. The accuracy is greater for the arrival delays, but their recall and precision are below 0.5, which is8

a result of the high imbalance ratio of the arrival data. Altogether, it is concluded that the model performs as9

expected, and that the fact that this airport is regional is not necessarily a limiting factor for accurate delay10

classification. Another conclusion is that there is not much difference between a prediction horizon of one month11

and a prediction horizon of a day. This corresponds with the finding that the most important features are related12

to the flight schedule, which is usually already made six months in advance, and is therefore available for both13

prediction horizons. Although this similarity in performance suggests that there might be even better (weather14

related) features available for the 1D horizon, which was expected to outperform the 1M horizon features, the15

benefit of this similarity is that the models and results presented in this paper are representative for different16

strategical planning phases.17

The second part of this research has shown that it is possible to accurately predict distinctive delay distri-18

butions for individual flights. The modified Random Forest Regressor gives the best results, followed closely by19

the Mixture Density Network. Since predicting the probability density function of flight delays is rather new, it20

is difficult to put their performance into a broader perspective. However, the fact that these two models produce21

very similar results in terms of both the overall performance metrics as well as the shape of the individual flight22

delay distributions, even though both models are very different, is interpreted as a verification of the results.23

In the final part of this paper, the resulting delay distributions are incorporated into an existing Flight-to-24

Gate Assignment Problem to investigate whether the predicted delay distributions are able to improve an airport25

operation optimization problem. In this particular case study, incorporating the flight delay distributions into26

the FGAP model can lead to a reduction in the average number of conflicts of more than 50%, at the expense of27

increasing the average number of scheduled slots by roughly 11%. Differently stated, the case study shows that28

the resulting gate schedules are more robust but less efficient. Although it is acknowledged that these results29

are case specific, this paper shows that it is possible to improve an airport operation optimization problem by30

implementing predicted delay distributions.31

The overall conclusion of this paper is that accurately predicting flight delay distributions is possible and has32

the potential to improve at least one airport operation optimization model by constructing one integrated model.33

Since the results of the binary classification of delays were reasonably similar for regional and international34

airports, it can be expected that the same holds for the probability distribution predictions. Not only can this35

research be extended to larger airports, integrating predicted delay probability distributions might be beneficial36

for many more logistical applications, both within and beyond the aviation industry.37
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Recommendations1

For further research, this paper proposes the following steps. First of all, the aim of this paper is to show the2

possibility and potential of combining a probabilistic flight delay model and an airport operations optimization.3

Although this includes the selection of appropriate features, models, and hyperparameter settings, finding the4

optimal features, models and settings falls outside the scope of this research. This paper does not dismiss the5

possibility of even better models, features and hyperparameter settings. In fact, the small difference between6

the results of the 1D and 1M feature sets already suggested that there might exist better weather features. This7

means that it is expected that the results of this paper can be further improved, which is the first recommendation8

when the resulting probabilistic FGAP model would be applied in practice.9

The second recommendation is to extend this research to large, international airports. Not only are they10

expected to have a larger database, which might lead to even more accurate delay predictions, they also have a11

different flight schedule. Compared to a regional airport, international airports generally have longer turnaround12

times and more flights per day. For the regional airport in this paper, the predicted presence probability functions13

were almost always wider than the length of the turnaround time in the schedule, which made the probabilistic14

FGAP schedules almost automatically less efficient in terms of the number of scheduled to be occupied slots.15

Perhaps this is different for schedules with longer turnaround times. Not only is it expected that international16

airports have different robustness and efficiency scores, as these scores are always strongly dependent on the17

case study, their fuller schedules and longer turnaround times might even enable an improvement in efficiency.18

A third recommendation is to investigate the effect of incorporating the probabilistic flight delay models19

into other airport, or airline, operation optimization models. As stated in the introduction, many airport and20

airline operations, such as airport surface traffic optimization, aircraft routing optimization, and airline crew21

scheduling, involve the arrival and departure of flights. It is expected that at least some of them could also be22

improved by integrating predicted flight delay distributions. As a matter of fact, the methodology of integrating23

predicted delay distributions into an operational optimization model might also be applicable to other logistics24

fields, such as the delivery of parcels or other modes of transportation. Therefore, the final recommendation is25

to explore opportunities outside the aviation industry.26
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1
Introduction

The ultimate goal of this research is to incorporate an elaborate flight delay prediction model into an airport
operation optimization model. Numerous researches have been performed in the field of delay predictions
and operations optimization separately, but the potential benefit of integrating one into the other directly is
an underexposed topic in existing literature.

This research recognizes the potential value of combining the two models; more extensive flight delay pre-
diction with probability intervals could lead to more robust and efficient operations. Given that the global
aviation industry has been growing for most of the past decade, this is valuable knowledge for both interna-
tional and regional airports. In fact, more insight in flight delay predictions at regional airports is valuable
knowledge on its own.

The aim of this report is to understand the current state-of-the-art in the field of flight delay predictions.
In order to bridge the gap to optimization problems, it is important to first identify the usual approach and
possible improvements in existing flight delay literature. Furthermore, this report aims to understand how the
flight delay predictions can be incorporated in airport operations optimization problems in more detail.

The structure of this literature report is as follows. Chapter 2 describes the project in more detail, including
the formulated research questions and objectives. Chapter 3, the main part of this report, presents a thorough
literature review that should function as a guide for answering all research questions upon its completion. In
the final chapter, chapter 4, the main conclusions of this literature study are given.
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2
Project description

Motivation and background
Throughout the aviation industry there are many stakeholders involved when it comes to accurate flight de-
lay predictions. Airports, who are optimizing the efficient use of their existing capacity to accommodate for
the growing air travel demand. Airlines, who aim to minimize the propagation effect of disruptions in their
schedule. And last but not least, the passengers, who prefer to know about delays as soon as possible.

As a result, numerous flight delay researches have been performed within the field of air transport and
operations. Most studies aim to predict whether or not a flight will arrive or depart within 15 minutes of its
scheduled time, which corresponds to the delay reporting system of the U.S. Federal Aviation Administration
(FAA). Furthermore, most researches are centered around large, international airports. A number of different
methods have been explored; statistical methods, machine learning methods such as boosting and bagging
decision trees, and most recently neural networks with overall rather positive results. Accuracy’s of above 80%,
such as in (Rebollo and Balakrishnan 2014), are not uncommon.

This research focuses on extending the current state-of-the-art in flight delay predictions in two ways.
Firstly, it is targeted at Rotterdam the Hague Airport, which is a regional airport; an underexposed topic in
existing literature. Secondly, it aims to expand flight delay predictions with a probability density function, a
novelty in the field that is potentially beneficial for airport operation optimizations. The combination of these
two identified improvement points lead to the ultimate goal of this thesis: incorporating a probabilistic flight
delay prediction model into an existing gate assignment optimizer for a regional airport.

Research questions
The main research question of this research is:

MQ: Is it possible to accurately predict the probability distribution of delays of individual flights at a regional
airport with machine learning algorithms?

To answer the main question, three sub-questions are defined. The first sub-question aims to answer how
well the flight delay prediction models from existing literature, previously mostly applied to international air-
ports, perform at a regional airport. Following the majority of the previous studies, the flight delay problem is
initially considered as a binary classification problem, where a flight is either delayed or not. The underlying
assumption is that if the performance of the binary classifiers are insufficient, models with more complicated
prediction targets, such as the minutes of delays, will not perform better.

Q1: How well can a binary classifier predict flight delays at a regional airport in terms of accuracy, precision and
recall?

(a) How do the performances of two binary classifiers, a Random Forest and a LightGBM model, compare
in terms of accuracy, precision and recall when applied to the same historical flight dataset of a regional
airport?
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(b) Which input features are most important for predicting arrival and departing flight delays as identified by
the models?

(c) Does adding historical flight data of comparable airports to the training set improve the predictions by the
concept of transfer learning?

The second sub-question investigates the possibility of predicting the probability density function of an in-
dividual flight. Since this is a novelty within the field of flight delay predictions, the model and performance
metrics selection is less straightforward and part of the research.

Q2: Is it possible to predict the conditional probability density function of the delay of an individual flight with
machine learning algorithms?

(a) Which machine learning algorithms are able to predict a probability distribution?

(b) How should the performance of a probabilistic forecasting algorithm be measured?

(c) How well do these algorithms perform for a regional airport in terms of the aforementioned performance
metrics?

Assuming that the second sub-question leads to positive results, the final sub-question relates to how express-
ing a flight delay prediction as a probability density function rather than a point estimate can improve actual
airport operations optimizations.

Q3: What are the effects of incorporating a probabilistic forecasting model in an existing Flight-to-Gate Assign-
ment Problem (FGAP) in terms of efficiency and robustness of the resulting schedule?

Research objective
The main research objective of this thesis is to gain insight into the possibility and effect of evolving flight delay
predictions from point estimates to probabilistic forecasts for a regional airport by developing a machine-
learning based probabilistic flight delay prediction model and incorporating it into an existing Flight-to-Gate
Assignment Problem.

To achieve this, the problem is divided into three parts. Since most existing flight delay studies evolve
around large, international airports, the first sub-goal is to predict flight delays at a regional airport by apply-
ing similar machine-learning based binary classifiers to historical data of Rotterdam the Hague Airport. The
second sub-goal is to evolve flight delay predictions from point estimates to probability density functions by
applying probabilistic forecasting methods to the same historical data, a novelty in the field of flight delay
predictions. The final sub-goal is to tests the effect of representing flight delays predictions by probability den-
sity functions by incorporating the results of the probabilistic flight delay prediction model into an existing
Flight-to-Gate Assignment Problem.

31



3
Literature review

With the project description established, this chapter presents the literature review. Its goal is to identify the
most influential researchers, their usual approaches and the current state of the art in the field of flight delay
and cancellation predictions. Once completed, it should function as a guide to answer the research questions
defined in the previous chapter.

The remainder of this chapter is divided as follows. Section 3.1 provides an overview of research develop-
ments within the field and fields closely related. The usual approach for predicting flight delays and cancel-
lations is defined in section 3.2. In section 3.3 the possibility to evolve from the usual prediction methods to
probabilistic forecasting is investigated. Finally, section 3.4 presents a case study to illustrate how probability
density forecasts for flight delays can support airport operation optimization problems.

3.1. Previous research to flight delay predictions
Over the years, many different approaches have been applied to the flight delay prediction problem. This sec-
tion provides a general overview of the most relevant researches before elaborating on their selected features,
methodology and results in section 3.2.

One of the earlier studies, (Mueller and Chatterij 2002), approaches the flight delay problem by fitting dif-
ferent distributions to historical data. Although not strictly a prediction, the research concludes that arrival
flights are best modeled by Normal distribution, while a Poisson distribution best describes the departure
flights. In (Xu et al. 2005) the problem is modeled as a Bayesian network, which requires the conditional prob-
abilities between states to be known. (Klein 2010) recognizes the importance of weather and incorporates
weather forecasts and observations in a multi-linear regression.

The beginning of the previous decade highlights the start of a new trend in the field of delay predictions:
machine learning techniques. A significant contribution is made by (Rebollo and Balakrishnan 2014), which
is amongst the first to apply a binary Random Forest (RF) classifier to the flight delay problem and achieves
an average accuracy of 80%. Both the method and the accuracy often function as a benchmark in successive
research; almost all delay researches that follow that are based on any tree-structured algorithm also include
the Random Forest.

With the progress of time, the complexity of the tree-based models increases as well. The binary classi-
fication is occasionally extended to a multi-class, leading to the argument that missclassification should be
associating with different costs for different classes in both (Alonso and Loureiro 2015) and (Choi et al. 2017).
Boosting extensions of decision trees are introduced in (Choi et al. 2016) and (Manna et al. 2017). Within this
category of tree-based models, the latest promising addition is LightGBM, which is used in both (Lambelho
et al. 2020) and (Shao et al. 2019).

Besides tree-based models, Neural Networks are introduced to flight delay predictions in (Kim et al. 2016)
and (Khanmohammadi et al. 2016). A complementary approach is the construction of a two stage model that
first determines whether there is a delay, followed by how much delay, as presented in (Thiagarajan et al. 2017).
Even more recently (Yu et al. 2019) has developed a combination of a Deep Belief Network and a Support Vector
Regression. A detailed overview of the development of the applied models can be found in table 3.2.

For the features the trend of increasing complexity over time does not hold as strongly, although some re-
search specifically focus on the effects of new features. In (Choi et al. 2016), weather forecast features are added
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to the prediction model. Most researches afterwards however continue to use the actual observed weather,
which is easier to obtain. (Chen and Li 2019) emphasizes the benefits of knowing that the previous flight is
delayed by feeding this feature into a propagation model. It can be concluded from table 3.1 that this feature
trend holds throughout 2019.

3.1.1. Identified gaps in literature
As will be discussed in detail in section 3.2.6, the increased complexity of models and features is rewarded;
accuracies above 90% are reported. Despite all positive developments in the field of flight delay predictions,
some topics are still left for investigation. This research will focus on the following two.

Regional airports
Most researches evolve around large, international airports. Although these are large stakeholders with very
large datasets, there are also many regional airports that could benefit from accurate predictions. The fact that
a regional airport mainly serves low cost carriers which might be more difficult to predict, does not have to be
an obstruction. Both (Horiguchi et al. 2017) and (McCarthy et al. 2019) explicitly focus on low cost carriers and
their results are not significantly inferior to the results of large airports. The smaller database associated with
a regional airport makes predictions more challenging but not impossible. (McCarthy et al. 2019) shows that is
possible to use data from larger airports through the concept of transfer learning, and (Gui et al. 2020) shows
high classifying accuracy for a dataset that is smaller than the dataset of the average regional airport. Therefore,
the first potential contribution of this research is applying existing flight delay knowledge to a regional airport.

Probabilistic forecasting
The second identified gap in literature relates to the target of flight delay predictions. Almost (if not) all of
the researches that involve machine learning algorithms aim to predict the delay in either minutes or a de-
lay class. Almost none of them consider the importance and potential benefit of adding probabilities to the
estimate, and none of them predict an entire probability density function. Certain optimization problems
however, for example the flight-to-gate assignment, could benefit from probabilistic forecasting. Therefore,
the second potential contribution of this research is introducing probabilistic forecasting to the field of flight
delay predictions.
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3.2. A binary classifier for flight delays and cancellations
Following the general literature overview in the previous section, this section presents literature evidence to
define the usual flight delay prediction approach in detail. Upon completion it will function as a baseline for
the methodology part of this research. This section first discusses typical challenges encountered, such as
feature and model selection, and ends with an overview of case studies and achieved results.

3.2.1. Feature collection, encoding and selection
The first step in defining a usual approach is to understand the required data in detail. For each of the pre-
viously identified relevant researches, the prediction horizon, features, encoding types and selection method
are summarized in table 3.1. Each topic is individually examined in the following sections.

Features
According to (Neufville and Odoni 2013), the causes of flight delays can be divided into five groups; weather,
reactionary delay (i.e. the late arrival of a previous flight), airline, the airspace system and security. With the
latter two being too complex to incorporate in this research, this literature review investigates how previous
research has incorporated features of the following groups; the flight schedule, the actual weather, weather
forecast and the late arrival of the previous flight. A detailed overview of the specific features can be found in
table α.1.

As expected, all flight delay studies encountered in table 3.1 use flight schedule features including the ori-
gin, destination, airline, and scheduled arrival and departure times. A large number of studies incorporate
weather features, but only a couple integrate weather forecasts. The logical explanation to discard weather
forecasts is two-folded. Foremost it is difficult to obtain weather forecasts and secondly, actual weather, which
is essentially a perfect weather forecast, will result in a better performance. The latter is confirmed by (Choi
et al. 2016), where it is stated that ’the predictions with forecast were much worse than the predictions with the
actual weather’, a result that will be further discussed in section 3.2.6. Considering that in real-life applications
only forecasts are available, this difference should be kept in mind.

The final category, the late arrival of a previous flight, is incorporated in roughly half of the studies. This
corresponds with the idea that the feature is useful, but that the links between subsequent flights can be dif-
ficult to obtain for large airports. For smaller airports it might be easier to obtain the links, however it could
reduce the smaller database even further if not all flights have a qualified predecessor. Nevertheless, consider-
ing the benefit of improving the predictions, this research aims to include the arrival time of the previous flight
as a feature.

Horizon
Directly related to the features is the prediction horizon, which is the time between the prediction and the
actual observation. The longer the prediction is made in advance, the less features are available and vice versa.
More time in advance leads to more time to incorporate the predictions in strategical planning, more features
leads to potentially better predictions, meaning a trade-off has to be made.

As can be seen in table 3.1, none of the encountered studies have a prediction horizon larger than 6 month,
and all studies include the flight schedule as a feature. This can be explained by the fact that flight schedules
are the minimum requirement to predict the delay or cancellations of individual flights and they are usually
published 6 months in advance. Weather features are only accurate when the horizon is at most a couple days,
and to know the delay of the previous flight, that flight has to land first, resulting in a prediction horizon of at
most a couple hours.

Two researches, (Lambelho et al. 2020) and (Horiguchi et al. 2017), choose for a prediction horizon of sev-
eral months with less features, all others choose the shorter prediction horizon with more features. Since this
research recognizes the benefits of both options, it will select two distinct feature sets; one suitable for a pre-
diction horizon of one month and another suitable for predictions on the same day.
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Reference Horizon Features Encoding Selection

FS AW WF LA *

(Gui et al. 2020) 0 days ✓ ✓ ✕ ✕ enumeration, mapping
letters to numbers

-

(Lambelho et al. 2020) 6 months ✓ ✕ ✕ ✕ target, trigonometry,
geographical

RFE

(Chen and Li 2019) 0 days ✓ ✓ ✕ ✓ one-hot RFE

(McCarthy et al. 2019) 0 days ✓ ✕ ✕ ✓ one-hot -

(Shao et al. 2019) 4 hours ✓ ✓ ✕ ✓ one-hot PCA

(Yu et al. 2019) 2 hours ✓ ✓ ✕ ✓ one-hot correlation

(Choi et al. 2017) 0 days ✓ ✓ ✕ ✓ one-hot, normalization p-value

(Horiguchi et al. 2017) 1 day - 5 months ✓ ✕ ✕ ✕ one-hot, trigonometry,
normalization

depending on
horizon

(Manna et al. 2017) 0 days ✓ ✕ ✕ ✕ enumeration,
normalization

correlation

(Thiagarajan et al. 2017) 0 days ✓ ✓ ✕ ✕ ordinal, normalization -

(Choi et al. 2016) 0/1/5 days ✓ ✓ ✓ ✓ enumeration,
normalization

-

(Khanmohammadi et al. 2016) hours ✓ ✕ ✕ ✓ ordinal, normalization -

(Kim et al. 2016) 0 days ✓ ✓ ✕ ✕ - by the model

(Alonso and Loureiro 2015) 0 days ✓ ✓ ✕ ✓ geographical, binary,
ordinal, aircraft length

by the model

(Rebollo and Balakrishnan 2014) 2 hours ✓ ✓ ✕ ✕ - p-values

(Klein 2010) 6 hours ✓ ✓ ✓ ✕ - -

(Xu et al. 2005) 1:45 hours ✓ ✓ ✓ ✕ estimated conditional
probabilities

experts, R2

(Mueller and Chatterij 2002) - ✓ ✕ ✕ ✕ - -

* FS = Flight Schedule AW = Actual Weather WF = Weather Forecast LA = Late Arrival

Table 3.1: Literature overview of features, encoding and selection
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Categorical feature encoding
As can be seen in tableα.1, a significant portion of the potential features, e.g. the origin, destination and airline,
is categorical. Many machine learning algorithms work better (or only) with numerical features, meaning that
the categorical ones have to be encoded. Some basic but frequently occurring encoding techniques are one-
hot and ordinal encoding, but they each come with disadvantages. One-hot, where each feature is extended to
a separate binary feature for each option, has the potential to make the problem very large. Ordinal encoding,
also described in articles as the enumeration of features, assumes that one categorical feature is somehow
better than others, which is often not the case.

In several articles alternative encoding methods are proposed that are all considered possibilities for this
research. (Alonso and Loureiro 2015) suggests the use of geographical coordinates to encode airport cate-
gories. (Lambelho et al. 2020) and (Horiguchi et al. 2017) emphasize on the importance of encoding cyclical
features with trigonometric functions:

sin

(
2πt

tc ycl e

)
and cos

(
2πt

tc ycl e

)
(3.1)

(Lambelho et al. 2020) also presents the concept of target encoding, where each categorical features is
encoded with the probability of a delay, given that specific option of the feature:

Xi −→ Si ∼= P (Y |X = Xi ) (3.2)

Finally, six of the researches apply normalization to their numerical features to scale them between zero
and one, with the argument that it improves numerical stability and reduces training time. In principle, neu-
ral networks and random forests do not require this scaling, but it will be considered for other algorithms if
needed.

Feature selection
Multicollinearity is the phenomenon that more than two explanatory variables are highly correlated to each
other. For some machine learning algorithms, in particular regression models that assume all variables to be
independent, this reduces the performance.

Based on the literature overview in table 3.1, two main options are identified to actively counter multi-
collinearity. The first one is a Pearson correlation matrix, where the correlations between all pairs of features
are plotted. Based on this table one of two highly correlated variables is removed, a clear and quick approach.
The second method is Recursive Feature Elimination (RFE), described in (Granitto et al. 2006), which is an
algorithm that eliminates redundant features by systematically running the model with different subsets and
comparing the performance. Although thorough, this approach is time consuming. For this research the clear-
ness of the Pearson correlation matrix is preferred, but if a more extensive algorithm turns out to be required,
the RFE is considered next.

3.2.2. Classification models
Now that all feature related topics are discussed, this section will investigate which models suit the first phase
of this research. Table 3.2 provides an overview of the methodology used in relevant literature. It should be
noted that (Klein 2010), (Xu et al. 2005) and (Mueller and Chatterij 2002) consider a statistical approach, net-
work model and probabilistic fitting respectively, which do not strictly fall in the machine learning category.
They are included for completeness, but their models are not considered appropriate for this research.

As can be seen in the overview, over half of the selected researches consider the flight delay problem as a
classification problem with either a multi-class or a binary target. The other half estimates the delay in actual
minutes, meaning they approach the flight delay as a regression problem. The researches (Thiagarajan et al.
2017) and (Kim et al. 2016) combine the two approaches in a two stage model; the first stage predicts whether
or not a flight is delayed, the second stage estimates the minutes if the first phase indicates a delay. Only one
of the selected flight delay researches also takes cancellations into account, which is (Lambelho et al. 2020).
Although the main focus of this research is the prediction of flight delays, this confirms the idea that the same
models can be applied to predict cancellations, which motivates this research to do the same.

36



Reference Target C* Models Imbalanced Data Feat. Importance

(Gui et al. 2020) Multi-class (4) ✕ LSTM, RF undersampling -

(Lambelho et al. 2020) Binary ✓ LightGBM, MLP, RF class weights SHAP values

(Chen and Li 2019) Multi-class (15) ✕
RF, Delay Propagation
Model

SMOTE

(McCarthy et al. 2019) Minutes ✕
LSTM, Transfer
Learning

- -

(Shao et al. 2019) Minutes ✕
LightGBM, LR, MLP,
SVR

- change in RMSE

(Yu et al. 2019) Minutes ✕
Deep Belief Network +
SVR

- change in MSE

(Choi et al. 2017) Binary ✕ AdaBoost, DT, k-NN, RF costing sampling -

(Horiguchi et al. 2017) Binary ✕ DNN, RF, XGBoost - by the model

(Manna et al. 2017) Minutes ✕ Gradient Boosting - Pearson Correlation

(Thiagarajan et al. 2017) Minutes,
Binary

✕
AdaBoost, DNN,
Extra-trees, Gradient
Boosting, MLP, RF

SMOTE -

(Choi et al. 2016) Binary ✕ AdaBoost, DT, k-NN, RF SMOTE change in ROC

(Khanmohammadi et al. 2016) Minutes ✕
ANN with multi-level
input

- -

(Kim et al. 2016) Binary
(>15/30min)

✕ LSTM - -

(Alonso and Loureiro 2015) Multi-class (5) ✕
Binomial Trees with
unimodal output

- -

(Rebollo and Balakrishnan 2014) Binary
(>60min)

✕ RF oversampling by the model

(Klein 2010) Minutes ✕ Multiple LR - -

(Xu et al. 2005) Multi-class (5) ✕ Bayesian Network only delayed flights
R2 for different
horizons

(Mueller and Chatterij 2002) PDFs ✕ Fitting Distributions -
frequency of
occurrence

* C = Cancellation

Table 3.2: Literature overview of methodology

Based on the overview it can be concluded that most classification problems apply at least one bagging
or boosting extension of the Decision Tree (DT) algorithm. The most popular one is the well known Random
Forest (RF), a bagging extension of the DT, which is used in almost all classification researches listed. Other
popular options are different types of boosting extensions of the DT. (Choi et al. 2016) and (Thiagarajan et al.
2017) use AdaBoost, (Horiguchi et al. 2017) uses XGBoost and (Shao et al. 2019) and (Lambelho et al. 2020)
apply the recently developed LightGBM.

For this research both a bagging (RF) and a boosting (LightGBM) extension of the DT algorithm are se-
lected, to accommodate for comparison and validation. The next two sections describe each model in more
detail.
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Random Forest
The first model selected is the commonly used Random Forest (RF) classifier, an algorithm that originates
from (Breiman 2001). In principle this model is a collection of Decision Tree (DT) classifiers. Each tree in the
collection is based on a bootstrap sample of the training data, meaning the sample is drawn uniformly and
with replacement. For a classification the RF determines its prediction by taking the majority vote of the test
results of each individual tree. Analogously, when applied to a regression problem it determines its output
by taking the average. This procedure of sampling and assembling is also known as bootstrap aggregating or
bagging.

One of the benefits of a Random Forest is that it is less prone to overfitting, as the result of adding more
trees converges by the law of large numbers. Given that this research focuses on smaller, regional airports, with
relatively small databases, this might be a particularly useful characteristic. Another benefit is that a decision
tree ranks features by default, as it places more important features higher in the tree. This will be useful when
answering the research question regarding feature importance. Finally, the model is relatively easy to interpret,
which makes it a solid benchmark for more complicated algorithms such as neural networks, which are used
in the second phase of this research.

LightGBM
The second model is LightGBM, which was recently developed by (Ke et al. 2017) and stands for Light Gradient-
Boosting Machine. Similar to the RF, LightGBM is also an ensemble technique based on the DT algorithm.
The main difference however is that this is a boosting algorithm, meaning that it is trained by improving the
decision tree in sequential steps. At each step, a random sample is used to construct a new tree, based on
reducing the classification error of the previous tree.

The most time consuming part of any gradient boosting algorithm is determining the splitting point of
each feature. LightGBM introduces two new concepts to reduce the number of features and data samples and
therefore decrease the computational time. Gradient Based One Side Sampling (GOSS) selects the samples
with large gradients and randomly downsamples features with smaller gradients, to reduce the number of
data points with as little as possible information loss. Exclusive Feature Elimination (EFE) reduces the number
of features by bundling features that are mutually exclusive, i.e. are never simultaneously zero.

LightGBM also stands out from other gradient boosting algorithms by applying leaf-wise growing of the
tree instead of level-wise growing, which allows the trees to be more complex and more accurate. In both flight
delay researches that use LightGBM, i.e. (Shao et al. 2019) and (Lambelho et al. 2020), it is indeed the most
accurate algorithm. The disadvantage of LightGBM is that it complexity makes it prone to overfitting on small
datasets. Given that this research focuses on regional airports, this is an important point of attention. The
expected challenges of a small dataset are further discussed in 3.2.6.

3.2.3. Imbalanced dataset
Another point of attention is the high Imbalance Ratio (IR) of the dataset. Since most flights arrive and de-
part within 15 minutes of their scheduled departure and arrival times, and even more flights are operated as
opposed to cancelled, the dataset for this research is highly imbalanced. This is unfavorable since many ma-
chine learning algorithms are designed to maximize the accuracy and reduce the error. As a result, in case of
a highly imbalanced dataset those algorithms will be trained with a bias towards the majority class, leading to
missclassification of the minority class.

Based on the flight delay related literature in table 3.2, two options are identified to accommodate for the
high IR of the dataset. The first option is to even the number of samples in each class by oversampling or
undersampling. Since the latter has the disadvantage of potentially losing valuable information, a commonly
used oversampling method is the Synthetic Minority Oversampling Technique (SMOTE)(Chawla et al. 2002).
In order to generate more samples of the minority class, SMOTE first draws a line between a random instance
of the minority class and one of its randomly selected k-nearest neighbors. It then randomly identifies a point
on this line as a new sample in the minority class and continues this process until both (or all) classes have the
same sample size.

The second option is to make the model cost sensitive by increasing the weight of miss-classifying the
minority class in the loss function. In (Lambelho et al. 2020), these weights are set to maximize the f1-score;
the harmonic mean of the recall and precision which are explained in the following section.
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3.2.4. Performance metrics for classification algorithms

actual

positive negative

p
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ed positive True Positive
(TP)

False Positive
(FP)

negative False Negative
(FN)

True Negative
(TN)

Table 3.3: Confusion matrix

accur ac y = T P +T N
tot al

(3.3)

r ecal l = T P
T P +F N

(3.4)

pr eci si on = T P
T P +F P

(3.5)

The most intuitive and a commonly used metric to express the performance of a classification algorithm is
the accuracy in equation 3.3, which is the fraction of correctly identified instances. In principle, the higher the
score the better, where the score is bound between 0 and 1. As explained in the previous section, accuracy
alone is not sufficient when using highly imbalanced data. Therefore, two additional metrics are often taken
into account as well; the recall and the precision in equation 3.4 and 3.5 respectively. The recall is a representa-
tion of how many of the actual positive instances are also identified as positive. The precision represents how
many of the predicted positives are also actual positives. Again, both metrics are bound between 0 and 1, and
a higher score is preferred for both.

It is important to note that precision and recall are a trade-off; increasing either will decrease the other.
When both metrics are equally important, and the goal is to find the optimal balance point, the f1 score can be
optimized. It combines both metrics in a single one by taking their harmonic mean:

F1 =
2∗pr eci si on ∗ r ecal l

pr eci si on + r ecal l
= 2T P

2T P +F P +F N
(3.6)

Another widely used performance metric is the Area Under the Receiver Operating Curve (ROC)(AUC). The
ROC is defined as follows:

ROC = T PR
F PR

=
T P

T P+F N
F P

F P+T N

(3.7)

The integrated AUC falls between 0 and 1, and the closer to 1 the better. It should be observed that a random
classifier already achieves a 0.5 AUC. A summary of the performance results found in literature is presented in
table 3.5 and discussed in section 3.2.6.
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3.2.5. Feature importance
Not only is this research interested in how well a classifier performs, it is also interested in identifying the most
important features for flight delay and cancellation predictions at regional airports. Several methods are found
in literature and summarized in table 3.2. Some models, such as a decision tree, inherently identify the most
important features as they are represented by the highest splitting nodes in the tree. In the researches (Shao et
al. 2019), (Yu et al. 2019) and (Choi et al. 2016), the effect of the adding and removing certain groups of features,
such as weather or late arrivals, is quantified by the change in performance of the model.

The most complete method to quantify feature importance is found in (Lambelho et al. 2020). The SHAP
(SHapley Additive exPlanations) values approach, proposed by (Lundberg and Lee 2017), is based on shapley
values and represents the contribution of each feature for the expected outcome, averaged over all permuta-
tions of feature order. A higher absolute SHAP indicates a higher contribution, the sign indicates the direction.
This research prefers this method for two reasons. Firstly, it is applicable to many different machine learning
algorithms. Secondly, it allows for very informative visualizations.

Five of the selected articles explicitly rank the features by importance. The identified important features
for flight delay predictions are summarized in table 3.4 and highlighted in bold in appendix table α.1. Most
of the features identified are only available on the day of departure. Both (Chen and Li 2019) and (Yu et al.
2019) emphasize the importance of the late arrival of a previous flight, a feature that could be constructed for
this research as well. Amongst the features that are available longer in advance, the influence of the scheduled
departure time is significant in both (Lambelho et al. 2020) and (Horiguchi et al. 2017).

A noticeably absent feature is the direct weather information in the form of METAR data, even though both
(Neufville and Odoni 2013) and (Mueller and Chatterij 2002) address that weather is often the cause of a delay.
Although out of the five articles listed only (Shao et al. 2019) considers METAR in the first place, it will be in-
teresting to see if the presumption that other features are more important than weather features also holds in
this research.

Reference Horizon < 24 hours Horizon ≥ 1 days

(Lambelho 2019) arrival ATFM delay, airline, hour, seats

(Chen and Li 2019) departure delay group, late aircraft delay

(Shao et al. 2019) airport GPS trajectories

(Yu et al. 2019) air route situation, (actual) airport
crowdedness, delay of previous flight

(Horiguchi et al. 2017) scheduled fuel on board, number of passengers scheduled departure minute of day

Table 3.4: Important features
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Reference Model1 Horizon2 Airport(s) or
Airline(s)

Data points Performance3

(Gui et al. 2020) C4 0D all flights in the area 5,761
accuracy=
{90.2%(2),81.4%(3),70.0%(4)},
> 40 min. error in 27% of the cases

(Lambelho et al. 2020) C2 6M LHR 2.3 million
accuracy > 0.75 for delays,
accuracy > 0.98 for cancellations

(Chen and Li 2019) C15 0D ORD 1 year of flights
relaxed accuracy = 0.92669,
accuracy = 0.86727

(McCarthy et al. 2019) R 0D
Small and large
European LCC

24,000 (small),
340,000 (large)

+ transfer learning: RMSE = 10.2,
− transfer learning: RMSE = 9.2

(Shao et al. 2019) R 4H LAX 2 months of flights
RMSE = 37,
accuracy around 18 min

(Yu et al. 2019) R 2H PEK 1 year of flights
99.3 % of the predicted values are
within 25 min deviation from the
actual value

(Choi et al. 2017) C2 0D 45 major airports 1-2 million
accuracy ={82.8%,75.5%,65.3%}
for cost ratio {1 : 1,1 : 5,1 : 10}

(Horiguchi et al. 2017) C2 1D-5M
Peach Aviation
(Asian LCC)

54,000
for 5 months: AUC <0.6
for 1 week: AUC <0.6,
for 1 day: AUC = 0.647

(Manna et al. 2017) R 0D 70 busy US airports 2,175,534
arrivals: R2 = 92.3%,
departures: R2 = 94.9%

(Thiagarajan et al. 2017) C2/R 0D 15 major US airports 3.2 million
C: accuracy = 94.35%,
R: MSE = 26.36, R2=0.985

(Choi et al. 2016) C2 0D-5D 45 major airports 2 million
0 days: accuracy = 80.36%,

AUC = 0.68,
5 days: accuracy = 26.79%

(Khanmohammadi et al. 2016) R H JFK 1 month of flights RMSE = 0.1366

(Kim et al. 2016) C2 0D 10 major US airports 5.5 years of flights
stage 1: accuracy ∼ 90%,
stage 2: accuracy∼ 87%

(Alonso and Loureiro 2015) C5 0D Porto Airport 26,189
ri nt = 0.7 (network),
ri nt = 0.66 (trees)

(Rebollo and Balakrishnan
2014)

C2/R 2H
100 most delayed
US OD pairs

2 years of flights
C: avg. accuracy = 81%,
R: avg. median error = 20.9 min

(Klein 2010) R 6H ORD 1 year of data accuracy = 80-85%

(Xu et al. 2005) C5 1:45H ORD, LGA, ATL 3 months of flights error rate = 19.1 %

(Mueller and Chatterij 2002) - - 10 major US airports 21-days of flights fit errors for different distributions

1 Cx = Classificationclasses R = Regression 2 H = Hours D = Days M = Months

3 The highest accuracies for classification models are shown in bold

Table 3.5: Literature overview of case studies
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3.2.6. Case studies
The final part of this section is dedicated to the case studies performed in the selected literature. As highlighted
in table 3.5, the highest accuracy for flight delay classification is 94.35%, obtained with a Gradient Boosting
model for arrival delays in (Thiagarajan et al. 2017). It should be noted that this result is achieved for a binary
classification with a 0 day prediction horizon.

Increasing the number of classes generally reduces the accuracy. This corresponds to the results of (Gui
et al. 2020), where the accuracy reduces from 90.2% for two classes to 70.0% for four classes. (Chen and Li
2019), which uses 15 delay classes, argues that missclassification in an adjacent class is still a relatively good
result and includes them in the relaxed accuracy. This relaxation leads to an accuracy of 92.67%, the second
highest accuracy for flight delay of the selected articles.

Another factor that generally influences the performance is the prediction horizon. As the results of (Choi
et al. 2016) show, increasing the horizon from 0 days to 5 days leads to an accuracy reduction from 80.36% to
26.79%. This performance is particularly poor considering there are only two classes, meaning a random guess
would give an accuracy of 50%. A similar trend is observed in (Horiguchi et al. 2017), where the poor prediction
result leads to the conclusion that there is not enough information available 5 months prior to the day of the
flight. This makes the 98% accuracy for cancellation predictions with a 6 months horizon in (Lambelho et al.
2020) even more remarkable. A possible explanation for this high accuracy could be the high imbalance ratio
of the cancellations dataset; however the article does take this ratio into account and the resulting f1 score of
0.6 is significantly better than the 0 that a naive approach with zero true positives would give.

Regional airports and small datasets
Almost all case studies involve one or more major airports, most often airports in the United States. There are
several advantages associated with these airports; the databases for their on-time performance and cancel-
lations already exist, are available and most importantly they contain a lot of data points. In principle, more
data leads to better model performance. The lack of large databases is an inherent and major challenge in
the prediction of flight delays at regional airports; foremost they simply serve less flights and secondly, adding
much older data is not a desired solution as the circumstances of those flights might be very different than the
circumstances of today’s target flights.

As anticipated, none of the articles found specifically focus on regional airports. A relatively small dataset
is used in (Alonso and Loureiro 2015), but Porto Airport is still an international airport and the chosen per-
formance metric is difficult to compare to other results. (Gui et al. 2020) uses the smallest database with only
5,761 flights, all collected within the range of a certain ADS-B receiver. Their classification results, in partic-
ular the binary classification accuracy of 90.2%, are well in the range of studies at larger airports, which is a
promising outlook for this research.

Two of the case studies focus specifically on flight delays of Low Cost Carriers (LCC). Although they do not
particularly focus on regional airports, they are still very relevant considering regional airports mainly serve
LCCs. The first research, (Horiguchi et al. 2017), uses a dataset of 54,000 flights from an Asian LCC. Recalling
that a randomly guessing algorithm achieves an AUC of 0.5, the results for a prediction horizon of 5 months or
1 week are below par. The result for predictions with a one day window however are not far below the results of
the large database study in (Choi et al. 2016); an AUC of 0.647 versus an AUC of 0.68. This is again a promising
result for this research.

Transfer learning
Perhaps the most interesting approach to the small dataset challenge is found in the second research that
investigates the delay behaviour of LCC. (McCarthy et al. 2019) applies the concept of transfer learning to
train the prediction model for a small LCC on a dataset that includes data from another, much larger airline.
Specifically, the research applies the heterogeneous feature framework of (Moon and Carbonell 2017), which
allows for only partially overlapping the training and target feature sets. The results consistently show that
enhancing models with transfer learning reduces the RMSE and thus improves the prediction.

This research will apply the theory of transfer learning in two variants. The first will enhance the training
set with data from Eindhoven Airport (EIN), a similar, regional airport. The second option involves adding
data from Amsterdam Airport Schiphol (AMS) a closely located, large, international airport. The benefit of
using EIN is that the airports are most similar, the advantage of AMS is that it has a large dataset. Both results
will be benchmarked against the model without transfer learning.
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3.3. A probabilistic forecasting approach for flight delays
The previous section presented the usual approaches in the field of flight delay predictions and discussed the
challenges of applying them to regional airports. It also indirectly showed that most (if not all) of the existing
literature focuses on machine learning delay predictions with a point estimate as outcome. Some applications
however would benefit from an accurate delay probability estimate, ideally a complete conditional probability
density function. This section investigates how this problem is approached in other fields.

3.3.1. Probabilistic machine learning algorithms
The first step is to identify which models are suitable for the predictions of delay probability density functions
of individual flights. Some earlier studies, such as (Mueller and Chatterij 2002), fit different standard distribu-
tions to historical flight data and select the one that fits best. It should be emphasized that these probability
density function estimates are fittings and not predictions by the definition of this research.

As examples in the following sections will show, the prediction of probability densities is a topic of interest
in the fields of electricity networks, weather forecasts and speech recognition. Although there are more com-
plicated variations available, this research will apply the following three models for a step-wise and verifiable
evolving from the point estimates in 3.2 to the probabilistic forecasting in the second phase.

Multi-class Random Forest
The first model selected is the Multi-class Random Forest. In principle this is the same RF model as described
in 3.2.2, only with the addition of more possible classes for the prediction. As explained before, the RF is
ensemble technique that uses the majority vote of many decision trees to determine its prediction.

An intuitive and easily interpretable approach to turn these into probabilities is by taking all votes and
determine the ratio of occurrence for each individual class. This idea is supported by (Niculescu-Mizil and
Caruana 2006), which confirms that bagging gives non-biased probabilities. The number of classes should be
set high enough to turn the votes into a probability histogram, but low enough to allow sufficient data points
for each class. When the result is successful, this model functions as a bridge between the first and second
phase of this research and provides a benchmark for the next two models.

Soft-max Regression Network
Although the multi-classification approach is a nice starting point, it is assumed that models specifically de-
signed to predict probabilities perform even better. This leads to the field of neural networks. The first network
discussed is the Soft-max Regression Network, which is the combination of a Deep Neural Network (DNN) and
a Soft-max Regression output layer, as presented in (Jiang et al. 2018) and illustrated in figure 3.1a.

Each neuron in the output layer of the DNN represents one of the classes that the output can be assigned
to. The additional output layer uses soft-max regression, also known as a multi-class logistic regression, to
transform these outcomes to probabilities. The result is a probability histogram where each bin has a value
between 0 and 1 and the total sums to 1.

Since both outcomes are probability histograms, the results of this model can easily be compared with the
results of the previously described Multi-class Random Forest. Simultaneously, it is based on a DNN, which
is also used in the next model. It is therefore a valuable second step towards the prediction of a complete
probability density function.

Mixture Density Network
The third and final model is the Mixture Density Network, as defined in (Bishop 1994) and illustrated in figure
3.1b. Similar to the Soft-max Regression Network it is based on a standard DNN with a probabilistic extension,
this time a mixture model. The outputs neurons DNN can be divided into sets of three. Each set represent
a Gaussian function, where one neuron represents the mean and one the standard deviation. The third neu-
ron represents the mixture coefficient of the Gaussian. The mixture model constructs a probability density
function based on the mixture coefficients, means and standard deviations estimated by the network.

Two examples of the mixture density models in practice are (Vossen et al. 2018), which applies it to predict
power load peaks in an energy network, and (Raeis et al. 2019), which applies it to queuing theory. Although
the resulting density functions are very similar to the goal of this research, it should again be emphasized
that DNN requires very large datasets. It is expected that the success of this approach largely depends on the
success of the previously discussed transfer learning technique.
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(a) Soft-max Regression (b) Mixture Density Network

Figure 3.1: Probabilistic Neural Networks (Vossen et al. 2018)

3.3.2. Performance metrics for probabilistic forecasting algorithms
To determine the performance of the predicted probability histograms and density functions, additional per-
formance metrics are required. Three types of scores will be taken into account, each described in one of the
following sections.

Performance metrics for point estimates
Although these models are chosen for their ability to estimate probabilities, the point estimate that can be
derived from them still has to be sufficiently accurate. Also, quantifying the performance of the estimate allows
for comparison with other flight delay researches. For the Multi-class Random Forest and Soft-max Regression
Network the previously described classification metrics in section 3.2.4 can be applied. For the Mixture Density
Networks the difference between the predicted predicted point estimate and actual delay can be quantified
with the following well-known metrics, typically used for regressors:

RMSE =

√∑n
i=1(ŷi − yi )2

n
(3.8)

R2 = 1−
∑n

i=1(ŷi − yi )2

∑n
i=1(ȳi − yi )2 (3.9)

M AE =
∑n

i=1 |ŷi − yi |
n

(3.10)

Prediction Interval (PI) metrics
Some researches, for example (Xie et al. 2020), focus on predicting confidence intervals with Neural Networks
directly, rather than first estimating a complete probability distribution. Although this research aims to predict
a probability density function rather than a confidence interval, the interval is closely related. Therefore, the
following prediction interval metrics are also suitable for this research:

PIC P = 1
n

n∑

i=1
ci (3.11) PI N AW = 1

nR

n∑

i=1
(Ui −Li ) (3.12)

CW C = PI N AW (1+γ(PIC P )e−η(PIC P−µ)) (3.13)

The Prediction Interval Coverage Probability (PICP) represents how often the estimated interval contains
the actual target. The value is bounded between 0 and 1 and in principle it holds that a higher value is preferred.
At the same time, a confidence interval should be as narrow as possible, as it indicates the certainty of the
prediction. The Prediction Interval Normalized Average Width (PINAW) sums the differences between the
estimated upper and lower bounds, and normalizes it with the sum of the naive estimate of the confidence
intervals, which is the range of the target interval. Since there is a trade-off between a high PICP and low
PINAW, the Coverage Width-based Criterion (CWC) is introduced as a metric to indicate models with the best
balance between the two.
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Continuous Ranked Probability Score (CRPS)
The third category of performance metric encountered in literature, is the category of the Continuous Ranked
Probability Score (CRPS). This score originates from the field of weather forecasts (Hersbach 2000) and distin-
guishes itself by scoring the entire shape of the curve. An example of this score in combination with a Mixture
Density Network can be found in (Vossen et al. 2018), a study that estimates power loads in electricity net-
works. Besides the continuous score, there also exists a Discrete Probability Ranking Score (DRPS). The two
are defined as follows:

C RPS =
∫∞

−∞
(F (y)−1(ŷ − y))2d y (3.14)

DRPS = 1
K

K∑

k=1
(pk −ok )2 (3.15)

The underlying idea for both scores is to model the true value as a Heaviside step function, as indicated by
1(y − ŷ) and ok . The difference between the cumulative density F (x) and the step input is then squared and
integrated in the continuous score. Analogously, the difference between the step input and cumulative of the
probability bins pk is squared and summed in the discrete form.

As illustrated for the CRPS in figure 3.2, the more similar the curve is to the Heaviside step function, in this
example plotted at a true target value of 10, the smaller the difference between the two. A smaller difference
leads to lower probability ranking scores. The minimum score is zero, which is achieved if the algorithm pre-
dicts the exact value with a confidence interval width of zero, the "perfect" prediction. The further the point
estimate of the curve moves away from the true target and the wider the confidence interval, the higher the
CRPS or DRPS. The performance of the entire probabilistic forecasting algorithm can be measured by taking
the average score over all test instances.

(a) Narrow probability curve (b) Wide probability curve

Figure 3.2: The effect of the shape of the probability curve on the CRPS

3.4. Integrating probabilistic delay forecasts into optimization problems
The final section of this literature review investigates how probabilistic delay forecasting can be incorporated
into an optimization problem. The underlying assumption is that an adequate estimation of the probability
of a flight delay can positively contribute to strategical planning. This theory will be tested on an existing
Flight-to-Gate Assignment Problem.
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3.4.1. A Flight-to-Gate Assignment Problem (FGAP)
One of the challenges that all airports face is how to assign all flights to the available gates. The assignment
directly translates to the effective capacity of the airport. The closer the sequential flights are scheduled after
each other, the more flights each existing gate can serve in a day. However, as studied in the previous sec-
tions, flights often divert from their scheduled arrival and departure times. When the flights are scheduled too
tightly, the schedule is not robust enough to absorb these delays, leading to traffic congestion at the apron.
Summarized, the assignment of flights to gates is a constant trade-off between the efficient use of capacity and
the robustness against delays.

The usual approach within the aviation industry is to treat the Flight-to-Gate Assignment Problem (FGAP)
as a Linear Problem (LP). Following the definition in (Schaijk and Visser 2017), the objective function of the
basic multiple slot FGAP can be defined as follows:

min

[
Z =

n∑

i=1

m∑

j=1

k∑

t=1
ci j xi j t

]
for i ∈ N , j ∈ M and t ∈ K (3.16)

where N is the set of scheduled flights, M the set of gates and K the set of time slots with n, m and k as
total number respectively. Furthermore, ci j is the cost of assigning flight i to gate j for a single time slot and
xi j t the binary decision variable for assigning that flight at time slot t . It is subjected to the following set of
constraints:

m∑

j=1
si t xi j t = 1 for i ∈ N and t ∈ K (3.17)

n∑

i=1
si t xi j t ≤ 1 for j ∈ M and t ∈ K (3.18)

si t xi j t+1 − si t+1xi j t = 0 for i ∈ N , j ∈ M and t ∈ K (3.19)

with si t the binary presence coefficient of flight i at time slot t . Constraint 3.17 ensures that each present
flight is assigned to a gate, constraint 3.18 makes sure that there is only one flight assigned to a gate for a certain
time slot and constraint 3.19 ensures that a flight remains assigned to the same gate in the subsequent time
slot.

Presence probability
A major assumption in the basic FGAP is that the presence si t of each flight is known in advance and is fixed.
The possibility of delays and cancellations are not taken into account. Some researches extend the model by
including a certain penalty or margin for flight delays in the cost function. A different and innovative approach
is presented in (LOrtye 2019) and (Schaijk and Visser 2017). Both researches account for potential delays by
replacing constraint 3.18 with a new constraint that considers the presence of a certain flight as a probability
rather than a binary:

n∑

i=1
f (pi t ,r )pi t xi j t ≤ 1 for j ∈ M and t ∈ K (3.20)

with f (pi t ,r ) = pi t

r +p2
i t

(3.21)

Here, r is the input parameter for the maximum allowed probability overlap and pi t the probability that
flight i is present at the apron at time t . To determine the value of pi t , presence probability curves are con-
structed. Given a certain turnaround, the presence probability curve consists of the cumulative functions of
two delay probability densities: one around the Scheduled Time of Arrival (STA) of the incoming flight and one
around the Scheduled Time of Departure (STD) of the outgoing flight. This concept is visualized in figure 3.3.

In short the cumulative probability distributions around the STA and STD are constructed by grouping all
flights based on either their airline or region. For each possible option the researches construct a presence
probability curve by determining how many of the total flights are present at a certain time interval from their
scheduled arrival or departure time. This method is described as a linear regression, although it appears to be
closer to a fitting.
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Figure 3.3: Construction of a presence probability curve

An example of the effect of the new probabilistic constraint on the scheduling of two sequential flights is
shown in 3.4. Here the blue curves are the discussed presence probabilities, indicated by pi in constraint 3.20.
The green line indicates the probability that the two will overlap, which is constrained by input parameter
r in constraint 3.20. By allowing a certain presence overlap the existing gates can be used more efficiently
compared to the deterministic approach.

Figure 3.4: Example of two sequential presence probabilities (Schaijk and Visser 2017)

Proposed innovation
Despite the fact that the results of both researches are positive, a critical note should be placed at the con-
struction of the presence probability curves around the STA and the STD. These fittings are a rather simplistic
approach; they only distinct the flights with two factors (airline and region) and they are based on historical
data fitting instead of actual predictions. The authors of both studies acknowledge this. As stated in (Schaijk
and Visser 2017): ’Future research will also need to focus on the development of an improved regression model
to predict flight presence probabilities distributions’.

This research aims to improve the predictions of the flight presence probabilities distributions around the
STA and STD by introducing machine learning algorithms. In section 3.3, three machine learning algorithms
have been identified that are able to predict a probability histogram, or even a complete probability density
of flight delays. Assuming that the algorithms are successful, a probability density or histogram centering
around a peak at approximately 0 minutes delay is expected, predicted for individual flights. By taking the
cumulative of this density or histogram and placing the 0 minute delay point at the scheduled time of arrival,
the cumulative presence of the incoming flight in figure 3.3 is derived completely by machine learning. A
similar approach can be applied to the outgoing flight.

This proposed innovation allows the complete presence curve to be an actual prediction, based on more
than two input features. To verify whether these newly predicted probability functions perform well, two flight
to gate assignments will be generated. One that is based on the deterministic approach that handles flight
presence as a binary, and one schedule that includes the flight delay probability prediction just described. By
simulating arrival and departure times of the scheduled flights, according to their delay distributions, the two
schedules are compared on their efficiency (i.e. how tight flights are scheduled) and robustness (i.e. the ability
to absorb delays).
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4
Conclusion

As stated in the introduction, the first goal of this report is to understand the state of the art in the field of flight
delay predictions. After an extensive literature review, it can be concluded that most binary flight delay classifi-
cation problems apply either a bagging or boosting extension of the Decision Tree model or a Neural Network.
In combination with flight schedule features and possibly weather and/or reactionary features, achieved accu-
racies range from around 80% to accuracies above 90%. It should be noted that these good results are almost
always achieved for short, same day, prediction horizons.

One limitation of the existing literature is that almost all case studies in literature evolve around large inter-
national airports. None of the encountered researches specifically focus on a regional airport. This is under-
standable considering that regional airports cannot provide the large databases required for certain machine
learning algorithms. Nevertheless, regional airports could also benefit from better flight delay predictions.
A potential solution is the theory of transfer learning, which allows smaller airports to train their model on
additional data from either a very similar airport or a much larger airport with more data.

Another major limitation of the existing literature is the prediction target, which is always a point estimate
in the form of a delay class or the number of minutes. None of the articles focus on estimating a confidence
interval or probability density function, even though airport operations optimization problems could benefit
from it. A potential solution is found in the fields of weather forecasting and power load estimations. Adding
a Soft-max Regression or Mixture Density extension to a Deep Neural Network should allow for the prediction
of a probability histogram or density respectively for the delay of an individual flight.

The second goal stated in the introduction is to identify in detail how these probabilistic flight delay predic-
tions can be incorporated in operation optimizations. A potential airport operation optimization problem is
an existing Flight-to-Gate Assignment Problem (FGAP). This linear problem currently incorporates presence
probability functions that are based on a rather simplistic regression method. By replacing these simplistic
probability functions with probability densities predicted by machine learning algorithms, the overall perfor-
mance of the schedule is expected to be improved.

The overall conclusion of this report is that despite the identified challenges, integrating a probabilistic
flight delay forecast into an airport operation optimization problem is theoretically valuable and possible.
Further research has to verify whether the theories and assumption derived in this literature review work in
practice.
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α
Literature study features overview

Reference Flight schedule features Weather features Other features

(Gui et al. 2020)
airport name, day of month, day of week, flight
number, ICAO code, origin, destination, month,
scheduled arrival/departure time, season

weather condition, wind direction, wind speed traffic flow of air route

(Lambelho et al. 2020)
aircraft, airline, airport, country, day of month,
day of week, day of year, distance, hour, month,
seats, year, terminal

arrival ATFM delay

(Chen and Li 2019) day of month, day of week, scheduled
arrival/departure time, scheduled elapsed time

dew point temperature, dry and wet bulb
temperature, hourly visibility, present weather
type, relative humidity, station pressure, wind
speed and gust

arrival delay group , LAAD group

(McCarthy et al. 2019)

actual arrival/departure time, destination airport,
flight date, origin airport, time to next scheduled
departure, scheduled arrival time, scheduled
departure time

-
arrival time previous flight, turnaround time,
passenger and bags information

(Shao et al. 2019) call-sign, scheduled arrival/departure time
daily weather observations: temperature,
humidity, wind directions, wind speed, air
pressure

airport GPS trajectories, cause of delay (5
cat), scheduled/actual arrival time for each
aircrafts previous flight

(Yu et al. 2019) aircraft capacity, flight terminal, number of
passengers, origin or pass-by flight

air route situation

airline properties, airport crowdedness,
closing time of gate, delay of previous flight,
gap between check-in time and scheduled
departure time, ready time of shuttles or jet
bridge

(Choi et al. 2017)
day of month, day of week, destination, origin,
month, quarter of year, scheduled
arrival/departure time (local)

METAR arrival delay indicator
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(Horiguchi et al. 2017)
arrival airport, day of week, departure year, flight
air frame id, month, scheduled arrival/departure
time, year

-

reservation data (for 1 week horizon),
estimated en-route time, passenger data,
scheduled fuel, standby position ID (all for 1
day horizon)

(Manna et al. 2017) actual time of departure, carrier, day of week,
destination, origin, scheduled departure time

- -

(Thiagarajan et al. 2017)
airline ID, day of month, destination airport ID,
origin airport ID, flight Number, month, quarter
of year, scheduled arrival/departure time, year

cloud cover, dew point, humidity, precipitation,
pressure, temperature, time of observation,
visibility, weather code, wind (chill, direction,
gust, speed)

-

(Choi et al. 2016)
day of month, day of week, destination, origin,
month, quarter of year, scheduled
arrival/departure time (local)

METAR (training), forecast (prediction) arrival delay indicator

(Khanmohammadi et al. 2016)
actual arrival/departure time, day of month, day
of week, ID code of origin, scheduled
arrival/departure time

-
reason for arrival delay (carrier, weather, NAS,
security, late arrival), delay at JFK, delay at
origin airport

(Kim et al. 2016) date, day of week, destination, month, origin,
season, scheduled arrival/departure time

daily average METAR, hourly METAR daily delay status OD

(Alonso and Loureiro 2015) aircraft type, airline, day, destination, hour,
month, predicted weekday, origin

meteorological conditions
aircraft parking stand, arrival delay (in
minutes), ground operation time in minutes,
take-off runway

(Rebollo and Balakrishnan 2014)
aircraft tail number, carrier codes, destination,
month of year, origin, season, scheduled and
actual gate in and wheels-off time, time of day

NAS delay state, type of delay day, and previous
days type (all include weather)

-

(Klein 2010) scheduled traffic
Weather Information and Traffic Index (WITI),
WITI-FA forecasts (in categories en-route,
terminal and queuing)

-

(Xu et al. 2005) flight number, time
VMC or IMC (binary), actual and predicted over
1:45 h

airport arrival cancellations, airport arrival
and departure delay, departure delay
previous airport to this airport

(Mueller and Chatterij 2002)
airport code, actual arrival/departure time, date
of departure, identification code, scheduled
arrival/departure time

- -

1 The features in bold are identified by the research as most important for flight delay predictions

Table α.1: Literature overview: all features
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Supporting work
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A
Additional results binary classification

A.1. Confusion matrices
The metric scores in table 7 of the scientific paper are based upon the confusion matrices in tables A.1 - A.8.

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 2216.2 356.0

Delayed 630.4 260.8

Table A.1: Results random forest - 1D arrivals

Predicted

Not delayed Delayed
A

ct
u

al Not delayed 2614.6 459.4

Delayed 232.0 157.4

Table A.2: Results LightGBM - 1D arrivals

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 1629.4 500.0

Delayed 631.2 711.6

Table A.3: Results random forest - 1D departures

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 1816.0 583.8

Delayed 444.6 627.8

Table A.4: Results LightGBM - 1D departures

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 2066.4 292.4

Delayed 783.4 325.0

Table A.5: Results random forest - 1M arrivals

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 2605.0 460.2

Delayed 244.8 157.2

Table A.6: Results LightGBM - 1M arrivals

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 1626.0 496.4

Delayed 635.0 715.6

Table A.7: Results random forest - 1M departures

Predicted

Not delayed Delayed

A
ct

u
al Not delayed 1825.6 581.4

Delayed 435.4 630.6

Table A.8: Results LightGBM - 1M departures
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A.2. Pearson correlation matrices - all features
The Pearson correlation matrices, based on all available features, are given in figure A1 and A2 for the arriving
and departing flights respectively, and for a prediction horizon of one day (1D). The correlations of the features
available at a month (1M) in advance are very similar. The selection procedure intends to remove features with
an absolute correlation of at least 0.8, which are indicated in the matrices with their value.

Figure A.1: Pearson correlation matrix 1D arrivals - all available features
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Figure A.2: Pearson correlation matrix 1D departures - all available features
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A.3. Pearson correlation matrices - selected features
After the selection procedure described in the research paper, the 1D correlation matrices are reduced to the
matrices in figure A.3 and A.4. Note that features that consist of two components, such as longitude and lati-
tude or cosine and sine, are only removed if both features are highly correlated with a third one, which explains
the occasional score above 0.8 or below -0.8.

Figure A.3: Pearson correlation matrix 1D arrivals - selected features

Figure A.4: Pearson correlation matrix 1D departures - selected features
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B
Hyperparameter tuning

The aim of hyperparameter tuning is to find appropriate settings for each of the machine learning models
described in the research paper. Since the data of this research are highly imbalanced, the tuning focuses
on improving and balancing the recall and precision, in the form of optimizing the f1 score. It should be
emphasized, however, that the goal of this tuning process is to improve the default settings. Finding the perfect
settings is a time consuming task that falls outside the scope of this research.

Tuning process
To tune the models, three options are considered: an extensive grid search, a random search, and a Bayesian
optimization-based grid search. All methods are based on a certain parameter search space, which specifies
the possible values of each parameter, as determined by the user. In an extensive grid search, all possible com-
binations of parameter settings from the search space are tested, and the best performing setting is selected.
Although thorough, this process is very time consuming. The second option is to randomly draw a number of
parameter settings from the search grid and select the best performing one. This method is more time efficient,
but less thorough.

The third possibility is a Bayesian optimization-based grid search, executed with the hyperopt package
in python. Different than the extensive and random grid search, this model updates the parameter settings
sequentially by using the results of the previous settings to determine the next setting. In order to do this, all
parameters are represented by a probability distribution. This research uses the continuous uniform distribu-
tion, which is defined as:

f (x) =
{

1
b−a , for a ≤ x ≤ b.

0, otherwise.
(B.1)

or its discrete variant, depending on the parameter. Furthermore, the approach requires an objective function,
which in this case is the negative f1 score, as the objective is always minimized. For verification purposes, all
machine learning models used in this research are tuned twice; once with a random search and with a Bayesian
search. The best performing setting is selected, where a distinction is made between the settings for the arrivals
and for the departures.

Search space
The search spaces selected for the machine learning models used in this research, are listed in tables B.1 - B.5.
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Parameter Probability distribution

Estimators Discrete Uniform (10, 2500)

Max depth Discrete Uniform (3, 70)

Min samples leaf Discrete Uniform (1, 100)

Max features Uniform (0.3, 1)

Criterion [Gini, Entropy]

Table B.1: Parameter search space RF Classifier

Parameter Probability distribution

Estimators Discrete Uniform (10, 5000)

Max depth Discrete Uniform (3, 60)

Min child weight Uniform (0.01, 200)

Subsample Uniform (0.4, 1)

Number of leaves Discrete Uniform (8, 900)

Learning rate Uniform (0.0001, 0.3)

Table B.2: Parameter search space LightGBM

Parameter Probability distribution

Estimators Discrete Uniform (10, 2500)

Max depth Discrete Uniform (3, 70)

Min samples leaf Discrete Uniform (1, 100)

Max features Uniform (0.3, 1)

Criterion [MSE, MAE]

Table B.3: Parameter search space RF Regressor

Parameter Probability distribution

Gaussians Discrete Uniform (1, 10)

Neurons Discrete Uniform (10, 250)

Hidden layers Discrete Uniform (2, 4)

Dropout rate Uniform (0.01, 0.3)

Learning rate Uniform (1 x 10−6, 0.3)

Activation [sigmoid, tanh, ReLU]

Optimizer [Adagrad, Adadelta, Adam]

Batch size [10, 100, 500, 1000, 2000]

Table B.4: Parameter search space Mixture Density Network

Parameter Probability distribution

Neurons Discrete Uniform (10, 250)

Hidden layers Discrete Uniform (2, 4)

Dropout rate Uniform (0.01, 0.9)

Learning rate Uniform (1 x 10−6, 0.3)

Activation [sigmoid, tanh, ReLU]

Optimizer [Adagrad, Adadelta, Adam]

Batch size [10, 100, 500, 1000, 2000]

Table B.5: Parameter search space Dropout Network

Hyperparameter settings
The search spaces selected for the machine learning models used in this research, are listed in tables B.6 - B.10.

Features Estimators Max depth
Min samples

leaf
Max

Features
Criterion

Departures 22 625 5 1 0.73 entropy
Arrivals 25 1680 5 60 0.37 gini

Table B.6: Hyperparameter settings RF Classifier
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Features Estimators Max depth
Min child

weight
Subsample

Number of
leaves

Learning
rate

Departures 22 2535 28 62 0.76 96 0.14
Arrivals 25 4876 44 128 0.86 499 0.28

Table B.7: Hyperparameter settings LightGBM

Features Estimators Max depth
Min samples

leaf
Max

Features
Criterion

Departures 22 1975 60 3 0.36 MSE
Arrivals 25 1975 60 3 0.36 MSE

Table B.8: Hyperparameter settings RF Regressor

Features Gauss.1 Neurons
Hidden
layers

Dropout
rate

Learning
rate

Activa-
tion

Opti-
mizer

Batch
size

Departures 22 6 100→100 2 0.05 0.0001 ReLU Adam 100
Arrivals 25 6 100→100 2 0.05 0.0001 ReLU Adam 100

1 Gauss.: number of Gaussians

Table B.9: Hyperparameter settings Mixture Density Network

Features Est.1 Neurons
Hidden
layers

Dropout
rate

Learning
rate

Activa-
tion

Opti-
mizer

Batch
size

Departures 22 1975 14→14 2 0.479 0.085 ReLU Adadelta 100
Arrivals 25 1975 43→43 3 0.838 0.092 tanh Adam 100

1 Est.: number of estimates

Table B.10: Hyperparameter settings Dropout Network

Tuning evaluation
An import setting for the Neural Networks is the number of epochs, which is the number of times that the entire
dataset is passed through the network. Setting the value too low might result in an underfitted model, setting
the value too high might result in an overfitted one. Rather than setting the number beforehand, this research
applies early stopping. The model is validated on 20% of the training data. If the validation test results do not
improve for five iterations in a row, the training of the model is stopped. The resulting numbers of epochs are
listed in table B.11. This table also gives the running times of the delay distribution predicting models. The
evaluation shows that the Mixture Density network is the fastest one, followed by the Dropout Neural Network
and finally the RF Regressor.

Model Max epoch 1D Departures Max epoch 1D Arrivals Run time (5-folds)
RF Regressor - - ∼ 60 min.

Mixture Density Network 321 229 ∼ 10 min.
Dropout Network 414 67 ∼ 30 min.

Table B.11: Epochs and running times of the delay distribution predicting models
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C
Transfer learning

Anticipating a shortage of historical data, this research attempted to enlarge the training dataset of Rotterdam
The Hague Airport by adding historical data of Eindhoven Airport (EIN), a similar regional airport that is also
located in the Netherlands. This concept of adding data from one subject to the training data of another, is
known as transfer learning. For this particular study, transfer learning was not beneficial. Adding EIN data to
the training dataset of RTM did not improve the performance of any model by much, as can be seen in tables
C.1 and C.2. All results in the research paper are based on RTM data only. The results of the training set with
EIN data, are added to this appendix for comparison and completeness.

C.1. Binary classification results

RF Classifier LightGBM
Classifier Metric Mean SD Mean SD

1M Departures

accuracy 0.681 7.4×10−3 0.709 4.5×10−3

precision 0.547 1.2×10−2 0.596 1.2×10−2

recall 0.510 2.7×10−2 0.520 1.2×10−2

f1 0.528 1.4×10−2 0.555 3.5×10−3

AUC 0.642 9.1×10−3 0.666 2.4×10−3

1M Arrivals

accuracy 0.657 9.5×10−3 0.798 8.1×10−3

precision 0.268 1.7×10−2 0.401 4.2×10−3

recall 0.535 1.6×10−2 0.268 1.7×10−2

f1 0.357 1.6×10−2 0.321 1.2×10−3

AUC 0.609 7.9×10−3 0.591 6.6×10−3

1D Departures

accuracy 0.682 5.2×10−3 0.708 8.0×10−3

precision 0.551 2.5×10−2 0.595 3.0×10−2

recall 0.502 2.7×10−2 0.517 1.2×10−2

f1 0.524 8.3×10−3 0.553 1.6×10−2

AUC 0.641 2.3×10−3 0.664 9.5×10−3

1D Arrivals

accuracy 0.703 7.7×10−3 0.803 7.0×10−3

precision 0.278 2.4×10−2 0.415 3.5×10−2

recall 0.415 1.0×10−2 0.259 1.2×10−2

f1 0.332 1.7×10−2 0.319 1.8×10−2

AUC 0.590 5.9×10−3 0.590 7.5×10−3

Table C.1: Results binary classification with EIN data
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C.2. Probabilistic forecasting results

RF Regressor Mixture Network Dropout Network
Classifier Metric Mean SD Mean SD Mean SD

1D Departures

RMSE 24.565 8.7×10−1 25.412 9.9×10−1 25.837 1.0×100

MSE 604.222 4.3×101 646.740 5.1×101 668.560 5.3×101

MAE 12.603 2.5×10−1 12.721 3.1×10−1 13.678 1.9×10−1

R2 0.141 1.5×10−2 0.081 1.1×10−2 0.050 2.5×10−3

max. err. 426.285 5.4×101 431.709 6.1×101 431.172 6.1×101

sav g 16.656 9.7×10−2 24.266 3.4×10−1 4.687 5.8×10−2

FOS 0.841 4.2×10−3 0.922 1.6×10−3 0.208 1.1×10−2

CRPS 8.638 2.3×10−1 9.028 2.3×10−1 11.522 1.8×10−1

1D Arrivals

RMSE 25.936 1.2×100 26.764 1.2×100 28.051 1.1×100

MSE 674.002 5.9×101 717.679 6.3×101 788.116 6.2×101

MAE 14.975 2.5×10−1 15.262 3.2×10−1 15.956 3.3×10−1

R2 0.139 1.5×10−2 0.083 9.7×10−3 -0.007 4.4×10−3

max. err. 395.482 6.2×101 414.829 5.4×101 414.013 5.4×101

sav g 19.221 1.8×10−1 24.323 4.5×10−1 3.068 2.8×10−1

FOS 0.785 6.0×10−3 0.861 1.0×10−2 0.150 1.7×10−2

CRPS 10.587 2.8×10−1 11.057 3.2×10−1 14.477 3.2×10−1

Table C.2: Results probabilistic forecasting with EIN data
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D
Example flights information

The research paper presents two examples of the results, based on actual flights from the database. This chap-
ter present more detailed information about the selected flights. Section D.1 lists the flights used for figure 5
of the paper, section D.2 presents a list of the flight pairs used for figure 7.

D.1. Example flights probabilistic forecasting results

Legend STA Flight number Airline Origin Destination Aircraft
2288 2019-05-05 11:15:00 HV5068 Transavia GRO RTM B738
2291 2019-05-05 22:35:00 HV5008 Transavia DBV RTM B737
2274 2019-05-02 15:05:00 BA4455 British Airways LCY RTM E190
2284 2019-05-04 13:00:00 PC1261 Pegasus Airlines SAW RTM A20N

Table D.1: An overview of the arriving flights used for figure 5 of the scientific paper

Legend STD Flight number Airline Origin Destination Aircraft
2292 2019-05-03 06:55:00 HV6061 Transavia RTM BCN B737
2301 2019-05-03 18:40:00 HV5293 Transavia RTM VIE B737
2283 2019-05-01 10:50:00 BA4454 British Airways RTM LCY E190
2317 2019-05-06 14:35:00 PC1262 Pegasus Airlines RTM SAW A20N

Table D.2: An overview of the departing flights used for figure 5 of the scientific paper
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D.2. Example flights gate scheduling

Arrival Departure
Flight STA Number Airline Aircraft Origin Destination Registration STD Number Airline Aircraft Origin Destination

1 - - - - - - - 06:55 HV5051 Transavia B737 RTM ALC
2 - - - - - - - 07:00 HV6259 Transavia B738 RTM SPU
3 - - - - - - - 07:00 HV5021 Transavia B737 RTM AGP
4 - - - - - - - 07:10 HV6081 Transavia B737 RTM EGC
5 - - - - - - - 07:10 HV6285 Transavia B738 RTM TLN
6 - - - - - - - 07:15 HV6441 Transavia B737 RTM VLC
7 - - - - - - - 07:50 HV6093 Transavia B737 RTM FAO
8 - - - - - - - 10:10 OR183 TUIfly B738 RTM RHO
9 10:45 HV6082 Transavia B737 EGC RTM PH-BGO 11:30 HV5007 Transavia B737 RTM DBV

10 10:45 HV5690 Transavia B738 IBZ RTM PH-HSM 11:30 HV6091 Transavia B738 RTM FAO
11 11:10 HV6192 Transavia B738 PMI RTM PH-HZG 11:55 HV6191 Transavia B738 RTM PMI
12 11:30 HV6286 Transavia B738 TLN RTM PH-HXI 12:15 HV5987 Transavia B738 RTM MPL
13 11:50 HV6260 Transavia B738 SPU RTM PH-HZL 12:35 HV6261 Transavia B738 RTM SPU
14 12:15 HV5052 Transavia B737 ALC RTM PH-XRY 12:55 HV6063 Transavia B737 RTM BCN
15 12:30 HV6442 Transavia B737 VLC RTM PH-XRD 13:20 HV5121 Transavia B737 RTM ACE
16 13:00 PC1261 Pegasus Airlines A20N SAW RTM TC-NBK 13:40 PC1262 Pegasus Airlines A20N RTM SAW
17 - - - - - - - 14:05 HV5369 Transavia B737 RTM HER
18 15:15 BA4455 British Airways E190 LCY RTM G-LCYL 15:45 BA4456 British Airways E190 RTM LCY
19 14:20 HV6094 Transavia B737 FAO RTM PH-BGL 16:00 HV5243 Transavia B737 RTM LIS
20 - - - - - - - 16:10 HV5023 Transavia B737 RTM AGP
21 16:15 HV5988 Transavia B738 MPL RTM PH-HXI 17:00 HV5053 Transavia B738 RTM ALC
22 16:50 HV5008 Transavia B737 DBV RTM PH-BGO 17:40 HV6037 Transavia B737 RTM FCO
23 17:30 HV6262 Transavia B738 SPU RTM PH-HZL 18:30 HV5997 Transavia B738 RTM PUY
24 17:55 HV6064 Transavia B737 BCN RTM PH-XRY 18:35 HV5067 Transavia B737 RTM GRO
25 18:00 HV6092 Transavia B738 FAO RTM PH-HSM 18:45 HV5689 Transavia B738 RTM IBZ
26 18:25 OR184 TUIfly B738 RHO RTM CS-TQU - - - - - -
27 21:35 BA4459 British Airways E190 LCY RTM G-LCYZ - - - - - -
28 22:00 HV5370 Transavia B737 HER RTM PH-XRV - - - - - -
29 22:25 HV5244 Transavia B737 LIS RTM PH-BGL - - - - - -
30 22:35 HV5024 Transavia B737 AGP RTM PH-XRC - - - - - -
31 22:45 HV5054 Transavia B738 ALC RTM PH-HXI - - - - - -
32 22:45 HV5998 Transavia B738 PUY RTM PH-HZL - - - - - -
33 22:45 HV5122 Transavia B737 ACE RTM PH-XRD - - - - - -
34 22:55 HV6038 Transavia B737 FCO RTM PH-BGO - - - - - -
35 22:55 HV5068 Transavia B737 GRO RTM PH-XRY - - - - - -

Table D.3: An overview of the flights used for the example FGAP schedules in figure 7 of the scientific paper. The flights are scheduled for RTM airport on 2019-07-14.
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E
Additional results FGAP

In the scientific paper, the performances of the standard and probabilistic FGAP model are compared on their
robustness and efficiency. The robustness is expressed in the average number of conflicts, the efficiency in the
average number of scheduled occupied slots. For different values of overlap probability r , both metrics are
averaged over around 60 test days. Since all days are between the 1st of July and the 31st of august 2019, it is
assumed that all test days are reasonably similar in terms in terms of how busy the airport is, weather con-
ditions, the destination network, etc.. As a result, it is expected that the resulting metrics are also reasonably
similar throughout the test dates.

To verify whether this holds, the resulting metrics are plotted against their timeline. In figure E.1 and E.2,
the robustness metric and efficiency metric of the probabilistic FGAP model with r = 0.9, the probabilistic
FGAP model with r = 0.1, and the deterministic FGAP model, are plotted for each day of the case study. Al-
though erratic, both figures show that the metric values do not differ too much between the test dates. This
becomes even more clear when filtering the results by taking the 7-day moving average, which is shown in
figures E.3 and E.4 for robustness and efficiency respectively. The highest and lowest values are spread across
the dates and there is no steep trend in either metric.

These time plots validate that the selected test dates are similar enough to average them, as is done in the
research paper. Simultaneously, selecting different dates and different values for probability overlap r is also a
first sensitivity analysis, which shows that the model works for different settings.

Figure E.1: Robustness metric per day Figure E.2: Efficiency metric per day
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Figure E.3: Robustness metric moving average Figure E.4: Efficiency metric moving average
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