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Abstract-Quantum Inspire has taken important steps to 

enable quantum applications by developing a setting that 

allows the execution of hybrid algorithms. Currently, the 

setting uses a classical server (HPC node) co-located with 

the quantum computer for the high frequency coupling 

needed by hybrid algorithms. A fast task manager 

(dispatcher) has been developed to orchestrate the 

interaction between the server and the quantum computer. 

Although successful, the setting imposes a specific hybrid 

job-structure. This is most likely always going to be the case 

and we are currently discussing how to make sure this does 

not hamper the uptake of the setting. Furthermore, first 

steps have been taken towards the integration with the 

Dutch National High-Performance Computing (HPC) 

Center, hosted by SURF. As a first approach we have setup 

a setting consisting of two SLURM chtsters, one in the HPC 

(Cl) and the second (C2) co-located with Quantum Inspire 

APL Jobs are submitted from Cl to C2. Quantum Inspire 

can then schedule with C2 the jobs to the quantum 

computer. With this setting, we enable control from both 

SURF and Quantum Inspire on the jobs being executed By 

using Cl for the jobs submission we remove the accounting 

burden from Quantum Inspire. By having C2 co-located 

with Quantum Inspire API, we make the setting more 

resilient towards network faihtres. This setting can be 

extended for other HPC centers to submit jobs to Quantum 

Inspire backends. 

Keywords- hybrid, quantum, SLURM, HPC 

I. INTRODUCTION 

Quantum computers are devices that process information by 
taking advantage of the quantum-mechanical properties of 
their building blocks, the qubits. By doing so, they can harness 
work in a powerful and efficient way and perform certain 
operations with an exponential speed-up. There are many 
fields that could benefit from such a speed-up, for example 
machine learning, financial modeling, logistic optimization, 
climate simulations, etc. [1]. Notably quantum computers are 
expected to excel at simulating quantum systems, like the ones 
present in chemistry and material science [2]. 

Harnessing the power (time and energy-to-solution) of 
quantum computers in relevant use cases and applications is 
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not trivial. Firstly, it requires the research and development of 
algorithms that can leverage the fundamentally different 
quantum technology. Secondly, it requires the development of 
a full stack to implement and execute the quantum algorithms 
in the quantum hardware. The full stack needs to be integrated 
to the existing classical ecosystem. Thirdly, the 
implementation and integration needs to be tested and 
optimized. An optimization towards global usage might be 
complicated due to the different hardware. Finally, the 
development of quantum applications requires the exploration 
and translation of potential use cases from a classical 
execution into a quantum-classical (hybrid) execution. The 
user community will have to learn to rethink their problems 
[3]. 

It is generally expected that quantum computers will be 
used as accelerators for classically complex computational 
tasks. The classical host will execute the main application and 
off-load some subroutines or tasks to the quantum computer. 
In some cases, quantum computers will also benefit from on­
loading tasks into classical resources, for example for 
Quantum Error Correction (QEC) [4,5]. Moreover, as 
quantum computers improve, the need to on-load tasks to 
classical resources likely will only grow. 

An optimal implementation of the hybrid quantum­
classical applications and the integration of the quantum and 
classical resources is critical to ensure the quantum advantage 
obtained from the algorithms is not killed. Co-design and co­
development of the applications with the emerging quantum 
infrastructure and the existing classical infrastructure is 
fundamental. Furthermore, quantum applications require the 
orchestration of quantum and classical programs, often based 
on different languages, data formats or invocation 
mechanisms [6,7]. 

When considering the integration and interfaces between 
the classical and quantum resources (hybrid infrastructure), 
many different strategies and scenarios are possible [8]. From 
a functional perspective, the hybrid infrastructure should 
allow for easy application development. From an operational 
perspective, the hybrid infrastructure should optimize the 
time, energy and science-to-solution. 

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore.  Restrictions apply. 
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II. HYBRID INFRASTRUCTURE: OPERATIONAL PERSPECTIVE 

To optimally execute hybrid quantum-classical 
applications we need to identity when and how classical 
resources play a role in the application. In this paper we will 
refer to three main operational levels: application, task and 
control (see Figure 1). 

Fig. 1. In the execution of hybrid application we can distinguish three main 
operational layers: application, task, control. They all have different 
requirements, in particular related with the latency and data exchange. 

1. Application level: Most hybird applications will be part 
of complex workflows executed in a main classical host. Only 
some tasks will be off-loaded to the quantum computer. The 
execution of the full application will require the orchestration 
of classical and quantum tasks. To ensure the quantum tasks 
do not slow down the high-level application, feedback latency 
of the order of seconds is desirable. 

2. Task level: A quantum task might require on-loading of 
some sub-tasks to classical resources, for example, for 
quantum circuit cutting [9], circuit architecture search [1 0], 
classical optimization in variational algorithms [ 11], etc. To 
ensure the quantum task is not slowed down due to the on­
loading to classical resources, feedback latency of the order of 
the quantum measurements are desirable. Although very 
variable and hardware dependant, in general a latency of 11s­
ms should be expected. A lower feedback latency might be 
neccesary to enable the execution of protocols that require e.g. 
mid-circuit measurements. 

3. Control level: The quantum control hardware executes 
gates and measurements in different manners depending on 
the quantum-chip technology. It generally also stores, reads 
and interprets the received instructions in order to generate 
respective pulse sequences [12]. To enable any useful control 
of a qubit, programmable control flow that operates on the 
timescale of nanoseconds is a requirement [13]. 

Each operational level manages computational resources 
differently. For the application level, assuming the main 
classical host is a High Performance Computing (HPC) center, 
common examples of job managers are SLURM [14] and 
OpenPBS [15]. New developments on s cheduling are done 
with tools like Flux [16], Hyperqueue [17] and QCGpilot [18] 
due to their capability to run efficiently and easily on modem 
heterogeneous supercomputers. 

For the task level, the resource manager needs to be able 
to work in the time scale of the QPU or lower. Although some 
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ex1stmg job managers could be adapted to handle these 
timescales, the approach so far has been to develop job 
managers that take into account the specific needs of the 
quantum applications. The classical sub-tasks are executed in 
a classical runtime (see Figure 2). A classical runtime could be 
the main classical host (e.g. HPC Center or user laptop) or for 
example a small server in the proximity of the quantum 
computer. This last setup is often referred to as "hybrid 
runtime" and is for example used by Qiskit Runtime [ 19] and 
Amazon Braket Hybrid Jobs [20]. The optimization of the 
communication between computational resources strongly 
depends on the hybrid infrastructure set-up (stand-alone, co­
location, distributed) [7]. 

At the control level, to perform logical operations, the 
hardware specific instructions need to be very carefully timed 
by the classical control electronics. This is often achieved 
using a field programmable gate array (FPGA) [21]. 

Due to the scarcity of quantum resources, an additional 
"job manager" is in some cases needed to orchestrate the 
quantum tasks arriving from different sources, for example, 
different users in an HPC center, different HPC centers or in 
some cases individual users (see Figure 2). Queue-based 
access might not be the most suitable when executing tasks 
that require a high frequency coupling between the main 
classical host and the quantum computer. Instead, access to the 
quantum computer might have to be reserved for the duration 
of the task. Such a model has already been used by for example 
IBM Q [22]. 

Application level 

Task level 

Control level 

Fig. 2. The high-level hybrid applications are run in a main classical host 
(HPC or user). Subroutines of quantum tasks are off-loaded to the quantum 
backend. In the quantum backend, different tasks are managed by a job 
manager to ensure the quantum computer runs at its maximum capacity while 
providing the necessary resources for a given application. When the quantum 
task requires classical resources, the task manager orchestrates the classical 
and quantum runtime. The classical runtime can be an independent server or 
the main classical host (e.g. HPC center itself). 

III. QUANTUM INSPIRE 

Quantum Inspire [23] is Europe's first public quantum 
computing platform. The platform focuses primarily on 
training, education, and the development of applications, so 
that more people can use the quantum computer as it develops 
further and becomes more widely available. It consists of a 
number of layers including quantum hardware (a processor 
made of semiconductor 'spin qubits' and a processor made of 
superconducting transmon qubits, classical control 
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electronics, and a software front-end with a cloud-accessible 
web-interface (full-stack)). 

Quantum Inspire's programming language, m which 
quantum algorithms are written and executed, is called 
cQASM [24] (similar to the Open Quantum Assembly 
Language [25]). Algorithms can be programmed using the 
web-editor or using the SDK. This SDK provides a thin layer 
between the QI application programming interface (API) and 
other programming platforms using Python [26, 27]. 

Recently, much effort has been done in the development 
of Quantum Inspire to enable the execution of hybrid tasks. 
Together with SURF [28], the IT collaboration for education 
and research in the Nether lands and host of the Dutch National 
supercomputer Snellius, preliminary work has also been done 
to enable the execution of hybrid applications. In the following 
section we will describe the current hybrid setting and our 
experience so far. 

IV. QUANTUM INSPIRE FOR HYBRID EXECUTIONS 

For the hybrid infrastructure of Quantum Inspire and 
SURF we have taken a distributed approach [7]. In this 
approach, the main classical host (HPC or individual user) off­
loads a quantum task to the quantum platform. The quantum 
task can be a "pure quantum" task or a hybrid task. 

The hybrid task is executed in the classical and quantum 
runtimes. The set of supported programming languages for 
hybrid tasks is typically restricted. Quantum Inspire currently 
accepts Python code. 

A. Quantum Inspire task manager (dispatcher) 

The Quantum Inspire backend consists of a classical 
runtime and several quantum runtimes. The quantum runtimes 
can either be a hardware backend (QPU) or an emulator [29]. 
Communication with the various runtimes happens via 
ZeroMQ [30]. Since switching between the various runtimes 
needs to happen as quickly as possible, the request/reply 
pattern is employed [31]. Whenever a request for execution 
arrives at the task manager, these requests are propagated to 
the necessary runtimes. Replies can be returned directly on 
completion of the classical or quantum task and trigger the 
next step in the execution. This communication scheme 
guarantees the minimal wait time per component. 

When executing pure quantum tasks (a quantum circuit) 
the task manager sends the circuit directly to the requested 
quantum runtime (see Figure 2). For hybrid tasks, the task 
manager takes care of the lifecycle management. As soon as it 
determines the job is a hybrid algorithm, it requests the 
classical runtime to execute the python script and return a 
quantum circuit. This circuit is forwarded to the quantum 
runtime, where it is executed. This continues to run, until a 
stop condition is met. This can either be a timeout, or a user 
defined end state. A simple "ping-pong" implementation 
between the task manager (dispatcher) and the runtimes is 
presented in Appendix A 

Timing information of the preliminary implementation is 
given in Table 1. The initialization step spins up the runtime 
only once on every hybrid task. This start-up time however, 
can be shortened by hot loading environments. For the 
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execution step, no computations were performed to give raw 
timing information. 

TABLE I. TIMING INFORMATION OF THE TASK MANAGER 

Step Runtime 
Initialization 3 S 792 flS 

Execution J7 flS 
Termination 200 flS 

As presented in Table 1, once the runtime is spun up, the 
developed task manager allows the orchestration between the 
classical and quantum runtimes within the 11s tiemscale. This 
is in line with the timescale of a task. 

B. Quantum Inspire job manager 

The Quantum Inspire system contains a ReST API. This 
API gives users access system information and their own 
content. Users can, for example, get the status of the various 
backends. At the time of writing this is limited to whether the 
backend is executing, calibrating, offline or idle. Real time 
queuing information is not (yet) available. The users can also 
call the API to handle their own content. Projects and 
algorithms can be created, but also jobs submitted or compiled 
algorithms and results fetched. This can be done via any of the 
offered end user interfaces, like the web frontend or the SDK. 
Furthermore, users can also communicate directly with the 
API. 

Any job submitted via this API ends up in a queue and is 
subject to scheduling. As a first approach, jobs are scheduled 
naively, via a FIFO queue. Integration with HPC systems 
however will prompt more elaborate systems like priority 
queues or reservations. Different scenarios and possibilitites 
are currently under consideration. 

C. Application manager 

In HPC centers, resource managers like SLURM of 
OpenPBS are used. These managers oversee prioritizing jobs, 
checking resources, and launching jobs. Quantum applications 
cause the management to be more constrained due to, among 
other, the scarcity of resources, the time-bound execution of 
an algorithm and the asymmetry of resources [3]. 

SLURM_2 

I I \ 
HPC_A HPC_B HPC_C 

Fig. 3. Schematic representation of the 2-SLURM clusters setup for hybrid 
quantum-classical applications. The setup can in principle be used to 
coordinate the access of several HPC centers to one quantum backend. It 
enables control from both the HPC centers and the quantum resources. 

For our first approach to a hybrid Quantum Inspire I HPC 
(SURF) infrastructure, we will use the HPC as the main 
classical host and a small server co-located with the quantum 
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computer as the classical nmtime (see Figure 2). SLURM is 
used as the application manager and the Quantum Inspire 
dispatcher as the task manager. The main challenge for 
integration in this case is the proper submission of jobs from 
the HPC center to the quantum backend and the efficient job 
handling in the quantum backend. In a HPC cluster normally 
only one resource manager is in control of all hardware in the 
cluster. In this approach, we need to orchestrate the pipeline 
with the knowledge that in fact two resource managers are in 
charge within one pipeline. 

The integration set-up consists of "2-SLURM" clusters 
(see Figure 3). The first SLURM cluster (Cl )  is the HPC 
center and the second SLURM cluster (C2) is co-located with 
the Quantum Inspire API. Jobs are submitted from the Cl to 
C2. A batchjob is created with the payload needed for 
Quantum Inspire. The payload is json formatted and then 
submitted from Cl with CURL to the REST-API of the 
SLURM scheduler [32] at C2. A simple payload example and 
submission code are presented in Appendix B. The submit 
code can be easily included in any batch job. 

The C2 cluster will always accept jobs. These jobs are 
queued and waiting for execution. When the C2 Cluster is 
enabled (by Quantum Inspire), jobs will be run on the quantum 
computer. 

In this approach, the HPC center and quantum resources 
are managed independently. This can help the performance of 
largely imbalanced application with low-coupling frequency 
between the main classical host and the quantum backend. For 
high-frequency coupling, this approach might get increasingly 
complex. 

In a first instance, users can retrieve their data directly for 
the Quantum Inspire data base. Another approach is to stage 
data securely on a cloud space for example SURFDrive [33] 
or any other webdav compliant cloud storage. 

Other HPC centers could talk to C2 in the same way. On 
C2 a SLURM-USER-TOKEN has to be created for all 
participating HPC centers (one each). Jobs submitted to C2 are 
being accounted in de SLURM Database (see Figure 3). 

V. CHALLENGES AND LEARNINGS 

One of the main drawbacks of this design is the fact that 
users cannot get access to the classical nmtime where the 
quantum computer is on-loading tasks. All code nm within the 
Quantum Inspire platform is nm unsupervised. On the other 
hand, the benefit of this setting is the inherent speed-up for 
high frequency coupling compared to running user code on an 
off-site system and off-loading the quantum circuit via the 
API. 

The setting described above, also assumes a specific 
description of the hybrid tasks. This requires the users to 
adhere to a certain structure and programming language for 
the task manager (dispatcher) to be able to orchestrate the 
classical and quantum runtimes. Quantum Inspire's first 
approach was a lifecycle scheme. The user would specify an 
initialize, execution and finalize handle which would be 
invoked by the task manager. Support structures like advanced 
error recovery could be more efficiently implemented. 
However, since most algorithms were based on optimization 
algorithms, for example from scipy [34], this method proved 
impractical in the end. 

Another interesting point is that with increasing coupling 
frequency and quantum resources needs, the scheduling of 
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jobs in the quantum backend (job manager) might have to 
include prioritization and reservation possibilities. 

Prioritization will reduce transparency about one's place in 
the queue but for complex workflows with external resources 
this will limit the total idle and queueing time on both systems. 
Potentially, if HPC users would dominate the queue and 
prevent other users from using the system, fair use policies 
will have to be implemented. At the current state of the system, 
this is not yet needed. Reservations could be very useful when 
the HPC is used as the classical runtime, either due to the size 
of classical resources needed or, for example, because more 
control of the classical environment is required. Blocking the 
quantum resources within a reservation for the entire nmtime 
of the hybrid application is easy, but it can also result in a lot 
of idling. 

VI. FUTURE PLANS 

To better support the continued integration of quantum 
applications and complex workflow, Quantum Inspire plans to 
invest in both the end user side and the efficient handling of 
applications. HPC systems use public information now to 
determine whether a quantum computer is available. By 
creating a tighter loopback between the job manager and 
SLURM/PBS, these systems might better predict availability 
of the computer, which minimizes the queueing time. 

Furthermore, different queueing strategies will be 
implemented. On the one hand, these ensure that high­
frequency tasks are given priority, minimizing the wall clock 
time for the overall application. On the other hand, these 
strategies should prevent any HPC from claiming all resources 
and ensure a fair use. To enable transparency, someone' s place 
in the queue and recent prioritized activity might be conveyed 
to the end users. 

To achieve a speedup within the Quantum Inspire system, 
the various runtimes might be spun up before a job is created. 
This would mean idle resources on the Quantum Inspire 
infrastructure. However, it would almost negate the 
initialization step for the classical part of a quantum task. This 
task should in principle employ a hybrid flow, regularly 
switching between classical and quantum resources. However, 
in a scenario with low iterations per task, but many tasks as 
part of a high-level workflow, the initialization penalty might 
become substantial. 

Finally, within Europe there are multiple HPC centers and 
various upcoming quantum compute platforms [35]. Both, 
SURF and Quantum Inspire aspire to connect to more systems 
and become part of the European Infrastructure. We hope that 
these first integration efforts, experiences and exercises can 
help guide and develop the European infrastructure. 

VII. CONCLUSIONS 

SURF and Quantum Inspire have partnered up together to 
explore and develop a hybrid classical-quantum infrastructure. 
Some initial steps include the co-location of a SURF HPC 
node as a classical nmtime and the development of a software 
stack that allows for the execution of hybrid tasks. 

Together with the possibility to execute hybrid tasks, the 
integration of Quantum Inspire and SURF in the long term 
aims to enable the execution of hybrid applications. For a 
hybrid workflow to be executed, the job manager at SURF 
(SLURM) needs to coordinate with Quantum Inspire. An 
initial setup uses 2-SLURM clusters to optimize the 
communication and allow for independent control of the tasks. 
Although the setup is successful, we are actively testing new 

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:08:05 UTC from IEEE Xplore.  Restrictions apply. 



152

potential settings. This setup can easily be extended to allow 
other HPC centers to connect and use the Quantum Inspire 
backends. 

With these combined efforts, SURF and Quantum Inspire 
will be able to provide a platform for distributed HPC­
quantum computing for the Dutch researchers. 
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APPENDIX A 

Simple "ping-pong" implementation between the classical 
and the quantum runtimes. The example below requires 
version pyzmq 25.1.0. 

1) Example classical_runtime.py: 
import time 
import zmq 

context = zmq.Context() 
socket = context.socket(zmq.REP) 
socket.bind(f"tcp://0.0.0.0:5557"1 

while True: 
Wait for next request from task_manager 

message = socket.recv_string() 
print(f ''Generating quantum circuit, based on 

measurements: {message}'') 
time.sleep (1) 
socket.send_string("version 1.0; qubits 2; H q[O]; 

measure_all") 

2) Example quantum _runtime.py: 

import time 
import zmq 

context = zmq.Context() 
socket = context.socket(zmq.REP) 
socket.bind(f"tcp://0.0.0.0:5556") 

while True: 
Wait for next request from task_manager 

message = socket.recv_string() 
print(f"Executing quantum circuit: {message}") 
time.sleep (1) 
socket.send_string('{"001": 512} ') 

3) Example task_ manager.py: 
import zmq 

context = zmq.Context() 

"555 6" 
"5557" 

quantum_socket = context.socket(zmq.REQ) 
quantum_socket.connect(f"tcp://localhost:{quantum runtime 
port} "I 

= context.socket(zmq.REQ) 
.connect(f'' tcp://localhost:{classical runt 

Do 10 requests, waiting each time for a response 
classical_socket.send_string('{} ') 
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quantum_circuit = 

print(f ''[classical] 
{quantum_circuit}") 

recv string () 

for request in range (1, 10) : 
print(f ''Sending request {request} ... '') 

quantum socket.send string(quantum_circuit) 
measurements = • recv string () 
print(f"[quantum] 

{measurements}") 

.send string(measurements) 
recv string () 

APPENDIX B 

Payload example and code to submit to SLURM's REST 
API. 

4) Payload example (jobjson): 

153 

"job": { 
''partition'': ''p spin2'', 
"tasks": 1, 
"name": "test", 
"nodes": 1, 
"current_working directory": "/tmp", 
"environment": { 

} 
}, 

"PATH": "/bin:/usr/bin/:/usr/local/bin/", 
"LD LIBRARY PATH": "/lib/: /lib64/: /usr/local/lib" 

''#!/bin/bash\nsrun hostname\necho 'hello 
300" 

5) CURL submit code to SLURM REST-API example: 

curl -H "Content-Twe: application/json" -H X-SLU:RM-USER­
NAME:$QUSER -H X-SLURM-USER-TOKEN:$SLURM JWT - X POST 
http://bquantum.soil.surf.nl:6666/slurm/�0.0.39/job/submit 
-d@job.json 
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