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Abstract

It was unclear what level of reliability was provided by appliance of the Eurocode load
models for fatigue due to train loads, meaning that it might be insufficient. Therefore,
it was investigated what the provided reliability is, compared to what is should be.
Within this report, the focus is solely on fatigue induced by bending moments on
reinforced concrete sections.

Determination of reliabilities is done by creating a fictitious design, exactly satisfying
the Eurocode. Then, this design is used as input for a probabilistic analysis, where the
load models are replaced by measured traffic, and other uncertainties were quantified.
The target reliability for the fatigue limit state proved to be vague in the Eurocode.
However, the target reliability for ultimate limit states can be adopted as an upper
bound, which was used in this report.

The reliability was shown to be below this target, caused by, among others, a partial
factor which is equal to 1 for fatigue loads according to the Eurocode. The idea was
that variations in loads will converge due to the vast number of appliances. However,
here it is argued that correlations between variations, which systematically affect
each load its effect, invalidate this assumption. Also, reliabilities were shown to
depend heavily on the span lengths (remarkably lower for spans of 1-10 m). It was
demonstrated that such behavior results by lack of variety in the load model axle
distances and loads, compared to measured traffic.

Recommendations are, apart from further research, to increase the partial factor for
fatigue loading. Also, a novel load model should be created with comparable variation
in axle distances and loads as measured traffic.

Keywords: fatigue, load model, railway structures, reinforced concrete, reinforcement
steel, probabilistic design, reliability, partial factor.
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Samenvatting

Het was onduidelijk welk betrouwbaarheidsniveau geboden wordt door toepassing van
de Eurocode belastingmodellen voor vermoeiing door treinbelastingen, wat betekent
dat dit onvoldoende zou kunnen zijn. Daarom is onderzocht wat de geboden be-
trouwbaarheid is en is deze vergeleken met wat het zou moeten zijn. De focus ligt in
dit rapport enkel op vermoeiing veroorzaakt door buigende momenten op gewapend
betonnen constructies.

Het bepalen van de betrouwbaarheden is gedaan door het maken van een fictief ont-
werp, dat precies voldoet aan de Eurocode. Dit ontwerp is vervolgens gebruikt als
invoer voor een probabilistische analyse waarin de belastingmodellen vervangen zijn
door gemeten verkeer en overige onzekerheden gekwantificeerd zijn. De doelbetrouw-
baarheid voor de grenstoestand vermoeiing bleek slechts vaag aangegeven te zijn in de
normen. Er is beredeneerd dat de doelbetrouwbaarheid voor uiterste grenstoestanden
gebruikt kan worden als bovengrens, wat dan ook gedaan is binnen dit rapport.

Het is aangetoond dat de betrouwbaarheid onder deze doelwaarde ligt, wat veroor-
zaakt wordt door, onder andere, een partiële factor gelijk aan 1, zoals voorgeschreven
in de Eurocode. Het idee hierachter was dat variaties in belastingen zullen conver-
geren door het grote aantal verschillende belastingen. In dit rapport wordt echter
geredeneerd dat correlaties tussen variaties deze aanname tegenspreken, omdat deze
stelselmatig het effect door elke belasting aantasten. Daarnaast is gebleken dat de
betrouwbaarheid erg afhankelijk is van de overspanningslengte (opvallend lager voor
overspanningen van 1-10 m). Het is gedemonstreerd dat dit gedrag voortkomt uit een
gebrek aan variatie in as-afstanden en aslasten in de belastingmodellen, vergeleken
met het gemeten verkeer.

Aanbevelingen zijn, naast verder onderzoek, om de partiële factor voor vermoeiings-
belastingen te verhogen. Daarnaast zou een nieuw belastingmodel gemaakt moeten
worden met vergelijkbare variatie in as-afstanden en aslasten als het gemeten verkeer.

Trefwoorden: vermoeiing, belastingmodel, spoorconstructies, gewapend beton, wape-
ningsstaal, probabilistisch ontwerp, betrouwbaarheid, partiële factor.
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1 | Introduction

The Eurocode program, initiated in 1975, has been fully operational for a few years
now at the time of writing. While the program fulfills its goals regarding the elimi-
nation of technical obstacles and the harmonization of technical specifications, there
have been doubts concerning parts of the content since its start (which is only nat-
ural considering the concessions which are inherently brought by a harmonization
program).

Recently, doubts have been expressed to the author by the Dutch railway infrastruc-
ture manager, ProRail, regarding the load model for fatigue on railway bridges (EN
1991–2). As a load model, this should provide a fair representation of the expected
reality, while providing a sufficiently large safety margin, in order to arrive at a
desired reliability level. Measured values (addressed further in this report) in the
Dutch railway network, however, were said to indicate that the load model for fatigue
might not provide such a margin, and is even exceeded on a regular basis.

1.1 Problem description
The Eurocode in its current form provides a load model for fatigue on bridges and
other parts of the railway infrastructure. This load model is based on a cumulative
tonnage, i.e. the summed weight of all vehicles passing over a single rail per year,
of 25 × 106 tonnes per year. However, measurements have been said to reveal that
this might be a gross underestimation for some parts of the Dutch railway network,
leading to designs which do not meet the required reliability. It is then also unclear
what the actual reliability of structures complying with the Eurocode equals. This
suggests vagueness, which is a problem in itself because the safety might be less than
thought.

Problem statement: The model for fatigue loading on railway bridges, as laid
out in EN 1991–2, might not represent reality in a safe and thus sufficient manner.
This implies that the reliability requirement which is deemed fulfilled by design and
verification according to the Eurocodes, is not met by using the aforementioned load
model.

1.2 Objective
The primary goal of this endeavor is to determine the reliability provided by the
current code, and whether this is sufficient or not. Therefore it is clear that insight
is to be acquired in both the provided and the required reliability. Based on the
problem statement and the objective, a research question was formed:

“Is the requirement regarding reliability, as stated in the Eurocode, proven
by applying the load model for fatigue on concrete railway structures, as
laid out in NEN–EN 1991–2?”

1



Chapter 1. Introduction

To this extent, the following sub-questions are to be answered:

1. “What level of reliability is required by the current code?”

2. “What level of reliability is provided by the current code?”

1.3 Method & Scope
The goal of this thesis is to show the reliability, provided by design using the Eurocode
verification methodology for reinforced concrete structures. For this, measured trains
are used as a representation of loading on structures. These traffic records will be
used to establish the reliability level of the current code. Altering the current load
model is however not done within this study. The load model’s reliability which is to
be shown, however, might initiate such activities in future research.

The scope of this project is mainly on the load model for fatigue loading on railway
bridges (and other appropriate structures) in the Dutch railway network. However,
to determine the reliability, it is of critical importance to include the strength-side of
the problem as well. At the start of this project, ProRail expressed specific interest
towards fatigue in concrete structures due to possible fatigue damage (to concrete) at
the ‘Lingebrug’, connecting Tricht and Geldermalsen. Actual information regarding
possible fatigue damages is, however, not yet available but under investigation within
ProRail. These suspicions have also formed the incentive to investigate the current
load model for fatigue. This specific interest in concrete structures has formed
the reason to base the calibration (meant here as comparison, thus not including
subsequent adjustment) on the resistance models for (reinforced) concrete. During a
site visit within this investigation (see figure 1.1), however, no damages were spotted
at the bridge.

(a) (b)

Figure 1.1: Lingebrug near Tricht as seen during site visit. (a) Bridge deck; (b) Side view;

1.4 Outline
In this report, one will first find an introduction to fatigue (chapter 2), explaining
some basics regarding the phenomenon and an overview of rules used for design
according to the Eurocode. The target reliability, together with the background
concerning this aspect, is included as a single chapter, i.e. chapter 3.

The following two chapters, 4 and 5, are dedicated to the analysis of provided relia-
bilities. In chapter 6, these reliabilities are compared to the required value and the
reasons for discrepancies are demonstrated. Note that the background of probabilistic
calculation methods, as far as required for comprehending the steps taken in this
thesis, is explained briefly in appendix A.
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2 | Background Information

In the early 1800s, fatigue was first recognized as a problem when European inves-
tigators observed the failure of bridge and railroad components (American Society
for Materials, 2008, p. 243). The study of failures caused by, among others, heavy
duty railway locomotives, led to a preliminary understanding during the industrial
revolution. In 1837 it was Albert who published the first article on the novel sub-
ject, describing for the first time the correlation between fluctuating loads and the
durability of metal (Bath & Patibandla, 2011).

2.1 The fatigue phenomenon
Fatigue is a process of degradation, where cumulative damage is done through subse-
quent loading and unloading cycles. This is defined by Steel Construction Institute
(1993) as:

“The mechanism whereby cracks grow in a structure.”

where the American Society for Testing and Materials handles a more extensive
definition (American Society for Materials, 1985), which seems to be more appropriate
given that fluctuating compressive stresses can also lead to fatigue:

“Fatigue—the process of progressive localised permanent structural change
occurring in a material subjected to conditions that produce fluctuating
stresses and strains at some point or points and that may culminate in
cracks or complete fracture after a sufficient number of fluctuations.”

Progressive implies that failure occurs through accumulated damage over a period
of time. This means that the mechanism which led to failure operates during the
structure’s life-time. The fact that fatigue damage affects small parts of the structure,
as opposed to the entire structure at once, is contained in the word localized.

The danger lies in the way in which fatigue failure unfolds. During the use of a
structure, damage is accumulated through the repetitive application of loads. These
are loads which produce stresses well below the point of yielding. A conventional
stress analysis might thus rate the structure as safe, because a single application of
the load would not lead to failure, but through accumulated damage the structure
might fail (Roylance, 2001). A well-known example of fatigue failure is the Comet
Jet Airliner (Bath & Patibandla, 2011).

2.1.1 Designing for fatigue
When preparing a design it is important to check whether the material will fatigue
given the way it is loaded, and to which extent. Resistance to fatigue can be created
by keeping the stresses sufficiently low, which leads to the question what ‘sufficiently
low’ entails.

3



Chapter 2. Background Information

The general consensus is that the number of load cycles that a material can withstand
depends upon the magnitude of the cycle, or the stress range (also the absolute stress
levels when concrete is concerned). This is displayed in a S-N diagram, in which
the stress range ∆σ (generally denoted with ‘S’) is plotted against the number of
cycles N which can be withstood at that stress range. For low stress ranges the
number of cycles is generally found to be orders of magnitude larger than at high
stress ranges. This is why the S-N curves are plotted on logarithmic scales (Roylance,
2001). Commonly, simplified S-N diagrams are used, with linear proportionality on
a double logarithmic scale. This implies an expression in the form of

N = C

∆σm
(2.1)

where
N = number of cycles
C = constant in S-N formulation
∆σ = stress cycle magnitude
m = fatigue exponent

from which the linearity can be shown by taking the logarithm of both sides:

log N = log C − m log ∆σ (2.2)

Equation 2.2 shows that the S-N diagrams can be plotted as straight lines on double-
logarithmic paper (see figure 2.1).

For metals and composites, the generally accepted theory is the that there are three
distinguishable phases in fatigue cracking (in some literature only the first two are
mentioned):

1. crack initiation;

2. propagation of one dominant crack;

3. final fracture.

The fatigue life is determined as the sum of the duration of phases 1 and 2. During
the second phase, the growth rate of cracks can be approximately described using
Paris’ law, which states (Paris & Erdogan, 1963):

dacrack

dN
= Acrack ∆Km (2.3)

where
acrack = size of the crack
∆K = Kmax − Kmin, the stress intensity at the crack tip
Acrack = crack growth proportionality factor

Equation 2.3 is used for an approach known as ‘fracture mechanics’. It implies that
the cracks grow at a rate proportional to the local intensity of the stress cycles, raised
to a power m (generally in the order of 3–9).

The pragmatic approach which is frequently used for fatigue calculations is the theory
of damage accumulation. This theory states that each application of loading affects
a structural element, and results in a permanent effect which is named ‘damage’
(not to be confused with failure, rather some equivalence to remaining life). The

4
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accumulation of this damage is then studied, where failure is assumed to occur at the
attainment of a specific value, generally 1. The accumulation of damage is most often
assumed to occur in a linear fashion. This principle is formulated in Palmgren-Miner’s
law (Miner, 1945):

D =
k∑

i=1
∆Di =

k∑
i=1

ni

Ni
(2.4)

where

D = normalized cumulative fatigue damage (0 ≤ D < 1 corresponds to survival
and D ≥ 1 to failure), also called ‘damage number’

∆Di = incremental normalized damage from band i

ni = number of applied cycles in band i

Ni = number of allowed cycles in band i

Cumulative fatigue damage is thus formed through repetitive loading, where each load
is assumed to contribute to the total damage through an incremental damage. Such
incremental damages are determined using the aforementioned S-N curves. Starting
from a single cycle with known stress range, ∆σi, the number of cycles which can be
sustained is read from the S-N curve. The result is denoted with Ni. One cycle of
this magnitude then causes a damage increment of 1/Ni

according to equation 2.1.1.
In doing so for all cycles, and adding all damage increments, the cumulative fatigue
damage D is calculated. Real world loading will generally consist of cycles with
varying magnitudes. These can thus be combined using Miner’s rule.

According to Roylance (2001), Miner’s law should be viewed skeptically. Some effects
which influence the strength are ignored, which is why the essential physics of the
fatigue process are not captured in an accurate manner. It is however widely employed
in fatigue calculations, and can lead to sufficient reliability provided that it is correctly
calibrated (which is essentially accomplished through the S-N curve).

2.1.2 Fatigue in steel
Because of the large differences in fatigue strength related to different details and their
geometry, a number of strength models had to be developed to represent this variety.
NEN-EN 1993-1-9 (CEN, 2005c) provides S-N curves for different detail categories
with corresponding fatigue strengths. This is expressed using the parameter ∆σC

(reference strength), which is defined as the stress range which leads to failure for
N = 2 × 106 cycles.

The exponent m from equation 2.2 is taken as a constant for each detail category,
while it varies for different regions of cycles (thus being responsible for the shape
of the curve). Five example S-N curves, each corresponding to a different detail
category, have been reproduced using the parameters given in the Eurocode, shown
in figure 2.1.

For normal stresses, the slope (or ‘fatigue exponent’, denoted with m) for variable
amplitude stress cycles is given as (NEN-EN 1993-1-9 art. 7.1(2), CEN, 2005c):

m =


3 for N ≤ 5 × 106

5 for 5 × 106 < N ≤ 1 × 108

∞ for 1 × 108 < N

(2.5)
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Figure 2.1: S-N curves for normal stresses in steel, given for five detail categories (expressed as
∆σC). Based on NEN-EN 1993-1-9 (CEN, 2005c).

In the case of constant amplitude loading, the cut-off limit for fatigue may be taken at
5×106 cycles, as indicated with dashed segments in figure 2.1. Using this information,
combined with the definition of ∆σC , the S-N curves are fully defined. When the
detail is subjected to shear stresses, the value for m is equal to 5 for the entire range
above the cut-off limit.

The verification of fatigue resistance in steel does not take into account the mean
stress level. This is because it implicitly contains the assumption that steel in the
vicinity of a weld has residual stresses of a magnitude comparable to that of the yield
stress. For non-welded details, the Eurocode allows a reduction of the compression
part of the cycle to 60 % of its original value.

2.1.3 Fatigue in reinforced concrete
Although it is commonly thought that no fatigue collapses of concrete structures have
ever been observed, there are a number of documented cases where fatigue has resulted
in damage. Also, one case where concrete compressive fatigue led to collapse was
documented. Seventeen case studies of damage were presented by CEB (1988), which
cover bridges, pavement and slabs, prestressed concrete, machine foundations, and
pile driving. The most relevant cases are summarized below (CEB, 1988) (numbering
corresponds to cited source, other cases can be found in appendix B):

2. Japanese bridge decks: there have been numerous reports of fatigue failures in
reinforced concrete bridge decks. The result is spalling of the concrete covering

6
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the bottom layer of reinforcement, as well as damage to the running surfaces,
which were associated with punching failure. Note that there were no cases of
failing reinforcement, only the concrete was affected. Repetition of shear and
torsional effects were suggested to reduce the fatigue strength by about 50 %.

4. Bridge decks in Holland: several bridge decks, supported by frames of steel
beams, have been replaced because of their bad condition. This was due to
the formation of many small cracks, which led to complete disintegration of the
concrete. The damage was highly localized, and coincided with wheel tracks.
The reinforcing steel was undamaged, which led to the conclusion of fatiguing
concrete.

6. Bridge over Tarnaforsen, Sweden: vertical cracks and inclined shear cracks
have been observed in the bridge. The main cause was identified as repetitive
overloading by timber trucks, with one exceptionally heavy truck signifying the
start of fatigue cracking problems.

10. Factory floor slab, United Kingdom: a prestressed factory floor slab, consisting
of three adjacent parts which were connected by a single top-layer, lost all
serviceability due to fatigue (cracking and deflections). The repeated passing of
forklifts was identified as the cause. This caused the joints between prestressed
elements to degrade, in turn reducing the spreading of loads over the elements.
This reduced spread made matters even worse.

14. Footing at Skutskarsverken, Sweden: a machine hit its footing with great force,
approximately 100 times per minute. Also, resonance was part of the excitation.
Cracks were observed after 6 years of use, or 70 × 106 cycles. These cracks were
said to gradually increase in width.

As a last addition, a quote from CEB (1988) is included: “In most cases it is unlikely
that fatigue can be isolated as the sole reason for deterioration”.

In all literature, only one example of collapse due to concrete fatigue in compression
was found. The case at hand (see Van der Veen and Den Uijl, 2015) describes
failure of a concrete wind turbine, which had a wall thickness of 90 mm instead of
the nominal 150 mm. Although it is noted that the shaft should not have passed
quality control, it did anyway, resulting in collapse (see figure 2.2). It is stated
explicitly that this was due to concrete fatigue in compression. As with fatigue in

Figure 2.2: Concrete wind turbine after collapse due to concrete compressive fatigue
(Van der Veen and Den Uijl, 2015).

steel, the resistance provided by reinforced concrete can also be given by characteristic
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S-N relationships (see sections 2.1.3.1 and 2.1.3.2). Notion must be made, that the
behavior of reinforced concrete, as this is a composite material, is dictated by the
behavior of both its components, which will therefore both be discussed. Note that,
in this report, prestressing steel is not treated.

2.1.3.1 Reinforcement steel
An extensive overview regarding the fatigue strength, behavior, and testing of re-
inforcement steel was given by Tilly (1979). Different types of bars, e.g. plain or
deformed, are compared on their fatigue behavior. It is found that plain bars out-
perform other types on fatigue, while their bonding properties are reduced. This
is said to be due to stress concentrations which are introduced by e.g. ribs on bars,
especially at intersecting rib patterns (CEB, 1988). More interestingly, it was found
that manufacturer’s markings on the reinforcement bars reduce fatigue life by about
50 % on account of the same principle.

Looking at the different types of fatigue life testing of steel reinforcement bars, two
clear methods can be distinguished (Tilly, 1979):

• Axial testing: it is difficult to attach the specimen in such a way that large
stress concentrations near the attachment points are avoided. Also, slight
misalignment of the testing equipment and the bar can introduce secondary
stresses, which cloud the results.

• Bending testing: these are usually performed on concrete beams with a single
reinforcement bar. The main advantage that is brought by this type of testing, is
that it also includes the interaction effects of reinforced concrete as a composite
material (e.g. bond between the reinforcement steel and the concrete).

Considering factors that influence the actual fatigue life of the material itself, in
general five aspects are listed (Tilly, 1979):

• Type of steel: the fatigue life is affected by the chemical composition of the
steel. Steel strengths higher than 420 N/mm2 only deliver a small increase in
the resistance to fatigue.

• Geometry and size of the bars: this is partly expressed by the size effect, which
entails that the fatigue strength decreases with increasing sizes. Reasons for this
are also known. The first and most trivial is the increased likelihood of defects
in the material, from which a crack may initiate. This also implies increased
scatter in smaller samples. Another reason which is given, is that smaller
diameter steel can be worked more effectively, resulting in a more uniform
product with a higher fatigue strength.

• Nature of the loading cycle: in reinforcement, also there are less residual stresses
than in other structural steel (assuming structural steel is welded while reinforce-
ment is not). This implies that the mean stress might have a more pronounced
effect in reinforced concrete than in (welded) steel details. It is found, that for
increasing mean stresses, the fatigue life decreases.

• Welding: welding of the reinforcement may also lower the strength (reductions
up to 50 % were found for tack welded stirrups at 1 - 5 × 106 cycles), although
results obtained through axial testing are reported to be very conservative, and
may be unnecessarily preventing the use welding.

• Presence of corrosion: corrosion and fatigue damage can interact, meaning that
the total result is larger than the superposition of individual effects.
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The working in itself can also affect the quality. This is achieved through the rolls
used to work the steel. It is found that the best results are produced using worn rolls.
Defects in the rolls can also affect the steel in a considerable manner, as reported in
Fatigue of Concrete Structures (CEB, 1988):

“Samples from a 32 mm diameter bar having a gross defect due to a
chipped mill roll failed at 2.5 million cycles when tested at a stress range
of 225 N/mm2 whereas a sound bar tested at this stress was unbroken after
300 million cycles.”

The Eurocode prescribes S-N relations for reinforcement, which differ slightly from
those for structural steel, as covered in section 2.1.2. The first difference is that no
stresses above the design yield stress are permitted whatsoever, which is in line with
design conditions for ultimate strength limit states. The slope of the relations, or
actually the fatigue exponents, varies for different conditions. This is also the case
for the transitional point, denoted as N∗. A schematic representation of the curve is
given in figure 2.3 while the accompanying parameters are presented in table 2.1.

log N∗

log ∆σRsk

log fyd

m = k1 m = k2

no cut-off limit

log N

lo
g∆

σ

Figure 2.3: S-N curve for reinforcement steel. Based on NEN-EN 1992-2 (CEN, 2005b). Note
that for bent bars, a reduction factor for the fatigue strength is given in the Eurocode.

reinforcement type N∗ fatigue exponents ∆σRsk

k1 k2 @N = N∗

straight and bent bars 106 5 9 162.5 N/mm2

welded reinforcement 107 3 5 58.5 N/mm2

connections 107 3 5 35 N/mm2

Table 2.1: Parameters for reinforcement S-N curves. Based on NEN-EN 1992-2 (CEN, 2005b).

2.1.3.2 Concrete
As opposed to fatigue in steel, the relative position of the stress cycle in the stress-
domain, as indicated by the cycle’s mean stress, plays a crucial role in the fatigue
verification of concrete. This has resulted in more complex S-N relations, because
more information is included. The mean stress and amplitude, equivalent to the
minimum and maximum of the cycle, are included via a ratio of minimum and
maximum stress, denoted with R.

Note that the Dutch National Annex provides alternative (less conservative, for an
extensive comparison see Lantsoght, 2014) formulations for the S-N curves in the
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domain up to 106 cycles, than the basic Eurocode. The National Annex to NEN-EN
1992-2 provides the following expressions (CEN, 2005b):

log Ni = 6
1 − 0.57 k1

(
1 − fck

250

) 1 − Ecd,max,i√
1 − Ri

for Ni ≤ 106 (2.6)

log Ni = 14 1 − Ecd,max,i√
1 − Ri

for Ni > 106 (2.7)

Ri = Ecd,min,i

Ecd,max,i
(2.8)

Ecd,min,i = σcd,min,i

fcd

(
0.9 + log Ni

60

) for Ni ≤ 106 (2.9)

Ecd,min,i = σcd,min,i

fcd,fat
for Ni > 106 (2.10)

Ecd,max,i = σcd,max,i

fcd

(
0.9 + log Ni

60

) for Ni ≤ 106 (2.11)

Ecd,max,i = σcd,max,i

fcd,fat
for Ni > 106 (2.12)

where

Ri = stress ratio corresponding to cycle i

Ecd,min,i = minimum relative stress level in cycle i

Ecd,max,i = maximum relative stress level in cycle i

σcd,min,i = minimum stress in cycle i

σcd,max,i = maximum stress in cycle i

fcd,fat = concrete design fatigue strength

Here, the design strength for concrete subjected to fatigue is given by

fcd,fat = k1 βcc(t0) fcd

(
1 − fck

250

)
(2.13)

βcc(t) = exp
(

s

(
1 −

(
28
t

) 1
2
))

αcc (2.14)

fcd = fck

γc,fat
(2.15)

s =


0.20 for cement class R
0.25 for cement class N
0.38 for cement class S

(2.16)

where

fcd = concrete design compression strength
fck = concrete characteristic compression strength
βcc(t) = coefficient for the concrete strength at first load application
s = coefficient to take into account the cement class (Rapid/Normal/Slow)
t = age of the concrete in days
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According to the Dutch National Annex, the coefficients k1 and αcc shall be taken
equal to one, which probably results in the best correspondence to test results. The
term Ecd,max,i in equation 2.6 depends on log Ni in the domain of Ni ≤ 106. Therefore,
the equation does not provide a closed solution straight ahead. It is however possible
to write it in explicit form for both log Ni as for Ecd,max,i. For the following, the
notion of a relative maximum and minimum stress level is introduced, similar to
Lantsoght (2014):

smax,i = σcd,max,i

fcd
(2.17)

smin,i = σcd,min,i

fcd
(2.18)

so that

Ri = Ecd,min,i

Ecd,max,i
= smin,i

smax,i
(2.19)

Now, an explicit expression for log Ni as a function of smax can be derived, granted
that either smin or R is fixed, by solving a quadratic equation. This results in

log Ni = C

2
√

1 − R
− 27 +

√(
27 − C

2
√

1 − Ri

)2
− 60 C (smax,i − 0.9)√

1 − Ri

(2.20)

with

C = 6
1 − 0.57 k1

(
1 − fck

250

) (2.21)

Although the expression for the domain N > 106 is already given in explicit form, it
still needs an alteration before the S-N curve can be plotted in a convenient manner.
The term Ecd,max,i can be substituted by

Ecd,max,i = σcd,max,i

fcd,fat
= σcd,max,i

fcd

fcd

fcd,fat
= smax,i

fcd

fcd,fat
(2.22)

With this substitution it is clear how the two parts of the curve can be plotted
with smax as the ordinate. Plots for three stress ratios (R = {0; 0.4; 0.8}) and three
concrete strength classes (C40; C80; C120) are given in figure 2.4. Note that these
have been plotted for t = 28 days, resulting in βcc = 1.

It is clear from the plots that, especially for increasing R, the curve is interrupted
at N = 106 cycles. It is not clear why this is the case, as logic argues against the
notion that the resistance, expressed as the number of cycles, remains constant for a
(in case of large R) significant portion of the stress-domain. Actually, this is believed
to be the result of some mistake. Lantsoght did propose changes for a continuous
curve, which will be adopted later on in this work (discussed in chapter 5). However,
this somewhat reduces the compatibility with the current Eurocode.

The fatigue resistance at one cycle, thus for log N = 0, is equal to 0.9 fcd for all cases.
While this may seem odd at first, it should be realized that when dealing with the
fatigue limit state, the partial factor for fatigue is used, which is equal to 1.35 for
concrete. For the ultimate limit state, this partial factor is 1.50, and the ratio of
these partial factors is precisely 0.9. Therefore, when dealing with actual stresses
instead of relative levels, the maximum stress which can be sustained for a single
cycle, corresponds to the design compressive strength corresponding to ultimate limit
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Figure 2.4: S-N curves for normal stresses in concrete, as a function of smax for a given stress
ratio R. Based on NEN-EN 1992-2 (CEN, 2005b).
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states. In the author’s opinion, such measures are quite unclear, and might therefore
lead to confusion or mistakes.

Another interesting observation is that the line segments are fairly straight, while the
stress is plotted at linear scale instead of logarithmic as was the case with the S-N
curves for steel (compare to figure 2.1).

2.1.3.3 Composite behavior of reinforced concrete
The relations given in the previous sections may be accurate for reinforcement and
plain concrete, but this does not necessarily validate them for the composite in which
these components are mainly used. Regarding bending fatigue, it was found that:

“The fatigue damage process can be summarized as follows. After first
cracking the fatigue loading causes progressive deterioration of the bond
between the reinforcement and the concrete adjacent to the crack. Larger
crack widths and a smaller contribution of the concrete in tension between
the cracks result in larger deflections. Failure normally occurs due to
bar fatigue fracture; another failure mechanism is spalling of concrete in
the compression zone. However, even over-reinforced beams (i.e. concrete
compression failure under static loading) fail due to reinforcement fracture
when subjected to fatigue loading. Due to the strain redistribution under
compression, in most cases the concrete of a reinforced concrete member
does not fail under bending stresses.” — Plos et al., 2007

Acting on the notion that local failure of concrete in compressive fatigue may lead to
redistribution, it is imaginable that such a redistribution of compressive forces may
alter the tensile counterpart. This interaction may be of great importance, and may
even explain the way in which reinforced concrete elements generally fail in testing,
being fracturing of reinforcement.

If some reinforced concrete section, with reinforcement near the bottom fibers, is
loaded intensively with repetitive nature, this in turn causes the concrete near the
top fibers to lose part of its stiffness, leading to a decrease in stresses for equal strain.
This loss of stiffness is believed to be due to the formation of cracks on a microscopic
level (Plos et al., 2007). In order to retain equilibrium of horizontal forces in the cross-
section, the strains should increase (where it is assumed that the load is unaltered).
Also, the internal lever arm is affected. The concrete near the top acts only partly,
causing the resultant equivalent compressive force to shift downwards into the section
(the effective section height is reduced). This shift of the compressive force leads to
an increased aggressiveness of the reinforcement’s loading, and therefore intensifies
the accumulation of fatigue damage. When failure now occurs, it will be due to
the fracture of reinforcement, while it is actually induced by concrete compressive
failure. This is accompanied by concrete which is, while partially fatigued, able to
redistribute loads internally because of the relatively larger area. This theory was
also partially suggested in Plos et al. (2007).

What is also of interest, is that, if the stiffness of the concrete decreases with repetitive
loading, failure in terms of stresses may actually never occur. It would thus be
better practice to speak of strain instead. In the Eurocode, the prescription of the
linear elastic calculation model circumvents this issue by not taking into account any
decrease in stiffness. Therefore, it is equivalent to verifying the resistance to fatigue
using the strain.

As a concluding remark it is added that the failure mechanism of reinforced concrete
in fatigue, under presupposition of the above, is caused by a progressive degeneration
of both its components. Designing for fatigue failure should reflect such mechanisms,
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which it currently seems not to (at least explicitly). For the sake of this thesis, and
because the above is just a theory, the load models shall be calibrated using the
Eurocode’s current damage models (or actually those proposed for the new national
annex, discussed in chapter 5), without incorporating interaction between concrete
and reinforcement.

As far as the reliability is concerned, the fatigue limit state is compared to that of
ultimate strength. Because of the progressive deterioration, the strength (capacity)
of the material is decreased. Therefore, the resistance in the ultimate strength limit
state is decreased as well. If failure occurs, it is thus a combination of progressive
deterioration and the occurrence of a somewhat severe load, and the final mechanism
will be identical to failure in the ultimate strength limit state. Elaborating on this
idea, it may even be concluded that both limit states cannot be separated, and should
therefore be captured in a single limit state. This also implies that the reliability
should be equal for both limit states, and that the ultimate strength limit state might
be more time-dependent than generally accounted for. More on this will be discussed
in chapter 3.

2.1.4 Fatigue verification à la Eurocode
This section is focused primarily on the verification procedure for fatigue effects on
railway bridges as adopted by the Eurocodes. There are two procedures specified in
the code, namely:

1. simplified method, i.e. the λ-method;

2. cumulative damage method.

Both methods will be discussed in the remainder of this section.

2.1.4.1 Simplified method
The simplified method consists of one straightforward check that needs to be satisfied.
Although the method is explained slightly different in the codes for steel and concrete,
it is essentially the same. According to the codes, NEN-EN 1992-2 (CEN, 2005b)
and NEN-EN 1993-2 (CEN, 2006), the requirement is given in the form of (presented
here for structural steel)

γFf λ Φ ∆σFLM ≤ ∆σc

γMf
(2.23)

where
γFf = partial safety factor for fatigue loading (section 3.2)
λ = equivalent damage factor, defined in eq. 2.24
Φ = dynamic equivalence factor (section 2.1.4.3)
∆σFLM = fatigue load model stress range
∆σc = reference fatigue strength, depending on the detail category. For its

definition, see figure 2.1
γMf = partial safety factor for fatigue strength

The equivalent damage factor λ is used to transform the spectrum of traffic loads
into one single, equivalent, stress range at N = 2 × 106 cycles. It is defined as:

λ = λ1 λ2 λ3 λ4 (2.24)

where
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λ1 = factor which takes into account the influence of the span lengths, i.e. the
relevant influence line for the detail

λ2 = factor which takes into account the (yearly) traffic volume
λ3 = factor which takes into account the design life
λ4 = factor which takes into account the influence of loading on multiple tracks

Each of the λ’s is defined by expressions which relate to the reference circumstances
which were used for calibration of ∆σFLM . These consist of a traffic volume of 25×106

tonnes per year per track, and a design life of 100 years. The proportionality of these
λ’s with respect to different conditions is given through the fatigue exponent m.
Because this exponent differs for varying stress ranges, and materials, the results
are different for e.g. reinforcement steel. Stress ranges resulting from real traffic are
generally in the range below the constant amplitude fatigue limit, that is, in the
region of m = 5 in figure 2.1 (thus for structural steel) (Jacob & Kretz, 1996). This
exponent therefore is used to calculate the tabulated values for λ2 and λ3 in NEN-EN
1993-2. Further description of the model is not relevant and thus omitted.

For concrete in compression this model differs, but the Dutch national annex to
NEN-EN 1992-2 states that Miner’s sum should be used for concrete, implying that
the use of simplified models is not permitted. Miner’s sum, used in conjunction with
the cumulative damage method, will be elucidated in section 2.1.4.2.

2.1.4.2 Cumulative damage method
The method of cumulative damage is based directly on the actual traffic that is
expected to pass a bridge. The method basically consists of six consecutive steps:

1. Specification of a representative traffic mix.

2. Structural analysis, which in principle should include dynamic effects.

3. For each passing train the relevant stress at the considered detail should be
determined as a function of the vehicle’s position as it crosses the bridge,
resulting in a stress history.

4. The stress histories corresponding to all passages are converted to a spectrum of
cycles, using either the rainflow method (see chapter E) or the reservoir cycle
counting method. This yields the total expected stress spectrum (description
of all occurring stress ranges) for the detail under consideration.

5. The spectrum of stresses is generally divided into bands and for each band the
number of cycles to failure is determined from the S-N curve belonging to the
detail (see chapter 2).

6. Using the Palmgren-Miner assumption (eq. 2.1.1), the damage number is deter-
mined which finalizes the verification. This should be less than one to pass.

From the above it may be clear that this approach is much more cumbersome. It can
therefore be said that it is generally time-efficient to start by applying the simplified
model to identify which details might be susceptible to fatigue failure during the design
life. These details can then be further optimized using the cumulative damage method,
which is expected to yield a more accurate load effect, because the transformation
from a spectrum to a single load application will most likely be at the expense of
some of the accuracy.

In order to apply the cumulative damage method, it is required to have a specification
of expected traffic, i.e. a load or vehicle model. In the Eurocode, three different traffic
mixes are specified, corresponding to standard, heavy, and light traffic. These mixes

15



Chapter 2. Background Information

correspond to certain types of usage, being predominantly passengers of freight, or
a mixture. All three traffic mixes are based on an annual cumulative tonnage of 25
million tonnes per track. The way these mixes are specified is via reference trains. A
mix is then composed of frequencies of reference trains passing. The reference trains
can be found in chapter J. The three mixes are discussed below.

Standard traffic mix (EC1) According to NEN-EN 1991-2 Appendix D, the
standard traffic mix is composed of reference trains 1-8. Its composition is according
to table 2.2.

train type nr. per day train mass [t] traffic volume
[10 × 106 ton/year]

1 12 663 2.90
2 12 530 2.32
3 5 940 1.72
4 5 510 0.93
5 7 2160 5.52
6 12 1431 6.27
7 8 1035 3.02
8 6 1035 2.27

67 24.95

Table 2.2: Composition of the standard traffic mix (NEN-EN 1991-2 App. D, CEN, 2002b)

Heavy traffic mix (EC2) The heavy traffic mix is composed of reference trains
5, 6, 11, and 12. Its composition is according to table 2.3.

train type nr. per day train mass [t] traffic volume
[10 × 106 ton/year]

5 6 2160 4.73
6 13 1431 6.79
11 16 1135 6.63
12 16 1135 6.63

51 24.78

Table 2.3: Composition of the heavy traffic mix (NEN-EN 1991-2 App. D, CEN, 2002b)

Light traffic mix (EC3) The light traffic mix is composed of reference trains 1,
2, 5, and 9. Its composition is according to table 2.4.

The abbreviations ‘EC1’, ‘EC2’, and ‘EC3’ are used in the rest of this report. Al-
though the cumulative annual tonnages are equal, there are large differences in
occurring axle loads and the number of passages, which can be observed in figure 2.5.

This is the only specification which is supplied. There is no method supplied for
correction of these traffic mixes to the actual location, neither is it clear whether
these are trains which can actually be expected (frequent loads) or design situations
which are calibrated to provide some reliability (an approach which is comparable
to the λ-method). Also, zero information is provided on how to apply the model to
multiple tracks.
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train type nr. per day train mass [t] traffic volume
[10 × 106 ton/year]

1 10 663 2.40
2 5 530 1.00
5 2 2160 1.40
9 190 296 20.50

207 25.30

Table 2.4: Composition of the light traffic mix (NEN-EN 1991-2 App. D, CEN, 2002b)
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Figure 2.5: Eurocode traffic mixes expressed in yearly crossings per track as a function of the
axle loads (based on NEN-EN 1991-2, CEN, 2002b)
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2.1.4.3 Dynamic effects
As mentioned in equation 2.23, the dynamic factor Φ plays a role in the fatigue
verification. Excitation of a structural system can lead to dynamic effects such
as vibrations, which lead to varying stresses, i.e. stress cycles. When these are of
significant intensity, their contribution to the fatigue damage can be relevant. Also,
this is to take into account the effects of deviations in the roundness of the train’s
wheels, which lead to impact on top of static forces.

These dynamic effects should be evaluated using a model which fully captures the
time-dependent behavior. In the Eurocode there is, however, an expression for the
dynamic amplification factor Φ. This deviates from the regular dynamic amplification
factor (DAF), which is only applicable to ultimate limit state (ultimate strength)
conditions and thus contains some factor of safety. It is noted that appliance of this
factor would lead to unnecessarily high equivalent loads on the bridge for fatigue.
Therefore a reduced factor is proposed, namely (NEN-EN 1991-2, CEN, 2002b):

Φ = 1 + 1/2 (φ′ + 1/2 φ′′) (2.25)

φ′ = K

1 − K + K4 (2.26)

φ′′ = 0.56 exp
(

− L2
Φ

100

)
(2.27)

with

K =


v

160 for L ≤ 20 m
v

47.16 L0.408
Φ

for L > 20 m (2.28)

where
v = maximum allowed train speed [m/s]
LΦ = governing length for dynamic amplification factor [m], according to table

6.2 of NEN-EN 1992-1

As this study is focused on the load model, the dynamic factor and its background
are outside of the project’s scope. However, the dynamic amplification factor will, in
this report, be used to include the train’s velocity into calculations.

2.2 Measurements
The data used in this thesis was provided by Ricardo Rail (formerly known as Lloyd’s
Register Rail). The measurements correspond to four locations, for all tracks at these
sites. These sites are:

• Voorschoten – 4 tracks (detectors 11, 12, 18, 19);

• Tricht – 2 tracks (detectors 111, 114);

• Schiedam – 2 tracks (detectors 163, 164);

• Zeist – 2 tracks (detectors 363, 364).

More information can be found in chapter C. In this aforementioned chapter, apart
from providing some extra information on the measurement systems and locations,
exploratory analyses were done to asses the frequency distribution of axle loads vs.
their magnitudes, the average tonnage vs. time, and the average axle loads vs. time.
Using these results, it was possible to assess whether 4 years of data provided insight
into some trend in time, which was shown not to be the case.
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2.3 Preliminary deterministic comparison
With the availability of measurements, the urge to compare these to the Eurocode
traffic mixes arises. However, there are differences in

• the magnitude of axle loads;

• the number of crossings by each axle load;

• the distances between axles.

Therefore, it is not immediately clear which criterion should be used to compare.
Another important difference between measured loads and the Eurocode traffic mixes,
is that the latter is defined as a ‘characteristic value’, and therefore corresponds
to a value that includes an implicit safety margin. In an effort to compare the
loads anyway, their magnitudes are compared, including frequencies of occurrence
(see figure 2.6). It has to be emphasized again that the Eurocode load models
represent characteristic values, i.e. a certain safety margin is expected to
be included.

Observing these figures, it must be concluded that, in a ‘deterministic sense’ (without
any of the uncertainties included), the characteristic Eurocode traffic mixes seem to
cover the measured traffic reasonably well, and even seem quite conservative. There
are some axle loads which exceed the maximum of 25 tonnes which is present in the
Eurocode traffic mixes, which are therefore not covered. However, these occur in
small numbers. Annual cumulative tonnages were also determined (see chapter C).
These were shown never to exceed the 25 million tonnes which are prescribed in the
Eurocode.

From such a ‘deterministic comparison’, one may conclude that the Eurocode traffic
mixes are safe enough, and can therefore be used to verify structures in order to
provide enough reliability. However, as will be demonstrated in the remainder of this
thesis, this is not the case.

2.4 Conclusions
• Fatigue was identified as progressive and localized structural change, resulting

from repetitive loading. This structural change was named ‘cumulative fatigue
damage’.

• Miner’s sum can be used to calculate this fatigue damage, which is expressed
using the ‘damage number’. It is applicable to (reinforcement) steel and concrete,
among other materials.

• A material’s resistance to repetitive loading is expressed in a S-N curve. For
each change in stress (a cycle), such a curve provides the number of permissible
changes (cycles). This is used as input for Miner’s sum, in order to calculate a
damage number.

• It has been argued that, for a reinforced concrete section, fatigue degradation
of the concrete in compression can lead to increased aggressiveness of stress
fluctuations in the reinforcement. This may contribute to an explanation to
why reinforced concrete sections generally fail due to reinforcement bar fracture.

• Two procedures for fatigue verification which are prescribed in the Eurocode
have been explained. These are the simplified method (or λ-method) and the
elaborate cumulative damage method.
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Axle loads, measured vs. Eurocode — Tricht
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Axle loads, measured vs. Eurocode — Schiedam
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Figure 2.6: Deterministic comparison of measured axle loads to Eurocode traffic mixes. All
figures correspond to 3.98 years, which is the time of measurement.
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• Dynamic effects which accompany the passages of trains were discussed, and a
factor to take these into account has been presented.

• Data corresponding to 4 locations (10 tracks) was provided by Ricardo Rail.
The locations are: Voorschoten, Tricht, Schiedam, and Zeist.

• Comparison of the Eurocode traffic mixes with the measured traffic shows that
the traffic mixes seem quite conservative. Also, the annual cumulative tonnages
were determined. In all cases, these were lower than 25 × 106 tonnes, which
is prescribed in the Eurocode. It should be noted that the traffic mixes are
‘characteristic values’, and therefore are assumed to include some sort of safety
margin, or represent an upper bound of some sort.

Furthermore, no information regarding the background of the Eurocode load models
for fatigue could be obtained. Even if this was available, demonstrating a certain
reliability level given some traffic records at that time, this would not imply this
reliability for the current situation, as traffic probably evolved. Therefore, this
reliability level will be determined in the remainder of this report; a process in which
the theoretical background covered in this chapter will be used intensively. There
was also no information on comparing different sets of loads, so a strategy for this
will have to be developed.

Regarding the target level: this was skipped in this chapter of background information.
Its background and aspects are treated in the next chapter as a whole.
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“When it first became evident — which was not very long ago — that a
small stress, sufficiently repeated, was able to cause a failure, the designer
based his calculations on the simple rule that the stress should be well
below the endurance limit, i.e. the stress below which it is known that an
infinite number of stress cycles can be borne. It seemed to hazardous to
allow stresses giving a finite life.” — Weibull, 1949

In his report, Weibull then continues by discussing the fact that, under the influence
of increasing economical demands, this has led to the actual question of relating the
load and the life. Because both the loads and the life are subject to uncertainties,
and can thus only be described by their statistical distributions, the notion of a safety
level is introduced. Essential now for the verification and calibration of load models,
is the question:

“What level of safety is sufficient?”

Given a structure and failure mode, the level of reliability of the structure which is
found to be acceptable is denoted as the target reliability. Several factors influence
this, among which:

• the consequences of exceeding the target reliability (including loss of human
life);

• the required costs for improving the safety;

• the structure’s design life;

• the discount rate (interest);

• by law, a lower bound safety level which is to be respected when human life is
involved in the decision;

• the ductility of a structure, i.e. to which extent it warns prior to failure.

The target reliability should theoretically be derived using an economic optimization
(respecting the lower bound reliability level when human life is involved), where the
minimized quantity is the expectance of total costs, in the form of (based on Leon
and Pérez, 2000):

E [Ct] = E [C0] + E [Cf ] + E [Ci] + E [Cr] (3.1)

where
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Ct = total costs
C0 = initial investment
Cf = failure costs
Ci = inspection costs
Cr = repair costs

The expected failure costs are a result of the failure probability and the associated
consequences. As the initial investment costs influence the resistance, and thus
the expected costs from failure (cumulative risk), an optimum can be found from
equation 3.1. In this way, it is always economically justified to increase the reliability
for as long as the costs of doing so are outweighed by the descrease of risk (benefits).

The problem with such an approach is that it requires significant assumptions to be
made for uncertain aspects. These can be of tremendous influence for the results.
Therefore, for this project and its scope, it seems more appropriate to use reasoning
in obtaining a target reliability level for fatigue.

3.1 Inspections during service life
In order to determine an optimal reliability for fatigue limit states, first the expected
process is considered. By now it is clear that fatigue is a cumulative process, where
damage is done through repeated loading. Each applied load is expected not to
cause failure by itself, and will generally be far below the material’s static, let alone
dynamic, capacity. Therefore time is needed before the fatigue limit state is reached,
which can be a positive characteristic from a design point of view.

During this time, it might be possible to monitor the process of cumulative damage
by inspections. Consider a certain repair threshold, which can for instance be set to a
remaining capacity of twice the expected damage during the next inspection interval.
Given that measurements are done correctly and all damage can be spotted, one
could now determine the failure probability for a given location using the knowledge
that damages are repaired when exceeding the repair threshold. Uncertainties in
the fatigue loading will be, among other things, in the extrapolation in time, so by
calculating for an inspection interval rather than for the life time, the uncertainties and
therefore the failure probability may be greatly reduced. It can thus be concluded
that inspection and repair can significantly improve the reliability of a structure
susceptible to fatigue loading, provided that these are possible.

Designing structures to withstand fatigue loading over their service life without the
need for inspection is deemed uneconomical (Baker & Descamps, 1999). It is more
economic to use planned periodic inspections combined with a small probability of
failure. Using such an approach also has the added benefit of enabling the detection
of design and fabrication errors (Tammer & Kaminski, 2013).

The cumulative nature of fatigue loading can only be employed for improvement of
the reliability, if there are techniques for the actual detection of fatigue damage. In
other words, the overall reliability, given a certain inspection, maintenance, and repair
program, will only benefit to the degree in which this inspection is effective.

3.1.1 Fatigue detection in steel
The detection of fatigue damage to steel structures is supposed to be ‘relatively easy’,
of course when granted that the inspected detail is accessible. Cracks in the steel can
be visible during inspection, and when the intervals between inspections are limited,
detection is generally thought to be possible before structural failure occurs.
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The limitation of the intervals between inspections should be based on the expected
crack growth in this interval. The reliability of detection, i.e. the probability that,
given a crack or defect, this will be detected during an inspection, can be described
by so called PoD-curves (probability of detection curves). These curves relate the
size of the defect to the probability of detection, belonging to a certain detection
method.

However, the problem with fatigue cracks is their behavior during the fatigue life.
Given the initiation of a crack, the growth will start out small. This can be explained
by the fact that the remaining cross sectional area is still near its initial size. From
Paris’s law (equation 2.3) it is known that the crack growth is proportional to ∆Km.
As ∆K is a measure of the stress intensity, i.e. the magnitude of the stress cycle
(or strain, if plastic behavior is concerned), this will increase for a decreasing cross
section. The relevant part is its influence on the crack growth. It can be observed that
the crack will grow at an increasing rate. As the probability of detection is linked to
the crack size, this will also increase with time. The inverse is also true: because the
crack will remain small until nearing failure, the probability that it will be detected
before failure is relatively small until the final stage of fatigue life. However, such an
approach could very well work in practice.

3.1.2 Fatigue detection in reinforced concrete
The detection of fatigue damage in concrete, also in reinforcement and prestressing
steels, is difficult compared to steel structures. This is of course result of the fact that
the surface of the concrete does not give sufficient information regarding the state of
fatigue damage of the underlying steel.

Although the detection is difficult, techniques have been developed to inspect the
steel through the concrete cover. These techniques make use of acoustic emmission
(AE) or magnetic fields (Motavalli, Havranek, & Saqan, 2011). Acoustic emission is
appropriate for continuous monitoring, while inspections can be done by magnetizing
the reinforcement. The resulting magnetic field can then be read, showing discontinu-
ities and flaws which may indicate fatigue damage. Methods like this have, however,
never been used by ProRail. Also, it is not clear what the minimum size of detectable
defects is.

The aforementioned techniques are however not available for fatigue inspection of
concrete. According to CEB (1988), the “fatigue cracks in concrete have no identifiable
surface topography unlike fatigue cracks in steel”. Therefore it is reported to be
extremely difficult to inspect the concrete for fatigue cracks (which is not facilitated
by the concrete’s characteristic property to crack).

3.2 Reliability in the codes
The Eurocode bases its verifications on the theory of ‘limit states’. A limit state
is defined as “a demarcation between desired and adverse states of the structure”
(Vrouwenvelder, 1996). Furthermore, two main types of limit states can be distin-
guished, namely ultimate limit states and serviceability limit states. Ultimate limit
states concern the collapse of a structural system or part of it, while serviceability
limit states are related to the usefulness of the structure. However, as will be discussed
in the this section, fatigue is not clearly classified as either.

In the Eurocode, the differentiation in target reliability is based on the consequences
of failure. For this, three classes, the so called consequence classes, are defined
(table 3.1). These classes are linked to a minimum required reliability level, which
also depends on the relevant limit state and its severity and reversibility. For example,
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consequence
class

description examples of buildings and civil engineer-
ing works

CC3 High consequence for loss of human life,
or economic, social or environmental
consequences very great

Grandstands, public buildings where
consequences of failure are high (e.g. a
concert hall)

CC2 Medium consequence for loss of human
life, economic, social or environmental
consequences considerable

Residential and office buildings, public
buildings where consequences of failure
are medium (e.g. an office building)

CC1 Low consequence for loss of human life,
and economic, social or environmental
consequences small or negligible

Agricultural buildings where people do
not normally enter (e.g. storage build-
ings), greenhouses

Table 3.1: Consequence classes as defined in EN 1990 table B1 (CEN, 2002a)

for an ultimate limit state, the β-values for a design period of 50 years1 for CC3, CC2
and CC1 are, 4.3, 3.8 and 3.3 respectively. Furthermore, differentiation is present
depending on the type of limit state, i.e. ultimate, fatigue, or serviceability. For CC2
the values are given in table 3.2. Clearly, the value for fatigue limit states is defined

limit state target reliability index
1 year 50 years

ultimate 4.7 3.8
fatigue 1.5 – 3.8
serviceability (irreversible) 2.9 1.5

Table 3.2: Target values for the reliability indices β related to structural elements in RC2
(corresponds to CC2) (CEN, 2002a)

as in between the target values for the ultimate and the irreversible serviceability
limit states.

The Probabilistic Modeling Code (PMC) uses a more elaborate approach. While the
Eurocode solely uses the consequences (also damage tolerance and inspectability in
case of structural steel and aluminum), the PMC also differentiates by taking into
account the costs for improving the safety (table 3.3). This allows for an economically
more sound decision regarding the target reliability.

relative cost of
safety measure

minor consequences
of failure

moderate conse-
quences of failure

large consequences of
failure

large β = 3.1 (PF ≈ 10−3) β = 3.3 (PF ≈ 5 ×
10−4)

β = 3.7 (PF ≈ 10−4)

normal β = 3.7 (PF ≈ 10−4) β = 4.2 (PF ≈ 10−5) β = 4.4 (PF ≈ 5 ×
10−6)

small β = 4.2 (pf ≈ 10−5) β = 4.4 (pf ≈ 5×10−6) β = 4.7 (pf ≈ 10−6)

Table 3.3: Tentative target reliability indices β (and associated target failure rates) related to one
year reference period and ultimate limit states (Joint Committee on Structural Safety, 2000a).

The above information is mainly general, and not specific to the fatigue limit state.
Regarding the latter, one has to consult the material-specific guidelines (i.e. EN1992

1In the context of the Eurocode, ‘50 years’ should be read as ‘design service life’.
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– EN1999). Upon investigation it has become clear that the approaches followed in
these parts of the code are far from harmonized. To show this, a comparison is made
using the Eurocode’s standard format for simplified fatigue verification:

∆σFLM γFf ≤ ∆σc

γMf
(3.2)

See section 2.1.4 for an explanation of the symbols used. The first code to be examined
is NEN-EN 1992-1 (CEN, 2005a), giving rules related to concrete design. It is stated
that the partial factor for fatigue loading, γF,fat (equivalent to γFf in eq. 3.2), shall
be taken equal to 1. The partial factors for the resistance (γMf ) are given in table 3.4.

concrete γc,fat = 1.50 ; 1.35
reinforcing steel γs,fat = 1.15 ; 1.15
prestressing steel γs,fat = 1.15 ; 1.15

Table 3.4: Partial factor for fatigue resistance (γc,fat and γs,fat) according to NEN-EN 1992-1
(CEN, 2005a). The former is the recommended value, while the latter is prescribed in the Dutch
National Annex.

A similar approach if followed in the code for steel structures. NEN-EN 1993-1-9
(CEN, 2005c) also states that the partial factor for fatigue loads shall be taken equal
to 1. There is however some differentiation in the partial factors, depending on the
consequences of failure and the assessment method. Regarding the latter, the code
specifies two methods:

• Damage-tolerant method: this method is to be used for details which are
accessible to inspections, maintenance and repair. This approach is thus a
combination of fairly low partial factors with inspections during the life time
to prevent failure.

• Safe-life method: for inaccessible details a different approach should be followed.
Because cracks will not be detected, the margin of safety is increased by applying
larger partial factors on the fatigue strength.

Furthermore, the level of redundancy is expressed through the consequences of failure.
Details for which the consequences of their failure remain limited to local failure only,
can be said to have minor consequences. It would therefore not be economical to
increase their resistance. The partial factors as adopted by the code are given in
table 3.5.

assessment method consequences of failure
small large

damage-tolerant 1.00 1.15
safe-life 1.15 1.35

Table 3.5: Partial factor for fatigue resistance (γMf ) according to NEN-EN 1993-1-9 (CEN,
2005c)

Yet another approach is followed in the code for aluminum structures. Here the
partial factor for the material shall be taken from the range of 1 to 1.3, depending
on the consequence class, accessibility, and design method. The partial factor on the
loading in this code depends on the load model itself, more specific: on the confidence
limits used for the load model:
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“The confidence limit to be used for the intensity of the design load spec-
trum should be based on the mean predicted value plus kF standard devi-
ations. The confidence limit to be used for the number of cycles in the
design load spectrum should be based on the mean predicted values plus
kN standard deviations.” — CEN, 2007

It is stated that the partial factor for the loading may be taken equal to 1 if the load
models from NEN-EN 1991 are applied, thus implying that these models are based
on kF = kN = 2. The numerical values for the partial factor are stated in table 3.6.

kF γFf

kN = 0 kN = 2
0 1.5 1.4
1 1.3 1.2
2 1.1 1.0

Table 3.6: Partial factor for fatigue loading (γFf ) according to NEN-EN 1999-1-3 (CEN, 2007)

From the aforementioned models, it is clear that there are significant discrepancies
in the treatment of fatigue reliability between different parts of the Eurocode. In all
mentioned standards, compatibility with the load models supplied in NEN-EN 1991
is assumed, although the reliability is treated differently. Using the same load model
for fatigue loading on railway bridges, the partial factors for the load and resistance
differ considerably among the referenced codes. The code for aluminum is the unique
in the sense that it describes a methodology for defining a partial factor for fatigue
loads that takes into account the confidence limits. Overall, it is not clear whether
these methods result in the same reliability.

Another difference is elucidated by Maljaars, Luki, and Soetens (2013). Apart from
noticing the discrepancies in the partial factors adopted by the Eurocode-range, it is
also stated that the codes for aluminum and steel use a different approach with regard
to the stress which is to be used in the verifications (principal stress vs. combined
stress). It is however stated that “in most practical cases either direct or shear stress
dominates so that there is no difference between the two methods” (Maljaars et al.,
2013).

3.3 Proposed methodology
It is clear that the problem entails multiple facets and is thus not easily captured.
There is no such thing definable as ‘the target probability of failure for fatigue’,
because this probability depends on aspects which vary per case.

As a reference, the Eurocode’s classification of the fatigue limit state as a range
between serviceability and and ultimate limit states seems appropriate. One may
argue that the consequences of failure show large variations depending on the specific
component and situation. Regarding railway infrastructure, generally categorized
in CC3 (see table 3.1) with a design life of 100 years, it can be concluded that
the consequences of global failure are large and that society is willing to invest
significantly in their avoidance.

The resistance at a given time can be seen as the remaining safety margin on the
damage number (see chapter 2), i.e. the difference between the accumulated damage
and the resistance. The result is an increasing probability of failure as time progresses,
which increases risk. With ultimate strength limit states, given a constant distribution
of loads and assuming negligible degradation, the risk is constant throughout the
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service life. Because the probability of failure increases with the service life when
fatigue is concerned, it is extra important to have sufficient reliability in the final
years of service to comply with the lower bound associated with the involvement of
human life.

It is not within the scope of this project to fully derive the optimal probability of
failure for fatigue limit states. This decision should, as mentioned before, be based on
an economical optimization which includes the financial means society is willing to
provide for a decrease in the expectation of loss of human life and structural damages.
Therefore this is also a political decision, as opposed to an engineering decision. For
the sake of this research however, some target value should be chosen for comparison
with the provided reliability.

For fatigue limit states, the remaining failure probability (after taking into account
the redundancy) should be thought of as the combination of a probability of the
load exceeding the capacity and the effect of inspections. This can also be viewed
differently: the level of inspection and the detection method influences the overall
reliability. In the Eurocodes on metals (excluding reinforcement steel) this effect
is taken into account in the partial factor for the resistance. Higher quality of
inspection and maintenance, and also the inspectability (the degree in which the
detail is accessible), results in a lower partial safety factor, granted that inspections
are possible.

Focusing on reinforced concrete, where detection of fatigue damage is deemed (next
to) impossible, and consequences can be as severe as collapse similar to failure due
to a single ultimate loading, the target reliability is chosen. Without the availability
of further information, the target reliability index is taken from the Eurocode’s
prescription for ultimate limit states, which seems appropriate. For CC3 this equals
βtarget = 4.3 and the corresponding probability of failure is PF ;target = 10−5. This
decision is supported by CEB (1988), where it is stated that:

“The design of a structure under static loading has to ensure among others
that during lifetime of the structure the probability of failure is smaller
than a given value PF . Concerning safety the design of a structure under
fatigue loading has to be treated in the same manner, because fatigue
loading can also lead to a failure of the structure, i.e. fatigue must be
handled here as an ultimate limit state.” — (CEB, 1988)

An accompanying target reliability of 4.16 was also given for situations corresponding
to ‘increased safety’ and a design life of 100 years, which clearly is in line with
the value of 4.3 as given in the current Eurocodes. Future differentiation in target
reliability levels with respect to conditions of inspectability and detectability of fatigue
in (reinforced) concrete may however allow lower reliabilities for some components.

3.4 Conclusions
• Regarding reliability in fatigue verification and design, the Eurocode is not

harmonized throughout the different parts. Several methods are currently
prescribed in a mixed sense, and it is hard to believe that these methods result
in optimized reliabilities.

• The actual target reliability should be based on an economical optimization
with lower bound, and is not solely an engineering decision. Because such an
optimization is mainly based on assumptions combined with political debate, it
was omitted in this study.
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• For the fatigue limit state of reinforced concrete, the target reliability for ul-
timate limit states corresponding to consequence class 3 is adopted for this
work, i.e. βtarget = 4.3 (PF ;target = 10−5) corresponding to the design life.
Future differentiation in target reliability levels with respect to conditions of
inspectability and detectability of fatigue in (reinforced) concrete may however
allow lower reliabilities for some components.
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The only set of trains (i.e. loads) which results in the exact damage number for
each structure is the real loading sequence (represented by measurements, in this
case). This implies that every other set of trains, differing from this set, results in a
non-exact load effect on most structures. Therefore, load models should be calibrated
to provide sufficient reliability irrespective of which design case is concerned. Using
the results from calibration, load models can be adjusted in order to comply with
demands. Important to note is that ‘calibration’ is, at least in this thesis, defined as
‘comparing what is provided to what is required’, and therefore does not include
adjustments.

4.1 Load and vehicle models
The main reason for using load or vehicle models, is that it would be far too cumber-
some to require every structure to be checked using the real measured data-set, as
this, in case of fatigue verification, contains quite a large number of (unique) trains,
and future changes are unknown. Equivalently, verification of the ultimate strength
would require checking the resistance using a large array of vehicles which may cross
the structure in its design life, to see which one causes the maximum load effect,
which is not very practical. As explained in section 2.1.4, the Eurocode contains two
verification models for fatigue:

• The elaborate vehicle model, composed of 12 trains with frequencies of occur-
rence.

• The simpler λ-method, where the verification is linked to the load model for
ultimate strength.

The first model can be seen as a vehicle model, based on the correspondence of its
components to real trains. The vehicle model’s trains are specified using actual axle
distances, axle loads, and velocities. When comparing such an elaborate model to
the simpler λ-method, the differences are clear. The latter uses LM711 as its load
model, and therewith calculated the stresses which correspond to a fictitious 2 × 106

load repetitions during the design life (∆σFLM in chapter 2).

The simplified method shows very little correspondence to the real loading (i.e. actual
trains), and is therefore to be adjusted for different boundary conditions when applied
(hence the name λ-method, where the λ’s are used for adjusting). This complicates
the verification, which clearly is not very transparent. Therefore, in the author’s
opinion, the elaborate vehicle model is to be preferred for verification. Advantages
are the transparent relation between the vehicle model and the resulting load effect,
as well as the broader field of application (because of its resemblance to the real
loading, at least containing the passing of vehicles resembling real railway traffic). A
general note on these approaches is:

1Fairly straightforward load model used for verification of other limit states than fatigue.
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• The simplified method results in a convenient design calculation. The calibration
of the load model, however, is very sensitive to the type of structure and its
dimensions. This increases the likelihood of mistakes or use of the model outside
of its limits of application.

• The elaborate method is easier to calibrate because larger parts of the calcu-
lation remain undetermined in the model, in other words: the load model is
less specific. It therefore results in a more difficult and time-consuming design
calculation. It does however add to the designer’s insight in the fatigue behavior
of the structure and is therefore to be preferred. Also, the odds of application
of the model to an exception regarding the cases aimed at for calibration are
more favorable.

For the remainder of this report, ‘load model’ will be used to denote the elaborate
vehicle model for fatigue verification, which is the main subject of this thesis.

4.2 Calibration methodology
To calibrate a vehicle model for fatigue, basically a comparison is made between two
sets of trains. The central question is, however, in which way this is possible. First
an overview of the available information2 is given in table 4.1.

Eurocode vehicle model measured trains

• deterministic in nature
• consists of:

1. axle loads
2. axle distances
3. velocities
4. frequencies

• probabilistic in nature, i.e.
uncertain

• consists of:
1. axle loads
2. axle distances
3. velocities

Table 4.1: Available data for the calibration.

From this is may be concluded that comparing the Eurocode model to measured
trains is not a straightforward task. One cannot simply draw conclusions based on
the differences in magnitude of axle loads, or the system of axle distances, because
it is not clear what their influence on the load effect is: the damage number in case
of fatigue. In other words: there is no clear criterion of sets of trains to use for
comparison. Furthermore, the uncertainties in the measurements are to be included
in the calibration.

In comparing the load model and the measured trains, it was chosen to compare based
on damage numbers, which is also the focus of the Eurocode’s verification method.
In case of e.g. ultimate strength limit state checks, the load effect scales linearly with
respect to the magnitude of the load(s). When calculating the resulting damage
number from passing trains however, this is far from linear due to the number of non-
linear steps which form the transformation from a set of trains to the resulting damage
number, among which the S-N curves. Distinguishable steps in the transition from
loading history to a damage number are (already stated in section 2.1.4.2, although
less detailed and in a different context):

1. Calculate the generalized forces from the passing of traffic. This results in a
signal for the generalized force (or: effect) under consideration, as a function

2Here the Eurocode vehicle model corresponds to the ‘elaborate method’.
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of pseudo-time. This is done using influence lines, see appendix E, where it is
demonstrated in which way the influence line affects the result. It is therefore
important to include in the calibration procedure. Also, in this step the axle
loads are converted to dynamic loads by multiplication with the dynamic factor
which was treated in section 2.1.4.3.

2. The generalized forces need to be translated to stresses in the cross-section of
interest, i.e. for which the limit state function is set up. This procedure results
in the stress-signal.

3. The stress-signal is reduced to its extrema, because for the fatigue analysis only
the minima and maxima are of importance. The result is a set of turning points
of the stress-signal.

4. The cycles are counted using an appropriate algorithm (in this thesis: rainflow
counting, see appendix E). In doing so, time and thus frequency information
is lost. In the Eurocode verification it is assumed that this information does
not influence the damage number. By counting the cycles, a table of cycle
amplitudes, means, and counts is obtained.

5. For each cycle the damage number increment is calculated. For this the S-N
relation is used, yielding the number of permissible cycles at a certain stress
level. According to Miner’s rule, the damage increment caused by this cycle is
equal to the fraction of applied cycles over permissible cycles.

6. Finally, the damage number is obtained by summing up all damage increments.

From the above it may be clear that the damage number, resulting from a loading
history, is linked to the loading by significant nonlinearity with respect to character-
istics of the input. Therefore it is very difficult to predict the influence of changes
in the loading’s characteristics on the resulting damage number. It is noted that the
λ-method gives even less insight, because the connection to actual repetitive loading
is completely lost when designing a structure to resist fatigue loading.

4.3 Fictitious cross-section
In section 4.2, the steps taken to determine the damage number from a set of trains
passing over a structure were briefly stated. In step 2, the signal of generalized
forces was used to determine the signal for stress-fluctuations using a cross-section.
In this thesis, the assumption of linear elasticity is used to justify replacement of
the aforementioned step by a linear transformation. For this, the entire signal of
the generalized force is multiplied by some factor, from now on denoted with ‘u’,
representing some fictitious cross-section, to obtain the stress-signal.

To perform a generally applicable calibration, it is best to limit the dependence of
the calibration on characteristics of a structure to a minimum. Now, in case of a
linear proportionality between generalized forces and stresses, u thus not being a
function of the cycle’s mean or amplitude, it is not required to have information
regarding the cross-section which is checked. If u is taken as non-constant, however,
cross-sectional knowledge is a prerequisite. This is caused by the fact that u would
then be a non-linear characteristic, which is defined by the cross-sectional properties.
The assumption of linear proportionality is further explored in this section.

For bending moments in steel structures this linearity is fairly straightforward (in the
linear elastic range, i.e. when yielding of the steel does not occur). The stress, due
to a bending moment on the section, is obtained from

σs = M

W
(4.1)
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where

σs = stress in steel
M = applied bending moment
W = section modulus (elastic)

Therefrom it is clear that the stress is proportional to the applied bending moment
on the section, as the section’s modulus is generally assumed constant. For concrete
sections this is also approximately true, under a few assumptions. First of all, as
seen in the section 2.1.3.2, the S-N curves for concrete all result in a capacity of
σc,max = 0.9 fcd at one cycle. Therefore, each cycle which causes stresses above this
level, leads to failure by definition. This in turn allows the conclusion that the domain
of interest with regard to the concrete compressive stresses is limited to [0 0.9 fcd].

The bending moments in the elastic domain can be withstood by the section according
to the strain distribution in figure 4.1. Note that the domain for σc is elastic, so the

εc, σc

x
c

d

Figure 4.1: Elastic concrete strain distribution

design strength will not be reached in the compression zone. The forces acting in the
cross-section can be expressed as:

Nc = 1
2 xc σc b (4.2)

Ns = (d − xc)
xc

εc Es As = (d − xc) σc Es As

xc Ec
(4.3)

where

Nc = force in concrete (compression)
Ns = force in reinforcement (tension)
xc = concrete compressive zone height
σc = stress in concrete
b = section width
d = effective section depth
εc = concrete strain
As = reinforcement area
Es = modulus of elasticity, steel
Ec = modulus of elasticity, concrete
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From the condition of horizontal force-equilibrium in the section, the height of the
compression zone can be determined:

Nc = Ns (4.4)

xc = Es As

Ec b

(√
1 + 2 b d Ec

Es As
− 1
)

(4.5)

from which it is clear that the height of the compression zone is independent of
the stress in the concrete. From this it is concluded that the compression zone
height is constant, under the assumption that the steel does not yield before the
concrete reaches 90 % of its compression strength. This raises the question whether
this assumption is reasonable.

Generally, the reinforcement will yield before the concrete reaches its ultimate strength
(which nullifies the above assumption). Only for very high reinforcement ratio’s this is
not the case , which are purposely avoided by a maximum reinforcement ratio based
on ductility. Because the force in the reinforcement reaches its definite maximum
when yielding occurs (assuming bi-linear behavior without strain-hardening), the only
way for the moment capacity to increase further is by an increase of the internal lever
arm. This increase can be achieved, by decreasing the height of the compression
zone until the maximum concrete strength is reached. This would then result in the
maximum moment capacity.

Before the point of yielding, the capacity increases by increasing the internal forces.
Beyond yielding, the only mechanism available for this is increasing of the internal
lever arm, resulting in a smaller increase of the moment capacity relative to an
increase in concrete compressive stresses (sudden change in slope in figure 4.2).

σc

MEd

Myield

MRd;fat

Figure 4.2: Bi-linear characteristic relation between the bending moment and the corresponding
compression in the concrete.

If the reinforcement ratio is large enough, the maximum moment in figure 4.2 occurs
prior to yielding of the reinforcement. The characteristic is then straight to MRd;fat

in the figure, implying a perfectly linear (or elastic) relation. Unloading would follow
the same characteristic, when elasticity is assumed. This is not the case for the
bi-linear characteristic. If the applied moment is larger than the capacity at which
yielding occurs, the reinforcement will deform permanently, resulting in plastic strain.
Unloading will then, more or less, follow a straight characteristic. This behavior is
portrayed in figure 4.3, and is known as hysteresis. This means that the previous
states (history) influence subsequent states and behavior.

New loadings then follow the path of unloading, and form a new path only if they
surpass the preceding maximum bending moment. From this it can be concluded
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σc

MEd

Myield

MRd;fat

Figure 4.3: Unloading after surpassing the moment at which yielding of the reinforcement occurs.

that the characteristic relation will be linear up until the maximum moment which
has occurred to the current time. Assuming a linear relation over the entire domain
can therefore also be explained as assuming that the largest load occurs first, setting
the behavior for the rest of the loads to linear.

According to the Eurocode, fatigue verifications should be based on cracked concrete
and linear elastic material behavior. Therefore, reaching plasticity in details which
are prone to fatigue is not within the limits of the code. Also, yielding of the
reinforcement would lead to direct failure based on the S-N curves for reinforcement.
As this calibration is based on the rules in the Eurocode, this assumption will be
followed. Please note that in calibrations performed prior to this work, this linear
assumption has also been used (without the authors going into further detail regarding
its justification). See for instance Zilch and Bagayoko (1997). The main advantage is,
as the bi-linear characteristic is a function of the reinforcement ratio, this ratio should
then be included as a calibration variable. This would lead to a larger variety of
cases. Also the incorporation of the hysteresis in the calibration would add significant
complication without addition of a large benefit.

But, there is more. As explained in Zilch and Bagayoko (1997), the characteristic
is nonlinear for sections where normal forces are applied (e.g. prestressing). It is
then slightly curved. In the aforementioned work, this effect is neglected, and the
characteristic is assumed as perfectly linear, because differences are said to be small
(Zilch & Bagayoko, 1997). This strategy will therefore also be adopted here.

4.3.1 Permanent stresses
Permanent stresses are important for the damage when fatigue damage in concrete
is calculated. This is due to the fact that the S-N curves depend on the stress ratio
R, which cannot be separated from the presence of permanent stresses. These should
therefore be incorporated in the calibration as a variable, because their influence
on the results cannot be neglected. For this purpose a stress ratio is introduced, in
which the permanent stress (due to permanent actions, including but not limited to
prestressing) are expressed relatively to the concrete’s design resistance in compression:

ζperm = σc,perm

fcd,fat
(4.6)

where
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ζperm = permanent concrete stress as fraction of design strength
σc,perm = permanent concrete stress

Using the permanent stress, the minimum and maximum stress ratios (relative to the
design fatigue strength) can be written as:

Ecd,min,i = uc σc,min,i + σc,perm

fcd,fat
= uc σc,min,i

fcd,fat
+ ζperm ≥ 0 (4.7)

Ecd,max,i = uc σc,max,i + σc,perm

fcd,fat
= uc σc,max,i

fcd,fat
+ ζperm ≥ 0 (4.8)

With this, the stress ratio becomes

Ri = Ecd,min;i

Ecd,max;i
=

uc σc,min,i

fcd,fat
+ ζperm

uc σc,max,i

fcd,fat
+ ζperm

≥ 0 (4.9)

where it is very convenient that only the concrete design compressive strength, which
was already a variable for the calibration because of its influence on the S-N curves,
remains in the stress ratio. With inclusion of the above, the stress amplitude in the
steel and in the concrete can be obtained from (Zilch & Bagayoko, 1997):

∆σs = us ∆M (4.10)
σc ≈ uc M + ζperm fcd,fat ≥ 0 (4.11)

where
us = proportionality between bending moments on a section and resulting

stresses, steel
uc = proportionality between bending moments on a section and resulting

stresses, concrete

The above relations are used exclusively, because the focus is on fatigue effects caused
by bending moments in the remainder of this report.

4.4 Enforcing the limit state
When comparing load models, it is of critical importance to do this upon attainment
of the limit state. This is a direct consequence of the non-linearity of the S-N relations.
Starting from a set of stress cycles (a spectrum), damage increments are calculated for
every cycle, and their magnitude is derived from these S-N relations. Now, consider
that the entire spectrum of cycles is scaled in magnitude by some arbitrary scaling
factor. This will result in a change in damage (see also chapter D). The change in
resulting damage numbers will not be linearly proportional to the scaling factor, as
is to be expected for a non-linear stress-to-damage relation. Rather, the scaling in
damage depends on the shape of the spectrum. With the ‘shape’ of the spectrum,
reference is made to a histogram of stress cycle magnitudes.

Interestingly, this suggests that two spectra with different shapes will compare dif-
ferently in terms of damage for a varying scaling factor, even when an equal scaling
factor is applied to both. This is demonstrated in figure 4.4, where two example
spectra are displayed (upper and lower graph). Consider that u, which is included in
the spectra already (because they are stresses), is multiplied by an alteration factor
ηu. Both spectra will shift upward over distance log ηu, as displayed in the figure.
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Figure 4.4: Effect of altering u: consider in which way the cumulative damage will change.
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Now, due to the non-linear S-N curve, the resulting shift in damage will not be
proportional to ηu. In case of a S-N curve as in figure 4.4, the non-constant fatigue
exponent (slope) causes significant differences in terms of changes in damage numbers,
when comparing two different spectra.

Because calibration basically consists of a comparison, it is required to determine the
(uniquely defined) scaling factor at which the calibration is to be performed. The value
of this scaling factor follows from reversal of the Eurocode’s verification procedure. If
one were to design a structure to resist fatigue loading, then the maximum allowable
damage number would be equal to unity, corresponding to a unity check for the
fatigue limit state of 1. Because of this design criterion, it follows that the unique
scaling factor for both spectra, required for calibration, is obtained from attainment
of the limit state by appliance of the Eurocode vehicle model (one of the mixes). A
higher scaling factor would imply an unsafe structure, and a lower scaling factor a
safe structure (following the limit state methodology). This value for u therefore
corresponds to a critical section, thus being capable of exactly withstanding the loads.

This concept can be generalized by defining one of the spectra as a reference or design
spectrum. This reference spectrum defines the boundary condition required for the
calibration. This will be used extensively in formulating the different possibilities for
calibration in the remainder of this chapter.

4.5 Types of calibration
Using the concepts presented so far, three different calibration types can be distin-
guished. Strictly speaking, two of these implicitly include adjustment after calibration.
Each of methods is discussed, after which an overview is presented.

4.5.1 Deterministic calibration
The deterministic calibration procedure is an extended adaptation of the procedure
presented by Zilch and Bagayoko (1997). In this work the calibration of the Eurocode
λ-method for different structural types is explained. The general idea will be explained,
instead of elucidating all details. For this, it was chosen to introduce some operators.
These operators are printed in a different Font.

The general idea is to take two traffic mixes, one of which is a load model. For
both, the damage number is determined, therefore calibrating on this basis. From
this, it is straightforward to adjust either the measured traffic or the load model
in order for both traffic mixes to match in damage number. To stay in line with
the aforementioned work, it is chosen to use the set of measured trains as reference,
thereby defining the load model as non-reference.

The first step is to determine a signal for the effect of interest. This is done by
simulating the passing of measured trains over a certain structure, which is fully
represented by its influence line, see appendix E. This step will be symbolized using the
influence-operator, I(•). It also encompasses the distillation of turning points from
the signal, i.e. the extrema which are the input for the rainflow-counting algorithm.
Given the measured loading history, denoted by H, the signal for the effect of interest
(et) is obtained via the influence operator:

et = I (H) (4.12)

The signal of the fluctuating stress is determined using the linear transformation
which was explained in section 4.3 (for concrete in compression, also tension peaks
are set to zero, according to the assumption of cracked concrete):

σt = u et = u I (H) (4.13)
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Subsequently, the stress-signal is passed to the rainflow-operator (R(•)) which ex-
tracts the half-cycles (see appendix E):

R = R ( σt ) = R ( u I (H) ) (4.14)

Here the time-dependence is lost, and the result is a rainflow-matrix or spectrum
which consists of, for each cycle, its mean, amplitude, and count. From this the
damage-number-operator

∑
D(•) is employed to determine the damage number using

the relevant S-N relations.

D =
∑

D (R) =
∑

D (R (u I (H))) (4.15)

To obtain the value for u corresponding to the limit state of interest, the damage
number should be equal to 1, as discussed earlier in this chapter. Effectively, the task
of finding this value u, which is denoted as ulimit, can be solved by an optimization-
algorithm3. To this extent the problem is formulated as:

minimize
{∣∣∣1 −

∑
D (R (u I (H)))

∣∣∣} for u → ulimit = u (4.16)

Note that the calibration is done by assuming that the history which is used as input,
is a history of measured train data (the load model could also be used as reference
traffic mix). The symbol M will be used to denote the load model (traffic mix).
Using the previously obtained ulimit, the damage from the load model is determined.
Calibration (with implicit adjustment) is then performed by equating the results in
terms of damage for the same fictitious cross-section (which is contained in ulimit):

λcalibration =
∑

D (R (ulimit I (H)))∑
D (R (ulimit I (M))) = 1∑

D (R (ulimit I (M))) (4.17)

In this way, the calibration factor λcalibration is formulated in the domain of the
damage number, and can be applied as a magnification factor for the load model
train frequencies because of the damage number’s linear proportionality to the number
of load cycles (see chapter D). Another possibility is to formulate a calibration factor
in the stress-domain. This is done by obtaining the values for ulimit for both H and
M. Effectively this is achieved by solving equation 4.16 subsequently using H and M.
The quotient of these limit values (which both represent a proportionality of stresses)
yields the calibration factor in the stress-domain.

4.5.2 Probabilistic calibration
With ‘probabilistic calibration’, it is meant that the load model and the measured
traffic are compared using a probabilistic criterion, in this case: the probability
of failure (equivalently: reliability index). Such a probability of failure should be
interpreted as the probability that a component fails in fatigue, given that it has been
designed to withstand the load model, and it is being loaded by the measured trains.

For the formation of a probabilistic calibration procedure, some changes to the
deterministic procedure are required. By definition a probabilistic analysis includes
variations in, or uncertainties of, its components and variables. For the procedure, the
main interest is on the uncertainties in the measured loading, the determination of
damage numbers, and the material’s resistance. Also, because the measurements span
a limited time frame, extrapolation to the design life is required (see appendix G).
This also introduces uncertainties. Below, two procedures with different goals and
results will be explained.

3The value of u for which the damage equals 1 is uniquely defined for S-N curves where the
allowable stress decreases for increasing N , which is the case for all known relations. Problems may
arise with ‘jumps’ as in the S-N curves for concrete in compression, and also for horizontal branches
such as with the reinforcement yield stress or the fatigue limit for structural steel.
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4.5.2.1 Measured loads as reference
Consider the following scenario: one has a measured traffic history and a load model,
but the latter needs adjustment to provide the desired level of safety. Then the first
step would be to calibrate (i.e. analyze the current failure probability which results),
after which the load model can be adjusted to provide the desired level. The process
to do so, is formulated in terms of an implementation using Monte Carlo simulation
(see appendix A). Alternatively, it could be formulated using other techniques as well,
however this formulation allows for better visualization and thus insight.

The set of measurements H, representing the true loading, can vary depending on,
for example, the period which was measured. Therefore, it is clear that a different
formulation is needed which incorporates this aspect. For this, first the set H is
thought to consists of multiple possibilities denoted by H1, H2, . . . , Hn, which could
represent the expected loading in reality. These could for example be the results of
extrapolation of a shorter set to the design life.

Because of the non-linear operations in the verification procedure, it is required to
work with these histories through the same process as in the deterministic case. Cause
for this, is that the outcome in terms of damage number can not be predicted based
on alterations (caused by variations or uncertainties) of input. First, for each history
the influence-operator yields the stress-signals:

E =


et,1

et,2
...

et,n

 =


I (H1)
I (H2)

...
I (Hn)

 (4.18)

where different rows represent Monte Carlo iterations (n iterations in total). Transfor-
mation to stresses is done using one single value for u for all loading histories4,
because this formulation focuses on a single cross-section, which is loaded, with a
certain probability, by each history. From this, the damage numbers are calculated
via the rainflow-counting algorithm and subsequent summation of damage fractions:

D =


D1

D2
...

Dn

 =
∑

D (R (E)) =


∑

D (R (u I (H1)))∑
D (R (u I (H2)))

...∑
D (R (u I (Hn)))

 (4.19)

The damage number is determined through the use of a probabilistic resistance model
which allows for variations in the S-N curve (will be discussed in chapter 5). In the
deterministic case, it was sufficient to enforce the condition that the damage should
be equal to one. For the probabilistic case this is more complicated, as it should
now include a certain probability of failure. First, an assumption is required for the
allowable damage number of the (unknown) section. This quantity will be symbolized
by ∆. The limit state function, and an array of its realizations (i.e. outcomes), can
then be written as:

z = ∆ − D =


∆1 −

∑
D (R (u I (H1)))

∆2 −
∑

D (R (u I (H2)))
...

∆n −
∑

D (R (u I (Hn)))

 (4.20)

4Uncertainties in the cross sectional properties wuld lead to a unique value for u drawn from a
common probability distribution.
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For each iteration in equation 4.20 it is determined whether the structure fails or
survives using:

zi ≤ 0 failure
zi > 0 survival

Here, z represents the vector of safety margins. The goal is to obtain a value for u
using which the failure probability resulting from equation 4.20 equals the target value,
PF ;target. This is done through iteration for u, solving the following optimization-
problem:

minimize {|PF − PF ;target|} for u → ulimit = u (4.21)

where PF is approximated using equation 4.20 and the conditions for zi (ratio of
failures over total number of iterations, see appendix A).

position and shape of D’s
pdf are controlled by u

position and shape of ∆’s
pdf follow from experiments
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Figure 4.5: Visualization of the probabilistic calibration and optimization, used to obtain ulimit.

Important is to understand that u determines the magnitude of stress ranges, and
that this magnitude influences the damage number in a nonlinear manner. Therefore,
the position and shape of D’s pdf, displayed in terms of the damage number, are a
direct consequence of u. Hence, the impact of uncertainties in the measured loading
also depends on u.

Obtaining ulimit from this process is a very significant step to solving the problem
at hand. This is where the target value for the probability of failure is included to
steer the results. To find the calibration-factor (for adjustment), the damage number
resulting from application of the load model should be set equal to unity (or any
design criterion one might prefer):

λcalibration = 1∑
D (R (ulimit I (M))) (4.22)

where ulimit ensures that the target failure probability is met using measured traffic.
This may not be directly clear, therefore consider the following statement:
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“If we design the structure to result in a damage number of 1 using
the load model, then this is equivalent to the real loading producing a
distribution of damage numbers which corresponds to a failure probability
equal to the target value.”

The equivalence in the statement above is enforced by using the same value for ulimit.

4.5.2.2 Load model as reference
Using the presented procedures it is also possible to determine the reliability which
is provided by the current fatigue loading model, i.e. exactly what is pursued in this
thesis. Start from the assumption that a section is designed exactly to withstand the
load effect caused by the load model (thus being a design based on the Eurocode,
with unity check equal to 1 for the fatigue limit state, or, equivalently, a damage
number of 1). This assumption is an essential step in load model calibration, because
limit states in the Eurocode contain a safety margin, introduced by partial factors
(details are discussed in chapter 5).

The condition of exact attainment of the limit state is enforced by determining ulimit
for a section which is loaded by the Eurocode load model, where the safety format
using partial factors is included in this determination. Basically, ulimit is obtained
using the procedure for deterministic calibration, only now by applying the load
model with safety margin:

minimize
{∣∣∣1 −

∑
D (R (u I (M)))

∣∣∣} for u → ulimit = u (4.23)

Using the resulting value for u, again denoted as ulimit, the damage done by the set
of possible loading histories H = H1, H2, . . . , Hn is used to determine the actual
failure probability given the measured loading. For this, the limit state function is
formulated as follows (in terms of Monte Carlo iterations):

z = ∆ − D =


∆1 −

∑
D (R (ulimit I (H1)))

∆2 −
∑

D (R (ulimit I (H2)))
...

∆n −
∑

D (R (ulimit I (Hn)))

 (4.24)

zi ≤ 0 failure
zi > 0 survival

Notice that in equation 4.24, the obtained value for ulimit is put in directly and
remains fixed. Therefore, no iterative solving of the limit state function is required.
Equation 4.24 finally results in the probability of failure, and thus the reliability,
provided by the Eurocode’s current load model and safety format. The section
is designed to withstand the Eurocode load model, with exact attainment of the
deterministic limit state (unity check), and it is loaded by measured traffic.

4.5.3 Overview
An overview of calibration methods is presented in table 4.2. Note that a ‘boundary
condition’ should of course be interpreted as fixed. In the remainder of this report,
only the third method will be applied. Therefore, ‘calibration’ should from here on be
interpreted as ‘calibration using the third method’, resulting in a failure probability
which can be compared (calibrated) to a desired or reference value. The load models
will thus not be adjusted.
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# method boundary condition(s) result (output)
1 deterministic either the load model or

the measured traffic as ref-
erence traffic

adjustment factor for non-reference traf-
fic to result in an equal damage number

2 probabilistic measured loads and target
failure probability

adjustment factor for the load model
to meet the desired failure probability
given measured traffic

3 probabilistic measured loads and load
model

failure probability given a design based
on the load model, loaded by measured
traffic

Table 4.2: Different types of calibration.

4.6 Conclusions
• It is necessary to calibrate fatigue load models, because in transforming from

measured loading to load models, information is lost. Therefore the load model
should be adjusted to comply with measured traffic.

• It has been shown that the fluctuations in generalized forces can be translated
into fluctuations in stresses, using a linear relationship.

• The variations in the measured loading have to be incorporated into the calibra-
tion procedure, alongside other sources of uncertainties and variations. Basically,
this is used to determine (or alternatively, to set) the reliability corresponding
to the unity check, as per the Eurocode’s format.

• The procedure for both deterministic and probabilistic calibration has been
formulated and explained. This is done by simulating the fatigue limit state,
and using this limit state situation to compare the damage numbers resulting
from different load models.
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Probabilistic analyses are done to take into account uncertainties and variation, or,
in other words: to take into account the things we do not know in a quantitative way.
This allows for making designs subject to uncertainties in an objective manner. In
this chapter, the format of the probabilistic analyses used in this thesis is first laid
out, followed by a quantification of uncertainties in the various components of this
analysis’ format. Also, deterministic variables which are of interest are discussed. The
theoretical background of probabilistic analysis is briefly described in appendix A.

5.1 Methodology for comparison
Verifications in the Eurocode are based on design-values for loads and resistance.
Considering the uncertainties in both the loads and resistance, these design-values
are obtained by including a margin of safety. In the Eurocode it was chosen to include
this margin trough the use of partial factors, which quantify the uncertainty and the
importance, of both loads and resistances in the verification. This is known as a
semi-probabilistic approach, or level I probabilistic calculation (see also appendix A).

For the full probabilistic analysis, it is important to know the safety margin which is
provided by appliance of the Eurocode’s partial factors. Basically, these are directly
responsible for the provided safety, and thus failure probability. In the Eurocode, two
partial factors are generally included for each verification, which are set-up as follows
(CEN, 2002a):

• partial factor for load effects (γF ):

– uncertainties in the representative values of load effects;

– uncertainties in the modeling of loads and load effects;

• partial factor for resistance (γM ):

– uncertainties introduced in modeling the structural resistance;

– uncertainties in material properties.

This grouping of partial factors is done to simplify analysis (by limiting the number
of partial factors that have to be applied). In figure 5.1, the Eurocode verification
procedure for fatigue (left column) is compared to a full probabilistic analysis (right
column). As described in chapter 4, a design which exactly satisfies the limit state is
simulated, without knowing the actual cross-section, through the use of a proportion-
ality between generalized forces and stress (denoted with u). The limit-value for u,
ulimit, is determined by equalizing the design strength and resistance (unity check for
the fatigue limit state equal to 1). In the context of the Eurocode, this means that,
using the design values for loads and resistance, a damage number of 1 is found.

45



Chapter 5. Probabilistic Analysis

Load model (mean)

Load Model (characteristic,
static), i.e. EC traffic mix

Load Model (characteris-
tic, equivalent dynamic)

Stress signal (characteristic)

Stress signal (design)

Resistance (de-
sign S-N curve)

D = 1
to obtain
ulimit

Resistance (charac-
teristic S-N curve)

Mean S-N curve

Eurocode
fatigue

verification

Measured loads
(mean, static)

Critical damage num-
ber (‘resistance’)

Uncertainties:

• measurement errors
• dynamic amplification
• extrapolation
• modeling loads

Stress signal (proba-
bilistic), includes ulimit

Uncertainties in mate-
rial fatigue resistance

Damage num-
ber (‘solicitation’)

For
exam

ple
using

M
onte

C
arlo

sim
ulation

PF

Figure 5.1: Process of fatigue verification, semi-probabilistic vs. fully probabilistic.
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5.2 Probabilistic calibration variables
For the level III analysis, it is required to obtain knowledge regarding the variations
and uncertainties which are present in the fatigue limit state and its verification.
The items of interest have been included in figure 5.1. Each of these items will be
discussed in this chapter, of which an overview is given in table 5.1. Note that, from
here on, the investigation of reliability focuses on reinforced concrete, as opposed to
structural steel.

uncertainties regarding: addressed in:
measurement errors section 5.2.1
dynamic amplification section 5.2.2
extrapolation section 5.2.3 and appendix G
dimensional uncertainties section 5.2.4
load effect modeling section 5.2.5
fatigue resistance (concrete) section 5.2.6
fatigue resistance (reinforcement) section 5.2.7
critical damage number section 5.2.8

Table 5.1: Overview of uncertainties and variations which were used in this thesis.

5.2.1 Measurement errors
As measurements will never be fully accurate, it is generally required to take uncer-
tainties into account. For the Quo Vadis weigh-in-motion system, target values were
set with regards to the accuracy. For the quantities of interest for this work, namely
axle loads and velocities, the target values were provided by Ricardo Rail. It was
noted that the system is more accurate than these targets in reality, however, in the
absence of further information, these values will be used.

5.2.1.1 Axle load
It is prescribed that measurements should be normally distributed around the mean
value at the level of an entire train. For axle loads, the following is requested:

“The measurement on the level of the axle must, within the speed interval
30 to at least 150 km/h and independent of type or composition, 95 %
of the weight measurements be presented with an accuracy better than
±12 %.”

For individual axles, the normal distribution will be adopted as well. The parameters
are determined using the standard normal quantiles (in this case, |q2.5%| = 1.96):

µF̂ = 1, σF̂ = cv,F̂ = 0.12
1.96 = 0.0612 (5.1)

where F̂ is used as a multiplication factor for measured axle loads. It is assumed that
measurement errors are fully independent.

5.2.1.2 Velocity
The target accuracy for measured velocities was also supplied:

“The train speed shall be measured with an accuracy better than ±5 km/h
and be presented with a resolution of 1 km/h.”
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No further information is provided about the probability distribution for these de-
viations. The lack of bounds, as opposed to the axle load measurements, suggests
an absolute interval. Therefore a normal distribution seems inappropriate with its
infinite support. Rather, it was chosen to model the measurement error on the veloc-
ities using a triangular distribution, as this is bounded. The choice for triangular in
particular, rather than for example uniform, is based on the assumption that the sys-
tem is most likely to produce an unbiased measurement. With this, the distribution
parameters are taken equal to:

a = −5
3.6 m/s, b = 0, c = 5

3.6 m/s (5.2)

where a, b, c, are the lower bound, center, and upper bound, respectively. Using this
distribution, a value is determined which is to be added to the train’s speed. Again,
these errors are assumed uncorrelated.

As time is not a variable in the measurements, velocities and axle distances are related
directly. This implies that, theoretically, a deviation between actual and measured
velocity, results in a variation in axle distances. These are, however, not taken into
account in this thesis. This choice is based on the capabilities of the measurement
system to identify trains, after which it can correct the measured axle distances with
known values for the identified train type. It is however not clear to which extent
this method is employed.

5.2.2 Dynamic amplification
Information on the variations in the dynamic behavior of loads was found to be scarce.
James (2003) argues, in his dissertation, that the value for the dynamic amplification
factor Φ corresponding to ultimate strength limit states, as given in the Eurocode,
represents the 95 % quantile. The coefficient of variation is calculated backwards
through the assumption of a normal distribution with the standard normal quantiles
as:

µΦ = Φ0.95

1 + k cv;Φ
(5.3)

One more assumption is required: the mean is still unknown. For this, the argument
is that the dynamic amplification factor for fatigue loading represents a mean value.
Using this assumptions James’ work was performed. It is, of course, easy to find
critique for this approach, as both the assumption of a normal distribution and
the quantiles corresponding to both the amplification factors are not necessarily
justified. However, as said before, information is scarcely available and therefore such
approaches are required.

Some extra information was obtained from a master’s thesis on the subject of dynamic
effects on railway bridges. Rylander (2006) simulated the dynamic excitation induced
by passing trains. It is based on solving the Frýba model (a specific solution of the
standard equation of motion for Euler-Bernoulli bending). In his work, Rylander
distinguishes three different dynamic amplification factors, i.e. (related to the passage
of a train):

1. DAF1 is defined at the position of maximum static moment. The dynamic
moment at the time when the train is in this position, is divided by the static
moment.

2. DAF2 is defined the other way around. The maximum dynamic moment is
divided by the static moment at this time.
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3. DAF3 is different, in the sense that it is not fixed to a time specifically. Rather,
it is the fractional of the maximum dynamic moment during the passage and
the maximum static moment, also during the passage.

It is noted that DAF3 is the factor which is of importance for engineers. His next step
was to assume probability distributions for the various components which influence
the dynamic amplification: the axle load, velocity, bending stiffness, first natural
frequency, and the amount of damping. From this, via a Monte Carlo simulation, the
empirical distributions of the dynamic amplification factor were generated. Normal
and lognormal distributions were fitted to the results, and fits compared using their
mean square distance.

For the current study, however, where axle loads and velocities are known, although
with errors on measurements, it would be erroneous to use such distributions directly.
This would imply taking into account uncertainties in the axle loads and velocity
twice. Now, consider the Frýba-equation (Frýba, 2001; Gillet, 2010):

EI
∂4y(x, t)

∂x4 + mb
∂2y(x, t)

∂t2 + 2 mb ωd
∂y(x, t)

∂t
=

n∑
k=1

εk(t) δ(x − xk) Fk (5.4)

The right hand side of equation 5.4, representing the excitation, suggests that the
response is linearly proportional to the applied axle load(s) Fk. As the same is true
for the static bending moment, the variations in axle loads are not expected to present
themselves in the dynamic amplification factor.

The function εk(t) is composed of two Heaviside-functions. In this way it is equal to
1 during presence of the k’th axle on the beam, and 0 for all other t. Through the
velocity of the train and its axle distances, this term results in the time-component
for the load. Resonance may occur when the right hand side frequency resembles
one of the natural frequencies with corresponding mode (obtained from solving the
left hand side for zero excitation). Obviously, a proportionality to the speed cannot
be obtained so easily as with the axle loads. More information would be required,
for instance the bending stiffness which is necessary to solve equation 5.4 in order
to obtain the natural frequencies of the structure. So, due to nonlinearities in the
system, influences from different components in Rylander’s work can not be quantified
separately, making it, unfortunately, very hard to apply in practical situations.

In a search for more information on the subject, another source was identified. In
this identified report, recommendations are made for statistical distributions using
which the dynamic amplification can be modeled in a reliability-based analysis. The
accuracy of these claims are, however, questioned, as the only source mentioned is
“recent studies”, which is not very convincing in the author’s opinion. In absence
of better sources, the information was considered anyway. The recommendation is
to use a lognormal distribution for the dynamic amplification factor, which is said
to produce the most accurate results for both bending moments and displacement
(MAINLINE, 2013). The mean value ranges from 1.0 for speeds lower than 150 km/h
to 1.25 for 250 km/h. The coefficient of variation is said to be “independent of both
train speed and train loading and the values range from 20 to 25 %”(MAINLINE,
2013).

In other literature the focus was explicitly on steel railway bridges, and thus clearly
not suited for application in the remainder of this work. Also, it is unclear to which
extent the considered sources include both the effects of resonance and impact, as for
instance Rylander seems to consider only the former. James’s approach, based on
the Eurocode, does in principle include both. However, justification for this method
is weak. The advice given by MAINLINE (2013), when observing figure 5.2, seems
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Figure 5.2: Distributions of the dynamic amplification factor according to MAINLINE (2013), with
a coefficient of variation equal to 0.225. The dashed line represents the dynamic amplification
factor according to the Eurocode (section 2.1.4.3) for v = 150 km/h and LΦ = 10 m.

rather pessimistic, with very large amplification factors occurring quite frequently.
Certainly for the main structure, as opposed to local elements, this is deemed too
large.

In the end a decision has to be made. Based on the information presented here,
it is concluded that the dynamic amplification is subject to significant variability.
As an average value, it is seems that the Eurocode dynamic amplification factor
for real trains, as presented in section 2.1.4.3, is usable. It also seems the best
estimate available for the correlation between structural effects from resonance and
impact versus span length and train velocity. It will be assumed that the dynamic
amplification factor follows a lognormal distribution, where the value obtained from
the Eurocode methodology represents the mean. The coefficient of variation will then
be taken equal to 0.1, a value which seems to capture most variations on the level of
an axle.

The dynamic amplification factor will be applied per axle (passage), and is assumed
to be uncorrelated between passages. In a more detailed analysis, one may want to in-
vestigate the dynamic amplifications and the correlation within and between passages.
For instance, if the stiffness deviates from the assumed value, the eigenfrequencies
and modes are influenced, leading to variations in dynamic amplification which are
systematic, and thus somehow correlated. For this analysis, however, such effects are
not taken into account because information is lacking.

5.2.3 Extrapolation
In this work, the term ‘extrapolation’ is used for the activity in which one tries
to gain insight into loads which can be expected in the future, based on measured
traffic loads. Extrapolation should provide an answer to the question: “Which loads
can be expected in the future, and should thus be incorporated into the design of
structures?”. In chapter 3, it was stated that railway bridges are designed for 100
years. Therefore, it is important to gain insight into the loads which can be expected
during such a 100 year period. Clearly, these may differ from those loads which were
observed. Also, the interest is not solely on one single extrapolated set of loads or
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load effects, but rather on some description of all possible sets of loads or load effects
which may occur, each with a probability of occurrence.

When dealing with extrapolation, it is the author’s opinion that two facets should
be considered thoroughly: the importance, and the uncertainties. The focus of
extrapolation should only be on those parts that are important for the results, as
well as subject to significant uncertainties. If one of these conditions is not met, then
extrapolation might not be an essential step in an analysis. It is, however, in the
judgment of these facets that difficulties present themselves. There is no right or
wrong, in which extrapolation distinguishes itself from other engineering questions.
This characteristic is beautifully expressed by Scholz:

“Ultimately, the extrapolation step is one of good faith and not statistical
in nature.” (Scholz, n.d.)

Extrapolation in itself consists of two components: trends in traffic, and statistical
extrapolation from the measured time to the desired service life of the structure.
Trends in axle weights include for instance the increasing detail to which the trans-
portation of freight is planned, leading to a shift in the ratio of loaded to unloaded
trains. In this work, trends could not be assessed due to the lack of information. Due
to the fact that, for instance, historical annual cumulative tonnages do not provide
any insight into resulting damage numbers, such trends cannot be assessed without
the availability of detailed historical traffic records of sufficient length.

The statistical extrapolation is an entirely different source of load increases. It is
based on the notion that, due to the fact that measuring time is generally limited, not
all loads can be measured. Therefore, there is no reason to believe that extrapolation
of a measured set of trains should not include different (and possibly more severe)
loads than the ones which are measured. The word ‘extrapolation’ will be used to
denote this form of extrapolation in the remainder of this work.

Some deem it sufficient to simply scale the loads history or histories to the service
life. With this, it is assumed that the limited measurements contain the main body
of the loading, and that this is the important part for the verification. The tail of
the distribution is found to be important by others. Events in this tail do not occur
frequently (therefore it is called a ‘tail’), and it can be assumed that this tail would
fill in as the measured time is increased. Also, some designers note that the high
stress events influence the service lifetime significantly and should therefore be taken
into account (Sutherland & Veers, 1995). For fatigue loads on railway structures,
this aspect is treated in appendix F.1. Here, it was concluded that, for a reference
case and considering concrete, about 1 % of the traffic is responsible for practically
the entire damage number (about 80 percent). Also, the type of trains which are
responsible were assessed. For this same reference case, practically all damage is done
by freight trains (> 99 %). For reinforcement, the damage is done by a larger portion
of traffic, although still rather small (1 % of traffic is responsible for 50 % of damage).

In appendix 4, it is explained that the different characteristics which surround fatigue
loads (magnitude of axle loads, their frequency, and their distances), make that
there is no clear single criterion to compare them. It was decided to use the load
effect, being the damage number. When extrapolating fatigue loads, the difficulty
is precisely in this number of characteristics, namely: which characteristic(s) should
be extrapolated, and to which extent. When it comes to the extrapolation of fatigue
loading magnitudes, a number of methods were identified in literature:

1. extrapolation of traffic, i.e. extrapolation ‘on the level of traffic’ as opposed to
the other methods;
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2. time-extrapolation using extreme value theory, in this case the ‘peak over thresh-
old’ method;

3. spectrum fitting, both uni- and bivariate;

4. extrapolation of the damage number (increments).

Each of these methods was first discussed in chapter G. From this, a choice was pre-
sented (time-extrapolation using extreme value theory) which is compared to another
technique for verification (spectrum fitting of rainflow matrices). For the elaboration
of the above, please refer to chapter G, from which the following conclusions were
drawn:

• Two methods, time-extrapolation using extreme value theory and the bivariate
spectrum fitting using kernel density estimation, have been implemented and
demonstrated. Comparison has shown that the kernel density estimate (KDE)
results in a larger spread in damage numbers than the peak-over-threshold
method. Notably, the maximum amplitudes were obtained by appliance of the
KDE method. It was argued that the latter is fundamentally more powerful
because it allows variations in the entire spectrum, although differences in
damage numbers were mainly attributed to differing extrapolations of the largest
load cycles. Also, the kernel density estimate involves estimating the kernel
width, which turned out to be both essential and somewhat subjective.

• Variations in damage, obtained by the extrapolation of the load histories were
negligibly small. Therefore it was decided to omit this entire step in subse-
quent analysis, as this saves a considerable amount of time while maintaining
practically all accuracy in determining the damage numbers.

• Variations in the number of cycles have been quantified. The main source of
uncertainties was shown to be in the determination of the mean value (statistical
uncertainty). It was demonstrated that, whatever the mean number of cycles per
time unit, the total number of cycles will converge with negligible variations. For
this mean value, standard errors were determined. Furthermore, the assumption
has been made to use an average coefficient of variation obtained for traffic
from all detectors (0.01) over the reference structure, for all future analyses,
regardless of the exact structure or detector. These uncertainties are normally
distributed.

The most interesting conclusions, however, might be the resulting variations in damage
numbers obtained from the extrapolation. It has been shown that these are very small,
even negligible, and therefore it seems that 4 years of measurements seems enough to
draw conclusions about design life fatigue loading. At least, the measurements have
converged, thereby not implying an expected occurrence of much larger loads. Also,
even more useful than determination of expected variability through extrapolation,
may be the feeling one gains for the data, yielding the confidence required to proceed
with results of extrapolation methods such as those described in this thesis.

Now that the extrapolation in time has been discussed, the results still need imple-
mentation in the analysis. It was shown that extrapolation of magnitudes did not
result in effects of any significance. The uncertainty in determining the mean number
of cycles was identified as the only factor which has some distinguishable influence on
the overall damage number, although small. It was also shown that this is normally
distributed.

Using the knowledge that the measured load histories (with exception of traffic records,
or ‘detectors’, 11 and 14, but these will not be used for the calibration) correspond
to a time-frame of 3.98 years, the mean number of cycles expected in 100 years is
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100/3.98 times larger than the number of cycles in the measured time frame. The
coefficient of variation was determined to be 0.01 and equal for all detectors (at least
for the detectors which will be used for the calibration). The standard deviation
can thus be determined as 0.01 × 100/3.98. From this follows the distribution for
time-extrapolation:

ξext~N

(
100
3.98 ,

0.01 × 100
3.98

)
= N(25.126, 0.2513) (5.5)

This extrapolation factor will be applied directly on the damage number, thus in
the damage-domain. Justification for this crude approach is that a long period is
concerned, during which the number of cycles is large. Alternatively, one could draw
this many of random cycles, for instance, and find out that the law or large numbers
leads to minimal differences with the method used in this thesis. Direct application
to the damage is allowed due to the proportionality of damage to the number of
cycles, as shown in appendix D.

5.2.4 Dimensional uncertainties
Dimensional uncertainties are deviations of dimensions from their nominal values.
Technically, these introduce uncertainty into the transition from generalized forces
(bending moments in this thesis) to stresses used for fatigue verification. In this work,
it was decided to skip dimensional uncertainties for two reasons:

• Deviations are absolute in nature, and can therefore not be implemented into
the analysis by using a fictitious cross-section, simply because this fictitious
cross-section does not have any real dimensions. Therefore, it is impossible to
add or subtract, for instance, deviations in section height. Future analyses using
actual cross-sections would however produce more precise results by including
dimensional uncertainties, especially for smaller sections.

• The deviations, as laid out in part 3 of the Probabilistic Model Code (Joint
Committee on Structural Safety, 2000b), are quite small. The coefficient of
variation for the effective height for instance, is in the order of 1 %. Cause
for this notion is that civil engineering structures are generally quite bulky.
Deviations in size do not seem to correlate with the structure’s size (according
to the Probabilistic Model Code, which advices to use probability distributions
independent of the structure its dimensions), their relative importance decreases
for increasing structural dimensions.

It is added that, would on want to include this quantitatively, it would entail imposing
variations on the proportionality between generalized forces and local stress, u. In this
way, all stresses in a single point are systematically smaller or larger than expected.
However, as said before, this is not included in the current work.

5.2.5 Load effect modeling
For a cross-section, generalized forces are determined using models, which by definition
are a simplification of reality. Therefore the results obtained using these models
deviates from what is actually happening. To take deviations of this nature into
account, a model factor is generally used in probabilistic analyses, which includes
(Joint Committee on Structural Safety, 2000b):

• effects of a random nature, which are neglected in the models used for calcula-
tions.

• simplifications used in the mathematical relations (for example linear elastic
calculations).
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Because the Eurocode prescribes, for example, linear elastic calculations and finite
element modeling for fatigue verifications, a sufficiently large margin of safety should
be included to deal with modeling uncertainties introduced by these methods. These
modeling uncertainties usually result from neglecting for instance 3D-effects, inho-
mogeneities, interactions, boundary effects, simplifications of connection behavior,
imperfections and so on (Joint Committee on Structural Safety, 2000b).

The Probabilistic Modeling Code states some recommendations for practice. The
accuracy of load effect calculations (meaning generalized forces in this context, not to
be confused with damage numbers) depends on the type of calculation, distinguishing
between bending moment, shear force, axial force, stresses in 2D-solids, stresses in 3D-
solids, and also between frames and plates. Most relevant for this thesis are the model
uncertainties related to bending moments in plates1, being lognormally distributed
with mean of 1 and standard deviation of 0.2 (Joint Committee on Structural Safety,
2000b). These are said to be based on a standard structural finite element model,
which can be assumed for this type of calculations.

Generalized forces are determined through the use of an influence line and superposi-
tion. Therefore, in general, the obtained force will be the effect of multiple loads. In
applying the factor for model uncertainties, it is implicitly assumed that the effects of
all loads on the generalized force at the point of interest, are over- or underestimated
by this factor, or in other words: that there is a modeling error in the influence line,
with full correlation over the span.

The uncertainty in modeling the constant stresses (expressed using ζperm) is also
assumed to be distributed according to the same distribution, as it would generally
be determined using equal means. Therefore full correlation with the load effect from
variable loads is assumed (conservative), as errors in for example the finite element
model or its constraints are thought to be correlated between different load cases.
Variations in determining the self-weight and prestressing forces were not included
separately.

5.2.6 Fatigue resistance (concrete)
The background of the fatigue resistance model, in the form of S-N curves included
in the Eurocode, could not be obtained. Furthermore, it was learned that the
curves according to the Dutch national annex, which were shown to result in ‘jumps’
at 106 cycles, have no solid basis. Lantsoght (2014) compared a large number of
measurements of concrete fatigue resistance in compression and even proposed an
adaptation for the S-N curves found in the Eurocode. It is expected that the new
version of the Dutch national annex will adopt this proposal, which forms the basis
for adopting this proposal for this thesis.

5.2.6.1 Lantsoght’s proposal
Interestingly for this thesis is that the background of the proposed curves is available,
including statistics. First the resistance model proposed by Lantsoght (2014) will
be laid out. There are actually two proposals: one for existing structures, the other
for new structures. Here, the proposal for new structures is adopted. The fatigue
resistance is based on the design value of the concrete compressive strength:

fcd,fat = k1 βcc(t0) fcd

(
1 − fck

400

)
(5.6)

1It is assumed that here actually slabs are meant instead of plates, i.e. loaded out-of-plane
instead of in-plane.
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The number of permissible cycles is then given as

Ni = 10

(
14

1 − Ecd,max,i√
1 − Ri

)
(5.7)

with (similar to chapter 2)

Ri = Ecd,min,i

Ecd,max,i
(5.8)

Ecd,min,i = σcd,min,i

fcd,fat
(5.9)

Ecd,max,i = σcd,max,i

fcd,fat
(5.10)

Comparison of the above resistance model with measurements, based on k1 = 1 and
γc,fat = 1.5, was expressed in the ratio of tested maximum permissible stress over
predicted maximum permissible stress for a given number of cycles corresponding to
the experiment:

s̄ = smax,tested

smax,predicted
(5.11)

The mean value of s̄ was found to be 1.137 and the standard deviation equal to 0.086,
although these values were found for the proposal for existing structures. The charac-
teristic value2, determined by subtracting 1.64 times the standard deviation from the
mean, is equal to 0.996. From the comparison, also the value of s̄ corresponding to a
5 % probability of non-exceedance was determined from the measurements directly
(representing the empirical distribution instead of an assumed normal distribution).
This resulted in a value of 1.003, which is almost equal to the value found using the
normal approximation.

In figure 5.3 the normal and lognormal distributions corresponding to the mean and
standard deviations obtained by Lantsoght (2014) are plotted. Clearly, differences
are very small. The normal distribution results in a more conservative left tail, and
was therefore chosen to model s̄. It is assumed that the statistical parameters related
to the proposal for new structures are approximately equal, because the proposals
differ only slightly. The mean value of s̄ will be taken as 1.137, with a standard
deviation of 0.086 (cv = 0.076) (which thus applies to the stress level).

5.2.6.2 Implementation
In the preceding section it was shown that the ratio of tested over predicted smax

can be modeled using a normal distribution:

s̄ = smax,tested

smax,predicted
~ N(1.137, 0.086) (5.12)

where the predicted values are based on the proposed model by Lantsoght (2014).
Assuming that the distribution obtained from these tests holds for the entire range of
stresses and therefore also cycles, plus full correlation (which is justified by viewing

2This term was used by Lantsoght, but is actually inaccurate. Because this value is determined
with inclusion of the partial factor γc,fat, it is actually a design value. Strangely, however, is that
the variance in fatigue resistance was not considered in determining the partial factor, although this
is fundamentally required.
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Figure 5.3: Approximations using a normal and lognormal distribution for s̄.

‘fatigue resistance’ as somewhat of a range-independent material property), this can
be used to describe the S-N curves in a stochastic manner. The shape and slope are
thus controlled by the stochast s̄. Because smax represents a relative stress level, it
was chosen to apply s̄ directly on the relative stress level in the model proposed by
Lantsoght:

Ni = 10

14
1 − Ecd,max,i

s̄√
1 − Ri


(5.13)

This means that the S-N curve lies, on average, a factor 1.137 higher (mean value
of s̄) than the curve used for design, on top of the difference caused by the partial
factor. Note that only Ecd,max,i in the numerator is divided by s̄, in order to preserve
the shape of the S-N curve. This is allowed because only the relative stress is of
importance, hence R is not affected (also used by Lantsoght). Furthermore it is
important to use γc,fat = 1.0 for the probabilistic analysis. If not, the safety margin
provided by the partial factor would not be incorporated.

5.2.7 Fatigue resistance (reinforcement)
The fatigue resistance of steel reinforcement bars is derived directly from test results.
Data from two sources was used: Tilly (1984) and Helgason and Hanson (1974)
(gained from Wight and MacGregor, 2012). The data was merged because it is based
on equal test types and also shows good resemblance. From this, a S-N curve is fitted.
A linear S-N relation on double logarithmic scale was assumed, therefore fitting a
function of the form

∆σs = 10
(

A− 1
m log N

)
(5.14)

which results in best estimates A = 3.506 and m = 5.179.

Because it is customary to express the material’s variability in terms of the number
of stress changes, all data points were projected on the horizontal N -axis using the
best estimate for the slope. In other words, the intercept with the horizontal axis,
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Figure 5.4: Data vs. fitted S-N relation.

denoted with C, is determined for each data point using

Ci = log Ni + m log ∆σs,i (5.15)

The result is an array of values for C, which is approximately normally distributed,
see figure 5.5 (note that C is expressed in the logarithmic scale, therefore the life
is actually lognormally distributed). Parameters for C’s probability distribution are
µC = 18.141 and σC = 0.2969.

With appliance of the above model for resistance, full correlation in terms of number
of cycles to failure is assumed between the upper and lower branch of the S-N curve
(based on the approach followed in the Probabilistic Model Code, Joint Committee
on Structural Safety, 2013). This is coupled with a stochast to model the damage
number at failure (discussed in next section, i.e. section 5.2.8). This also implies
that log N∗ shares the same distribution as C, and with full correlation. Its mean
value is derived from the Eurocode and the fit. Assuming the characteristic line lies
two standard deviations from the mean, the mean of N∗ should lie two standard
deviations above the mean Eurocode value (where the standard deviation is taken
from the fit): µN∗ = 10(6+2×0.2969) ≈ 106.6.

From this, the stress range magnitude corresponding to µN∗ is determined from the
mean value of C and the slope:

log ∆σRs = log µC − log µN∗

k1 = 18.141 − 6.6
5.179 = 2.22 (5.16)

which means that the stress range is equal to 169.2 N/mm2. This stress shall remain
fixed, as the variations are expressed through its corresponding number of cycles, N∗.

The fatigue exponent for the lower magnitude cycles is based on the starting point
of EN 1992:

k2 = 2 k1 − 1 = 9.358 (5.17)

57



Chapter 5. Probabilistic Analysis

17 17.5 18 18.5 19 19.50

0.2

0.4

0.6

0.8

1

1.2

1.4

C

de
ns

ity

C data
fitted normal distribution

Figure 5.5: Data vs. fitted distribution for variability in number of stress changes.

With these parameters, the whole S-N curve is defined. As a short recap: the fatigue
exponents k1 and k2 remain fixed, while the variations are expressed by shifting the
S-N curve in the horizontal direction with full correlation (shape remains the same
on double logarithmic scale). Finally, this approach is compared to the Eurocode
S-N curve in figure 5.6, which shows the two correspond very well.

5.2.8 Critical damage number
Using the linear damage rule proposed by Palmgren and Miner, as described in
chapter 2, the damage number at failure is assumed to be equal to unity. However, the
actual damage number at which failure occurs is not set deterministically. Generally,
the damage number at failure is denoted as ‘critical damage number’ (∆).

Some effects which can influence the critical damage number have not been included
in the analysis of concrete by Lantsoght (2014) and for the analysis of reinforcement
in this work. These analyses were based on constant amplitude loading, and the size
of the specimens does not necessarily validate the results for e.g. different dimensions.

For concrete, other factors which were identified as influential are (Naik, Singh, &
Ye, 1993):

• rate of loading / loading frequency;

• rest periods;

• stress gradient;

• moisture conditions;

• curing conditions;

• air entrainment.

For reinforcement steel, there are also aspects which do not seem to be covered by
the constant amplitude tests alone (effects of variable loading, size effect, corrosion,
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Figure 5.6: Comparison of Eurocode S-N curve with characteristic curve derived from fitting
the data.

. . . ). These are also included by allowing variations in the critical damage number.

A review of literature did result some guidance on the variability in critical damage.
According to the Probabilistic Model Code (Joint Committee on Structural Safety,
2013), based on Wirsching (1984), the damage number at failure can be modeled
using a lognormal distribution with unit mean and coefficient of variation equal to
0.3. This advice is given for steel, but no information could be obtained for concrete.
Therefore it was chosen to apply this distribution for concrete as well.

5.3 Deterministic calibration variables
So far, it has become clear that there are a number of variables where upon the
results of calibration analyses depend. Basically, 8 variables were identified, of which
an overview is given in table 5.2.

calibration depends on: addressed in:
static scheme section 5.3.1
span length section 5.3.1
cross-section section 5.3.1
traffic history section 5.3.2
Eurocode traffic mix section 5.3.2
concrete class section 5.3.3
ratio of permanent stresses section 5.3.3
reinforcement S-N curve parameters section 5.3.4

Table 5.2: Overview of calibration variables which were used in this thesis.

Also, for a given structure, multiple effects (i.e. generalized forces) can be of interest
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(for example the longitudinal and transverse bending moment), as well as multiple
locations where details could be situated (denoted as ‘point of interest’). Because
of this significant number there are numerous combinations which can be investi-
gated. However, due to limited time (or: time-consuming analyses), only a subset of
combinations will be treated.

5.3.1 Static schemes, cross-sections & span length
Differences in static schemes correspond to different influence lines, which dictate
the results of a calibration procedure of this nature. This necessitates the use of
various static schemes, each spanning multiple lengths. For this work, five static
schemes were chosen, as displayed in figure 5.8 (the figure shows 7, which is due to
the combinations with cross-sectional types). These can be combined with different
cross-sectional shapes, which results in even more combinations. Cross-section which
have been used in this work, are presented in figure 5.7.

The most simple cross-section is the ‘slab’, as used in the reference case throughout
the appendices. This cross-section is included in the calibration, where for the slab-
type always the longitudinal bending moment is calibrated. To study the transverse
bending moments, it is of more interest to introduce a cross-sectional type with
greater dependence on transverse rigidity. This is accomplished by including for
instance a trough- or box-section, from which the former was chosen. Overall, the
following schemes were selected for calibration (corresponds to figures 5.7 and 5.8):

Scheme 1 Cross-section: slab, single span, both ends fully restrained. The point of
interest is the mid-span bending moment in longitudinal direction (sagging).

Scheme 2 Cross-section: slab, single span, both ends fully restrained. The point of
interest is the longitudinal bending moment at the support (hogging).

Scheme 3 Cross-section: slab, single span, simply supported at both ends. The
point of interest is the mid-span bending moment in longitudinal direction
(sagging).

Scheme 4 Cross-section: slab, continuous on three supports, all hinges. The point
of interest is the mid-span longitudinal bending moment in one of the spans
(sagging). Note that this point is not loaded most severely, however, it has an
interesting influence line due to loads on the adjacent span resulting in bending
moments of opposite sign.

Scheme 5 Cross-section: slab, continuous on four supports, all hinges. The point of
interest is the mid-span bending moment in one of the outer spans, where the
longitudinal bending moment is investigated (sagging).

Scheme 6 Cross-section: trough, single span, both ends fully restrained. The point
of interest is the mid-span bending moment in transverse direction (sagging or
hogging, whichever was governing), which is observed between the tracks and
the trough’s edge.

Scheme 7 Cross-section: through, single span, simply supported at both ends. The
point of interest is the mid-span bending moment in transverse direction (sag-
ging or hogging, whichever was governing), which is, again, observed between
the tracks and the trough’s edge.

For cases with a slab cross-section, where the longitudinal bending moment is of
interest, the span is of critical importance because of its interaction with axle distances.
To study it’s influence, a large number of spans were included, namely the set L =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50} m.
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Figure 5.7: Cross-sections used in this thesis, with their finite element discretizations.

When the transverse bending moments are of interest, the span is of lesser importance.
Therefore it is not required to calibrate for such a diversity of span lengths, so that
the calibration is done for the set L = {5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24} m.

5.3.2 Traffic
As explained in chapter 2, the Eurocode load model for fatigue consists of three
different traffic mixes. For the calibration, measured traffic is compared to all three
traffic mixes from the code. This also allows for the differences between load models
to be assessed. In the remainder of this report, the traffic mixes will be represented
using the numbers introduced in chapter 2:

• standard traffic mix (EC1);

• heavy traffic mix (EC2);

• light traffic mix (EC3).

The measured traffic which will be used for the calibration is limited to a selection
of all available detectors, because not all seem relevant (see chapter 2). The traffic
measured at detector 111 seems most damaging, but also detector 364 (highest axle
load) and detector 164 (2nd highest cumulative annual tonnage) are interesting.
Therefore, it was chosen to calibrate the Eurocode models with these three traffic
records (detectors 111, 164, and 364).
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Figure 5.8: Static schemes to be used for the calibration.
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5.3.3 Concrete class & permanent stresses
In the model proposed by Lantsoght (2014), discussed in section 5.2.6, the critical
number of cycles to failure is determined using a single equation for the entire range
of stress ranges, as opposed to the current Eurocode model. It can be shown that
the reliability resulting from appliance of this S-N formulation is invariant to the
concrete compressive strength, and that it therefore is of non-importance to the
calibration procedure. The permissible number of cycles is determined from

log Ni =
14
(

1 − σc,max,i

fcd,fat

)
√

1 − Ri

(5.18)

Substitution of the stresses per cycle, including the permanent part, yields the fol-
lowing equation:

log Ni = 14
1 −

(
uc (σmean,i + σamp,i)

fcd,fat
+ ζperm

)
√√√√√√√1 −

uc (σmean,i − σamp,i)
fcd,fat

+ ζperm

uc (σmean,i + σamp,i)
fcd,fat

+ ζperm

(5.19)

From equation 5.19 it is clear that the concrete compressive fatigue design strength
is only of influence in combination with the proportionality factor uc. Therefore,
in obtaining the value for ulimit corresponding to the limit state, the effect of the
compressive strength will be fully compensated by the proportionality factor. In
other words: the ratio uc/fcd,fat

remains constant for all fcd,fat upon enforcement
of the limit state. This shows that the reliability is invariant to fcd,fat. Of course
a higher strength does allow for a higher uc, thereby showing the benefit of using
stronger concrete.

The ratio of permanent stresses over the design compressive strength is of influence
though, as opposed to the concrete compressive strength itself. This is due to the fact
that ζperm cannot be isolated in combination with uc. Therefore it will be included
in the calibration with three different values. For this, the set {0.3; 0.45; 0.6} was
chosen as to cover an interval of realistic options for most spans.

5.3.4 Reinforcement resistance parameters
The parameters which define the S-N curve for the reinforcement steel are of interest
for the reliability calculation. Engineers within Movares stated that reinforcement in
railway structures is practically never welded (which would reduce the fatigue resis-
tance greatly). Therefore, in compliance with the Eurocode, the following parameters
were chosen for the calibration:

∆σRsk = 162.5 N/mm2

N∗ = 106 cycles
k1 = 5
k2 = 9

5.4 Limit State Formulation
Essential to determining the provided failure probability, is the formulation of a limit
state function. The process which is captured in the limit state equation is described
first, after which the equations are presented. The process is described using Monte
Carlo analysis, so using iterations. During each iteration:
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1. One single possible 100 year load is determined, based on 4 years of measure-
ments corresponding to the location of interest. This extrapolation was carefully
studied (see section 5.2.3 and appendix G), from which it was concluded that
only uncertainties in the expected number of cycles need to be incorporated. It
was concluded that an extrapolation factor can be applied directly and linearly
on the damage number.

2. This 100 year load is passed over the structure using simulation, from which
the stress-signal is obtained. This is done by determining the signal for the
measured 4 years, and extrapolating this linearly. The uncertainties in this
extrapolation are taken into account by use of a factor (stochast).

3. The signal is passed through rainflow counting, which yields a description of
all cycles (amplitude and mean stress). Miner’s law is applied to determine the
damage number, in which uncertainties in material resistance are incorporated.

4. The resulting damage number is compared to a critical value, above which, by
definition, the section fails in fatigue. If the obtained damage number is lower
than the critical value, the section survives.

Each iteration results in a unique load and resistance, caused by the underlying
probabilistic descriptions of each variable. The number of failures is counted, as well
as the number of iterations. Dividing the number of iterations resulting in failure,
by the total number of iterations, the failure frequency is determined, which is an
estimator for the probability of failure.

The structure which is used, basically consists of an influence line corresponding
to a point of interest, and a cross-section. Comparison with the Eurocode is done
by, prior to starting the Monte Carlo analysis, determining the resistance which this
cross-section provides to be exactly equal to what is solicited by the load model, based
on the Eurocode verification procedure (and thus, by definition, in a deterministic
sense).

For this work it was decided to compose separate limit state functions for concrete in
compression and reinforcement steel. The form in which the limit state function is
presented here, is not the classical ‘R − S’ format. Instead, it should be interpreted
as ‘R/S − 1’, in which R and S are not strictly separable.

For the calibration of reliability, provided by design according to the Eurocode, when
loaded by measured traffic, the reliability equations were formulated as follows:

Z = g (∆, θs, s̄, u, H) = ∆
ξext

∑
D(θs, s̄, R(u I(H), ζperm)) − 1 (5.20)

with

u = ulimit based on
∑

D (R (u I (M) , ζperm)) = 1 (5.21)

for concrete in compression, and

Z = g (∆, θs, N∗, u, H) = ∆
ξext

∑
D(θs, N∗, R(u I(H))) − 1 (5.22)

with

u = ulimit based on
∑

D (R (u I (M))) = 1 (5.23)

for reinforcement steel, where (repeated for completeness):
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g = limit state function
Z = safety margin
∆ = critical damage number
ξext = extrapolation factor∑

D(•) = damage number operator
θs = model uncertainty factor
s̄ = strength uncertainty factor (concrete)
N∗ = strength uncertainty factor (reinforcement)
u = proportionality between generalized forces and resulting stresses
H = traffic history from detector
ulimit = value of u for which the deterministic limit state is enforced
I(•) = influence-operator, which transforms traffic into a signal using an

influence line (thereby incorporating a structure)
M = traffic mix from the Eurocode
ζperm = ratio of permanent stresses over design compressive strength
R(•) = rainflow-operator, divides a (stress) signal into separate (stress) cycles

using the rainflow cycle counting algorithm

Furthermore, it follows from Z’s definition as the safety margin that:

Z > 0 survival
Z ≤ 0 failure

In equations 5.20 and 5.22, the stochasts are: ∆, ξext, θs, s̄, N∗, and therefore also
Z. The signals which are determined from measured trains (H), using the influence
operator, also include uncertainties which are expressed using F̂ , v̂, and Φ̂ (see
sections 5.2.1 and 5.2.2).

The operators which are used in the limit state formulation were discussed in chapter 4,
and more details were covered in the appendices. The distributions which are used
to model the uncertainties and variations in the limit state function’s parameters
were determined in chapter 5. The reason to deviate from the regular Z = R − S
format, is that this format proved difficult to solve using an approximation technique
instead of Monte Carlo (FORM, see appendix A). This was caused by the fact that
the partial derivatives with respect to the variables differ greatly from each other, and
also depend heavily on the point of linearization, which makes it impossible to reach
convergence using this technique. This problem is mitigated using the formulation
presented in equations 5.20 and 5.22. It is noted that the fundamental assumption
which allows changing the limit state function, is the definition of the reliability
index β, which is invariant to the formulation of the limit state function (again, see
appendix A).

5.5 Conclusions
• The basics of code calibration were illustrated, and the background of partial

factors was discussed. An overview of partial factors which were used in the de-
terministic analysis, to set the boundary conditions for the probabilistic analysis,
is given in table 5.3. Stochastic variables have been discussed and distributions
to model their uncertainties and variations were chosen, see table 5.4.

• Most difficult, and therefore proposed as a subject for further investigation, are
these components:
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– dynamic amplification factor;

– modeling uncertainties;

– critical damage number.

In chapter 6, their importance is assessed, from which a complete picture of
important voids in current knowledge can be drawn.

• The sets of variables are combined in order to form combinations for which the
calibration is to be performed. These combinations are displayed in figure 5.9.
The overall number of calibrations, thus all cases, is equal to 3942 for concrete
and 1314 for reinforcement.

• The reliability equation was formulated for both concrete under compression, as
for reinforcement steel. This equation allows solving for the failure probability
or the reliability index.

partial factor on deterministic analysis probabilistic analysis
fatigue loads 1.00 1.00
fatigue resistance concrete 1.50 1.00
fatigue resistance reinforcement 1.15 1.00

Table 5.3: Partial factors used in deterministic analysis. In the probabilistic analysis, all partial
factors were, of course, set to unity.
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stochastic variable symbol distribution parameters notes
measurement error
load F̂ normal µF̂ = 1

σF̂ = 0.0612
multiplier for measured axle load,
uncorrelated between axles

measurement error
velocity v̂ triangular

av̂ = −1.39
bv̂ = 0
cv̂ = 1.39

added to measured velocity, uncorre-
lated between axles

uncertainty in
dynamic amplification Φ̂ lognormal µΦ̂ = 1

σΦ̂ = 0.1
multiplier for DAF according to the
EC, uncorrelated between axles

dimensional
uncertainties u - -

skipped in current work, so u is kept
at the deterministic value obtained
by loading with one of the Eurocode
traffic mixes

model uncertainties θS lognormal µθS
= 1

σθS
= 0.2

applied on the stresses with full cor-
relation over the structure’s life time

fatigue resistance
(concrete) s̄ normal µs̄ = 1.137

σs̄ = 0.086

variations in permissible stress level,
fully correlated between different
stress levels (expressed as ratio)

fatigue resistance
(reinforcement) log N∗ normal µlog N∗ = 6.6

σlog N∗ = 0.297

variations in number of permissible
cycles, fully correlated over entire
S-N curve

extrapolation factor ξext normal µξext = 25.126
σξext = 0.2513

applied to damage number resulting
from the passage of actual traffic,
based on linear extrapolation (circa
25 times in time) with CoV 0.01

critical damage
number ∆ lognormal µ∆ = 1

σ∆ = 0.3
taken as equal for concrete and rein-
forcement

Table 5.4: Overview of probability distribution parameters for each stochastic variable.
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Figure 5.9: Combinations of variables for which the calibration is performed.
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The results for all 5256 cases presented in the previous chapter have been obtained
from an equal number of analyses. The reliability indices were exclusively deter-
mined using the procedure described in appendix H. Here, it is concluded that an
approximation technique for obtaining the reliability is sufficiently accurate, and that
the generation of a single signal for one analysis leads to satisfactory accuracy. The
outcomes are plotted as a function of the span length, with the results for all three
Eurocode traffic mixes and three permanent stress ratios combined in one graph. This
allows for the results to be condensed to 21 graphs (7 structural schemes with traffic
from three different locations). References to all figures are summarized in table 6.1
(all but one are placed in appendix I).

scheme detector results plotted in
111 figure 6.1

1 164 figure I.1
364 figure I.2
111 figure I.3

2 164 figure I.4
364 figure I.5
111 figure I.6

3 164 figure I.7
364 figure I.8
111 figure I.9

4 164 figure I.10
364 figure I.11
111 figure I.12

5 164 figure I.13
364 figure I.14
111 figure I.15

6 164 figure I.16
364 figure I.17
111 figure I.18

7 164 figure I.19
364 figure I.20

Table 6.1: Overview of calibration results, corresponding to all cases which were described in
chapter 5.4.
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6.1 Interpretation of results
One example from table 6.1 has been included in the main report and will be com-
mented on. Figure 6.1 shows the resulting reliability indices for structures corre-
sponding to scheme 1 (chapter 5.4), designed to withstand loading from all three
Eurocode traffic mixes, while actually being loaded by traffic from detector 111. For
cases regarding concrete in compression, three ratios of permanent stress have been
included.

To interpret the results correctly, it is of vital importance to understand what these
figures show. Each of the figures shows the resulting reliability indices for a number of
different combinations of deterministic variables. For this, it was chosen to employ the
span length as horizontal coordinate. In this way, these figures show the dependence
of the reliability on the span length. Each point thus represents a unique case for
which the reliability is calculated, resulting in a unique β.

Ideally, the reliability should be constant for each combination of parameters and
traffic. However, it is allowed to be different for varying combinations of traffic
records (detectors) and Eurocode traffic mixes. As each graph is constructed from
a single record of measured traffic, combined with three Eurocode mixes, it should
ideally show three horizontal lines (constant reliability). Here, it is implicitly assumed
that concrete and reinforcement should be equally reliable. If not, there may be six
horizontal lines, three for concrete and three for reinforcement. The absolute positions
of these horizontal lines are, logically, also important. Ideally, these three lines should
envelop the target reliability, showing that actual traffic can be categorized in between
the load models (it will probably never be completely equal). It is noted that such
an ideal picture is somewhat Utopic. Some variations will always be present, and
the target reliability should also be interpreted as an approximate value. Therefore,
small deviations are not deemed problematic, and even inherent to the accuracy of
such analyses.

Observation of figure 6.1, taking into account the aforementioned remarks regarding
the desired situation, leads to two conclusions:

• Compared to the target level (βtarget = 4.3, see figure), the overall reliability
level is too low (addressed in section 6.3).

• There are rather large variations in reliability for different sets of calibration
variables (addressed in section 6.4).

Clearly, the reliability shows severe dependence on the calibration variables. Com-
pared to reinforcement steel, the concrete shows little dependence, although the
spread is still rather large. It is especially the reinforcement which shows very large
variation with respect to the length of the span. Overall, there is a clear dip near
1-10 m spans. Examining the other cases, included in appendix I, a similar pattern is
found. Note that, in principle, the reliability should also be invariant to the structural
scheme (different schemes are included as different figures).

All cases (read: β’s), which should ideally be equal, have been grouped. Because
the spread in results is of interest, these sets are displayed as boxplots, see figure 6.2.
This figure shows all of the calibration results in a very condensed manner. It is
concluded that Eurocode traffic mix 3 clearly is not appropriate to use for design
against the measured traffic from detectors 111, 164, and 364. This was of course
to be expected (EC3 being the ‘light traffic mix’), but it could not be concluded
beforehand. The other two mixes perform similarly, EC2 outperforming EC1 slightly
(again, as expected). In the remainder of this chapter, first a sensitivity analysis is
presented, followed by an explanation of what causes the reliability to deviate from
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the ideal situation explained in this section.

6.2 Sensitivity Analysis
In this section, a sensitivity analysis is conducted on the calculation method, or
‘model’, used for determining the reliability indices. Reasons for performing a sen-
sitivity analysis as part of this thesis are: it is critical for model validation, and, it
serves to guide further research. It can also be employed to help identify causes which
result in varying reliabilities, as obtained in all calibration cases.

Normally, when using the first order reliability method (approximation technique as
mentioned earlier in this chapter, and explained in appendix A) for the determinations
of reliability, it would be logical to consider the α-factors as a measure for sensitivity
of the system with respect to the variable of interest. However, in the practical
implementation of the reliability calculation developed for this thesis, not all variables
are included directly in the limit state function. As shown in section H.4, the
variability in the signal has very little influence on the reliability, where it is noted
that the signal includes the accuracy of measurements (both magnitude of axle loads
as the velocity), and the dynamic amplification. In other words, the cumulative effect
caused by differences in axle loads and dynamic amplification, converges over the
design life of a structure1. Although of little importance for the spread between
separately generated signals, the general principle of E[Xn] 6= E[X]n (explained in
section 6.3) is expected to express differences in the parameters for the underlying
distributions which are responsible for the creating of a random signal. It was
therefore chosen to employ a method of sensitivity analysis which includes, besides
the random variables used in the FORM calculation, also the influence of stochastic
influences on the signal.

6.2.1 Method
The overall methodology which was chosen for this, is to vary each variable’s distribu-
tion parameters, one by one, and observe the effect on the system. The distributions
are all parametric, which allows for alteration of distributions through their underly-
ing parameters. To include the effect of their magnitude as is, it was decided to alter
them by a given percentage. Furthermore, to asses the non-linearity of the response,
the parameters are altered to both greater and lesser magnitudes. In this way, three
points are available for the response, theoretically capable of revealing convex or
concave behavior.

Another possible method would be to add uncertainties in parameters one by one.
However, due to the non-linear nature of the analyses, this would not provide a proper
picture of sensitivities with respect to the parameters when the design situation is
concerned.

An overview of cases for which the sensitivity analysis was done, each characterized
by a single altered parameter, is presented in table 6.2. The plus-values (p+

i ) are
calculated as the parameter value +10 %, while the minus-values (p−

i ) correspond to
−10 % (both for concrete and reinforcement).

The accuracy of the velocity measurement is an exception between, as first of all: it
is added to the measured velocity, and therefore alterations are independent of the
measured value itself. Also, because the bias is zero, adding or subtracting percentages
will not alter the value. Effectively, this parameter (bv̂, see chapter 5) is skipped in
the sensitivity analysis, which was accepted for this analysis. Note that a different
parameter alteration could be thought of, but this would skew the comparison, that

1Of course their mean values are still of great importance.
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variable symbol parameter p−
i pi p+

i

measurement error velocity v̂ av̂ -1.251 -1.390 -1.529
bv̂ 0.000 0.000 0.000
cv̂ 1.251 1.390 1.529

measurement error load F̂ µF̂ 0.900 1.000 1.100
σF̂ 0.056 0.062 0.069

dynamic amplification Φ̂ µΦ̂ 0.900 1.000 1.100
σΦ̂ 0.090 0.100 0.110

extrapolation factor ξext µξext 22.61 25.13 27.64
σξext 0.452 0.503 0.553

model uncertainties θS µθS
0.900 1.000 1.100

σθS
0.180 0.200 0.220

variability in strength (concrete) s̄ µs̄ 1.023 1.137 1.251
σs̄ 0.077 0.086 0.095

variability in strength (reinforcement) log N∗ µlog N∗ 5.94 6.60 7.26
σlog N∗ .267 0.297 0.327

critical damage ∆ µ∆ 0.900 1.000 1.100
σ∆ 0.180 0.200 0.220

Table 6.2: Overview of parameter-alterations for the sensitivity analysis.

74



J. R. Houtenbos

is, the relative sensitivity, and is therefore omitted. The other parameters, av̂ and
cv̂, which characterize the accuracy of measurements in terms of spread, are kept
equal in terms of absolute magnitude. This means that the distribution is always
symmetric, or av̂ = −cv̂.

To express the results, being the deviations in resulting reliability, relative differences
were determined using:

β̂± =
〈

β± − β0
β0

〉
(6.1)

where

β̂± = sensitivity index for the reliability, for positive or negative (+ or −)
alterations respectively

β± = vector of reliability indices for all spans, obtained using altered parameters
(either + or −)

β0 = vector of reliability indices for all spans, obtained using original parameters

and the angled brackets symbolize taking the mean value. Division of the vectors in
equation 6.1 is performed element-wise, resulting in a vector that is of equals size. It
is of the elements in this vector, that the mean value is determined.

6.2.2 Model sensitivity
Results from the sensitivity analysis for concrete are given in figure 6.3 and in fig-
ure 6.4 for reinforcement. It is emphasized that, because the alterations were chosen
as percentages of the original values, the magnitude of parameters is included in
the results. In other words, altering two parameters with equal function, although
different in magnitude, would result in different relative reliabilities, because and
only because the original values of these parameters differ. For the overall reliability
though, this gives insight into each parameters influence, both relative as absolute.

The sensitivity analysis was performed for a set of spans, the same as in the main
analyses. This was done in order to find out whether the sensitivity of the reliability
to parameters varies with the span. It was expected to do so, mainly because of
the influence operator, which includes summation. This means that, as the span
increases, and thus allows for a larger number of simultaneous axles to be present,
variations of individual axle loads will be somewhat dampened. Such behavior was
observed, although differences were rather small, order of magnitude 10% of β̂± (over
the entire range of spans). Therefore, it was decided not to include graphs of the
effects on reliability as a function of the span. Instead, all values were grouped and
β̂± was defined.

Clearly, the uncertainties in stresses outweigh the influence of parameters in the
damage domain by an order of magnitude. In itself, this is not a surprise. It is more
of a confirmation of what was already expected. Interestingly, the damage number
domain was treated proportional to time. Following along this path of thought, and
considering that the reliability only influenced to a minor extent by parameters in
the damage domain, the conclusion can be drawn that the same can be said for time.

The results of the sensitivity analysis can be used to estimate the effects of parameter
variations, without having to do the entire analysis again. For instance, if one would
obtain new information regarding the dynamic amplification factor Φ, the effect of
this information on the reliability can be estimated directly, without the need to
perform analyses all over again.
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Figure 6.3: Results of the sensitivity analysis using parameter alterations (concrete).
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Figure 6.4: Results of the sensitivity analysis using parameter alterations (reinforcement).
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It is also helpful in directing future research, as it reveals if there are e.g. quick wins.
In chapter 5 it was stated that some aspects were covered by little usable information,
being:

• dynamic amplification factor;

• modeling uncertainties;

• critical damage number (both concrete and reinforcement).

The critical damage number was shown not to influence the reliability in a significant
extent, especially not when concrete is of interest. This means that the first two
items from the aforementioned list are important to investigate in future endeavors.

Focusing on the dynamic amplification factor: effectively, the Eurocode’s value was
used as a mean for this, motivated by a lack of better information. Therefore,
this should be investigated thoroughly, also to gain insight into the correlations
between or within passages. A similar argument is given for the investigation of
model uncertainties. Here, full correlation over the service life was assumed, as
would be the result of errors made in determining the influence line. Clearly, this
results in significant dependence of the reliability to the standard deviation of model
uncertainties. Therefore, the reliability could benefit greatly from new information
on these aspects.

6.3 Global deviation
As a first step, the overall difference between the reliabilities (in an average sense)
and the target level is addressed. Employing the results from the sensitivity analysis,
and focusing on three components of the load which all work in the stress domain
(measurement uncertainties, dynamic amplification, and model uncertainties), the
following is noted:

• Regarding the measurement uncertainties and dynamic amplification: the un-
certainty was applied per axle. This means that a unique factor is drawn from
a distribution, for each axle which passes the structure. As many axles pass
the structure during its (simulated) design life, such uncertainties converge to a
stable mean level (law of large numbers). In the Eurocode, this is most probably
used as an argument for setting the partial factor for fatigue loading equal to
unity. It is noted that, from a citation in CEB (1988) based on a document
which could not be obtained (Agreements for Fatigue Design, Coordination
Group for Eurocodes, 1988), the partial factor for fatigue loading may be taken
equal to 1 based on the notion that any distribution function for loads would
converge to its expected value.

• The modeling uncertainties are implemented using a different method. A high
level of correlation in modeling uncertainties is to be expected, for example
when a mistake is made in creating an influence line, which is subsequently
used for an entire analysis. This results in systematic deviations which do not
converge over the design life of the structure. It could already be concluded
from the sensitivity analysis that this influences the reliability to a great extent.

It is especially this argument of correlation between uncertainties over the structure
its life, that falsifies the Eurocode assumption of convergence. Expanding this idea, it
is concluded that the partial factor for fatigue loading being equal to unity
in the Eurocode, is not justified at all2. This would only apply for uncorrelated

2It could be that the characteristic load model is defined in such a way that it provides a sufficient
margin of safety. However, it is assumed here that a characteristic load model preferably corresponds
to the actual loads which can for instance be measured, in this case the traffic records.
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uncertainties over the life of such a structure.

Even when all uncertainties would be uncorrelated, a partial factor of 1 may not
necessarily result in sufficient reliability. Take for instance a normal distribution with
mean value of 1 and a coefficient of variation larger than zero. Imagine that this
can be used to model the uncertainties in stresses. As the interest is on the damage
number, which partially is a result of the stresses, these assumed uncertainties will
present themselves in the damage number as well. Because the S-N curves used for
determining the damage number are quite non-linear with fatigue exponent far greater
than 1, all uncertainties above 1 (the mean of the assumed distribution) are amplified.
Below this level, these are decreased, but with a smaller impact on the overall result.
This implies that the expected value is increased, in general: E [Xm] 6= E [X]m
provided that m 6= 1. For m larger than 1, as with these fatigue calculations, the
expectation is increased. So, even when the variations have dampened out
in time, the non-linearity of the stress-damage relation still leads to an
increased average damage number, caused by these variations.

A final remark regarding the global deviations is that further research is required for
the model uncertainties and their correlations. Also, dimensional uncertainties, which
were neglected in this thesis, result in systematic differences between calculated and
actual stresses. These should therefore be implemented in future analyses. The same
conclusion can be drawn for dynamic amplification. These depend on characteristics
of the structure, and that it is quite hard to model dynamic behavior correctly, let
alone to replace it by some factor. Therefore, it is probably also prone to significant
variations. More problematic is that these characteristics of the structure will also
induce correlation between passages, which can be fatal for the reliability. Therefore,
further research is also indispensable for the dynamic amplifications, and especially
their correlation between passages.

6.4 Origin of span-dependence
In this section, the mechanisms which cause differences in reliability for variations in
parameters (especially the length of the span) are analyzed. Overall, two mechanisms
will be illustrated:

• differences in traffic;

• non-linearity of the S-N curves.

6.4.1 Differences in traffic
First, the most trivial source of span-dependent reliability is investigated, namely the
differences in traffic. Central throughout this report, was the notion that one can
not just compare sets of trains due to their array of characteristics. Therefore, it was
decided to compare based on the load effect, namely the damage number. In this
section, differences between traffic are assessed in a direct manner by comparison of
their limit values for the proportionality-factor u (see chapter 4). This is similar in
meaning to comparing based on damage number, however it aids clearer interpretation
of the differences (because the damage number amplifies such differences severely). A
solid marker for the aggressiveness of measured traffic, compared to the load model,
therefore seems to be the ratio of ulimit-values (ratio of stress-levels which exactly
result in attainment of the limit state for both the Eurocode traffic mix and the
measured traffic). In formulae (both for detector 111 traffic and the EC1 traffic mix,
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both for reinforcement):∑
D (R (u I (HD111))) = 1 → ulimit,D111 (6.2)∑
D (R (u I (MEC1))) = 1 → ulimit,EC1 (6.3)

using which the ratio of limit-values is expressed as

ū = ulimit,D111

ulimit,EC1
(6.4)

Results should be interpreted as follows: higher aggressiveness of traffic results in
a lower ulimit. Therefore, the lower ū, the more aggressive the detector traffic is
compared to the Eurocode load model. The values of ū have been plotted in fig-
ure 6.5. Note that the signal for detector traffic was determined using uncertainties
in measurements and dynamic amplification.
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Figure 6.5: Ratio of limit values for u (Eurocode over measured traffic). Reinforcement, scheme
1, detector 111 traffic and Eurocode traffic mix 1.

Comparing the dependency of ū with respect to the span length, it may be clear that
the shape resembles that of the resulting reliability index quite precisely (compare with
figure 6.1, EC1 for reinforcement). Therefore, it can be concluded that the main
source of non-constant reliability originates from differences between the
measured traffic and the load model traffic. Further investigation was clearly
appropriate.

The focus was especially at the apparent dip for 1-10 m spans (for this structural
scheme). Axle distances of the Eurocode traffic mixes and the measurements were
compared, but no clear reason for this dip could be found. Therefore, the stress-
signals resulting from the passage of particular axle systems were generated. When
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analyzing the results, something stood out: some specific span lengths seem to result
in a phenomenon which closely resembles interference between signal components.
Cycles will not only change in magnitude, more importantly and somewhat surprising,
cycles disappear for these ‘critical interference lengths’. The effects is best explained
by an example featuring two (unit) axle loads at a distance a, passing over a simply
supported beam with span L.

The focus is on the ratio of a/L, which is varied accordingly (see figure 6.6, left
column). For large ratio’s, being large distances between axle loads relative to the
span length, the structure is loaded by each axle consecutively. This result in two full
load cycles, each following the influence line. However, when a/L becomes smaller
than 1, interaction between these signals arises, in this work denoted as ‘interference’.
Considering this particular example, the result is a decreasing level of unloading in
between cycles, and therefore a decreased effect. Now, when a/L attains a value of
exactly 1/2, the cycle in between completely disappears. Important to realize is that
the stress changes are of interest. For this latter value of a over L, the complete
vanishing of cycles, effectively means that the bridge experiences a load effect equal
to that of a single axle passing. Therefore, this ratio is denoted as the ‘critical ratio
for destructive interference’.

Repeating this procedure for three equally spaced axles (see figure 6.6, middle column),
interestingly, the same behavior is observed. Upon attainment of the critical ratio,
the destructive interference now causes two cycles to vanish, leaving only a single
stress change. The load effects is therefore equal to that caused by a single axle load
passing. Consider, for example, the third Eurocode traffic mix (EC3). All heavy loads
(for instance larger than 200 kN) are included through the prescription of reference
train type 5 (of which one wagon is used in the right column of figure 6.6). Within
this train, however, on the level of bogies, all axles are found in sets of three, with
equal distance in between them. Taking into account the notion of a critical span for
destructive interference, it is concluded that such trains are very susceptible to this
phenomenon. Passing a simply supported beam, with perfectly triangular influence
line, the critical interference distance was shown to be equal to twice the axle distance.
In case of reference train 5, this amounts to 2 × 1.8 m = 3.6 m. This coincides with
the significant dip in reliability which is observed for calibration cases. Expanding
on this theory, one could superimpose influence lines with offsets to unravel more
critical patterns.

Now, consider what the influence is on the damage number. For this, the bogie
consisting of two axles is used (left column). The cycles are counted, after which
some damage number is calculated (merely proportional to a damage number), by
summing all ranges, individually raised to a power m. Some realistic values for m have
been used to plot the results in figure 6.7. The vertical axis is scaled logarithmically
to fit all values. Clearly, the damage number is constant at first (for large spans
compared to the axle distances), then decreases with increasing interference (compare
figure 6.6, first column, for a/L = 1, a/L = 2/3, and a/L = 1/2). The minimum is
at a/L = 1/2 (L/a = 2), after which the damage number increases. This pattern
resembles the drop in reliability observed in the calibration quite accurately.

Another interesting finding is that concrete is affected to a lesser extent than rein-
forcement steel. Arguing from the observed phenomenon of destructive interference;
this only alters the number of cycles. Comparing the S-N curves for concrete and
reinforcement (see figure 6.8), clearly the former is more sensitive with respect to
changing cycle magnitudes (larger fatigue exponent). Inverting this statement, it
can be said that reinforcement is more sensitive with respect to the number of cy-
cles. Because destructive interference only alters the number of cycles, it could be
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Figure 6.7: Relative damage numbers for different ratio’s of span length (L) over axle distance
(a). Note that this ratio is reciprocal to the ratio used in figure 6.6.

expected that reinforcement would be affected more, which corresponds to findings
of this study.

Now, this destructive interference would not be problematic in case of equal behavior
for real traffic. However, in real traffic the axle loads differ more, and a variety of axle
distances presented itself. Therefore, the susceptibility of real traffic to destructive
interference is only minor. This concludes the explanation of deviations in reliability
caused by differences in traffic.

6.4.2 Non-linearity of the S-N curves
Ultimately, another cause of span-dependent reliabilities was identified as the being
inherent to the S-N curve. In figure 6.9, spectra of stress ranges are portrayed for
different span lengths. The spectra are given in the form of histograms, where the
edges were chosen in such a way, that the bars are of equal width on logarithmic
scale, as opposed to linear scale. In this way, anyone reading the graphs does not
have to account for a different number of bars per unit length.

Furthermore, the design S-N curve for reinforcement steel is drawn. The dashed
lines mark constant distance offsets from this S-N curve. Note that on logarithmic
scale, these constant offsets correspond to constant multiplication factors: in this
case, each dashed line signifies a division by 10, compared to the previous line. Also,
as derived in appendix D, the dashed lines connect all points corresponding to an
equal damage number. Taking the aforementioned into account, one can use these
graphs to conclude which part of the spectra is responsible for most of the damage.
Starting from the red line, move to the left, one dashed line at a time. Then, the first
time where a dashed line touches a histogram bar, signifies the most damaging bar.
Well, technically also the number of bars is of importance. However, this method
allows for a quick visual assessment, just what is required in this case. Doing so for
all spectra, the following can be observed:

• for short(er) spans, the main part of the damage is done by those cycles that
are somewhat below the kink in the S-N curve;
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Figure 6.8: S-N curves for reinforcement and concrete (based on Lantsoght, 2014).

• for long(er) spans, the main part of the damage is done by a small portion of
large stress ranges, which are near, or even at, the kink in the S-N curve.

Now, special attention should be paid to the kink in the S-N curves. The fatigue
exponent, which changes here, is a measure of the sensitivity of the material with
regard to changes in stress, given a fixed number of repetitions. The S-N curve
therefore shows that the material is less sensitive to changes in stress above the
kink, than below. Considering a reliability analysis, where for example modeling
uncertainties could potentially cause the entire spectrum to shift upwards, it is now
analyzed what consequences this has.

According to appendix D, the damage number will scale proportionally to changes
in overall stress level, raised to a power equal to the slope of the S-N curve. Clearly,
when taking into account the above observations, it can be concluded that the part
that is mainly responsible for the damage number, shifts upwards in terms of stress
range, for increasing spans. Thereby, the sensitivity with respect to changes in overall
stress levels (e.g. modeling uncertainties), decreases significantly. This is therefore
caused purely by the shape of the spectrum interacting with the shape of the S-N
curve.

Its effect was assessed by using measured traffic as both the design constraint, and
as the actual loading. In this way, all differences in traffic are eliminated. The
resulting reliabilities are displayed in figure 6.10. The reliability is not constant for all
spans. However, it can be concluded that the influence of the S-N curve non-linearity,
interacting with the shape of the stress spectrum, is somewhat small.

6.5 Conclusions
• The reliability provided by design according to the Eurocode, given loading by

the measured traffic, was determined and presented for all cases discussed in
chapter 5.
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Figure 6.9: Spectra for different spans. Scheme 1, detector 111.
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Figure 6.10: Reliability as a function of the span. Reinforcement, scheme 1, detector 111 traffic
as both the load model as the design constraint (no Eurocode). For comparative reasons, the
reliability obtained using the Eurocode traffic mix EC1 is added (which, therefore, is according
to the Eurocode).

• Regarding the resulting reliabilities, two issues were identified. For both, the
main cause was shown:

– The overall reliability level is too low, compared to the target reliability set
in chapter 3. Cause for this is the Eurocode’s design fatigue load, which
should be more severe. This, in turn, is caused by the partial factor for
fatigue loading being equal to 1 (it is also possible to achieve the desired
reliability using characteristic loads, granted that these are sufficiently
aggressive). This value was justified by the notion that all uncertainties
relating the fatigue loading itself would converge in time, which is generally
true. However, the partial factor for loading also includes uncertainties
in the modeling of loads and structures. These are systematic deviations,
which do therefore not converge in time. The partial factor should include
an appropriate margin of safety for these, or else the reliability suffers, as
is currently the case.

– There is a rather large spread in reliability, for different combinations of
parameters. This is problematic, because the provided reliability should,
ideally, be constant. The differences between the Eurocode traffic mixes
and the measured traffic were shown to be dominant for the spread in
reliability. The main issue with these, is that for certain spans and influence
lines, a phenomenon was identified where cycles will vanish (coined as
‘interference’ in this thesis). In itself this is not a problem, if it would

85



Chapter 6. Calibration Results

also appear equally with measured traffic. However, measured traffic is
much more diverse in its axle loads and distances, and therefore less prone
to this interference, resulting in significant variations in the reliability for
different spans.

• A sensitivity analysis has been performed, assessing the sensitivity of the calibra-
tion procedure with respect to the various parameters (all stochastic variables).
Combining the conclusions with those drawn in chapter 5, it was concluded
that the following items should be prioritized in further research:

– dynamic amplification;

– modeling uncertainties.

For these it is also of significant importance to assess correlation between
individual axles, between passages of trains, and between designs of structures
(modeling uncertainties).
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7 | Conclusions

In the introduction it was stated that both the required and provided reliabilities
are needed for a comparison. This comparison corresponds to design according to
the Eurocode, while being loaded by measured traffic. Also, other uncertainties in
the design were incorporated in analyses, in order to calculate the reliabilities of
structures.

For the fatigue limit state of reinforced concrete, the target reliability for ultimate limit
states corresponding to consequence class 3 is adopted for this work, i.e. βtarget = 4.3
(PF ;target = 10−5) corresponding to the design life. Future differentiation in target
reliability levels with respect to conditions of inspectability and detectability of fatigue
in (reinforced) concrete may however allow lower reliabilities for some components.

The provided reliability was determined for a large variety of cases, for both concrete
and reinforcement steel. Numerical figures can be found in chapter 6, summarized
in figure 6.2. The reliability is far from constant for all cases, and was shown to
depend quite heavily on the structure its span length. The most important reason
was identified as the difference between the load model traffic, and the measured
traffic records. Also, the non-linear nature of the S-N curves, interacting with the
shape of the span-dependent spectra, contributes.

In the Eurocode load model for fatigue, heavy axle loads occur at constant axle
distances, and are mainly of constant magnitude. For certain structures, at specific
lengths, the structure will not be unloaded in between axle loads passing over it.
Therefore, the number of stress changes is reduced, a phenomenon coined ‘interference’
in this thesis. Real traffic is far less constant in its axle distances and magnitudes,
and therefore suffers from this phenomenon to a lesser degree. Important to note is
that this phenomenon mainly seems affects the reliability of short(er) spans, order of
magnitude 1-10 m.

Furthermore, the converging behavior of variations and uncertainties of fatigue loads
does not occur for all aspects (not for model uncertainties, and possibly not for
dynamic amplification; it was argued that these are somehow correlated between
passages). Such behavior should be covered by the Eurocode. In practice, this should
be done by increasing the design loads for fatigue.

The provided reliabilities, as calculated in this thesis, were generally below the deter-
mined target reliability, thereby answering the research question. For these analyses,
traffic records from Tricht, Schiedam, and Zeist were used, which seemed the most
aggressive available. It is especially the uncertainties or variations that are correlated
over the design life of a single structure, which are responsible for not meeting the
desired reliability.

Overall, it is concluded that the requirement regarding reliability is cur-
rently not met by appliance of the load models in NEN-EN 1991-2.
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7.1 Recommendations
First and foremost, there are some recommendations regarding a new load model:

• In order to satisfy the demand set by the target reliability, it is highly recom-
mended to increase the design loads (with the current partial factor being equal
to 1, the design loads are also the characteristic loads). Such an increase can be
achieved either through raising the characteristic loads, or by raising the partial
factor on fatigue loads. To enable compatibility with measured loads, which
were clearly lower than the loads prescribed in the Eurocode, it might be wise
to introduce a format with a partial factor larger than 1, which is also valid for
measured loads. This would also mean that the current characteristic Eurocode
load model should be adjusted to resemble measured traffic to a greater extent.
Until further investigations provide additional insights, no recommendation in
terms of a numerical figure can be given for the partial factor for fatigue loading.

• A novel load model (traffic mix) should be created, with an emphasis on vari-
ation in spacing between heavy axle loads, using the insight that these are
responsible for practically the entire fatigue load effect. The variations be-
tween axle distances should be sufficient to correspond to measured traffic, by
preventing certain span lengths for which the phenomenon coined ‘destructive
interference’ occurs. In practice this implies a traffic mix with similar distances
between heavy axle loads, as measured traffic. Using this novel traffic mix,
which should contain characteristic loads of similar magnitude as measured
loads (see previous point), a numerical value for the partial factor on fatigue
loading can then be determined.

Regarding the analyses, the following aspects were both of significant importance for
the determination of provided reliability, and hard to quantify:

• Model uncertainties, i.e. the accuracy with which, ultimately, the stresses/s-
trains in a cross-section are determined. Difficulties in quantifying were in both
the accuracy of individual calculations and in correlation between the results
of subsequent calculations.

• Dynamic amplification, with the same remarks as for model uncertainties.

This was caused by a lack of information. Overall, it is recommended to invest in
future investigations for the aspects mentioned above.

For existing structures, designed using the current Eurocode fatigue verification
procedure: it has been shown that their reliability is insufficient. Within all railway
structures, three categories can be distinguished with regards to this aspect:

1. Structures for which the fatigue limit state proved governing in design. These
are of primary importance.

2. Structures for which the fatigue limit state was of similar importance as ultimate
strength. One should consider that, using a modified verification procedure
which provides the target reliability, the fatigue limit state could prove governing
subsequently.

3. Structures for which the fatigue limit state proved to be of minor importance,
can be addressed with lesser priority.

For structures in categories 1 and 2, it should be checked whether the structure is
actually subjected to heavy loading (such as at Tricht, Schiedam, or Zeist). If so, one
could try to obtain measurements of local stresses/strains at fatigue-critical details in
order to eliminate modeling uncertainties and uncertainties in dynamic amplification.
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This can then be used to prove their reliability, or at least allow a much more accurate
judgment.

As a final remark it is added that, in this thesis, the focus was only on fatigue effects
caused by fluctuating stresses due to bending moments. It is recommended to repeat
this approach for fatigue due to shear and torsional effects as well.

7.2 Discussion
Redistribution of stresses in concrete can be expected to mitigate fatigue problems
considerably. However, this is not the case for reinforcement. It is therefore important
to investigate the failure of sections by fatigue of concrete in compression, to determine
to which extent it can actually occur. Also, the mechanism by which fatigue of
reinforced concrete section works is not quite clear. Inclusion of aspects such as
debonding or spalling in the calculation may alter the damage model which is used
for these calculations, and thereby the resulting reliability. Another interesting fact
is the increase of concrete compressive strength in time. As it is currently not clear
to which extent this phenomenon is included in the resistance model and verification
format, the reliability may very well benefit from future developments, especially
because fatigue is such a time-related failure mechanism.

Also, in determining the reliability for concrete in compression, the resistance model
proposed for the new Dutch national annex was used (according to Lantsoght, 2014).
This model was stated to be less conservative than the current Eurocode resistance
model (also with the modifications from the current national annex). Therefore,
the reliabilities which were calculated for concrete in compression do not completely
correspond to structures designed according to the current Eurocode (i.e. existing
structures). Notably, in case the current Dutch national annex model was used, which
was said to be conservative, the reliabilities of existing structures with respect to
fatigue of concrete in compression will be higher than calculated in this thesis. In the
authors opinion, it seems that fatigue of reinforcement poses the greatest risk. The
more conservative material models used for concrete, combined with the possibility of
redistribution within the concrete and the increasing concrete strength with time, are
expected to increase the reliability significantly. For the reinforcement, redistribution
is not really an option.

Regarding the target reliability: currently, the EN 1992 does not include differen-
tiation with respect to inspectability and detectability of fatigue in concrete and
reinforcement. Therefore, the target reliability for fatigue was chosen equal to that
of ultimate limit states. However, if the aforementioned aspects differ for a certain
section, a lower reliability might be more appropriate.

Finally, the identified voids in current knowledge, especially regarding model uncer-
tainties and dynamic amplification, have their impact on the accuracy of the provided
reliability. At least their workings and importance were demonstrated in this report,
but future endeavors would greatly benefit from additional insight, which can only
be gained by further investigations.
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A | Basic Reliability Theory

In this chapter, general aspects of reliability, of which explanations were deliberately
omitted in the main report, are treated. Within the field of probabilistic calculations,
four levels are normally distinguished:

Level 0 Formally, this is used to denote a deterministic calculation methodology,
where uncertainties and variations are not taken into account.

Level I Semi-probabilistic calculations: uncertainties are taken into account by
means of safety factors (for example the partial safety factors in the Eurocode).

Level II Fully probabilistic, i.e. all uncertainties are quantified or estimated, and
taken into account. The reliability however is obtained by approximation tech-
niques (in this report: FORM, see section A.5).

Level III Fully probabilistic, where the reliability is determined using exact methods
or methods which are exact in nature (in this report: Monte Carlo analysis, see
section A.4).

A.1 General concepts
Random variable
Random variables are variables, which can, with a certain probability, take on a set of
possible values. They are also denoted as stochastic variables. Random variables can
be either continuous or discrete: the former can take on any number in an interval
(can be unbounded), while the latter is limited to only a finite set of distinct values.
In this thesis, all stochastic variables are continuous.

Probability density functions (abbreviated with ‘pdf’) assign a certain chance to each
value a random variable can take on. Because, in the continuous case, the number of
possible realizations of a random variable is infinite, the probability of taking on one
single value is zero. Probability distribution functions therefore define the chance of
taking on a value in a relative way. The probability of taking on a value within an
interval however, is determined by integrating the pdf over this interval.

Closely related to this, is the cumulative distribution function (‘cdf’). It expresses
the probability of non-exceedance as a function of a ‘dummy variable’ expressing the
range. The cdf can therefore be expressed in terms of the pdf:

FX(x) = P (X < x) =
x∫

−∞

fX(x)dx (A.1)

where
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X = random variable
x = dummy variable, used for describing the range of possible outcomes
FX(x) = cumulative distribution function (cdf) of X

fX(x) = probability density function (pdf) of X

P (X < x) = probability of X being smaller than x, i.e. the probability of
non-exceedance

Therefore, the pdf can also be defined as the derivative of the cdf:

fX(x) = dFX(x)
dx

(A.2)

Expectation
The expectation of a random variable is the best estimator for it’s outcome, and is
determined by weighing possible realizations of this random variable with correspond-
ing probabilities of attainment (Wikipedia, 2016a). For discrete random variables,
this is a summation over all possible outcomes:

E[X] =
∑

xi P (X = xi) (A.3)

where
E[•] = expected value
X = random variable, in this case discrete
xi = the i’th possible outcome of X
P (X = xi) = probability of X being equal to xi

Analogously, for continuous distributions the expectation is defined as the first mo-
ment (commonly denoted by µX):

E[X] =
∞∫

−∞

x fX(x) dx = µX (A.4)

Variance
The variance of a random variable is a measure of its spread around its expectation
(Wikipedia, 2016e). Numerically, the variance is equal to the expected squared
distance between its possible outcomes and its mean, weighed by the outcome’s
probabilities. For discrete random variables:

Var(X) = E[(X − µX)2] =
n∑

i=1
(xi − µX)2 P (X = xi) (A.5)

For continuous random variables:

Var(X) =
∞∫

−∞

(x − µX)2 fX(x) dx =
∞∫

−∞

x2 fX(x) dx − µ2
X = σX

2 (A.6)

From these, the coefficient of variation is defined as a measure of variations relative
to the mean value:

cv,X = σX

µX
(A.7)
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Risk
Risk is defined as the product of expected consequences and their associated proba-
bility of occurrence:

risk = P C (A.8)

where
P = probability of event occurring
C = consequences associated to this event

It is thus closely related to the expectation. In other words, risk may be interpreted
as the expected costs from an adverse event (e.g. structural failure). In case of
multiple possible events, risks should be summed, as is the case with expectations.
As explained in chapter 3, risk can be used to objectively weigh the probability that
some adverse event may occur, against e.g. the costs of improving strength.

Probability of failure
The probability of failure is denoted with PF , and quantifies the likelihood of failure
occurring. It should always be related to a time-frame, for example the probability
that a bridge will fail during the coming 50 years. The reliability (L) is the complement
of the failure probability, i.e.:

L = 1 − PF (A.9)

where
PF = probability of failure
L = reliability

Therefore, one does not offer more information than the other.

Reliability index
The reliability index, denoted with β, is frequently used to express the reliability of,
among others, structures. It is defined as:

β = Φ−1(1 − PF ) = Φ−1(L) (A.10)

where
β = reliability index
Φ(•) = standard normal distribution cdf (µ = 0; σ = 1)
Φ(•)−1 = inverse standard normal distribution cdf

and therefore

PF = Φ(−β) (A.11)

A stated reliability index is fully replaceable by its corresponding probability of
failure.

A.2 Probability distributions used in work
Some of the probability distributions which were deemed as ‘generally known’, were
not elaborated in the main text. To provide all the information necessary for the
reader, however, these have been included in this chapter.
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Triangular distribution1

Probability density function (pdf):

fX(x) =



0 for x < a
2(x−a)

(c−a)(b−a) for a ≤ x < b
2

c−a for x = b
2(c−x)

(c−a)(c−b) for b < x < c

0 for c ≤ x

(A.12)

Cumulative distribution function (cdf):

FX(x) =


0 for x < a

(x−a)2

(c−a)(b−a) for a < x < b

1 − (c−x)2

(c−a)(c−b) for b < x < c

1 for c ≤ x

(A.13)

Mean value (expectation):

µX = a + b + c

3 (A.14)

Variance:

σX
2 = a2 + b2 + c2 − a b − a c − b c

18 (A.15)

Normal distribution2

Probability density function (pdf):

fX(x) = 1
σ

√
2 π

e− (x−µ)2

2 σ2 (A.16)

Cumulative distribution function (cdf):

FX(x) =
x∫

−∞

fX(x) dx (A.17)

Mean value (expectation):

µX = µ (A.18)

Variance:

σX
2 = σ2 (A.19)

Stochasts which are normally distributed are symbolized by ‘X~N(µX , σX)’.

1Based on Wikipedia (2016d)
2Based on Wikipedia (2016c)
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Lognormal distribution3

Probability density function (pdf):

fX(x) = 1
x σ

√
2 π

e− (ln x−µ)2

2 σ2 (A.20)

Cumulative distribution function (cdf):

FX(x) =
x∫

−∞

fX(x) dx (A.21)

Mean value (expectation):

µX = eµ+σ2/2 (A.22)

Variance:

σX
2 =

(
eσ2

− 1
)

e2 µ+σ2
(A.23)

Stochasts which are lognormally distributed are symbolized by ‘X~LN(µX , σX)’.

A.3 Solving the reliability integral
This section, along with sections A.4 and A.5, is based on Probabilities in Civil
Engineering (CUR-committee E10, 1997). The ‘reliability equation’ or ‘limit state
function’ is written in such a way, that negative values of the safety margin Z
correspond to failure. The reliability equation has the general form4

Z = R − S (A.24)

where
Z = safety margin
R = resistance to failure
S = load or more generally: that what causes failure (from the word ‘solicitation’)

The probability of failure can then be expressed in terms of the reliability equation
as

PF = P (Z ≤ 0) = P (R ≤ S) (A.25)

where PF is the probability of failure. Calculating the failure probability comes
down to determining the probability of Z being smaller than zero. This probability is
calculated by integration of the probability density function of Z over the (hyper)space
of variables, for those combinations where Z ≤ 0.

This may seem more clear if ‘integration’ is replaced with ‘summation’. First, imagine
a n-dimensional hyperspace (for n > 3), where n is the number of (random) variables.
Assume now that the probability density functions are known for each variable, and
that variables are independent. The probability density at any point in the hyperspace,
can then be determined from the product of probabilities that each variable attains
the value corresponding to this point in the hyperspace. The probability of failure
is determined from the probability density function defined on the hyperspace, only

3Based on Wikipedia (2016b)
4Any form is possible, as long as it is accompanied by a clear definition failure and survival.
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concerning those points where Z = g(X1, X2, . . . , Xn) is less than or equal to zero, and
is obtained from summation of probabilities related to all those possible combinations
which lead to failure.

Back to the formulation using the integrals: the failure probability is expressed as

PF =
∫∫

Z≤0

fR,S dR dS (A.26)

with

Z = g (X1, X2, . . . , Xn) (A.27)

This means that the failure probability can be calculated with the integral

PF =
∫∫

. . .

∫
Z≤0

fX1,X2,...,Xn
dX1 dX2 . . . dXn (A.28)

from which it is clear that integration is performed over all variables, thus repre-
senting the aforementioned hyperspace. The integral in equation A.28 proves quite
hard to solve for the failure probability, even to the extent that analytical solutions
are an exception. Therefore, the integration is generally done using numerical rou-
tines (section A.4) or the reliability is determined using approximation techniques
(section A.5).

A.4 Level III: Monte Carlo method
The Monte Carlo method is a ‘brute force’ approach to the solution of the reliability-
integral. Starting from known distributions for all stochastic variables, a random
realization of each variable is drawn. From this, the safety margin (Z) is determined
by substitution in the reliability equation. Then it is checked whether Z ≤ 0 (failure)
or Z > 0 (survival). This process is repeated a large number of times, from which the
failure frequency is calculated. This serves as an estimate for the failure probability,
i.e.

PF ≈ nF

n
(A.29)

where
nF = number of simulated failures (Zi ≤ 0)
n = number of simulations

Equation A.29 converges to the true solution of the integral (equation A.28) for in-
creasing n. The accuracy of the Monte Carlo is dictated by the number of simulations.
Usually, the number of simulations required for acceptable accuracy is rather high
which can make the method computationally expensive. As a general rule, for crude
Monte Carlo, the number of simulations for 95 % accuracy is in the order of 400/PF

,
which shows that it it increasingly difficult to achieve a stable and accurate solution
for a decreasing failure probability.

A.5 Level II: first order reliability method
In this section an approximate method for solving the reliability integral using first
order linearization is explained. In case all variables in the reliability equation are
normally distributed, and the reliability equation is some linear function of these
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variables, then the reliability function itself will also be normally distributed. If so,
the probability that of Z being equal to or smaller than zero can be directly calculated
from

PF = P (Z ≤ 0) = Φ
(

−µZ

σZ

)
(A.30)

to which the reliability index β owes its alternate definition:

β = µZ

σZ
(A.31)

In this thesis the emphasis is on nonlinear reliability functions, due to the many
nonlinearities in the fatigue verification. Such a nonlinear reliability function can be
approximated by the first two terms of its Taylor-expansion (in this case at x = x∗):

Z = g(x) ≈ g(x∗) +
n∑

i=1

∂g

∂Xi

∣∣∣∣
x∗

(Xi − X∗
i ) (A.32)

with

x∗ = [X∗
1 X∗

2 · · · X∗
n ]T (A.33)

The mean and standard deviation of Z can then be approximated by

µZ ≈ g(x∗) +
n∑

i=1

∂g

∂Xi

∣∣∣∣
x∗

(µXi − X∗
i ) (A.34)

σZ ≈

√√√√ n∑
i=1

(
∂g

∂Xi

∣∣∣∣
x∗

σXi

)2
(A.35)

from which the reliability index is approximated by substitution of equations A.34
and A.35 into equation A.31:

β = µZ

σZ
≈

g(x∗) +
n∑

i=1

∂g

∂Xi

∣∣∣∣
x∗

(µXi
− X∗

i )√√√√ n∑
i=1

(
∂g

∂Xi

∣∣∣∣
x∗

σXi

)2
(A.36)

According to equation A.36 the reliability index depends on the point in which the
reliability equation is linearized (x∗ in this case). Therefore Hasofer and Lind (1974)
defined a reliability index which is invariant to the point of linearization, and can
be visualized as the minimum distance between the origin of the variable hyperspace
and the failure boundary, i.e. the set of points for which Z is equal to zero. This
definition demands that all variables are transformed to standard normal variables
(µXi

= 0; σXi
= 1), so that the hyperspace of variables is a so-called ‘standardized

space’. The point which minimizes β is defined as the design point, with coordinates
x∗. The design point can be obtained by solving the following set of equations in an
iterative manner:

αi = −

∂g

∂Xi

∣∣∣∣
x∗

σXi√√√√ n∑
i=1

(
∂g

∂Xi

∣∣∣∣
x∗

σXi

)2
≈ −

∂g

∂Xi

∣∣∣∣
x∗

σXi

σZ
(A.37)

g(x∗) = g
(

[X∗
1 X∗

2 · · · X∗
n ]T

)
= 0 (A.38)
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with

X∗
i = µXi

+ αi β σXi
(A.39)

so that

g(x∗) = g




µX1 + α1 β σX1

µX2 + α2 β σX2

...
µXn + αn β σXn


 = 0 (A.40)

The α-factors quantify the sensitivity of the reliability function with respect to each of
the variables. Equation A.37 reveals that the magnitude of the sensitivity is dictated
by the product of the partial derivative with respect to the variable of interest, and
the variability of this variable (quantified by its standard deviation). This makes
sense, as the partial derivative shows the change in safety margin for a change in the
variable of interest.

The method explained in this section assumes normally distributed variables. In the
case of variables with other probability distributions, these should be transformed
to some approximate normal distribution. This can be done, based on the notion
that, at the point of approximation, the cdf and its derivative (pdf), of the equivalent
normal distribution, are equal to those of the original cdf. This results in convenient
formulations for the transformed distribution’s parameters:

σ̂X =
φ
(
Φ−1 (FX (X∗))

)
fX (X∗) (A.41)

µ̂X = X∗ − Φ−1 (FX (X∗)) σ̂X (A.42)

where
σ̂X = equivalent normal distribution’s standard deviation
µ̂X = equivalent normal distribution’s mean
fX = actual probability density function of X

FX = actual cumulative distribution function of X

Using the theory presented in this section, nonlinear reliability functions with non-
normal distributions can be linearized to an approximate form which allows solution
for the reliability index, and therefore also for the probability of failure.
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The most relevant cases were already listed in chapter 2. The remaining cases are
(CEB, 1988):

1. Cantilevered bridge deck, New York City: the principle cause of failure was the
repetitive deflection of a cantilevered floor beam, which caused secondary tensile
and fatigue stresses in the concrete’s upper surface. Other factors included
insufficient reinforcement for distribution of loads, de-icing salt in relation to
corrosion of reinforcement, and loss of concrete cover on the running surface.

3. Fatigue fracture of connecting joints is a prestressed bridge, Germany: cracking
of concrete led to an increase in stress in prestressing tendons, from 16 N/mm2

to 196 N/mm2 (measured). This led to fractures of tendons, which were caused
by fatigue.

5. Expansion joints in bridges, Sweden: very localized damage to expansion joints
was observed, in which it was believed that fatigue played a role.

7. Traveling crane track, Sweden: crane tracks, connected to concrete elements
by hold down bolts, were locally separated from each other. Repetitive loading
is said to have caused spalling of concrete and cracking of mortar, resulting in
shearing of bolts.

8. Viaduct over railway, Ashammar, Sweden: damage to a continuous slab sup-
ported by steel beams was observed. The damage consisted mainly of lost
cover, which was related to corrosion of fatigue, in turn aided by carbonation
of concrete. The sizes of cracks were too wide to be caused by solely static
loading, and therefore fatigue is suspected;

9. Reconstruction of a concrete pavement, The Netherlands: cracks were observed
in unreinforced concrete pavement slabs. One of the factors identified responsi-
ble was fatigue.

11. Demolition of prestressed concrete, Germany: during demolitions of prestressed
structures it became clear that the fatigue resistance of prestressing steel in
incorrectly grouted ducts was smaller than its original values. These losses were
caused by corrosion. It is noted that corrosion pits of 150 to 250 microns can
cause losses of fatigue strength of up to 50 %.

12. Collapse of the south peripheral arch, Kongresshalle, Germany: tendons were
severely affected by corrosion, also aided by chlorides and carbonation. Ulti-
mately, some wires broke because of fatigue loading by wind, snow and temper-
ature.

13. Slab supporting presses, Sweden: a factory floor slab was designed to support
two presses. When tested prior to installation, it was found that unacceptable
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vibrations resulted, which also caused cracking of the concrete. Engineers con-
cluded that if vibrations were unacceptable for men to work in, there potentially
was a fatigue problem.

15. Wood chip processor, Kornasverken, Sweden: case of vibrations induced by ma-
chinery, which caused excessive cracking of the concrete structure. No detailed
analysis was made, but it was considered that fatigue caused the cracks;

16. Papermill in Finland: the supporting structure, made of rather low strength
concrete, was subject to long-term loads, vibrations and penetrating oil. Cracks
were observed, but their cause is not given. It was reported, however, that the
structure was not designed for fatigue.

17. Pile driving, Sweden: it is said that 6 % of concrete piles is damaged during
driving. There are multiple causes and mechanisms, but fatigue is believed to
contribute.
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C | Measured Traffic

The data used in this thesis was provided by Ricardo Rail (formerly known as Lloyd’s
Register Rail). The measurements correspond to four locations, for all tracks at these
sites. Information regarding the available data is summarized in table C.1, while
overviews of the corresponding measured sites are given in figure C.1 – C.4.

DetectorID km GeoCode GeoDetailDescription TrackName Latitude Longtitude
11 51.72 104 Voorschoten I LF 52.12324 4.42896
12 51.72 104 Voorschoten I KF 52.12324 4.42896
18 51.72 104 Voorschoten II MF 52.12291 4.42958
19 51.72 104 Voorschoten II NF 52.12291 4.42958
111 24.801 513 Tricht GU 51.89117 5.26765
114 24.801 513 Tricht GJ 51.89117 5.26765
163 75.059 112 Schiedam CF 51.95656 4.38279
164 75.059 112 Schiedam DF 51.95656 4.38279
363 50.759 035 Zeist AF 52.06595 5.31602
364 50.759 035 Zeist AT 52.06595 5.31602

Table C.1: Information regarding measured locations.

C.1 Data acquisition1

The measurements are recorded using the ‘Gotcha / Quo Vadis’ system. This sys-
tem was initially developed by NedTrain, which is the organization responsible for
maintaining the trains for NS. The goal was to monitor the quality of wheels, with
the aim of realizing more efficient maintenance. ProRail, Ricardo Rail and Baas
R&D were also involved. ProRail collaborated in the development to enable the
acquisition of information which can be used as a basis for the compensation which is
paid by railway operators for the usage of infrastructure. All measurement systems
were replaced in 2010/2011. Measurements which are available for this work, are
post-replacement.

The system classifies as ‘weigh-in-motion’ (WIM), as measurements are obtained
from moving trains. The installations consist of four glass-fiber sensors mounted on
the underside of the tracks (two on each side). Also, an antenna is placed which
reads RF-tags on trains, which can be used for identification. The system produces
optic signals, i.e. when a train passes the sensors, the tracks bend slightly. This
causes a disturbance in the optic signal, which is translated to a static weight and

1The information regarding the measurement system is based on: Inspectie Leefomgeving en
Transport (2014)
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Figure C.1: Overview of tracks near Voorschoten (GeoCode 104).

Figure C.2: Overview of tracks near Tricht (GeoCode 513).
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Figure C.3: Overview of tracks near Schiedam (GeoCode 112).

Figure C.4: Overview of tracks near Zeist (GeoCode 035).
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dynamic forces. The system is calibrated frequently (order of magnitude is daily),
using vehicles with known weights (preferably dedicated locomotives).

C.2 Data format
The data was supplied in the form of .mat-files, split in 63 files per track, named
Detector_xxx_1.mat through Detector_xxx_63.mat (with xxx containing the ID
of the detector). The data in these files is in chronological order. Two exceptions,
where files are missing, were noticed. The missing files are:

• Detector_11_46.mat → The missing file contains a part of the trains that is
enclosed chronologically, meaning that it cannot just be left untreated. There-
fore the following method was used: all trains with time-stamps later than
the missing file, had their time-stamps modified to succeed the last train from
Detector_11_45.mat, in such a way that the time difference between the last
train from Detector_11_45.mat and the first train from Detector_11_47.mat
equals the average time between passages (approx. 15 minutes for this location).

• Detector_114_61.mat – Detector_114_63.mat → This was solved by merging
the history up to Detector_114_60.mat. Because only the last part of the data
is missing, there is no need for time correction of the remaining data.

Each .mat-file contains a structure Data. This struct contains several fields, of which
the relevant ones are presented in table C.2 including a short description of their
meaning. The quality of each measurement is determined automatically (criteria

Data =
WheelDamageID Unique ID for each passing wheel or axle
TimeOfAxle String containing the time of passing per axle
DetectorID ID of the detector, corresponding to table C.1
TrainpassageInformationID Unique ID for each passage
Axle Numbering of axles per train, chronologically and starting at 1
Distance2PreviousAxle The distance between the current axle and the previous axle.

Note that this is zero for the first axle of each train
SpeedOfAxle Velocity at which each axle passed the detector
AxleLoad The weight of each axle in metric tonnes
ValidWIM Validity of the measurement as judged by the system
VehicleType Type(s) in train passage

Table C.2: Explanation of the relevant fields in structure array ‘Data’, in which the measured
data is provided.

not available), and expressed as a value ‘ValidWIM’ between 0 and 1. According to
Ricardo Rail, the threshold for a reliable measurement is at 0.75; all values with a
ValidWIM-score which is larger than or equal to 0.75 can be trusted. Measurements
with lower scores are to be discarded. For this analysis, the ValidWIM-score of a
passage was defined as the minimum of scores corresponding to the train’s axles. The
‘validity’ in table C.3 is defined as the fraction of trains with ValidWIM-scores larger
than 0.75.

Now, for a fatigue load model, where the number of trains is an essential component,
these trains cannot just be discarded. Therefore an alternate procedure is thought
of. Under the assumption that the quality of measured loading is independent of
the load itself, implying that the discarded measurements are purely random, these
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inadequate measurements can be replaced by randomly sampled trains from the rest
of the population. The population is, in this case, defined as all the trains that
pass a certain measured location. In the process of sampling, some information
belonging to the original (faulty) measurement was kept: the ID of the passage
(Data.TrainPassageInformationID) and the time-stamp (Data.TimeOfAxle). Af-
ter performing this procedure, some characteristics from the measured traffic were
determined, being the cumulative annual tonnage, the maximum axle load, and the
number of trains, see table C.3. Clearly, the annual cumulative tonnages prescribed
in the Eurocode, set to 25 × 106 tonnes per year, are not exceeded in any of the cases.

DetectorID validity cumulative tonnage
[10 × 106 ton/year]

maximum axle
load [ton]

number
of trains

11 0.9085 9.92 25.53 151052
12 0.9821 15.21 26.90 160538
18 0.5907 8.01 24.80 136727
19 0.9492 16.45 26.99 178031
111 0.8947 23.12 31.07 307762
114 0.9717 18.53 28.59 201047
163 0.9745 21.81 28.62 268493
164 0.9711 22.16 28.33 269374
363 0.9790 14.46 31.00 181064
364 0.9659 15.53 32.80 182739

Table C.3: Averaged yearly cumulative tonnage and validity of the data.

The measurements are merged into a structure LH, where only the data required
for the rest of the analyses is kept. This is mainly done to limit the computational
demands. The fields of LH, with their respective descriptions, are given in table C.4.

LH =
load(:,1) Vector of axle loads in [kN], obtained from multiplication of the

original measurement in tons with the gravitational constant (9.81).
load(:,2) Vector of cumulative axle distances in [m], with the first axle as

reference.
freq Number of passages of this train, equal to 1 for all measured trains.
velo Velocity of the train at passage, calculated by averaging the velocities

of all axles.
time Time at which the train passed, defined as the value of

Data.TimeOfAxle for the train’s first axle.
tpID The unique ID belonging to the passage of the train, i.e.

Data.TrainPassageInformationID
vWIM Minimum of all axle’s Data.ValidWIM-scores.
type Train types as present in the original measurements. Only unique

entries are included.

Table C.4: Explanation of the fields in structure array LH (LoadingHistory), in which the measured
data is stored.
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C.3 Empirical distributions
The first analysis of the data is the extraction of empirical distributions for the
magnitude of axle loads. Histograms are plotted for pairs of detectors, see figure C.5.
Note that Voorschoten (4 tracks) is therefore represented by two plots. Results are
analyzed per location.

Voorschoten Clearly, detectors 12 and 19 were subjected to axle loads of larger
magnitudes than detectors 11 and 18. Also, the cumulative tonnages over these
detectors is almost twice as large as that measured at the adjacent detectors.

Tricht The tracks near Tricht are used extensively for freight transports. Interest-
ingly, the most frequent occurrence of large axle loads is measured at detector
111, i.e. track GU. Figure C.2 suggests that, given the assumption that most
of the traffic on the Dutch railways is right-driving, this track is mainly used
for inland transportation of freight, or export eastwards (e.g. Germany).

Schiedam Detector 163 and 164 measured similar loads in both directions. Axle
loads from Rotterdam are slightly larger than those towards it.

Zeist Detector 363 shows a distinct peak near 70 kN axles, while detector 364 was
passed far more frequently by large axle loads. It is assumed that this is the
result of loaded freight trains in one direction (large axle loads), and unloaded
trains in the other (smaller axle loads). This implies that freight is transported
primarily from Utrecht towards the eastern part of the country. However, it is
noted that the difference in average cumulative tonnages is small.

On a general note: the main bodies of all measured data-sets correspond quite well.
These are formed by an accumulation of axle loads near 130 kN with a small left tail
and a relatively wide right tail.

To compare all data-sets, the empirical cumulative density functions were plotted
(figure C.6). The differences in especially the tails of the distributions are clear, as
can be seen from the e.g. the 5th and 95th percentiles.
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Figure C.5: Empirical density functions of measured axle loads, per location.
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C.4 Assessment of historical trends
In order to use the data for extrapolation, it is important whether there is a long term
trend in the measured loading histories. Also, the variability in time is an interesting
characteristic. For such an analysis, the time-frame of measurements corresponding
to each location was split into a number of sub-intervals. Using this, it was analyzed
in which slot each train fits (based on the time at which the first axle was measured),
and the tonnage was determined. Doing so for each train, the cumulative tonnage
which passed during each time frame is determined through summation of axle loads.
Graphs of the cumulative tonnage versus the time are given in figure C.7. In these
plots, the averages are plotted with dashed lines. Below, some remarks concerning
the time-dependence are given.

Voorschoten Different from the other locations, at Voorschoten there are 4 parallel
tracks for all of which measurements are available. Voorschoten I is quite
steady in cumulative tonnage, while data from Voorschoten II shows some large
deviations. It seems as if part of the traffic which would normally pass detector
18 (track MF), was rerouted over detector 19 (track NF), during little over a
year. This is concluded from the apparent dip in the former, which coincides
time-wise with the peak in the latter. Observing the graphs, no significant
trend can be spotted.

Tricht, Schiedam, Zeist The cumulative tonnages at the other locations appear
steady and without a significant trend.

The only significant variation which was identified, possibly being a temporary rerout-
ing of traffic, was at Voorschoten’s MF and NF tracks. Although significant, it is also
clearly a temporary distortion in a larger steady behavior. It is not expected that
such variations are part of the large-scale behavior of the system. Therefore it would
not be beneficial to include such a set of measurements in the calibration, as it could
distort the results. However, the 2nd half of the measured time appears to show the
normal situation at this location. This can thus be used for calibration.

There is also the possibility of other trends in the data. For example, axle loads
might be increasing as parts of political decisions. Such a trend might not lead to a
decrease in tonnage, because the number of trains could be reduced if larger loads
are allowed. To spot such a trend, the mean axle loads have been analyzed for each
sub-interval of the measured time-frame. This seems to be an appropriate marker,
because it includes both the number of axles as the cumulative tonnage. Plots of
the mean axle loads are displayed in figure C.8. Clearly, variations are minimal and
no trend can be detected whatsoever. Therefore, the composition of axle loads as
measured in this time-frame can be regarded as representative for longer time-frames
as well.
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Figure C.7: Cumulative tonnage as a function of time. The measured time-frame was subdivided
into 50 domains of equal time. Averages are plotted with dashed lines.
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Figure C.8: Mean axle load as a function of time. The measured time-frame was subdivided
into 50 domains of equal time. Averages are plotted with dashed lines.
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D | Proportionality & Reliability

In this chapter some fundamental aspects of fatigue reliability are discussed. The
main goal is to explore the relations between stress ranges, cycle counts and damage
numbers. It is assumed here that the S-N curve can be simplified to a continuous
line with a single slope m on a double-logarithmic scale, in order to allow for a simple
mathematical description. At the end, concepts will be generalized to other S-N
curves.

In addressing fatigue resistance, a key step is to transform loads to a spectrum of
load cycles. Such a spectrum is a set which contains a description of cycles in terms
of magnitudes and, when applicable, mean values. The frequency of occurrence
is not included in this description, as recurring cycles can also be represented by
including them repeatedly. Given a spectrum of load cycles, one can transform this
into an equivalent number of load cycles, where transforming means: calculating the
corresponding magnitude of the equivalent cycles. With this method, a spectrum is
transformed into an equivalent spectrum consisting of constant amplitude cycles, and
a number of repetitions. In the Eurocode approach the number of repetitions is fixed,
and verification is done using an ‘equivalent stress range’. If the cycles obey

Ne ∆σm
e =

n∑
i=1

∆σm
i (D.1)

where
Ne = equivalent number of cycles
∆σe = equivalent stress cycle magnitude
∆σ = stress range as part of the spectrum
m = fatigue exponent, as discussed in chapter 2
n = number of cycles

then the equivalent stress cycles will result in an equal damage number and can
thus be seen as an adequate substitute for the spectrum. The magnitude of these
equivalent cycles can be expressed directly by rewriting equation D.1:

∆σe =
(

n∑
i=1

∆σm
i

Ne

) 1
m

(D.2)

Focusing on the summation in equation D.2, this can be expanded into:
n∑

i=1
∆σm

i = ∆σm
1 + ∆σm

2 + . . . + ∆σm
n (D.3)

Now introducing two multiplication factors, for the stress level (ησ) and the number
of cycles (ηn), this summation can be written in terms of its proportionality to these
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quantities1:
ηn n∑
i=1

(ησ ∆σi)m = (ησ ∆σ1)m + (ησ ∆σ2)m + . . .

+ (ησ ∆σn)m + . . . + (ησ ∆σηn n)m

= ηm
σ

(
∆σm

1 + ∆σm
2 + . . . + ∆σm

n + . . . + ∆σm
ηn n

)
≈ ηn ηm

σ (∆σm
1 + ∆σm

2 + . . . + ∆σm
n )

= ηn ηm
σ

n∑
i=1

∆σm
i (D.4)

This is only valid under the assumption that an increase in the number of cycles does
not affect the intensity of the cycles, which can be assumed valid for small increases or
spectra with little variation. Therefore the approximation-sign was used in the above
derivation. One can imagine that a larger number of cycles with a random nature
inherently increases the chances of a maximum occurring. This effect is neglected
here by assuming that an approximation by repeating the same load model suffices.
This will later be addressed as extrapolation, see appendix G.

Combining equations D.2 and D.4, the proportionalities (symbolized using ∝) of the
equivalent stress range to alterations of either the stresses or the number of cycles,
can be determined (assuming the equivalent number of cycles Ne as fixed):

∆σe =
(

n∑
i=1

∆σm
i
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m
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σ
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i

) 1
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∝ η
1
m
n ησ ∆σe (D.5)

where underlined (•) symbols represent some original values, while ‘normally’ printed
symbols represent the outcome given an alteration of n and ∆σ by their respective
factor η (i.e. n = ηn n and ∆σ = ησ ∆σ). For the damage number an equivalent
proportionality would be:

D ∝ ∆σm
e ≈

(
η

1
m
n ησ ∆σe

)m

= ηn ηm
σ ∆σm

e (D.6)

This shows that there is a large difference between safety factors used for the stress
and for the damage number (which is proportional to the number of cycles), namely
an exponent m. This explains why some codes prescribe very large safety factors (up
to 10 in offshore engineering) compared to the factors used in the Eurocode (which
clearly uses verification in the stress-domain, by using equivalent stresses).

Another interesting finding can be obtained from the above result. Consider that
both the magnitude of stress ranges as the number of cycles is subject to variations or
uncertainties, described by probability distributions. Let these be represented by their
respective multiplication-factors, ηn and ησ. Then, the proportionalities presented
in equations D.5 and D.6 can be used to express equivalent probability distributions

1It is assumed here that the product ηn n is an integer. This leads to a rounding error, which
vanishes for an increasing number of cycles.
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including variations or uncertainties in both, thereby allowing for the variations
in the number of cycles, to be incorporated into a safety factor on the
stress range, alongside a safety factor on the stress range itself. This is
graphically depicted in figure D.1. In the figure, all variations are lumped onto the
stress level, which implies that the corresponding number of equivalent cycles remains
fixed at Ne.

Ne

∆σe

distribution of N

distribution
of ∆σ

equivalent distribution
of ∆σe at fixed Ne

Figure D.1: Equivalent distribution of the equivalent stress with inclusion of uncertainties in
cycle count. Here all spread is lumped in the stress-domain, while fixing the number of equivalent
cycles.

The next point of interest concerns the number of equivalent cycles Ne. For this the
proportionalities are examined once more. The equivalent stress can be determined
using

∆σe =
(

n∑
i=1

∆σm
i

Ne

) 1
m

(D.2)

Therefore the equivalent stress clearly obeys

∆σe ∝
(

1
Ne

) 1
m

(D.7)

which can be represented on logarithmic paper as

log ∆σe ∝ log
(

1
Ne

) 1
m

= 1
m

(log 1 − log Ne) = − 1
m

log Ne (D.8)

This shows that the equivalent stress is not so much a single point in the S-N plane,
but rather a line following a slope of −1/m, connecting all combinations (points) which
result in an equal damage number. This is also true for the reliability corresponding
to this damage, causing these lines to represent a constant reliability.

In case of differently shaped S-N relations, this theory does not hold in its current
mathematical form. However, the conclusions which were drawn are generally valid.
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Conclusions
• In fatigue loading analysis, both the number of cycles as their magnitudes are

important. Therefore this is also true for their uncertainties.

• The uncertainties have been shown to be interchangeable between domains
(stress range and number of cycles), using the concept of an equivalent stress
range. This also proves that verification is possible in both the domains of
intensity and cycle count, both incorporating all uncertainties.

• The relative importance of the uncertainties has been shown for the case of a
continuous and linear S-N curve on double-logarithmic scale. Compared to the
linear impact of the number of cycles on the damage number, variations of the
stress range are amplified by the fatigue exponent. Similar behavior will be
observed for S-N curves of other shapes.

• The probability distribution of the equivalent stress follows the shape of the
S-N curve. Therefore this should be visualized as a field of lines parallel to the
S-N curve, each representing equal reliability (only valid for double-logarithmic
scale).

The theory which has been presented in this chapter, mainly serves to provide insight
in the nature of typical S-N relations, damage number, and its corresponding cycle
count and stress ranges. The actual techniques are not relevant from a practical
points of view, and for the probabilistic analyses other methods will be employed,
which are more suited to a wider range of S-N curves.
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In this chapter the use of influence lines to generate signals is explained and illustrated.
Subsequently, methods for cycle counting from these signals are treated. These oper-
ations correspond to the influence-operator and the rainflow-operator, as introduced
in chapter 4.

E.1 Influence lines
An influence line is a graphical representation of a certain effect at a given position
(shear or axial force, bending moment, rotation, deflection, . . . ) in terms of magnitude,
caused by an action with a varying location. In essence it is a plot of an influence
factor for a varying position of the action along the span of the structure.

Influence lines are used extensively in fatigue design and engineering. Their role is to
aid the transformation from a system of axle distances and loads to a stress history
at the detail of interest. This is achieved by employing the influence line to calculate
the effect of each axle load, at its current distance (by using the corresponding value
of the influence line at this position). The total effect is then determined using the
principle of superposition (assuming linear elastic calculations, as prescribed in the
Eurocode). The entire system of axle loads is then shifted along the span, mimicking
the actual passing of a train. Mathematically, this is expressed as

Ei(x) =
m∑

j=1
ci,j Fj (E.1)

where:
Ei(x) = i’th effect
ci,j = influence factor relating the i’th effects and the j’th action
Fj = j’th action

Because the influence-operator can be seen as a nonlinear transformation (from a
system of axle loads and distances to a signal), it has to be included in the calibration.
It’s importance will be shown by a simple example for a simply supported beam as
displayed in figure E.1. This is done by calculating the signal resulting from the
passing of a single train (reference train 1 from appendix J) for varying spans L.

The different signals plotted in figure E.2 show a clear difference for increasing spans.
The effects have been normalized by division by L because of the proportionality
as given by the influence factors. However, a clear increase in magnitude is visible
for increasing spans. This increase is caused by the summation in equation E.1,
from which it is clear that a larger span will carry more axles resulting in a higher
magnitude in total effects. The load thus acts in a more distributed manner when
the span increases, so one might consider normalizing with 1/L2 .
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Figure E.1: Influence line for the mid-span bending moment MC .

Apart from the aforementioned increase in magnitude, the shape of the signal is also
very different. Smaller spans, in the same order of magnitude as the axle distances,
result in more spikes in the signal, resembling pulses of loading. Because of the large
number of repetitions in loading for small spans, the relative importance of the fatigue
limit state with respect to the strength limit state increases, as is always the case for
loading of a highly repetitive nature. This is caused by the fact that the resistance
required for the strength is proportional to the amplitude of the loading. For larger
spans the number of repetitions at full loading is much smaller: compare passing of
trains to passing of bogies or even individual axles.

E.1.1 Effect of multiple tracks
Now that it is clear what influence lines are and how they are employed in fatigue
analysis, their use is expanded slightly. When calibration is done for a structure with
multiple tracks, it may be clear that the presence of multiple tracks contributes to the
fatigue damage. To incorporate such an effect, an influence line is needed to express
the behavior in the transverse direction (where the influence lines as treated before
are labeled the longitudinal influence lines).

Combination of these influence lines results in an influence field. Especially for
statically indeterminate structures, the determination of such a two-dimensional
influence surface can be quite elaborate. These influence fields can also be generated
using finite element calculations, where the loads are simply applied on each point of
a grid, and the relevant effect is monitored for each application. A plot of the effect
vs. the coordinate of force application yields the influence line.

A main problem that arises however, is the fact that the Eurocode traffic mixes (see
section 2.1.4.2) are supplied without further information regarding application to
multiple tracks. Therefore it is not possible to compare structures with multiple
tracks, without the use of significant assumptions. This has led to the decision
to focus on comparing the load effects for traffic on a single track in this
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Figure E.2: Effect signals for different span lengths. Effects have been normalized, i.e. divided
by the span L.
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thesis. Important to note is, that there is no solution to this lack of specification.
One could not, for instance, let trains pass over tracks at random intervals or times,
as a load model is deterministic by definition. Without knowing in which way the
model is meant to be applied for multiple tracks, which could be anywhere between
no simultaneous passings and all passings coinciding, it can not be applied.

E.1.2 Creating structures
Logically, the influence fields are to be determined for finite element models which
correspond to real structures. A straightforward approach for load application to
FEM-models, is to the nodes directly, although this poses demands on their position
in the mesh. The strategy will be to create the mesh in such a manner that direct
application of loads is possible for each step.

Running the analysis, axles composed of two 0.5 [−] loads are passed over the mesh,
together representing a unit axle load. For each time-step, the effects are recorded.
To create a mesh that complies with the above criterion of direct nodal application,
it is essential to know:

• The distance between the wheel in transverse direction, i.e. the width of the
tracks.

• It was chosen to work with increments in the coordinate instead of time, there-
fore basically replacing time with pseudotime. This requires choosing the length
of increments.

In reality, tracks are often positioned on a ballast bed on the structure. If this is the
case, then some spreading through this medium is generally taken into account. For
this work however, such spread of axle loads through ballast beds is not considered.
The same is true for spread by rails and sleepers, which were also not considered.
Note that this assumption is off far less importance because it concerns a comparison
of loads, instead of a real design.

An example of a simple slab with two tracks is shown in figure E.3. Here, also the
corresponding finite element mesh is given, with node numbering. It is emphasized
again, that even though there are two tracks on the slab in figure E.3, the analyses
will only employ one.

1500mm

2250mm2250mm

1500mm

2250mm 2250mm

1 2 3 4 5 6 7

Figure E.3: Cross-section of a slab with two tracks, with its finite element discretization.

E.1.3 MATLAB and OpenSees implementation
Several MATLAB scripts were written to automate the procedure of mesh-generation
and subsequent analysis for each pseudotime-step. Finite element analyses are done
using OpenSees, which is an open source FEM package developed at the University
of California, Berkeley. Firstly, the script createMesh.m is used to create a FE mesh
from input. The input is in the form of nodal coordinates for each transverse section

126



J. R. Houtenbos

(specified by y and z coordinates), as well as a connectivity table to span elements
between the nodes of each incremental section. This saves one of performing this
cumbersome task manually, and therefore reduces the error rate significantly.

createMesh.m was set up to write text-files with .tcl-extension, which is the default
for OpenSEES. Output consists of:

• table with nodal coordinates → nodalcoords.tcl

• table with element connectivity → connectivity.tcl

• table with constraints → constraints.tcl

• table with sequence of loaded nodes for each time-step → loadsequence.tcl

These files serve as input files for the next step, which is controlled by analysis.m.
The analysis-script loops over all steps, and steers the FEM-package, OpenSees, to
do its analysis. OpenSees was set up to record the forces in the elements to a file
named element.out which is filled with a string of generalized forces per element.
These can then be retrieved and coupled with the original elements using MATLAB
and the script ele_stress_rec.m, which also records the forces for each timestep to
a cell-array Rec_element.

For each step, MATLAB, which is running analysis.m, calls OpenSees using a
.tcl-file which defines what kind of FE analysis is requested: in this case linear
static. The analysis is then performed using the input files, in turn modified by
MATLAB for each step. The overall result is a record of all cross-sectional forces for
each time step.

E.1.4 Creating influence lines
Influence lines can now be obtained using the method described in the foregoing
section. As an example, this is demonstrated for the cross-section shown in figure E.3.
Here, it was chosen to apply boundary conditions corresponding to clamped supports,
along with a span of 10 m. Furthermore, the exact location where the bending
moment is obtained from, is under the track over which the train passes (mid-span).
The resulting influence line is shown in figure E.4. Most analyses were of course
done using a more refined grid. It is noted that the exact location, chosen from the
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Figure E.4: Influence line for the mid-span bending moment for a concentrated load. Cross-
section is taken from figure E.3, combined with a span length of 10 m.

finite set of integration points which are available, is not that important. Of main
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importance is the shape of the influence line, rather than for instance the maximum
bending moment. With reference to chapter 4, it is remarked that differences in
pure scaling of the influence line (in magnitude, that is), are compensated by an
appropriate proportionality factor u. Such a scaling does therefore not change results
of a comparison, as opposed to a design situation, where the absolute magnitudes are
of course of considerable importance.

The actual structural schemes chosen for the calibration procedure, and therefore
the influence lines as well, are presented in chapter 5. Inclusion of all influence
lines was ommitted in this report, in order to save some paper (about 30 pages).
An overview of available influence lines, however, is presented in table E.1. The
definition of structural schemes 1–7 can be found in chapter 5. Anyone interested in
these influence lines is encouraged to contact the author for a copy.

span [m] scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7
1 X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X X X

6 X X X X X X X

7 X X X X X X X

8 X X X X X X X

9 X X X X X X X

10 X X X X X X X

12 X X X X X X X

14 X X X X X X X

16 X X X X X X X

18 X X X X X X X

20 X X X X X X X

22 X X X X X X X

24 X X X X X X X

26 X X X X X

28 X X X X X

30 X X X X X

35 X X X X X

40 X X X X X

45 X X X X X

50 X X X X X

Table E.1: Overview of influence lines.

E.2 Cycle Counting
To obtain the stress-cycles from a stress-signal, a so-called counting method is em-
ployed. Input is a signal, reduced to its extrema (minima and maxima) or turning
points. Several methods are available, i.a.:

• level cross counting;
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• peak counting;

• simple-range counting;

• rainflow counting.

The methods are not investigated into further detail, as several authors recommend the
rainflow cycle algorithm for fatigue analysis, yielding the highest accuracy among the
methods available (Ligaj, 2011; Singh & Ranganath, 2010; Olagnon, 1994). Therefore
it is used in many different industries, among which the automotive, aircraft, energy,
and steel industry (Amzallag, Gerey, Robert, & Bahuaud, 1994). This justifies the
choice for the rainflow cycle counting algorithm for this work, which is also prescribed
in the Eurocode.

E.2.1 Rainflow cycle counting algorithm
The Rainflow cycle counting algorithm, first introduced by Matsuishi and Endo
(1968), is based on an analogy between a stress-history and the flow of water from a
pagoda-roof (Wikipedia, 2015b). Basically, eight steps can be distinguished:

1. The stress history is reduced to its extrema, i.e. peaks and troughs. These are
also known as turning points.

2. The time-history is imagined as a ‘pagoda’1.

3. The time-history is turned 90 degree in the clockwise direction. This means
that the time-axis is now vertical with the starting time at the top.

4. It is imagined that a source of water emerges from each tensile peak. This water
then ‘drips down the pagoda’.

5. The number of half-cycles are counted by considering that the flow is terminated
when:

(a) the end of the time-history is reached, or

(b) the flow merges with a flow which has started at an earlier tensile peak, or

(c) a trough of greater magnitude is encountered.

6. Step 5 is repeated for compressive troughs.

7. Each half-cycle gets assigned a magnitude, which is equal to the difference
between its start and termination.

8. Half-cycles are paired up with half-cycles of equal amplitude to form complete
cycles (this step is optional).

The steps listed above form the algorithm, resulting in a spectrum of cycles. Such a
spectrum contains all the information necessary for the determination of the damage
number according to the methodology (assumptions) followed in this report. The
order of cycles is not important because of the linear damage accumulation rule of
Miner, while the duration of loading is neglected in the Eurocode’s S-N curves.

E.2.2 The algorithm in action
To provide some insight into the rainflow cycle counting algorithm, an example is
presented in this section. Starting points is the first part of a Eurocode reference
train passing over a 5 meter long beam. For this the signal corresponding to the mid

1Pagoda: traditional Eastern-Asian tower with characteristic stepped roof.
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span bending moment is determined and reduced to its turning points. Duplicate
points were removed (two or more consecutive points in time with zero difference).

Using the algorithm described above, the signal is decomposed into cycles. The
graphical representation of this process is displayed in figure E.5. Each half-cycle
is visualized with a black line (original signal is drawn in red), ending with a short
perpendicular dash. To finalize the process, the cycles are counted and combined to
produce the spectrum, given in table E.2.

E.2.3 MATLAB implementation
The algorithm has been implemented in MATLAB by Adam Nieslony in 2009, writ-
ten in C and compiled accordingly. This has resulted in a very fast algorithm for
rainflow cycle counting. The results are verified according to the example presented
in section E.2.2, which resulted in perfect agreement.

Input for the algorithm consists of a (time) signal, in the form of a 1 × n vector.
Optionally, the time can be included, but this is not required for this work and
therefore omitted. The output is a rainflow table comparable to table E.2, without
the cycle’s number, start value, and stop value. Only the essential information is thus
kept, i.e. the amplitude (= half the range), the mean, and the count. The output is
a 3 × m matrix of counted rainflow cycles.

E.3 Conclusions
• The influence field/line is of critical importance to the fatigue damage. In

comparing different traffic for damage, it is therefore unavoidable to consider
different influence lines, and thus actually structures.

• It was decided to compare structures solely based on the passage of trains
over a single track. Reason for this, is that the Eurocode traffic mixes are
given without guidelines on appliance to multiple tracks (e.g. simultaneous or
subsequent passages).

• It was concluded that, for the purpose of comparing effects from traffic, only
the shape of the influence line is of importance. The magnitude, or scale, is
thus not of importance at all. Note that this is of course not true for an actual
fatigue verification.

• To convert signals to stress ranges or cycles, the rainlow cycle counting method
will be used. An example, which was used to verify the implementation of the
algorithm, was presented.
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Figure E.5: Effect signals for different span lengths.

# start end amplitude mean count
1 + 6 0 411 205.5 205.5 1

2 410 359 25.5 384.5 0.5
3 + 4 365 369 2 367 1

5 359 410 26 386 0.5
7 + 12 0 410 205 205 1
8 + 11 410 362 24 386 1
9 + 10 362 370 4 366 1
13 + 14 239 242 1.5 240.5 1
15 + 16 116 182 33 149 1

Table E.2: Result of Rainflow algorithm applied to the signal from figure E.5. Start, end,
amplitude, and mean values are all in kNm.
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Using the measured traffic, as discussed in appendix 2, it is interesting to perform
some preliminary analyses. In this chapter, two question are addressed:

1. What is the relative importance of cycles with respect to the damage number?

2. What is the relative importance of trains with respect to the damage number?

It is thus investigated whether fatigue damage is mainly accumulated through many
repetitions (cycles), or mainly through a few large loads (say 1 % of cycles). This is,
among others, interesting in dealing with the extrapolation of measured load histories
(treated in section 5.2.3 and appendix G).

This analysis is based on a reference case, which was chosen for this purpose:

• All data is processed in a fully deterministic manner, thus without taking
account of e.g. model, material, and measurement uncertainties.

• The traffic from detector 111 (Tricht) will be used because of its versatility
in axle loads. This will be compared to a ‘gentler’ traffic record: detector 11
(Voorschoten).

• The influence line used in this example is based on a doubly clamped slab,
span length 10 m (see also chapter E). The effect of interest is the mid-span
bending moment in longitudinal direction. The width of the slab is sufficient
to accommodate two tracks, but one track of traffic is applied.

• The comparison is done for concrete in compression, using the resistance model
presented in the Dutch national annex of the Eurocode. The assumed charac-
teristic concrete strength is 45 N/mm2, the ratio of permanent load over design
strength was set to 0.3.

• The proportionality-factor u (see chapter 4) is determined based on the Eu-
rocode standard traffic mix (EC1), thereby yielding a design according to the
Eurocode.

Using the above assumptions, the analyses in this chapter were performed. Through-
out the report, these assumptions are denoted as forming the ‘reference case’.

F.1 Relative importance of cycles
For both traffic records (detector 11 and 111), the damage-increments are determined.
Here, a damage-increment is defined as the damage resulting from either a half or a
full cycle, as contained in the rainflow matrix. From this, the damage is plotted as a
function of the cumulative number of cycles, see figure F.1.

The figure is constructed as follows: first of all, the damage increments were sorted in
magnitude, largest first. Starting from the total damage number done by the detector
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Figure F.1: Importance of cycles, characterized by their relative fraction of the damage number.
The gap in the graphs near a relative cumulative damage of 1 is caused by the fact that a
remainder of damage which is equal to 1, corresponds to zero cycles. This zero cannot be
represented on the logarithmic scale. Cycles are sorted in descending order, based on their
individual damage number.

traffic, the cumulative sum of damage increments from the sorted set is determined,
starting from zero damage increments. These are substracted from the total damage
number, thus for zero cycles, the remainder of damage number is 1, for a single cycle,
the remaining is the total damage number minus the largest increment, and so on.
Finally, both axes are normalized.

This figure provides a lot of insight into the real accumulation of fatigue damage.
Clearly, one percent of the cycles does practically all damage. It was expected that
the traffic recorded by detector 111 would do its damage mainly by a few aggressive
events, as there is large variation in the axle loads. Detector 11, with its gentler axle
loads, was expected to have a larger parts of the cycles contribute to the damage
number. Apparently, this is not the case. The question remains, what causes this
behavior. The following theory is proposed: the more severe loading events occur
less frequently at detector 11, while doing practically all damage. Therefore, their
relative importance is larger than at detector 111 where these loads occur more
frequently.

If this procedure is repeated for reinforcement steel, where it is assumed that it is
welded (fatigue exponents 3 and 5), a different picture emerges. Now, 90 % of damage
is done by approximately 8 % (detector 111) to 15 % (detector 11) of cycles. In
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practice however, welded reinforcement is used seldom. With ‘regular’ reinforcement
steel, with fatigue exponents 5 and 9, the results resemble those found for concrete to
a greater degree (for detector 111, 1 % of cycles is responsible for 50 % of the damage).

F.2 Relative importance of trains
In the previous section, it has been shown that for the reference case, 1 % of the
cycles was practically responsible for the entire damage number. In this section, the
goal is to obtain insight into the exact traffic which does this damage. For this, the
procedure to calculate damage numbers was adjusted, in order to process one train
at a time. Subsequently, the trains can be grouped according to type to see whether
a specific type of traffic does excessive damage.

Important is that, even if it is known that a small fraction of all cycles does all damage,
this does not automatically imply anything about the number of trains that cause
them. If each train results in 100 cycles, and one of these is of far larger amplitude
than the others, the result would still be as obtained in the previous chapter.

The decomposition of damage into fractions, caused by individual trains, can be tricky.
Attention should be paid to the cycle counting algorithm (rainflow cycle counting).
The method of calculating damage per train is implemented by looping over all trains
in a traffic record, and for each determining the signal using the relevant influence line
and parameters, counting the cycles, from which the damage number is determined.
Now, this is only valid for signals that are strictly positive or negative with inclusion
of zero (and axle loads which are all positive, which is an assumption that it satisfied
with greater ease). Otherwise, negative peaks (troughs) caused by some trains, may
form large cycles with peaks in other train’s signals (characteristic of rainflow cycle
counting). Then, the damage calculation over parts of the signal is no longer valid,
because it would neglect these larger cycles (which are the largest cycles overall, so
the error would be significant).

In case all values of the influence line share the same sign, this problem does not
occur. Then each peak is matched against the points of zero effect in the signal, which
is present in between trains. An exception can be made for concrete in compression,
where tensile peaks are set equal to zero anyway because cracked concrete is assumed.

In figure F.2 the results of this analysis (damage per train) are shown for the traffic
from detector 11 and detector 111. It is clear that not only about 1 % of the cycles
is responsible for practically the entire damage number, but the same is shown to be
true on the scale of train passages. In other words, 1 % of trains does practically all
damage.

Damage fractions corresponding to the most damaging 1, 10, and 100 trains are
summarized in table F.1. Clearly, results correspond to those in figure F.2. For
detector 11, the 100 most aggressive trains are even responsible for 70 % of the
damage number, while a milder 10 % results with detector 111.

number of trains damage fraction
detector 111 detector 11

1 0.0048 0.027
10 0.026 0.172
100 0.09 0.695

Table F.1: Damage fraction caused by most aggressive number of trains.
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Figure F.2: Relative remainder of the damage number as function of the cumulative number of
trains / cycles. Train and cycles are sorted in descending order, based on their individual damage
number.

Next, it is of interest which trains cause the most damage. Most frequently (72 out
of first 100 at detector 111, 62 out of first 100 at detector 11), the most aggressive
trains were identified as (LH(i).type corresponding to the entry as explained in
appendix C):

LH(i).type =
’EL BR189’
’Unknown Vehicle’

Furthermore, occurrences of

LH(i).type =
’EL Lok 1600/1700/1800’
’Unknown Vehicle’

LH(i).type =
’DL G1206’
’Unknown Vehicle’

LH(i).type =
’DL JT42CWR (Class 66)’
’Unknown Vehicle’
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were frequently observed in the top of most aggressive trains. In figure F.3 some
examples of the locomotives of these most aggressive trains are shown.

The ‘Class 66’-locomotives were exclusively found in the top 100 records of detector
111 (not in detector 11). Note that in structure LH, only the unique types found in
each train are present. This means that the type-field including duplicate train types
would for instance look like:

LH(i).type =
’EL BR189’
’EL BR189’
’EL BR189’
’EL BR189’
’EL BR189’
’EL BR189’
’EL BR189’
’EL BR189’
’Unknown Vehicle’
’Unknown Vehicle’
...
...
’Unknown Vehicle’

(a) (b)

(c) (d)

Figure F.3: Locomotives which were frequently identified as part of the most damaging trains
at detector 111: (a) BR 189 (image by Hemkes, 2014); (b) JT42CWR Class 66 (image by
Van Beem, 2005); (c) G 1206 (image by Bakker, 2009); (d) Lok 1600/1700/1800 (image by
Bakker, 2011)
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’Unknown Vehicle’

where each ’Unknown Vechicle’ represents a freigt car’s axle. The eight entries of
’EL BR189’ represent the axles of two locomotives. This information was however
not included in LH to reduce the data size.

Upon further inspection, the types identified above are lengthy freight trains with
double locomotives. The most damaging train at detector 11 was found to be 202 m
in length (between first and last axle). This train consisted of 64 axles, with an
average load of 184 kN. For detector 111 the most damaging train had a length of
575 m, 224 axles, and an average axle load of 216 kN.

Further analysis concentrated on the occurrence of several types of trains, and their
damage increments. To this extent, all LH(i).type entries were filtered according to
containing a predefined string. The output which was generated, consisted of:

• the number of entries which contain the pre-defined string, i.e. the pre-defined
vehicle.

• the relative number of occurrences defined as the number of trains with the
entry, divided by the number of trains.

• the relative damage number done by trains for which the type-field contains
this string.

• the first occurrence in a list of trains, where the list was sorted by damage
number increment per train in descending order (sorted on aggressiveness).

Results for detector 111 are summarized in table F.2. It is clear that most of the
damage (> 99 %) is caused by passages of trains containing the entry ’Unknown
Vehicle’, which is assumed to be freight transport. Another interesting conclusion
can be drawn. Regarding the plans of increased passenger transport1, where a number
of intercity-trains (’VIRM’) are added to the train table, it can be concluded that,
in this analysis, these trains cause negligible damage compared to the transporta-
tion of freight. Overall, the damage caused by passenger transportation is
concluded to be insignificant for this track.

The analyses presented in this chapter show that the a small fraction of the traffic
is indeed responsible for the main part of the damage number. It was already clear
from section F.1 that this was true for a small fraction of cycles, however, now these
most damaging cycles have been linked to specific trains. It can be concluded that
practically the entire damage number is the result of (heavy) freight trains passing
(’Unknown Vehicle’).

F.3 Conclusions
• The relative importance of cycles, in terms of fatigue damage to concrete in

compression, was assessed for real traffic. It was concluded that, for a reference
case, about 1 % of cycles is practically responsible for the entire damage number.
Further investigation should point out whether this is also true for other cases.
If so, such a finding may be used to justify proportional charges for users
operating on the tracks, thereby especially targeting these overloads.

• The same experiment was performed for individual trains, as opposed to cycles.
Using this, it has been shown that the same conclusion can be drawn for the
relative importance of trains with respect to fatigue damage.

1Program known as ‘PHS’, or ‘Programma Hoogfrequent Spoorvervoer’.
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string number fraction rel. damage 1st occurrence
’Unknown Vehicle’ 15530 0.0505 0.991 1
’BR189’ 4155 0.0135 0.851 1
’JT42CWR’ 763 0.0025 0.053 8
’G1206’ 2245 0.0073 0.023 62
’Lok 1600/1700/1800’ 4831 0.0157 0.044 68
’EL BR186 (Traxx)’ 2372 0.0078 0.017 339
’G2000’ 155 0.0001 0.012 17
’BR203’ 1002 0.0033 0.002 22
’Lok 6400’ 34 0.0001 0.000 2908
’VIRM’ 93377 0.3034 0.002 6652
’EMU DDAR’ 496 0.0016 0.000 8523
’EMU Mat 64’ 726 0.0024 0.000 9035
’EMU ICM’ 1213 0.0004 0.000 9942
’EMU SLT’ 107065 0.3479 0.000 22565
’EMU ICE’ 987 0.0032 0.000 34601
’Thalys’ 20 0.0000 0.000 64255
’EMU SGM’ 762 0.0025 0.000 109949

Table F.2: Data analysis using the type-field of detector 111. Note that damage number
fractions do not add up to unity because of the presence of multiple train types (strings) in one
train, e.g. a ‘BR189’ locomotive with ‘Unknown Vehicle’ freight cars.

• It has been investigated which type of traffic is mainly responsible for the
damage. Results show that freight traffic is of main importance. Furthermore,
the transportation of passengers was shown not to be significant in terms of its
contribution to the damage number.
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In this work, the term ‘extrapolation’ is used for the activity in which one tries
to gain insight into loads which can be expected in the future, based on measured
traffic loads. Extrapolation should provide an answer to the question: “Which loads
can be expected in the future, and should thus be incorporated into the design of
structures?”. In chapter 3, it was stated that railway bridges are designed for 100
years. Therefore, it is important to gain insight into the loads which can be expected
during such a 100 year period. Clearly, these may differ from those loads which were
observed. Also, the interest is not solely on one single extrapolated set of loads or
load effects, but rather on some description of all possible sets of loads or load effects
which may occur, each with a probability of occurrence.

A general introduction to extrapolation of traffic histories was given in chapter 5,
with reference to this chapter. As stated there, four methods were identified:

1. Extrapolation of traffic, i.e. extrapolation ‘on the level of traffic’ as opposed to
the other methods.

2. Time-extrapolation using extreme value theory, in this case the ‘peak over
threshold’ method.

3. Spectrum fitting, both uni- and bivariate.

4. Extrapolation of the damage number (increments).

In this chapter each of these methods will be discussed first, after which a choice will
be presented with justification. A selection of methods is then compared so that an
extrapolation method can be picked.

G.1 Extrapolation of traffic
The first method for extrapolation which is discussed, is the extrapolation of traffic,
thus the actual loads. It is possible to analyze the traffic and to generate distributions
for its various characteristics, including correlation matrices. These can then be used
to simulate future traffic, allowing for more extreme loads than those that occurred
during the measured period. Basically, the relevant characteristics would be:

• axle loads;

• axle distances;

• velocities.

Apart from distributions for the above characteristics, also information regarding
their correlation is required. Problems might be in the fact that correlation is not
necessarily linear, which further complicates the analysis. Then some kind of model
is needed to make sure that when new traffic is simulated, the vehicles are actually
sensible trains.
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One can imagine that it is quite difficult to come to sensible vehicles through sampling
from the above, as there are only specific combinations that are observed in reality.
Bounding some vehicle creation model to these combinations is expected to be a
tedious task. Considering the result: because of the difficulty in modeling sensible
traffic, the vast set of rules which lie at the basis of such a model will limit the output
to ‘something like the measured history’. Viewed skeptically: it is anywhere from
very cumbersome to impossible to get better output from such a model, than the
traffic that was recorded, especially if the time over which measurements are done is
large, as is the case for this thesis. Fortunately, other methods are available which
are believed to produce better results.

Also note that, if the damage is mainly accumulated through few cycles, that this is
equivalent to stating that fatigue damage is a result of the exceptions in traffic. In
a model for random traffic generation, bound by the need for sensible traffic, it is
hard to include such extremely infrequent loading events. In other words, extremely
infrequent events clearly are exceptional, and therefore not necessarily well represented
by the observed traffic.

G.2 Time-extrapolation using EVT
Time extrapolation using extreme value theory (EVT) works in the time-domain, i.e.
one step further (after appliance of the influence-operator, see chapter 4) in the fatigue
assessment than describing the traffic using a statistical method. First the measured
traffic is used to obtain a time-signal for an effect under consideration. As described by
Johannesson (2006, 3), one could then focus on the highest peaks (and lowest valleys,
analogously), and their distribution. In the cited work, an exponential distribution
function is employed to approximate the peaks over a certain threshold-value (hence
the name: Peak over Threshold or PoT).

This technique is quite promising for the extrapolation of time series, as it results
in an actual signal instead of a set of cycle’s ranges (as with fitting a distribution
function over stress ranges, described in the coming section). In this way, cycles in
the extrapolated signal are realistic, and include information required to determine
their mean values, essential for the fatigue verification of concrete.

The threshold plays a central role in the peak-over-threshold method (from now on:
PoT). It is this threshold, above which all peaks (analogously, this is valid for valleys
below a threshold) are used in the inference-step, i.e. the ‘function fitting’. Note that
below the threshold, the peaks remain unaltered by this method of extrapolation. The
signal itself is repeated to the desired length (hence the term ‘time-extrapolation’),
where only peaks surpassing the threshold are replaced by realizations of the fitted
function.

Referring to the beginning of this chapter, where it was mentioned that the impor-
tance and the uncertainties are essential, the following can be noted. Applying
the PoT-method for extrapolation, one assumes that the main body of the data is
certain and/or unimportant enough to be assumed as is, and thus not meeting the
demand for requiring extrapolation. The tail of the distribution however, is both
important (i.e. causes the most damage per cycle) and quite uncertain because of its
limited appearance in the measurements. For the tails both conditions are thus met.

In his article, Johannesson proposed to use an exponential distribution to model the
exceedances. Other sources claim successful application of the generalized Pareto
distribution (GPD), which is actually mentioned in most literature on the peak-over-
threshold method. Actually, the GPD possesses some interesting characteristics which
make it “a natural choice for modeling peaks over a threshold” (Ghosh & Resnick,
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2010). Namely, for a large number of distributions, the distribution of excesses is
asymptotically equivalent to the GPD with some parameters. This means that, for
excesses over a threshold, the tails of these distributions actually converge to the
GPD in an asymptotic sense, i.e. for increasing threshold values.

Some information on the GPD: the cumulative distribution function is given in
equation G.1 (Ghosh & Resnick, 2010):

Gξ,β(x) =
{

1 − (1 + ξ x /β)−1/ξ if ξ 6= 0
1 − exp (−x/β) if ξ = 0

(G.1)

with conditions on the distribution parameters (ξ and β)

β > 0, x ≥ 0, when ξ ≥ 0
0 ≤ x ≤ −β/ξ, when ξ < 0

For ξ = 0, the GPD is equal to the exponential distribution. Thereby, the link
with Johannesson and Thomas, who use an exponential distribution, becomes clear.
The GPD is fitted on the exceedances over a certain threshold (more on this level
will follow). After choosing this threshold value, denoted with r, the distribution of
excesses over this level is defined as (Ghosh & Resnick, 2010):

Fr(x) = P [X − r ≤ x|X > r] (G.2)

and analogously for valleys under a (different) threshold. The threshold is difficult
to determine, and not uniquely defined as ‘the right value’. Actually, the way this
is frequently done, is by varying the threshold level, fitting a GPD to the excesses,
and observing the parameter estimates for the distribution corresponding to each
threshold-level. Then one searches for regions of r which result in stable parameter
estimates.

Several authors state that the choice of a threshold can be difficult, and problematic
in the sense that results depend heavily on it (Simiu & Heckert, 1996; Bensalah,
2000; Pandey, Van Gelder, & Vrijling, 2001). Part of the problem lies in the duality
of the threshold choice: it should be large enough to satisfy the conditions which
permit its application, while at the same time leaving sufficient observations for the
estimation. Inclusion of a larger number of observations does not necessarily improve
the accuracy:

“The choice of the threshold is subject to a trade-off between variance and
bias. By increasing the number of observations for the series of maxima (a
lower threshold), some observations from the centre of the distributions are
introduced in the series, and the index of tail is more precise (less variance)
but biased. On the other hand, choosing a high threshold reduces the bias
but makes the estimator more volatile (fewer observations).” — Bensalah,
2000

One way to obtain a suitable threshold, is by examining the mean excess function.
In case of an independent and identically distributed sample X1, X2, . . . , Xn, the
estimator for the mean excess function is defined as (Ghosh & Resnick, 2010):

M̂e(r) =
∑n

i=1(Xi − r) I[Xi>r]∑n
i=1 I[Xi>r]

(G.3)

Ghosh and Resnick continue by stating that for a random variable which follows a
generalized Pareto distribution, the expected value is finite only if ξ < 1. If this
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condition is satisfied, the mean excess function corresponding to this distribution is

Me(r) = β

1 − ξ
+ ξ

1 − ξ
r (G.4)

and therefore linear in r. One can use this property of the GPD to find regions of
stability from parameter estimations for different thresholds as was also stated by
Levine (2009, 17). Basically, this is done by determining the mean excess estimator
for various thresholds. Using the knowledge that it should be linear for the GPD,
a suitable threshold is chosen. This linearity of the mean excess function was also
noted by Bensalah (2000), who proposes a two step procedure:

1. The threshold is chosen from a stable region (i.e. approximately linear) of the
mean excess graph.

2. The GPD parameters β and ξ, given the chosen threshold, are estimated using
the maximum likelihood procedure.

Depending on the importance of the peaks for the determination of damage, this
technique can be employed. If the importance of the medium-range cycles is dominant,
then for the determination of the damage number, the high-range cycles may be of
little importance and it would be unnecessary to extrapolate those. This is a drawback
of the peak over threshold method, as it only considers the peaks. Medium-range
cycles are thus not extrapolated, even if there is little data which implies the need
for extrapolation due to uncertainty.

G.3 Spectrum fitting
With this technique, a probability density function is fitted over a spectrum of cycles.
Multiple techniques are possible, here the two main ideas will be discussed: fitting to
ranges and fitting to rainflow matrices.

G.3.1 Density function for ranges
The concept of range fitting is understood quite easily. Given a signal, the cycle’s
ranges are extracted and plotted in a histogram. Now, this histogram can be used
as an estimate for the probability density function of cycle’s ranges. This histogram
can be used as the basis for a probability density function, for which multi-modal
Weibull distributions are frequently employed (Sutherland & Veers, 1995; Nagode
& Fajdiga, 1998; Tovo, 2001; Buar, Nagode, & Fajdiga, 2004). The choice for a
parametric distribution function has the advantage that it automatically includes an
upper tail. In the cited studies, a number of 3-parameter Weibull distributions are
used, with pdf (Nagode & Fajdiga, 1998)

fX(x) =
m∑

l=1
wl

βl

θl

(
βl

θl

)β−1
exp

(
−
(

x

θl

)βl
)

(G.5)

where m is the number of Weibull distributions (each with distribution parameters
βl and θl). These are said to be very versatile and therefore suited for fitting a wide
range of spectra. By fitting such a distribution, it is assumed that the cycles may
come from a broader spectrum, than the spectrum which was measured. The fitted
pdf can then be used to describe longterm loading, including variations.

Considering this method for concrete in fatigue, information is missing for an adequate
assessment. Apart from the range information, the mean of cycles plays a crucial role
in the current fatigue damage model. Therefore it is insufficient to generate only a
set of (extrapolated) cycle ranges.
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G.3.2 Rainflow matrix density
An alternative method which allows for this sort of extrapolation, is the extrapolation
of rainflow matrices as described by, among others, Socie and Pompetzki (2004). A
‘rainflow matrix’ is a bivariate histogram which shows both the cycle means and
amplitudes, each along their own axis. In some cases this matrix is presented in a
to–from format, which basically contains the same information. On such a ‘histogram-
grid’, one could perform similar techniques as with fitting to the cycle ranges. One
major obstacle, however, is the availability of density functions with multiple variables
(mean and amplitude). Given the irregular shapes of most rainflow matrices, no
sensible parametric density function will be able to produce a fit of any quality.

There is another technique available for nonparametric fitting, known as kernel density
estimation, which can produce better results. An excellent and intuitive explanation
of kernel density estimation is given by Dekking, Kraaikamp, Lopuhaä, and Meester
(2005). Consider a number of measured values, forming a data-set. For now the
univariate case will do. Now, put a ‘pile of sand’ around each of the measured values.
Where multiple measurements are close to each other, the sand will pile up. The
resulting plot will be smoother than a histogram.

The kernel is a function which is used to describe the shape of individual piles,
generally defined on the interval [−1, 1]. This shape can be mapped to a certain width,
as defined by the bandwidth or smoothing parameter. The kernel density estimate is
then obtained from summation of each kernel and subsequent normalization to ensure
that the density function integrates to unity over < −∞, ∞ >, generally dividing by
the number of observations.

For the bivariate case, this technique is applied in two dimensions. The piles of sand
are 3-dimensional and a landscape is formed. In this way, bivariate density functions
can be fitted to e.g. measurements using the technique of kernel density estimation.

Socie and Pompetzki (2004) proposed an approach for the extrapolation of rainflow
matrices which is fully based on kernel density estimation. However, contrary to
standard kernel density estimation with a fixed bandwidth, they argue that the
bandwidth should be based on the local variability. Basically, this is measured by
the number of values which are near a point. If, for instance, one outlying point is
considered, significant variability can be expected. This translates to a wide kernel
for this specific point. Analogously, for points where more data is available, the
variations are expected to be less, or actually: better represented by the available
data. This method is known as kernel density estimation with adaptive bandwidth.

The procedure will be explained next (based on Socie and Pompetzki, 2004). Overall,
the kernel density estimate is obtained by summation of all kernels which are placed
centrally on measured points xi and yi. In the case of a rainflow matrix, xi and yi

represent a cycle’s amplitude and mean. Note that the kernel is scaled using two
parameters: h depends on the variability of the entire data-set, while λi corresponds
to the local variation as mentioned above. The result is divided by the number of
points in order to normalize the density function, which reads:

fX,Y (x, y) = 1
n

n∑
i=1

[
1

(h λi)2 K

(
x − xi

h λi

y − yi

h λi

)]
(G.6)

where
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fX,Y (x, y) = bivariate kernel density estimate, i.e. the resulting bivariate pdf
K(x, y) = bivariate kernel function
xi, yi = coordinates of i’th data-point, i.e. the amplitude and mean of cycle i

n = number of data-points used for the estimate
h = bandwidth-parameter, depends on variability of entire data-set
λi = bandwidth-parameter which depends of the local variability of

measurement i

It is proposed to use the bivariate Epanechnikov-kernel1, i.e. truncated quadratic
kernel, described by

K(x, y) = 9
16(1 − x2)(1 − y2) if x2 < 1 and y2 < 1 (G.7)

K(x, y) = 0 otherwise (G.8)

The method of kernel density estimation is a two-step process. First, using one
overall value for λ, a first estimate of the density is determined. Then, using the
local densities obtained in the first step, the final density estimation is performed.
For both steps, h is determined as

h = 2.4 σ n− 1
6 (G.9)

where σ is the standard deviation of the data in the rainflow matrix. From this,
the first kernel density estimate is constructed. Subsequently, this density is used to
estimate the adaptive bandwidth λi for each point in the histogram using2:

λi =

√
(
∏n

i=1 f(Xi, Yi))
1
n

f(Xi, Yi)
(G.10)

With the λi’s based on the first run, a second run is performed. The result is a density
estimate for the cycles’s amplitudes and mean values, similar to a pdf expressing
the density for a single variable, only now expressing the density in terms of two
variables.

To create a random spectrum, the desired number of cycles are drawn from the
extrapolated joint probability density function in a random manner. This produces a
unique spectrum (thus, a unique rainflow matrix) each time it is done, while allowing
slightly different cycles than measured. Basically, the ‘extrapolated rainflow matrix’
is used as the parent distribution from which the measured sample could have been
a realization.

Using this joint pdf, load sequences for 100 years can be generated, or actually for an
arbitrary design life. If the variables would be independent, drawing would be easy
as the univariate case. However, the variables are dependent, which will be directly
clear considering the example later in this chapter. Because of this dependence, one
drawn value for the mean, for instance, influences the corresponding pdf for the
amplitude. In other words: for each randomly drawn mean value, there exists a pdf
for corresponding amplitudes. Analogously, this is true for the reverse. Therefore,

1In Socie and Pompetzki (2004) a normalizing constant of 0.785 was used. Integration of the
kernel over the ubounded surface, however, yields a constant of 9/16, which was also found in other
literature. Therefore, this value is used in this work.

2Again, Socie and Pompetzki (2004) propose a different formula (although with significant
similarity), which yielded ridiculous results. This led to the conclusion that this must be a mistake.
Other sources propose the formula based on the geometric mean which is printed here.

146



J. R. Houtenbos

drawing randomly from a joint pdf is quite a cumbersome process. Starting from the
joint cdf:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
x∫

−∞

y∫
−∞

fX,Y (x, y) dy dx (G.11)

This cdf can be determined by integration of the joint pdf, i.e. the kernel density
estimate. The way to draw random samples from the joint pdf, is by first drawing a
sample for one of the stochastic variables from the marginal pdf, defined as (expressed
in terms of X and Y , which where used here to denote the cycle’s mean and amplitude,
respectively):

fX(x) =
∞∫

−∞

fX,Y (x, y) dy (G.12)

The marginal pdf of X simply disregards all dependence of X on Y . Integration of
this marginal distribution over x results in the marginal cdf, which is used for drawing
the sample for X:

FX(x) =
x∫

−∞

fX(x) dx (G.13)

Next, it is required to determine the conditional cdf for Y , given the value for X
which was just sampled. The conditional pdf is defined as

fY (y|X = x) = fX,Y (x, y)
fX(x) (G.14)

and can be interpreted as ‘slicing’ the joint pdf at the previously drawn X sample.
The conditional cdf for Y is determined by integration of equation G.14:

FY (y|X = x) =
y∫

−∞

fY (y|X = x) dy (G.15)

and it is used for drawing a sample for Y , which pairs with the previously drawn X.
With the equations presented here, it is possible to draw random samples (cycles) that
obey the bivariate kernel density estimate. This means that a full random spectrum
(equivalently: rainflow matrix) of arbitrary length can be generated from a given
spectrum determined from measured loads.

G.4 Extrapolation of damage numbers
The approach presented here is based on a suggestion by Fitzwater (2004). The
S-N relations are very sensitive to changes in stress range. Using an extrapolation
method for these stress ranges (described as ‘spectrum fitting’), one endeavors to
obtain the right tail of extrema which lie outside of the measured data. Such a process
is sensitive to the measurement’s maxima, small errors in distribution fitting (which
is never exact) can thus be amplified by the S-N relations.

To omit this sensitive step, it is argued that it might be more appropriate to ex-
trapolate in the domain of damage numbers. Basically this would be done by first
determining the damage increment per (half) cycle, and subsequently fitting a prob-
ability distribution function to either the resulting spectrum of damage increments,
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or only its upper tail. Then, instead of drawing cycles in a random manner, the
actual ‘damage increment per cycle’ is drawn directly. Summation then yields the
damage number. The end-result is expected to be less sensitive to the upper tail
of the fitted distribution, because the inevitable inaccuracies which will always be
present in an extrapolation of this kind, are not magnified by the S-N relations. The
main drawback of this method is that it requires pdf fitting to (at least the tail of)
the distribution of damage increments, which can, for the reason mentioned above,
be far from smooth and thus hard to fit. Taking this into consideration, the same
errors are probably made using both approaches (extrapolation of stress ranges vs.
extrapolation of damage increment per load cycle). Therefore it was decided not to
take this method into further consideration.

G.5 Comparison of selected methods
In appendix F, it was concluded that practically the entire damage number is the
result of extreme cycles, i.e. the top 1 %. This forms the basis for the choice of
the extrapolation strategy. Two of the mentioned methods, i.e. both the spectrum
fitting methods (density function for stress ranges and rainflow matrix density), were
proposed to include variations in all the cycles as opposed to focusing on the extreme
events. Now that is has become clear that practically all damage is done by these
extremes, and under the assumption that these extremes coincide with the peaks in
the signal, the lower events are of less importance. Therefore, it has been shown
that extrapolation of these lower, more frequent, events is not important for the
distribution of the damage number. One method remains: time-extrapolation using
peak-over-threshold.

Following the logic as laid out in the foregoing paragraph, only the peak-over-threshold
approach has to be applied. To verify this theory, a comparison of the PoT to another
technique was deemed appropriate, because of the unusualness of such methods. The
proposed verification technique is spectrum fitting of the rainflow matrix using kernel
density estimation, which incorporates variations in the entire spectrum of cycles, as
opposed to the PoT only extrapolating the fairly infrequent events.

The two methods, peak-over-threshold and rainflow matrix kernel density estimation,
will be demonstrated in this section. Both have been implemented in MATLAB
for this thesis3, and were applied to extrapolate the signal which was obtained in
the example of section F.1. The signal corresponds to the measured time frame
of circa 4 years, and it is to be extrapolated to a design life of 100 years. This
section is concluded with a comparison of the methods. Only the magnitudes are
extrapolated, i.e. the number of cycles corresponding to the design life is taken as
constant, according to the extrapolation factor of 25 ( 100

4 ).

G.5.1 Demonstration of PoT
In this section the peak-over-threshold method is demonstrated using the traffic from
detector 111 and the reference structure. This method uses the signal for the general-
ized force of interest, and alters this directly. Part of the signal (chosen randomly) is
plotted in figure G.1. The label of the horizontal axis denotes ‘pseudo-time’, caused
by the fact that time was not considered in creating this signal. Furthermore, the
signal is passed through an algorithm to extract its turning points, so the horizontal
axle’s scale is not constant (non-turning points have been removed).

3Most computations were done using an Intel® Core™i7-4610M @ 3 GHz (dual core, 4 threads)
with 16 GB of DDR3 memory. Others using an Intel® Core™2 Duo E8400 @ 3.6 GHz (dual core, 2
threads) with 4 GB of DDR2 memory.
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Figure G.1: Part of the bending moment signal for the passing of detector 111 traffic over the
reference structure introduced in section F.1. Here, 2500 turning points are displayed, from a
total of 11763588.

As described in section G.2, a generalized Pareto distribution is fitted to the peaks
over a threshold. It is noted that peaks are defined as the maximum value between
two upcrossings4 of the threshold. Obtaining the threshold is the most difficult part
of this technique. For this, it was chosen to vary the threshold, r, from 75 to the
maximum of the signal, ±97. For each threshold a GPD is fitted, with parameter
estimates ξ̂ and β̂. Also, the mean excess estimator is determined (equation G.3).
The parameters for each plot are displayed in figure G.2.
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Figure G.2: GPD-parameter estimates for varying threshold-values.

According to theory, the threshold should be chosen in either a stable region of the
mean excess function (Bensalah, 2000), or a region which returns stable parameter
estimates (Levine, 2009, 17). From trial and error it has become clear that ‘low
thresholds’ (lower than 85) are not even influenced by the tail, and are dominated by
the more frequent lower observations (severe bias). Higher thresholds seem to produce
better results, i.e. actually following the tail nicely, which is in perfect accordance
with theory. The best obtained fit was achieved by a threshold of 91, for which the
probability plot is displayed in figure G.3. Now, first the original signal is repeated

4An upcrossing is where the signal crosses the threshold with positive slope.
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Figure G.3: GPD fit for peaks over threshold, r = 91.

(without alterations) to the desired length. In this case 25 times the measured
period. Subsequently, peaks are replaced by randomly generated values from the
fitted GPD distribution. Note that each time this is done, in principle a unique
signal is obtained. The resulting cycles are counted using the rainflow algorithm,
after which the damage number can be determined using the S-N curves. To gain
some insight into the results obtained using the method, this process was repeated
1000 times sequentially5. Results are shown in figure G.4. Clearly, variations are very
small and could therefore very well be neglected.

In this example, the S-N curves from the Dutch national annex were used. These
include a vertical jump at N = 106, which influences the most damaging cycles in
this example, which are on near this region. Therefore, the vertical jump effectively
truncates the damage increment per cycle. This may be different for i.a. other
loading histories, other concrete classes, other structures and so on. However, manual
variation of u, which shifts the spectrum relative to the S-N curve, showed that
variations in damage numbers remain negligibly small for other values of u. In
figure G.5 the amplitudes gained through the kernel density estimate are compared to
linear extrapolation in a so-called cumulative exceedance diagram. The amplitudes are
sorted first. The vertical axis gives an amplitude, which is exceeded by the number
of cycles given on the horizontal axis.

Figure G.5 reveals a reason for the small variation in resulting damages. Only a
small part of the cycles is altered with this technique, and variations caused by the
alteration are also quite small. The cumulative exceedance diagram also shows that
the data has several ‘bulges’, of which only the largest one is extrapolated.

5Each repetition takes about 45 s.
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Figure G.4: Distribution of damage numbers corresponding to randomly generated load histories
(1000 repetitions) using the peak-over-threshold method.
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Figure G.5: Cumulative exceedance diagram, comparing the result of extrapolation using the
peak-over-threshold method to the measured response.
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G.5.2 Demonstration of bivariate KDE
In this section, the kernel density estimation is demonstrated for the reference struc-
ture. First of all, it has become clear that this method is very expensive in a compu-
tational manner, which may very well be a problem if a large number of samples is
requested. Creation of a kernel density estimate for the detector 111 traffic, evaluated
on a 500-by-500 mesh, takes ±11 hours. This time is closely related to the number of
cycles, 5.7 million in this case, and almost linear scaling of computational time with
this number was observed. Drawing random samples is also quite time-consuming:
sampling 50 million half-cycles takes ±5 hours, and this is only simulates about 20
years of traffic (so a single sample of 100 years of traffic would take about 1.2 days,
which is definitely unfeasible if multiple samples are requested).

Initial endeavors in the application of this technique would not lead to a satisfactory
result. Due to a large bandwidth, the spectrum was extrapolated over a large area in
the rainflow matrix, allowing for example amplitudes of twice the observed maximum.
Clearly, this is not the desired result, as such an amplitude would lead to an overload,
thereby implying direct failure. This is very unrealistic, as the PoT already showed
that the increase in maximum amplitudes can be expected as minimal. The KDE
was mainly proposed to investigate its effects on everything except these peaks.

After numerous tries, with different parameters, the input was reconsidered. Attention
was drawn to the estimate for the smoothing parameter h, as given in equation G.9.
With its dependence on the variance of data, it basically quantifies the amount of
variability to be expected. Up to this point, the entire range of amplitudes was
used to determine the standard deviation, σ, used in the expression. Considering
a rainflow matrix as formed by the load on the reference case, there clearly are
distinct peaks (will become clear in the remainder of this section). Now, calculating
the standard deviation for the entire spectrum gives rather large values, implying
enormous spreading, as if all data is clustered around one peak. It is therefore argued
that a better measure of the variability in the data would be some sort of ‘local
variance’ around the peaks.

This raises the question, whether it is possible to define such a measure. Useful
information on the subject could not be found in literature, and therefore a pragmatic
solution is proposed. Starting with a histogram of half-cycle amplitudes, displayed in
figure G.6 for the reference case, a clear number of modes (bulges or peaks) can be
distinguished. Six modes are identified in this case. This may seem rather abstract
at first, but it is important to consider that the modes which are described, do not
occur at the same mean stress. This means that they are not continuously connected
in the landscape formed by the mean and amplitude axes. One might mistakenly
identify the portion from 6 to 27 as one mode, while in reality this portion does not
form a continuous shape in the aforementioned plane.

As the identified modes appear approximately normally distributed, it is proposed to
asses the variability through a mixture of normal distributions. Such a multimodal
distribution is fitted to the data in the histogram. For each component, its weigh-
ing factor, mean, and standard deviation are obtained. Subsequently, the average
standard deviation is determined through weighing:

σk =

√√√√ k∑
i=1

(wi σi)2 (G.16)

where
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Figure G.6: Histogram of half-cycle amplitudes, obtained from detector 111 traffic passing over
the reference structure.

σk = weighted average standard deviation
k = number of modes
wi = weight-factor for mode i

σi = standard deviation for mode i

Using the weighted average standard deviation as a measure of the local variance
yields results which are closer to what is expected and shown using PoT: a rather small
increase of maximum amplitude, while the rest of the spectrum remains practically
unaltered. The data from figure G.6 is split up at amplitudes 6, 11, 16, 19, and 26.
Using MATLAB, a mixture of normal distributions is fitted to the data. The result
is plotted in figure G.7, while the component-distributions and their properties are
listed in table G.1. Applying equation G.16 to the data from table G.1, a weighted
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Figure G.7: Multimodal distribution of half-cycle amplitudes, obtained from detector 111 traffic
passing over the reference structure.
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component wi µ σ

1 0.42 2.27 1.03
2 0.09 9.32 2.27
3 0.13 13.09 2.42
4 0.18 17.17 1.23
5 0.13 22.71 2.03
6 0.03 30.46 10.23

Table G.1: Mixture of normal distributions fitted to amplitudes of figure G.6, as displayed in
figure G.7.

standard deviation of 0.76 is found. When the standard deviation is determined over
the entire data-set, a value of 8.55 is found. Using the standard deviation from the
normal mixture, the procedure for kernel density estimation is continued. It is noted
that the overall objectivity of this method is somewhat impeded by this sensitivity
with respect to the standard deviation or kernel width, because no proper proof can
be given. Therefore, subjectivity is introduced.

A further adaptation of the method will be to focus on the relevant part of loadings.
As shown in section F.1, this constitutes only focusing on the 1 % of cycles that is
most damaging. The remaining 99 % of the spectrum can be used in a deterministic
fashion, or could even be neglected for extrapolation. Results may however be less
accurate for reinforcement steel (due to the smaller fatigue exponent, showing that
concrete is more sensitive to increasing stresses). A solution for reinforcement steel
is straightforward: incorporate a larger portion of the cycles, e.g. corresponding to
99 % of damage for reinforcement steel, into the extrapolation.

The first kernel density estimate, with constant bandwidth parameters, is performed
for all the measured cycles. A rather coarse mesh is used, to save some time. The
second and final run is done using only a portion of the measured cycles (most relevant
part in terms of damage). For this, a finer mesh is used to prevent measured cycles
with narrow kernels to be skipped because no grid point is in their vicinity.

An actual example will be presented now, based on the reference structure from
section F.1 in combination with detector 111 traffic. First the (deterministic) rainflow
matrix is determined, see figure G.8. This is done by simulating the crossing of
measured traffic over the bridge (influence-operator), and using the rainflow cycle
counting algorithm to extract the cycles (each described by their mean value and
amplitude). A total of 5.7 million cycles was obtained from the passing of traffic. As
described above, the first kernel density estimate will be based on all these cycles.
The relevant part, chosen as those cycles which cause 99 % of damage6, is used for
the final run while the remaining cycles are treated deterministically. The rainflow
matrix corresponding to these, in this case 141000 cycles, is presented in figure G.10.
The kernel density estimate, based on this rainflow matrix, is given in figure G.9 (3D)
and figure G.11 (top view).

The rectangular shape of the kernel is clearly visible in these figures. Furthermore,
the adaptive bandwidth causes great variation in the local bandwidth. For isolated
cycles, i.e. outliers, the kernel is visible as a large patch. If cycles are generated from
such a patch, the variability is therefore relatively large.

6This may seem a lot, but it is argued that cycles which cause negligible damage in deterministic
context, might be more damaging when extrapolated. Therefore a margin is built in by choosing
more cycles for the extrapolation.
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Figure G.8: Rainflow matrix for detector 111 over the reference structure introduced in sec-
tion F.1.

The obtained kernel density estimate was then used to generate a large number of
random cycles, over 25 million in this case (based on the KDE for the most damaging
141 thousand cycles). Consecutively, the damage increment for each cycles was
determined, resulting in a large database of possible damage increments per cycle. The
fraction of cycles generated from measurements totals 141044 full cycles (taking into
account half-cycles). Because the number of cycles is treated deterministically in this
section, possible damage numbers corresponding to a design life can be constructed by
summation of 25 × 141044 = 3526100 randomly generated damage events (resulting
from generated cycles). In this way, an arbitrary number of possible damage numbers
can be generated, although limited by the diversity of the database of generated
cycles.

Results from the procedure described are shown in figure G.12. Here, the damage
numbers resulting from the KDE are normalized using the damage number obtained
from linear extrapolation. The spread in damage numbers clearly surpasses that
which was found using the peak-over-threshold method. However, variations are still
negligibly small. Apart from this, the same remark as given with results from the
PoT method is valid, that is, regarding the truncation by the S-N curve. Also, the
mean damage number surpasses unity. Considering symmetrical variation around
each measurement, all cycles which are higher than expected will do exponentially
more damage compared to the lower cycles, resulting in a shift of the mean value
towards more damage. Mathematically this is expressed as E[Xn] 6= E[X]n, which
is generally valid for the nonlinear case (i.e. n 6= 1).

A normal distribution was fitted to the damage numbers, with parameter estimates
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Figure G.10: Rainflow matrix, only displaying the 141000 most damaging cycles for detector 111
on the reference structure introduced in section F.1.
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Figure G.11: Bivariate kernel density estimate based on the 141000 most damaging cycles for
detector 111 on the reference structure introduced in section F.1.
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Figure G.12: Distribution of damage number corresponding to randomly generated load histories
using the bivariate kernel density estimate.

µ = 1.00213, σ = 0.001386. This means that variations are negligibly small (proba-
bility of normalized damage number surpassing 1.01 equals 6.8 × 10−9).

Figure G.13 displays the amplitudes gained through the kernel density estimate,
compared to linear extrapolation a cumulative exceedance diagram (explained in
section G.5.1). Clearly, when comparing the result from the KDE with a linear
extrapolation, the differences are quite small. The maximum amplitudes are increased,
which was to be expected. Also, the magnitude of amplitudes is clearly limited,
which is the result of the kernel shape, which is also limited. In other words, using
this method with the prescribed kernel, there always exists an upper bound for
extrapolated amplitudes. The remainder of the spectrum, however, shows excellent
correspondence to the linear extrapolation, implying that the extrapolation of these
lower cycles is not quite necessary.

G.5.3 PoT and KDE side-by-side
The results obtained from the demonstration of both methods can now be compared.
For this, the cumulative exceedance diagrams are compared, see figure G.14. Note
that the kernel density estimation was only done for the important cycles, i.e the
part responsible for 99 % of the damage number. Therefore, the lower part of the
KDE-sample is vertical. Also, results from the PoT were truncated at an amplitude
of 25. The most interesting part is that of large amplitudes, for example the largest
1000. This is where the differences between methods of extrapolation can be observed.
Most notably is that the KDE results in larger amplitudes than PoT. Also, the top
is shaped differently. The top’s shape is dominated by the shape of the kernel (KDE)
or the fitted GPD (PoT), and therefore this explains the difference.

The remaining part of the cycles corresponds quite perfectly to the linear extrapola-
tion. Furthermore, differences between the methods are rather small, although the
variations in damage numbers clearly are larger when the KDE is applied. Fundamen-
tally the KDE seems more appropriate, because it also allows variations in the rest
of the spectrum, while the PoT only alters the part above the threshold which does
clearly not cover the entire range of important cycles. It is however concluded that
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Figure G.13: Cumulative exceedance diagram, comparing the result of extrapolation using the
kernel density estimate to the measured response.
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Figure G.14: Cumulative exceedance diagram, comparing the result of extrapolation using the
peak-over-threshold method and the kernel density estimate to the measured response.
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the larger variations in damage numbers found by using KDE compared to PoT, are
a direct consequence of the kernel shape, and not by the fact that the entire spectrum
is extrapolated compared to only the top part. Exactly this kernel shape and width
are quite subjective matters which should be kept in mind when judging results.

Computationally, there are some differences as well. The extrapolation using PoT
requires significantly more time than KDE for a large number of samples. With the
KDE, one is forced to construct the estimate first (taking approximately 12 hours for
the example used in this section), after which the sampling of cycles, and thus the
damage numbers, can be done relatively fast. For the PoT however, this is not the
case. Each sample then takes significant time (±45 s per history), which adds up to
more than the KDE for a large number of sampled histories. Reason for this is that
a signal for the entire design life needs to be processed within each repetition.

As a concluding remark it can be said that the extrapolations of magnitudes were
shown to produce negligible variations (between methods as well as in resulting
damage numbers), and can therefore be neglected in the remaining analyses of this
thesis.

G.6 Number of cycles
So far only uncertainties in the magnitude of loadings were treated. As shown in
detail in appendix D, uncertainties in the number of cycles are of importance as well,
although less pronounced for equal spread. However, in case the uncertainties in the
number of cycles are found to exceed those of magnitudes, the overall effect may very
well be dominant. Therefore it is studied in this section.

In appendix 2 the dependence of loading on time was already briefly studied, although
in another context. It is noted that the cumulative tonnage, as studied before, is
not necessarily a valid marker for variations in the number of cycles. It seems more
appropriate to investigate the number of cycles using a more direct approach.

The procedure to assess the variability in cycles was chosen as follows. The measured
time-frame is divided into equal intervals. Subsequently, trains are coupled to their
corresponding interval, and cycles are determined per train. The total number of
cycles per interval is calculated as the sum of all counted cycles resulting from each
interval’s trains. Results of this procedure for the detector 111 traffic are plotted in
figure G.15 (left). For this, the measured time-frame was divided into 100 intervals
of equal duration (ca. 14 days per interval). Variation between intervals is definitely
visible (coefficient of variation: 0.09). The data does not follow a normal distribution
very well because of the large centered portion.

This data is extrapolated as follows: a single design life is assumed to be composed
of intervals as measured (treated discretely). The corresponding number of cycles
per interval is sampled and summed to obtain an estimate for the number of cycles
to be expected during the design life. In doing so, it is implicitly assumed that
the number of cycles per unit time follows the discrete distribution as displayed in
figure G.15 (left). This procedure was repeated 10000 times7 to obtain the histogram
from figure G.15 (right), in which the results are normalized by the mean number of
expected cycles in a design life. Using the central limit theorem, which states that

“The arithmetic mean of a sufficiently large number of iterates of inde-
pendent random variables, each with a well-defined expected value and
well-defined variance, will be approximately normally distributed, regard-
less of the underlying distribution.” — Wikipedia, 2015a.

7The same result could be predicted from the distribution on the level of an interval, but it was
chosen to include this step as a visual aid.
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Figure G.15: Number of cycles per time-interval (division of measured time-frame into 100
time-intervals).

this result should follow a normal distribution. Therefore this has been fitted (red line
in figure). With MATLAB’s maximum likelihood procedure, a mean of 1 (normalized)
and a standard deviation of 0.0018 were found, the latter being equal to the coefficient
of variation due to the normalization.

Clearly, variations on this level are very small. Reason for this, is that the coefficient
of variation is proportional to 1√

n
. The obtained mean number of cycles is equal to

the extrapolation factor multiplied by the mean number of cycles per interval.

This procedure was repeated for the detector 11 traffic record. Similar results were
obtained, i.e. an overall coefficient of variation equal to 0.0035 for the normalized
design life cycle count. This is used as a justification for neglecting the variations in
number of cycles around its mean value.

What was basically shown here, is that the sum of realizations from a process which
follows a distribution with bounded variance, will converge to its mean. This behavior
is commonly known as the law of large numbers, generally formulated by relating
the average to the expected value, which is equivalent to the statement regarding
the sum. A logical next move, now that it is known that the number of cycles will
converge to its mean with negligible variance, is to consider the uncertainty which is
introduced by estimation of the mean value.

When a mean value is estimated from samples, it is generally said that it will follow
a normal distribution for cases with more than 30 samples. It’s standard deviation
is denoted as the ‘standard error of the mean’ (SEX̄), and can be determined by
(Wikipedia, 2015c):

SEx̄ = sx√
n

(G.17)

where
SEx̄ = standard error of the mean
sx = sample standard deviation
n = number of samples
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Because the standard deviation of the samples is estimated, as opposed to known, the
student t-distribution should be used. However, in case of a large number of samples,
the normal distribution offers an adequate approximation, and was therefore used
here.

The sample standard deviation is influenced by the number of time-intervals. Division
of the measured time into a larger number of intervals, yields a smaller standard
deviation. Using this method, however, it is assumed that the number of cycles
in each interval is independent. This assumption is voided by an increase of the
number of intervals, although the exact optimum is not known. For this work, it
was assumed that 100 intervals result in a fair approximation in terms of both the
standard deviation as the requirement for independence. This procedure was repeated
for all detectors, after which the standard error of the mean was determined for each.
Results have been summarized in table G.2.

x̄ SEx̄ CoV
detector 11 27863 485 0.0174
detector 12 39012 306 0.0078
detector 18 23675 554 0.0234
detector 19 42911 900 0.0210
detector 111 55740 496 0.0089
detector 114 44686 393 0.0088
detector 163 61633 564 0.0091
detector 164 61588 571 0.0093
detector 363 39242 330 0.0084
detector 364 39819 351 0.0088

Table G.2: Standard error for the mean per detector (100 time-intervals).

For this thesis a practical approach is proposed, namely using the variations obtained
from the reference structure for all subsequent cases, and equal for traffic records
from all detectors. This means that the results from table G.2 are used to account
for variations in the number of cycles from here on, where a coefficient of variation of
0.01 is deemed an appropriate generalization for all detectors. This was mainly done
to show the influence of such uncertainties (by inclusion in the sensitivity analysis),
and not so much because of the magnitude of variations, which clearly is quite small.

G.7 Conclusions8.
• Multiple techniques for extrapolation were considered, namely: extrapolation

of traffic, time-extrapolation using extreme value theory, uni- and bivariate
spectrum fitting and extrapolation of damage increments.

• Two methods, time-extrapolation using EVT and the bivariate spectrum fitting
using kernel density estimation, have been implemented and demonstrated.
Comparison has shown that the KDE results in a larger spread in damage
numbers than the PoT. Notably, the maximum amplitudes were obtained by
appliance of the KDE method. It was argued that the latter is fundamentally
more powerful because it allows variations in the entire spectrum, although
differences in damage numbers were mainly attributed to differing extrapolations

8Also presented in chapter 5
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of the largest load cycles. Also, the KDE involves estimating the kernel width,
which turned out to be both essential and somewhat subjective.

• Variations in damage obtained by the extrapolation of the load histories were
negligibly small. Therefore it was decided to omit this entire step in subse-
quent analysis, as this saves a considerable amount of time while maintaining
practically all accuracy in determining the damage numbers.

• Variations in the number of cycles have been quantified. The main source of
uncertainties was shown to be in the determination of the mean value. For this,
standard errors were determined. Furthermore, the assumption has been made
to use an average coefficient of variation obtained for traffic from all detectors
(0.01) over the reference structure, for all future analyses, regardless of the exact
structure or detector.

The most interesting conclusions, however, might be the resulting variations in damage
numbers obtained from the extrapolation. It has been shown that these are very small,
even negligible, and therefore it seems that 4 years of measurements seems enough to
draw conclusions about design life fatigue loading. At least, the measurements have
converged, thereby not implying an expected occurrence of much larger loads. Also,
even more useful than determination of expected variability through extrapolation,
may be the feeling one gains for the data, yielding the confidence required to proceed
with result of extrapolation methods such as those described in this thesis.
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In this chapter, methods to solve the reliability equation (limit state function) for the
resulting failure probability, or equivalently the reliability index, are discussed. For
this, a practical example (reference case from appendix F) is used to demonstrate all
steps.

H.1 Practicalities
To solve for the failure probability, PF = P (Z ≤ 0), a few steps are required (cor-
responding specifically to the format and methodology used in this thesis). The
first step in obtaining PF is determining ulimit from the combination of a structure
(influence line), a traffic mix (Eurocode), and, in case of concrete in compression, the
ratio of permanent stresses ζperm. Using this information, and the fatigue damage
formulations for concrete of reinforcement, the value of ulimit is obtained by opti-
mization with the constraint that the damage should be equal to unity. Note that
this includes partial factors, or actually only for the material because that for fatigue
loading is not included as it is equal to 1.

With the value for ulimit which is obtained, the reliability functions (eq. 5.20 and 5.22)
are fully defined in terms of their variables. Using this, the safety margin, expressed
with Z, can be calculated, this time without applying partial factors. The remainder of
this chapter is dedicated to solving for PF using the Monte Carlo method (section H.2)
and the first order reliability method (FORM, see section H.3). An explanation of
both methods can be found in appendix A. The Monte Carlo analysis is used to verify
the results obtained using FORM. After this, an optimization-strategy regarding the
generation of signals is presented, in order to save some computational expense.

H.2 Solving using Monte Carlo method
The first approach to obtain the failure probability from equations 5.20 and 5.22
is using the Monte Carlo method. As stated in appendix A, the accuracy of this
method is dictated by the number of iterations. Technically, it can only be checked
a posteriori whether the number of iterations was sufficient, as it depends on the
outcome of the analysis itself (reciprocal of the failure probability). Therefore this is
more or less a process of trial and error. Ultimately the convergence was studied as
a function of the number of iterations.

First a case was chosen, of course the ‘reference case’ was picked again for this purpose.
The signal resulting from the measured traffic is also probabilistic, caused by the
inclusion of measurement uncertainties (axle loads and velocity), and uncertainties
in dynamic amplification. Therefore, upon repetition of the procedure for generating
signals, each time a unique signal is obtained. More on this influence can be found
in section H.4.
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Figure H.1: Running failure frequency resulting from the Monte Carlo analysis.

It was certainly not practical to determine a unique signal for each iteration, as this
would require far too much time for the calculation (generation of signals, i.e. applying
the influence-operator, forms a relatively large portion of the overall computational
expense). Therefore it was decided to use a single signal for 1000 iterations, which
made the analysis achievable within a reasonable amount of time.

The result of the Monte Carlo Analysis, which included the generation of 250 random
signals, with 1000 iterations done for each signal (250000 iterations in total), were1:

Resulting probability of failure (failure frequency) PF = 484/250000 = 0.0019
Resulting estimate of reliability index β ≈ 2.888

The number of iterations was large enough to obtain convergence, so it seems. A plot
of the running failure frequency, that is, the number of failures up until and including
iteration i divided by the current iteration i, is plotted in figure H.1.

Overall the results may look satisfying, but there is one huge drawback: the time it
took. This analysis in itself required circa 100 hours of calculations. This makes it
infeasible for a large number of analyses, as this would simply require too much time.
Therefore it was attempted to solve for the reliability index using FORM, which
should be able to save a considerable portion of this time.

H.3 Approximate solution using FORM
Because of the computational expensiveness of the Monte Carlo method, a logical
next step was to try and see if an approximation using the first order reliability
method would prove itself sufficiently accurate, and how much time can be saved in

1After performing this analysis and the approximation using FORM as demonstrated in the
upcoming section, one of the distributions was altered. Therefore, these β’s do not correspond
exactly to the value in the final report.
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using this method instead of Monte Carlo. The theoretical background of FORM
was explained in appendix A.

The FORM-implementation was written in MATLAB, following the guidelines laid
out in Probabilities in Civil Engineering (CUR-committee E10, 1997). The first
estimate for the design point is taken as the mean of each variable. At this point, the
reliability is linearized, and a first estimate of the reliability index (β) is obtained.
This value for β is combined with the α-values for each variable, yielding a new
estimate for the design point.

The partial derivatives, which are required when using FORM, where determined
using numerical differentiation, as an analytical formulation clearly was not possible
due to the operators in the limit state function. It was chosen to apply central
differentiation, thus, for each stochastic variable, in the form of

X =



X1

X2
...

Xi

...
Xn


x−

i =



X1

X2
...

Xi − ∆Xi

...
Xn


x+

i =



X1

X2
...

Xi + ∆Xi

...
Xn


(H.1)

where the partial derivative with respect to xi is approximated by

∂g

∂Xi
≈ g(x+

i ) − g(x−
i )

2 ∆Xi
for i = 1, 2, . . . n (H.2)

thus requiring the reliability function to be evaluated twice for each variable.

The first order reliability method allows for iterative solving, and some criteria is
required to judge convergence. Here it was chosen to check two criteria (based on
Haukaas (n.d.)), namely the value of the limit state function at the design point, and
whether the hyperplane (from linearization) at the design point is perpendicular to
the vector between the design point and the origin of the normalized variable space
(which should be the case in order to obtain the smallest distance between these
points). In formulae:

Z|x∗ ≤ ε (H.3)

for the value of the limit state function, and

1 − αT x∗

||x∗||
≤ ε (H.4)

as a measure of the difference between a perpendicular vector and the actual vector,
where the numerator is found by taking the dot-product, and the vertical bars in the
denominator symbolize the vector norm. For the FORM-analyses performed in this
work, ε was set equal to 10−3 (this results in an accuracy of the reliability index in
the order of 10−2).

Using the described method, the reliability was determined using FORM. For this it
was chosen to generate 1000 signals and determine the resulting reliability indices. The
overall resulting reliability index is then the average (averaged using the equivalent
probabilities of failure, not reliability indices). Of great importance is the comparison
to the Monte Carlo analysis, which serves the role of reference. The resulting failure
probability and reliability index using FORM were:
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Resulting estimate probability of failure P̂F = 0.0019
Resulting reliability index β = 2.894

It may be clear that differences are well within the margins of error, and that FORM
can therefore be used to determine the reliability for subsequent cases.

H.4 Influence of signal
A major component of the time required for the determination of reliability is spent
on creating signals, which is an intensive activity, also caused by the large number
of trains of which passings are simulated. The question now arises whether different
signals actually result in a different reliability, or that the probabilistic components
in the signal are averaged enough, so that the reliability is practically invariant to
the actual signal.

The most pragmatic way to assess such a preposition, is by actually trying. Therefore,
the reliability which was determined using FORM, for a total of 1000 times (thus
from 1000 signals, required time approx. 70 hours), was studied. Each signal thus
result in a unique reliability index, all of which are plotted in figure H.2.
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Figure H.2: Reliability index and probability of failure for different signals. All results correspond
to a design life of 100 years.

From figure H.2 it can be concluded that the differences between reliability indices
are, although present, quite small. Also, it is very important to realize that for this, it
is not the lowest value of the reliability index that is governing. In essence
the reliability index should incorporate these differences between signals. Analogously
to a Monte Carlo analysis, the overall failure probability is actually the mean of all
resulting failure probabilities.

This, the differences being quite small, is a positive result as is it allows the reli-
ability to be determined using only one signal as input, speeding up the analysis
considerably, while maintaining sufficient accuracy. Fundamentally speaking, it is
of course preferable to include a larger number of signals, but to limit the overall
computational expense, taking into account the small influence on the reliability and
the large number of calibration cases, it was chosen to only use a single signal for each
calibration. Also, the magnitude of the error is deemed smaller than the accuracy of
the entire methodology used.

168



J. R. Houtenbos

H.5 Verification result FORM analysis
One case which resulted in a low β-value was examined in detail. This concerns
structural scheme 1, 4 meter span, detector 111 traffic, and a design based on load
model EC1. In this section, a calculation closest to a hand calculation is demonstrated
for reinforcement. Due to the large amount of data and steps in the analysis, some
parts are not verifiable by hand (influence operator, cycle counting and summation
to obtain damage number).

First of all, the limit value of u was determined, as well as the difference between the
obtained damage and unity (included to confirm convergence):

ulim = 2.5489, ∆D = 1.19 × 10−8

The FORM algorithm then ran 8 iterations until convergence was reached. The
resulting value of Z at the design point was:

Z∗ = g(x∗) = 6.93 × 10−4

The final β was 2.1835, corresponding to the design point

x∗ =


ξext

θS

N∗

∆


∗

=


25.1285
1.4606
6.3692
0.8676


The damage number can be calculated with the values corresponding to the design
point (see figure H.3) and table H.1):

D =
∑

D (R (ulim I (H))) = 0.0346

Note that this damage number corresponds to ca. 4 years of measurements, and thus
needs to be multiplied with the extrapolation factor. Filling in the limit state function
yields:

Z∗ = g(x∗) = ∆
ξext D

− 1 = 0.8676
25.1285 × 0.0346 − 1 ≈ 0

At the design point, the lognormal distributions are approximated by an equivalent
normal distribution. At the final design point, these are:

θS~N(0.8783, 0.2893)
∆~N(0.9526, 0.2547)

The α-factors in the final iteration are part of the output (and can be derived from
the partial derivatives at the design point combined with the standard deviation of
each variable):

α =


0.0052
0.9219

−0.3560
−0.1529


using which it is possible to check the design point, as Xi = µXi + β αi σXi :

x∗ =


25.1256
0.8783

6.6
0.9526

+ 2.1835


0.0052 × 0.2513
0.9219 × 0.2893

−0.3560 × 0.2969
−0.1529 × 0.2547

 =


25.1285
1.4606
6.3692
0.8676
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The partial derivatives at the design point are:

∂g

∂ξext

∣∣∣∣
x∗

= −0.0398 ∂g

∂θS

∣∣∣∣
x∗

= −6.1240

∂g

∂N∗

∣∣∣∣
x∗

= 2.3042 ∂g

∂∆

∣∣∣∣
x∗

= 1.1532

From the above, the mean value and standard deviation of Z are approximated using
linearization:

µZ ≈ g(x∗) +
n∑

i=1

∂g

∂Xi

∣∣∣∣
x∗

(µXi − X∗
i )

= 0 + (−0.0398 (25.1256 − 25.1285)) + (−6.1240 (0.8783 − 1.4606)) + . . .

(2.3042 (6.600 − 6.3692)) + (1.1532 (0.9526 − 0.8676))
= 0 + 1.15 × 10−4 + 3.566 + 0.5318 + 0.098 = 4.1959

σZ ≈

√√√√ n∑
i=1

(
∂g

∂Xi

∣∣∣∣
x∗

σXi

)2

=
√

(−0.0398 × 0.2513)2 + (6.1240 × 0.2893)2 + (2.3042 × 0.2969)2 + . . .

(1.1532 × 0.2547)2

=
√

1.0 × 10−4 + 3.1379 + 0.4680 + 0.0863 = 1.9215

Using this, the final value of β can be validated:

β = µZ

σZ
≈ 4.1959

1.9216 = 2.1835

With this, it has been shown that a valid solution for FORM its set of equations has
been obtained, which satisfies the constraint of Z ≈ 0.
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Figure H.3: Spectra at design point, expressed in stress changes (thus including ulim). Note that
these include dynamic amplification and all uncertainties, and therefore represent the situation
at the design point.
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from [N/mm2] to [N/mm2] Ni incr. damage nr. cum. damage nr.
0 10 116719 6.95 × 10−4 0.00069504

10 20 213326 1.40 × 10−3 0.002090482
20 30 287689 1.70 × 10−3 0.003792333
30 40 482567 2.40 × 10−3 0.006196929
40 50 1156137 0.006692178 0.012889107
50 60 989061 0.005174495 0.018063602
60 70 905980 0.005191742 0.023255344
70 80 844315 0.004481154 0.027736498
80 90 526082 2.72 × 10−3 0.030452836
90 100 339079 1.59 × 10−3 0.032044659

100 110 238735 1.10 × 10−3 0.03314022
110 120 158684 5.99 × 10−4 0.033739352
120 130 101386 4.49 × 10−4 0.034188109
130 140 61083 1.74 × 10−4 0.03436214
140 150 30889 1.10 × 10−4 0.034472266
150 160 12537 3.92 × 10−5 0.03451145
160 170 4262 8.46 × 10−6 0.034519914
170 180 1209 2.12 × 10−6 0.034522029
180 190 298 6.45 × 10−7 0.034522674
190 200 68 1.28 × 10−7 0.034522802
200 210 10 3.21 × 10−9 0.034522805
210 220 4 9.55 × 10−11 0.034522805
220 230 2 7.78 × 10−12 0.034522805
230 240 0 0 0.034522805

0.034522805

Table H.1: Table of stress ranges with incremental and cumulative damage numbers. These
correspond to the detector 111 traffic spectrum at the design point, see figure H.3. Therefore,
also the S-N curve corresponding to the design point was used to calculate these damage number
increments.
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From figure H.3 it may be clear that the spectrum corresponding to the actual
loading exceeds that which is designed for (detector 111 spectrum results in a larger
load effect than the EC1 traffic mix). Because these represent the situation at the
design point, it can be concluded that the load at design point is larger than the
characteristic value thereby formally corresponding to a partial factor greater than
one. Apparently, the resistance at the design point, being equal to the solicitation
by definition, surpasses the design resistance, the latter being based on the Eurocode
spectrum. This shows that the current partial factors are not correctly distributed
between load and resistance.

H.6 Conclusions
• Using a Monte Carlo analysis with 250000 iterations, an estimate of the re-

liability index of 2.888 was obtained. It was clear that, with its duration of
100 hours, this method is unfeasible for large scale calibration.

• The same case was solved using the first order reliability method (using 1000
signals), which resulted in a reliability index of 2.894, which is very close to the
results obtained using the Monte Carlo. Therefore it was decided to use FORM
for subsequent analyses. The requirement in terms of time, 70 hours, had still
only improved marginally.

• The variability between signals (each randomly generated) was investigated,
and found to be quite small. Because a large portion of time is spent on
generating signals, elimination of iterations benefits the computational expenses
significantly. This resulted in the choice to base the reliability in calibrations
on a single signal, allowing for a runtime of about 5 minutes per analysis.
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I | Results

scheme detector results plotted in
111 figure 6.1

1 164 figure I.1
364 figure I.2
111 figure I.3

2 164 figure I.4
364 figure I.5
111 figure I.6

3 164 figure I.7
364 figure I.8
111 figure I.9

4 164 figure I.10
364 figure I.11
111 figure I.12

5 164 figure I.13
364 figure I.14
111 figure I.15

6 164 figure I.16
364 figure I.17
111 figure I.18

7 164 figure I.19
364 figure I.20

Table 6.1: Overview of calibration results.
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Figure I.1: SC1-ECX-164
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Figure I.2: SC1-ECX-364
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Figure I.3: SC2-ECX-111
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Figure I.4: SC2-ECX-164
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Figure I.5: SC2-ECX-364
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Figure I.6: SC3-ECX-111

179



Appendix I. Results

5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

βtarget

span L [m]

re
lia

bi
lit

y
in

de
x

β
[-]

(r
el

at
ed

to
de

sig
n

lif
e)

EC1 with ζperm = 0.3
EC2 with ζperm = 0.3
EC3 with ζperm = 0.3
EC1 with ζperm = 0.45
EC2 with ζperm = 0.45
EC3 with ζperm = 0.45
EC1 with ζperm = 0.6
EC2 with ζperm = 0.6
EC3 with ζperm = 0.6
EC1 with reinforcement
EC2 with reinforcement
EC3 with reinforcement

scheme
3

detector
164

Figure I.7: SC3-ECX-164
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Figure I.8: SC3-ECX-364
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Figure I.9: SC4-ECX-111
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Figure I.10: SC4-ECX-164
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Figure I.11: SC4-ECX-364
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Figure I.12: SC5-ECX-111
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Figure I.13: SC5-ECX-164
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Figure I.14: SC5-ECX-364
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Figure I.15: SC6-ECX-111
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Figure I.16: SC6-ECX-164
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Figure I.17: SC6-ECX-364
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Figure I.18: SC7-ECX-111
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Figure I.19: SC7-ECX-164
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Figure I.20: SC7-ECX-364
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J | Reference Trains

In NEN-EN 1991-2 (CEN, 2002b) the following reference trains are given:
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