Computer Engineering 2010
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

Analysis and Implementation of the H.264
CABAC entropy decoding engine

Martinus Johannes Pieter Berkhoff

Abstract

In this thesis we present an FPGA software/hardware co-design for
the CABAC decoder. CABAC is the Context-based Adaptive Binary
Arithmetic Coding used in the H.264/AVC video standard. This
standard gives better compression efficiency, but with greater com-
plexity and implementation cost. A large part of this cost comes
from the CABAC entropy coding. The CABAC coding has a tight
feedback loop between the binary arithmetic coding stage and the
context modeler stage of the coding process. This means that the
video stream has to be coded in a sequential way. We attempt ac-
celeration of the CABAC decoding process in a fashionable way on
dedicated programmable hardware. An FPGA implementation of
the CABAC entropy decoding process is used in co-operation with
the decoding software on a Xilinx Virtex 4 platform. Actual syn-
thesis results show that our approach results in a fast and compact
implementation, targeted at the state-of-the-art FPGA devices.

CE-MS-2009-04

T U De I ft Faculty of Electrical Engineering, Mathematics and Computer Science

Analysis and Implementation of the H.264
CABAC entropy decoding engine

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Martinus Johannes Pieter Berkhoff
born in Delft, The Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Analysis and Implementation of the H.264
CABAC entropy decoding engine

by Martinus Johannes Pieter Berkhoff

Abstract

n this thesis we present an FPGA software/hardware co-design for the CABAC decoder.
I CABAC is the Context-based Adaptive Binary Arithmetic Coding used in the H.264/AVC

video standard. This standard gives better compression efficiency, but with greater complexity
and implementation cost. A large part of this cost comes from the CABAC entropy coding. The
CABAC coding has a tight feedback loop between the binary arithmetic coding stage and the
context modeler stage of the coding process. This means that the video stream has to be coded
in a sequential way. We attempt acceleration of the CABAC decoding process in a fashionable
way on dedicated programmable hardware. An FPGA implementation of the CABAC entropy
decoding process is used in co-operation with the decoding software on a Xilinx Virtex 4 platform.
Actual synthesis results show that our approach results in a fast and compact implementation,
targeted at the state-of-the-art FPGA devices.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-04

Committee Members

Adyvisor: Dr.ir. G.N. Gaydadjiev, CE, TU Delft
Chairperson: Dr.ir. K.L.M. Bertels, CE, TU Delft

Member: Prof.dr.ir. A.J. van der Veen, CAS, TU Delft

ii

To my parents, for their unconditional believe in me.

iii

iv

Contents

List of Figures viii
List of Tables ix
List of Source Codes xi
Acknowledgments xiii
1 Introduction 1
1.1 General Introduction 1
1.2 Research scope 1
1.3 Problem statement 2
1.4 Thesis overview e e e 3

2 CABAC encoding and decoding process 5
2.1 H.264/MPEG-4 Part 10 5
2.1.1 Terminology)

2.1.2 TheH.264 Codec 5

2.1.3 H.264 structure 6

2.2 Entropy encoding 6
2.2.1 Binarization 7

2.2.2 Context Model Selection 8

223 MPS/LPS 9

2.2.4 Arithmetic Encoding 9

2.2.5 Variable Length Coder, 10

2.2.6 Arithmetic Decoding 10

2.2.7 Probability Update 10

2.3 Related work e 11

3 Overview of the CABAC decoding scheme 29
3.1 CABAC Encoding Steps e 29
3.2 CABAC Decoding e 29
3.2.1 FFmpeg e 29

3.2.2 Context Model Selection 30

3.23 Codingengine 30

3.2.4 De- Binarization oL 32

3.3 Motivation e e e e e 32
3.4 Conclusion e 33

4 Implementation of the CABAC decoder
4.1 Opverall system description L oo
4.1.1 Introduction
4.1.2 Validationo Lo
4.2 Different parts in the system oL
4.2.1 Hardware Accelerator (cabac decoder)
4.2.2 CPU HW/SW (ppc, bootloader)
4.2.3 APU Controller
4.2.4 Stages in engineering process
4.2.5 Final design and testing L oo
4.3 Conclusion L

5 Simulation and implementation results of the CABAC decoder
5.1 Modelsim simulation and verification
5.2 Results of related CABAC decoders
5.3 Xilinx ISE synthesis and simulation
5.4 Xilinx Platform Studio
5.5 Conclusion e

6 Conclusion
6.1 Summary e
6.2 Main contributions
6.3 Future work

Bibliography
A VHDL
B Benchmark program

C Programming Files

vi

35
35
35
35
36
36
39
39
43
45
46

47
47
47
48
50
o1

53
93
54
54

59

61

87

95

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9
2.10
2.11

2.12
2.13

2.14
2.15
2.16

2.17
2.18
2.19
2.20

2.21
2.22
2.23
2.24
2.25

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Elementary stages CABAC coding 2
H.264 Encoder L 5)
H.264 Decoder 6
H.264 Baseline, Main and Extended profiles 7
CABAC encoder block diagram 8
Binarization in CABAC 8
Basic block structure for H.264 macroblock encoding 11
CABAC encoder block diagram 12
Two hierarchy decoding tree, with regular bin (RB) and bypass bin (BP)

decodingo 13
Basic CABAC decoding circuit units 13

Elementary operations of CABAC decoding and their data dependencies . 14
Pipeline hazards. (a) Data hazard due to context model. (b) Data hazard

due to context selection. (c¢) Structural hazard caused by CL and CU . . 15
Modification of the data arrangement of the context memory 15
Essential parts of the CABAC decoding process, with the different pipeline

stages . ..o 16
Original decoding decision flow 17
Proposed decision flow with look-ahead codeword parsing 17
The proposed CABAC decoder architecture with most probable symbol

prediction oL 18
Architecture of the binary arithmetic coding engine 19
Top level architecture of the proposed CABAC decoding engine 20
Sequential and pipelined bin decoding flow 21
Flow diagram of the CABAC decoding process. The memory operations

are labeled with sequential numbers 22
Decoder algorithm with speculative fetching and renormalization phase . 23
Macroblock memory configuration 24
Software / hardware architecture of the CABAC decoder 25
Block diagram of the double-mode binarization unit 26
Proposed CABAC decoding architecture 27
Arithmetic decoding engine forone bin 31
Hardware accelerator 36
Sequential hardware accelerator 0L 37
CABAC CCU Finite State Machine 38
PowerPC core, the APU controller and the FCM 39
Instruction format 40
Decoded load instruction o 41
Decoded store instruction 41

vii

4.8 The synthesized architecture for the CABAC decoder
4.9 CABAC accelerator and PowerPC platform configuration
4.10 CABAC accelerator and PowerPC platform implemented on the FPGA

viii

List of Tables

5.1 Timing Summary e e 49
5.2 Device Utilization Summary 49
5.3 XPower Analysis Report 49
5.4 Speedupresults 50

X

List of Source Codes

4.1 Load instruction between processor and hardware accelerator 40
4.2 apu_to_cabac.c; Short software to run hardware accelerated CABAC de-

coding e e 41
4.3 Part of the disassembled ELF file. Calling the CABAC hardware acceler-

ator and waiting for itsresult. oL oL 42
A1l aputocabac.vhdl. 61
A2 bshiftvhdl 63
A.3 bytestream ptr_register.vhdlo oo 63
A4 cabac.vhdl e 64
A5 cabac_bypass.vhdl 67
A6 cabactb.vhdl 68
A.7 ff.h264 norm_shift.vhdl L 69
A.8 ff.h264 norm_shift Ips.vhdl 70
A9 getcabac.vhdl 70
A10 get_cabactb.vhdlo 74
A.11 get_cabac_terminate.vhdlo oL 76
A2 LPS.vhdl 77
A3 MPS.vhdl 79
Aldless_than.vhdl 80
A.15 local_cabacstate.vhdl L 80
A.16 lowregister.vhdl Lo 82
AlTmux8x.vhdl e 82
Al8mux 2.vhdl 83
Al9muxx.vhdl e 83
A.20 new_input_bytestream.vhdl 84
A2l new lIpsrange.vhdl oo 84
A.22 new Ipsstate.vhdl oL 85
A23 newmps.statevhdl oL 85
A.24 range register.vhdl Lo 86
A.25substract.vhdl 86
B.1 Benchmark program C-code 87

X1

xii

Acknowledgments

For the past year I have worked with great pleasure on this Master of Science thesis
project at the Computer Engineering Laboratory in Delft. I would like to give special
thanks to Georgi Gaydadjiev, for guiding and supporting me throughout this project.

The support of Bert Meijs, Eric de Vries, Lidwina Tromp and Cor Meenderinck
should not go unnoticed. I would also like to thank Marco van der Leije, Anthony
Brandon and Chi Ching Chi for their good company during a great part of my study.
During my period of study at the Delft Technical University I felt greatly inspired by
Albert Einstein and Ajahn Brahmavamso Mahathera. Thank you.

I also would like to thank my parents and my sisters for their endless confidence in
me. And last, but certainly not least, I want to thank my girlfriend, Suzanne Leeflang
for her love and support during the period I studied Computer Engineering.

Martinus Johannes Pieter Berkhoff
Delft, The Netherlands
February 25, 2010

xiii

Xiv

Introduction

1.1 General Introduction

H.264 represents the state of the art in current video coding standards. In the consumer
electronics market it is more often adapted. We see movies in the cinemas, we rent
movies on DVD or Blue Ray disks and we watch movies and our popular series every
evening on the television. Nowadays we can also download our favorite movies and series
from Internet and watch them on our computers, HD-television or mobile device. We
can even record our own movies with a digital camcorder, edit them on our computer
and show them to our family at birthday parties.

In the last couple of years there was a tremendous shift in the world of consumer
video from VHS to DVD to Blue Ray and to even more exotic standards found on
Internet. The demand for better quality pictures, smaller sizes, lower energy consump-
tion, lower cost of appliances and watching movies every time, any time, anywhere has
driven this shift to even better video compression standards even further.

To provide better compression of video images the Moving Picture Experts Group
and the Video Coding Expert Group (MPEG and VCEG) have developed a successor
to the earlier MPEG-4 and H.263 standards. The new standard is called Advanced
Video Coding (AVC) and is published jointly as MPEG-4 Part 10 and H.264[14, 16].
It achieves very high compression efficiency compared to earlier standards[19]. It can
handle a wide range of applications and is more friendly to networks such as the internet.

The downside of the increased compression efficiency is that the decoder complexity
also grows. Context-based Adaptive Binary Arithmetic Coding (CABAC) is one of the
two alternative entropy coding methods specified in H.264. The other alternative is
called Context-based Adaptive Variable Length Coding (CAVLC). The H.264 standard
improves the compression efficiency up to 50% with CABAC entailing a frame rate
increase of 25% to 30% with bit rate reduction up to 16% [15].

1.2 Research scope

The encoding and decoding of video images can be done on many very different
platforms. Encoding of video images is usually done on high performance computers,
since it is required only once to encode the master video sequence to a format suitable for
distribution. The decoding of the video sequence is done on many different systems, from
general purpose computers to set-top boxes, mobile phones and hand held media players.

2 CHAPTER 1. INTRODUCTION

In this thesis we focus on the design of embedded hardware which improves decoding
performance. We focus only on the entropy coding on the decoding side. That implies
that the application will not be executed by a high performance computer, but rather
on an embedded system which has to deal with limited area, speed and power. Our
main goal is to make the application on the given embedded platform as fast as possible,
but within the available boundaries. Power or energy consumption is in our case not as
important, because we are not depended on battery power, but we assume appliances
connected to the energy grid. In other cases such as embedded systems for mobile
devices, energy consumption will be more important.

1.3 Problem statement

The encoder and decoder complexity is big as there is a very tight feedback loop between
the context modeler and the arithmetic coder [2]. At the decoder side the feedback loop
is even tighter than at the encoder side, because a model is needed to decode a symbol
and the decoded symbol is needed to calculate the next model. This can be seen in figure
1.1. The main bottleneck is the arithmetic decoder since it has to process all encoded
data in a sequential way. And there is no way around the arithmetic decoder, all the
data in the bitstream has to pass the entropy decoder in the H.264 scheme before the
other blocks such as inverse DCT and motion compensation can start decoding.

Update probability estimation

Y I

Symbol _| Context Probability Coding
Binarization Modeling Estimation Engine

Adaptive binary arithmetic coder

Figure 1.1: Elementary stages CABAC coding

The problem becomes bigger for higher bit rates and resolutions [2]. A video
sequence with a resolution of 352x288 pixels at 30 frames per second has to produce
about 1.5 million decoded symbols per second. For an HDTYV resolution of 1280 x 720
at 30 frames per second this will increase to up to 50 million decoded symbols per second.

In this work we present an exploration of the hardware acceleration of the CABAC
decoder. As is most common in the university environment, we did this with an FPGA
implementation. Algorithms can be speed up by hardware acceleration by exploiting
parallelism. But in the CABAC part of the H.264 coded there is little parallelism. We
researched different techniques such as (advanced pipelining, speculative execution and
data fetching). We engineered an CABAC decoder of our own on a FPGA based on a
hardware and software co-design.

As all other authors with related work done on CABAC entropy decoders have

1.4. THESIS OVERVIEW 3

chosen to only synthesize their solutions, and therefore have only theoretical values. We
decided to actual implement the CABAC entropy decoder into real FGPA prototyping
hardware. The timing values measured are therefore real-life values, measured with an
internal timer.

The project is done using an on beforehand chosen methodology. We have chosen
to use a bottom-up approach on building the hardware / software co-design CABAC
decoder implementation. The first iteration only contains a little part of the CABAC
algorithm in hardware. First the interfacing with the software was tested and the
performance was measured. In every following iteration the hardware CABAC decoding
core was enlarged with more specific tasks. Only the time available for the MSc thesis
project was the limiting factor. Further researchers can take off were we stopped.

1.4 Thesis overview

The remainder of this thesis is organized as follows. Chapter 2 provides the background
of the CABAC encoding and decoding process. It introduces the different parts in the
CABAC algorithm and gives us a theoretical platform. It also provides the related work.

Chapter 3 presents the overview of the CABAC decoding scheme. In this chapter
we emphasize more on the practical approach of our CABAC decoding scheme. We also
provide an analysis of the de-binarization stage of the CABAC decoder and conclude
this chapter with our motivation for the proposed implementation.

Chapter 4 gives the detailed description of the CABAC decoder we implemented in
hardware. In this chapter we describe the hardware and software co-design and how the
implementation was tested.

Chapter 5 provides the verification and simulation results of the tested implementa-
tion of the CABAC decoder.

Chapter 6 gives a summary of our conclusions, an overview of the main contributions
and presents directions for future research.

CHAPTER 1. INTRODUCTION

CABAC encoding and
decoding process

2.1 H.264/MPEG-4 Part 10

2.1.1 Terminology

To provide a better understanding of the H.264 standard it is important to explain the
terminology used in the H.264 standard [14]. A coded picture exists of an encoded field
(of interlaced video) or a frame (of progressive or interlaced video). Each coded frame
has its own frame number and each field has its picture order count, which defines the
decoding order. Reference pictures can be used to inter predict further coded pictures.

A coded picture is made of a number of macroblocks. These macroblocks each contain
16 x 16 luma samples and the associated 8 x 8 Cb and 8 x 8 Cr chroma samples. The
macroblocks are arranged in slices. A slice is a set of macroblocks in raster scan order.
An I slice may only contain I type macroblocks, a P slice may contain P and I type
macroblocks and a B slice may contain I-type and B-type macroblocks. Intra prediction
is used to predict I-type macroblocks from decoded samples in the current slice. P-type
macroblocks are predicted from reference pictures using inter prediction. The prediction
of each macroblock is done from one picture. The B-type macroblocks are also predicted
using inter prediction from reference pictures, but two pictures may be used to predict.

2.1.2 The H.264 Codec

+ ™ D X
Fn i |—"> T +—>» Q |——¢—>» Reorder —» g;gggg > NAL
(current) N
S mE
et ’—’ MC Inter
(reference)
(1 or 2 previously P
encoded frames)
e |, s
< prediction Intra
prediction
F + D
u
n Filter " L. at
(reconstructed)
+

Figure 2.1: H.264 Encoder

6 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In the coding standards h.264 does not define an encoder decoder pair but
rather defines the syntax of an encoded video stream to be decoded properly. This
means that everyone is free to design his or her own hardware as long as the en-
coded video stream can properly be decoded by any decoder. Most of the encoders and
decoders will have similar basic functional elements as shown on figure 2.1 and figure 2.2.

The encoder has a forward dataflow path and a reconstruction dataflow path. The
decoder has only a reconstruction dataflow path. We will look deeper into de decoding
dataflow path.

Inter
n-1 MC E—
(reference) T P
(1 or 2 praviously Intra
encoded frames)
Intra
prediction
A
uF', F o) X
F “—— Filter { e T & a Reorder < EOUORY L NAL
(resonsiricted) NS decode

Figure 2.2: H.264 Decoder

The decoder receives a compressed bitstream from the network abstraction layer
(NAL). Before the NAL the video data is stored on a harddisk or is being transmitted
over a transmission line. First the compressed data has to be entropy decoded to produce
a set of quantized coefficients X. These are scaled and inverse transformed to produce a
residual difference block D/,, identical to the D/, shown in the encoder. From the decoded
header information, the decoder creates a prediction block PRED. This prediction block
is also identical to the prediction block PRED in the encoder. To produce uF),, PRED
is added to DJ,. And finally to create each decoded block F), uF) is filtered.

2.1.3 H.264 structure

The H.264 standard defines three profiles. The profiles support a particular set of cod-
ing functions as can be seen in figure 2.3. The baseline profile supports intra and
inter-prediction coding and entropy coding with context-adaptive variable-length codes
(CAVLC). The main profile includes support for Context-based adaptive binary arith-
metic coding (CABAC), interlaced video, inter coding using weighted prediction and
inter-coding using B-slices. The extended profile adds modes to enable efficient switching
between coded bitstreams and improved error resilience, but does not support interlaced

video and CABAC.

2.2 Entropy encoding

As could be seen in figure 2.1 on page 5 the last step of the encoding process is the entropy
encode. The input frame (F,) is processed in a series of steps towards residual (difference)
blocks (D,,) and transformed and quantized to X. After a reorder step the macroblock

2.2. ENTROPY ENCODING 7

High Profile

| Main Profile |

Adaptive transform

[4x4) or (3x8)
- /-

HYS weighting matrices

B slice s -
~ residual color transform

Weighted prediction™,

7
s Data Partitioning

i .
i S| slice e A predictive lossless coding
! - \
| SP slice I'slice
‘.
\
A
_\.
\'\ % Flexible macroblock arder /
~, \._Redundantslice 7
~.)

e i —

Figure 2.3: H.264 Baseline, Main and Extended profiles

units are to be entropy encoded to be sent to the Network Abstraction Layer (NAL).
The compressed bitstream from the entropy encoder is made of the entropy-encoded
coefficients and side information to decode each block within a macroblock. The side
information includes prediction modes, quantizer parameters, motion vector information
etc. The compressed bitstream is sent to the Network Abstraction Layer for transmission
or storage.

In the main profile CABAC can be selected for the entropy encoding process. The
alternative is CAVLC. When CABAC is selected for the entropy encoding process, the
syntax elements are routed to a CABAC encoding algorithm to achieve good compression
performance. This is done by:

e selecting probability models for each syntax element according to the elements
context;

e adapting probability estimates based on local statistics and
e using arithmetic coding rather than variable-length coding.

As can be seen from figure 2.4 the CABAC encoding process involves the follow-
ing stages: binarization, context model selection, arithmetic encoding and probability
update.

2.2.1 Binarization

In the first stage of the CABAC entropy encoder the binarization stage maps non-binary
symbols to a binary sequence. Most of the syntax elements that are to be encoded are
represented by symbols, some syntax elements are represented by a binary code. Because

8 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

hin value for comtext made! update

S—

comext |

loap over } ¥ trien vaaleie,

son-hinary valued hin
symsar element string bins hin Context | eomest model I::eg;:.ar
i odi
Modeler Fn inf
il coded bity
. regular regular
SR £
element | H Dirsireant
T > L — ipass gl
binaiy Lll'n'n'ur.'d T . Bypass Ir-mj,a,_r hitg
sylier elemen! L P e
: hin value Coding Engine

Binary Arithmetic Coder

Figure 2.4: CABAC encoder block diagram

the CABAC encoder is a binary encoder only binary decisions are encoded. The process
to binarize a symbol into a binary code is very similar to the process of converting a
data symbol into a variable length code.

Symbol e Mapprng fo a binary sequence,
e.q., using the unary code free;
] 1) .
+ Appliesto all non-binary syntax
1 01 elemnents except for macroblock
2 |ood type _
3 YTE « Ease of implementation
+ Discriminate between binary
4 ooo0oA decisions (hins) by their position
5 000001 in the binary sequence
= lsage of different models for
& poaooot different bin_nurm in the table-
based arithmetic coder
Bin_num 1234567 ..

Figure 2.5: Binarization in CABAC

An example of a binarization is given in figure 2.5. All of the binarization schemes
are defined by the standard.

The binary code the binarizer gives for one symbol encoded syntax element is called a
bin. A binary valued syntax element is bypassed from the binarizer, because it is already
a bin. The binary code, the bins, is then further encoded prior to transmission.

2.2.2 Context Model Selection

For each bin that comes from the binarization stage the context model selection stage
gives that bin a context model [5, 3]. The context model is chosen from a selection
of available models and depends on the statistics of recently coded bins. The context

2.2. ENTROPY ENCODING 9

model stores the probability of each bit in the bin being 0 or 1.

All of the context models for each syntax element are predefined in the standard.
There are almost 400 separate context models for the various syntax elements. At the
beginning of each slice the context models are initialized to an initial value. These
initial values depend on the initial value of the Quantization Parameters (QP). These
parameters have a significant effect on the probability of occurrence of the various syntax
elements. The encoder may also choose one of the three sets of initialization parameters
for the context model selection at the beginning of each slice to allow better adaptation
to different types of video content. After each slice, the values of the context model
selection stage are re-initialized [16].

2.2.3 MPS/LPS

Some of the bins encode a value that is equally probable. For this sort of encoded
symbols the probability modeling used by the context model selection would be useless
and even wasted overhead. As can be seen in figure 2.4 there is a bypass mechanism that
allows bins to bypass the context model selection stage and go directly to the arithmetic
encoding.

2.2.4 Arithmetic Encoding

Whether the bins are bypassed or are accompanied by a context model, all the bins
have to be arithmetically encoded [9, 7]. The coder has been designed to facilitate
low-complexity implementations of the arithmetic encoding and decoding. But although
the simpler complexity of the coder, it provides improved coding efficiency compared
with CAVLC.

The arithmetic coder is described in the H.264 standard and has three distinct prop-
erties:

e Probability estimation in CABAC is based on a table-driven estimator using a
finite-state machine (FSM) approach with transition rules. Each probability model
in CABAC can take one out of 64 different states with associated probability values.
These values are found in the rLPS table.

e The current state of the arithmetic coder is quantized to a small range of pre-set
values. At each step in the encoding process a new range is calculated. This makes
it possible to have a lookup table for the calculation of the new range every step
in the arithmetic coding process.

e There are two coding engines available. A regular coding engine and a bypass
coding engine. The bypass coding engine is used for syntax elements with a near-
uniform probability distribution. The chance of each syntax element in that group
appearing is equal. The bypass coding engine is a simplified version of the regular
coding engine.

10 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

2.2.5 Variable Length Coder

A variable Length enCoder (VLC) maps input symbols, syntax elements, to a series of
codewords. These codewords are of variable length. All of the codewords must have an
integral number of bits. But probabilities are almost never an integral number of bits.
This makes VLC a sub-optimal solution.

The most occurring syntax elements are mapped to the shortest codewords, while
syntax elements that are less common are mapped to a longer codeword. An example
of Variable Length Coding is Huffman Coding. Huffman and Huffman-based codes are
used in H.264 but have some serious disadvantages.

One of them is that the probability table which is used to map the syntax elements
to the codewords has to be known by both sides. This creates extra transmission
overhead and reduces compression efficiency. To overcome this problem pre-calculated
Huffman-tables can be used which are defined in the standard. It reduces transmission
overhead, but the probability-table is not as optimal as the one calculated at the end of
the video sequence.

Another disadvantage is that Huffman-based codes are very sensitive to transmission
errors. An error in the bitstream can cause the coder to lose synchronization and fail to
decode subsequent codes correctly.

2.2.6 Arithmetic Decoding

Because the use of integral number of bits with Variable Length Coding, this coding is
sub-optimal. The compression efficiency is extremely poor when symbols have a proba-
bility higher than 0.5. This can best be coded with a single bit, but the error will be high.

Arithmetic coding provides an important and practical alternative to Variable
Length Coding. Arithmetic coding can more closely approach the theoretical maximum
compression ratios [20]. An arithmetic coder converts syntax elements, or bins, into a
single fractional number and can therefore approach the optimal fractional number of
bits required to represent each symbol.

After the bins have been arithmetically encoded the coded bits form a bitstream.
This bitstream is passed to the Network Abstraction Layer for transmission or storage.
If the bins have been arithmetically encoded using the regular coding engine and not the
bypass coding engine, the selected context model has to be updated for the following
bins to be encoded.

2.2.7 Probability Update

Successful entropy coding depends on accurate models for symbol probability. If the bins
have been arithmetically encoded using the regular coding engine the outcome must be

2.3. RELATED WORK 11

fed back to update the context modeler. E.q. if the resulting bin value was 1, the
frequency count for that particular context model is increased.

2.3 Related work

In this section we will discuss previous research on the topics discussed in this thesis.

In [19] the author provides an overview of the technical features of the H.264/AVC
standard. It describes profiles and applications for the standard and outlines the history
of the standardization process. H.264/AVC is the newest video coding standard of
the ITU-T Video Coding Experts Group. Figure 2.6 shows the basic coding structure
for H.264/AVC for a macroblock. The input video signal is split into macroblocks.
Macroblocks are associated to slice groups and slices. After that each macroblock is
processed. Parallel processing of macroblocks in different slices is possible. The coder
consists of spatial and temporal prediction, transform coding, quantization and finally
entropy coding. Inside the encoder exists a decoder to make the prediction and motion
compensation more efficient. The entropy coding is where the CABAC coding takes
place. The decoding of a coding stream is the inverse, with first the CABAC decoding
stage.

Input Coder
yideo Control Control
Signal ™ ;)
|L4‘%I\I-I g i ". + """""""""""""" * Data Y
FCLTTTTRE 2 \
F D Transform/ \
- —) .
u! b Scal ./Quant . B Quant. R
= e e ettt ieteletuleleit Transf . coeffs’,
I :] " -] :
Split into ; Decoder L., Scaling&Inv. |
Macroblocks ' ' Transform
16x16 pixels : i | A i .
) o ; ' ; i “ntropy
AR : Y i Coding
]] I]
i i ! Deblocking | !
I ntt P I
' ! Intra-frame Filter |
i l Prediction !
Motion - i
Compensation i
Motion
Data
Motion

Estimation

Figure 2.6: Basic block structure for H.264 macroblock encoding

In [6] the author describes the Context-Based Adaptive Binary Arithmetic Coding
(CABAC) of the new H.264/AVC coding standard. In figure 2.7 the CABAC encoder

12 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

block diagram is shown. The different stages in the encoding process are shown. First
the binarization stage of converting a syntax element to a binary string, a bin. The next
stage is the context modeling stage where the bins are assigned a model probability
according to the model probability distribution. The outcome of each context model
prediction is dependent on the result one bin before. The sequential feedback loop
makes the coding process hard to parallelize. The final stage is the binary arithmetic
coding stage. Here the bin values are coded into the bitstream. The binary arithmetic
coding stage is based on the principle of recursive interval subdivision. After the final
stage the bitstream is ready to be stored or sent over a network. The decoding of the
bitstream is the inverse of the encoding.

Bin vadue for context madel update

aon-binary valued bin foop over Y bin value, H
syiitax element Bi . siring bins bin Context | context mnde_!__ Eécnad“l:]ﬂ r H
inarizer ———» Modeler - co inE :
& coded bits

regular regular

> bypass bypass
binary valued | Bypass coded bits:

synlax ?’h"”l{"l’” . . .
- bin value "| Coding Engine

syntax

element bitstream

Binary Arithmetic Coder :

Figure 2.7: CABAC encoder block diagram

In [33] the author proposes a high performance hardware architecture of the CABAC
decoder. The paper takes advantage of one of the characteristics of CABAC decoding.
The occurring frequency of certain syntax elements make it feasible to accelerate the
most occurring bins in a macroblock. The new decoding architecture can decode two
regular bins together with one bypass bin in one cycle. In figure 2.8 the organization of
the elementary decoding engines for one bin is shown. It shows a two-hierarchy decoding
tree for decoding two regular bins RB1 and RB2; and a two-hierarchy decoding tree
for decoding two bypass bins BP1 and BP2. In figure 2.9 the author shows his basic
decoding circuit kernel. It shows the four decoding engines together with the control
signals. Ctx1 and ctx2 are the two context models for RB1 and RB2. The main points
of the architecture are:

1: Four different values of rLPS are prefetched in the previous cycle. This means that
in the current cycle only two bits of range has to be used to select the right rL.PS.

2: The decoding procedure for RB2 is carried out in parallel with the decoding pro-
cedure of RB1.

3: The most significant bit (MSB) of the result is used to determine if MPS of LPS
happens. This saves a nine bits comparator in the decoding engine.

13

2.3. RELATED WORK

Figure 2.8: Two hierarchy decoding tree, with regular bin (RB) and bypass bin (BP)

decoding

rngEeffeel dec_mnde ol rngEeffeel dec_mnde
¥
~1+ RB1 decoder BP1 decoder —
TRl
2 smtc | me reneweg range rew . .
ange_n g e modc
l o Tl l— ol fel_nidaw
L4 r L
dec mode -
x|l RB2 decoder BP2 decoder
range new
RE PN ey wilTei_prw
: .-.|'|'a._-|_-\.eu mgn|_cuisi [11:k] '-'"__'55’1 Lo
RE2 signdr exisl offeel new
L ¥ l 1 4
reghinnum
— Output
—
dec bp mune
REB l le mn;p!_mui l\l‘l’ml_r-:\t l':ili l‘:;m

Figure 2.9: Basic CABAC decoding circuit units

14 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [32] the author proposes a new approach to the CABAC decoding procedure.
Since CABAC decoding is highly sequential and has strong data dependencies, it is
difficult to exploit parallelism and pipelining. By modifying the operation chain the
author was able to enable both parallel operations and pipelining. In figure 2.10 the
elementary operations of the CABAC decoding process are shown. Figure 2.11 shows
the proposed pipeline arrangement, where a data hazard exists due to the context
model. It is resolved by forwarding the changed context model. The data hazard
caused by the context selection is avoided by inserting a stall. This stall cannot be
avoided. The structural hazard caused by the context model loading and the context
model update are resolved by the context model reservoir. Several context models are
simultaneously loaded from memory, while context selection is performed in parallel.
In figure 2.12 the data arrangement is shown of the context memory. By modifying
the data arrangement in memory and utilization of a context model reservoir (CMR)
two stalls from the proposed pipeline arrangement are removed. Figure 2.13 shows the
essential parts for the proposed CABAC decoding architecture.

VaaselS)

Context selection

[Binarization matching | [Context model update |

_ Tentative cycle
beundary

(a) Data dependencies among elementary operations

decoding

|:> Control flow —3» Data flow

(b) Twofold data dependencies among bins

Figure 2.10: Elementary operations of CABAC decoding and their data dependencies

2.3. RELATED WORK

15

« forwarded as ¢;

(a)

%'ﬂ’,m Lookup table ..

i b

Context index
forwarded

(=] (o]

Figure 2.11: Pipeline hazards. (a) Data hazard due to context model. (b) Data hazard

due to context selection. (c) Structural hazard caused by CL and CU

mm“% 8 bytes 4)|

0
8 Ci(s3) Cifs4)
. 3
120 | 1 Cil529) i
128 | | Gl)
(@)
e 8bytes ————
0 Ci(s1)
8
16 Ci(s3).
. :
. .
216] Cils)
224 | Glsw) !
232 Cilsao) /
. 0 7
: : Unused space
(b)

Figure 2.12: Modification of the data arrangement of the context memory

16 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

Cs/CL BAD /BM cu

G (s)

Cils) '
CMR

Voase(5) —»@—»| Context Memory

§ Context Yineri ¢ ¢
Selection 3
Binary | 1

Arithmetic

Context Memory

h 4
.~

Decoding] b
A Binarization »valid
i @ »@—> Matching »yal(s)

forwarding paths Logic

| Syntax element type decision .
[(within the control) i

Figure 2.13: Essential parts of the CABAC decoding process, with the different pipeline
stages

2.3. RELATED WORK 17

In [31] the author present a high throughput architecture for CABAC decoding.
In figure 2.14 and figure 2.15 the new proposed architecture can be seen. To speed
up the inherent sequential operation, the processing bottleneck is broken down by a
look-ahead codeword parsing technique. This technique is used on the segmenting
context tables with cache registers. The look-ahead parsing detection (LAPD) is used
to detect two conditions. If these conditions are met, a second bin is generated in
the same cycle. This also means a more efficient way to access memory is needed.
This is done by partitioning one context table into multiple segmented context memories.

Comtesxt Update context infomation

Model

rLPS wmble

Probability fiin

hlodel

4| Bitstream manager
Renomalize

prohability model

Figure 2.14: Original decoding decision flow

Context Updat: ?‘1

Model

tLPS table

Probability
Model

TW{ Bitstream manager

Figure 2.15: Proposed decision flow with look-ahead codeword parsing

+Bin 2

18 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [4] a CABAC decoder using most probable symbol prediction is proposed. Figure
2.16 shows the proposed CABAC decoder. Analysis of variable changes shows MPS
decoding a bin is usually followed by no renormalization, while a LPS decoding is always
followed by a renormalization. On this conclusion a decoding engine is proposed which
decodes two bins at a time. The first binary symbol is decoded as the conventional
scheme and the second one is decoded with predicting that the first symbol is the
MPS. The decoder includes two BADs and reads two sequential context models at a time.

| Memaory
Context Contexineg
M N Encoded bit-sfream
Rangey " Offsety
! |
1st unit 3 .| Renormarzation
Divide Rangey nic if Py s = Dx 100
qh .rs \gl- Qh_.l -
L am Offsetu, i
oo - ; — H .1 " i 2nd unit
- ivide R into
CDN..GTE R"I'IJI'S& RN-ILI'S
R s & Offseta T
rF v
SUB if ;HN-INIS
CLZ =
neaded -1 Compare
\L Rriiars & Offsetye
" Yy ¥
Bame S amognt, .| Barel oLz SUB if
Shifter ¥ Shifter nesded
Ricet Check Or5Elua L \l.
waldation
Decoded biny Barre | sni amounty.: .| Bamsl
Shifter [~ Shifter
Pradiic R Diecoded biryay CisElg

k. r h L r
Selaction |

Figure 2.16: The proposed CABAC decoder architecture with most probable symbol
prediction

In [5] a compact hardware architecture for CABAC decoding is presented. The
architecture as shown in figure 2.17 uses the similarities between the encoding and
decoding algorithms to achieve remarkable hardware reuse. Also a dynamic pipeline
scheme is implemented which increases the processing throughput. Dual-port SRAM is
utilized to store the 399 context models. The relative context is updated each time a
context write appears. The three layers of registers are correspondent to six tasks and
belong to three pipeline stages. In the best case a bin is encoded or decoded in one
cycle, in the worst case in two cycles.

2.3. RELATED WORK

-
Stage 1 ¥ —
L —p.l SRAM ouput register (CR) I | Inter-s register_ 2 |
| |
Stage 2
L
Stage 3 -{
[inter-s register_10w) |
; |

Figure 2.17: Architecture of the binary arithmetic coding engine

20 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [34] the author proposes an efficient CABAC decoding architecture using
parallelism. The parallelism includes line-bit-rate decoding, multiple bin arithmetic
decoding and an efficient probability propagation scheme. Figure 2.18 shows the top
level architecture of the CABAC decoder. The decoding is done at line-rate in stead of
fix bin rate decoding. This saves large bin buffers.

context models

RAM
I comext BAM bus
I
local update tus
v
local context local context local contexs: local comtext
rasisters reFisters registers registers
inira mode motion info significanca coefficient
maodule maodula map madule maodule

l l l Jocal probabiliny bus l

LS valMPS, byp,

munltiple bins arithmetic decodmg enzine % biy lps

MMBAD)

input bi syniax swfrc':Irauge."offsEt updats

header decoding enzme +

Figure 2.18: Top level architecture of the proposed CABAC decoding engine

In [35] the author presents a novel hardware design for the CABAC decoding engine.
The data hazards are analyzed in current CABAC decoding and are resolved using
pipeline-based architecture. Standard look-ahead technique is used in parallel with a
context maintainer. Figure 2.19 shows the sequential and the pipelined bin decoding.
The processing is separated in two stages. Stage 1 is responsible to provide probability
information. Stage 2 fulfills the arithmetic decoding and context updating. Stage 1
is performed twice, predicting a LPS and a MPS. The architecture can perform one
bin decoding per cycle, but the cycle time can be twice as small as the sequential bin
decoding.

2.3. RELATED WORK

Bin(i) Bin(i+1)
Gen Looku Looku . Update Gen Looku Looku : Update
ctx_idx | ctx_table prob_rat]ajle‘ AC dec engine ‘ ctx{tébJeT chi_idx ‘ ctx_table ‘prob_ta le‘ AC dec engine crxlitable
a) Sequential bin decoding
Bindi)
Gen Looku Looku . Update
ctx_idx | etx_table |prob_table AL dec engine mxlitab]e !
|'J_hi||-=" _] T T’nl?%,] Bin(i+1)
i *_1dx | etx_table |prob_table . Update
ACd P r
| bin=1 Gen Looku, Looku oc engine ctx_table
\ Dy ctx_idx | etx_table |prob_table
- I QQE F I %ﬂk.l F Bin{i+2)
bin=0 che 1dx | ctx_table Jprob_table AC dec engine | Update !
bins. =1 Gen Looky, Lookuy g cbe_table
1y chi_1dx | etx_table prob_tag:]e
| | | | L.
] t(k) | t(k+1) | t(k+2) | t(k+3) | kel

b) Pipelined bin decoding

Figure 2.19: Sequential and pipelined bin decoding flow

21

22 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [2] the author presents an innovative hardware implementation of the CABAC
decoder. Through the use of speculative prefetching and aggressive pipelining a decoder
capable of decoding one syntax element per clock cycle was achieved. Figure 2.20 shows
the original decoding flow diagram. The memory operations are labeled with sequential
numbers. Figure 2.21 shows the decoder algorithm after speculative fetching all next
possible states. This is done to make sure all potentially needed information is available
with a single read operation. The decoding calculations can now start after one read
operation.

mp= =rmp:Ta.'|:~la [modal]] :D
Model s sbabe =| skataTablas [medel] |
cLES =[rlpaTablelstats] [£zangs!]] @)

value = walua

IAOgS. = IANge. -

result = !mps
result = mps halus = walua - ranga + rLP3
LP3
stabsTabla 4

1]

While {ranga < %) Renormalization
range *= 2
shiftk new kit from stream in wvalua

Figure 2.20: Flow diagram of the CABAC decoding process. The memory operations
are labeled with sequential numbers

2.3. RELATED WORK

23

Model |

mpis = ﬁﬁp:TaJ:l:. [m=dal]
skatae =

naxtStakchps
naxt Stakslps

skataTable[nodal] d:]

spec_naxtStabaMPS [medal]
spec_naxtStabtalPS [medal]

rLFE =|spec_rlpsTablal[modsl] [£iranga)] ‘

rasulk = mps

valus = wvalus

rangs = range - rLFE
statsTable[ncdael]= 3)
naxtStakchps |~
spac_rlpoTabls [medel] = }_31
rLpsTable [nextStataHps] ‘__g_)

I o

rasult = !mps

valua = valus - range + rLFE
ranga = rLP3
stataTabla[medsl] =
naxtStatalips

spac_rlpsTabla [modal]= |:3
rLpsTabla[naxtEkatalps] (£
if [skhabe==0}

npsTabls[medel] = !mps (3}
T

&
-

L=

@)

spec_naxtStakeMPE[nodalll=
spec_nexkStabelPE[ncodal]=

naxkStatsMEFE[stats] ('2:]
naxkStatsLPE[stata] |

¥

Figure 2.21: Decoder algorithm with speculative fetching and renormalization phase

24 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [1] a hardware accelerator is proposed for the CABAC decoding. A new efficient
memory system is proposed for easy integration with other video components. In figure
2.22 such a macroblock memory is shown. The memory is a dual-port SRAM and stores
the syntax elements of 24 macroblocks. These are also used by motion compensation
and intra prediction. The memory is read in a 2d-wave fashion. When the decoder
starts to decode macroblock A25, it will first read in macroblock A4 into memory
and write macroblock A24 into memory. This is used to adequately use the motion
compensation and intra prediction subsystems.

Al Al A3 A4 Af A1l A2 i
fLxH] (M2} (M3} (M4} (17 S B (M213 | Currszt
A, s
» 4 M2

Fead from macroblock memary gy

. " it2 to macoblock memory from ges neighbor block
to g2t neighbor block

M3

Al Al A3 A4 Af A AT
ML [(M3 M) | ME e | T T T T (M7
. M4
AL |aM |axn N '
A3 | (M4 | Cument Fead from macroblock memaory
,-“', to get neighbor block M5
Write to macroblock memary from g2t neighbar block
MT
Al A A3 A4 Af A Al
0 O 5 A T S I 0 T I) T (MIT
5
An A [an A K l
A3 M Ly | Comenr FPeead from macroblock memory :
f-" To gat meighber ock

Write to macroblock memory fom get neighbor bleck

Figure 2.22: Macroblock memory configuration

In [18] the author proposes a system-on-chip software / hardware co-design of the
CABAC decoder. In figure 2.23 the software / hardware architecture of the CABAC
decoder can be seen. A network abstraction layer (NAL) is used to communicate
between the software and the hardware. Three tables, the state transition table, the
rangeLLPS table and the initialization table are implemented in combinational circuits.
A dual-port SRAM is used for reading and writing the context models, which can take
place at the same time. Residual data for a macroblock is stored in a single-port SRAM.

2.3. RELATED WORK

‘ Softwarahardwarc : :
interface CABAC crl
i; ifsmi)
Contesxt A
model k=" acu —ny Ea—
(SRAM) [STaEte ransinon tanie |
K {combinational
CABAC circuit}
Residual Data,_path rangTanlPS Table
(SRAMY [+ AGLY E——1 = {combinational
i circuit’}
Tniticlizofion tablc
M (combinational
circuit)

Figure 2.23: Software / hardware architecture of the CABAC decoder

26 CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

In [13] presents an architecture to decode CABAC and CAVLC. Combining two
decoding modes the architecture saves space as the logic and storage elements are
shared. In figure 2.24 the block diagram of the double-mode binarization unit can be
seen. It consists of four stages: 1. selection stage, where input data are submitted
through dedicated ports, 2. mapping stage, where syntax elements are maps onto their
binary representations, 3. assembling stage, where all code strings are forwarded in the
next stage on one of two paths. The first path supports CABAC mode, the second
path supports the CAVLC mode. 4. NAL stage, where the code streams produced
by the binarization and CABAC paths are combined and encapsulated into network
abstraction layer (NAL) units.

todzaw v [GAAGT) R BaRT """ Odmi®o Godesrean fom
_ TraiingOnes _—» Ly Total Zerss Yo ' 24120 I CABAG pelh CABAG
»Total Coefficierts -—» ¥ ! =1 ! ‘et !
» Significance Map < » AL i |» Run_Before i r [S i
L it)
g i Tnvall |
v B Jo/ TotalCoutt 1 | i v |
Residual |, - 2 . | TralingOnes I 3) N . |I
block i 5 1 L2] I .
16x16 * R e i H £ ! v |
bits fg suffixLength ’I!—¢ VT8 I o : %
=l I..LENF" & Sign =. ™ g ./ Start code » » |2 |y Elementary
* o e el w l‘mm. Stream
Syntax \ | suffix |--» ExpGolomb || z e -~ NAL - g
Elemanis g ; /
£ + N r---_---‘-i 5 valid " header "
f g [Ma"'?"ni?)b Unay v T % *
H / é) L ueT N Slice-level 5 .‘ - /" Detect
L 4+ & r ype 1 control ' E g \ series of
FSM . -“b-:smNB Type § > i° ZEros
| I L
« Block counter [CABAC tins 114 FSM-NAL
« Partitioncounter < » FSMdy 1 ¥ FSMdy 2
- Stage 1 - Stage 2 -— Stage 3 -— Stage 4 -

Figure 2.24: Block diagram of the double-mode binarization unit

In [12] an FPGA architecture for CABAC decoding is proposed. It consists of a
multi core system. An FPGA accelerator takes care of the arithmetic decoding while
a large number of microprocessor cores implement the parallel tasks. The parallel
tasks are at the macroblock level and the frame level of the H.264 algorithm. The
macroblocks can be decoded in a diagonal way, which enables parallel decoding of
the macroblocks. In figure 2.25 the proposed architecture can be seen. The archi-
tecture has two pipeline stages, with very short cycle length. The critical path is
defined by memory access and range updating. The program memory is controlled
by the fine-grain control and context managing, the range updating by the state memory.

2.3. RELATED WORK

{> High-level |
- contral

e
Fine-grain |
control range & low
& normalization
Context
managing

bit input state |[LPS LUT|
updating | rLPs
& FSM ﬂ
range

s
updating

range & low updating

[11 1 [1
nt":its range pre-low—

(a) (b)

Figure 2.25: Proposed CABAC decoding architecture

28

CHAPTER 2. CABAC ENCODING AND DECODING PROCESS

Overview of the CABAC
decoding scheme

3.1 CABAC Encoding Steps

As could be seen in figure 2.4 in the previous chapter the CABAC encoding process
consists of the following three steps:

e binarization;
e probability modeling;
e binary arithmetic coding.

In the binarization process of the CABAC encoding a given non-binary valued
syntax element is uniquely mapped to a binary sequence [32, 31]. This binary sequence
is called a bin string. If the syntax element is already a binary sequence this binarization
process can be bypassed. In the probability modeling process the bin string enters and
a probability model is selected. The choice of the probability model may depend on
previously encoded syntax elements or bins.

After the selection of the probability model the bin enters the arithmetic coding
process where the bins are entropy coded into the bitstream. In the binary arithmetic
coding process also the model update takes place for the subsequent bins in the proba-
bility modeling process. The two last steps can also be bypassed if there is no need for
a probability modeling. This can be the case if there is equal probability of the value
of the syntax elements. The encoding of the bin values takes place in the bypass coding
engine.

3.2 CABAC Decoding

The CABAC decoding process is the inverse of the CABAC encoding process [13, 12].
First is the corresponding context model selected to decode the bin. The bin is then
decoded using the arithmetic decoding engine. The arithmetic decoding engine is quite
similar to the binary arithmetic encoding engine.

3.2.1 FFmpeg

The CABAC decoder is based on the H.264 standard and on the FFMPEG imple-
mentation of the standard. FFmpeg is a complete, cross-platform solution to record,
convert and stream audio and video. It includes libavcodec, a leading audio/video
codec library. FFmpeg is free software and is licensed under the LGPL or GPL. The
libavcodec includes a highly optimized version of the CABAC-decoder for the Intel

29

30 CHAPTER 3. OVERVIEW OF THE CABAC DECODING SCHEME

processor platform, but we used the less optimal general implementation of the H.264
decoder with the CABAC-decoder in it.

As we have seen in the second chapter, each H.264 video sequence consists of frames.
Each frame is build up out of one or more slices and each slice can have one or more mac-
roblocks. Macroblocks are the units that carry the 16x16 luma samples and associated
8x8 Cr an Cb chroma samples. When the video sequence reaches the CABAC-decoder,
it is just received by the Network Abstraction Layer either from transmission or from
storage. The video sequence consists of a bitstream of encoded and compressed syntax
elements. These syntax elements are only readable after the first step in the decoding
process. Then these syntax elements can be used to reconstruct the original frame. The
first step is the entropy decoder, in our case CABAC (Context-based Adaptive Binary
Arithmetic Coding).

3.2.2 Context Model Selection

The first step in the decoding process is to initialize the CABAC-decoder [11, 10]. This
is done every time a new slice starts. Together with the encoded syntax elements or the
bins, there is extra information sent with the bitstream. For example the Quantization
Parameters are sent with the bitstream. The initial values of the Context Model
Selection table are depended on this Quantization Parameters. The initial value of
the Context Model Selection table is also depended on some other parameters, which
increases adaptation to different types of video content.

There are a total of 366 Different Context Models which are all initialized into the
table at the beginning of each slice. With the different parameters there are a large
number of different tables that could be selected to be the initial table for the Context
Model Selection table.

3.2.3 Coding engine

The coding engine consists of two registers, named Range and Low (or Value)[20]. At
the beginning of a decoding sequence, i.e. at the beginning of a new slice, the coding
engine is initialized. The range is set to 0x1FE. In the low register the first 9 bits of
the bitstream are loaded. The CABAC engine is now initialized and can be used to
decode the bitstream to bins. Bins are a string of bits that represent a syntax element.
Some syntax elements are just the bits found in the bin, but other syntax elements are
represented as symbols and should be de-binarized.

The decoding engine is being called either in regular mode or in bypass mode. In
the bypass mode there is no use of the context model selection table. In the regular
mode the decoding engine has to know which context model or state to use. The state
is the value found in the context model selection table at a specified index. Every bit is
decoded with the same or a different state as the previous decoded bit in the bins.

3.2. CABAC DECODING 31

We now have values for Range, Low and State and the arithmetic decoder can do a
first iteration.

MPS oceurs LPS occurs

ps rLPS

| rMPS | offset rMPS

Figure 3.1: Arithmetic decoding engine for one bin

Every iteration of the arithmetic decoder will have one bit as a result. What the
result is, depends on the value of Low compared to Range. While the range register
keeps track of the width of the current interval, the Low register keeps track of the
input bitstream. The range is split in two intervals: rLPS and rMPS. The rLLPS is the
estimated probability interval of the Least Probable Symbol. rMPS is the estimated
probability interval of the Most Probable Symbol.

The rLPS value is read from a fixed table and indexed by the first two bits of the
range value and six bits of the state value. The value of the input bitstream, named
Low, falls into one of the two intervals, rLPS or rMPS. This decides whether the bit
is decoded as a LPS or a MPS symbol. The results depend further on the LSB of the
value state. If the result is MPS than the LSB of the value state is the output bit.
If the result is LPS than the output bit will be the value of the LSB of the state inverted.

Figure 3.1 shows the case that MPS occurs and the case that LPS occurs. MPS oc-
curs if the Low is less than rMPS and LPS occurs if the Low is greater or equal to rMPS.
After this iteration the values of range and low have to be renewed by the equation (3.1).

i fMPS range_new = rMPS
lownnew = offset (3.1)
] range_new = rLPS '
crse lownnew = offset—rMPS

After this renewal step the next iteration can take place. To keep the precision of
the decoding process, the MSB of range has to be always 1. To ensure this, the value
of range has to be renormalized when detected a zero as MSB. The renormalization
process shifts the value of range to the left, so that the MSB of range is again 1. The
last bits are stuffed in as zeros so that the value remains 9 bits. The value of Low also
shifts the same amount as the Range to the left. The Low register however receives

32 CHAPTER 3. OVERVIEW OF THE CABAC DECODING SCHEME

the new bits at the LSB position from the input bitstream. This way the Low register
receives bits from the input bitstream and keeps track of the position of the input
bitstream in the current interval.

In the bypass mode no context model is needed because of the equal probability of
the syntax elements. The probability of the LPS is in this case 0.5. But we can compare
the value of Low with the value of Range divided by two.

3.2.4 De - Binarization

In the last phase of the CABAC decoding the resulting bits from the decoding engine
are taken and de-binarized. A sequence of bits can form a bin which can be translated
to a symbol. This symbol represents the syntax element that was encoded. Not all bins
and thus syntax elements are represented by a symbol, some are just the string of bits
they were in the bin.

To de-binarize the bins the bitstream has to go through a decoding tree. We dont
know on before hand where every bin starts and where they end. We dont know which
bits from the decoding engine together form a syntax element which is represented as a
bin. This makes it hard to parallelize and very time consuming. The whole tree has to
be walked in order to get the right syntax element or symbol.

3.3 Motivation

The total CABAC decoder consists of three main stage: context model selection,
arithmetic decoding and de-binarization. In this thesis we are going to research the
arithmetic decoding engine. We are going to implement the arithmetic decoding engine
into hardware and let it run in a software / hardware co-design.

The main reason why we choose the arithmetic decoding engine to be implemented
in hardware is the fact that it has very strong uniform, iterative data dependencies
between all stages in the algorithm. Every decoded bit is depended on all the previous
decoded bits in the same slice. This is because for every decoded bit in a slice, the
context model selection table is updated. And the next bit to decoded can be depended
on that updated value in the context model selection table.

We like to see how fast we can make a software hardware co design implementation
of the arithmetic decoding engine. We would also like to see what the speedup is and
how we can arrange the architecture of the hardware implementation in such a way that
we get the best increase in speed.

As we focus on the arithmetic decoding engine, we only look at one slice to decode,
so we initialize the context model selection table only once. We also dont bother
ourselves with the de-binarization phase of the CABAC decoder. This would however be

3.4. CONCLUSION 33

a very good topic for further research. We could add the de-binarizer to our arithmetic
decoding engine and measure if we could get an addition speedup from an intelligent
de-binarization architecture.

Since every slice is independent of each other in terms of CABAC decoding, major
improvement can be achieved with parallelism on the level of slices. Every frame is
made up of one or more slices and every slice is made up of one or more macroblocks.
The focus in this thesis is to accelerate the decoding of independent slices. Several slice
accelerators could be used in parallel to achieve higher frame decoding rates. The main
bottleneck in these slice accelerators is the CABAC decoding stage. To accelerate the
whole slice decoding, acceleration of the CABAC decoding is necessary. This is done
by the making of specialized hardware for the CABAC decoding, in stead of decoding
CABAC on a general purpose processor.

3.4 Conclusion

In this chapter, we presented an overview of the CABAC decoding scheme. The CABAC
decoding scheme is based on the FFmpeg implementation of the standard. The arith-
metic background of the coding engine has been shown as well as the software imple-
mentation of the coding engine. A motivation has been given as why to implement the
coding engine into hardware.

34

CHAPTER 3. OVERVIEW OF THE CABAC DECODING SCHEME

Implementation of the CABAC
decoder

4.1 Overall system description

4.1.1 Introduction

The CABAC decoder is build around the Xilinx ML410 evaluation board [17, 25, 22, 27,
8]. This board includes the Xilinx Virtex 4 FPGA. This FPGA has two PowerPC 440
processors of which we will use only one. A part of the CABAC decoder we will make
in hardware. The part that we want to accelerate is being build in hardware on the
FPGA and the rest of the CABAC decoder is run in software on the PowerPC processor
(also residing on the Virtex 4 FPGA). We only implement a part of the total H.264 video
decoder. The part we want to test is the CABAC decoder. So this system is only capable
of producing test-results and can not actually decode a video stream. It therefore misses
the Network Abstraction Layer (NAL) and the H.264 decoder parts after the CABAC
decoder.

The CABAC decoder software which is run on the PowerPC will delegate some
computational intensive parts of the algorithm to the custom build hardware [28, 29, 21,
24]. This hardware on the FPGA is specially build to accelerate that part and can only
be used to accelerated that part of the software. The hardware resides on the FPGA and
communication between the PowerPC processor and the hardware accelerator is done
over the Auxiliary Processing Unit (APU) bus of the processor. This bus is specially
designed to incorporate custom hardware accelerators onto the processors local system.
The hardware accelerator can be handled by the processor via the APU through the use
of a special processor instruction.

4.1.2 Validation

To validate and verificate the different parts of the system, the system was tested with
predefined test vectors. The hardware made in VHDL was simulated in ModelSim. A
testbench was written to validate the correct operation. Different input vectors were
made and put into the system. The input vector were first run trough software, so the
software could be compared to the hardware output.

On the level of hardware /software co-design, the system was run on the Xilinx ML410
development board. Since large parts of the H.264 video decoding algorithm were not
implemented in the software, they were out of the scope of our research, we couldn’t
test the system with actual video streams. Testvectors of the videostream were made
by pointing in the original software the input and output of our total system. This way
we made testvectors from real videostream, but only the parts that needed to be tested.
Again the outputs were compared for validating the correct operation.

35

36 CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

4.2 Different parts in the system

4.2.1 Hardware Accelerator (cabac decoder)

State_idx

Local_cabac_state <

T >
S ‘ l jResult4>
Range

A 4

5

New_Ips_range

| Norm_shift
rLPS
Y bit
Shift———»
Range —
rLPS

| Range Low

\ 4
Range <
low
\ 4

New_lIps_state

| New_mps_state

Mps/lps

v

Figure 4.1: Hardware accelerator

The hardware accelerator as built in the FPGA can be seen in figure 4.1. To be able
to run this architecture on the FPGA it had to be arranged in a sequential way. In figure
4.2 the sequential architecture can be seen. The decoding of one symbol cost one cycle.
And every cycle the registers are updated. Figure 4.3 shows the finite state machine
(FSM) for the Cabac hardware accelerator.

4.2. DIFFERENT PARTS IN THE SYSTEM

37

New_Ips_range ‘ ‘ Ff_nom_shift

Mps_enabi
I
Reg Reg
g < % H If_MPS ’» o
L 0 Y L L
A) -
Y
A LA NI
Reg | R ‘)N Reg
range o LPS range
LPS
v
Reg e — Reg
“byte-| | “byte-
strea strea
m bits. / m

New_input
mem [ki

State-

Next_mps_state

Next_Ips_state

StateidxF Local_cabac_state

Local_cabac_state

'y

Figure 4.2: Sequential hardware accelerator

38

CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

State_idx >

Wait_start

4

Read arguments

@)

If mode = init

Get 2 bytes from

Get 1 byte from

¢ bytestream_ptr

Mode = memcpy

MEM MEM
4 \ 4
- Start get_cabac / Get bytes from
Start_init bypass / terminate MEM
4
Wait 1 ccu_clk Wait 1 ccu_clk Store locally
Done

Figure 4.3: CABAC CCU Finite State Machine

4.2. DIFFERENT PARTS IN THE SYSTEM 39

4.2.2 CPU HW/SW (ppc, bootloader)

The processor the CABAC decoder software is run on is the PowerPC 405 processor. It
is a hardcore processor embedded in the Virtex-4 FPGA. It is run at a clock speed of
300 MHz.

4.2.3 APU Controller

The Auxiliary Processor Unit (APU) controller allows us to extend the native Pow-
erPC405 instruction set with custom instructions [23, 26, 30]. These instruction are
executed by an FPGA Fabric Co-processor Module (FCM). In our case the FCM is the
CABAC decoder Hardware Accelerator. It enables a very tight integration of the hard-
ware accelerator with the processors pipeline. The PowerPC core, the APU controller
and the FCM can be seen in figure 4.4.

Virtexd FX PowerPC405 block

PowerPC405 core APU Controller Fabric Co-processor Module
(FCM)

‘ Decode_Stage | —
Instruction

(Decode) APUC_Decode ! FCM_Decode

=] B b o b e e e i |

—l| - L :

[Exscute_Stage I l E| I

Qpearands = I

= I

E t 1

Exe_Unit) s FCM_Exe_Unit
Result €
s
s g
o

LoadData

| Writeback_Stage |

‘ LoadWE_Stage | | load_reg |

W

LG G0 _ et

Figure 4.4: PowerPC core, the APU controller and the FCM

The APU controller serves to perform clock domain synchronization. The Pow-
erPC405 Core runs on a much higher clock frequency than the slower FCM or our
CABAC hardware accelerator. The PowerPC runs at a clockrate of 300 MHz and the
CABAC hardware accelerator can in this stage not run any faster than 25 MHz. The

40 CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

APU has a clock ratio setting of 1:12. If the hardware accelerator is done useful work,
the processors pipeline is being stalled until the hardware accelerator is done working.
The APU also decodes the specific FCM instructions and notifies the CPU or the CPU
resources needed by the instruction.

4.2.3.1 Instructions

For the CABAC decoder hardware accelerator we used two custom instruction to com-
municate between the processor and the FCM or hardware accelerator. The instructions
all have the general instruction format as can be seen in figure 4.5.

Primary Op-code RT BA RB Extended Op-code
0 & i1 16 21 31

UG08 _0d_2a 061204

Figure 4.5: Instruction format

To communicate from the processor to the hardware accelerator we used a load
instruction, lwfcmx(rn, base, adr). With this instruction we can load an integer to a
specific register inside the hardware accelerator. To communicate from the hardware
accelerator to the processor we used a store instruction, stwfcmx(rn, base, adr). This
instruction reads the value of a defined register and stores it to a local register.

An example can be seen in listing 4.1.

Int T = 0;
Iwfcmx (0, &i, 0);
stwfcmx (0, dst, ix%4);

Listing 4.1: Load instruction between processor and hardware accelerator

This short code listing will send the value of I to the hardware accelerator and wait
for an answer. It will store this answer into the register dst. This way the processor
can communicate with the CABAC decoder hardware accelerator on a very simple and
effective way.

On a hardware level it looks like figure 4.6.

In the first cycle the instruction is sent from the APU to the FCM (APUFCMIN-
STRUCTION). In the next cycle the APU will send the data, the value of the integer, to
the FCM. In the meantime the processors pipeline is stalled. When the FCM has received
all the information correctly it will sent back a FCMAPUDONE and the processor can
execute the next instruction.

The next instruction in our example is a store instruction, which can be seen in figure
4.7. The instruction is sent to the FCM (APUFCMINSTRUCION). The instruction is
decoded and the result is sent back to the APU (FCMAPURESULT) and the FCM
reports it is done (FCMAPUDONE).

4.2. DIFFERENT PARTS IN THE SYSTEM

CPMFCMCLE | | | | | I I - | I | | | | | | I |

APUFCMINSTRUCTION _C>

|
|
|
APUFCMINSTAVALID _/_‘\
|
|
/N

APUFCMDECODED
|

APUFCMLOADDATA —CD -
|

APUFCMLOADDVALID I,J A
| —— —

[
|
FOMAPUDONE ! |
T

|
APUFCKWRITEBACKOK |,‘ i \‘

FCMAPLUSLEEPNOTREADY I,\‘

Figure 4.6: Decoded load instruction

CPMFCMCLE | I | o

APUFCMINSTRUCTION

LA A8_0 oo a0

%

| |

1]

| |

| I
APUFCMINSTRVALID / Y | |
T T

| | |

APUFCMDECODED / \ | |
.] T

FCMAPURESLILT === ——EI :‘r
|
FCMAPUDOMNE " |
- |

FOMAPUSLEEPNOTREADY I/ At

Figure 4.7: Decoded store instruction

4.2.3.2 Software

The CABAC decoder algorithm was adapted to run on the PowerPC processor. Several
changed had to be made to just run the algorithm solely on the PowerPC processor
instead of on an Intel processor. In the next phase the software was adapted to use
the hardware accelerator instead of a part of the algorithm. To allow this, the custom
instructions had to be added to the software. The APU had also to be initialized in the
software and also some timers had to be set and started. Listing 4.2 shows shortened
version of the software run on the PowerPC processor. The full software can be found

in appendix B.

WG _Cul_O_SOEAR0L

2 #include ” xbasic_-types.h”
#include ” xcache_1.h”

12

17

22

27

32

37

42

47

52

10

42 CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

#include ”xparameters.h”
#include ”xpseudo_asm .h”
include ” xutil.h”
ﬁinclude ”stdio.h”
#include ” xuartns550_1.h”
#include ”xtmrctr.h”

#define lwfcmx(rn, base, adr) _—asm__ __volatile__(\
?lwfemx.” #rn 7 ,%0,%1\n” \
: ”b” (base), ”r” (adr)\

)
#define stwfcmx(rn, base, adr) _—asm__ __volatile__(\
?stwfecmxo” #rn 7, %0,%1\n”\
: ”b” (base), ”"r” (adr)\
)
volatile Xint32 __attribute__ ((aligned (32))) src[4] = {214,49,—-3,20};

volatile Xint32 __attribute__- ((aligned (32))) dst[1000];
int main(void)

XUartNs550_SetBaud (XPAR_-RS232_.UART_-1. BASEADDR, XPARXUARTNS550_.CLOCK_HZ, 9600);
XUartNs550-mSetLineControlReg (XPAR-RS232.UART_-1. BASEADDR, XUN_LCR_-8_.DATA_BITS);

XTmrCtr InstancePtr;

ul6é Deviceld = 0;

u32 time;

if (XTmrCtr_Initialize(&InstancePtr , XPAR_XPS_TIMER_0_-DEVICE_ID)==XST_SUCCESS)
{

printf(” Timer_initialized\n”);

}
mtmsr (XREG_.MSR_APU_AVAILABLE) ;

int i=1;
for (i=0; i<11l; i++)
{
XTmrCtr_Start(&InstancePtr, 0);
lwfcmx (0, &i, 0);
//apu_to_cabac accelerator running
stwfcmx (0, dst, ix*4);
XTmrCtr_Stop(&InstancePtr, 0);
¥

time = (XTmrCtr_GetValue(&InstancePtr, 0)42) = 10;
printf(”time: %d_(ns)\n” ,time);
XTmrCtr_Reset(&InstancePtr, 0);

print (? Ending _APU_TO_.CABAC\r\n”);

return 0;

}

Listing 4.2: apu_to_cabac.c; Short software to run hardware accelerated CABAC decod-
ing

The ELF file run on the PowerPC processor was generated by the Xilinx Platform
Studio SDK. The ELF file could also be disassembled by the Xilinx Platform Studio
SDK. The disassembly of the generated ELF file [28] is done with the command:
powerpc-eabi-objdump -S apu_to_cabac.elf >> apu_to_cabac.dis. Listing 4.3 shows the
part of the assembly that lets the processor communicate with the CABAC hardware
accelerator.

lwfcmx (0, &i, 0); // load i into cabac—decoder

ffff0288 : 39 3f 00 24 addi r9,r31,36
ffff028c: 38 00 00 00 1i r0,0
ffff0290 : 7c 09 00 8e lwfcmx 0,r9,r0

/xlwfemz (1, src, 4);
lwfemz (2, src, 8);

stwfemaz (2, dst, 8);

stwfemaz (1, dst, 4);x/

stwfcmx (0, dst, ix4); //store anwser from cabac—decoder to dst[i]
ffff0294 : 80 1f 00 24 lwz r0,36(r31)
ff£ff0298: 54 00 10 3a rlwinm r0,r0,2,0,29
ffff029c: 3d 20 00 00 lis r9,0

15

4.2. DIFFERENT PARTS IN THE SYSTEM 43

ffff02a0: 39 29 bc e0 addi r9,r9,—-17184
ffffo2a4: 7c 09 01 8e stwfcmx 0,r9,r0

Listing 4.3: Part of the disassembled ELF file. Calling the CABAC hardware accelerator
and waiting for its result.

4.2.4 Stages in engineering process
4.2.4.1 Xilinx ML410 with Xilinx Virtex-4 FPGA

For our implementation of the CABAC decoder in hardware we used the ML410 evalua-
tion board from Xilinx. This evaluation board includes the Xilinx Virtex 4 FPGA. The
Virtex-4 FXT includes two PowerPC 440 processor blocks.

4.2.4.2 ModelSim

A part of the software for the CABAC-decoder we wanted to accelerate. This part
includes the arithmetic coder and was isolated in the software. To accelerate this part of
the software we used VHDL to describe the functionality into hardware. With the use
of ModelSim we simulated the resulting hardware and could test the correctness of the
functionality.

4.2.4.3 Xilinx ISE

With the hardware we made in VHDL we could synthesize it with Xilinx ISE and test
the functionality of the standalone accelerator. We also tested the design synthesized
for our specific FPGA and found timing, area and power reports. The values for these
timing, energy, area results can be found in chapter 5. The synthesized architecture for

the CABAC decoder can be found in figure 4.8.

FEET = —F e]
Tl = wliSis
=] = 7 == =T
e | I
@

Figure 4.8: The synthesized architecture for the CABAC decoder

44 CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

4.2.4.4 Xilinx Platform Studio

In the Xilinx Platform Studio we specified our desired hardware and software platform.
This included the CABAC- accelerator unit we made in hardware. It also included
one PowerPC 440 processor block, a serial interface and some memory organization for
inputting and outputting the data. The total configuration of the CABAC accelerator
with the PowerPC platform as implemented on the FPGA can be seen in figure 4.9.

E FﬁJ Bus Interfaces | Parts | Addresses |
B MName Bus Connection IP Type IP Version
B gocdls 0 ppcdl5 vited 2013
=4 - RESETPPC ppc_reset_bus (=]
[- JTAGPPC jtagppc_cntir_0_0 (=]
- EMACDCR pocdls 0 EMACDCR
- MFCM pocdis 0 MO
- MFCB Mo Connection [=]
- 1SOCM Mo Connection =
- DSOCM No Connection (=]
[} - |PLB1 No Connection (=]
0 DFLBT No Connection (=]
g PLED T El
CPLB plb =
- MDCR No Connection =
-~ b plb_vd6 103a
. ~SDCR Mo Connection [=]
B xps_bam & cnfl ps_| _if o
i PORTA xps bam F ontr T port
‘- SPLB plb [=]
-~ ol bram F ot T ham bram_block 100a
[- PORTB No Connection [=]
' " PORTA «ps_bram_if_crtr_1_pot]
-~ Fagnpc_crtic § ftagppc_cntir 201c
JTAGPPCT Fagooe ondle @ JTAGPPCT
— - JTAGPPCD Fagooe ondlr 3 0
-« proc_sys resef 0 proc_sys_reset 200a
i RESETPPC1 proc_sys_resel] RESETPPCT
poc_reset bus
Ti [=]
I = e s
v =]
apu_to_cabac 1.00a
clock_generator 2.01.a
util_reduced_logic 1.00.a

Figure 4.9: CABAC accelerator and PowerPC platform configuration

The PowerPC 440 processor block was synthesized with an addition APU interface.
The hardware CABAC-accelerator was build as an Auxiliary Processing Unit. The Pow-
erPC processor could speak directly with the CABAC-accelerator via its AP U-interface.
With the Xilinx Platform Studio SDK we wrote our software to run on the embedded
PowerPC 440 processor block. The software included the function for addressing the
CABAC-accelerator and reading the value it gave back. The software was compiled

4.2. DIFFERENT PARTS IN THE SYSTEM 45

using the Platform Studio SDK and with the Platform Studio it was loaded onto the
ML410 evaluation board and run for several times. The total architecture of the CABAC
accelerator with the PowerPC platform as implemented on the FPGA can be seen in
figure 4.10.

plb

ubil_reduced_ogie
oRGats_1

A

clock_generstor
100k genazator |0

G

Figure 4.10: CABAC accelerator and PowerPC platform implemented on the FPGA

4.2.5 Final design and testing

The final design was made with the Xilinx Platform Studio. The main parts of the
final design are the PowerPC processor, the APU and the CABAC decoder hardware
accelerator. To be able to run the main parts on the platform, different subparts were
added. The interface with the user was made with a RS232 UART. The data was read
from a separate terminal which communicated with the platform using the RS232 UART.
To clock the speed of the algorithm and to calculate the speed-up, a xps-timer block was
used. This block accurately counted the frequency pulse and could be managed from the
software. Also a clock generator was present to produce clock signals for the processor
(300MHz) and for the hardware accelerator (25MHz). BRAM was utilized to store the
software algorithm and the bootloader. The processor would load the bootloader and
the bootloader would start the CABAC decoder software.

46 CHAPTER 4. IMPLEMENTATION OF THE CABAC DECODER

4.2.5.1 Software

The CABAC decoder software that was run on the platform was a loop of different
CABAC decoding instructions. First run only on the processor and secondly run with
the hardware accelerator. Both of the runs were timed and the difference in the timings
would give us a speed-up.

4.3 Conclusion

In this chapter, we presented the work we have done to implement the CABAC de-
coder. After first giving an overall system description, we looked at the different parts
in the system. We showed how these different parts work together. Also the different
engineering stages and tests have been highlighted.

Simulation and implementation

results of the CABAC decoder

5.1 Modelsim simulation and verification

In Modelsim the first version of the hardware accelerated CABAC decoder was simulated
and verified. The CABAC decoder was existing merely of the functional unit with the
interface of the Auxiliary Processing Unit (APU). The CABAC decoder model was tested
with a testbench and previously defined input. Output from the model was verified with
output from the software version of the CABAC decoder.

5.2 Results of related CABAC decoders

This section summarizes the results of some of the CABAC decoder simulations,
synthesized hardwares and/or FPGA implementations of the authors found in the
related work section of chapter 2.

[32] Measured in RTL simulations, CABAC accelerator at slice level; Conventional
scheme Average 7.43 cycles/bin, proposed scheme average 3.93, speedup 1.81; Synthesis
results: 0.18 um standard CMOS technology; Max frequency 225 MHz; Critical path
4.42 ns; Equivalent gate count: 81,162 gates; Context memory 662 Bytes; Data memory
11.52 Kbytes

[12] FPGA simulation of CABAC decoder at slice level; Xilinx Virtex-4 LX-200
FPGA; Clock speed 100 MHz; Area 346 slices (0.5%); Memory 2 Block-RAM; 0.99
bins/cycle (frame type I, QP=20)

[13] RTL simulation, CABAC accelerator at slice level; FPGA and ASIC synthe-
sis/simulation for TOWER 0.18 um technology and Stratix II technology; TOWER
0.18 um; Clock rate 147 MHz; Throughput 147 Msamples; Logic: 23049 gates; Stratix
II; Clock rate 159 MHz; Throughput 159 Msamples; Logic: 3730 ALUT

[18] RTL simulation and gate-level synthesis/simulation of CABAC decoder at
Macro-block level; 0.18 um technology; Clock cycle 160 MHz; Logic: 26100 gates

[1] RTL simulation and synthesized for TSMC 0.13 um standard cell library; CABAC
decoder at macroblock level; Logic: 138,226 gates (including context table); Clock cycle:
200 MHz; Average clock cycles: 1661 (frame type I macroblock); Throughput: 1 bit per
2-3 cycles

47

48 CHAPTER 5. SIMULATION AND IMPLEMENTATION RESULTS OF THE
CABAC DECODER

[2] FPGA simulation for Altera Stratix S25 (C5) and Altera Stratix S60 (C3);
CABAC decoder at slice level; Clock speed: 70 MHz / 100 MHz; Logic arithmetic
decoder: 1287 LEs / 590 ALMs

[35] RTL simulation and synthesized for 0.18 um CMOS cells library; CABAC
decoder at slice level; Frequency 160 MHz; Critical path 6.2 ns; Logic: 30200 + 16200
gates (logic + register banks); Throughput 1 bin/cycle

[34] RTL simulation and synthesized for 0.18 um technology; CABAC decoder at
Marcoblock level; Critical path 22ns; Maximum frequency 45 MHz; Logic: 42000 gates
(excluding context RAM)

[5] RTL simulation and synthesized for 0.18 um CMOS technology; CABAC decoder
at slice level; Equivalent gate count 35870 gates; Critical path delay 4.02 ns; Frequency
230 MHz; Estimated peak bit-rate 115 Mb/s

[4] RTL simulation and synthesized for 0.18 um CMOS technology; CABAC decoder
at macroblock level; Critical path 4.5 ns; 0.41 bins/cycle

[31] RTL simulation and synthesized for TSMC 0.18 um CMOS technology; Fre-
quency: 120 MHz; Logic: 83157 gates (including context RAM); Macroblock CABAC
decoder; 463 cycles (I type macroblock with qp=36)

As can be seen the above results are hard or even impossible to compare with each
other. Different parts of the CABAC decoding algorithm are used with different solu-
tions how to speed up the decoding process. Other technologies are used to implement
the CABAC decoder in. But the measurements taken are from the simulation of the
synthesized results, they are theoretical values. As we can see different RAM sizes,
different frequencies and different results, comparing is very hard.

5.3 Xilinx ISE synthesis and simulation

The hardware accelerated CABAC decoder model that was made, simulated and verified
using Modelsim was next synthesized to the desired hardware platform. In our case the
Virtex 4 FPGA from Xilinx. The Virtex 4 model was: xc4vfx60-11{f1152. The synthesis
was done use Xilinx ISE 10.1.03.

A short summary of the results from our FPGA implementation of the CABAC
decoder at slice level on a hardware / software co-design basis:

e ML-410 Embedded Development Platform

e Total logic cells: 56880, total slices: 25280, distributed RAM 395 kb, blockRAM:
4176 kb

5.3. XILINX ISE SYNTHESIS AND SIMULATION 49

e 1.2V core voltage, 90nm Copper CMOS technology
e Dual POWERPC 405 processor run at 300 MHz (single core used)

e CABAC decoding 1 bin/cycle

Table 5.1: Timing Summary
Timing Summary (Speed Grade: -11):

Minimum period: 39.122 ns
Maximum Frequency: 25.561 MHz
Minimum input arrival time before clock: 3.357 ns
Maximum output required time after clock: 5.819 ns
Maximum combinational path delay: 5.419 ns

Table 5.2: Device Utilization Summary
Device Utilization Summary:

Number of BUFGs 2 out of 32 6%
Number of External IOBs 88 out of 576 15%
Number of LOCed IOBs 0 out of 88 0%

1 out of 232 1%
336 out of 25280 1%
16 out of 12640 1%

Number of RAMB16s
Number of Slices
Number of SLICEMs

Table 5.3: XPower Analysis Report

XPower Analysis Report:

Power summary I(mA) P(mW)
Total estimated power consumption 893
Total Vccint 1.20V 279 335
Total Vccaux 2.50V 219 547
Total Vcco2b 2.50V 4 11
Clocks 26 31
Inputs 0 0
Logic 9 10
Outputs Vcco2b 3 8
Signals 11 13
Quiescent Vcecint 1.20V 233 280
Quiescent Vccaux 2.50V 219 547
Quiescent Vecco2b 2.50V 2 4

50 CHAPTER 5. SIMULATION AND IMPLEMENTATION RESULTS OF THE
CABAC DECODER

Results for the timing of the synthesis of the hardware accelerated CABAC decoder
are found in table 5.1. This is a measure of how fast the implemented architecture can
be run. In table 5.2 the summary of the device utilization is given. As can be seen the
number of external input/output blocks (IOBs) is relative high, but extra space is still
available for other applications. Table 5.3 summarizes the current and power needed to
run the hardware accelerated CABAC decoder. This would be more interesting if we
had implemented our design specifically for battery powered embedded systems. But we
still find this analysis useful, it gives a good estimate of how many heat is generated and
must be dissipated using only a small heatsink.

5.4 Xilinx Platform Studio

The whole CABAC decoder implementation was tested and simulated with Xilinx Plat-
form Studio. In table 5.4 the speedup results can be seen. The speedup is calculated
out of the time when running the software solely on the processor and the time when
running the software with the special build hardware accelerator.

Table 5.4: Speedup results
Speedup Summary (five test runs):

Test run 1 Speedup: 2.85629
Test run 2 Speedup: 2.83489
Test run 3 Speedup: 2.83489
Test run 4 Speedup: 2.83482
Test run 5 Speedup: 2.83484

As can be seen in section 5.2 the work done by the related work authors is very
hard to compare. All described solutions adopt other technologies, other clock rates
and other ways to speed-up the selected part of the CABAC entropy decoder. All
of the solutions described in section 5.2 where only synthesized and not implemented
into real FPGA or ASIC fabric. All of the measurement results were therefore only
theoretical values. This means that these speeds and speedups are theoretical possible
if implemented on the chosen hardware.

Our solution of the CABAC entropy decoding accelerator was actually implemented
into real FPGA hardware. The measurements were taken with an internal timer, inside
the FPGA. Therefor the results are real world values and not theoretical values.

For building the CABAC entropy decoder accelerator a methodology was cho-
sen on beforehand and used throughout the project. The prime objective was to
have a working hardware / software co-design CABAC entropy decoder. We have
chosen to work the a bottom-up approach. First only a small part of the CABAC
decoding algorithm was implemented into hardware. This little part was tested
stand-alone and when the workings were correct, it was combined with the software
in the FPGA. This hardware / software co-design was tested for correct workings,
correct interfacing between the hardware and the software and the performance was

5.5. CONCLUSION 51

measured. With the good results, the little hardware CABAC decoding core was
expanded step-by-step. Every step checking the consistency of the whole hardware
/ software co-design and validating the results. The process of the methodology
was limited by the time available for the MSc thesis project. Boundaries we kept
a close eye on during the project were the measured speed-up and the ratio of the
hardware and software clockrate. A negative speedup would not be a desired result
and a great difference in clock rate ratio would mean we had to choose another approach.

5.5 Conclusion

In this chapter, we presented our results we have gathered during the simulation, veri-
fication and synthesis of the hardware accelerated CABAC decoder. Modelsim, Xilinx
ISE and Xilinx Platform Studio supplied us with the different results for timing, area,
power and speedup. The different software tools packages were used during different
parts of the engineering process. The final implementation of the hardware accelerated
CABAC decoder was tested using the Xilinx Platform Studio. Although the hardware
ran 12 times slower than the processor, the speedup we got for our final implementation
was 2.83.

52 CHAPTER 5. SIMULATION AND IMPLEMENTATION RESULTS OF THE
CABAC DECODER

Conclusion

6.1 Summary

In chapter 1 we gave a general introduction on the CABAC decoding algorithm. We
discussed the research scope and presented the problem statement discussed in this
thesis. Also an overview of the thesis was given in chapter 1.

In chapter 2 we introduced the background of the CABAC encoding and decoding
process. Firstly, we gave the terminology and structure used in the H.264 coding
standard. Secondly, we presented the entropy encoding process. This process consists
of the following stages: binarization, context model selection, arithmetic encoding and
probability update. Of every stage we presented the working algorithms and how they
are connected to each other. Furthermore we also referred to related research work done
by other groups.

In chapter 3 we gave an overview of the CABAC decoding scheme as we were going
to implement it. The different stages in the encoding process also play an important
role in the decoding process. The stages are presented with more emphasize on the
details of the decoding algorithm. Firstly the context model selection is explained
in more detail. Also the coding engine is explained in every detail. First the inner
workings of the coding engine in software are explained and how they can be made in
hardware. The last stage of the de-binarization is explained and presented in a more
practical view. Secondly, we presented an analysis of the de-binarization stage of the
CABAC decoding engine. As we are concerned with speed in our hardware and software
co-design implementation of the encoding engine, exploring the de-binarization stage
could be profitable. At last we motivate our choices made to implement the arithmetic
decoding engine. In future research we also want to implement the de-binarization stage.

In chapter 4 we present a detailed description of the implementation of the CABAC
decoder on the chosen platform. The platform is the Xilinx ML410 with the Xilinx
Virtex-4 FPGA. This FPGA includes a hardcore PowerPC 440 processor block which is
used to run the CABAC decoding software on. Parts of the CABAC decoding software
are accelerated using custom hardware on the FPGA fabric. The PowerPC block and
the hardware accelerator on the FPGA communicate with each other through the
Auxiliary Processing Unit (APU) interface. The accelerator was written, simulated
and verified using VHDL in ModelSim. The accelerator was synthesized, simulated
and tested for our specific FPGA using Xilinx ISE. The final step was to integrate the
hardware accelerator, the APU interface, the software run on the PowerPC into one
system using Xilinx Platform Studio. The whole implementation was also simulated

93

54 CHAPTER 6. CONCLUSION

and tested using the Xilinx Platform Studio tools.

In chapter 5 we discussed simulation and verification results of the implementation
we presented in chapter 4. The results were in terms of speedup of the hardware version
versus the software only version. And in terms of timing, device utilization and power
of the implemented hardware version.

6.2 Main contributions
In this section, we list the most important contributions of our research.

e We have presented a stand-alone hardware accelerator for the CABAC arithmetic
decoding engine in VHDL.

e We have presented a CABAC arithmetic decoding engine as a hardware and soft-
ware co-design implemented on the Virtex-4 using the PowerPCs Auxiliary Pro-
cessing Unit (APU) interface. Measurements were not theoretical, but actual,
real-life values.

e We have introduced a basis for the research on the H.264 CABAC decoding engine
as a hardware / software co-design. Further research can be done on this platform
to better understand the algorithms and to get even better speedups.

6.3 Future work

In this section, we present directions for future research and development. The directions
are originated from the idea to implement more functionality of the CABAC decoding
engine algorithm from software into hardware and to gain more speedup, less area and
less energy consumption.

e Implement the CABAC decoding engine hardware accelerator on the
MOLEN prototype.
The MOLEN prototype is extensively used as a platform to dynamically accelerate
computation intensive algorithms using custom hardware accelerators. On the
MOLEN prototype different accelerator are dynamically used only when they are
required. Interesting would be how the algorithm behaves when first the bitstream
is CABAC decoded, and then the rest of the H.264 decoding takes place with a
different hardware accelerator on the MOLEN prototype.

e Investigate the implementation of the CABAC decoding engine on the
SarcSim platform.
The SarcSim is a simulation platform based on the IBM Cell processor. The
Cell processor is a multicore processor and can be used to accelerate multimedia
applications. The SarcSim group is currently trying to optimize and accelerate
the H.264 decoding standard for the Cell processor. The CABAC decoding engine

6.3. FUTURE WORK 95

is a very though one to optimize because of its sequential nature. More research
has to be done to figure what the best implementation would be for the SarcSim
platform.

e Analysis the de-binarization stage of the CABAC decoder
The de-binarization stage of the CABAC entropy decoder holds a large potential
to further speed-ups. At present every branch of the de-binarization trees are
searched step by step, decoding one bin at a time. The believe is this can be more
intelligently be processed in a parallel fashion.

e Multicore parallelism on the slice level
The CABAC entropy decoder has a very sequential algorithm to decode the in-
coming bitstream. But because every slice is independently decoded, this can be
done in a massive parallel way. Multicore parallelism can be used in our advantage
to speedup the decoding of H.264 video streams.

56

CHAPTER 6. CONCLUSION

Bibliography

[1]

[10]

[11]

[12]

Jian-Wen Chen, Cheng-Ru Chang, and Youn-Long Lin, A hardware accelerator for
context-based adaptive binary arithmetic decoding in H.264/AVC, ISCAS (5), IEEE,
2005, pp. 4525-4528.

Hendrik Eeckhaut, Mark Christiaens, Dirk Stroobandt, and Vincent Nollet, Opti-
mizing the critical loop in the h.264/avc cabac decoder, Proceedings of International
Conference on Field Programmable Technology (Bangkok), IEEE, 12 2006, pp. 113—
118.

M. Jeanne, C. Guillemot, T. Guionnet, and F. Pauchet, Error-resilient decoding of
context-based adaptive binary arithmetic codes, Signal Image and Video Processing
1 (2007), no. 1, 77-87.

Chung-Hyo Kim and In-Cheol Park, High speed decoding of context-based adaptive
binary arithmetic codes using most probable symbol prediction, ISCAS, IEEE, 2006.

Lingfeng Li, Yang Song, Shen Li, Takeshi Ikenaga, and Satoshi Goto, A hardware ar-
chitecture of CABAC encoding and decoding with dynamic pipeline for H.264/AVC,
- (2008), — (En).

D. Marpe, H. Schwarz, and T. Wiegand, Context-based adaptive binary arithmetic
coding in the h.264/avc video compression standard, Circuits and Systems for Video
Technology, IEEE Transactions on 13 (2003), no. 7, 620-636.

M.E.Castro, R.R.Osorio, and J.D.Bruguera, Optimizing cabac for vliw architectures,
- (Barcelona (Spain)), 2006.

Harn Hua Ng, Xilinz: Accelerated system performance with the apu controller and
xtremedsp slices, v1.1.1 ed., 2009.

Jari Nikara, Stamatis Vassiliadis, Jarmo Takala, and Petri Liuha, Multiple-symbol
parallel decoding for variable length codes, IEEE Trans. VLSI Syst 12 (2004), no. 7,
676-685.

R. R. Osorio and J. D. Bruguera, High-throughput architecture for H.264/AVC
CABAC compression system, IEEE Trans. Circuits and Systems for Video Tech-
nology 16 (2006), no. 11, 1376-1384.

Roberto R. Osorio and Javier D. Bruguera, Arithmetic coding architecture for
H.264/AVC CABAC compression system, DSD, IEEE Computer Society, 2004,
pp. 62-69.

. An FPGA architecture for CABAC decoding in manycore systems, ASAP,
IEEE Computer Society, 2008, pp. 293-298.

o7

58 BIBLIOGRAPHY

[13] G. Pastuszak, A high-performance architecture of the double-mode binary coder for
H.264.AVC, IEEE Trans. Circuits and Systems for Video Technology 18 (2008),
no. 7, 949-960.

[14] Tain E. Richardson, H.264 and mpeg-4 video compression: Video coding for next
generation multimedia, 1 ed., Wiley, August 2003.

[15] Sergio Saponara, Carolina Blanch, Kristof Denolf, and Jan Bormans, The jut ad-
vanced video coding standard: Complezity and performance analysis on a tool-by-tool
basis, unknown journal name (2003), —.

[16] H. Schwarz, D. Marpe, and T. Wiegand, Cabac and slices, JVT document JVT-D020
(2002), —.

[17] Glenn Steiner, Xilinz: Code acceleration with an apu coprocessor: a case study of
an Ipm algorithm, Xilinx, 2008.

[18] Liang-Hao Wang, Zheng Zhu, Kai Luo, Bingbo Li, and Ming Zhang, System-on-
chip design for a statistical decoder, ASIC, 2007. ASICON ’07. 7th International
Conference on (2007), 966-969.

[19] Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay Luthra, Overview
of the H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video Techn
13 (2003), no. 7, 560-576.

[20] 1. Witten, R. Neal, and J. Clearly, Arithmetic coding for data compression, Com-
munication of the ACM (1987), —.

[21] Xilinx, Xilinxz: Fcb to fsl bridge (v1.00a), v 1.00a ed., 2005.

[22] , Xilinz: Powerpc 405 apu controller, v2.1 ed., 2005.

23]

, Xilinx: Powerpc instruction set extention guide, isa support for the powerpc
apu controller in virtex-4, Xilinx, rev 2.0 ed., 2005.

[24] , Xilinx: MU410 embedded development platform, user guide, v 1.7 ed., 2007.
[25] , Xilinz: Ppc405 virtex-4 (wrapper) (v2.01a), 2007.
[26] , Xilinz: Powerpc 405 processor block reference guide, embedded development

kit, v 2.3 ed., 2008.

[27] , Xilinz: Xps timer/counter (v1.00a), v1.00a ed., 2008.

[28] , Xilinz: Edk concepts, tools, and techniques; a hands-on guide to effective

embedded system design, v 10.1 ed., 2009.

[29] , Xilinz: Embedded system tools reference manual, embedded development

kit, v 10.1 sp 3 ed., 2009.

[30] , Xilinz: Synthesis and simulation design guide, v 8.2i ed., 2009.

BIBLIOGRAPHY 99

[31]

[32]

[33]

[34]

[35]

Yao-Chang Yang, Chien-Chang Lin, Hsui-Cheng Chang, Ching-Lung Su, and Jiun-
In Guo, A high throughput VLSI architecture design for H.26/ context-based adaptive
binary arithmetic decoding with look ahead parsing, ICME, IEEE, 2006, pp. 357-360.

Y. S. Yi and I. C. Park, High-speed H.264/AVC CABAC decoding, IEEE Trans.
Circuits and Systems for Video Technology 17 (2007), no. 4, 490-494.

Wei Yu and Yun He, A high performance cabac decoding architecture, Consumer
Electronics, IEEE Transactions on 51 (2005), no. 4, 1352-1359.

Peng Zhang, Wen Gao, Don Xie, and Di Wu, High-performance cabac engine for
h.264/ave high definition real-time decoding, Consumer Electronics, 2007. ICCE
2007. Digest of Technical Papers. International Conference on (2007), 1-2.

Junhao Zheng, David Wu, Don Xie, and Wen Gao, A novel pipeline design for
H.264 CABAC decoding, Advances in Multimedia Information Processing - PCM
2007, 8th Pacific Rim Conference on Multimedia, Hong Kong, China, December 11-
14, 2007, Proceedings (Horace Ho-Shing Ip, Oscar C. Au, Howard Leung, Ming-Ting
Sun, Wei-Ying Ma, and Shi-Min Hu, eds.), Lecture Notes in Computer Science, vol.
4810, Springer, 2007, pp. 559-568.

60

BIBLIOGRAPHY

13

18

23

28

33

38

43

48

53

58

63

68

VHDL

library

ieee;

——library unisim;

use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
——use wunisim.vcomponents.RAMBIG;
entity apu_to_cabac is
port(— inputs: misc
clock in std_logic;
reset : in std-logic;
—— inputs: From APU to FCM
APUFCMINSTRUCTION in std_logic_vector (0 to 31);
APUFCMINSTRVALID in std_logic;
APUFCMRADATA in std_logic_-vector (0 to 31);
APUFCMRBDATA in std_-logic_-vector (0 to 31);
APUFCMOPERANDVALID in std-logic;
APUFCMFLUSH in std-logic;
APUFCMWRITEBACKOK in std_logic;
APUFCMDECUDI in std_logic_vector (0 to 2);
APUFCMDECUDIVALID in std_logic;
APUFCMDECODED in std_logic;
—— not wused
APUFCMLOADDATA in std_logic_vector (0 to 31);
APUFCMLOADDVALID : in std_-logic;
APUFCMLOADBYTEEN : in std_-logic_-vector (0 to 3); —
APUFCMLOADBYTEADDR in std_logic_-vector (0 to 3);
APUFCMENDIAN in std_-logic;
APUFCMXERCA in std_logic; ——
APUFCMDECFPUOP : in std_logic;
APUFCMDECLOAD in std-logic;
APUFCMDECSTORE in std-logic;
APUFCMDECLDSTXFERSIZE in std_-logic_-vector (0 to 2);
APUFCMDECNONAUTON in std_-logic;
APUFCMNEXTINSTRREADY in std-logic;
APUFCMMSRFEO in std_logic;
APUFCMMSRFE1 in std_logic;
—— for timing specifications of APU/FCM signals , see APU
— outputs: From FCM to APU
——FCMAPURESULT : out std_logic_vector (0 to 31);
——FCMAPURESULTVALID out std_-logic; —— mnrar
——FCMAPUDONE out std_-logic; —— nrar
——FCMAPUSLEEPNOTREADY out std_-logic; —— mnrar
—— not wuseful
——FCMAPUCR out std_logic_vector (0 to 8);
——FCMAPUEXCEPTION out std_logic;
——FCMAPUSTOREDATA out std-logic_vector (0 to 31);
——FCMAPUCONFIRMINSTR out std-logic;
——FCMAPUFPSCRFEX out std-logic
FCMAPUINSTRACK out std_logic;
FCMAPURESULT out std_logic_vector (0 to 31);
FCMAPUDONE out std_logic;
FCMAPUSLEEPNOTREADY out std_logic;
FCMAPUDECODEBUSY out std_logic;
FCMAPUDCDGPRWRITE out std_logic;
FCMAPUDCDRAEN out std_logic;
FCMAPUDCDRBEN out std_logic;
FCMAPUDCDPRIVOP out std-logic;
FCMAPUDCDFORCEALIGN out std_logic;
FCMAPUDCDXEROVEN out std_logic;
FCMAPUDCDXERCAEN out std_-logic;
FCMAPUDCDCREN out std-logic;
FCMAPUEXECRFIELD out std-logic_vector (0 to 2);
FCMAPUDCDLOAD out std-logic;
FCMAPUDCDSTORE out std-logic;

61

documentation

73

78

83

93

98

103

108

113

118

123

128

138

143

148

153

62

APPENDIX A. VHDL

end entity apu

FCMAPUDCDUPDATE

FCMAPUDCDLDSTBYTE : out

FCMAPUDCDFORCEBESTEERJNG : out

FCMAPUDCDFPUOP

FCMAPUEXEBLOCKINGMCO : out
FCMAPUEXENONBLOCKINGMCO : out

FCMAPULOADWAIT

FCMAPURESULTVALID : out std_logic;
FCMAPUXEROV : out
FCMAPUXERCA : out

FCMAPUCR
FCMAPUEXCEPTION

_to_cabac;

out std-logic;

out std-logic;
out std-logic;
out std-logic;
out std-logic;
out std-logic;
out std_logic;

S

out std_logic;

out std_logic;

std_logic;
std_logic;

out std_logic_vector (0

out std_logic);

architecture apu-to_-cabac_arch of apu-to_-cabac is

— type
type states

declarations
is (STATEIDLE, STATE.CABAC, STATE_.CABAC.2);

std-logic;

td_logic;

std_logic;
std_logic;

to 3);

—— signal declarations
signal state : states; ——state machine state
signal next_state states; ——mnrar
signal data_a std_logic_vector (0 to 31);
signal data_b std_logic_-vector (0 to 31);
begin
— logic
——FCMAPURESULT <= (others=>"0");
——state machine next state/combinational logic
process (APUFCMINSTRVALID, APUFCMDECUDI, APUFCMOPERANDVALID,

state , APUFCMRADATA, APUFCMRBDATA, APUFCMWRITEBACKOK)

begi

n
——some

defaults

next_state <= state;
FCMAPURESULT <= (others=>"0");
FCMAPUSLEEPNOTREADY <= ’'0’;

FCMAPUDONE <=

0

case(state) is
when STATE_IDLE =>

if (APUFCMINSTRVALID =

when STATE_CABAC =>

when STATE_CABAC2 =>
FCMAPUSLEEPNOTREADY <= ’'17;

next_state

when others =>

end case;

end process;

2)="000")

next_-state <= STATE_CABAC;

——nezt_state <= STATE_IDLE;

’1’) then
——if (APUFCMDECUDI(0 to
—else
——end if;
else
next_-state <= STATE_IDLE;
end if;

FCMAPUSLEEPNOTREADY <= ’1’;
if ((APUFCMWRITEBACKOK =

next-state <= STATE_.CABAC.2;
data_a <= APUFCMRADATA;
data_b <= APUFCMRBDATA;

end if;

<= STATE_IDLE;

FCMAPUDONE <= ’17;

FCMAPURESULTVALID <=

10,

FCMAPURESULT <= data_b;

next_state <= STATE_IDLE;

then

’1’) and (APUFCMOPERANDVALID =

’1’)) then

158

163

168

173

13

18

23

28

33

38

14

63

——state machine sequential elements
process(clock) is

begin
if (clock’event and clock = ’1’) then
if (reset = ’1’)then
state <= STATE_IDLE;
else
state <= next_state;
end if;
end if;

end process;

end architecture apu_-to_cabac_arch;

Listing A.1: apu_to_cabac.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_.LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric-std.all;

entity bshift is
generic (width: natural:=32);
port (x: in std_logic_vector (width—1 downto 0);
s: in std_logic_vector (3 downto 0);
z: out std_logic_vector (width—1 downto 0));
end entity bshift;

architecture structural of bshift is
component mux-2 is
port (in0O, inl, sel: in std-logic;
z: out std_logic);
end component mux-2;

type matrix is array (0 to 4) of std-logic-vector (width—1 downto 0);

signal p: matrix;

begin
p(0) <= x;
mux_rows: for i in 0 to 3 generate —/
mux-cols: for j in 0 to width—1 generate
mux_coll: if(j — 2xxi < 0) generate

mux: mux-2 port map (in0 => p(i)(j), inl=> ’0’, sel => s(i), z = p(i+1)(j));
end generate;
mux_-col2: if(j — 2%xxi >= 0) generate
mux: mux-2 port map (in0 => p(i)(j), inl=> p(i)(j — 2*xxi), sel => s(i), z = p(i+1)(j));
end generate;
end generate;
end generate;

z <= p(4);—>p(5);

end architecture structural;

Listing A.2: bshift.vhdl

— register 8 bits bytestream_ptr

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;

entity bytestream_ptr_register is
Port (

clock : in std-logic;
reset : in std-logic;
data_set: in std_-logic_-vector (31 downto 0);
data: in std_logic-vector (31 downto 0);
output: out std-logic-vector (31 downto 0));

end entity bytestream_ptr-register;

19

24

29

13

18

23

28

33

38

43

48

53

58

63

64

APPENDIX A. VHDL

architecture behavioural of bytestream_ptr_register

begin
process(clock , reset)
begin
if (reset = ’1’) then
output <= data_set;

elsif (clock ’event and clock = ’1’) then
output <= data;

end if;

end process;

end behavioural;

is

Listing A.3: bytestream_ptr_register.vhdl

——cabac
includes

—_ get_cabac, cabac_bypass,
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.numeric_std.all;

entity cabac is

get_cabac_terminate

Port (in_mode in std_logic_vector (31 downto 0);
in_state_-idx in std_-logic_-vector (31 downto 0);
clock in std-logic;
reset in std-logic;
out_result out std_logic_vector (31 downto 0)
)

end entity cabac;

architecture behavioural of cabac is

component get_cabac is

port (
state_idx:
in_low: in
in_range:

in
std_logic_-vector (17 downto 0);
in std_logic_-vector (8 downto 0);

std-logic_vector (8 downto 0); ——9 bits

state_idx ?

in_bytestream_ptr: in std_logic_-vector (31 downto 0);
in_data: in std-logic_-vector (7 downto 0);

clock: in std-logic;

reset: in std-logic;

out_low: out std_-logic_vector (17 downto 0);

out_range out
out_bytestream_ptr
out_result out

out

)3
end component get_cabac;
component cabac_bypass is
Port (in_low in
in_bytestream_ptr:
in_range in

in

data in std_logic_-vector (7 downto 0);
out_low: out
out_bytestream_ptr:
result out
)

end component cabac_bypass;

out

component get_cabac_terminate is
Port (in_low in
in_bytestream_ptr:

in_range in

in

in_.bytestream_start in

data in std_logic_vector (7 downto 0);
out_low: out
out_range: out
out_bytestream_ptr:
result out

out

std_logic_vector (8 downto 0);
std_logic_-vector (31 downto 0);
std_logic_vector (31 downto 0)

std_logic_vector (17 downto 0);
std-logic_vector (31 downto 0);
std_-logic_vector (8 downto 0);

std-logic_vector (17 downto 0);
std-logic-vector (31 downto 0);
std_logic_vector (31 downto 0)

std_logic_vector (17 downto 0);
std_logic_vector (31 downto 0);
std_logic_-vector (8 downto 0);

std_-logic_vector (31 downto 0);

std-logic_vector (17 downto 0);
std-logic_-vector (8 downto 0);
std-logic_-vector (31 downto 0);
std-logic_-vector (31 downto 0)

68

73

78

83

88

93

98

103

108

118

123

128

138

143

148

153

65

)3

end component get_cabac_-terminate;

component bytestream_ptr_register is
Port (
clock in std-logic;
reset in std-logic;
data_set: in std_logic_vector (31 downto 0);
data: in std_logic_vector (31 downto 0);
output: out std_logic_vector (31 downto 0));

end component bytestream_ptr_register;

component low_register is
Port (
clock in std_logic;
reset in std-logic;
data_set: in std_logic_-vector (17 downto 0);
data: in std_logic_-vector (17 downto 0);
output: out std_logic_-vector (17 downto 0));

end component low_register;

component range.register is
Port (
clock in std_logic;
reset in std_logic;
data: in std_logic_vector (8 downto 0);
output: out std_logic_-vector (8 downto 0));

end component range._register;
component mux8.x is

generic (width: natural:=32);

port (
in0, inl, in2, in3, in4, in5, in6, in7 in
enable: in std_logic;
sel: in std_-logic_vector (2 downto 0);
z: out std_logic_-vector (width—1 downto 0));
end component mux8.x;
signal in_low, out_low, out_-low_muxl, out_-low_mux2, out_low_mux3
signal in_range, out_range, out_range_.muxl, out_range_mux3
: std_.logic_vector (8 downto 0);
signal in_bytestream_ptr, out_bytestream_ptr, in_bytestream_start ,

set_bytestream_start , out_bytestream_ptr_muxl ,
, out_bytestream_start:

signal in_data std_logic_vector (7 downto 0) := x”FF”;
signal out_result_-muxl, out_-result_mux2, out_result_mux3
begin

——registers
low_reg: low_register port map(
clock => clock ,
reset => reset ,
data_set => ”000000000000000010”
data => out_low,
output => in_low

,——first 12 bits

)i

range_register
clock => clock ,
reset => reset ,
data => out_range,
output => in_range

range.reg: port map(

)s

bytestream_ptr_reg: bytestream_ptr_register
clock => clock ,
reset => reset ,
data-set => x”00000000” ,
data => out_-bytestream_ptr,
output => in_bytestream_ptr

port map(

)s

bytestream_start_reg: bytestream_ptr_register
clock => clock ,
reset => reset ,
data_set => set_bytestream_start ,
data => out_bytestream_start ,
output => in_bytestream_start

port map(

out_bytestream_ptr_mux2 ,
std_logic_vector (31 downto 0);

std-logic_vector (width—1 downto 0);

std_logic_vector (17 downto 0);

out_bytestream_ptr_mux3

std_-logic_vector (31 downto 0);

of the

bytestream +2

158

168

173

178

183

193

203

208

213

218

223

228

238

66

APPENDIX A. VHDL

——combinational logic

get_cabacl: get_cabac port map(

state_.idx => in_state_idx (8 downto 0),
in_-low => in_low,

in.-range => in-range,

in_bytestream_ptr => in_bytestream_ptr ,
in_data => in_data,

clock => clock,

reset => reset ,

out_low => out_low_muxl1 ,

out_range => out_range_muxl,

out_bytestream_ptr => out_bytestream_ptr_muxl ,

out_result => out_result_muxl1

)3

cabac_bypassl: cabac_-bypass port map(

get_cabac_terminatel:

in_.low => in_low,

in_.bytestream_ptr => in_bytestream_ptr ,
in.-range => in-range,

data => in_data ,

out_-low => out_-low_mux2,

out_bytestream_ptr => out_bytestream_ptr_mux2,

result => out_result_mux2

)3

in_.low => in_low,
in_bytestream_ptr => in_bytestream_ptr,
in_.range => in_range,

in_bytestream_start => in_bytestream_start ,

data => in_data ,
out_-low => out-low_mux3,
out_range => out_range_mux3,

out_bytestream_ptr => out_-bytestream_ptr_mux3,

result => out_result_mux3

)s

——muzes

low_muxl: mux8_.x generic map (18) port map(

in0 => out_low_muxl1,
inl => out_low_mux2,
in2 => out_low_mux3,

in3 => ”000000000000000000”
in4 => ”000000000000000000”
in5 => ”000000000000000000”

in6 => ”000000000000000000”
in7 => ”000000000000000000”
enable => 17,
sel => in_mode(2 downto 0),
z => out_-low

)5

range-muxl: mux8_.x generic map (9) port map(

bytestream_ptr_muxl: mux8.x generic map (32) port map(

in0 => out-range_muxl1,
inl => in_range,
in2 => out_range_mux3,
in3 => ”000000000”
in4 => ”000000000”
in5 => ”000000000”
in6 => ”000000000”
in7 => ”000000000”
enable => ’17,
sel => in_mode (2 downto 0),
z => out_range

)5

in0 => out_-bytestream_ptr_muxl ,
inl => out_bytestream_ptr_mux2,
in2 => out_bytestream_ptr_mux3,
in3 => x”700000000”
in4 => x”00000000”
in5 => x”00000000”
in6 => x”700000000”
in7 => x”00000000”

enable => 17,

sel => in_mode(2 downto 0),

z => out_bytestream_ptr

)5

result_muxl: mux8_x generic map (32) port map(

in0 => out_result_-muxl1 ,

get_cabac_terminate port map(

inl => out_result-mux2,
in2 => out-result-mux3,
243 in3 => x”700000000” ,
in4 => x”700000000” ,
in5 => x”700000000” ,
in6 => x”700000000” ,
in7 => x”700000000” ,
248 enable => 17,
sel => in_mode(2 downto 0),
z => out_result

)5

253 bytestream_start-muxl: mux8.x generic map (32) port map(
in0 => in_bytestream_start ,
inl => in_bytestream_start ,
in2 => in_bytestream_start ,
in3 => set_bytestream_start ,
258 in4 => x”00000000” ,
in5 => x”00000000” ,
in6 => x”00000000” ,
in7 => x”700000000” ,
enable => 17,
263 sel => in_mode(2 downto 0),
z => out_-bytestream_start
)

end behavioural;

Listing A.4: cabac.vhdl

——cabac_-bypass

3 library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric_std. all;

8
entity cabac_bypass is
Port (in_low : in std_logic_vector (17 downto 0);
in_bytestream_ptr: in std_logic_vector (31 downto 0);
in_.range : in std_-logic-vector (8 downto 0);
13
data : in std_logic_vector (7 downto 0);
out_low: out std_logic_-vector (17 downto 0);
out_bytestream_ptr: out std_-logic_-vector (31 downto 0);
18 result : out std_logic_-vector (31 downto 0)
end entity cabac_-bypass;
architecture behavioural of cabac_bypass is
23
component mux.x is
generic (width: natural:=4);
port (

in0, inl: in std_-logic-vector (width—1 downto 0);
28 enable, sel: in std_logic;
z: out std_-logic_-vector (width—1 downto 0));
end component mux._x;

component less_than is
33 generic (width: natural);
Port (in_-a : in std_-logic_vector (width—1 downto 0);
in_b : in std_logic_-vector (width—1 downto 0);
out_c: out std_-logic);
end component less_than;

38
signal low_1, low_2, low_3, low_4, range_2, range-3 : std_logic_vector (17 downto 0);
signal data_-1 : std_-logic_vector (17 downto 0);
signal out_bytestream_ptr_renorm : std_logic_vector (31 downto 0);
signal renorm, mux_lt : std_logic;

43
begin

——shift

low-1(0) <= ’0°;
48 low_1(17 downto 1) <= in_low (16 downto 0);

——and / not
renorm <= not (low_-1(7) or low_1(6) or low_-1(5) or low_1(4) or low_1(3) or
low-1(2) or low_1(1) or low_1(0));
53

58

63

68

73

78

83

88

93

98

108

=

11

16

21

26

68 APPENDIX A. VHDL

data_1(0) <= ’0’;
data_-1(8 downto 1) <= data(7 downto 0);
data_1(17 downto 9) <= ”"000000000” ;

low-2 <= low-1 + data-1;
low_-3 <= low-2 — ”000000000011111111”; ——0zFF

——muzT

renorm_or_not_low: mux.x generic map (18) port map(
in0 => low_1,
inl => low.3,
sel => renorm,
enable => ’17,
z => low_4);

out_bytestream_ptr_renorm <= in_bytestream_ptr + 1;

renorm_or_not_bytestream: mux_.x generic map (32) port map(
in0 => in_bytestream_ptr ,
inl => out-bytestream_ptr_renorm ,
sel => renorm,
enable => 17,
z => out_bytestream_ptr);

——second part

range_2 (8 downto 0) <= 7000000000 ;
range_-2 (17 downto 9) <= in_range (8 downto 0);

——compare

less_than_1: less_than generic map (18) port map(
in_a => low_4,
in_.b => range_2 ,
out_c => mux._lt);

range.3 <= low_-4 — range.2;

low_out_mux: mux_-x generic map (18) port map(
in0 => range_.3,
inl => low_4,
sel => mux_lt,
enable => 17,
z => out_low);

result (31 downto 1) <= ”00000000000000000000000000000007 ;
result (0) <= not(mux_lt);

end behavioural;

Listing A.5: cabac_bypass.vhdl

library IEEE;

——wuse IEEE.numeric_bit. all;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED .ALL;
use ieee.numeric_std.all;

use ieee.std_-logic_-textio.all;
use std.textio.all;

entity cabac_tb is
end cabac_tb;

architecture behavioural of cabac_tb is

component cabac is
Port (in_mode : in std_logic_vector (31 downto 0);
in_state_idx : in std_logic_vector (31 downto 0);
clock : in std_-logic;
reset : in std_logic;
out_result : out std_logic_vector (31 downto 0)
)

end component cabac;
——component cabac is

— port (
— reset : in STD_LOGIC := ’'X’;
— clock : in STD_LOGIC := ’'X’;

—_ out_result : out STD_.LOGIC.VECTOR (381 downto 0);

31

36

41

46

51

61

66

71

76

81

10

15

20

25

69

—_ in_state_idz : in STD_.LOGIC_.VECTOR (31 downto 0);
—_ in-mode : in STD_.LOGIC_.VECTOR (81 downto 0)
——end component cabac;

signal in_mode : std_logic-vector (31 downto 0);
signal in_state_idx : std-logic-vector (31 downto 0);
signal clock : std_logic := ’17;

signal reset : std_logic := ’17;

signal out_result : std_logic_vector (31 downto 0);

constant Tpw_clk : time := 10 ns;

begin
tb_1: cabac port map(
in.mode => in_mode,
in_state_idx => in_state_idx ,
clock => clock ,
reset => reset ,
out-result => out-result

)s

clock_gen: process is
begin
clock <= 0’ after Tpw_clk, ’1’ after 2xTpw_clk;
wait for 2xTpw_clk;
end process clock_gen;

tb_2: process

variable a : integer;
begin

reset <= ’'17;

in_.mode <= x”00000000” ;
in_state_idx <=x”00000000";
wait for 20 ns;

reset <= ’07;

in_.mode <= x”00000000”;

wait for 20 ns;

for a in 1 to 460 loop
in_state_idx <= std_logic_.vector (to_unsigned(a,32));

wait for 20 ns;
end loop;

end process;

end behavioural;

Listing A.6: cabac_tb.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric_std.all;

entity ff_h264_norm_shift is
Port (address : in std_logic_vector (7 downto 0);
data_out : out std_logic_vector (3 downto 0));
end ff_h264_norm_shift;

architecture behavioural of ff_h264_norm_shift is

type ROM_Array is array (0 to 255) of integer;

w
g9
I
~ 3B
o
Q
o
=
s
o

® 3
)
=)
=)
o B
=3
e
N
e}
=
>
]
o
(S

(
5,

ut

NN N WWR
Mwwbwwﬂk
RS EC TR
NNN‘IQ“CAJ;P\.
Mwwbww;&»
I\DI\DI\JMI\JWOJ%Q
MMMI\)@W)&«
NNN}QWW%»
MM[\J\.I\JOJCA?%‘.
IOI\JNMIOWOQ%Q
MNN}Q@“)&»
Mwwbww;&»
MMM“[\JOQOJ%,
Mo R0 M 0 0 00
NNNI@@@;&»
Mwwbww;&»

APPENDIX A. VHDL

70

begin

data_out <= std_logic_vector (to_unsigned (Content(conv_integer (address)) ,4));

end behavioural;

Listing A.7: ff_h264_norm_shift.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

.numeric_std . all;

ieee

use

is
std_-logic_vector (8 downto 0);

8 entity ff_h264_norm_shift_lps

in

(address

end ff_h264_norm_shift_lps;

Port

std-logic_-vector (3 downto 0));

out

data_out

is

of ff_h264_norm_shift_lps

13 architecture behavioural

is array (0 to 511) of integer;

type ROM_Array

©©© O~~~
COOON NN
©©© O~~~
I .
© ©© O~~~
©O© NN N e s s b
COOON NN
©© © O~
©O©O O e e e s I
© © © O s
Y.
- COOON NN s e
o ©©©© M~ s D
T Se e
B
famvTenneoeeonnnnnnl
Ar2734455556,6,6,6,777777777777777,
SamuinsnneeeenEEnEEny
0273445555n0:n0:n01£u1777777~/a~/;~/a~/a~(’
Rlaqm47475757~m576666777777777
M H 10101015 00O I ks s ks b
m17?%4.,4.,rm,r01r01rO:nCaauanDanDa777777~fv~/7~/7—/7~(ﬂ
R
C073»4747575’5’576wﬁﬁﬁq7777777,7a7a7a7,
t0,3,4,4,5,5,575,6666777777777
ot T 0I5 15 0 B G O I I I b b b
“ _an\.v7474vr075rnvvsﬂbaauaﬁbanba777777~fv~/7~/7—/7~(7
R L T
MYLOLVOOOOOEEE LN
N OO O © © O -
00 [e] 0 vl
— [} [} ™

38

begin

data_out <= std_logic_-vector (to_signed (Content(conv_integer (address)) ,4));

43

end behavioural;

Listing A.8: ff_h264_norm_shift_Ips.vhdl

library IEEE;

1

use IEEE.numeric_bit.all;

use IEEE.STD_LOGIC.1164.ALL;
use IEEE.STD_.LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED .ALL;

.numeric_std . all;

ieee
use STD. textio

6 use

.all;

is

entity get_cabac

port (

state_idz ?

—9 bits

std_logic_-vector (8 downto 0);
std_logic_-vector (17 downto 0);

in

state_idx:

11

in

in_low:
in_range:

std_logic-vector (8 downto 0);

in
in_.bytestream_ptr:

in_data:
clock:

std_-logic_vector (31 downto 0);

std_logic_vector (7 downto 0);

std-logic;

in
std-logic;

in

in
in

16

reset :

std-logic_-vector (17 downto 0);

out

out_low :

std-logic-vector (31 downto 0);

std-logic_-vector (8 downto 0);
out

out

out_-bytestream_ptr

out_range

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

96

101

106

71

out_result

—result:

)
end entity

architecture

component
Port (

end component

component new_lps_range

Port (

get_cabac

—— Components

o

out

5

structural

ut

std_-logic_vector (31 downto 0)

std_-logic;

—clk: in std-logic;

—res: in std-logic;

——bytestream_addr_out: out std_-logic_vector (8 downto 0);
——bytestream_data-in: itn std_-logic_-vector (7 downto 0);
——out_low_register_out: out std_logic_vector (17 downto 0);
——out_-range_register_out: out std_logic_vector (8 downto 0);
—— mps_enable_out

out std_logic

of get_cabac is

local_cabac_state is
in s

address
data_out
data_in
clk : in

address
data_out

out

in s
std_logic;
res: in std_logic);

in s

out

td-logic_-vector (8 downto 0);
std-logic-vector (7 downto 0);
td_logic_vector (6 downto 0);

local_cabac_state;

is

td_logic_vector (8 downto 0);
std_logic_-vector (7 downto 0));

end component new_lps_range;

component new_mps_state

Port (

address
data_out

in s

out

is

td-logic_vector (7 downto 0);
std-logic_vector (6 downto 0));

end component new_mps_state;

component new_lps_state

Port (

address
data_out

in s

out

is

td-logic_-vector (7 downto 0);
std_logic_vector (6 downto 0));

end component new_lps_state;

component ff_h264_norm_shift is
in s

Port (

address
data_out

out

td_logic_vector (7 downto 0);
std_logic_-vector (3 downto 0));

end component ff_h264_norm_shift;

component ff_h264_norm_shift_lps is
in s

Port (

address
data_out

out

td_logic_vector (8 downto 0);
std_-logic_vector (3 downto 0));

end component ff_h264_norm_shift_lps;

component
Port (

component
Port (

end component

substract
in_a : in
in_b : in

is

std-logic_-vector (8 downto 0);
std-logic_-vector (7 downto 0);
std-logic_-vector (8 downto 0));

out_c: out
end component substract;

less_than
in_a : in
in_b : in

is

std_logic_vector (8 downto 0);
std_logic_-vector (8 downto 0);
std_logic);

out_c: out

component mux._x is
generic (width:

port (

less_than;

natural:=4);

in0, inl: in std-logic_-vector (width—1 downto 0);
enable, sel

Z:

end component mux-x;

component
Port (

end component if_ MPS

component
Port (

in

std-logic;

out std-logic_-vector (width—1 downto 0));

if MPS is
in_low in std_-logic-vector (17 downto 0);
in_range in std_logic_vector (8 downto 0);
input_bytestream: in std_logic_vector (31 downto 0);—— enough bits?
in_bytestream_ptr: in std_logic_vector (31 downto 0);—— enough bits?
out_bytestream_ptr: out std_-logic_vector (31 downto 0);—— enough bits?
out_low: out std_logic_vector (17 downto 0);
out_range: out std_logic_vector (8 downto 0));
5
if LPS is
in_low in std_logic_vector (17 downto 0);
in_range in std_logic_vector (8 downto 0);

111

116

121

126

131

136

141

146

151

161

166

171

176

181

186

191

72 APPENDIX A. VHDL

in.rLPS : in std_logic_vector (7 downto 0);
in_bits: in std_logic_-vector (3 downto 0);

in_bytestream_ptr: in std_-logic_vector (31 downto 0);—— enough bits?
input_bytestream: in std-logic_vector (31 downto 0);—— enough bits?
out_bytestream_ptr: out std-logic_vector (31 downto 0);—— enough bits?

out_low: out std-logic_-vector (17 downto 0);
out_-range: out std-logic-vector (8 downto 0));
end component if_LPS;

——component bytestream_ptr_register is
—_ Port (

—_ clock : in std_logic;

—_ reset : in std_logic;

— data_set: in std_-logic_-vector (8 downto 0);
— data: in std_-logic_vector (8 downto 0);

—_— output: out std_logic_vector (8 downto 0));
——end component bytestream_ptr_register;

——component low_register is

—_— Port (

—_ clock : in std_logic;
—_ reset : in std-logic;

—_ data_set: in std_logic_vector (17 downto 0);
—_ data: in std_logic_vector (17 downto 0);

—_ output: out std_logic_vector (17 downto 0));
——end component low_register;

——component range_register is

— Port (

—_ clock : in std_-logic;
—_ reset : in std_logic;

—_— data: in std_logic_vector (8 downto 0);
—_ output: out std_-logic_vector (8 downto 0));

——end component range_register;

component new_input_bytestream is

port (in_bytestream : in std_logic_-vector (7 downto 0);
newinput_-bytestream : out std-logic_-vector (31 downto 0)
)i

end component new_input_bytestream ;

— Signals

signal state: std_logic_vector (7 downto 0);
signal range_2: std_logic_-vector (8 downto 0); —9 bits?

——signal low-1: std_-logic_vector (17 downto 0);
signal state_and_range: std-logic_vector (8 downto 0);

signal rLPS: std_-logic_vector (7 downto 0);
signal bits: std-logic_vector (3 downto 0);

signal next_mps_state: std-logic-vector (6 downto 0);
signal next_lps_state: std_logic_vector (6 downto 0);
signal next_cabac_state: std_logic_vector (6 downto 0);

signal mps_enable: std_logic;

——signal shift_amount: std_logic;

signal out_low_lps, out_low_mps: std_logic_vector (17 downto 0);
signal out_range_lps, out_range_mps: std_logic_vector (8 downto 0);
signal out_bytestream_ptr_lps, out_bytestream_ptr_mps: std-logic_-vector (31 downto 0);

signal newinput_bytestream: std_logic_-vector (31 downto 0);
——signal bytestream : std_-logic_-vector (7 downto 0);

begin

— Signal maps
state_and_range (8 downto 7) <= in_range (7 downto 6);
state_and_range (6 downto 0) <= state (6 downto 0);

201

206

211

216

221

226

231

236

241

246

251

261

266

271

281

73

—— Port maps

get_input_bytestream: new_input_-bytestream port map(
in_.bytestream => in_data,
newinput_bytestream => newinput_bytestream);

get_local_cabac_state: local_cabac_state port map(
address => state_idx ,
data_out => state,
data_in => next_cabac_state ,
clk => clock,
res => reset);

get_new_lps_range: new_lps_range port map(
address => state_and_range ,
data_out => rLPS);

get_bits: ff_h264_norm_shift port map(
address => rLPS,
data_out => bits);

next_mps_state_1: new_mps_state port map(
address => state,
data_out => next_mps_state);

next_lps_state_1: new_lps_state port map(
address => state ,
data_out => next_lps_state);

substract_-1: substract port map(
in_a => in_range ,
in_.b => rLPS,
out_c => range_2);

less_than_1: less_than port map(
in_a => in_low (17 downto 9),—— (8 downto 0),
in_.b => range_-2,
out_c => mps_enable);

select_mps_lps: mux_x generic map (7) port map(
in0 => next_lps_state ,
inl => next_mps_state,
sel => mps_enable,
enable => 17,
z => next_cabac_state);

if_mps_-1: if_-mps port map(
in_.low => in_low ,
in_.range => range.-2,
input_bytestream => newinput_bytestream ,
in_.bytestream_ptr => in_bytestream_ptr ,
out_bytestream_ptr => out_-bytestream_ptr_mps,
out_low => out_low_mps,
out_-range => out_-range_mps

if_1ps_1: if_lps port map(
in_low => in_low,
in_.range => range.2,
in.rLPS => rLPS,
in_bits => bits,
in_bytestream_ptr => in_bytestream_ptr ,
input_bytestream => newinput_bytestream ,
out_bytestream_ptr => out_bytestream_ptr_lps,
out_-low => out_low_lps ,
out_-range => out_range_lps

)s

— regtisters for bytestream , low and range
——bytestr_1: bytestream_ptr_register port map(
— clock => clk,

—_ reset => res,

—_ data-set => 7000000000",

—_ data => out_bytestream_ptr_register ,
—_ output => out_bytestream_ptr_in

—);

——low_regl: low_register port map(

—_ clock => clk,

— reset => res,

— data_-set => 7000000000000000010”,— — first 12 bits of the
—_ data => out_low_register ,

— output => low-1

bytestream +2

286

291

296

301

306

311

316

321

326

331

336

11

16

21

26

74 APPENDIX A. VHDL

——range_-regl: range_register port map(
— clock = clk,

— reset => res,

— data => out_-range_register ,
—_ output => range-1

—— muz low, range and xbytestream .. if mps or Ilps

low_mps_lps: mux_x generic map (18) port map(
in0 => out_low_lps,
inl => out_low_mps,
sel => mps_enable,
enable => ’17,
z => out_-low);

range_mps_lps: mux_x generic map (9) port map(
in0 => out_-range_lps,
inl => out_range_mps,
sel => mps_enable,
enable => 17,
z => out_range);

bytestream_mps_lps: mux_x generic map (32) port map(
in0 => out_bytestream_ptr_lps,
inl => out_bytestream_ptr_mps,
sel => mps_enable,
enable => 17,
z => out_bytestream_ptr);

—— Small logic

out_result (0) <= state(0) xor (not mps_enable);
out_result (31 downto 1) <= ”0000000000000000000000000000000” ;

—out_low_register_out <= out_low_register;
——out_range_register_out <= out_range_register;
—mps_enable_out <= mps_enable;

— Muz

—nexzt_cabac_state <= (next_lps_state and (not mps_enable)) or (next_-mps_state

end architecture structural;

and

mps-enable);

Listing A.9: get_cabac.vhdl

library IEEE;

——wuse IEEE.numeric_bit. all;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric_std.all;

use ieee.std-logic_-textio.all;
use std.textio.all;

entity get_cabac_tb is
end get_cabac_tb;

architecture behaviour of get_cabac_tb is

component get_cabac is

port (
state_idx: in std_-logic_-vector (8 downto 0); —9 bits state_idz?
result: out std_-logic;
clk: in std_logic;
res: in std_logic;
bytestream_addr_out: out std_logic_vector (8 downto 0);
bytestream_data_in: in std-logic_vector (7 downto 0);
out_low_register_out: out std-logic_-vector (17 downto 0);
out_range_register_out: out std_-logic_vector (8 downto 0);
mps-enable_out : out std-logic

)s

31

36

41

46

51

56

61

66

71

76

81

86

91

96

101

106

111

75

end component get_cabac;

signal state_idx : std_logic_-vector (8 downto 0);

signal clk : std_-logic;

signal res : std-logic;

signal bytestream_data-in : std_-logic_-vector (7 downto 0);
signal result : std_logic;

signal bytestream_addr_out : std_logic_vector (8 downto 0);
signal low : std_-logic_vector (19 downto 0);

signal range_out : std_logic_vector (11 downto 0);

signal mps : std_logic;

constant Tpw_clk : time := 10 ns;

begin

tb_1: get_cabac port map(

state_idx => state_-idx,

result => result ,

clk => clk,

res => res,

bytestream_addr-out => bytestream_addr-out ,
bytestream_-data-in => bytestream-_data_-in ,
out_low_register_.out => low (17 downto 0),
out_range_register_out => range_out (8 downto 0),
mps_enable_out => mps

)

low (19 downto 18) <= 7007 ;
range_out (11 downto 9) <= 0007 ;

clock_gen: process is
begin
clk <= ’0’ after Tpw_clk, ’1’ after 2+Tpw_clk;
wait for 2xTpw_clk;
end process clock_gen;

tb_-2: process

variable a : integer;

file outfile : text open write_mode is ”cabac_testbench.txt”;

variable buf : line;

variable start_msg : string(l to 30) := ”state_idx_low_range_mps_result”;
begin

write (buf,start_msg);
writeline (outfile , buf);

res <= ’'17;
wait for 20 ns;
res <= '07;

state_idx <="000000000";
bytestream-_data_-in <=x"FF”;

wait for 19 ns;

for a in 1 to 460 loop
state_idx <= std_logic_vector (to_unsigned(a,9));

write (buf,conv_integer (state_idx));

write (buf,’” ’);

hwrite (buf, low);

write (buf,’” ’);

hwrite (buf, range-out);

write (buf,’” ’);

write (buf, conv_integer (mps));
write (buf,’” ’);

write (buf, conv_integer(result));
writeline (outfile , buf);

wait for 20 ns;
end loop;

file_close (outfile);

116

11

16

21

26

31

36

41

46

51

56

61

66

71

76

76

APPENDIX A. VHDL

wait ;

end process;

end;

Listing A.10: get_cabac_tb.vhdl

——get_cabac_terminate

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;
use ieee.numeric_std.all;

entity get_-cabac_-terminate 1is
Port (in_low : in std_logic_vector (17 downto 0);

in_bytestream_ptr: in std_logic_vector (31 downto 0);
in_range : in std_logic_vector (8 downto 0);

in_bytestream_start : in std_logic_vector (31 downto 0);
data : in std_logic_vector (7 downto 0);

out_low: out std_-logic_-vector (17 downto 0);
out_range: out std_logic_vector (8 downto 0);

out_bytestream_ptr: out std_-logic_vector (31 downto 0);—— enough bits?

result : out std_logic_vector (31 downto 0)

end entity get_cabac_terminate;

architecture behavioural of get_cabac_-terminate is

component mux_x is
generic (width: natural:=4);
port (

in0, inl: in std_-logic_vector (width—1 downto 0);
enable, sel: in std_logic;
z: out std_logic_vector (width—1 downto 0));

end component mux._x;

component less_than is

generic (width: natural);

Port (in_a : in std_logic_vector (width—1 downto 0);

in_.b : in std_logic_-vector (width—1 downto 0);
out-c: out std_-logic);

end component less_than;

signal range_2, range-3, range_2_shifted : std-logic_-vector (8 downto 0);
signal range_-2_1t , low_shifted , low-3, low_4, low_5, low_.6, data-1 : std-logic_-vector (17 downto 0);
signal out_mux_lt, shift , renorm : std_logic;
signal range_2_wide, range_-3_wide : std_logic_vector (31 downto 0);
signal out_bytestream_ptr_renorm , bytestream_ptr_2, bytestream_result std_logic_vector (31 downto 0);
begin

range_-2 <= in_range — 2;

range_2_1t (8 downto 0) <= ”7000000000”;
range_-2_1t (17 downto 9) <= range_2(8 downto 0);

——compare

less_than_1: less_than generic map (18) port map(

in_a => in_low ,
in_.b => range_2_1t ,
out_c => out-mux-_lt);

range_2_wide (31 downto 9) <= ”"00000000000000000000000” ;
range_2_wide (8 downto 0) <= range_2 (8 downto 0);

range_3_wide <= range_2_wide — x”71007;

shift <= range_3_wide (31);

range_2_shifted (0) <= ’07;
range_2_shifted (8 downto 1) <= range_2(7 downto 0);

low_shifted (0) <= ’07;
low_shifted (17 downto 1) <= in_low (16 downto 0);

shift_range: mux.x generic map (9) port map(

in0 => range-2,

81

86

91

96

101

111

116

121

126

131

136

141

146

151

77

inl => range_2_shifted ,
sel => shift ,
enable => 17,
z => range_-3);

shift_-low: mux_-x generic map (18) port map(
in0 => in_-low ,
inl => low_shifted ,
sel => shift ,
enable => 17,
z => low_.3);

——and / not

renorm <= not (low_3(7) or low_3(6) or low_3(5) or low_3(4) or

low_-3(2) or low_3(1) or low_3(0));

data_1(0) <= ’07;
data-1(8 downto 1) <= data(7 downto 0);
data_1(17 downto 9) <= " 000000000 ;

low_4 <= low_3 + data_1;
low_5 <= low_4 — ”000000000011111111”; ——0zFF

renorm_or_not_low: mux_x generic map (18) port map(
in0 => low.3,
inl => low.5,
sel => renorm,
enable => '17,
z => low_6);

out_bytestream_ptr_renorm <= in_bytestream_ptr + 1;

renorm_or_not_bytestream: mux_.x generic map (32) port map(
in0 => in_bytestream_ptr ,
inl => out_bytestream_ptr_renorm ,
sel => renorm,
enable => 17,
z => bytestream_ptr_2);

——end muzes

bytestream_result <= in_bytestream_ptr — in_bytestream_start;

end_result: mux_.x generic map (32) port map(
in0 => bytestream_result ,
inl => x”00000000” ,
sel => out_mux_lt ,
enable => 17,
z => result);

end_low: mux_x generic map (18) port map(
in0 => in_-low ,
inl => low_6,
sel => out-mux-lt,
enable => 17,
z => out_low);

end_range: mux.-x generic map (9) port map(
in0 => range_2,
inl => range_3,
sel => out_mux_lt ,
enable => ’17,
z => out_range);

end_bytestream: mux_-x generic map (32) port map(
in0 => in_bytestream_ptr ,
inl => bytestream_ptr_2 ,
sel => out_-mux-It,
enable => 17,
z => out_bytestream_ptr);

end behavioural;

low_3(3) or

Listing A.11: get_cabac_terminate.vhdl

—if_.LPS

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_.LOGIC_ARITH.ALL;

11

16

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

78 APPENDIX A. VHDL

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;

entity if_-LPS is
Port (in_low : in std_logic-vector (17 downto 0);
in_.range : in std-logic_vector (8 downto 0);
in_rLPS : in std-logic_-vector (7 downto 0);
in_bits: in std_logic_vector (3 downto 0);

in_bytestream_ptr: in std_logic_vector (31 downto 0);—— enough bits?
input_bytestream: in std_logic_-vector (31 downto 0);—— enough bits?
out_bytestream_ptr: out std_-logic_vector (31 downto 0);—— enough bits?

out_low: out std_logic_vector (17 downto 0);
out_range: out std_logic_vector (8 downto 0));
end entity if_.LPS;

architecture behavioural of if_-LPS is

—— Components

component ff_h264_norm_shift_lps is
Port (address : in std-logic_-vector (8 downto 0);
data_out : out std-logic-vector (3 downto 0));
end component ff_h264_norm_shift_lps;

component bshift is
generic (width:natural);
port (x: in std_logic_vector (width—1 downto 0);
s: in std_logic_vector (3 downto 0);
z: out std_logic_vector (width—1 downto 0));
end component bshift;

component mux_-x is
generic (width: natural:=4);
port (
in0, inl: in std-logic_-vector (width—1 downto 0);
enable, sel: in std_-logic;
z: out std_logic_-vector (width—1 downto 0));
end component mux-x;

signal range_2: std_logic_vector (17 downto 0);

signal x: std_-logic_vector (17 downto 0);

signal low_1, low_2: std_logic_-vector (17 downto 0);

——signal low_bs_in, low_bs_out: std_logic_vector (31 downto 0);

signal input_bytestream_-1, renorm_low: std_logic_vector (17 downto 0);

signal renorm: std_logic;

signal i: std_logic_vector (3 downto 0);

signal bits_bs, i_bs: std_logic_vector (3 downto 0);
signal rlps_bs: std_logic_vector (8 downto 0);

signal input_bytestream_bs_in, input_bytestream_bs_out: std_logic_-vector (31 downto 0);

signal out_bytestream_ptr_renorm : std-logic_-vector (31 downto 0);
begin

range_2 (17 downto 9) <= in_range;
range_2 (8 downto 0) <= 7000000000 ;
low_1 <= in_low — range_2;

—— bshift low

bshift_1: bshift generic map (18) port map(
x => low_1,
s => in_bits ,
z => low_2);

—— bshift range = shift rLPS by bits
rlps_bs (8) <='0%
rlps_bs (7 downto 0) <= in_rLPS;

bshift_-2: bshift generic map (9) port map(
x => rlps_bs ,
s => in_bits ,
z => out_range);

x <= (low_.2 xor (low_2—1));

ff_h264 _norm_shift_lps_1: ff_h264_norm_shift_lps port map(
address => x(15 downto 7),
data_out => 1i);

96

101

106

111

116

121

126

10

15

20

25

30

35

40

45

79

—— shift input_-bytestream by 1

bshift_-3: bshift generic map (18) port map(
x => input_bytestream (17 downto 0),
s => i,
z => input_bytestream-_1);

renorm <= not (low_2(7) or low_2(6) or low_.2(5) or low_2(4) or low_.2(3) or

low_-2(2) or low_2(1) or low_-2(0));

——make muzes
renorm_low <= low_-2 4 input_-bytestream_1;

renorm_or_not_low: mux_x generic map (18) port map(
in0 => low_-2,
inl => renorm-low ,
sel => renorm,
enable => 17,
z => out_low);

out_bytestream_ptr_renorm <= in_bytestream_ptr 4 1;

renorm_or_not_bytestream: mux-x generic map (32) port map(
in0 => in_bytestream_ptr ,
inl => out_bytestream_ptr_renorm ,
sel => renorm,
enable => ’17,
z => out_-bytestream_ptr);

end behavioural;

Listing A.12: if LPS.vhdl

——if_-MPS

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric_std.all;

entity if-MPS is

Port (in_-low : in std_logic-vector (17 downto 0);
in_range : in std_logic_vector (8 downto 0);
input_bytestream: in std_logic_vector (31 downto 0);—— enough bits?

in_bytestream_ptr: in std_logic_vector (31 downto 0);

out_bytestream_ptr: out std_logic_-vector (31 downto 0);

out_low: out std_logic_vector (17 downto 0);
out_range: out std_logic_vector (8 downto 0));
end entity if_-MPS;

architecture behavioural of if_MPS is

component mux-x is
generic (width: natural:=4);
port (
in0, inl: in std-logic_-vector (width—1 downto 0);
enable, sel: in std-logic;
z: out std_logic_-vector (width—1 downto 0));
end component mux-x;

signal shift_amount: std_logic;

signal shifted_range: std_logic_vector (8 downto 0);
signal shifted_low: std_logic_vector (17 downto 0);

signal renorm: std_logic;
signal low_mux, renorm_low: std_logic_vector (17 downto 0);

signal out_bytestream_ptr_renorm: std_logic_vector (31 downto 0);

begin

shift_.amount <= in_range (8) xor ’'1’;
shifted_range (8 downto 1) <= in_range (7 downto 0);
shifted_range (0) <= ’0;

shifted_low (17 downto 1) <= in_low (16 downto 0);

50

60

65

70

75

80

85

13

18

28

80

APPENDIX A. VHDL

shifted_-low (0) <= ’07;

shift_or_not_-range: mux.x generic map (9) port map(
in0 => in.range,
inl => shifted_range ,
sel => shift_.amount ,
enable => 17,
z => out_range);

shift_or_not_-low: mux.x generic map (18) port map(
in0 => in_low ,
inl => shifted_low ,
sel => shift_amount ,
enable => ’17,
z => low_mux);

renorm <= not (low_mux(7) or low_mux(6) or low_mux(5) or low_mux(4) or low_mux(3)

low_mux (2) or low_mux(l) or low_mux(0));

renorm_-low <= low_mux + input_bytestream (17 downto 0);

renorm-_or_not_-low: mux_-x generic map (18) port map(
in0 => low_mux,
inl => renorm_low,
sel => renorm,
enable => 17,
z => out_low);

out_bytestream_ptr_renorm <= in_bytestream_ptr + 1;

renorm_or_not_bytestream: mux_.x generic map (32) port map(
in0 => in_bytestream_ptr ,
inl => out_-bytestream_ptr_renorm ,
sel => renorm,
enable => 17,
z => out_bytestream_ptr);

end behavioural;

Listing A.13: if MPS.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;

——use ieee.numeric_std. all;

entity less_than is

generic (width: natural:=9);

Port (in_a : in std_-logic_vector (width—1 downto 0);
in_.b : in std_logic_-vector (width—1 downto 0);
out-c: out std_-logic);

end entity less_than;

architecture behavioural of less_than is

begin
process(in_a, in_b)
begin

if (in_.a < in_b) then
out_c <= ’'17;
else
out_c <= ’'07;
end if;
end process;

end behavioural;

Listing A.14: less_than.vhdl

——under construction ..
—local_-cabac_state

——must make bram..

or

10

15

20

25

30

35

40

45

55

60

70

75

80

85

90

81

library IEEE;

use IEEE.STD_LOGIC_.1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;

use ieee.numeric_std.all;
entity local_cabac_state is
Port (address in std_logic_vector (8 downto 0);

data_out out std_logic_vector (7 downto 0);
data_in in std_logic_-vector (6 downto 0);
clk in std_logic;
res in std_logic);

end local_cabac_state;

architecture behavioural

component mux-x is

generic (width:
port (

in0, inl: in

enable ,

z: out

end component mux_x;

natural:=4);

sel: in

of local_cabac_state

18

std-logic_-vector (width—1 downto 0);
std-logic;
std_-logic-vector (width—1 downto 0));

signal a_reg std_logic_vector (8 downto 0);
signal in0, inl std_logic_vector (7 downto 0);
signal sel_data std_logic;
type RAM_Array is array (0 to 459) of integer;
signal ram: RAM_Array :=
124, 18, 21, 124, 18, 21, 123, 77, 22, 20, 24, 124, 124, 124, 124, 124, 124, 124,
124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 44, 0, 0, 0, 37, 45, 67, 15,
44, 2, 104, 16, 11, 123, 75, 37, 19, 83, 123, 123, 123, 59, 123, 97, 123, 115,
101, 115, 101, 2, 7, 39, 79, 11, 57, 51, 123, 19, 65, 53, 123, 16, 35, 23, 119,
57, 45, 25, 13, 2, 7, 39, 4, 1, 4, 14, 3, 1, 4, 27, 26, 22, 56, 38, 50, 36, 34,
38, 90, 24, 26, 86, 58, 2, 87, 71, 73, 53, 59, 47, 39, 43, 37, 45, 57, 13, 17,
19, 6, 75, 71, 63, 21, 17, 21, 13, 34, 9, 2, 3, 50, 15, 12, 16, 2, 17, 124, 108,
76, 90, 108, 88, 52, 90, 68, 58, 66, 36, 10, 2, 4, 50, 36, 48, 42, 38, 34, 44,
28, 56, 40, 16, 22, 32, 51, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
124, 124, 124, 120, 88, 124, 118, 80, 124, 124, 124, 124, 116, 112, 122, 90,
78, 30, 50, 4, 9, 67, 13, 44, 28, 20, 4, 10, 0, 15, 19, 53, 5, 74, 50, 40, 34,
o, 7, 27, 25, 43, 55, 18, 8, 4, 1, 17, 23, 31, 47, 89, 65, 37, 29, 17, 19, 43,
63, 65, 103, 27, 62, 32, 22, 4, 13, 29, 43, 51, 65, 124, 57, 39, 29, 5, 13, 2,
8, 10, 21, 4, 12, 3, 29, 15, 9, 38, 4, 54, 46, 70, 68, 38, 52, 60, 42, 30, 2,
32, 1, 79, 65, 63, 47, 41, 41, 41, 47, 5, 25, 23, 23, 10, 23, 37, 69, 61, 63,
25, 19, 13, 21, 9, 3, 17, 2, 2, 7, 21, 16, 1, 13, 114, 88, 94, 98, 98, 104,
96, 94, 80, 80, 86, 74, 38, 44, 30, 90, 82, 80, 70, 66, 54, 26, 12, 0, 25,
35, 59, 11, 89, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 122, 118,
96, 54, 10, 124, 124, 64, 124, 124, 124, 116, 124, 112, 100, 112, 98, 100,
66, 70, 46, 7, 82, 62, 24, 109, 93, 97, 41, 55, 49, 11, 33, 31, 9, 11, 18,
5, 30, 19, 124, 124, 124, 124, 116, 110, 54, 14, 39, 21, 82, 58, 40, 18, 18,
4, 1, 9, 55, 83, 65, 51, 51, 45, 17, 29, 43, 17, 11, 9, 3, 0, 12, 8, 124,
124, 124, 124, 118, 106, 82, 52, 7);
begin

——data_out <= std_logic_-vector (to_signed (Content(conv_integer (address)),8));

process (clk)
begin

if (clk’event and clk =

"1’) then

ram(conv_integer (a_reg)) <= conv_integer (data_in);

a.reg <= address;

end if;

end process;

——process (address , a_-reg)——1is

—begin

—if (address =

else

——data_-out <= std_logic_vector (to_unsigned (ram(conv_integer (address)),8));

—end

if;

——end process;

thi

s allowed? no

a_-reg) then

data_out (6 downto

0) <= data_in ;

clk ..

82 APPENDIX A. VHDL

in0 <= std_-logic_vector (to_unsigned (ram(conv_integer (address)) ,8));
inl(7) <= ’0;
inl (6 downto 0) <= data_in;

sel_data <= ((a-reg(0) and address (0)) or (not a_reg (0) and not address(0))) and
(a-reg(l) and address (1)) or (not a_reg(l) and not address(1))) and

(

((a-reg(2) and address(2)) or (not a_reg(2) and not address (2))) and
((a-reg(3) and address(3)) or (not a_reg(3) and not address(3))) and
((a-reg(4) and address(4)) or (not a_reg(4) and not address(4))) and
((a-reg(5) and address(5)) or (not a_reg(5) and not address(5))) and
((a-reg(6) and address(6)) or (not a_reg(6) and not address(6))) and
((a-reg(7) and address (7)) or (not a_reg(7) and not address (7)));

data_bypass: mux-x generic map (8) port map(
in0 => in0O,
inl => inl,
sel => sel_data ,
enable => 17,
z => data_out);

——process (clk, res)

—_ begin

—_ if (res = ’0°) then

—_ if (clk ’event and clk = ’0°) then

—_ ram(conv_integer (a_-reg)) <= conwv_integer (data_in);
—_ end if;
——end if;

end process;

end behavioural;

Listing A.15: local_cabac_state.vhdl

— register 18 bits low

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;
use ieee.numeric-_std.all;

entity low_register is
Port (

clock : in std_logic;
reset : in std_-logic;
data_set: in std_logic_vector (17 downto 0);
data: in std_-logic_vector (17 downto 0);
output: out std_logic_vector (17 downto 0));

end entity low_register;

architecture behavioural of low_register is

begin
process(clock , reset)

begin

if (reset = ’1’) then
output <= data_set;

elsif (clock ’event and clock = ’1’) then
output <= data;

end if;

end process;

end behavioural;

Listing A.16: low_register.vhdl

——8 input muz
—z wide

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;

entity mux8.x is
generic (width: natural:=32);

13

18

23

28

33

38

43

48

53

58

63

14

83

port (

in0, inl, in2, in3, in4, inb5, in6, in7 : in std_-logic_vector (width—1 downto 0);

enable: in std_logic;

sel: in std_-logic_vector (2 downto 0);

z: out std_logic_-vector (width—1 downto 0));
end entity mux8.x;

architecture behavioural of mux8.x is
function zeros(z: std_logic_vector) return std_logic_vector
variable outvalue: std_-logic_-vector(z’length—1 downto 0);
begin

for i in z’range loop

outvalue (i) = ’07;
end loop;

return outvalue;
end function zeros;

begin
process(in0, inl, in2, in3, in4, in5, in6, in7, enable,
begin

if (enable=’1" and sel="000”) then

z <= in0;

elsif (enable=’1" and sel="001") then
z <= inl;

elsif (enable=’1" and sel="010”) then
z <= in2;

elsif (enable=’1" and sel="011") then
z <= in3;

elsif (enable=’1" and sel="100") then
z <= in4;

elsif (enable=’1’ and sel="101") then
z <= inb;

elsif (enable=’1" and sel="110") then
z <= in6;

elsif (enable=’1’ and sel="111") then
z <= inT;

else
z <= zeros (in0);— "0 ’;

end if;

end process;

end architecture behavioural;

is

sel) is

Listing A.17: mux8_x.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_.LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED .ALL;
use ieee.numeric_std.all;

entity mux_2 is
port (in0O, inl, sel: in std_-logic;
z: out std_logic);
end entity mux_2;
architecture structural of mux.2 is
begin
z <= (in0 and (not sel)) or (inl and sel);

end architecture structural;

Listing A.18: mux_2.vhdl

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_.LOGIC_ARITH.ALL;

12

17

22

27

32

37

42

47

10

15

20

25

84 APPENDIX A. VHDL

use IEEE.STD_LOGIC_UNSIGNED .ALL;

entity mux.-x is

generic (width: natural:=4);

port (

in0, inl: in std-logic-vector (width—1 downto 0);
enable, sel: in std-logic;

z: out std_logic_vector (width—1 downto 0));
end entity mux_x;

architecture behavioural of mux.x is
function zeros(z: std_logic_vector) return std_logic_vector is
variable outvalue: std_logic_-vector (z’length—1 downto 0);
begin

for i in z’range loop

outvalue(i) := ’07;
end loop;

return outvalue;
end function zeros;

begin
process(in0, inl, enable, sel) is
begin

if (enable=’1" and sel=’0’) then

z <= inO;

elsif (enable=’1" and sel=’1’) then
z <= inl;

else
z <= zeros (in0);— '07;

end if;

end process;

end architecture behavioural;

Listing A.19: mux_x.vhdl

——new_input_bytestream

library IEEE;

use [IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;

entity new_input_-bytestream is
port (in_bytestream : in std_logic_-vector (7 downto 0);

newinput_bytestream : out std-logic_-vector (31 downto 0)

end entity new_input_bytestream;

architecture behavioural of new_input_bytestream is

signal in_bytestream_large : std_-logic_vector (31 downto 0):= x”00000000” ;
begin
in_bytestream_large (8 downto 1) <= in_bytestream; —1 shift

newinput_bytestream <= in_bytestream_large 4 x”FFFFFFO01”;

end architecture behavioural;

Listing A.20: new_input_bytestream.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_.UNSIGNED.ALL;

14

19

24

29

34

11

16

21

26

11

85

use ieee.numeric_std

entity new_lps_range
Port (address

.all;

is
in

H

std-logic_-vector (8 downto 0);

data_out out std-logic_-vector (7 downto 0));
end new_lps_range;
architecture behavioural of new_lps_range is

type ROM_Array

is array (0 to 511) of integer;

constant Content: ROM_Array :=(

128, 128, 128, 128, 128, 128, 123, 123, 116, 116, 111, 111, 105, 105, 100, 100, 95, 95, 90, 90, 85, 85, 81, 81
56, 56, 53, 53, 51, 51, 48, 48, 46, 46, 43, 43, 41, 41, 39, 39, 37, 37, 35, 35, 33, 33, 32, 32, 30, 30, 29, 2
20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 14, 14, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 1
7,6, 6, 6, 6, 6, 6, 2, 2, 176, 176, 167, 167, 158, 158, 150, 150, 142, 142, 135, 135, 128, 128, 122, 122, 11
85, 85, 80, 80, 76, 76, 72, 72, 69, 69, 65, 65, 62, 62, 59, 59, 56, 56, 53, 53, 50, 50, 48, 48, 45, 45, 43, 4
30, 30, 28, 28, 27, 27, 26, 26, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 1
11, 11, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 2, 2, 208, 208, 197, 197, 187, 187, 178, 178, 169,
130, 123, 123, 117, 117, 111, 111, 105, 105, 100, 100, 95, 95, 90, 90, 86, 86, 81, 81, 77, 77, 73, 73, 69, 69
48, 48, 46, 46, 43, 43, 41, 41, 39, 39, 37, 37, 35, 35, 33, 33, 32, 32, 30, 30, 29, 29, 27, 27, 26, 26, 25, 2
17, 17, 16, 16, 15, 15, 15, 15, 14, 14, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8
195, 195, 185, 185, 175, 175, 166, 166, 158, 158, 150, 150, 142, 142, 135, 135, 128, 128, 122, 122, 116, 116,
80, 80, 76, 76, 72, 72, 69, 69, 65, 65, 62, 62, 59, 59, 56, 56, 53, 53, 50, 50, 48, 48, 45, 45, 43, 43, 41, 4
28, 28, 27, 27, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 1
10, 10, 9, 9, 2, 2);

begin

data_out <= std_-logic_-vector (to_unsigned (Content(conv_integer (address)) ,8));
end behavioural;
Listing A.21: new_lps_range.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED .ALL;

use ieee.numeric_std.all;

entity new_lps_state is

Port (address in std_logic_vector (7 downto 0);
data_out out std_logic_vector (6 downto 0));
end new_lps_state;
architecture behavioural of new_lps_state is
type ROM_Array is array (0 to 128) of integer;
constant Content: ROM_Array :=(
1, 0, 0, 1, 2, 3, 4, 5, 4, 5, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23,

26, 27, 26, 27, 30, 31, 30, 31, 32, 33, 32, 33, 36, 37, 36, 37, 38, 39, 38, 39, 42, 43, 42, 43, 44, 45, 44, 45

46, 47, 48, 49, 48, 49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59, 58, 59, 60, 61, 60, 61, 60, 61

62, 63, 64, 65, 64, 65, 66, 67, 66, 67, 66, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73, 72, 73, 72, 73

74, 75, 74, 75, T4, 75, 76, 77, 76, 77, 126, 127, 2);

begin

data_out <=

end behavioural;

std_logic_vector (to_unsigned (Content(conv_integer (address)) ,7));

Listing A.22: new _lps_state.vhdl

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;

is
in std_logic_vector (7 downto 0);
out std-logic_-vector (6 downto 0));

entity new_mps_state
Port (address
data_out
end new_mps_state;

architecture behavioural of new_mps_state is

16

21

26

12

17

22

27

14

19

type ROM_Array is array (0 to 128) of integer;
constant Content: ROM_Array :=(
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127, 128);
begin

data_out <= std_-logic_vector (to_-unsigned (Content(conv_integer (address)) ,7));

end behavioural;

Listing A.23: new_mps_state.vhdl

register 9 bits range

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use
use
use

entity

IEEE . STD_LOGIC_ARITH .ALL;
IEEE . STD_.LOGIC_UNSIGNED .ALL;
ieee . numeric_std . all;
range_register is
Port (

clock
reset
data:

in

in
in

std_logic;
std_logic;

std_logic_vector (8 downto 0);
output: out std_-logic_-vector (8 downto

end entity range_register;

architecture behavioural of range_register is
begin
process(clock , reset)
begin
if (reset = ’1’) then
output <= 71111111107 ; —0z1FFE
elsif (clock ’event and clock = ’'1’) then

output <= data;
end if;
end process;

end behavioural;

0))s

Listing A.24: range register.vhdl

library IEEE;

use
use
use
use

IEEE.
IEEE.
IEEE.
ieee

STD_LOGIC_1164 .ALL;
STD-LOGIC_ARITH .ALL;
STD_LOGIC_UNSIGNED . ALL;

.numeric_std . all;

entity

Port (

end entity

substract
in_a
in_b

out_c:
substract;

is
in
in

out

std_logic_vector (8 downto 0);
std_logic_vector (7 downto 0);
std_logic_.vector (8 downto 0));

architecture behavioural of substract is
begin
out_.c <= in_.a — in_b;

end behavioural;

Listing A.25: substract.vhdl

28,
69,
107,

29, 30, 31,
70, 71, 72,
108, 109,

32,
73,
110,

3

1

10

15

20

25

30

40

45

50

ot
o

60

65

Benchmark program

%this is the software run om the xilinx machine

/* apu_to_cabac

* made by: Martijn Berkhoff
« CE, TU DELFT

*/

#include ” xbasic_-types.h”
#include ” xcache_l1.h”
#include ”xparameters.h”
#include ”xpseudo_-asm .h”
include ” xutil.h”
ﬁinclude ”stdio.h”
#include ” xuartns550_1.h”

#include ”xtmrctr.h”

// Assembly mnemonics

#define lwfcmx(rn, base, adr) _—asm__ __volatile__(\
?lwfemxo” #rn 7 ,%0,%1\n” \
: ”b” (base), ”"r” (adr)\

#define stwfcmx(rn, base, adr) _—asm__ __volatile__(\
7stwfemx.” #rn 7 ,%0,%1\n”\
: ”b” (base), 7r” (adr)\

// Data structures
volatile Xint32 __attribute__ ((aligned (32))) src[4] = {214,49,—-3,20};
volatile Xint32 __attribute__- ((aligned (32))) dst[460];

#include ”xparameters.h”
#include ”stdio.h”
#include ” xutil.h”
#include ” xuartns550_1.h”

/*int main ()

XUartNs550_-SetBaud (XPAR_RS232_.UART_-1_.BASEADDR, XPAR_XUARTNS550-CLOCK_HZ, 9600);
XUartNs550-mSetLineControlReg (XPAR_RS232_.UART_-1_.BASEADDR, XUN_LCR_8-DATA_BITS);

print ("\r\n”);
print (" Hello World\r\n”);
print (?By Martijn Berkhoff\r\n”);

return 0;

Y=/
/xtest cabac—corex/

/*
H.26L/H.264/AVC/JVT /14496 —10/... encoder/decoder
Copyright (c) 2008 Michael Niedermayer <michaelni@gmz. at>

*
*
*
« This file is part of FFmpeg.
*

87

APPENDIX B. BENCHMARK PROGRAM

88

Public

and/or

General
Foundation ;

it
option) any

you can redistribute
the terms of the GNU Lesser

software ;

free
under

©8
it

* FFmpeg
* modify

70

either

Software
(at

Free
or

published by the

* License as

*
*

Version .

later

your

License ,

of the

version 2.1

of
the GNU

useful ,
See

it will be
even the implied warranty

that

in the hope
without
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

distributed

* FFmpeg s
* but WITHOUT ANY WARRANTY;

75

details .

Lesser General Public License

*

for more

General Public

Free

received a copy of the GNU Lesser

You should have
License

*
*

80

Software

to the
Fifth Floor,

write

if not,

along with FFmpeg;

MA 02110—1301 USA

Boston ,

Street ,

51 Franklin

)

Inc.

Foundation ,

*

85

/% MARTIIN EDIT */
/% ONLY CABAC DECODE x/

90

VAT

@file cabac.
Context Adaptive

*
*

Coder.

Binary Arithmetic

*/

95

AN A
SZanNs
AR
we - o
nnoH
Tooo
e g
w o o
VVVV
)
TTTT
3333
[SERS RSN
R
H 3

=l

[=]

=

"libavutil /common.h”

7bitstream . h”

7cabac

J/#include
J/#include

h”

J/#include

105

{
116,

static const uint8_.t new_lps_range[512]=

128,

128, 128, 128, 128, 128, 123, 123, 116, 111, 111, 105, 105, 100, 100, 95, 95, 90, 90, 85, 85, 81, 81, 77, 77, 7
14, 14, 14, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 9, 9, 2, 2

};

H

110

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3

)

{
14

3,4, 5,6, 7, 8, 9, 10, 11, 12, 13,

)

static const uint8_t new_mps_state[129]

2

+s

{

new_lps_state [129]

static const uint8_t

115

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23, 24, 25, 26, 27,

9,

{

ff_h264_norm_shift [256]

const

static

—
17171717
i —
11117
—
g
17171717
i —
1llls
—
54332222&17171)
54332222.11.111117
WFEMONNNN A A
54332222&&&17
5433222217171717
54332222&17171
W FMHONMANNNN
5433222217171717
OFMMANANN— — — —
64332222&1717&
OCF NN ANNNAN—
OO ANNN A~~~
MmN NN A A
W0 FMMANNN—
OFNONANNNAN =~~~
8 & b
— — -

{

orm_shift_lps[512]

static const uint8_t

©©© O~~~
Sogem iy
©©©© M~
LY.
©©©© bbb
R T Y.,
Sogem iy
©©© O~~~
Y.
o~ ©©©ON~IN~ N~~~
o LY.
~ Sogem iy
~ ©© OO~~~
o ..
21w0.,4a4ar&,r0:r0:r0:666677777777
Moo H 1101610 © 6 OO N s s
27n674747—07_hu7—0vr0v65n05676777~f7~f7~f7~f7~f7~f7~f7
R L
1a3a4a4,5,5a5;5,6,6,6767777a7a7a7a7a7a7a
B P T U S
o S I910 0O OO N s ks
SMETeeLBeeeen LN NNy
R
07nO?474ﬁrOﬁKuﬁKu7:u7nU!nU!676777~/a~/a~/a~J,~/a~J,~J,
Shesmerweegent LNy
Fevseneseee ey
1_Ay&474757575,57ﬁﬁ67677777777777777777
§RiTemesceeennNEN NNy
R
ﬂ3445555666677777777
2 g g 2
2 z z z

155 };

160

165

170

175

180

190

195

200

205

210

215

220

225

230

235

240

89

//static wuint8_t
/xfor test
static uint8_t

local_cabac_state [460];
purposesx/
local_cabac_state [460] = {124, 18, 21, 124, 18, 21,

123, 77, 22,

int low;
int range;
const uint8_t

//const

uint8_t

*bytestream_start ;
uint8_t xbytestream ;
*bytestream ;

/x To transform get_cabac to a MOLEN CCU, input and output parameters

So ff—h264_-tables need to be included or pointed at.. if included, the
*/
/*
modes :
0: get_-cabac
1:
2: get_-cabac_-bypass
8: get-cabac_-terminate
4: memcpy
5: ff-init-cabac_-decoder
*/
int get_cabac(int mode, int state_idx)
{
//
char mpslps;
switch (mode)
//get_cabac
case O:
{
uint8_t s;// = local_-cabac_state [state_idz];
uint8_t rLPS;// = new-lps_range [((range&0sC0)<<1) | s]; //joining two
uint8_-t bit, result, shift;
int newinput_bytestream; // = (bytestream[0]<<1) + 0zFFFFFFO01;
//state_idz = state_idz&0z1FF;//9 bits
//low = low&0zS8FFFF;//18 bits
//range = range&0zlFF;//9 bits
s = local_cabac_state[state_idx];
//s=s60x7F; //s can be 7 bits?
rLPS = new_lps_range [((range&0xC0)<<1) | s];
//rLPS=rLPS&0cFF; //8 bits
J/printf("%z\t%8z\n", (((range&0zC0)<<1) | s), rLPS);
newinput_bytestream = (bytestream[0]<<1) + OxFFFFFFO01; //why?
bit = ff_h264_norm_shift [rLPS];
range = range — rLPS;
J/printf("%z\ t%z\n”, range, (low>>9));
//range = range&0z1FF;//9 bits
shift = ((range&0x100)>>8)"0x1;//select 9th bit, shift down 8 and invert
//if (low < (range<<9)) //if MPS
if ((low>>9) < (range)) //if MPS
{
// mpslps= 'M’;
result = s&0x1;
local_cabac_state [state_idx] = new_mps_state[s]; //update state
range = range<<shift;
low = low<<shift;
if (!(low & OxFF)) //renormalize
{
low = low 4+ newinput_bytestream;
bytestream-++;
}
}
else //LPS
int i;

uintl6_-t x;

20, 24,

have to be
initialization mneeds

lines

124, 124, 124,

values
also be

either

[8..9]4+[0..7] /) bit

or pointers.
included!

124, 12

mer

8 owve

90 APPENDIX B. BENCHMARK PROGRAM

//mpslps= 'L ’;

result = (s&0x1)70x1;
local_cabac_state [state_idx] = new_lps_state[s]; //update state

low = (low — (range<<9))<<bit; //value = value — range + TLPS
J/printf (7 low=%z\n", low);
low = low &Ox3FFFF; //may shift of the rest
range = rLPS<<bit; //range = rLPS

x = (low ~ (low—1))>>7; //this can be made more efficient in hw

// = z&0zx1FF;//9bits
i = ff_h264_norm_shift_lps[x]; //0,1,3,7,15,81,63 .. ’ how many ones ..
if (!(low & OxFF)) //renormalize

low = low + (newinput_bytestream<<i);
bytestream-4+;
}
J/printf(7z=%d, i=%I\n", x, i);
}

J/printf(7%d\ t\t0x%8z\ t0x%z\ t%c\ t%d\ t%z\n”, state_idz , low, range, mpslps, result, bytestream);

return result;

}
break;
case 1:
{
¥
break;
//get_cabac_bypass
case 2:
{
int b_range;
int result;
//low = low + low;
low = low<<1;
if (!(low & OxFF))
low+= bytestream [0] < <1;
low —= OxFF;
bytestream+4= 1;
}
b_range = range<<9;
if (low < b_range)
result = 0;
¥
else
{
low = low — b_range;
result = 1;
}
printf (”0x%8x\t0x%x\t%d\t%x\n”, low, range, result , bytestream);
return result;
)
break;
//get_cabac_terminate
case 3:
{

range —= 2;
if (low < range <<(9))

//renorm_cabac_-decoder_once(c);

{
int shift= (uint32_t)(range — 0x100)>>31;
range<<= shift;
low <<= shift;

if (! (low & OxFF))
J/refill(c);

335

340

345

350

355

360

365

370

375

380

385

390

395

405

410

415

91

low+= bytestream [0] < <1;

low —= OxFF;
bytestream+4= 1;
}
return O0;
¥
else
{
return bytestream — bytestream_start;
}
}
break;
//memcpy
case 4:
//uint8_t % cabac_state = state_idz;
//memcpy (local_cabac_state , cabac_-state, 460);
¥
break;
J//ff-init_cabac_decoder
case 5:
{
bytestream_start = bytestream = state_idx;
low = (*bytestream-+4++4)<<10;
low 4= ((*bytestream+4+4)<<2) + 2;
range = 0x1FE;
}
break;
default:
break;
b
}
Jxx) fkx) [xx /)
/*maink/
int main_old (int argc, char xxargv)
{
int i, k;
/*initialize bytestreamsx/
bytestream = malloc(sizeof(uint8_t)*1024);
bytestream [0] = 0x00;
bytestream [1] = 0x00;

for (i=2;i<1024;i++)
bytestream [i] = OxFF;
//bytestream [i] = 0z00;

/*init cabacx/
get_cabac (5, (int)&bytestream [0]);

/*test cabacx/
printf(”state_idx\tlow\t\trange\tMPS/LPS\tresult\tbytestream\n”);
printf (?\t\t0x%8x\t0x%x\t\t\n”, low, range);

/xfor (k=0;k<460;k++)

//get_cabac (0, k);
get_cabac (0, 0);

F*/
/xfor (k=0; k<460;k++)
get_cabac (0, k);
y*/
for (k=0; k<460;k++)
{
get_cabac (0, k);

}
J/printf(?%d\n”,get_cabac (8, 0));

return 0;

420

425

435

440

445

450

455

460

470

475

480

485

490

495

500

92 APPENDIX B. BENCHMARK PROGRAM

}
int main(void)

{
#define PLB.CLOCK 100000000
#define PLB_.CLOCK_PERIOD 10

//how many bins should get_cabac decode in one iteration?
#define units 100000

int i, input;
double r,x;

//initialize wart
XUartNs550_SetBaud (XPAR-RS232.UART_.1_. BASEADDR, XPAR_XUARTNS550_.CLOCK_HZ, 9600);
XUartNs550_mSetLineControlReg (XPAR_RS232.UART_1_.BASEADDR, XUN_LCR_8_.DATA_BITS);

J//printf disclaimer

printf (”\r\n”);

printf (”APU_TO.CABAC\r\n”);

printf (”By-Martijn_-Berkhoff —_CE, .TU_DELFT\r\n”);

//initialize TIMER

XTmrCtr InstancePtr;

ul6é Deviceld = 0;

u32 time_sw, time_hw, start_value, total_time_sw , total_-time_hw;

double speedup;
if (XTmrCtr_Initialize(&InstancePtr , XPAR_XPS_TIMER_0_-DEVICE_ID)==XST_SUCCESS)

{

printf(” Timer_initialized\n”);

}

start_value = XTmrCtr_-GetValue(&InstancePtr, 0);

//initialize CABAC.SW_ONLY
/xinitialize bytestreamx/
bytestream = malloc(sizeof(uint8_t)*1024);

bytestream [0]
bytestream [1]

0x00;
0x00;

for (i=2;i<1024;i++4)

bytestream [i] = OxFF;
//bytestream [i] = 0z00;

}

/*init cabacx/
get_cabac (5, (int)&bytestream [0]);

//initialize APU
mtmsr (XREG_.MSR-APU_AVAILABLE) ;

int k;

for (k=0; k<5;k++) {

/xx/

/* printf("\n\nxxx\r\n”);
printf(” Running SW design\r\n”);
printf(”CPU: 300 MHz\r\n”);

*

/

XTmrCtr_SetResetValue(&InstancePtr, 0, start_value);
for (i=0; i<units;i4+)

{

r = ((double)rand () / ((double)(RANDMAX)+(double) (1)));

x = (r * 460);

input = (int) x;

XTmrCtr_Start(&InstancePtr, 0);

dst [input] = get_cabac (0, input);

XTmrCtr-Stop(&InstancePtr, 0);

XTmrCtr_SetResetValue(&InstancePtr, 0, XTmrCtr_GetValue(&InstancePtr, 0));
}

//TIMING.INTERVAL = (TLRz + 2) z PLB.CLOCK.PERIOD
//CLK = 100 (MHz)
//CLOCK_PERIOD = 0,00000001 (s) = 10 (ns)

time_sw = (XTmrCtr_GetValue(&InstancePtr, 0)42) % PLB_.CLOCK_PERIOD;
// printf(7time: %d (ns)\n”,time_sw);
XTmrCtr_Reset(&InstancePtr, 0);

93

505 Jxx/
/*

*/

510

515

520

525

7/

/xx/

530

//

535 }

printf("\n\nxxx\r\n");
printf(” Running SW — HW codesign\r\n”);

printf(”CPU:

800 MHz — APU: 25 MHz\r\n”);

XTmrCtr_SetResetValue(&InstancePtr, 0, start-value);

for (i=0;

T
b’

i<units; i++)

((double)rand () / ((double)(RANDMAX)+(double) (1)));
(r = 460);

input = (int) x;

XTmrCtr_Start(&InstancePtr, 0);

lwfcmx (0, &input, 0);

stwfcmx (0, dst, input=*4);

XTmrCtr_Stop(&InstancePtr, 0);

XTmrCtr_SetResetValue(&InstancePtr, 0, XTmrCtr_GetValue(&InstancePtr ,

}

time-hw = (XTmrCtr_GetValue(&InstancePtr, 0)42) %= PLB.CLOCK_PERIOD;
printf(”time: %d (ns)\n”,time_hw);
XTmrCtr_Reset(&InstancePtr, 0);

//Calculating speedup

speedup = ((double)time_sw /(double)time_hw);
printf("\n\nxxx\r\n”);
printf(”Speedup:_-%.51f\r\n”, speedup);
printf(”’\nEnding APU.TO.CABAC\r\n”);

return O0;

0));

Listing B.1: Benchmark program C-code

94

APPENDIX B. BENCHMARK PROGRAM

Programming Files

This page contains a CD-ROM with the programming files made for the CABAC decoder
accelerator.
The CD-ROM contains the following directories:

e 001_CABAC_ModelSimSE_6.3c: This directory contains the programming files
for the ModelSim simulations of the CABAC decoder accelerator.

e 002_CABAC XilinxISE_10.1: This directory contains the programming files of
the hardware CABAC decoder accelerator for Xilinx ISE 10.1.

e 003_CABAC XilinxPlatformStudioEDK _10.1: This directory contains the
programming files of the software and hardware CABAC decoder accelerator for
the Xilinx ML410 platform.

e 004_CABAC _papers: This directory contains scientific papers and journals on
the topic of CABAC decoding.

95

96

APPENDIX C. PROGRAMMING FILES

Curriculum Vitae

Martinus Johannes Pieter Berkhoff was born in Delft,
The Netherlands, on March 28, 1981. He obtained his
VWO diploma in 2000 at the St. Stanislascollege in Delft.
In the same year he started the Bachelor of Science study
Electrical Engineering at the Technical University of Delft.
During his Bachelor of Science study he did a minor in
Physics Education at the Technical University Teachers
Program and gave physics lectures to college students for
several months. The research topic for his Bachelor of Sci-
ence degree was titled: "3D LED-Display software: Con-
cepts and implementation of user software to control a
three dimensional LED-display”.

After getting his Bachelor of Science degree in Electri-
cal Engineering he choose to start the Master of Science
study of Computer Engineering. The specialization within
the Computer Engineering Laboratory was Embedded Sys-
tems. He will graduate in March 2009 by completing his
Masters of Science thesis titled:” Analysis and Implemen-
tation of the H.26/ CABAC entropy decoding engine”.

After graduating for his Master of Science degree he
will work for Imtech Marine & Offshore in Rotterdam. At
this international operating company he will start as a con-
sultant in drive technology for diesel-electric propulsion on
ships.

MSc Computer Engineering Grades

Code Name ECTS Grade
Common core

ET8019: Computer Arithmetic 9 7
ET4246: Introduction to Comp. System Engineering 2 pass
ET4054: Methods and Algoritms for System Design 5 8
ET4074: Modern Computer Architectures 5 9
IN4020: Compiler Construction 6 7
IN4026: Parallel Algorithms and Parallel Computer Systems 6 7
Specialisation courses

ET4361: Networks on Chip 5 7
ET4362: High Speed Digital Design for Embedded Systems) 8
ET4368: Embedded Application Development 5 9
IN4073TU: Real Time Embedded Systems 6 7
IN4024: Real-Time Systems 6 9
Free electives

ET4263: System Programming in C 2 pass
ET4272: System System Design with HDL 2 pass
ET4036: Transmission Systems Engineering 4 7
ET4284: Ad-hoc Networks 4 6
ET4146: Advances in Networking 4 7

Thesis project
ET4300: Master Thesis 45

	List of Figures
	List of Tables
	List of Source Codes
	Acknowledgments
	Introduction
	General Introduction
	Research scope
	Problem statement
	Thesis overview

	CABAC encoding and decoding process
	H.264/MPEG-4 Part 10
	Terminology
	The H.264 Codec
	H.264 structure

	Entropy encoding
	Binarization
	Context Model Selection
	MPS/LPS
	Arithmetic Encoding
	Variable Length Coder
	Arithmetic Decoding
	Probability Update

	Related work

	Overview of the CABAC decoding scheme
	CABAC Encoding Steps
	CABAC Decoding
	FFmpeg
	Context Model Selection
	Coding engine
	De - Binarization

	Motivation
	Conclusion

	Implementation of the CABAC decoder
	Overall system description
	Introduction
	Validation

	Different parts in the system
	Hardware Accelerator (cabac decoder)
	CPU HW/SW (ppc, bootloader)
	APU Controller
	Stages in engineering process
	Final design and testing

	Conclusion

	Simulation and implementation results of the CABAC decoder
	Modelsim simulation and verification
	Results of related CABAC decoders
	Xilinx ISE synthesis and simulation
	Xilinx Platform Studio
	Conclusion

	Conclusion
	Summary
	Main contributions
	Future work

	Bibliography
	VHDL
	Benchmark program
	Programming Files

