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A B S T R A C T

This study develops a novel Artificial Neural Network (ANN) based approach to investigate de-
cision rule heterogeneity amongst travellers. This complements earlier work on decision rule
heterogeneity based on Latent Class discrete choice models. We train our ANN to recognise the
choice patterns of four distinct decision rules: Random Utility Maximisation, Random Regret
Minimisation, Lexicographic, and Random. Next, we apply our trained ANN to classify the re-
spondents from a recent Value-of-Time Stated Choice experiment in terms of their most likely
employed decision rule. We cross-validate our findings by comparing our results with those from:
(1) single class discrete choice models estimated on subsets of the data, and (2) latent class
discrete choice models. The cross-validations provide strong support for the notion that ANNs can
be used to identify underlying decision rules in choice data. As such, we believe that ANNs
provide a valuable addition to the toolbox of analysts who wish to investigate decision rule
heterogeneity. The substantive contribution of this study is that we provide strong empirical
evidence for the presence of decision rule heterogeneity amongst travellers.

1. Introduction

Artificial Neural Networks (ANNs) are gaining increasing popularity in many research fields, including in transportation (e.g.
Hensher and Ton, 2000; Mohammadian and Miller, 2002; van Lint et al., 2005; Omrani et al., 2013; Borysov et al., 2016; Alwosheel
et al., 2017; Wong et al., 2017). ANNs are mathematical models which are loosely inspired by the structure and functional aspects of
biological neural systems. Their recent uptake can be explained by major breakthroughs in ANN research, affecting the daily lives of
many people (such as e.g. in the context of natural language processing or facial recognition), in combination with the rise of
emerging data (Vlahogianni et al., 2015; Chen et al., 2016). Particularly, the versatile architecture of ANNs makes them well-
equipped to deal with large volumes of (unstructured) emerging data (Maren et al., 2014).

However, despite the general excitement in the field of transportation about the potential of ANN (and other data-oriented
techniques), the number of areas of application of ANNs in transport, and in particular in the travel behaviour research subfield, is
still fairly limited. Currently, ANNs are predominantly used to analyse observed movement patterns and to make short-term travel
demand predictions. However, a recent paper in this journal (Chen et al., 2016) advocates to move beyond this state, and use these
data-oriented techniques to improve understanding of the travel behaviour underlying human mobility patterns. In particular, Chen
et al., suggest using data-oriented methods to identify factors explaining travel decisions and to uncover underlying decision rules.

This paper answers to this call: it develops an ANN based approach to investigate travellers’ decision rules. Decision rules are the
decision mechanisms humans use when making choices (Payne et al., 1993). Decision rules are widespread in transportation research

https://doi.org/10.1016/j.trc.2018.11.014
Received 19 September 2017; Received in revised form 26 September 2018; Accepted 26 November 2018

⁎ Corresponding author.
E-mail address: s.vancranenburgh@tudelft.nl (S. van Cranenburgh).

Transportation Research Part C 98 (2019) 152–166

Available online 03 December 2018
0968-090X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2018.11.014
https://doi.org/10.1016/j.trc.2018.11.014
mailto:s.vancranenburgh@tudelft.nl
https://doi.org/10.1016/j.trc.2018.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2018.11.014&domain=pdf


as they are embedded in discrete choice models. Although the vast majority of discrete choice models are built on a single decision
rule (random utility maximisation), there is a growing recognition amongst transport researchers that travellers are heterogeneous in
terms of their decision rules. Also, it is increasingly acknowledged that insights on decision rule heterogeneity are crucial for un-
derstanding and predicting travel behaviour. In this context, a number of recent studies have explored decision rule heterogeneity
amongst travellers (using traditional discrete choice models) (Hess et al., 2012; Leong and Hensher, 2012; Hess and Chorus, 2015;
Balbontin et al., 2017; Boeri and Longo, 2017; Gonzalez-Valdes and Raveau, 2018).

Specifically, in this study we develop a novel pattern recognition Artificial Neural Network (ANN) to classify travellers in terms of
their most likely employed decision rules based on observed sequence of choices. By doing so, this study aims to shed new light on
decision rule heterogeneity amongst travellers. In order to detect patterns in the data ANNs need to be trained based on so-called
training data, which includes correct classifications. However, in the context of decision rules the ‘true’ decision rule is inherently
unknown. In fact, decision rules should rather be perceived as quintessential models explaining choice behaviour in a parsimonious
way than as models that accurately reflect the complex decision-making processes (Chorus, 2014). Therefore, in the absence of real-
world training data consisting of the ‘correct’ classifications, we train our ANN using synthetic data. The synthetic decision-makers
which we created for training are heterogeneous not only in terms of their employed decision rules, but also in terms of their
preferences. By doing so, the ANN is trained to classify travellers in terms of their decision rules in the realistic condition in which
besides decision rule heterogeneity also taste heterogeneity and heteroscedasticity are present. Finally, we apply our trained ANN to
classify the respondents from a recent Value-of-Time (VoT) Stated Choice (SC) experiment, and cross-validate its classifications using
traditional discrete choice analysis.

The methodological contribution of this paper is that it is the first to show how ANNs can be employed to investigate travellers’
decision rule heterogeneity. We present a novel ANN topology that is particularly suited to deal with sequences of choice ob-
servations, and show how to train it using synthetic data. As such, this research complements earlier work on decision rule het-
erogeneity based on Latent Class discrete choice models. The substantive contribution of this study is that we provide new, strong,
empirical evidence for the presence of decision rule heterogeneity amongst travellers.

The remainder of this paper is organised as follows. Section 2 first presents the empirical data that we aim to analyse using the
ANN based approach. Section 3 develops the ANN and applies it to the empirical data set. In Section 4 we cross-validate our results
obtained from the ANN by comparing them with results obtained using traditional LC discrete choice models. Finally, Section 5 draws
conclusions and provides a discussion.

2. Data

For this study we use data from a relatively small VoT SC experiment.1 We choose this data set because of its simplicity. Its
simplicity provides a degree of tractability on the underlying decision-making mechanisms used by the respondents. In these data we
can, for instance, straightforwardly identify the compromise alternative2 and we can easily detect non-trading behaviour. This allows
us latter on to cross-validate the results of our ANN.

Fig. 1 shows a screenshot of the first choice tasks presented to respondents in the SC experiment. Choice tasks in this experiment
consist of three unlabelled route alternatives, each consisting of two generic attributes: Travel Cost (TC) and Travel Time (TT).
Attribute levels are selected as follows: the range of the travel times was chosen such that they are in consonance with the range of the
travel times presented in previous European VoT SC-experiments–. The minimum travel time is set at 23min, and the maximum at
35min, with equally spaced 4min intervals. In this experiment respondents were presented T=10 choice tasks. To optimise the
statistical efficiency of the experiment, a so-called D-efficient design is used. The statistical efficiency of the experimental design was
optimised for a combination of RUM and P-RRM models, see Van Cranenburgh et al. (2018) for more details. The complete ex-
perimental design can be found in Appendix A.

Notation

C Set of alternatives
i j, Choice alternatives in C
yi Indicator which denotes whether alternative i is

chosen
Ui Total utility of alternative i
Vi Observed part of utility of alternative i

i Unobserved part of utility or regret of alternative i

m Taste parameter associated with attribute m
xmi Attribute level of the m’th attribute of alternative i
Pi Choice probability of alternative i
RRi Total regret of alternative i
Ri Observed part of regret of alternative i
m The most important of the M attributes
J Cardinality of the choice set
xjm Attribute level of alternative j for the attribute m

1 To avoid any misunderstanding, we note upfront that these data are not used for the training ANNs. These data would be too small to do so (Van
Cranenburgh and Chorus, 2018).

2 Compromise alternatives have an intermediate performance on each or most attributes (relative to other alternatives in the choice set) rather
than having a poor performance on some attributes and a strong performance.
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2.1. Data collection

The data collection took place in The Netherlands in May 2016. To recruit respondents a panel company was used (TNS-NIPO).
Only car commuters were admitted to conduct the choice experiment. In total 106 respondents completed the full survey. A relatively
balanced sample has been obtained in terms of gender, age, education and income. The sample statistics can be found in Appendix B.
See Van Cranenburgh et al. (2018) for more details on the data collection.3

2.2. Decision rules

Close inspection of the choice data allows us to derive indications on the decision rules that may have been used by the re-
spondents in this route choice experiment. In each choice task respondents could choose between a ‘fast and expensive’, a com-
promise, and a ‘slow and cheap’ alternative, although they were not explicitly labelled as such in the SC experiment. Across all choice
observations, in 30 per cent of the cases the ‘fast and expensive’ alternative is chosen; in 38 per cent of the cases the compromise
alternative is chosen; and in 32 per cent of the cases the ‘slow and cheap’ alternative is chosen. The observation that the compromise
alternative acquires the highest market share provides an indication that an RRM decision rule may have been used by a considerable
share of the respondents. After all, RRM models predict a market share bonus for the compromise alternative when compared to
Random Utility Maximisation (RUM) (Chorus and Bierlaire, 2013; Guevara and Fukushi, 2016).

The stacked bar graph in Fig. 2 provides more insights on the distribution of respondents’ choices. It visualises for each of the 106
respondents in the data set the number of times the ‘fast and expensive’, the compromise and the ‘slow and cheap’ alternative has
been chosen (note that we sorted the respondents on the x-axis for the sake of clarity). The bar graph reveals that 9 respondents
consistently choose for the ‘fast and expensive’ alternative (full blue bars on the left) and 16 respondents who consistently chose for
the ‘slow and cheap’ alternative (full yellow bars on the right). This suggests that a substantial share of the respondents opted for a
lexicographic decision rule.4

A substantial share of the respondents (77) switched between alternatives across the ten choice tasks. Of these 77 respondents, 29
respondents consistently chose either the ‘fast and expensive’ alternative or the compromise alternative (blue-green bars) and 13
respondents consistently chose either the ‘slow and cheap’ alternative or the compromise alternative (yellow-green bars). This signals
a degree of rationality underlying the trade-offs, which seems consistent with RUM. Thirty-three respondents chose all three alter-
natives at least once (tri-coloured bars). Close inspection of the choices of these respondents using the half-space method (Rouwendal
et al., 2010) reveals that their choices do not suggest a stable underlying VoT – at least not from a RUM modelling perspective. In
addition, two respondents even chose either the ‘fast and expensive’ alternative or the ‘slow and cheap’ alternative. This observation
suggests that a substantial share of respondents made (seemingly) random choices.

Route A Route B Route C

Travel time (one-way) 23 minutes 27 minutes 35 minutes

Travel cost (one-way) € 6 € 4 € 3

Fig. 1. Screenshot of 1st choice task (translated to English).

Fig. 2. Choices of respondents.

3 The data can be retrieved from http://doi.org/10.4121/uuid:1ccca375-68ca-4cb6-8fc0-926712f50404.
4 Under a lexicographic decision rule a decision-maker first evaluates the alternatives, then identifies the most important attribute and subse-

quently chooses the alternative that performs best in terms of this particular attribute.
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Based on these descriptive analyses we obtain first indications that the following four decision rules may be present in our data:
RUM, RRM, Lexicographic, and Random. In the remaining part of this paper we will focus on these four decision rules. The latter
decision rule ‘Random’ may seem a bit odd, in the sense that random behaviour is typically not considered a decision rule and is
therefore typically not explicitly accounted for in discrete choice studies. However, seasoned SC researchers know that in SC data
typically a considerable share of respondents makes (seemingly) random choices. Therefore, we treat random choice behaviour as a
separate decision rule in the context of this study. Table 1 shows the mathematical formulations of these decision rules as well as their
implementation in a discrete choice modelling framework. Note that the RRM model we use in this study is the so-called P-RRM
model (Van Cranenburgh et al., 2015a). This model is increasingly used in the RRM literature as yields the strongest regret mini-
mization behaviour, i.e., the highest level of regret aversion which is possible, within the RRM modelling framework. As such, this
RRM model postulates choice behaviour which is strongly different from RUM – which intuitively should make it easier to distinguish
between these two decision rules.

3. An artificial neural network based approach

Section 3.1 and Section 3.2 discuss the development of the ANN for decision rule classification. Next, Sections 3.3 and 3.4 present
the training data and the performance of the trained network. Finally, in Section 3.5 we elaborate on how to employ the trained
network to classify travellers in empirical data, and apply it to our empirical VoT data to classify the respondents.

3.1. Artificial neural networks

Artificial neural networks are inspired by the structure and functional aspects of biological neural systems. ANNs originate from
the field of neuro and computer sciences, but are currently rapidly spreading out to other research disciplines (Maren et al., 2014).
Underlying this rapid expansion is the emergence of so-called Big Data. The combination of large volumes of (unstructured) data on
the one hand and the versatile architecture of ANNs on the other hand has led to numerous ground-breaking results in a variety of
disciplines, such as speech recognition, gene detection of autism and natural language processing.

Computations in ANNs are structured in terms of interconnected groups of artificial neurons, processing information using a so-
called connectionist approach (Bishop 1995). ANNs are composed of nodes. Three types of nodes are commonly distinguished: input
nodes, hidden nodes and output nodes. The input nodes contain the explanatory variables. In the context of choice models, these
typically concern the attribute levels of the alternatives. The output nodes contain the dependent variables. In the context of choice
models, e.g. i.e. when predicting choices, the output nodes consist of the choice probabilities. The signals propagate in forward
direction, through the links which connect the nodes. The links have a numeric weight w, which needs to be learned from the data. At
each node the weights are multiplied with the input value from the previous nodes and summed. Then the signal is propagated to the
next layer using an activation function. Commonly used activation functions are tan-sigmoid, softmax and purelin. See Bishop (1995)
for an extensive overview of ANNs and their characteristics.

Despite the fact that an extensive variety of ANNs have been developed (Maren et al., 2014) to tackle all sorts of (classification)
problems – each of which with strengths particular to their application –, to the best of the authors’ knowledge no type of ANN has
been put forward that is particularly suited to investigate decision rule heterogeneity. Our classification problem is somewhat un-
conventional as we aim to make a classification based on an unordered sequence of correlated (choice) observations. Note that this is
conceptually different from the more commonly encountered ordered sequence-to-sequence classification problem. To classify a
traveller in terms of his or her (most likely) employed decision rule we need to assess a sequence of choice observations made by a
traveller. After all, based on a single choice observation of a traveller it is virtually impossible to make such a classification, as any
single choice could be driven by any decision rule (considering some randomness is present). In contrast, a sequence of choice
observations may provide a ‘fingerprint’ of what is the most likely employed decision rule. However, for our classification problem
the order of the observations within the sequence is irrelevant. Essentially, what we want is a network that classifies decision-makers
to decision rules, having seen the full sequence of observations of that a decision-maker, regardless of the order in which the
observations are presented to the network. Therefore, we cannot use ANN types that are specifically designed to capture serial

Table 1
Decision rules.

Decision rule Choice rule Total utility/regret Value function MNL choice probability

Utility maximisation =y U U j C1i i j = +U Vi i i =V xi
m

m im =Pi
eVi

j C
eVj

P-RRM =y RR RR j C1i i j = +RR Ri i i =R x xmax(0, [ ])i
j i m

m jm im =Pi
e Ri

j C
e Rj

Lexicographic =y x x j C1i im jm N/A N/A

Random =y U U j C1i i j = +U Vi i i =V i C0i =Pi J
1
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correlations, such as the Recurrent ANN. In the absence of a suitable ‘off-the-shelf’ ANN, the next subsection proposes a new ANN
topology that is particularly designed for classification of travellers’ decision rules (and the data set presented in Section 2).

3.2. An artificial neural network for decision rule classification

ANNs are often pitched as a generic method that can be used to model any problem. However, this is a misconception: much of the
art of machine learning is determining how to incorporate problem specific knowledge into the ANN via its topology, performance
function, activation functions, etc. (Maren et al., 2014).

To develop an ANN capable to classify decision-makers to decision rules, we have tested different types of ANNs (Multi-layer
Perceptron and LSTM) and experimented with different topologies, number of hidden layers, activation functions as well as the
degree of connectivity between hidden layers. We compared the networks in terms of their classification performance, while con-
sidering their complexity (in terms of e.g. number of layers and number of nodes at each layer).

Fig. 3 shows the topology of our best performing ANN.5 The ANN is a Multi-Layer Perceptron (MLP). A key characteristic of the
ANN topology is that it processes sequences of choice tasks made by a decision-maker as one chunk of input data (note that the input
layer contains all ten choice tasks including the observed choice). Hence, the model treats a sequence of choices of a traveller as one
independent observation. This is crucial as the choice observations belonging to the same individual are correlated and therefore
cannot be treated as independent observations.

The ANN’s topology is behaviourally informed in the sense that behavioural intuition is added to the network to help it grasp the
data structure and classification problem. In particular, the ANN is deliberately sparsely connected, i.e., many nodes are not con-
nected to one another. For instance, the input nodes of one choice task are not connected with the hidden nodes of other choice tasks.
Behaviourally, this makes sense because the attributes (input nodes) presented to a decision-maker in e.g. choice task t=10 simply
cannot affect the choice in choice task t=1 (i.e., unless the respondent is allowed to revise his or her choices, which is usually not the
case in SC experiments). On the other hand, the choice in choice task t=1 could affect the choice in e.g. the next choice task.
However, our aim in this paper is to uncover decision rules based on a sequence of choice observations of an individual, regardless of
the order in which they are presented to the network. Therefore, we actually want to prevent the network to pick up learning and
inertia effects (if present). Furthermore, in a sense, the first hidden layer takes care of assigning ‘values’ to alternatives and combining
these with the observed choice, which are then passed on to the second hidden layer where the sequence as a whole is processed to
make the decision rule classification. From this perspective, the full connection between the second hidden layer and the output layer
is intuitive as it is the sequence of choice observations that is informative on the employed decision rule.

On a more technical level, our network uses two hidden layers. We find that adding more hidden layers does not improve the
performance, while removing one layer deteriorates the performance drastically. At the first hidden layer (for each choice task) as
well as at the second hidden layer we use four nodes. This is found to result in the best performance. Decreasing the number of nodes
(either at the first or second hidden layer) decreases the classification performance noticeably, while increasing the number of nodes
beyond four does not seem to improve performance (while consuming considerably larger number of weights than needed). Also note
that no bias nodes are present in the network (see Fig. 3). During training the order of the alternatives and the order of the choice sets
are fully shuffled (see Section 3.3), meaning that bias nodes become superfluous. The total number of weights of the network is 496.
Furthermore, our network uses tan-sigmoid activation functions (LeCun et al., 2012) at the nodes of the hidden layers. Other types of
activation function are found to perform worse, or result in longer training times. At the nodes of the output layer we however use
softmax activation functions. This ensures that the sum of the decision rule classification probabilities adds up to 1.

3.3. Training data

Training the ANN involves exposing it to data containing the correct classifications. However, as noted before, in the context of
human choice behaviour the ‘true’ decision rule is inherently unknown. In fact, decision rules should rather be seen as quintessential
mathematical models representing highly complex decision processes. To deal with the fact that we do not have real data containing
the ‘true’ decision rule, we train our ANN using synthetic data. These data are created using the decision rules shown in Table 1.

The training data set consists of 40,000 synthetic decision-makers; 10,000 decision-makers for each decision rule. Hence, the
training data set is fully balanced. In consonance with the VoT data that we aim to analyse (see Section 2) each synthetic decision-
maker is confronted with T=10 choice tasks. The choice tasks are the same as those used in the empirical data collection (see
Appendix A).

Given that synthetic data are in unlimited supply, the number of synthetic decision-makers is deliberately set high. A commonly
used rule-of-thumb in machine learning is that the sample size needs to be (at least) 10 times larger than the number of estimable
weights in the network (Haykin et al., 2009). A recent study specifically dealing with sample size requirements for using ANNs in the
context of choice models is more conservative, and recommends to use a sample size of (at least) 50 times the number of estimable
weights (Alwosheel et al., 2018). By using 40,000 observations in our study, our sample size is a comfortable 80 times larger than the
number of estimable weights. Thereby, we safely avoid overfitting issues.

5 Note that the topology of the ANN in Fig. 3 is specifically tweaked in terms of the number of input nodes and the number of decision-rules
(output nodes) to match the structure of the empirical data that we aim to analyse (see Section 2). However, it can easily be adjusted to fit other data
sets.
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Importantly, besides decision rule heterogeneity, in the empirical data that we aim to analyse there are two other potential
sources of correlation across the sequence of choice observations of individuals. Firstly, decision-makers can be heterogeneous in
their preferences. Such taste heterogeneity creates correlation in the sequence of choices of an individual because they are generated
using the same set of individual specific parameters. Secondly, decision-makers may learn from their earlier made choices, creating

TCA

TTA

TCB

TTB

TCC

TTC

PRUM

PRRM

PRND

PLEX

Hidden layer 2Hidden layer 1Input layer

Choice 
task 1

Choice 
task 2

Choice 
task T

Output layer
(decision rule classification)

TCi = Travel Cost of alternative i
TTi = Travel Time of alternative i

Y=A

Y=B

TCA

TTA

TCB

TTB

TCC

TTC

Y=A

Y=B

TCA

TTA
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TTB

TCC

TTC

Y=A

Y=B

Fig. 3. ANN topology.
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serial correlation across the observations. For instance, the respondent could choose the fast and expensive alternative in, say, choice
task 5 because he/she also chose the fast and expensive alternative in the choice tasks before, and he/she would like to stick to that
choice.

During training we need to account for these sources of correlation, such that the trained network is able to detect the correlation
specifically caused by the decision rule (and becomes capable to accurately classify decision-makers in terms of their employed
decision rule). To account for learning effects, during the training stage we shuffle the order of the choice tasks and alternatives in the
training data. Thereby, we prevent the network from learning (1) the (fixed) structure of the data and (2) ordering effects caused by
learning or inertia (if present). Our synthetic decision-makers do not have the ability to learn, meaning that there are no learning
effects to capture during training. Still, shuffling the order of alternatives and choice sets at the training stage is important as not
doing so would preclude doing so in the application stage (where it is important). Then, when we apply the network to classify
respondents in the empirical data set (Section 3.5), we also shuffle – at the level of the individual – the order of the choice tasks and
the order of the alternatives. By doing so, serial-correlation in the empirical data is removed (if present).

To account for heterogeneity in preferences, we take a different approach. We created synthetic decision-makers which are
heterogeneous in their preferences. By doing so, the ANN is trained to classify travellers in terms of their decision rules in the realistic
condition in which both taste heterogeneity and heteroscedasticity are present. In the context of the decision rules considered in this
study, taste heterogeneity is only relevant for RUM and RRM decision rules, as these decision rules contain taste parameters gov-
erning the decision-making process. Specifically, for both RUM and RRM decision-makers we assume that tastes for travel cost and
travel time are symmetrically triangular distributed across decision-makers. Other distributions (normal and uniform) have been
tested, but gave by and large similar results.

Accordingly, to generate the RUM and RRM choices every synthetic decision-maker is attributed two independent draws from the
associated triangular densities for the marginal utilities/regrets of cost and time. Pseudo-random draws are generated from the
Extreme Value Type I distribution for every alternative in the choice task. For RUM decision-makers, the alternative with the highest
total utility is chosen; for RRM decision-makers the alternative with the minimum total regret is chosen. For βCost the lower bound of
the distribution is set at a=−3.2, the mean at −1.6 and the upper bound is set at c=0; for βTime the lower bound is set at
a=−0.8, the mean at −0.6 and the upper bound is set at c=0. The means of βCost and βTime are chosen based results from a LC
discrete choice analysis conducted prior to training the ANN. However, we also tested larger and smaller values and found that these
do not substantially influence results. For the RRM model a choice set size correction factor of 2/3 is applied to the parameters, see
Van Cranenburgh et al. (2015b). Thereby, it is ensured that the using the same parameterisation for RUM and RRM corresponds to
approximately the same degree of choice consistency. This avoids that the ANN learns that relatively deterministic choice behaviour
is specific for RUM while relatively Random choice behaviour is specific for RRM, or vice versa.

To generate the Lexicographic choices, for 5000 decision-makers we set the choice to be the fastest route, and for the other 5000
decision-makers we set the choice to be the cheapest route. For this decision rule no randomness is added. To generate the Random
choices, we simply took a draw z from the standard uniform distribution for each choice task. After all, random choice behaviour
implies equal choice probabilities across all alternatives. In case z < 1 3 then the choice is set to alternative A, in case1 3 < z <
2 3the choice is set to alternative B, and in case z > 2 3the choice is set to alternative C.

3.4. Performance and cross validation

The ANN is implemented in MATLAB2017.6 Prior to training, the data are normalised to minimise training time and reduce the
probability of ending-up with suboptimal solutions. To train the ANN Levenberg-Marquardt backpropagation is used. This training
algorithm is built-in and found to work well. Particular advantages of this algorithm over other training algorithms are that it is
computationally relatively fast and requires relatively little memory. Training the ANN takes a few minutes using a desktop PC with
six CPUs.

To test the capability of the ANN to classify decision-makers we use the so-called k-fold cross-validation method, with k=10.
With 40,000 synthetic decision-makers, the data set is split into 10 folds of 4000 randomly selected decision-makers, although we
made sure that in each fold the four decision rules are equally represented. In each repetition of the training and testing, the data of
36,000 decision-makers are used for training and the data of 4000 decision-makers are used as a holdout set for testing. Holdout sets
are selected such that their union over all repetitions is the entire training set. By doing so, the data of every decision-maker is
guaranteed to be part of the training and testing data. The trained network is eventually applied in Section 3.5 to classify the
respondents in the empirical data.

Table 2 shows the k-fold confusion matrix. Using the trained network each decision-maker in the test data sets are assigned to a
decision rule based on the highest classification probability. This assignment is then compared to the true classification. More
specifically, the cells on the diagonal show the mean percentage of the decision-makers that are correctly classified, across the 10
folds. The off-diagonal cells show the mean percentage of decision-makers that are misclassified into a certain decision rule, across
the 10 folds. In parenthesis below the means values, the standard deviation is reported.

Based on Table 2 a number of inferences can be made. Firstly, the percentage correctly classified decision-makers is fairly good. It
ranges between 54 (for RUM) to 99.8 per cent (for Lexicographic). Altogether, across the 10 folds between 73 and 76 per cent of the

6 Code is available upon request from the first author.
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decision-makers are correctly classified by the trained ANN (with an average of 75 per cent). Finally, the small standard deviations
show that the classification is relatively stable across the folds.

The fact that not all decision-makers are correctly classified may, at first sight, seem not very promising. However, this was
actually to be expected for two reasons. One reason is that when generating choices7 we explicitly add randomness to account for
unobserved factors on the side of the analyst. Therefore, in principle, any generated sequence of choices may just by coincidence
appear to be generated by a certain decision rule, while it was generated by another. Another reason is that for certain para-
meterisations of the decision rules the implied choice behaviour becomes indistinguishable. Specifically, the taste parameters for
RUM and RRM are drawn from symmetric triangular distributions. These distributions have mass very close to zero, meaning that
individuals can have taste parameters that will generate choice behaviour that is virtually indistinguishable from Random choice
behaviour. Likewise, the taste parameters may have been drawn such that one attribute is relatively far more important than the
other, for instance, in case βCost =−3 and βTime=−0.01. The resulting choice behaviour is then virtually indistinguishable from
lexicographic choice behaviour. After all, with extreme ratios of parameters a decision-maker will always choose for either the
cheapest or the fastest alternative. On a more general note, the fact that not all decision-makers are correctly classified highlights that
classification of decision-makers to decision rules based on small finite sequence of choices – in the presence of randomness and taste
heterogeneity – is inherently a hard task.

Close inspection of Table 2 shows that the ANN has most difficulty with distinguishing between RUM and RRM decision rules.
16.1 per cent of the RUM decision-makers are misclassified as RRM and 18.7 per cent of the RRM decision-makers are misclassified as
RUM. This highlights that RUM and RRM differ from one another in rather subtle ways, even though we used the P-RRM model –
which imposes very strong regret minimization behaviour.

3.5. Application to empirical data

Next, we use our trained ANN to classify the 106 respondents in the data set presented in Section 2. To do so, we use a resampling
approach. That is, for each respondent we shuffle the order of the sequence of choice observations and the order of the alternatives
(left, middle, right) and apply the trained network. The respondent is then classified to the decision rule that attains the highest
probability. But, rather than classifying each respondent just once, we classify each respondent 1000 times based on 1000 reshuffles
of the order of the sequence of choice observations. After that, each respondent is classified to the decision rule that attains the
highest number of ‘votes’ across the 1000 trials. We find that some respondents are very consistently classified by the network to one
particular decision rule – regardless of how the data are shuffled. For other respondents the particular manifestation of the data does
affect the decision rule classification. However, by classifying each respondent 1000 times, we obtain stable results in terms of what is
the most likely decision rule employed for each respondent in our data.

Table 3 shows the final classifications. Based on Table 3 the following observations can be made. Firstly, and we consider this a
noticeable substantive finding, we see that only 22 out of the 106 respondents are classified as random utility maximisers. This
finding may spark further debate on the dominance of RUM models in discrete choice modelling practices – although we certainly do
not want to claim that these market shares are one-to-one transferable to other choice contexts. Secondly, we see that the largest
number of respondents (51) is classified as random regret minimisers. Thirdly, respectively 27 and 6 respondents are classified as
Lexicographic and Random decision-makers.

Table 3
Classification based on highest likelihood N=106.

Decision rule RUM P-RRM Lexicographic Random

No. respondents 22 51 27 6

Table 2
Classification of based on highest likelihood.

True DGP ANN classification [%]

RUM RRM Lexicographic Random

RUM 54.6(3.2) 16.1(1.9) 9.7(1.1) 19.7(3.4) 100%
RRM 18.7(2.3) 67(1.9) 1.1(0.3) 13.2(1.7) 100%
Lexicographic 0.2(0.2) 0.0(0.0) 99.8(0.2) 0.1(0.1) 100%
Random 12.5(1.4) 9.9(1.4) 0.9(0.5) 76.8(2.5) 100%

7 Except for lexicographic choice behaviour.
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The design of the SC experiment itself may partly explain the obtained markets shares, for a number of reasons. Firstly, the
relatively high market share of the RRM decision rule may (in part) be attributed to the fact that the compromise alternative is
very easy to identify for respondents. Therefore, it seems possible that the design of the SC experiment may actually have triggered
an RRM like decision rule on the side of the respondent. Secondly, the relatively high market share of the Lexicographic decision
rule may be due to the fact that the experimental design consists of just two attributes (possibly in combination with the ranges of
the attribute levels). This makes it fairly easy for respondents to use a lexicographic decision rule; a respondent may first decide
on the most important attribute (either travel cost or travel time) and then choose consistently the best alternative based on that
attribute.

The proposed method is rather flexible in application. It can be applied to SC as well as to Revealed Preference (RP) data.
Applying the method to SC data seems however most natural since SC data are generally less noisy, which is an important asset since
differences between decision rules can be subtle. We have applied the method in the context of a straightforward three alternative,
two attribute SC data set. However, the method can essentially be applied to data sets which involve any number of attributes or
alternatives. Finally, it is worthwhile to note that since the actual training is conducted on synthetic data, the size of the empirical
data set is never a limiting factor to apply the method (this in contrast to discrete choice based methods). This makes the method also
particularly suited to investigate decision rule heterogeneity in small data sets.

4. Cross-validation using discrete choice models

This section aims to cross-validate the classification results of Section 3.5. Although the performance of the ANN on the test data
set is encouraging, it is good to keep in mind that we used synthetic data to train our ANN (Section 3.3) while in Section 3.5 we
ultimately apply the ANN to real empirical data (Section 3.5). Due to this discrepancy between training and application additional
analyses are needed to further examine the capability of the ANN to classify travellers to decision rules. The next two subsections
present these analyses.

4.1. Model fit based on subsets

One way to cross-validate the capability of the ANN to classify respondents to decision rules is by estimating discrete choice
models based on carefully created subsamples of the data. In particular, we split the 106 respondents in the data set into four subsets
based on the highest classification probability as predicted by the ANN. That is, subset 1 consists of the 22 respondents classified by
the ANN as random utility maximisers; subset 2 consists of the 51 respondents classified by the ANN as random regret minimisers,
and so on. For these subsets we formulate the following conjectures:

If the ANN has accurately classified respondents to decision rules, then

1. The RUM model outperforms the P-RRM model in subset 1
2. The P-RRM model outperforms the RUM model in subset 2
3. Both the RUM and the P-RRM model have a very poor model fit in subset 4.
4. The respondents allocated to subset 3 include those 25 respondents which in Section 2.2 are identified to have consistently chosen

for the fast and expensive or the slow and cheap alternative across all choice tasks.

On these subsets we estimate three types of discrete choice models: a linear-additive RUM model, a P-RRM model and a μRRM
model (Van Cranenburgh et al., 2015a).8 The latter model is a very flexible type of RRM model, which holds both the linear-additive
RUM and the P-RRM model as special cases. The μRRM model consists of one additional parameter (as compared to linear-additive
RUM and P-RRM). This ‘regret aversion parameter’ μ captures the degree of regret minimisation behaviour, where µ 0 implies a
very strong degree of regret aversion (i.e. a P–RRM decision rule) and µ implies no regret aversion (i.e. a linear-additive RUM
decision rule). As such, this model allows to empirically establish the underlying decision rule (RUM or RRM with varying degrees of
regret aversion). All models are estimated in Multinomial Logit (MNL) form.

Table 4 shows estimation results.9 First we look at the results for subset 1. We see that the RUM model very strongly outperforms
the P-RRM model on this subset. The difference in final log-likelihood when put to the Ben-Akiva and Swait (1986) test for nonnested
models, is very significant at p < 0.000. In fact, the very low ρ2 for the P-RRM model indicates this model is hardly able to describe
the data generating process in any meaningful manner. Despite this, we see that the signs are recovered. Looking at the results for the
μRRM model, we see that the regret aversion parameter μ hits the upper bound, which is set at μ=100 in the estimation. Hence, the
μRRM model collapses to the linear-additive RUM model, implying that imposing any degree of regret minimisation behaviour would
worsen the model fit. Therefore, conjecture (1) is supported by these discrete choice analyses. As such, we are rather confident that
the ANN has been successful in identifying those travellers whose choice behaviour is best described by RUM.

Looking at the results for subset 2 we see that the P-RRM model very strongly outperforms the RUM model. The difference in final
log-likelihood – which is over 120 LL points – is highly significant. Furthermore, the signs of the parameters are all in the expected

8 A choice set size correction factor is applied to the RRM models to be fully consistent with Section 3. This has no impact on model fit; it merely
scales the estimates by a fix factor.

9 Estimation results based on the full data set can be found in Appendix C.
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directions. The μRRM model indicates that the choice behaviour of the respondents in this subset is best described by very strong
regret minimisation behaviour. The regret aversion parameter μ in the μRRM model hits the lower bound, which is set at μ=0.01 in
the estimation, implying that the μRRM model collapses to a P-RRM model. Therefore, also conjecture (2) is supported by these
discrete choice analyses. This gives us confidence that the ANN has also successfully identified those travellers whose choice be-
haviour is best described by RRM.

Furthermore, it is encouraging to see that the ratios of the parameter estimates are roughly constant across the subsets. In a RUM
modelling framework, the ratios of parameters represent the marginal rate of substitution, which – in this context – translate into
VoTs. The implied VoTs by the RUM models in subset 1 and 2 are respectively = 0.24Time Cost €/minute and = 0.30Time Cost
€/minute. These results provide some support for that the ANN has classified travellers based on decision rules, rather than based on
taste heterogeneity – as is a major methodological problem when using a LC discrete choice modelling approach to investigate
decision rule heterogeneity (Hess et al., 2012).

Looking at the results for subset 4 we see that the RUM, P-RRM and the μRRM model all fit the data very poorly (ρ2≤ 0.08). This
means that none of these models is able to describe the data generating process meaningfully. The small (and insignificant) taste
parameters in all three models confirm this inference. These tell us that these models basically predict rather random choices.
Therefore, conjecture (3) is supported.

Finally, we analyse subset 3. The ANN classified 27 respondents to the Lexicographic decision rule. To examine this classification
we do not need to estimate discrete choice models. After all, lexicographic behaviour can fairly easily be detected by inspection of the
data.10 As expected, we find that all 25 respondents who consistently chose for the ‘fast and expensive’ alternative (9) and the ‘slow
and cheap’ alternative (16) are classified as lexicographic by the ANN. In addition, two respondents which chose twice the ‘fast and
expensive’ route and 8 times the ‘slow and cheap’ route are ‘falsely’ allocated to this class. Nonetheless, despite these mis-
classifications, it is very reasonable to say that also the final conjecture (4) is supported. Taken together, these results encourage us to
believe that the ANN is well capable to classify travellers in terms of their underlying decision rules.

Table 4
Estimation results.

Model RUM MNL P-RRM MNL μRRM MNL

Subset 1: Respondents identified by the ANN as random utility maximisers
Number of observations 220 220 220
Number of individuals 22 22 22
Null Log-likelihood −241.7 −241.7 −241.7
Final Log-likelihood −212.2 −238.0 −212.2
ρ2 0.12 0.02 0.12

Parameters Est Std error t-val Est Std error t-val Est Std error t-val
βcost −1.26 0.176 −7.13 −0.29 0.115 −2.57 −1.24 0.174 −7.11
βtime −0.30 0.046 −6.61 −0.05 0.027 −1.82 −0.30 0.045 −6.58
μ 100

Subset 2: Respondents identified by the ANN as random regret minimisers
Number of observations 510 510 510
Number of individuals 51 51 51
Null Log-likelihood −560.3 −560.3 −560.3
Final Log-likelihood −510.0 −383.2 −383.2
ρ2 0.09 0.32 0.32

Parameters Est Std error t-val Est Std error t-val Est Std error t-val
βcost −0.88 0.110 −8.01 −1.63 0.130 −12.57 −1.63 0.130 −12.57
βtime −0.28 0.030 −9.19 −0.50 0.037 −13.29 −0.50 0.037 −13.29
μ 0.01

Subset 4: Respondents identifified by the ANN to make choices randomly
Number of observations 60 60 60
Number of individuals 6 6 6
Null Log-likelihood −65.9 −65.9 −65.9
Final Log-likelihood −61.1 −61.2 −61.1
ρ2 0.07 0.07 0.07

Parameters Est Std error t-val Est Std error t-val Est Std error t-val
βcost 0.37 0.309 1.19 0.27 0.210 1.28 0.37 0.309 1.19
βtime 0.00 0.080 −0.01 −0.02 0.058 −0.40 0.00 0.080 −0.01
μ 100

10 Although we acknowledge that extreme preferences may also lead to seemingly lexicographic choice behaviour.
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4.2. Latent class modelling approach

Another way to learn about the capability of ANNs to classify travellers in terms of their underlying decision rule involves
comparing the classification of the ANN with those obtained from a traditional Latent Class discrete choice modelling approach. To
do so, we estimate – in consonance with the ANN – LC discrete choice models with three predefined classes: a RUM, a P-RRM and a
Random class.11 Specifically, we estimate a discrete mixture LC model as well as a so-called mixed-mixed logit model (Keane and
Wasi, 2013). This latter model is a discrete mixture of mixed logit models. This model allows for taste heterogeneity within decision
rule classes. For the random parameters different distributions are tested (normal, triangular, uniform). Uniform distributions are
found to give the best performance in terms of model fit. Furthermore, we have estimated ‘generic’ sigmas, in the sense that they are
shared across decision rule classes, as we find this specification to outperform a specification in which class-specific sigmas are
estimated (when taking the model parsimony into account).

Latent class models are estimated using Pythonbiogeme (Bierlaire, 2016). To avoid getting stuck in local maxima, estimations are
repeated 20 times using randomly drawn starting values between -1 and 1. For these LC analyses we use subsets 1, 2 and 4. Together
these subsets comprise of 79 respondents. Subset 3 – consisting of respondents classified as Lexicographic and also identified as such
in Section 2.2 – is excluded from this analysis because discrete choice models are not well-equipped to deal with lexicographic choice
behaviour (Hess et al., 2010).

Table 5 shows the LC estimation results. First we look at the results for the discrete mixture LC model. Looking at the market
shares of the decision rules, we see that these are rather similar to those predicted by the ANN12 (RUM: 27%, P-RRM: 65%, RND: 8%).
Both models find that P-RRM is the most common decision rule in this sample, with between 60% and 70% market share. However,
whereas the ANN classified the remaining decision-makers mostly as RUM (27%), in the LC model the Random decision rule attains
the second highest market share. Next, we look at the ratios of the parameter estimates, and compare these to those presented in
Table 4. The ratios of the time and cost parameter in Table 5 are respectively = 0.55time

RUM
cost
RUM and = 0.26time

P RRM
cost
P RRM , for the

RUM and P-RRM class. In Table 4 we however find a ratio of = 0.24time
RUM

cost
RUM for decision-makers classified as RUM, and a ratio of

= 0.30time
P RRM

cost
P RRM for decision-makers classified as P-RRM. Hence, particularly the ratio of the RUM parameters seems ‘outside’

from what we would expect based on Table 4. This signals that the LC discrete mixture model has also captured taste heterogeneity –
aside from decision rule heterogeneity. This exposes the methodological shortcoming of LC models to study decision rule hetero-
geneity.

Looking at the results for the mixed-mixed logit model we see that accounting for taste heterogeneity within the decision rule
classes substantially improves model fit. With regard to the predicted market shares we see a moderate change as compared to the
discrete mixture LC model market shares. In particular, the mixed-mixed logit model predicts larger shares for RUM and P-RRM at the
expense of the Random decision rule class. Noteworthy, the market shares predicted by the mixed-mixed logit model and those
predicted by the ANN are even closer to one another, than are the ones predicted by the discrete mixture LC model and those
predicted by the ANN.

Finally, we investigate the consensus between the ANN and mixed-mixed logit model in terms of their classifications of individual
respondents. A strong consensus between the two modelling approaches would provide confidence in both methods for their cap-
ability to investigate decision rule heterogeneity. To compute the classification probability of individual respondents for the mixed-
mixed model, first we simulate the choice probabilities to obtain their expected values. Then, we apply Bayes rule. That is, we
compute the likelihood of the model – which in this context is the decision rule – given the observed sequence of choices of each
respondent. Respondents are allocated to the decision rule (i.e. the class) with the highest classification probability, just like is done
for the ANN classification in Section 3.4.

Table 6 shows the results in a cross-table. The rows contain the ANN classification; the columns contain the LC model classifi-
cation. The cells on the diagonal show the number of cases in which the same respondents are classified to the same decision rules by
both modelling approaches. The off-diagonal cells indicate disagreements between the two modelling approaches in terms of what is
the most likely underlying decision rule of a respondent.

Table 6
Cross-table ANN and LC classification based on highest classification probability.

Mixed-mixed logit classification

RUM P-RRM Random

ANN classification RUM 15 7 0 22
P-RRM 3 43 5 51
Random 0 2 4 6

18 52 9 79

11 For the sake of completeness we also tested LC models with more and less than 3 classes. 3-class models are found to obtain the lowest BIC
values.

12 Market shares excluding the respondents classified by the ANN as lexicographic.
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A number of inferences can be made based on Table 6. Firstly, in the majority of the cases the ANN and the LC model agree on the
most likely underlying decision rule: almost 80 per cent of the respondents are allocated to the same decision rule by the ANN and the
mixed-mixed logit model. We see a strong agreement between the ANN and mixed-mixed logit classification particularly for the RRM
decision rule. Strongest disagreement between the two methods is seen for the Random decision rule. These results show that even
though the two methods find very similar market shares for the decision rules, their underlying results can be considerably different.
This highlights the added value of having a second method available to investigate decision rule heterogeneity.

All together, we believe that the notion that ANNs can be used to investigate decision rule heterogeneity has convincingly been
demonstrated. We have cross-validated the ANN outcomes using two approaches: (1) by estimating discrete choice models based on
carefully created subsets of the data and (2) by comparing results with those obtained from LC discrete choice models (discrete
mixture and mixed-mixed logit). Both approaches provide strong support for the capability of ANNs to identify underlying decision
rules. As such, we believe that ANNs provide a promising addition the toolbox of analysts who wish to investigate decision rule
heterogeneity. A potential benefit of ANNs over conventional Latent Class models is that ANNs can be trained to recognise decision
rules in the presence of taste heterogeneity. Therefore, and given that ANNs are a sort of LC models on ‘steroids’, they may be better
capable to disentangle decision rule heterogeneity from taste heterogeneity than LC models. However, further research is needed to
investigate this conjecture more in depth. A disadvantage of our ANN based approach– as compared to traditional LC modelling – is
however that in the latter model the membership function can be used to directly provide insights on what type of traveller is best
described by what type of decision rule e.g. in terms of socio-demographic variables. With ANNs this can only be done by means of
correlation analysis ex post (due to the fact that the ANN is trained on synthetic data). Furthermore, LC discrete choice models do
provide confidence intervals, while ANNs do not.

5. Conclusions and discussion

This study is the first to investigate decision rule heterogeneity amongst traveller using a novel artificial neural networks based
approach. We have shown how ANNs can be employed to investigate decision rule heterogeneity amongst travellers. In particular, we
have proposed a novel ANN topology which is equipped to deal with the panel structure of SC data and we have shown that the ANN
can be trained using synthetic data. Based on the encouraging results we have obtained, we believe that ANNs provide a valuable
addition to the toolbox of analysts who wish to investigate decision rule heterogeneity. The substantive contribution is that we
enriched the growing body of empirical studies providing evidence for the presence of decision rule heterogeneity amongst travellers.

Finally, we would like to point out several limitations to this study, providing avenues for further research. Firstly, to keep track of
our results we have trained our ANN to learn a fairly small number of decision rules (4). In future research ANNs can be trained to
learn recognise more types of decision rules, such as Contextual concavity (Kivetz et al., 2004), Relative Advantage Maximization
(RAM) (Leong and Hensher, 2014), Reference dependent utility maximization (Koszegi and Rabin, 2006), Stochastic Satisficing
(Gonzalez-Valdes and Raveau, 2018) and models that capture learning effects, such as e.g. Value Learning (McNair et al., 2012;
Balbontin et al., 2017). Furthermore, given that our empirical analyses are based on just one data set, it is advisable to repeat these
analyses using other data sets. This will provide a richer view on the extent to which ANNs are a valuable tool to investigate decision-
rule heterogeneity. Furthermore, new types of ANNs can be developed, possibly inspired by the rapid developments in computer
science. Lastly, a well-known limitation of ANNs relates to its black-box nature. Given their complex internal structure, ANNs provide
limited insights on underlying causal relations (e.g. by what mechanism does it actually detect the decision-rules?). Future research
may be directed to illuminate the black boxes of ANNs (Castelvecchi, 2016). This may help researcher to better understand human
decision-making, and perhaps even may lead to the discovery of new decision-rules.
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Appendix A. Choice tasks in the value-of-time choice experiment

Choice task Route A Route B Route C

TT TC TT TC TT TC

1 23 6 27 4 35 3
2 27 5 35 4 23 6
3 35 3 23 5 31 4
4 27 4 23 5 35 3
5 35 3 27 6 31 5
6 23 6 27 5 35 3
7 35 3 31 5 23 6
8 27 5 23 6 31 3
9 35 3 31 4 27 6
10 23 6 27 4 35 3
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Appendix B. Sample statistics

Variable Sample frequency Percentage [%] in sample

Gender
Male 44 42%
Female 45 42%
Missing 17 16%

Age
18–24 yr. 2 2%
25–34 yr. 24 23%
35–44 yr. 25 24%
45–54 yr. 21 20%
55–64 yr. 15 14%
65–74 yr. 2 2%
Missing 17 16%

Completed education
No education 0 0%
Elementary school 7 7%
Lower education 5 5%
Middle education 39 37%
Higher education 34 32%
University education 4 4%
Missing 17 16%

Income
I < €9,400 2 2%
€9,400≤ I < €14,700 4 4%
€14,700≤ I < €20,600 5 5%
€20,600≤ I < €33,500 14 13%
€33,500≤ I < €67,000 37 35%
I ≥ €67,000 27 25%
Missing 17 16%

Appendix C. Estimation results based on full data set

Full data set

Model RUM MNL P-RRM MNL μRRM MNL
Number of observations 1060 1060 1060
Number of individuals 106 106 39
Null Log-likelihood −1164.5 −1164.5 −1164.5
Final Log-likelihood −1123.0 −1128.4 −1118.4
ρ2 0.036 0.031 0.040

Parameters Est Std error t-val Est Std error t-val Est Std error t-val

βcost −0.64 0.072 −8.85 −0.43 0.053 −8.07 −0.64 0.073 −8.82
βtime −0.16 0.019 −8.58 −0.10 0.013 −7.69 −0.16 0.019 −8.35
μ 1.19 0.511 2.32

Appendix D. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.trc.2018.11.014.
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