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A new model describing the evolution of clusters in the processes of nucleation and growth is
proposed. The diffusion flux in the nonstationary Fokker–Planck equation with an unknown
distribution function is approximated by the closed form expression containing the steady-state
solution of the Zeldovich–Frenkel equation. This is justified due to the smallness of induction time
of cluster formation compared to the time scale observed in experiments. The resulting stationary
diffusion flux model is valid for all cluster sizes, computationally efficient and applicable to various
types of cluster formation processes. Its application to a nucleation pulse experiment shows an
excellent agreement with the solution of the set of formally exact Becker–Döring equations.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3120489�

I. INTRODUCTION

Modeling the cluster size distribution, describing the
evolution of clusters in the processes of nucleation and
growth, is an important subject in various areas of physics.
Applications can be found in the fields of condensing
vapors,1 crystallization,2 ferromagnetics,3 aerosol and atmo-
spheric science,4 combustion science,5 and chemical
processes.6 In these fields an accurate solution of the
Becker–Döring �BD� equations, or its continuous equivalent
the Fokker–Planck equation �FPE�, is mandatory.

The rate equations for cluster evolution were derived by
Becker and Döring.7 A thorough elaboration of Penrose8

proved that given the correct initial and boundary conditions
the solution of the BD equations exists and is unique.
Zeldovich9 showed that the BD equations reduce to the FPE
in the continuous limit. Both the BD equations and the FPE
couple the processes of nucleation and growth, leading to
excessive computation times.

The urge for computationally more tractable models led
to the introduction of the general dynamic equation �GDE�.10

The GDE decouples the nucleation and growth process and
models nucleation by means of the Dirac �-function. This
source term introduces clusters at the critical size. At fixed
external conditions, however, the newly born critical clusters
are in unstable equilibrium and therefore do not grow. This
results in a singular cluster size distribution. Moreover, a
rapid change in external conditions resulting in an increase in
the critical size leads to evaporation of all clusters. Recent
studies made an attempt to overcome these deficiencies by
replacing the �-function with a boundary condition at a cer-
tain size larger than the critical.11 However, the location of
this boundary is not specified explicitly. Furthermore, addi-

tional ad hoc constraints on the size distribution in the sub-
critical region are introduced.

The aim of this paper is to present a simplification of the
FPE, which is valid for the entire cluster range without the
need for additional restraints. In general, the flux in the FPE
contains a drift term and a diffusion term. The approximation
refers to the diffusion flux, which is pronounced in the do-
main of cluster sizes up to a certain size slightly exceeding
the critical cluster. It transports the newly formed clusters to
the supercritical range and becomes negligibly small com-
pared to the drift flux outside this domain.12 Due to the
extreme smallness of the induction time of nucleation13 tind,
��10−6 s� compared to laboratory time scales, the size dis-
tribution in the diffusion flux can be replaced by the station-
ary solution of Zeldovich–Frenkel equation.9,14 This leads to
an analytical expression for the diffusion flux. The result is
termed the stationary diffusion flux �SDF� model. The sta-
tionary cluster distribution can still change with time due to
its implicit dependence on the external conditions and there-
fore the SDF is capable of treating time dependent problems.

II. THEORY

A. Becker–Döring model and Fokker–Planck equation

For completeness, we start with briefly summarizing the
classical BD approach. In the BD model, the cluster evolu-
tion is considered as a sequence of elementary processes of
attachment and detachment of monomers.7 The rate of
change in the n-cluster number density �n is balanced by the
net fluxes to the n-clusters Jn−1, and from them, Jn, asa�Electronic mail: dennis.vanputten@twisterbv.com.
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d�n

dt
= Jn−1 − Jn, for n = 2, . . . ,N , �1�

where the number density of the monomers �1 is given by a
boundary condition. The flux is constructed by considering
the forward rate fn and backward rate bn,

Jn = fn�n − bn+1�n+1. �2�

The forward rate depends on the physics of cluster formation
and the backward rate is determined from the detailed bal-
ance condition at constrained equilibrium

bn = fn−1
�n−1

eq

�n
eq , �3�

where bn is assumed to be independent of the vapor density;
�n

eq is the equilibrium cluster distribution

�n
eq = �1e−g�n�, with g�n� =

�G�n�
kBT

, �4�

where �G�n� is the free energy of cluster formation, kB is the
Boltzmann constant, and T is the temperature. In the continu-
ous limit the BD model reduces to the FPE �Ref. 9� for the
continuous number density ��n , t�,

���n,t�
�t

= −
�J�n�

�n
, �5�

with

J�n� = − f�n�
���n,t�

�n
+ ṅ�n���n,t� . �6�

The first term on the right-hand side �rhs� of Eq. �6� is the
diffusion flux in size space while the second one is the drift
flux containing the growth law ṅ�n��dn /dt. The diffusion
coefficient f�n� and the growth law ṅ�n� are related by the
fundamental Zeldovich relation14

f�n� = −
ṅ�n�
g��n�

, with g��n� =
dg�n�

dn
. �7�

It is important to note that at the critical cluster size n�, the
g�n� is at maximum implying that g��n��=0. The growth rate
at the critical size ṅ�n�� also vanishes; however f�n�� remains
finite. The general form of the growth law can be written in
terms of the reduced radius r��n /n��1/3 as in Ref. 15,

ṙ�r� =
1

�r��1 −
1

r
�, with �−1 � 	dṅ

dn
	

n�

, �8�

where the power index � depends on the type of mass
exchange, e.g., �=0 and 1 correspond to the ballistic and
diffusion limited growth, respectively.

B. Stationary diffusion flux model

The starting point of the SDF is the Fokker–Planck
Eqs. �5� and �6�. We propose an approximation in which the
diffusion term in Eqs. �5� and �6� involving the unknown
cluster distribution ��n , t� is approximated by

Qs =
�

�n

 f�n�

��s�n�
�n

� �9�

containing the stationary flux of nucleating clusters; here
�s�n� is the nonequilibrium stationary cluster distribution.
The latter is defined as the steady-state solution of the
Zeldovich–Frenkel equation14

�

�n

 f�n��eq�n�

�

�n
� �s�n�

�eq�n�
�� = 0, �10�

where �eq�n� is the continuous equivalent of Eq. �4�. Integrat-
ing Eq. �10� using the boundary conditions �s�1� /�eq�1�=1
and limn→���s�n� /�eq�n��=0 yields14

�s�n� = �eq�n�J�
n

� dñ

f�ñ��eq�ñ�
, �11�

where the steady-state nucleation rate J is

J = 
�
1

� dñ

f�ñ��eq�ñ��−1

. �12�

Combining Eq. �9� with Eq. �6� written for the stationary
conditions ��n , t�=�s�n� and J=const, we find

Qs =
�

�n
�ṅ�s� =

�

�n
�ṅ�eq�1 − J��n��� , �13�

with

��n� � �
1

n dñ

f�ñ��eq�ñ�
. �14�

This leads to the general expression for the SDF

��

�t
+

�

�n
�ṅ�� =

�

�n
�ṅ�eq�1 − J��n��� , �15�

which is valid for all cluster sizes. In the limit of “small”
n�n�, such that g�n��g�n��, the free energy g�n� is domi-
nated by the positive surface contribution implying that the
number of small clusters continues to have its equilibrium
value in spite of the flux.

One can simplify Eq. �15� in the domain n	n� using the
properties of �eq�n�. The diffusion coefficient is proportional
to the cluster size as n�2−��/3 �e.g., for the ballistic growth law
1 / f�n�
n−2/3�. Therefore, in view of the exponential func-
tion in �eq�n�, the main contribution of the diffusion coeffi-
cient in the integral of Eq. �11� is at the lower integration
boundary, yielding

�s�n� � J
e−g�n�

f�n� �n

�

eg�ñ�dñ . �16�

Substituting Eq. �16� into Eq. �13� and using Eq. �7� results
in

Qs = J
�

�n
− g��n�e−g�n��
n

�

eg�ñ�dñ� . �17�

The function eg�x� has a strong maximum at x=n�, implying
that we can expand g�x� around n� up to the second order
term
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g�x� � g�n�� +
1

2
g��n���x − n��2 �18�

with

g��n�� = 	d2g

dx2	
n�

.

Substituting these relations in Eq. �17� and defining the
Zeldovich factor Z��−g��n�� /2�, we find

Qs = J
�

�n
��ye�y2

erfc���y�� �19�

with

y � Z�n − n�� , �20�

where erfc�x� is the complementary error function.16 For
large clusters,

lim
y→�

��ye�y2
erfc���y�� = 1,

yielding Qs→0 for n→� as required.12 After simple alge-
bra, Eq. �19� becomes

Qs = J�Z��y� �21�

with

��y� = − 2y + e�y2
�1 + 2�y2�erfc���y� .

At the critical size ��y=0�=1 and decreases rapidly with y,
demonstrating the vanishing of the diffusion term at large n.
Finally, in the supercritical domain the SDF �Eq. �15�� re-
duces to

��

�t
+

�

�n
�ṅ�� = J�Z��y�, y 	 0, �22�

where y is given by Eq. �20�. Equation �22� is a convenient
approximate form for nucleation experiments, in which the
supercritical clusters are of major interest. The rhs represents
the source term with newly born clusters and shows resem-
blance with the GDE,10

��

�t
+

�

�n
�ṅ�� = J��n − n�� . �23�

The difference, however, is that the source term of Eq. �22�
takes into account all supercritical clusters and not just n�.
This prevents the appearance of a singular size distribution
for fixed external conditions.

The general SDF �Eq. �15�� is applicable to all 1
n
�� and is solved by imposing an initial condition and by
specifying the thermodynamic model of cluster formation
g�n� and the growth law ṅ�n�. Moreover, no additional con-
straints are necessary for the subcritical clusters.

III. RESULTS AND DISCUSSION

We apply the SDF to a nucleation pulse experiment �see,
e.g., Refs. 17 and 18�. The test case consists of a typical
stepwise constant pressure-temperature profile comprising a
region with high supersaturation, where nucleation and
growth take place �region I�, followed by a region with low

supersaturation where nucleation is negligible �region II�. An
example of such an experiment is presented in Table I. The
pulse duration is 50 �s. The supersaturation is given by S
=ywp / psat�T�, where p is the total pressure, yw is the non-
equilibrium vapor molar fraction, and psat�T� is the saturation
pressure of the nucleating substance. We take water as a
nucleating substance with yw=7�10−3; its thermodynamic
properties are those of Ref. 17. The induction time of nucle-
ation is defined as tind= �4�f�n��Z2�−1 �see, e.g., Ref. 13�.

The results are validated against the solution of the set of
formally exact BD �Eq. �1��, where the forward rate is deter-
mined from gas kinetics.14 The backward rate is obtained
from Eq. �3� using the Frenkel free energy of formation14

g�n� = − n ln S + ��n2/3 �24�

with

�� =
��s1

kBT
, s1 = �36��1/3��l�−2/3, �25�

where �� is the plain layer surface tension and �l is the liquid
number density. The monomer density is nondepleting and
assumed constant in both regions. A set of 105 BD equations
is solved using the piecewise constant flux approximation.19

The SDF is solved by the van Leer MUSCL scheme �see
Ref. 20 and references therein�. Using the SDF model, the
computational effort is reduced by a factor of 8 compared to
the solution of the BD equations. For consistent comparison
with the BD equations, the growth law in the SDF should be
chosen appropriately,21

ṅ�n� = f�n��1 − exp�g��n��� . �26�

Figure 1 depicts the cluster size distribution in region I at
several time instants. The SDF shows a good agreement with
the BD equations for all cluster sizes. A small difference
between the solutions at t1 is due to the instantaneous occur-
rence of the pulse at t=0. The BD solution exhibits a certain
relaxation time to be noticed in the supercritical domain. For
times larger than t1 the difference becomes negligible. At
large n and t the diffusion term vanishes and ��n , t���s�n�
�J / ṅ�n� until the double exponential decay of the front of
the size distribution occurs, as described by Shneidman.15

The results for the SDF in region II �Fig. 2� are in ex-
cellent agreement with the BD solutions in the entire cluster
domain. The size distribution in the region of n�n� re-
sembles the equilibrium size distribution, as observed in Eq.
�15�. In region II, the SDF reduces to the conservation equa-
tion for ��n , t� in the supercritical region. We find that for the

TABLE I. Nucleation pulse test case conditions for water with nonequilib-
rium vapor molar fraction yw=7�10−3.

Parameter Region I �t
50 �s� Region II �50 �s� t�300 �s�

p�kPa� 77.0 115.5
T�K� 240.0 270.0
S 14.34 1.67
n� 23 1885
J�m−3 s−1� 3.96�1016 �10−180

tind��s� 1.7 29.2
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critical clusters ��n� , t� decays exponentially with time in
agreement with Ref. 22. Furthermore, the SDF solution ex-
hibits a general feature: the exponential decay of ��n , t� with
time is true for the subcritical clusters up to the equilibrium
size distribution. This test case demonstrates the validity of
the SDF for the entire cluster range.

The SDF can be used for validation of various types of
nucleation experiments �e.g., nucleation pulse tubes, diffu-
sion cloud chambers, and expanding nozzle flows18,23�.
For continuously varying pressure-temperature profiles23 all
p ,T-dependent functions—J, S, g�n�, and �s�n�—become
parametric functions of time.

From the size distribution, the evolution of the total
number of formed clusters with time can be calculated. For
the nucleation pulse experiment of Table I, a portion of the
clusters formed in region I evaporates ��10%�. This is due
to the rapid increase in the critical size in region II, causing
a part of the size distribution to become subcritical. This
correction can be applied to experimentally measured nucle-
ation rates. Moreover, the SDF can serve as a guideline for
designing nucleation pulse experiments. Important param-
eters in these experiments are the pulse duration time �region

I� and ratio between the supersaturation in both regions. Ad-
ditionally, an accurate description of the shape of the cluster
distribution provides useful information for the applied mea-
surement techniques.

In conclusion, the evolution of clusters in the processes
of nucleation and growth can be well approximated by the
SDF. The model is concise and capable of treating any time
dependent problem under the assumption that the time scales
of the experiment are much longer than the induction time of
nucleation. The SDF does not invoke additional constraints
on the cluster size distribution and can be applied to all clus-
ter sizes. For most practical applications, in which the super-
critical clusters are of major importance, the simplified SDF
for n	n� can be used �Eq. �22��. Note that the elaboration in
this paper has been carried out for a purely phenomenologi-
cal model of the free energy of cluster formation. Future
work will focus on the extension of the SDF for alternative
models of g�n�, e.g., mean-field kinetic nucleation theory.24

The validation of the SDF is demonstrated for a nucleation
pulse experiment, but it is expected to be of general validity
for any cluster formation process.

We thank R. Hagmeijer and R. Sidin for discussions and
useful comments.
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FIG. 1. Cluster size distribution ��n , t�: BD equations �solid� vs SDF �short-
dashed line� for the nucleation pulse experiment in region I at t1=10 �s,
t2=20 �s, t3=30 �s, t4=40 �s, and t5=50 �s. The vertical long-dashed
line shows the location of the critical cluster.
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FIG. 2. Cluster size distribution ��n , t� in region II at t6=100 �s, t7

=150 �s, t8=200 �s, t9=250 �s, and t10=300 �s. Other notations, see
Fig. 1.
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