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Abstract
In a community energy project, batteries are the
asset with the shortest lifespan and are therefore
key contributors to cost. Understanding the influ-
ence of the battery state of health model on a con-
trol algorithm designed for redistribution of ben-
efits in terms of financial gains in a community
energy project can help elongate battery lifetime
and reduce need for replacement hence minimising
costs and reaping environmental benefits. Battery
depreciation is predominantly stimulated by cyclic
degradation and thus incurred costs are compared
by simulating degradation curves for different bat-
tery storage systems in terms of chemistry and ca-
pacity. Costs are calculated by applying battery
models to the control algorithm proposed by Norbu
et al. (2021), which factors in cyclic degradation
using the rainflow counting algorithm. The ex-
periment explores the influences on cost of differ-
ent battery chemistry types and capacities. Results
demonstrate that lithium-ion batteries, which are
the current norm in utility-scale applications, incur
the lowest costs. Specifically, lithium manganese-
oxide batteries appear to be most effective. Addi-
tionally, costs tend to decrease with increasing ca-
pacity until a minima corresponding to the optimal
battery capacity.

1 Introduction
Concerns over climate change and the ongoing effort to di-
verge away from fossil fuels have birthed a deep interest in
the deployment of a more sustainable and renewable energy
system. A key research area within this topic has been com-
munity energy, otherwise coined citizen-driven renewable en-
ergy (Hewitt et al., 2019). This refers to the generation, stor-
age and trade of energy within a community of prosumers
(Norbu et al., 2021), each of whom may have partial owner-
ship over the energy assets.

Over the past decade, academic interest in community en-
ergy has been gradually increasing (Creamer et al., 2018),
which stems from the increase in deployment of community
energy projects. An upward shift in global adoption of com-
munity energy projects is evident when sifting through the

vast number of examples, ranging from community-owned
wind turbines similar to those established on the Scottish Isles
of Eigg or Gigha (Seyfang et al., 2012), to instituted projects
in the Netherlands, Spain or Chile (Fuentes González et al.,
2020). In the United Kingdom alone, over 300 successful
community energy projects have been deployed, engaging
over 90,000 local homes and businesses (Hydro, 2020). This
general trend clearly highlights community energy as a key
point of interest.

Community energy is incentivized by a plethora of both
direct and indirect factors. From a humanitarian perspective,
the employment of a renewable energy system yields clear
environmental benefits; local communities are motivated to
embrace this through favorable government policies, usually
in the form of state support. For example, a range of govern-
ment programs have been instigated to stimulate community-
led energy initiatives in the United Kingdom (Seyfang et al.,
2013). Another example is in Scotland where, as a part of
its 2020 target, the government set a preliminary target of
achieving 500 MW of community or locally-owned renew-
able electricity generation (Bomberg and McEwen, 2012).
Community energy projects also facilitate decentralization of
energy generation resulting in a more robust energy network,
along with decreased financial costs if the energy generated
is distributed optimally and fairly.

Obtaining maximal benefits in both financial and envi-
ronmental dimensions requires a fair and optimal control
algorithm, which is capable of allocating resources effec-
tively. This paper focuses on the “heuristic-based battery
control algorithm for maximization of behind-the-meter self-
consumption” proposed by Norbu et al. (2021). This algo-
rithm is rare in that it takes into consideration battery degra-
dation, which is a critical component of a community energy
system.

In a community energy project, energy may be generated
and then stored in a battery storage system as a consumer
may not demand power immediately upon generation. The
schedule for energy supply and demand are not aligned.

Maintaining battery health can elongate battery lifespan,
slowing down degradation and consequently the need for re-
placement, which reaps significant financial and environmen-
tal benefits. The rate of degradation can be affected by a
multitude of factors including frequency of charge/discharge,
depth of charge/discharge, battery storage unit technology,



and battery size. Battery degradation is a crucial consider-
ation for efficient algorithm performance as the lifespan of
this resource tends to be drastically shorter than other assets
in an energy system. Thus, there is a need to establish a clear
understanding of the model for battery state of health.

This paper explores how the model of the battery state of
health influences the control algorithm designed for redistri-
bution of benefits in a community energy project. To achieve
this, the main focus is to analyze how different available bat-
teries affect the decisions made by the control algorithm, af-
ter establishing an initial understanding of the battery state
of health model proposed by Norbu et al. (2021). Based on
these insights into battery degradation, the control algorithm
may be built upon to attain fairer and more cost-efficient dis-
tribution of resources.

The structure of this paper is as follows: Section 2 provides
an overview of the background behind batteries and the afore-
mentioned control algorithm, followed by Section 3 which
details the methodology utilised. Next, Section 4 outlines the
results obtained. Section 5 considers the ethical aspects of
this paper, and the results are then analysed and discussed in
Section 6 together with any limitations and future improve-
ments. Finally, a conclusion summarizing the findings in this
paper is presented in Section 7.

2 Background
To develop an understanding of the model for battery state of
health, it is first crucial to understand why batteries degrade
and the factors that influence degradation rate, which are dis-
cussed in Section 2.1. Subsequently, Section 2.2 presents a
range of battery energy storage technologies available in the
market that must be considered as each option entails varying
costs. As this paper is an extension of the work conducted
by Norbu et al. (2021), Section 2.3 provides an overview of
the control algorithm proposed - specifically closely related
aspects such as the battery control algorithm and degradation
model. Finally, other existing literature on battery degrada-
tion is acknowledged in Section 2.4.

2.1 Battery Degradation
Battery performance degrades over time, typically in the form
of increased internal resistance or reduced maximum capac-
ity. The rate of degradation tends to be affected by the en-
vironment as well as electrical usage (Chawla et al., 2010).
For example, the thermal environment is a major factor in
determining the finite lifetime of a battery as suboptimal tem-
peratures can stimulate aging.

Evidence shows that useful battery lifetime is closely re-
lated to operational performance (Wang et al., 2016); the
overall lifetime of a battery is significantly affected by its
short-term operation. As such, the algorithm controlling bat-
tery operation is crucial for determining useful lifetime and
thus cost.

Specifically, useful lifetime is dependent on the frequency
of charge/discharge cycles and the depth of discharge, as
stated by Yan et al. (2018). A single cycle refers to the pro-
cess of discharging a battery down to any arbitrary state of
charge (SoC) given any initial SoC, and then charging the bat-
tery up to some arbitrary SoC. The depth of discharge (DoD)

is the proportion of battery capacity that is discharged rela-
tive to the maximum capacity of the battery. For instance, the
authors also state that “frequent and deep cycles accelerate
cyclic aging and reduce the cycle life”, which refers to the
number of cycles that a battery can undergo based at a certain
DoD before performance deteriorates. Alternatively, shallow
and infrequent charge/discharge cycles correlate to a slower
rate of cyclic aging, thus elongating battery calendar life.

Degradation curves, plotting typical cycle life versus DoD,
can be obtained by repeatedly discharging a given battery to
a specified DoD level, and then recharging it to its maximum
capacity (Wang et al., 2016). Such type of cycles are re-
ferred to as regular cycles. However, in a community energy
project with a battery energy storage system, cycles tend to
be irregular. Irregular cycles refer to charge/discharge cycles
where the battery is not recharged to full capacity; instead, it
is recharged to an arbitrary SoC dictated by the control algo-
rithm. Consequently, the battery state of health model must
consider irregular cycles for an accurate depiction of cyclic
aging. Degradation curves are acquired by the battery man-
ufacturer through extensive experimentation in a controlled
environment (at a specific temperature and C-rating). There-
fore, it must be noted that such curves are not available for all
battery types in the public domain.

2.2 Battery Energy Storage Technologies
Several types of battery energy storage technologies exist in
the market today. A comprehensive study must consider the
differences between these technologies in the context of a
community energy project, as each entails different benefits
and drawbacks.

Grid-scale battery energy storage systems (BESS) are the
most widely utilised technology for wind farms (Wang et al.,
2016). BESS offers “flexible charging-discharging charac-
teristics”, which allow for greater flexibility in a renewable
energy system. However, they involve extremely high in-
vestment costs so a trade-off must be struck between battery
performance and effort. Furthermore, sizing of energy sys-
tems in terms of capacity involve trade-offs between initial
cost and cycle life cost, especially for BESS (Chawla et al.,
2010). Due to their popularity in grid-scale projects, varia-
tions of BESS will be the focus of this paper.

In addition to capacity, battery storage systems can also
be differentiated in terms of battery chemistry type, such as
lithium-ion or lead-acid. Some key operational performance
indicators of different chemistry types include battery lifes-
pan, energy density, power/energy (P/E) ratio, and discharge
times. It is important to note these values are not truly repre-
sentative of battery performance, as performance is subject to
the charge/discharge cycles as explained in Section 2.1. Asian
Development Bank (2018) provides an overview of several
battery chemistry types widely used in large-scale applica-
tions - a representative subset of which can be found in Table
1, with data on energy density and cycle life aggregated by
Morris (2012) for comparison purposes. Financial cost esti-
mations for battery chemistry types can be found in work con-
ducted by Akinyele et al. (2017) and Mongrid et al. (2019).

While lead-acid batteries were previously the norm in
large-scale applications, lithium-ion batteries have been dom-



Table 1: An overview of chemistry types for utility-scale batteries.
(Asian Development Bank, 2018; Morris, 2012)

Comparison of Battery Chemistry Types
Chemistry Type Energy Den-

sity (Wh/kg)
Cycle Life

Lead-Acid (PbA) 35-50 250-1,000
Lithium-Ion (Li-Ion) 80-180 3,000
Nickel-Cadmium (Ni-
Cd)

50-60 1,000-50,000

Nickel-Metal Hydride
(Ni-MH)

60-80 300-600

Sodium-Sulfur (NaS) 150-240 2,500-40,000
Vanadium Redox Flow
(VRB)

0-30 10,000

inating the market recently. This is emphasised by the
fact that lithium-ion batteries accounted for almost 90% of
large-scale battery storage additions in 2017 (IRENA, 2019).
Lithium-ion batteries offer high energy and power densities,
low discharge rates, and rapidly decreasing costs (Xu et al.,
2018). It must be noted that several different subtypes exist
for this chemistry. Examples of lithium-ion batteries include
lithium manganese-oxide (LMO), lithium nickel-manganese-
cobalt-oxide (NMC), lithium iron-phosphate (LFP), and
lithium titanate (LTO).

2.3 Control Algorithm Proposed by Norbu et al.,
2021

As mentioned in Section 1, Norbu et al. (2021) proposed
a heuristic-based battery control algorithm in order to max-
imise the redistribution of benefits within a community en-
ergy project. This paper builds upon their work to gain in-
sight into the model for battery state of health. As such, it
is important to establish a basic understanding of the compo-
nents of the algorithm that are associated with battery state
of health: the battery control algorithm and the battery degra-
dation model. Detailed descriptions of the summarised algo-
rithms may be found in the aforementioned paper.

Battery Control Algorithm
The proposed battery control algorithm is a simple heuristic-
based algorithm that charges the battery when there is an ex-
cess of power available, and discharges the battery when there
is a deficit (i.e. prosumers demand more energy than is cur-
rently being generated). If the battery is at its maximum ca-
pacity the prosumer sells power to the central grid acquiring
further financial benefits. Alternately, a cost is incurred if
there is insufficient power being generated and the deficit in
energy is not recoverable from the battery storage, in which
case the prosumer must purchase energy from the utility grid.

Battery Degradation Model
As mentioned in section 2.1, it is important to consider both
regular and irregular cycles when estimating battery degrada-
tion. As such, the model for battery state of health proposed
employs a rainflow counting algorithm (Downing and Socie,

1982; Nieslony, 2022), which has been modified to determine
regular and irregular cycles.

As an input, the rainflow counting algorithm takes the SoC
profile obtained by simulating the battery control algorithm.
Based on the output, which includes the number of cycles the
battery has undergone thus far, a depreciation factor (DF) is
calculated. The aforementioned cycles in the output are clas-
sified by type: differentiating between half or full cycles, and
regular or irregular cycles. The overall DF is an aggregation
of individual DFs for regular and irregular cycles. When the
overall DF of the battery is equal to one, the battery requires
replacement and hence a real-world financial cost is incurred.

The total cost in British Pounds (£) of a modelled com-
munity project is calculated by summing the operational cost
and the cost incurred due to the battery, which is calculated
via the following equation:

BatteryCost =
V

1000
∗ C ∗DF (1)

where:
V = battery capacity in kilowatt hours (kWh)
C = cost of battery per kWh in £

Currently, Norbu et al. (2021) only considers the lithium-
ion battery in this degradation model. As such, this model is
confined to a singular BESS technology, foregoing any po-
tential insights alternatives may offer.

2.4 Other Related Literature
As operational performance is the largest determinant of bat-
tery degradation, most existing battery state of health models
focus on cyclic degradation. Norbu et al. (2021) lists several
such models of interest. For example, Yan et al. (2018) “in-
corporated dynamic battery life degradation in cost account-
ing model of energy storage system used for providing grid
frequency regulation in the ancillary services market”.

3 Methodology
This section presents and justifies the steps taken for the re-
search, including any decisions made that may affect the out-
come of the experiment. The approach explores how the
model for battery state of health influences the control algo-
rithm discussed in Section 2.3. Firstly, Section 3.1 explores
how degradation curves have been applied to the control algo-
rithm to replicate different battery models. Section 3.2 then
discusses the regularisation of these curves, followed by Sec-
tion 3.3 which mentions the datasets used in the experimen-
tal setup. Finally, Section 3.4 explains how different battery
models have been compared to obtain insightful results.

3.1 Simulating Real-World Degradation Curves
Understanding how the battery state of health model affects a
control algorithm for a community energy project requires ex-
perimentation with various model parameters. In particular,
models may be differentiated with battery chemistry types.
The chemistry influences the inherent characteristics of the
battery and as such, contributes greatly to the cost of a com-
munity energy project as discussed in Section 2.2.



Degradation behaviour of battery chemistry types are rep-
resented in the form of degradation curves. By fitting data ob-
tained from these curves into the existing control algorithm,
the influence of battery chemistry on a community energy
project may be observed in terms of cost. Unfortunately,
available degradation data is often not easily processable as
they are presented only as graphs in an image format. Precise
data must be extracted for useful application in the control
algorithm.

The battery state of health model detailed in Section 2.3
relies on a numerical representation of a lithium-ion degrada-
tion curve in order to calculate overall cost of a community
energy project. This numerical representation involves a set
of 100 individual values representing the expected number of
cycles remaining in a battery’s lifetime at a specified DoD.
Each data point corresponds to a single DoD ranging from
1% to 100%; individually and manually extracting each of
these data points for every degradation curve is not feasible.

Instead, a sample of representative data points (i.e. coordi-
nates on the plots) was manually extracted from each degra-
dation curve, reducing effort and the margin of human error.
PlotDigitizer1 was used to evaluate the coordinates of data
points at regular intervals more accurately. By interpolat-
ing between the data points in this sample, a representative
and applicable degradation curve was generated within the
bounds of the control algorithm. In other words, the number
of remaining cycles per DoD was simulated for every DoD
from 1% to 100%, as required.

Figure 1: A comparison of interpolation techniques for simulating a
li-ion degradation curve using a real-world curve.

Alternatively, degradation curves can be simulated by con-
structing mathematical formulas that resemble the real-world
curves. However, this is a tedious process that requires ex-
tensive calibration. Additionally, curve trend-lines are not
always representative of mathematical formulas which may
lead to inaccuracies. The aforementioned interpolation tech-
nique allows for accurate trendlines as depicted in Figure 1,
illustrating the degradation curves generated using interpo-

1https://plotdigitizer.com/

lation techniques in the SciPy2 library by sampling 20 data
points at equal intervals for the lithium-ion data used by
Norbu et al. (2021). There is little difference in terms of curve
behaviour when compared to the baseline curve, that pre-
cisely represents the original real-world degradation curve.

The most accurate interpolation technique was chosen by
evaluating the error of the simulated curve when applying
a given interpolation technique, compared to the baseline
degradation curve used by Norbu et al. (2021). This error
was measured in terms of RMSE (root mean-squared error)
given by the following formula:

RMSE =

√√√√(
1

n
)

n∑
n=1

(yi − xi)2 (2)

where:
n = total number of DoD values (100)
yi = cycles remaining when DoD = i for baseline curve
xi = cycles remaining when DoD = i for simulated curve

As shown by Table 2, the ’cubic’ interpolation technique
was most accurate and was therefore chosen for the exper-
iment. Although there is still an inevitable margin of hu-
man and simulation error, the main purpose of this paper
is to objectively analyse how altering the battery state of
health model influences the control algorithm. Relation-
ships between different models are predominantly maintained
through this technique, so the error can be considered negli-
gible.

Table 2: A comparison of RMSE of interpolation techniques for
simulating a li-ion degradation curve with a real-world curve.

RMSE of Interpolation Techniques
Interpolation Technique RMSE
Cubic 68680
Quadratic 70776
Linear 74371
Nearest 80730
Nearest-Up 80730
Zero 81057
Slinear 81057
Previous 81057

It is important to note that for the purpose of this experi-
ment, a sample of 20 data points per degradation was arbitrar-
ily chosen keeping in mind that a larger sample may stretch
human effort, whereas a smaller sample may lead to further
inaccuracies. Additionally, if the number of cycles was not
present outside of certain bounds for the full required range
of DoD from 0% to 100%, the data was extrapolated in order
to maintain the general trend.

2https://scipy.org/



3.2 Regularisation of Degradation Curves
Data obtained on miscellaneous chemistry types is unfortu-
nately inconsistent throughout sources as batteries are tested
in various environments. For example, cycle life of batter-
ies may vary drastically, especially if obtained at a different
DoD. As such, degradation curves may be inaccurate relative
to one another, which may inadvertently lead to inaccuracies
in comparisons of the effects of battery models on the control
algorithm.

Due to a lack of consistent information, a compromise
must be made to obtain representative degradation curves and
battery models for different battery chemistry types. To this
end, regularisation was applied to the degradation curves in
order to obtain comparable results. The following formula
was utilised to regularise each data-point from the simulation
degradation curve (i.e. each number of cycles remaining per
DoD):

RegularisedCycles = Ni ∗
3000

N1
∗ CL

912748
(3)

where:
Ni = number of cycles remaining at DoD i
N1 = initial number of cycles at minimum (1%) DoD
CL = cycle life of battery chemistry

In this equation, 3,000 represents the cycle life of lithium-
ion batteries according to table 1 and 912,748 is derived from
the number of cycles remaining at 1% DoD for lithium-ion
batteries according to the baseline. CL per battery chemistry
is also derived from Table 1, with the most similar CL valu-
ation utilised in order to ensure the fairest degradation com-
parisons possible by aiming for a similar initial number of
cycles. This technique ensures that the relative differences
in CL between battery chemistry types is maintained while
retaining the trend of the respective degradation curves.

3.3 Simulation Datasets
Two datasets were chosen for community energy project sim-
ulations, both of which are collections of recorded energy de-
mands during trials. The Thames Valley Vision (UKERC En-
ergy Data Centre, 2020) dataset consists of 200 households
over the timespan of one year, sampling consumption at in-
tervals of thirty minutes. Alternatively, the Low Carbon Lon-
don (UK Power Networks, 2013) dataset consists of 5,567
households over two and a half years, sampling at identical
intervals. These energy demand profiles were input into the
control algorithm to obtain cost estimations using a specified
battery state of health model.

3.4 Comparing the Effect of Different Battery
State of Health Models

As stated in Section 3.1, the research requires simulations
with various model parameters to analyse the effect on the
control algorithm and specifically cost. There are several
battery-related parameters that can be manipulated, so that
the model can accurately represent different BESS.

Different battery chemistry types exhibit varying degrada-
tion behaviour, hence why the experiment requires simulated

degradation curves for specific chemistry types. Unfortu-
nately, due to the extensive process manufacturers must un-
dergo to obtain such curves, all real-world degradation data is
not available in the public domain, which makes simulations
all the more difficult. This presents a limitation to the research
in the form of an inability to explore certain battery chem-
istry types within the context of a control algorithm, such as
Vanadium Redox-Flow batteries. However, through extensive
literature reviews, a representative set of degradation curves
have been identified. These include lead-acid (Zhang et al.,
2017), lithium-ion (Xu et al., 2018), nickel-cadmium (Boltta,
n.d.), nickel-metal hydride (Adel et al., 2011) and sodium-
sulfur (Rodrigues et al., 2014) batteries, for which costs were
compared by applying the respective simulated degradation
curves into the battery state of health model.

As Section 2.2 discussed, since lithium-ion batteries are
the cutting-edge battery technology, it makes sense to in-
spect these in further detail. Specifically, lithium-ion chem-
istry subtypes were modelled in the existing infrastructure by
simulating their respective degradation curves and comparing
in terms of cost. Specifically, a comparison of the follow-
ing lithium-ion batteries was carried out: lithium manganese-
oxide, lithium nickel-manganese-cobalt oxide, and lithium
iron-phosphate (Xu et al., 2018).

Additionally, to accurately model the battery chemistry
types several other configurable parameters must be changed.
Unfortunately, accurate values per battery chemistry for all
parameters could not be found due to the dispersed nature of
information on BESS. It was assumed that the initial battery
capacity, power limit and minimum capacity remained con-
stant throughout all battery state of health models and were
thus considered the controlled variables within the experi-
ment. Individual variables included battery cost per kilowatt
hour (kWh), the expected lifetime of battery in years, cycle
life and charging/discharging efficiency. The parameter val-
ues for simulations comparing battery chemistry were aggre-
gated from various sources and can be found in Appendix A.

While the aforementioned simulations were run at a fixed
battery capacity (5,000 times the number of prosumers in the
respective dataset in terms of kWh), varying battery capac-
ity for different BESS can offer additional insight as capac-
ity is a significant contributor to cost and performance. Sim-
ulations were run for a representative set of battery chem-
istry types at specified capacities and then compared. The
simulations were run for capacities ranging from 100kWH
to 100000kWH. This wide range facilitates insights into the
effect of battery sizing on the performance of a control algo-
rithm.

4 Results
This section outlines the results obtained via the experi-
ment previously described. Degradation curves simulations,
which were subsequently applied to the battery state of health
model, are illustrated in Section 4.1. In the subsequent sec-
tions, the performance of the control algorithm is compared
in terms of cost for multiple battery models, which may differ
in terms of chemistry or capacity, including several specific
parameters.



4.1 Simulated Degradation Curves

As stated in Section 3.1, degradation curves were simulated
in order to model different battery chemistry types. Regular-
isation was additionally applied in accordance with Section
3.2. Appendix B displays the degradation curves prior to reg-
ularization to illustrate the effect.

Figure 2 contains the simulated degradation curves for the
five battery chemistry types upon which the experiment was
run. As shown, Ni-MH clearly suffers from the lowest initial
number of cycles at 1% DoD followed closely by PbA, while
the remaining chemistries demonstrate similar initial values.
The general trend for every chemistry is very similar, exhibit-
ing decreasing trendlines with a greater negative gradient at a
low DoD. Ni-Cd appears to degrade most gradually, albeit to
a lower minimum number of cycles at a higher DoD. It should
also be noted that all curves tend towards a similar number of
cycles at a high DoD.

Appendix C contains a comparison of degradation curves
for the selected lithium-ion subtypes. The figure illustrates
that NMC degrades most rapidly followed by LFP, whereas
LMO degrades at the slowest rate.

Figure 2: A comparison of battery degradation curves by chemistry.

4.2 Battery Chemistry

As detailed in Section 3.4, Table 3 presents the results of run-
ning the control algorithm at a fixed capacity for various bat-
tery chemistry types; battery chemistry types are presented in
order of increasing costs for both datasets.

Li-ion batteries incur the lowest cost at £57,948.4 and
£1,598,670 for the Thames and London datasets respectively,
followed closely by NaS. There is a significant gap in term
of cost between the aforementioned chemistries and PbA and
Ni-Cd, as visually illustrated by the bar plots in appendix D.
The most least effective chemistry appears to be Ni-MH, in-
curring a cost of £100,885 and £2,725,090 for the Thames
and London datasets respectively.

Table 3: A comparison of community energy project costs by
battery chemistry.

Comparison of Cost by Chemistry
Chemistry
Type

Cost for Thames
Dataset (£)

Cost for London
Dataset (£)

Li-Ion 57,948.4 1,598,670
NaS 65,790 1,810,280
PbA 72,048.4 1,968,870
Ni-Cd 79,434.2 2,154,800
Ni-MH 100,885 2,725,090

4.3 Lithium-Ion Battery Sub-Types
Similar to Section 4.2, Table 4 presents a comparisons of
costs incurred by the control algorithm when utilising mis-
cellaneous li-ion battery chemistry types within a community
energy project.

All li-ion batteries appear to incur similar costs, indicated
by the low range of costs resulting from usage of the vari-
ous li-ion chemistries. The LMO battery seems to result in
the lowest overall cost incurring £56,248.4 and £1,554,040
for the Thames and London datasets respectively, while the
NMC battery appears to be the least effective chemistry type
in terms of cost efficiency.

Table 4: A comparison of community energy project costs by li-ion
battery chemistry.

Comparison of Cost by Li-Ion Battery Chemistry
Li-Ion Sub-
Type

Cost for Thames
Dataset (£)

Cost for London
Dataset(£)

LMO 56,248.4 1,554,040
LFP 57,298.4 1,581,610
NMC 66,904.5 1,743,320

4.4 Battery Capacities
Figures 3 and 4 illustrate the influence of battery capacity on
the cost of a community energy project utilising a plethora
of battery chemistries for capacities ranging from 100kWh to
100,000kWh, as detailed in Section 3.4.

Li-ion, NaS, and PbA batteries exhibit purely decreasing
functions, although experimentation with higher battery ca-
pacities insinuate that the trendlines are, in fact, parabolic
functions in that the control algorithm achieves a minimal
cost at some optimal battery capacity. This parabolic nature
is illustrated by the Ni-Cd battery for which cost decreases
as capacity increases until 20,000kWh. Further evidence in-
cludes the gradually decreasing negative gradient of trend-
lines for li-ion, NaS, and PbA batteries, suggesting an ap-
proach to some minima. Upon comparing all aforementioned
chemistries, li-ion batteries seem to be the most cost-efficient
chemistry at any given capacity, while Ni-Cd appears to be
the least.

An anomaly occurs for Ni-MH batteries as it exhibits a
strictly increasing function in terms of cost incurred as battery



Figure 3: Cost vs. battery capacity and chemistry for the Thames
Valley Vision dataset.

Figure 4: Cost vs. battery capacity and chemistry for the Low
Carbon London dataset.

capacity simultaneously increases. Additionally, the magni-
tude of the positive gradient of the trendline for Ni-MH bat-
teries continuously increases with higher battery capacities
implying that the chemistry is extremely cost-inefficient.

It must be noted that at first glance the results from the
London dataset in Figure 4 appears to demonstrate a more
linear trendline comparing cost and capacity for all battery
chemistry types, in the sense that the magnitude of the gradi-
ents are comparatively lower. However, this can be attributed
to the amplified cost incurred in this dataset due to a higher
number of prosumers participating in the community energy
project; a closer inspection with magnified trendlines will re-
veal similar trendlines to Figure 3.

5 Responsible Research
Responsible research involves the consideration of several
ethical facets. Firstly, to ensure reproducibility of results
the paper describing the control algorithm which the exper-

iments were performed on has been referenced to allow third
parties to replicate the results personally. Additionally, the
datasets used have been mentioned in Section 3.3 and the bat-
tery model parameters for the experiment have been explicitly
included in Appendix A. To actually conduct the experiment,
the setup can be easily reproduced using the methodology de-
scribed in Section 3.

Regardless of presumptions, all results have been included
to guarantee data inclusivity and transparency. These results
are predominantly presented in Section 4, although comple-
mentary data has been included in the appendix.

From an ethical perspective, it is crucial to acknowledge
the limitations of the research, which are detailed in Section
6.2. Cost valuations of community energy projects derived
from the application of various battery models on the control
algorithm are purely experimental; these valuations should
not be considered accurate to any specific real-world commu-
nity energy initiative as each project is situationally specific
and costs can different due to several different factors. This
paper purely analyses the effect of different battery models on
a control algorithm redistributing benefits within a commu-
nity energy project, in order to gain insights into the battery
state of health model that may be leveraged for maximisation
of financial and environmental benefits gained.

6 Discussion
The following section discusses the results obtained in rela-
tion to the research question, taking into account background
knowledge and comparability to existing literature. Section
6.2 then considers notable limitations of the experiment and
explores any possible future improvements or extensions to
the research.

6.1 Analysis of Results
Various battery models have been applied to the control algo-
rithm in order to observe the effect in terms of performance,
which is measured by cost. Battery chemistry types differ sig-
nificantly through multiple facets - the most pivotal of which
is cyclic degradation. An analysis of the simulated degra-
dation curves in Figure 2 indicates that some battery chem-
istry types have more favourable degradation characteristics,
which is expected to be reflected in terms of cost incurred by
the control algorithm in a community energy project.

The Ni-MH battery chemistry suffers from the lowest num-
ber of cycles at a low DoD of 1% with just under 200,000 cy-
cles expected. While the chemistry degrades at a slower rate
than alternatives, it consistently exhibits the lowest number
of cycles at any given DoD below a relatively high DoD. In
combination with a comparatively low average lifetime of 5
years, this suggests higher costs will be incurred - a hypoth-
esis that is supported by the high cost valuations of £100,885
and £2,725,090 for the Thames and London datasets respec-
tively in Table 3 for a community energy project utilising Ni-
MH batteries. These costs indicate that the Ni-MH battery
is an estimated 27.9% less effective than the alternative clos-
est in terms of performance (Ni-Cd) and 70.3% less effective
than the best alternative (li-ion). The aforementioned propor-
tional comparisons were obtained by averaging the fractional



differences in terms of cost for the two datasets between the
relevant battery chemistry types. Ultimately, the results imply
that investing in a Ni-MH BESS may not produce any finan-
cial benefits, as Figures 3 and 4 suggest that costs continu-
ously increases with battery capacity. This seems counter-
intuitive for BESS available in the market as a complete ab-
sence of benefits renders the technology futile, so the results
could possibly be attributed to the limitations discussed in
Section 6.2. However, it can be noted that the Ni-MH chem-
istry is the least effective battery model when compared to the
batteries experimented with.

The degradation behaviour of Ni-Cd batteries is unique in
the sense that it boasts a relatively slow degradation rate at
lower DoD, while demonstrating some of the lowest number
of cycles at DoD higher than 85%. While enjoying a high ini-
tial number of cycles of around 800,000 at 1% DoD, results
indicate that Ni-MH batteries are only more cost-efficient
than Ni-Cd batteries. This is especially surprising when con-
sidering that cyclic degradation is considered a highly influ-
ential factor of cost. PbA batteries demonstrate the second
lowest number of cycles at 1% DoD at around 300,000 cy-
cles, with rapid degradation at a low DoD before plateauing at
a higher DoD. This would initially imply that Ni-Cd batteries
are superior to PbA batteries in terms of cost incurred due to
lower cyclic degradation, which is not the case. In fact, costs
of a community energy project utilising PbA batteries tend to
decrease more rapidly with cost, while projects using Ni-Cd
batteries gravitate to a higher minimal cost at a lower capac-
ity. This is likely a result of the significantly higher cost per
kWh of Ni-Cd batteries at £400 per kWh compared to £216
per kWh for PbA batteries, indicating market cost of batteries
is a significant factor of the battery model that influences the
control algorithm.

On the positive end of the spectrum, li-ion batteries appear
to be most effective in terms of cost, closely followed by NaS
batteries. Both chemistry types demonstrate extremely simi-
lar regularised degradation curves and high average lifetimes
of 20 and 15 years for li-ion and NaS batteries respectively.
Some additional differences lie in the battery costs per kWh
and charging/discharging efficiency, with lithium-ion batter-
ies costing £150 per kWH at 0.85% efficiency and NaS bat-
teries costing £250 per kWH at 0.89% efficiency. These su-
perior characteristics of both battery models and the high ini-
tial cycle life of above 800,000 cycles at 1% DoD point to
a profitable influence on the control algorithm. In fact, li-
ion batteries are an estimated 11.8% more cost efficient than
the next best alternative of NaS. In turn, NaS batteries are
an estimated 8.4% more effective than its next best alterna-
tive, which is PbA. Figures 3 and 4 illustrate that community
energy projects operating with li-ion, NaS and PbA batteries
all decrease in terms of cost as capacity increases, although
at a decreasing rate as it approaches higher capacities. This
indicates some minimum cost will be acquired at some opti-
mal capacity; this theory is further supported by Equation 1,
since it intuitively implies that the cost incurred due to the
battery increases with capacity. It would be unreasonable
to surmise that costs simply continue to decrease infinitely
as this would indicate that costs becomes negligible at some
high battery capacity, which an economic impossibility. The

satisfactory performance of PbA batteries supports the fact
that PbA batteries were previously the chemistry of choice
for many utility-scale applications. Furthermore, the superi-
ority of li-ion batteries is inline with the recent dominance of
li-ion BESS in the market, as evidenced in Section 2.2.

A comparison of lithium-ion subtypes reveals that the
LMO battery is most cost-effective, closely followed by LFP
differing in terms of cost by only an estimated 1.8%. NMC
batteries appear to incur the highest costs, differing from LFP
batteries by an estimated 11.8%. The positive effect of the
LMO battery may be attributed to the low cost per kWh at
£116 and slower degradation rate, demonstrating a compara-
tively higher number of cycles as DoD increases. Although
the cyclic degradation behaviour of the NMC battery is ac-
tually more favourable, it incurs a higher cost than LFP; this
can be explained by the higher cost per kWh at £160 com-
pared to £137 for LFP batteries. It must also be noted that the
cost incurred for all li-ion subtypes does not diverge notably
from the results of the li-ion model used in Section 4.2, thus
reinforcing the validity of the experiment.

6.2 Limitations and Future Work
A key limitation of this research includes the plethora of
BESS available in the market. It would be unfeasible to
model all BESS available and, as such, a representative subset
of battery models were chosen. A lack of literature and data
on certain battery characteristics also meant that assumptions
had to be made on certain variables. A possible extension of
this paper would be an analysis of the influence of further bat-
tery models, perhaps by way of additional battery chemistry
types. To this end, simulations may be conducted for BESS
which lack information in the public domain. An example of
an untested technology includes vanadium redox-flow batter-
ies for which a publicly available degradation curve was not
located.

Additionally, data on different BESS drastically differ be-
tween sources due to different testing environments and vari-
ations in manufacturers. For example, degradation behaviour
or cycle life of any given battery chemistry may vary if tested
at inconsistent temperatures or a non-identical DoD. As such,
experimental parameters entail a degree of uncertainty and
data used to model batteries may be inaccurate relative to
other used information. To this end, regularisation techniques
were used to normalise the dataset and diminish the negative
effects of data inconsistencies. However, it is extremely dif-
ficult to completely remove relative differences in data and
thus it is crucial to acknowledge this limitation. A sugges-
tion for future work includes experimentation with different
regularisation techniques to obtain accurate battery models.

The insights derived in this paper are intended to be lever-
aged for improvements in a control algorithm for community
energy projects. A possible extension of this work could be
the adaptation of the algorithm based on various battery mod-
els with the aim to minimise costs incurred due to battery
degradation. As a suggestion, machine learning models may
be applied to predict degradation based on a variety of config-
urable inputs, ranging from degradation behaviour to market
costs of a battery. This learning model, alongside prosumer
consumption profiles, may then be exploited to alter the bat-



tery control algorithm to maximise battery lifetime and min-
imise need for replacement.

7 Conclusion
This paper explores how the model of the battery state of
health influences the control algorithm designed for redis-
tribution of benefits in a community energy project. This
is achieved by applying various battery models to the con-
trol algorithm designed by Norbu et al. (2021) and com-
paring costs incurred. In particular, the paper differentiates
between models in terms of battery chemistry and capacity,
which indirectly includes several other configurable parame-
ters such as battery lifetime or efficiency. A key discrimina-
tor between battery chemistry types includes degradation be-
haviour, which may be modelled in the form of degradation
curves. As cyclic degradation is a highly influential factor
determining battery lifetime and thus cost, these curves were
simulated and input into the different models. Costs incurred
by the battery are calculated by determining a depreciation
factor, derived using a rainflow counting algorithm. Results
indicate that li-ion batteries are the most cost-effective, fol-
lowed by NaS, PbA, Ni-Cd, and Ni-MH batteries in order of
decreasing costs. Focusing on li-ion battery sub-types, it ap-
pears that the LMO chemistry incurs the lowest cost, followed
by LFP and NMC respectively. Costs also tend to decrease as
battery capacity increases, although at a decreasing rate im-
plying a minimal cost will be achieved for differing BESS at
some optimal capacity. Ni-MH batteries are an anomaly, in
that investments into this chemistry appear to be futile due to
increasing costs coinciding with increasing capacity. Major
determinants of these cost valuations are cyclic degradation,
battery cost per kWh, and expected lifetime. It must be noted
that data on battery models are lacing and inconsistent due to
varying testing environments, which lead to several assump-
tions for the experiment. The insights obtained provide rela-
tive comparisons between battery models and the influence on
the control algorithm, which may be leveraged to improve the
algorithm by elongating battery lifetime and thus minimising
costs.
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A Battery State of Health Model Parameters

Table 5: An overview of the parameters used for different battery
chemistry types in the battery state of health model to obtain
estimations of costs incurred in a community energy project.

Parameters for Battery Chemistry Types
Battery Chemistry

Parameter PbA Li-Ion Ni-Cd Ni-MH
Cost (£/kWh) 216 150 400 250
Lifetime (Years) 10 20 15 5
Cycle Life 1000 3000 3000 600
Charging Effi-
ciency (%)

0.85 0.85 0.7 0.82

Discharging Ef-
ficiency (%)

0.86 0.85 0.7 0.82

Minimum Ca-
pacity (kWh)

0.2 0.2 0.2 0.2

Initial Battery
Capacity (kWh)

0.6 0.6 0.6 0.6

Power Limit (%) 0.5 0.5 0.5 0.5
Battery Chemistry

Parameter NaS LMO NMC LFP
Cost (£/kwH) 250 116 160 137
Lifetime (Years) 15 10 16 21
Cycle Life 3000 3000 3000 3000
Charging Effi-
ciency (%)

0.89 0.85 0.85 0.85

Discharging Ef-
ficiency (%)

0.89 0.85 0.85 0.85

Minimum Ca-
pacity (kWh)

0.2 0.2 0.2 0.2

Initial Battery
Capacity (kWh)

0.6 0.6 0.6 0.6

Power Limit (%) 0.5 0.5 0.5 0.5

It must be noted that the parameters derived to be used in
the experiment depicted in table 5 were collected from a vari-
ety of sources (Asian Development Bank, 2018; Large, 2021;
Morris, 2012; Zhu et al., 2013; Breeze, 2019; Susarla and
Ahmed, 2020; Beltran et al., 2020; Wang et al., 2020; Cli-
matebiz, 2022).
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B Degradation Curves Before Regularization
Figure 5 displays the degradation curves for battery chem-
istry types prior to regularization. This highlights the effect
of regularization when comparing the curves to figure 2.

Figure 5: A comparison of battery degradation curves by chemistry
prior to regularization, demonstrating the drastic differences in

initial number of cycles at a minimal DoD of 1% between curves.

C Lithium-Ion Degradation Curves

Figure 6: A comparison of battery degradation curves for a
representative subset of lithium-ion chemistry types.

D Comparison of Costs by Chemistry Type
Figures 7 and 8 intend to visually demonstrate the difference
in costs incurred when applying battery models using differ-
ent chemistry types to the control algorithm for redistribution
of benefits within a community energy project. In particular,
the similarly low costs of li-ion and NaS is noticeable, closely
followed by PbA and Ni-Cd. Meanwhile, Ni-MH incurs dras-
tically higher costs.

Figure 7: Estimated costs per battery chemistry for Thames Valley
Vision dataset.

Figure 8: Estimated costs per battery chemistry for Low Carbon
London dataset.
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