

Delft University of Technology

Towards a Dutch Hybrid Quantum/HPC Infrastructure

Schusler, Olaf; Torres-Knoop, Ariana; Dijkshoorn, Jaap; Hollemans, Christiaan; Van Der Vlies, Bas;
Versluis, Richard
DOI
10.1109/QCE57702.2023.10199
Publication date
2023
Document Version
Final published version
Published in
Proceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023

Citation (APA)
Schusler, O., Torres-Knoop, A., Dijkshoorn, J., Hollemans, C., Van Der Vlies, B., & Versluis, R. (2023).
Towards a Dutch Hybrid Quantum/HPC Infrastructure. In H. Muller, Y. Alexev, A. Delgado, & G. Byrd (Eds.),
Proceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023
(pp. 148-153). (Proceedings - 2023 IEEE International Conference on Quantum Computing and
Engineering, QCE 2023; Vol. 2). IEEE. https://doi.org/10.1109/QCE57702.2023.10199
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/QCE57702.2023.10199
https://doi.org/10.1109/QCE57702.2023.10199

148

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOI 10.1109/QCE57702.2023.10199

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 Q

ua
nt

um
 C

om
pu

tin
g

an
d

En
gi

ne
er

in
g

(Q
CE

) |
 9

79
-8

-3
50

3-
43

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
CE

57
70

2.
20

23
.1

01
99

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

Towards a Dutch hybrid quantum/HPC

infrastructure

Olaf Schiisler
QuTech

Ariana Torres-Knoop
SURF B.V.

Jaap Dijkshoorn
SURF B.V.

Delft, The Netherlands
o.m.schusler@tudelft.nl

Utrecht, The Netherlands
ariana.torres@surf.nl

Utrecht, The Netherlands
jaap.dijkshoom@surf.nl

Christiaan Hollemans
QuTech

Bas van der Vlies
SURF B.V.

Richard Versluis
QuTech

Delft, The Netherlands
christiaan.hollemans@tno.nl

Utrecht, The Netherlands
bas.vandervlies@surf.nl

Delft, The Netherlands
richard. versl uis@tno .nl

Abstract-Quantum Inspire has taken important steps to

enable quantum applications by developing a setting that

allows the execution of hybrid algorithms. Currently, the

setting uses a classical server (HPC node) co-located with

the quantum computer for the high frequency coupling

needed by hybrid algorithms. A fast task manager

(dispatcher) has been developed to orchestrate the

interaction between the server and the quantum computer.

Although successful, the setting imposes a specific hybrid

job-structure. This is most likely always going to be the case

and we are currently discussing how to make sure this does

not hamper the uptake of the setting. Furthermore, first

steps have been taken towards the integration with the

Dutch National High-Performance Computing (HPC)

Center, hosted by SURF. As a first approach we have setup

a setting consisting of two SLURM chtsters, one in the HPC

(Cl) and the second (C2) co-located with Quantum Inspire

APL Jobs are submitted from Cl to C2. Quantum Inspire

can then schedule with C2 the jobs to the quantum

computer. With this setting, we enable control from both

SURF and Quantum Inspire on the jobs being executed By

using Cl for the jobs submission we remove the accounting

burden from Quantum Inspire. By having C2 co-located

with Quantum Inspire API, we make the setting more

resilient towards network faihtres. This setting can be

extended for other HPC centers to submit jobs to Quantum

Inspire backends.

Keywords- hybrid, quantum, SLURM, HPC

I. INTRODUCTION

Quantum computers are devices that process information by
taking advantage of the quantum-mechanical properties of
their building blocks, the qubits. By doing so, they can harness
work in a powerful and efficient way and perform certain
operations with an exponential speed-up. There are many
fields that could benefit from such a speed-up, for example
machine learning, financial modeling, logistic optimization,
climate simulations, etc. [1]. Notably quantum computers are
expected to excel at simulating quantum systems, like the ones
present in chemistry and material science [2].

Harnessing the power (time and energy-to-solution) of
quantum computers in relevant use cases and applications is

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOl 10.1109/QCE57702.2023.10199

148

not trivial. Firstly, it requires the research and development of
algorithms that can leverage the fundamentally different
quantum technology. Secondly, it requires the development of
a full stack to implement and execute the quantum algorithms
in the quantum hardware. The full stack needs to be integrated
to the existing classical ecosystem. Thirdly, the
implementation and integration needs to be tested and
optimized. An optimization towards global usage might be
complicated due to the different hardware. Finally, the
development of quantum applications requires the exploration
and translation of potential use cases from a classical
execution into a quantum-classical (hybrid) execution. The
user community will have to learn to rethink their problems
[3].

It is generally expected that quantum computers will be
used as accelerators for classically complex computational
tasks. The classical host will execute the main application and
off-load some subroutines or tasks to the quantum computer.
In some cases, quantum computers will also benefit from on­
loading tasks into classical resources, for example for
Quantum Error Correction (QEC) [4,5]. Moreover, as
quantum computers improve, the need to on-load tasks to
classical resources likely will only grow.

An optimal implementation of the hybrid quantum­
classical applications and the integration of the quantum and
classical resources is critical to ensure the quantum advantage
obtained from the algorithms is not killed. Co-design and co­
development of the applications with the emerging quantum
infrastructure and the existing classical infrastructure is
fundamental. Furthermore, quantum applications require the
orchestration of quantum and classical programs, often based
on different languages, data formats or invocation
mechanisms [6,7].

When considering the integration and interfaces between
the classical and quantum resources (hybrid infrastructure),
many different strategies and scenarios are possible [8]. From
a functional perspective, the hybrid infrastructure should
allow for easy application development. From an operational
perspective, the hybrid infrastructure should optimize the
time, energy and science-to-solution.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

149

II. HYBRID INFRASTRUCTURE: OPERATIONAL PERSPECTIVE

To optimally execute hybrid quantum-classical
applications we need to identity when and how classical
resources play a role in the application. In this paper we will
refer to three main operational levels: application, task and
control (see Figure 1).

Fig. 1. In the execution of hybrid application we can distinguish three main
operational layers: application, task, control. They all have different
requirements, in particular related with the latency and data exchange.

1. Application level: Most hybird applications will be part
of complex workflows executed in a main classical host. Only
some tasks will be off-loaded to the quantum computer. The
execution of the full application will require the orchestration
of classical and quantum tasks. To ensure the quantum tasks
do not slow down the high-level application, feedback latency
of the order of seconds is desirable.

2. Task level: A quantum task might require on-loading of
some sub-tasks to classical resources, for example, for
quantum circuit cutting [9], circuit architecture search [1 0],
classical optimization in variational algorithms [11], etc. To
ensure the quantum task is not slowed down due to the on­
loading to classical resources, feedback latency of the order of
the quantum measurements are desirable. Although very
variable and hardware dependant, in general a latency of 11s­
ms should be expected. A lower feedback latency might be
neccesary to enable the execution of protocols that require e.g.
mid-circuit measurements.

3. Control level: The quantum control hardware executes
gates and measurements in different manners depending on
the quantum-chip technology. It generally also stores, reads
and interprets the received instructions in order to generate
respective pulse sequences [12]. To enable any useful control
of a qubit, programmable control flow that operates on the
timescale of nanoseconds is a requirement [13].

Each operational level manages computational resources
differently. For the application level, assuming the main
classical host is a High Performance Computing (HPC) center,
common examples of job managers are SLURM [14] and
OpenPBS [15]. New developments on s cheduling are done
with tools like Flux [16], Hyperqueue [17] and QCGpilot [18]
due to their capability to run efficiently and easily on modem
heterogeneous supercomputers.

For the task level, the resource manager needs to be able
to work in the time scale of the QPU or lower. Although some

149

ex1stmg job managers could be adapted to handle these
timescales, the approach so far has been to develop job
managers that take into account the specific needs of the
quantum applications. The classical sub-tasks are executed in
a classical runtime (see Figure 2). A classical runtime could be
the main classical host (e.g. HPC Center or user laptop) or for
example a small server in the proximity of the quantum
computer. This last setup is often referred to as "hybrid
runtime" and is for example used by Qiskit Runtime [19] and
Amazon Braket Hybrid Jobs [20]. The optimization of the
communication between computational resources strongly
depends on the hybrid infrastructure set-up (stand-alone, co­
location, distributed) [7].

At the control level, to perform logical operations, the
hardware specific instructions need to be very carefully timed
by the classical control electronics. This is often achieved
using a field programmable gate array (FPGA) [21].

Due to the scarcity of quantum resources, an additional
"job manager" is in some cases needed to orchestrate the
quantum tasks arriving from different sources, for example,
different users in an HPC center, different HPC centers or in
some cases individual users (see Figure 2). Queue-based
access might not be the most suitable when executing tasks
that require a high frequency coupling between the main
classical host and the quantum computer. Instead, access to the
quantum computer might have to be reserved for the duration
of the task. Such a model has already been used by for example
IBM Q [22].

Application level

Task level

Control level

Fig. 2. The high-level hybrid applications are run in a main classical host
(HPC or user). Subroutines of quantum tasks are off-loaded to the quantum
backend. In the quantum backend, different tasks are managed by a job
manager to ensure the quantum computer runs at its maximum capacity while
providing the necessary resources for a given application. When the quantum
task requires classical resources, the task manager orchestrates the classical
and quantum runtime. The classical runtime can be an independent server or
the main classical host (e.g. HPC center itself).

III. QUANTUM INSPIRE

Quantum Inspire [23] is Europe's first public quantum
computing platform. The platform focuses primarily on
training, education, and the development of applications, so
that more people can use the quantum computer as it develops
further and becomes more widely available. It consists of a
number of layers including quantum hardware (a processor
made of semiconductor 'spin qubits' and a processor made of
superconducting transmon qubits, classical control

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

150

electronics, and a software front-end with a cloud-accessible
web-interface (full-stack)).

Quantum Inspire's programming language, m which
quantum algorithms are written and executed, is called
cQASM [24] (similar to the Open Quantum Assembly
Language [25]). Algorithms can be programmed using the
web-editor or using the SDK. This SDK provides a thin layer
between the QI application programming interface (API) and
other programming platforms using Python [26, 27].

Recently, much effort has been done in the development
of Quantum Inspire to enable the execution of hybrid tasks.
Together with SURF [28], the IT collaboration for education
and research in the Nether lands and host of the Dutch National
supercomputer Snellius, preliminary work has also been done
to enable the execution of hybrid applications. In the following
section we will describe the current hybrid setting and our
experience so far.

IV. QUANTUM INSPIRE FOR HYBRID EXECUTIONS

For the hybrid infrastructure of Quantum Inspire and
SURF we have taken a distributed approach [7]. In this
approach, the main classical host (HPC or individual user) off­
loads a quantum task to the quantum platform. The quantum
task can be a "pure quantum" task or a hybrid task.

The hybrid task is executed in the classical and quantum
runtimes. The set of supported programming languages for
hybrid tasks is typically restricted. Quantum Inspire currently
accepts Python code.

A. Quantum Inspire task manager (dispatcher)

The Quantum Inspire backend consists of a classical
runtime and several quantum runtimes. The quantum runtimes
can either be a hardware backend (QPU) or an emulator [29].
Communication with the various runtimes happens via
ZeroMQ [30]. Since switching between the various runtimes
needs to happen as quickly as possible, the request/reply
pattern is employed [31]. Whenever a request for execution
arrives at the task manager, these requests are propagated to
the necessary runtimes. Replies can be returned directly on
completion of the classical or quantum task and trigger the
next step in the execution. This communication scheme
guarantees the minimal wait time per component.

When executing pure quantum tasks (a quantum circuit)
the task manager sends the circuit directly to the requested
quantum runtime (see Figure 2). For hybrid tasks, the task
manager takes care of the lifecycle management. As soon as it
determines the job is a hybrid algorithm, it requests the
classical runtime to execute the python script and return a
quantum circuit. This circuit is forwarded to the quantum
runtime, where it is executed. This continues to run, until a
stop condition is met. This can either be a timeout, or a user
defined end state. A simple "ping-pong" implementation
between the task manager (dispatcher) and the runtimes is
presented in Appendix A

Timing information of the preliminary implementation is
given in Table 1. The initialization step spins up the runtime
only once on every hybrid task. This start-up time however,
can be shortened by hot loading environments. For the

150

execution step, no computations were performed to give raw
timing information.

TABLE I. TIMING INFORMATION OF THE TASK MANAGER

Step Runtime
Initialization 3 S 792 flS

Execution J7 flS
Termination 200 flS

As presented in Table 1, once the runtime is spun up, the
developed task manager allows the orchestration between the
classical and quantum runtimes within the 11s tiemscale. This
is in line with the timescale of a task.

B. Quantum Inspire job manager

The Quantum Inspire system contains a ReST API. This
API gives users access system information and their own
content. Users can, for example, get the status of the various
backends. At the time of writing this is limited to whether the
backend is executing, calibrating, offline or idle. Real time
queuing information is not (yet) available. The users can also
call the API to handle their own content. Projects and
algorithms can be created, but also jobs submitted or compiled
algorithms and results fetched. This can be done via any of the
offered end user interfaces, like the web frontend or the SDK.
Furthermore, users can also communicate directly with the
API.

Any job submitted via this API ends up in a queue and is
subject to scheduling. As a first approach, jobs are scheduled
naively, via a FIFO queue. Integration with HPC systems
however will prompt more elaborate systems like priority
queues or reservations. Different scenarios and possibilitites
are currently under consideration.

C. Application manager

In HPC centers, resource managers like SLURM of
OpenPBS are used. These managers oversee prioritizing jobs,
checking resources, and launching jobs. Quantum applications
cause the management to be more constrained due to, among
other, the scarcity of resources, the time-bound execution of
an algorithm and the asymmetry of resources [3].

SLURM_2

I I \
HPC_A HPC_B HPC_C

Fig. 3. Schematic representation of the 2-SLURM clusters setup for hybrid
quantum-classical applications. The setup can in principle be used to
coordinate the access of several HPC centers to one quantum backend. It
enables control from both the HPC centers and the quantum resources.

For our first approach to a hybrid Quantum Inspire I HPC
(SURF) infrastructure, we will use the HPC as the main
classical host and a small server co-located with the quantum

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

151

computer as the classical nmtime (see Figure 2). SLURM is
used as the application manager and the Quantum Inspire
dispatcher as the task manager. The main challenge for
integration in this case is the proper submission of jobs from
the HPC center to the quantum backend and the efficient job
handling in the quantum backend. In a HPC cluster normally
only one resource manager is in control of all hardware in the
cluster. In this approach, we need to orchestrate the pipeline
with the knowledge that in fact two resource managers are in
charge within one pipeline.

The integration set-up consists of "2-SLURM" clusters
(see Figure 3). The first SLURM cluster (Cl) is the HPC
center and the second SLURM cluster (C2) is co-located with
the Quantum Inspire API. Jobs are submitted from the Cl to
C2. A batchjob is created with the payload needed for
Quantum Inspire. The payload is json formatted and then
submitted from Cl with CURL to the REST-API of the
SLURM scheduler [32] at C2. A simple payload example and
submission code are presented in Appendix B. The submit
code can be easily included in any batch job.

The C2 cluster will always accept jobs. These jobs are
queued and waiting for execution. When the C2 Cluster is
enabled (by Quantum Inspire), jobs will be run on the quantum
computer.

In this approach, the HPC center and quantum resources
are managed independently. This can help the performance of
largely imbalanced application with low-coupling frequency
between the main classical host and the quantum backend. For
high-frequency coupling, this approach might get increasingly
complex.

In a first instance, users can retrieve their data directly for
the Quantum Inspire data base. Another approach is to stage
data securely on a cloud space for example SURFDrive [33]
or any other webdav compliant cloud storage.

Other HPC centers could talk to C2 in the same way. On
C2 a SLURM-USER-TOKEN has to be created for all
participating HPC centers (one each). Jobs submitted to C2 are
being accounted in de SLURM Database (see Figure 3).

V. CHALLENGES AND LEARNINGS

One of the main drawbacks of this design is the fact that
users cannot get access to the classical nmtime where the
quantum computer is on-loading tasks. All code nm within the
Quantum Inspire platform is nm unsupervised. On the other
hand, the benefit of this setting is the inherent speed-up for
high frequency coupling compared to running user code on an
off-site system and off-loading the quantum circuit via the
API.

The setting described above, also assumes a specific
description of the hybrid tasks. This requires the users to
adhere to a certain structure and programming language for
the task manager (dispatcher) to be able to orchestrate the
classical and quantum runtimes. Quantum Inspire's first
approach was a lifecycle scheme. The user would specify an
initialize, execution and finalize handle which would be
invoked by the task manager. Support structures like advanced
error recovery could be more efficiently implemented.
However, since most algorithms were based on optimization
algorithms, for example from scipy [34], this method proved
impractical in the end.

Another interesting point is that with increasing coupling
frequency and quantum resources needs, the scheduling of

151

jobs in the quantum backend (job manager) might have to
include prioritization and reservation possibilities.

Prioritization will reduce transparency about one's place in
the queue but for complex workflows with external resources
this will limit the total idle and queueing time on both systems.
Potentially, if HPC users would dominate the queue and
prevent other users from using the system, fair use policies
will have to be implemented. At the current state of the system,
this is not yet needed. Reservations could be very useful when
the HPC is used as the classical runtime, either due to the size
of classical resources needed or, for example, because more
control of the classical environment is required. Blocking the
quantum resources within a reservation for the entire nmtime
of the hybrid application is easy, but it can also result in a lot
of idling.

VI. FUTURE PLANS

To better support the continued integration of quantum
applications and complex workflow, Quantum Inspire plans to
invest in both the end user side and the efficient handling of
applications. HPC systems use public information now to
determine whether a quantum computer is available. By
creating a tighter loopback between the job manager and
SLURM/PBS, these systems might better predict availability
of the computer, which minimizes the queueing time.

Furthermore, different queueing strategies will be
implemented. On the one hand, these ensure that high­
frequency tasks are given priority, minimizing the wall clock
time for the overall application. On the other hand, these
strategies should prevent any HPC from claiming all resources
and ensure a fair use. To enable transparency, someone' s place
in the queue and recent prioritized activity might be conveyed
to the end users.

To achieve a speedup within the Quantum Inspire system,
the various runtimes might be spun up before a job is created.
This would mean idle resources on the Quantum Inspire
infrastructure. However, it would almost negate the
initialization step for the classical part of a quantum task. This
task should in principle employ a hybrid flow, regularly
switching between classical and quantum resources. However,
in a scenario with low iterations per task, but many tasks as
part of a high-level workflow, the initialization penalty might
become substantial.

Finally, within Europe there are multiple HPC centers and
various upcoming quantum compute platforms [35]. Both,
SURF and Quantum Inspire aspire to connect to more systems
and become part of the European Infrastructure. We hope that
these first integration efforts, experiences and exercises can
help guide and develop the European infrastructure.

VII. CONCLUSIONS

SURF and Quantum Inspire have partnered up together to
explore and develop a hybrid classical-quantum infrastructure.
Some initial steps include the co-location of a SURF HPC
node as a classical nmtime and the development of a software
stack that allows for the execution of hybrid tasks.

Together with the possibility to execute hybrid tasks, the
integration of Quantum Inspire and SURF in the long term
aims to enable the execution of hybrid applications. For a
hybrid workflow to be executed, the job manager at SURF
(SLURM) needs to coordinate with Quantum Inspire. An
initial setup uses 2-SLURM clusters to optimize the
communication and allow for independent control of the tasks.
Although the setup is successful, we are actively testing new

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

152

potential settings. This setup can easily be extended to allow
other HPC centers to connect and use the Quantum Inspire
backends.

With these combined efforts, SURF and Quantum Inspire
will be able to provide a platform for distributed HPC­
quantum computing for the Dutch researchers.

ACKNOWLEDGMENT

This project has received ftmding from the National
Growthfund Quantum Technology KAT-1 program and
thanks SURF for funding contribution.

QuTech is a mission driven cooperation between the
Technical University Delft and the Netherlands Organization
for Applied Scientific Research (TNO).

REFERENCES

[1] A. Montanaro, Quantum Information volume 2, Article number: 15023
(2016)

[2] H. P Cheng and E. Deumens and J.K. Freeicks and C.Li and B.A.
Sanders, Application of Quantum Computing to Biochemical Systems:
A Look to the Future, Phys Chern Chern, 2020, 8,
https :/ /doi.org/1 0.3389/fchern.2020. 5 87143

[3] M. Ruefenacht, et al.. Bringing quantum acceleration to
supercomputers, IQM, 2022,
https :/ /meetigm.com/uploads/documents/IOM HPC-OC-Integration­
Whitepaper.pdf

[4] P. W. Shor, Scheme for reducing decoherence in quantum computer
memory, Phys. Rev. A, 52, R2493-R249

[5] C. Ryan-Anderson, et al. Realization of Real-Time Fault-Tolerant
Quantum Error Correction, Phys.Rev.X, 11, 041058.

[6] F. Leymann and J. Barzen, 2021, Hybrid Quantum Applications Need
Two Orchestrations in Superposition: A Software Architecture
Perspective, https :/ /arxiv.org/pdf/21 03.04320.pdf

[7] Weder B. and Barzen J. and Leynmann F. and Zimmerman, M., Hybrid
Quantum Software Application Need Two orchestrations in
Superposition: A Software Architecture Perspective, IEEE, 2021, 1-13

[8] M. P. Johansson and E. Krishnasamy, E. and N. Meyer and C.
Piechurski, Quantum Computing - A European Perspective,2021,
https :/ /prace-ri.eu/wp-content/uploads/TR-Quantum-Computing-A­
European-Perspective.pdf

[9] T. Peng, A. Harrow, M. Ozols, and X. Wu (2019) "Simulating Large
Quantum Circuits on a Small Quantum Computer ". (arXiv)

[1 0] Y. Du and T. Huang and S. You. et al. Quantum circuit architecture
search for variational quantum algorithms. npj Quantum Inf 8, 62
(2022). https :/ /doi.org/1 0.1 038/s41534-022-00570-y

[11] M. Cerezo and A. Arrasmith, A. and R. Babbush, et al. Variational
quantum algorithms. Nat Rev Phys 3, 625-644 (2021).
https :/ /doi.org/1 0.1 038/s42254-021-00348-9

[12] K. J. Mesman, and F. Battiste! and E. Reehuis and D. de Jong, andM.J.
Tiggehnan amd J. Gloudernans and J. van Oven, and C.C., arXiv,
https :/ /arxiv.org/pdf/2303 .0 1450.pdf

[13] T. Lubinski et al., Advancing hybrid quantum-classical computation
with real-time execution, Front. Phys, 10, 2022

[14] https :/ /slurm.schedrnd.com/documentation.html

[15] https://www.openpbs.org/

[16] https:/!flux.ly/

[17] https :/ /it4innovations.github.io/hyperqueue/stable/

[18] https :/ /qcg-piloijob.readthedocs.io/en/develop/

[19] https ://research. ibm. com/publications/ qiskit -runtime-a-quantum­
classical-execution-platform-for-cloud-accessible-quantum-computers

[20] https :/I github.com/aws/amazon-braket­
examples/blob/main/examples/hybrid jobs/0 _ Creating_your _first_ Hy
brid _Job/Creating_your _first_ Hybrid _Job.ipynb

[21] Y. Yang, et a!, FPGA-based electronic system for the control and
readout of superconducting quantum processors, Review of Scientific
Instruments, 2022, 93, 074701

152

[22] https://quantum­
computing.ibm.com/lab/docs/iql!manage/systerns/reservations

[23] https://www.quantum-inspire.com/

[24] N. Kbammassi, I. Ashraf, X. Fu, C. G. Almudever and K. Bertels,
,"QX: A high-performance quantum computer simulation platform,"
Design. Automation & Test in Europe Conference & Exhibition
(DATE). 2017, Lausanne, Switzerland, 2017, pp. 464-469, doi:
1 0.23919/DATE.2017. 7927034.

[25] Andre W.Cross and Lev S. Bishop and John A. Smolin and Jay M.
Gambetta, OpenQuantum Assembly Language, arXiv, 2017,
https://arxiv.org/abs/1707.03429

[26] https://pennylane.ai/

[27] https://qiskit.org/

[28] https://www.surf.nl/en

[29] https :/ /www. quantum -inspire. com/backends/ gx -simulator/

[30] https://zeromg.org/

[31] https :/ /zguide.zeromg.org/docs/chapter3/

[32] https://slurm.schedmd.com/rest api.html

[3 3] https :/ /www. surf.nl/ en/surfdrive-store-and-share-your-files-securely­
in-the-cloud/surfdrive-for-users

[3 4] https :/I docs. sc ipy. org/ doc/ scipv/tutorial/ optimize.htrnl

[3 5] https :/I eurohpc-ju. europa. eu/s election-six -sites-host-first -european­
quantum -computers-2022-1 0-04 _en

APPENDIX A

Simple "ping-pong" implementation between the classical
and the quantum runtimes. The example below requires
version pyzmq 25.1.0.

1) Example classical_runtime.py:
import time
import zmq

context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://0.0.0.0:5557"1

while True:
Wait for next request from task_manager

message = socket.recv_string()
print(f ''Generating quantum circuit, based on

measurements: {message}'')
time.sleep (1)
socket.send_string("version 1.0; qubits 2; H q[O];

measure_all")

2) Example quantum _runtime.py:

import time
import zmq

context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://0.0.0.0:5556")

while True:
Wait for next request from task_manager

message = socket.recv_string()
print(f"Executing quantum circuit: {message}")
time.sleep (1)
socket.send_string('{"001": 512} ')

3) Example task_ manager.py:
import zmq

context = zmq.Context()

"555 6"
"5557"

quantum_socket = context.socket(zmq.REQ)
quantum_socket.connect(f"tcp://localhost:{quantum runtime
port} "I

= context.socket(zmq.REQ)
.connect(f'' tcp://localhost:{classical runt

Do 10 requests, waiting each time for a response
classical_socket.send_string('{} ')

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

153

quantum_circuit =

print(f ''[classical]
{quantum_circuit}")

recv string ()

for request in range (1, 10) :
print(f ''Sending request {request} ... '')

quantum socket.send string(quantum_circuit)
measurements = • recv string ()
print(f"[quantum]

{measurements}")

.send string(measurements)
recv string ()

APPENDIX B

Payload example and code to submit to SLURM's REST
API.

4) Payload example (jobjson):

153

"job": {
''partition'': ''p spin2'',
"tasks": 1,
"name": "test",
"nodes": 1,
"current_working directory": "/tmp",
"environment": {

}
},

"PATH": "/bin:/usr/bin/:/usr/local/bin/",
"LD LIBRARY PATH": "/lib/: /lib64/: /usr/local/lib"

''#!/bin/bash\nsrun hostname\necho 'hello
300"

5) CURL submit code to SLURM REST-API example:

curl -H "Content-Twe: application/json" -H X-SLU:RM-USER­
NAME:$QUSER -H X-SLURM-USER-TOKEN:$SLURM JWT - X POST
http://bquantum.soil.surf.nl:6666/slurm/�0.0.39/job/submit
-d@job.json

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore. Restrictions apply.

