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Abstract. Trajectory representation learning (TRL) is an intermediate 
step in handling trajectory data to realize various downstream machine-
learning tasks. While most previous TRL research focuses on modeling 
structured movements in large-scale urban spaces (e.g., cars or pedes-
trians on streets), this paper focuses on a more challenging scenario of 
modeling free movement in small-scale social spaces (e.g., children play-
ing in a schoolyard). We present a TRL model, SiamCircle, to process raw 
trajectories without additional feature extraction to prevent information 
loss. SiamCircle adopts a Siamese network with Circle Loss to learn tra-
jectory embeddings. Furthermore, SiamCircle employs a data augmenta-
tion process to enable self-supervised learning and enrich the input data 
to address the limited access to high-quality data and ground truth. We 
evaluate the performance of SiamCircle in downstream tasks using tra-
jectory ranking and clustering performance via seven evaluation metrics 
collectively. Using an ablation study, we explored the impact of different 
loss functions on the model’s performance. Accordingly, we selected a 2-
D convolutional design with Circle Loss as the best-performing model. In 
a comparative study, we compared our model against three other base-
lines. We observed up to 19% improvements in trajectory ranking tasks 
and achieved the highest average rank in supervised clustering tasks. 

Keywords: Triplet Loss · Clustering · Trajectory Representation 
Learning 

1 Introduction 

In the wake of rapid growth in wearable technologies, people generate large 
amounts of movement data using location-aware devices like sports bands and 
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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smartwatches. Various organizations address existing challenges in, for example, 
traffic forecasting [ 26] and animal migration patterns [ 13], by collecting and 
analyzing this data, known as spatio-temporal movement data or trajectories [ 6]. 

In a broader context, this movement data is captured in mainly two set-
tings: structured settings and free settings. In structured settings, movement is 
recorded in areas influenced by spatial features or regulations, e.g., road net-
works or driving policies. This setting often exhibits periodic patterns, such as 
commuting to work on weekdays. Data from structured settings are valuable for 
applications like traffic forecasting. Conversely, in free settings, individuals move 
without restrictions, resulting in unstructured trajectories, which often occur in 
constrained environments, such as students’ movements in a schoolyard or ath-
letes’ movements in sportsfields. This data is useful for analyzing micro-level 
behaviors, including social interactions and group dynamics. 

In the context of trajectory analysis in structured settings, trajectory rep-
resentation learning (TRL) has attracted extensive research attention in vari-
ous machine learning tasks such as trajectory flow forecasting [ 6] or pair-wise 
similarity computation [ 4,27]. Yet, one largely unsolved challenge is effectively 
designing a TRL framework for movements occurring in free settings. Developing 
TRL models in free settings is much more challenging than in structured settings 
due to (i) irregular movement patterns and movements formed in the absence 
of typical urban features, (ii) limitations in data acquisition systems leading to 
imperfect location data and complicating trajectory analysis, and (iii) privacy 
concerns restricting the collection and sharing of high-quality data. 

Recent studies in modeling movements in structured settings implement pre-
processing methods such as grid-cell projection [ 15] and graph embeddings [ 4]. 
While the results are promising, their application to trajectories collected in 
free settings may be limited due to the potential information loss during the 
pre-processing. Besides, their performance highly relies on the choice of hyper-
parameters, e.g., cell size. In a free setting, finding the optimal grid size is more 
challenging, especially in the presence of imprecisions due to noise. 

This paper presents a robust trajectory representation learning framework 
called SiamCircle, which directly applies to raw trajectory data collected in 
free movement settings. SiamCircle consists of three main components: (1) a 
data augmentation process to generate the augmented trajectories accounting 
for imperfections in trajectories and enriching data sets with limited sample size, 
(2) a neural network applicable to raw trajectory data that maximally exploits 
spatial and temporal similarities among similar trajectories while amplifying dif-
ferences between non-similar ones, eliminating common information loss during 
feature extraction, (3) a loss function uniquely designed with our learning frame-
work to learn representative features through the training process. To our knowl-
edge, this is the first study proposing a TRL framework using raw trajectories 
collected in free settings. Overall, this paper makes the following contributions: 

– We develop a framework to create augmented trajectories that simulate simi-
lar movements and imperfections in data. Moreover, this framework generates 
a ground-truth dataset that annotates the trajectories based on their simi-
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larity class and enriches datasets with a limited sample size. Such annotated 
dataset can be used in supervised training and supervised evaluation metrics. 

– We propose a unique deep neural network model with triplet-based Circle 
Loss to learn trajectory representations directly from raw trajectories to limit 
information loss commonly occurring during the feature extraction. 

– We demonstrate the performance of the proposed framework by conducting an 
ablation study and a comparative study on five trajectory datasets collected 
in a free setting using seven evaluation metrics in downstream tasks using two 
classes of metrics, namely trajectory ranking, and clustering. We compare the 
performance of SiamCircle to three other baseline models. 

The remaining part of the paper is organized as follows. In Sect. 2, we discuss 
related work. Section 3 presents the problem statement, and Sect. 4 explains the 
details of our proposed method. The experimental setup and results are presented 
in Sect. 5 and Sect. 6, respectively. Finally, we summarize the paper and discuss 
future research directions in Sect. 7. 

2 Related Work 

Several studies proposed TRL models primarily in structured settings like urban 
traffic forecasting and detecting transportation modes [ 3,11]. While these mod-
els show promise, they become impractical for data collected in free settings, 
especially in the absence of external information. 

Moreover, TRL via Contrastive learning has been employed in various 
machine learning problems in natural language processing [ 10], image process-
ing [ 21], and spatio-temporal problems [ 4, 7]. Contrastive learning is especially 
beneficial when using noisy and imperfect datasets with limited sample sizes. 
Fan et al. [ 7] proposes a contrastive learning approach powered by Triplet 
loss [ 20] in combination with a sliced encoder network, S-BiLSTM, for a user 
re-identification problem based on trajectory data. S-BiLSTM learns the robust 
part of individuals’ trajectories (segmented in 24 h). This segmentation is not 
applicable for movements in free settings where trajectories do not exhibit daily 
patterns. TrajCL [ 4] is another contrastive learning model including a dual-
feature multi-head self-attention-based encoder with InfoNCE loss [ 17] using tra-
jectories in urban areas. TrajCL proposed a pointwise trajectory feature enrich-
ment method to extract structural and point features to train their model. The 
optimization process used in both loss functions, Triplet loss and InfoNCE loss, 
is rigid, as their loss calculations give pairs with different similarities an equal 
pre-defined margin. 

The present study uses a Siamese network with Circle Loss to learn trajecto-
ries’ representative features designed explicitly for free movements in constrained 
environments (i.e., free settings). Our model uses raw trajectories without any 
feature extraction techniques as opposed to earlier work [ 4,28] to limit the unnec-
essary loss of data and oversimplification in free settings. Circle Loss adopts a 
dynamic penalty scheme based on the degree of similarity between trajectories 
in a triplet to obtain a sustainable optimization process and high-quality embed-
dings to address the rigidness problem in earlier works [ 4,28].



70 M. Nasri et al.

Fig. 1. An overview of SiamCircle: Data Augmentation Process to create the [Anchor, 
Positive, and Negative] triplets, Siamese Network with Circle Loss to generate the 
embeddings of the given raw triplets. 

3 Problem Definition 

Our trajectory modeling problem is based on a given trajectory dataset . D, where 
each trajectory .

{
Ti(x,y) ∈ D|(x,y) = {(x1, y1), · · · , (xn, yn)}}

is a sequence 
of two-dimensional points recording the trace of the moving object . i over . n
timestamps. 

We are interested in learning an embedding function .E(·) that represents 
trajectory .Ti as .E(Ti) = Tie ∈ R

m (.m � n is the dimension of embedding 
space) such that .f(Tje , Tie) is minimized for any pair of the object . i and . j
moving along the same underlying route, and, conversely, maximized for any 
pair of objects . i and . j moving along different underlying routes. While .f(·, ·) is 
a distance function, e.g., Euclidean distance. 

4 Methodology 

This section discusses our proposed method for TRL. First, we explain the trajec-
tory augmentation process. Next, the neural network design is presented. Lastly, 
we present the loss function used in the proposed framework. An overview of our 
method is presented in Fig. 1. 

4.1 Trajectory Augmentation 

In this section, we propose a trajectory augmentation method that adopts mean-
ingful transformations to generate augmented trajectories from original ones. 
Previously proposed trajectory augmentation methods involve applying pre-
defined transformations to the original data, for instance, by truncating or point 
masking [ 4,15]. These transformations often modify the trajectory length, mak-
ing them only applicable in combination with manual feature extraction meth-
ods to create fixed-length sequential data for neural network models. However,
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as we aim to utilize raw trajectories with no feature extraction, we propose a 
unique trajectory augmentation approach where the trajectory length remains 
unchanged while meaningful transformations are applied. Our trajectory aug-
mentation process serves three main purposes: (1) simulating similar movement 
trajectories by distorting original trajectories in different scales (i.e., additive 
noise) to account for different levels of similarities, (2) enriching limited-size 
datasets by adding augmented trajectories to the original dataset used purely 
for training. Thus enabling a self-supervised training process for the neural net-
work model, and (3) simulating the practical imperfections found in location data 
acquisition systems in the form of large-scale noise (i.e., large spatio-temporal 
displacements or jumps), aiming to train a model that is robust to issues such as 
noise and other imperfections in the data. To achieve these goals, the augmented 
trajectory .T̄i is created by applying pre-defined transformations to each original 
trajectory .Ti of a moving object . i, as formulated in Eq. 1: 

.T̄i(x̄, ȳ) = (x + x′
i,y + y′

i),

{
x′

i = U(lx, hx).ds,

y′
i = U(ly, hy).ds,

(1) 

where .T̄i(x̄, ȳ) is the augmented trajectory of moving object . i. .x′
i is the coordi-

nate of the original trajectory . Ti. .x′
i is the distortion vector across . x. .U(lx, hx) is 

the uniform distribution bounded between lower bound .lx = −σ(Δx) and higher 
bound .hx = σ(Δx), in which  .σ(.) is the standard deviation over .Δx. and  .Δx is 
the vector of positional differences across . x coordinates. .ds is a distortion scale 
randomly selected among the given scaling range. In all the mentioned anno-
tations, replacing . x with . y gives the same definition across the . y coordinate 
(instead of . x). In our experiments, we acquire a single augmented trajectory 
by applying two types of distortions namely additive noise and jumps (by set-
ting two values for . ds). While additive noise applies to all coordinates of the 
original data, jumps only apply randomly to . k number of samples. Another dif-
ference between additive noise and jumps is the scale of the distortion. In the 
additive noise, .ds includes a lower distortion scale to create similar movements, 
satisfying aims (1) and (2). In the jumps, .ds includes a larger distortion scale 
to create imperfections in trajectories, satisfying aims (2) and (3). Thus, the 
semi-synthesized trajectory, .T̄i(x̄, ȳ), creates one variation of the object . i in the 
database per distortion scale. In Sect. 4.2, we will discuss our proposed neural 
network model. 

4.2 Siamese Network Architecture 

This section discusses the design of our proposed neural network model. The 
unique aspect of this design is the model’s ability to be directly applied to 
raw 2-D trajectories without implementing any preliminary pre-processing steps. 
The rationale behind this choice is to include as much information as possible 
without abstracting spatial details, e.g., trajectory griding, or extracting spatio-
temporal features, e.g., speed. To achieve this goal, we adopted a Triplet-based 
Siamese network, which typically consists of three identical networks with shared
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weights [ 2]. The primary purpose of Siamese networks is to learn the similarity 
between inputs by comparing their representations. In this design, the model 
takes an anchor trajectory together with a positive sample (i.e., a trajectory 
from the same class as the anchor) and a negative sample (i.e., a trajectory from 
a different class than the anchor) as a triplet input, pass each sample through 
its identical branch, and hand over the generated embeddings to a triplet-based 
loss function. Specifically, our model contains two sections: 

2D-CNN/Average Pooling/Dropout. Inspired by the use of neural net-
works in time-series forecasting [ 25], this section employs a 2D convolutional 
layer (2D-CNN) as the initial feature extraction step. The 2D-CNN is particu-
larly effective in capturing spatial-temporal dependencies within trajectory data, 
as it slides learnable filters over the input to identify local patterns. 

Following the 2D-CNN, an average pooling layer is introduced to reduce 
dimensionality and filter out noise from the extracted feature maps. This pooling 
mechanism computes the average values within a small window, which helps 
the network generalize better by emphasizing essential trajectory trends while 
discarding less significant details. 

To further enhance model robustness, a dropout layer is applied after pool-
ing. Dropout randomly deactivates a subset of neurons during training, which 
prevents the network from overfitting. This regularization technique ensures that 
the model remains adaptable and performs well on unseen trajectory data. 

In summary, this section of the framework transforms raw trajectory data 
into a compact yet informative representation by extracting relevant spatial-
temporal patterns, filtering out noise, and preventing overfitting. 

Fully-Connected Layer. The outputs from the previous layer representing 
high-level embedding features are fed to a fully connected (FC) layer. This allows 
the model to learn the non-linear combinations of these features. This FC layer 
serves as a crucial component in transforming the extracted spatial-temporal 
features into a more discriminative representation suitable for trajectory ranking 
and clustering tasks. The generated embeddings will be given to Circle Loss as 
detailed in Sect. 4.3. 

4.3 Loss Function: Circle Loss 

Most loss functions used for measuring similarity, including the triplet loss [ 20], 
directly incorporate the pairwise distances between trajectory pairs into a sim-
ilarity score. This optimization approach is rigid as the similarity score linearly 
impacts the loss. Ideally, we would like to give greater emphasis (or penalty) 
when a similarity score significantly deviates from the optimum. To this end, 
Sun. et al. [ 23] proposed Circle Loss, which re-weights each similarity to high-
light the less optimized similarity scores. The Circle Loss was initially proposed 
in computer vision with a unified formula for two elemental deep feature learn-
ing paradigms, i.e., learning with class-level and pair-wise labels, formulated as 
follows:
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.L = log

⎡
⎣1 +

L∑
j=1

exp
(

γα
j
n(s

j
n − Δn)

) K∑
i=1

exp
(

−γα
i
p(s

i
p − Δp)

)
⎤
⎦ ,

{
αi

p = [Op − si
p]+,

αj
n = [sj

n − On]+,
(2) 

in which . n and . p annotations in a pairwise label paradigm refer to dissimilar 
and similar pairs. . γ is the scale factor. . L and .K are the number of dissimilar and 
similar samples. .Δn and .Δp are dissimilar and similar margins, and .αj

n and .αi
p are 

non-negative weighting factors for pairwise distances between dissimilar samples 
(i.e., . sn) and similar samples (i.e., . sp), respectively. In their calculation, .[·]+ is 
the “cut-off at zero” operation to ensure .αi

p and .αj
n are non-negative. .Op and . On

is the optimum similarity score for .sp and .sn respectively. To reduce the number 
of hyperparameters, .Op = 1 + m, .On = −m, .Δp = 1 − m, and  .Δn = m. Hence, 
there are only two hyper-parameters, i.e., the scale factor . γ and the relaxation 
margin . m. In a class-level paradigm, the dissimilar and similar terminologies 
are replaced with between-class and within-class terms using the same equation 
as Eq. 2. Analytically, Circle Loss offers a more flexible optimization approach 
towards a more definite convergence target. 

In our proposed model, Circle Loss is adopted for the first time in TRL 
via a triplet learning paradigm using a Siamese network. We collect an equal 
number of dissimilar and similar pairs in each batch (i.e., .L = K, equal to a 
pre-defined batch size) to create a triplet of anchor, positive, and negative sam-
ples. This also creates a balanced batch (with an equal number of positive and 
negative samples) in each epoch to prevent overfitting and bias towards a partic-
ular class. Moreover, we adopted the “Hard” triplet strategy [ 20]. In comparison 
with the random triplet strategy, where triplets are selected randomly, applying 
this strategy disregards triplets that are too easy, thereby reducing the risk of 
overfitting. 

5 Experiments 

We evaluate SiamCircle on five real trajectory datasets using seven evalua-
tion metrics in trajectory ranking and clustering tasks. The following sections 
describe the experimental settings, datasets, baselines, and evaluation metrics. 

Experimental Settings. SiamCircle is implemented in Tensorflow. The details 
of the implementation is provided in the Github repository. 1 We report the 
average and standard deviation of results across ten runs for each experiment. 
The Wilcoxon signed rank test [ 24] has been applied to investigate the significant 
differences between the top two performing models and to rank algorithms based 
on their performances in different metrics. In the following sections, we present 
the details of datasets, baselines, and evaluation metrics used in our study.

1 The code is available at https://anonymous.4open.science/r/SiamCircle-Trajectory-
Representation-Learning-17C3/. 

https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
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Table 1. The characteristics of Opentraj datasets. The columns indicate the name 
of the dataset, the captured area, and the data size for Train, augmented train (i.e., 
Train(. T )) and Test splits in the form of . ∗(Sample Size, Number of groups). 

Datasets Area Train (T) Train(. T ) Test 
Eth 224.704 (40, 15) (5098, 15) (96, 37) 
Hotel 67.210 (12, 6) (5027, 6) (31, 15) 
Zara01 171.504 (34, 16) (5050, 16) (80, 35) 
Zara02 158.063 (71, 35) (5164, 35) (167, 82) 
Student03 242.884 (185, 61) (5242, 61) (433, 194) 

Datasets. Five pedestrian datasets -eth, hotel [ 18], zara01, zara02, and  stu-
dents03 [ 14]-all captured in a free setting-are utilized in the experiments. 
These are widely recognized benchmarks for group detection tasks using spatio-
temporal data [ 1]. They contain the location and velocity of movements across 
multiple timeframes, including ground truth information on group membership. 
Table 1 shows the main characteristics of these datasets. Since the number of 
samples per dataset is limited, we adopted our novel data augmentation process 
described in Sect. 4.1 to generate augmented trajectories per class (or group). 

Baseline. We compared SiamCircle with three other deep learning mod-
els, namely S-BiLSTM [ 7], TrajCL [ 4], and Trajectory2vec [ 28]. We use the 
released code and default parameters for all baseline methods except S-BiLSTM, 
which has no released code. We implement this method following their original 
study [ 7]. In TrajCL, the cell size is set to 5 as it performed better than the 
default value, i.e., cell size = 100, as it was designed for city-scale datasets. 

Evaluation Metrics. We have adopted seven evaluation metrics in trajectory 
ranking and clustering tasks. The trajectory ranking task is evaluated by the top-
k hitting ratio, while the clustering task is evaluated by two supervised metrics 
and two unsupervised metrics as follows: 

Top-K Hitting Ratio. This metric examines the overlap of the top-k, for  . k =
1, 5, and  . 10, . k, sorted distances between embeddings and the ground truth. 
Specifically, we use the Euclidean measure to calculate the distances between 
the original trajectory . T and other trajectories in the test set. Analogously, we 
calculate the Euclidean distances between .E(T ) and the embeddings of other 
trajectories in the test set. We then sort the obtained distances in both sets and 
find the number of common indexes across the window size of . k. The higher 
overlap ratio shows better effectiveness of the measure. 

Clustering Performance. Retrieving the embedding of raw trajectories allows a 
clustering algorithm to better identify groups of similar trajectories. To test this,
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we selected two supervised evaluation metrics, i.e., Normalized Mutual Informa-
tion (NMI) [ 22] and Fowlkes Mallows (FM) score [ 8], and two unsupervised 
metrics, i.e., Davies Bouldin (DB) score [ 5] and Silhouette (Si) [ 19], to evaluate 
the performance of a K-mean Clustering Algorithm [ 16]. The number of ground 
truth groups, as indicated in Table 1, defines the number of clusters in the K-
mean Algorithm. In summary, the NMI score measures the agreement of the 
two assignments, with the highest score being 1. The FM score is the geomet-
ric mean of the pairwise precision and recall, rating from 0 to 1. The Si score 
indicates how well clusters are separated from each other, ranging between -1 
and 1. DB score is the average similarity measure of each cluster with its most 
similar cluster, where the minimum score is zero, with lower values indicating 
better clustering. In all other metrics, the higher score indicates better-defined 
clusters. 

6 Results 

In this section, the experiment’s results are presented in two studies: (i) an 
ablation study to explore different design options and (ii) a comparative study 
to compare the performance of our proposed model against three baselines. 

Ablation Study. Our ablation study includes loss function analysis to inves-
tigate the impact of different loss functions in our framework. Thus, we trained 
our proposed neural network design, i.e., .1 × Conv2D, with Triplet loss [ 20], 
Contrastive loss [ 12], USR loss [ 9], and Circle Loss. As shown in Table 2, the  
model .1 × Conv2D with Circle Loss, on average, ranked higher than all the 
other models in almost all metrics across all datasets. There is only one excep-
tion on the unsupervised clustering task where .1 × Conv2D with Circle Loss 
ranked last in average rank (.MR) and the rank of each unsupervised metric (i.e., 
.DB and . Si). A deeper analysis of the data shows that the worst performance 
of these two measures is in the .Hotel dataset, which includes the smallest area 
with the smallest sample size in the original datasets (See Table 1). This makes 
the clusters less distinguishable, which might explain the poor performance of 
these two metrics, as both indicate how well clusters are separated. Yet, the 
other loss functions did not consistently outperform in either of these measures. 
Hence, .1×Conv2D with Circle Loss, i.e., SiamCircle, is selected and used in the 
following sections to conduct comparative experiments. 

Comparative Study. In this section, we compare the performance of our pro-
posed model against three baselines, namely S-BiLSTM, TrajCL, and Trajec-
tory2vec, in trajectory ranking and clustering tasks using the seven evaluation 
metrics. The results are depicted in Table 3. 

Trajectory Ranking. SiamCircle performed significantly higher than the base-
lines in the top Hit-. k measure in almost all cases except in the Hit-1 metric of the
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Table 2. The result of the ablation study, in which the highest ranks in each evaluation 
metric are shown in Boldface. .R and .MR denote the performance ranking and the 
average rank per category. Horizontal lines separate categories. 

Loss Function Metric Datasets .R . MR

ETH Hotel Student03 Zara01 Zara02 
Triplet loss Hit-1 0.76 0.677 0.479 0.6 0.669 1.8 1.9 

Hit-5 0.79 0.852 0.67 0.758 0.801 2.0 
Hit-10 0.857 0.935 0.69 0.814 0.815 2.0 
NMI 0.869 0.934 0.864 0.774 0.836 2.4 2.3 
FM 0.406 0.765 0.174 0.123 0.063 2.2 
DB 0.669 0.588 0.504 0.521 0.288 2.7 2.7 
Si 0.345 0.434 0.322 0.286 0.334 2.8 

Contrastive loss Hit-1 0.49 0.613 0.407 0.312 0.585 2.8 2.9 
Hit-5 0.623 0.761 0.544 0.503 0.754 3.0 
Hit-10 0.749 0.848 0.587 0.585 0.77 3.0 
NMI 0.79 0.845 0.87 0.788 0.844 2.6 2.6 
FM 0.227 0.436 0.212 0.164 0.07 2.6 
DB 0.606 0.336 0.454 0.643 0.239 2.0 2.0 
Si 0.395 0.38 0.34 0.253 0.394 2.0 

USR loss Hit-1 0.302 0.452 0.172 0.162 0.296 4.0 4.0 
Hit-5 0.331 0.742 0.193 0.268 0.337 4.0 
Hit-10 0.424 0.806 0.229 0.35 0.352 4.0 
NMI 0.801 0.82 0.858 0.751 0.838 3.6 3.7 
FM 0.248 0.34 0.152 0.056 0.049 3.8 
DB 0.548 0.22 0.504 0.305 0.293 1.7 2.0 

Si 0.392 0.595 0.301 0.479 0.285 2.4 
Circle Loss Hit-1 0.771 0.523 0.686 0.724 0.732 1.4 1.1 

Hit-5 0.84 0.88 0.738 0.791 0.909 1.0 

Hit-10 0.892 0.953 0.744 0.843 0.877 1.0 

NMI 0.858 0.878 0.911 0.811 0.849 1.4 1.4 

FM 0.39 0.517 0.399 0.223 0.102 1.4 

DB 0.627 0.671 0.526 0.589 0.324 3.6 3.2 
Si 0.328 0.218 0.331 0.287 0.366 2.8 

Hotel dataset. However, the highest performance (obtained by S-BiLSTM) is not 
statistically significant. Moreover, the SiamCircle outperformed with an average 
performance gap of 19% compared with the second best-performing model, i.e., 
BiLSTM. This shows that the embedding vectors retrieved by our model are 
helpful for trajectory ranking tasks to estimate the top similar trajectories.
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Table 3. The comparative study result (mean. ±standard division). The statistically 
significant results compared to the second best results are shown by . ∗. The highest 
ranks per evaluation metric are shown in Boldface. .R and .MR denote the performance 
ranking and the average rank per category. 

Model Metric Datasets .R . MR

ETH Hotel Student03 Zara01 Zara02 
S-BiLSTM Hit-1 0.449. ±0.497 0.561. ±0.496 0.42. ±0.494 0.34. ±0.474 0.554. ±0.497 1.8 1.9 

Hit-5 0.651. ±0.209 0.78. ±0.187 0.582. ±0.236 0.488. ±0.215 0.661. ±0.239 2.0 
Hit-10 0.699. ±0.176 0.854. ±0.15 0.614. ±0.204 0.587. ±0.145 0.687. ±0.228 2.0 
NMI 0.799. ±0.01 0.859. ±0.036 0.864. ±0.006 0.763. ±0.014 0.851. ±0.009 1.8 2.1 
FM 0.245. ±0.025 0.455. ±0.103 0.188. ±0.021 0.124. ±0.034 0.1. ±0.029 2.4 
DB 0.474. ±0.023 0.391. ±0.041 0.466. ±0.023 0.39. ±0.048 0.281. ±0.021 1.6 1.9 
Si 0.415. ±0.014 0.4. ±0.05 0.31. ±0.012 0.323. ±0.032 0.388. ±0.019 2.2 

TrajCL Hit-1 0.097. ±0.296 0.106. ±0.308 0.071. ±0.257 0.094. ±0.291 0.079. ±0.27 3.8 3.5 
Hit-5 0.194. ±0.188 0.476. ±0.323 0.182. ±0.209 0.204. ±0.179 0.192. ±0.216 3.4 
Hit-10 0.288. ±0.19 0.566. ±0.167 0.234. ±0.172 0.32. ±0.167 0.276. ±0.181 3.2 
NMI 0.731. ±0.01 0.754. ±0.015 0.836. ±0.005 0.756. ±0.008 0.782. ±0.002 4.0 3.8 
FM 0.158. ±0.024 0.171. ±0.055 0.136. ±0.014 0.126. ±0.024 0.068. ±0.002 3.6 
DB 0.486. ±0.069 0.422. ±0.102 .0.405 ± 0.024∗ 0.335. ±0.108 .0.073 ± 0.022∗ 1.4 1.2 

Si 0.435. ±0.056 0.412. ±0.082 .0.436 ± 0.048∗
.0.438 ± 0.066∗

.0.518 ± 0.007∗ 1.0 

Trajectory2vec Hit-1 0.198. ±0.398 0.319. ±0.466 0.063. ±0.243 0.154. ±0.361 0.275. ±0.446 3.2 3.5 
Hit-5 0.134. ±0.142 0.401. ±0.272 0.096. ±0.131 0.23. ±0.237 0.376. ±0.304 3.6 
Hit-10 0.16. ±0.107 0.455. ±0.141 0.117. ±0.11 0.268. ±0.135 0.385. ±0.291 3.8 
NMI 0.775. ±0.008 0.843. ±0.018 0.841. ±0.003 0.807. ±0.008 0.85. ±0.003 2.4 2.4 
FM 0.189. ±0.017 0.416. ±0.064 0.08. ±0.009 0.237. ±0.034 .0.149 ± 0.01∗ 2.4 
DB 0.638. ±0.028 0.472. ±0.028 0.611. ±0.013 0.564. ±0.035 0.31. ±0.014 3.2 3.5 
Si 0.277. ±0.011 0.388. ±0.028 0.221. ±0.006 0.262. ±0.014 0.324. ±0.009 3.8 

SiamCircle Hit-1 .0.771 ± 0.420∗ 0.523. ±0.449 .0.686 ± 0.464∗
.0.724 ± 0.447∗

.0.732 ± 0.443∗ 1.2 1.0 

Hit-5 .0.840 ± 0.144∗
.0.880 ± 0.118∗

.0.738 ± 0.195∗
.0.791 ± 0.146∗

.0.909 ± 0.116∗ 1.0 

Hit-10 .0.892 ± 0.086∗
.0.953 ± 0.055∗

.0.744 ± 0.155∗
.0.843 ± 0.1∗

.0.877 ± 0.146∗ 1.0 

NMI .0.849 ± 0.009∗ 0.858. ±0.026 .0.921 ± 0.004∗
.0.805 ± 0.007∗ 0.838. ±0.003 1.8 1.7 

FM .0.366 ± 0.025∗ 0.458. ±0.083 .0.451 ± 0.019∗ 0.213. ±0.018 0.07. ±0.007 1.6 

DB 0.668. ±0.025 0.618. ±0.046 0.529. ±0.015 0.584. ±0.023 0.328. ±0.012 3.8 3.4 
Si 0.329. ±0.012 0.257. ±0.024 0.331. ±0.007 0.289. ±0.011 0.379. ±0.006 3.0 

Clustering. SiamCircle performed higher than the other baselines in super-
vised clustering measures, i.e., NMI and FM scores (with S-BiLSTM performing 
similarly to SiamCircle in the NMI metric), which was in contrast with the result 
of unsupervised clustering measures, i.e., DB and Si. This could be due to pro-
viding explicit positive and negative samples for training in these two models, 
which allows the models to learn more specific patterns and relationships. Addi-
tionally, the dynamic penalty strategy by Circle Loss likely helped SiamCircle 
achieve a higher rank than S-BiLSTM. On the other hand, TrajCL has ranked 
best in unsupervised clustering metrics, likely because TrajCL trains without 
using group membership. Thus, the obtained embeddings via TrajCL form clus-
ters in the embedding space that do not necessarily reflect individual group 
memberships. This makes TrajCL particularly useful when ground truth is not
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available. Yet, a deep understanding of data is required to translate the findings 
into an implication. 

Overall, SiamCircle has ranked highest compared to the baselines in Trajec-
tory Ranking. In Trajectory Clustering, the highest performance is obtained only 
in supervised metrics. This demonstrates the strong capability of representations 
obtained by SiamCircle to be used in various domains and applications. 

7 Conclusion 

This study revisits the problem of TRL, specifically when trajectories are col-
lected from free movements in small areas. We introduced a novel framework, 
SiamCircle, which includes a Siamese framework with Circle Loss. We conducted 
experiments with five benchmark datasets, using seven evaluation metrics in 
trajectory ranking and clustering tasks. In the ablation study, we demonstrated 
that one 2-dimensional convolutional layer together with Circle Loss, on average, 
outperformed other candidates. In a comparative study, SiamCircle consistently 
outperformed other models in trajectory ranking with an average performance 
gap of 19% compared with the second best-performing model, i.e., BiLSTM, 
and in unsupervised clustering measures. In future research, automatically set-
ting the parameter of Circle loss based on the characteristics of the given datasets 
can be explored to make it more adaptable to diverse datasets without requiring 
manual hyperparameter adjustments which improves its usability in real-world 
applications. SiamCircle can be used in various tasks, such as analyzing social 
interactions in free settings, e.g., schoolyards and sports clubs. This opens up 
possibilities for behavioral studies, crowd analysis, and human-computer inter-
action research. 
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