
 
 

Delft University of Technology

Optimization-based Approaches for Fault Detection and Estimation
with applications to health-monitoring of energy systems
Dong, J.

DOI
10.4233/uuid:32f02090-19d2-4c6f-a8bf-9cbfb7cffd45
Publication date
2023
Document Version
Final published version
Citation (APA)
Dong, J. (2023). Optimization-based Approaches for Fault Detection and Estimation: with applications to
health-monitoring of energy systems. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:32f02090-19d2-4c6f-a8bf-9cbfb7cffd45

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:32f02090-19d2-4c6f-a8bf-9cbfb7cffd45
https://doi.org/10.4233/uuid:32f02090-19d2-4c6f-a8bf-9cbfb7cffd45


Optimization-based Approaches for Fault
Detection and Estimation

with applications to health-monitoring of energy
systems





Optimization-based Approaches for Fault
Detection and Estimation

with applications to health-monitoring of energy
systems

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Wednesday 06 September 2023 at 10:00 o’clock

by

Jingwei DONG

Master of Engineering in Control Science and Engineering,
Harbin Institute of Technology, China

born in Lianyungang, China



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, Chairperson
Prof.dr.ir. T. Keviczky, Delft University of Technology, promotor
Dr. P. Mohajerin Esfahani, Delft University of Technology, promotor

Independent members:
Prof.dr.ir. M.H.G. Verhaegen, Delft University of Technology
Prof.dr.ir. M. Popov, Delft University of Technology
Prof.dr. S. Yin, Norwegian University of Science and Technology
Dr. A.M.H. Teixeira, Uppsala University
Dr. S.D.G.M. Pequito, Uppsala University

This research was financially supported by China Scholarship Council.

Keywords: Robust fault detection and estimation, Probabilistic certificates, Filter
design, Optimization methods, Energy systems

Printed by: Ridderprint

Copyright © 2023 by J. Dong
ISBN 978-94-6483-378-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


To my parents.





vii

Contents

Summary ix

Samenvatting xi

Acknowledgements xiii

List of Notations xv

List of Abbreviations xvii

1 Introduction 1
1.1 Introduction to Fault Diagnosis. . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A Review on Fault Diagnosis Methods . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Multimode Diagnosis for Switched Affine Systems with Noisy Measure-
ment 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Model Description and Problem Statement . . . . . . . . . . . . . . . . . 16

2.2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Filter Design: An Optimization-based Method . . . . . . . . . . . 20
2.3.2 Performance Certificates . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Technical Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Proofs of Results in Filter Design . . . . . . . . . . . . . . . . . . 27
2.4.2 Proofs of Probabilistic Certificates . . . . . . . . . . . . . . . . . 30

2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Building Radiant Systems . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Multivariate Fault Detection and Estimation in the Finite Frequency
Domain 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Model Description and Problem Statement . . . . . . . . . . . . . . . . . 45

3.2.1 Problem 1: Fault Detection . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Problem 2: Fault Estimation . . . . . . . . . . . . . . . . . . . . 48

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Fault Detection Filter Design . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Fault Detection Performance Certificates . . . . . . . . . . . . . . 52
3.3.3 Fault Estimation Filter Design . . . . . . . . . . . . . . . . . . . 53



viii Contents

3.4 Technical Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Proofs of Results in Fault Detection . . . . . . . . . . . . . . . . 59
3.4.2 Proofs of Results in Fault Estimation . . . . . . . . . . . . . . . . 62

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.1 Non-minimum Phase Systems . . . . . . . . . . . . . . . . . . . 65
3.5.2 Multi-area Power Systems . . . . . . . . . . . . . . . . . . . . . 66

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Real-time Ground Fault Detection for Inverter-based Microgrid Systems 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Model Description and Problem Statement . . . . . . . . . . . . . . . . . 76

4.2.1 System Description. . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 State-space Model of the Healthy Microgrid System . . . . . . . . 77
4.2.3 State-space Model of the Faulty Microgrid System . . . . . . . . . 80
4.2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Filter Design: Perfect Setting . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Filter Design: Non-decoupled Disturbance . . . . . . . . . . . . . 85

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Scenario 1: Perfect Setting . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Scenario 2: Non-decoupled Disturbance . . . . . . . . . . . . . . 92

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and Recommendations 97

Bibliography 101



ix

Summary

Advancements in technology and societal demands have led to increasing complexity,
size, and automation in modern industrial systems. This trend makes these systems
more safety-critical, as the occurrence of faults in system components or subsystems may
cause the entire system to fail, resulting in significant economic losses and casualties.
Consequently, developing an effective fault diagnosis method is crucial for ensuring the
reliability, safety, and performance of industrial systems, especially energy systems, which
are so relevant to our lives. However, most model-based fault diagnosis systems developed
based on observers and parity space relations have the same order as that of the system.
This can cause a significant computational burden when dealing with large-scale and
high-dimensional systems.

This thesis is dedicated to the design of fault diagnosis filters in the framework of
differential-algebraic equations, which produce scalable residual generators with design
flexibility. Meanwhile, we consider the impact of disturbances and stochastic noise on
diagnosis results, as well as the fault diagnosis problem within the finite frequency domain.
In order to design filters capable of handling these issues, we solve filter parameters through
optimization problems that are constructed based on specific diagnosis requirements. The
main research contents are as follows.

First, we propose a diagnosis scheme to reliably detect the active mode of switched
affine systems with measurement noise. We take into account the delay between the active
mode and its corresponding controller caused by the detection process, which is known
as asynchronous switching. Following the mindset of the generalized observer scheme,
we develop an optimization framework to solve a bank of filters, where each residual
is sensitive to all but only one mode. The 2 norm method is adopted to deal with the
stochastic noise. The derived optimization problem is tractable because it can be safely
approximated through linear matrix inequalities. We further develop a determination
method of thresholds along with probabilistic false-alarm guarantees. Additionally, we
provide an estimate of the time required for the diagnosis component to recognize the
correct mode.

Second, in light of the conservatism associated with fault diagnosis methods developed
for the entire frequency domain, for the first time, we study the design of fault detection
and estimation filters in the framework of differential-algebraic equations in the finite
frequency domain. To tackle this problem, we introduce mixed2/_ performance indices
and formulate the design of fault detection filters with residuals of arbitrary dimensions
into an optimization problem. We propose a threshold determination method that provides
probabilistic guarantees on both false alarms and missing detection rates. Then, we replace
the_ indexwith the finite-frequency∞ norm to characterize the estimation performance
in the proposed optimization framework. This enables us to obtain a design method for the
fault estimation filter in the finite frequency domain. To reduce computational complexity,



x Summary

we further relax the design requirements and formulate the design of the fault estimation
filter into a quadratic programming problem with an analytical solution.

Lastly, we consider ground fault detection for inverter-based microgrid systems. This
problem is challenging since the fault current deviates slightly from its nominal value and
the effect of the disturbance is similar to that of the fault. We design fault detection filters
for the following two scenarios: (i) the disturbance can be completely decoupled, and (ii)
the disturbance cannot be completely decoupled. In the case where the disturbance can
be completely decoupled, the problem is a special case of the mode detection problem
mentioned before. When the disturbance cannot be completely decoupled, we use available
disturbance patterns to train the filter and enhance its robustness. The filter design is
formulated into a quadratic programming problem that has an approximate analytical
solution. This solution can be made arbitrarily precise and used to update the filter
parameters online.
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Samenvatting

De technologische vooruitgang en de maatschappelijke eisen hebben geleid tot een toene-
mende complexiteit, omvang en automatisering van moderne industriële systemen. Deze
trend maakt deze systemen meer veiligheidskritisch, aangezien het optreden van fouten in
systeemcomponenten of subsystemen kan leiden tot het falen van het gehele systeem, met
aanzienlijke economische verliezen en slachtoffers tot gevolg. Bijgevolg is de ontwikkeling
van een doeltreffende foutendiagnosemethode cruciaal om de betrouwbaarheid, veiligheid
en prestaties van industriële systemen te garanderen. De meeste modelgebaseerde fouten-
diagnosesystemen die zijn ontwikkeld op basis van waarnemers en pariteitsruimte-relaties
hebben echter dezelfde orde als die van het systeem. Dit kan een aanzienlijke rekenlast
veroorzaken bij grootschalige en hoog-dimensionale systemen.

Dit proefschrift is gewijd aan het ontwerp van foutdiagnosefilters in het kader van
differentiaalalgebraïsche vergelijkingen, die schaalbare residugeneratoren met ontwerp-
flexibiliteit produceren. Ondertussen houden we rekening met de invloed van storingen en
stochastische ruis op de diagnoseresultaten en met het probleem van foutdiagnose binnen
het eindige frequentiedomein. Om filters te ontwerpen die deze problemen aankunnen,
lossen we filterparameters op via optimalisatieproblemen die zijn geconstrueerd op basis
van verschillende ontwerpeisen. De belangrijkste onderzoeksinhouden zijn als volgt.

Ten eerste stellen wij een diagnoseschema voor om de actieve modus van geschakelde
affiene systemen met asynchrone schakelingen en meetruis betrouwbaar te detecteren.
Naar het voorbeeld van het schema van de veralgemeende waarnemer ontwikkelen wij een
optimalisatiekader om een reeks filters op te lossen, waarbij elk residu gevoelig is voor alle,
maar slechts één modus. De2 normmethode wordt toegepast om met de stochastische
ruis om te gaan. Het afgeleide optimalisatieprobleem is hanteerbaar omdat het veilig kan
worden benaderd via lineaire matrixongelijkheden. Verder ontwikkelen we een methode
voor het bepalen van drempels, samen met probabilistische garanties voor vals alarm.
Bovendien geven wij een schatting van de tijd die de diagnosecomponent nodig heeft om
de juiste modus te herkennen.

Ten tweede bestuderen we, in het licht van het conservatisme dat gepaard gaat met
foutdiagnosemethoden die ontwikkeld zijn voor het gehele frequentiedomein, voor het
eerst het ontwerp van foutdetectie- en schattingsfilters in het kader van differentiaalalge-
braïsche vergelijkingen in het eindige frequentiedomein. Om dit probleem aan te pakken,
introduceren we gemengde prestatie-indices van 2/_ en formuleren we het ontwerp
van foutdetectiefilters met residuen van willekeurige afmetingen als een optimalisatie-
probleem. We stellen een drempelbepalingsmethode voor die probabilistische garanties
biedt voor zowel vals alarm als ontbrekende detectiepercentages. Vervolgens vervangen
we de index _ door de norm voor eindige frequenties ∞ om de schattingsprestaties
in het voorgestelde optimalisatiekader te karakteriseren en de ontwerpmethode voor het
foutschattingsfilter in het eindige frequentiedomein te verkrijgen. Om de computatio-
nele complexiteit te verminderen, versoepelen we de ontwerpeisen en formuleren we het
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ontwerp van het foutschattingsfilter in een kwadratisch programmeerprobleem met een
analytische oplossing.

Ten slotte beschouwen we aardfoutdetectie voor op omvormers gebaseerde micro-
gridsystemen. Dit is een uitdagend probleem omdat de foutstroom licht afwijkt van de
nominale waarde en het effect van de storing vergelijkbaar is met dat van de fout. We
ontwerpen filters voor foutdetectie voor de volgende twee scenario’s: (i) de storing kan
volledig ontkoppeld worden, en (ii) de storing kan niet volledig ontkoppeld worden. In
het geval dat de storing volledig ontkoppeld kan worden, is het probleem een speciaal
geval van het eerder genoemde modedetectieprobleem. Als de storing niet volledig ont-
koppeld kan worden, gebruiken we beschikbare storingspatronen om het filter te trainen
en zijn robuustheid te verbeteren. Het filterontwerp is geformuleerd in een kwadratisch
programmeerprobleem dat een analytische oplossing heeft. Deze oplossing kan willekeurig
nauwkeurig gemaakt worden en gebruikt worden om de filterparameters online bij te
werken.
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2 1 Introduction

1.1 Introduction to Fault Diagnosis
The reliability of industrial systems has always been a concern for both researchers and
engineers. With the advances in technology and the growing demands of society, modern
industrial systems, such as power systems, transport systems, and building systems, have
been evolving with higher complexity and degree of automation. This makes modern
industrial systems more safety-critical because there are a large number of sensors, ac-
tuators, and communication devices integrated into these systems, which results in an
increased probability of faults. Furthermore, these faults can lead to degradation in system
performance, economic loss, and even personal safety issues [1, 2].

In fact, faults in some parts of the systems are unnoticed until they have serious
consequences that negatively impact our lives. Take a recent incident that happened
nearby as an example. In February 2023, one water pump in the heating system of building
section C of 3ME in TU Delft, where the Delft Center for Systems and Control is located,
malfunctioned. As a result, the entire section lost heat, and the building manager had to
provide electric heaters for each room as a temporary solution. Unfortunately, the excessive
use of electric heaters led to an overload in the power system, resulting in a power outage
on one side of the building. This incident affected our normal work and study for several
days.

Faults in large-scale industrial systems can cause more serious consequences. It was
reported that the United States incurs nearly 20 billion dollars in property losses each year
due to various accidents just in the chemical industry, while similar incidents annually
cause economic losses of up to 27 billion dollars to the United Kingdom [3]. In 2003, due to
a short circuit of cable, the northeastern United States and eastern Canada experienced the
largest power outage in North American history. About 50 million people were affected,
and at least 8 people died from this accident [4]. In 2015, a passenger plane of Taiwan’s
TransAsia Airways crashed due to engine failure, which claimed 8 lives [5].

As a result, improving the reliability and safety of industrial systems while guaranteeing
their performance has been the focus of research in the last several decades. Fault diagnosis
methods have emerged as one of the solutions to this issue. By detecting faults early and
accurately, industrial operators can take corrective actions to prevent or minimize the
impact of faults on system performance, productivity, and safety. Fault diagnosis also plays
a crucial role in predictive maintenance, which helps to reduce maintenance costs, extend
equipment lifespan, and improve overall system efficiency. For instance, fault diagnosis
tools can help operators identify and correct faults that affect energy consumption and
performance of buildings, resulting in up to 10% energy savings and leading to a more
sustainable and efficient building operation [6]. According to the statistics, the annual cost
of equipment maintenance in China is up to 25 billion RMB. Effective fault diagnosis and
fault-tolerant control technology can reduce the accident rate by 50% to 70% and save costs
by 10% to 30%, which can bring considerable economic benefits. The advantages of health
monitoring systems and their expected percentages of improvement are summarized in
Table I [7].

For the sake of clarity, let us introduce the following definition of faults.

Definition 1.1.1 (Fault [8]). A fault is an unpermitted deviation of at least one characteristic
property or parameter of the system from the acceptable/usual/standard condition.
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Consider a controlled system as depicted in Figure 1.1, where 𝑥 , 𝑢, and 𝑦 denote the
state, the control input, and the measurement, respectively. The notation 𝑑 represents the
disturbance while 𝜔 represents measurement noise. Notations 𝑓𝑝 , 𝑓𝑠 , and 𝑓𝑎 denote faults
that happen in different parts of the system. Generally, people classify these faults into the
following three categories [9]:

• Plant faults 𝑓𝑝. They are used to indicate faults within the process, such as the
disconnection of a system component, which is also called component faults or
parameter faults;

• Sensor faults 𝑓𝑠. These are issues that occur within sensors, which can cause a
sensor to become stuck at a particular value or exhibit a variation in its scalar factor;

• Actuator faults 𝑓𝑎. These faults cause changes in actuators, such as the blocking or
partial failure of an actuator.

Plant

Controller

SensorActuator

blocking,
partial failure,

...

stuck,
variation in 

scalar factor,
...

disconnection
of system 

components,
...

Figure 1.1: The structure of dynamical systems with different faults.

The goal of fault diagnosis is to monitor industrial processes and systems to detect and
identify any faults that may occur. In order to achieve this goal, fault diagnosis typically
involves three main tasks [2]:

• Fault detection. The building block of the fault diagnosis system is used to detect
and report the occurrence of faults in the system;

• Fault isolation. It entails the localization and classification of different faults that
have been detected;

• Fault estimation. It provides the description of a fault that could entail charac-
teristics such as size and shape. Fault estimation is critical for identifying the root
cause of the fault and for devising appropriate actions to restore healthy system
functionality.

There are mainly two ways to implement fault diagnosis: hardware redundancy and
analytical redundancy (also called software redundancy). The basic idea of hardware
redundancy is to incorporate identical and redundant hardware components for a process
component, where the input to the redundant hardware is the same as that of the process
component. If there is a fault in the process component, it can be detected by comparing its
output to that of its redundancy. If the outputs are different, it indicates faults in the process
component, and the redundancy circuitry overtakes the functional process to ensure normal
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function. Hardware redundancy is reliable and useful for the protection of key components.
However, this scheme can increase the complexity of systems, occupy more space, and
result in high costs due to the acquisition of new hardware and maintenance.

Different from hardware redundancy, the analytical redundancy method replaces the
redundant component with a process model implemented in the software form, as illus-
trated in the diagnosis component in Figure 1.2. The model is constructed based on prior
knowledge of the dynamical system, which enables the reconstruction of system behavior
online. When applying the diagnosis algorithm, the diagnosis component utilizes the
control input and output of the real-time process, which contain feature information, as
input. Then, it compares the behavior of the real-time process with that of the fault-free
system to generate diagnosis results (also called consistency checking). This scheme is
cost-effective and has become the mainstream of fault diagnosis research [10, 11].

Dynamical
system

Diagnosis
component

Results

Figure 1.2: The structure of fault diagnosis systems.

1.2 A Review on Fault Diagnosis Methods
Fault diagnosismethods based on analytical redundancy can be divided into three categories:
model-based methods, signal processing techniques, and knowledge-based methods [12].
Model-based fault diagnosis methods involve creating an abstract model of the system
and computing the difference between its predicted behavior and the actual measurement,
known as the residual. By analyzing the residual, faults can be detected and diagnosed.
Model-based methods make full use of the intrinsic physical information of the system, and
therefore, they usually provide satisfactory fault diagnosis performance for systems with a
precise mathematical model. However, complex industrial systems often exhibit charac-
teristics of strong coupling and nonlinearity. This makes it extremely challenging, and in
some cases, impossible to establish accurate analytical models. As a result, model-based
fault diagnosis methods show limitations when applied to complex industrial systems.

In contrast, methods based on signal processing techniques do not need to build a
mathematical model of the system. People usually extract the time domain (e.g., mean,
trends, standard deviation, and magnitudes) and frequency-domain (e.g., spectrum) fea-
tures of the measured signals. Then, they use methods like wavelet analysis [13] and
spectral analysis [14] to analyze changes in the measured signals for fault diagnosis. Sig-
nal processing techniques have achieved great success in the fault detection of rotating
machinery systems, such as motor rotors and bearings [15, 16]. However, one obstacle to
the widespread popularization of wavelet analysis is the absence of a standard or general
method for selecting the appropriate wavelet function for different tasks [17]. Spectral
analysis methods, like fast Fourier transform, have difficulties in handling complex systems
with non-stationary signals and closely spaced fault frequencies. In order to deal with
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non-stationary signals, several time-frequency analysis methods have been developed,
whose advantages and disadvantages are summarized in [18].

Knowledge-based methods utilize prior knowledge to build a qualitative model of the
system instead of a precise mathematical model. The derived qualitative model can capture
the interconnections between different components of the system and illustrate the potential
pathways for fault propagation. When faults occur, search algorithms such as inference
and deduction are employed for fault diagnosis [19]. Commonly used qualitative models
include three subcategories: fault tree [20], signed digraph [21], and expert systems [22].
Although knowledge-based methods do not require a precise mathematical model, they
still have limitations in the face of complex industrial systems. On one hand, it is difficult
to obtain a qualitative model due to the complexity of systems. The search algorithms
and inference rules become complex as well, which easily leads to low search efficiency
because of combinatorial explosions. On the other hand, knowledge-based methods are
mainly based on human experience to understand the internal mechanism of the system.
The lack of basic extraction of the underlying physics of the system makes it difficult to
update the algorithms to adapt to changes in the system.

In recent years, the development of physical sensors enables the acquisition of large
amounts of offline and online data. This motivates researchers to explore how to use
the available historical data for fault diagnosis, which has led to the rapid development
of data-driven fault diagnosis methods. Compared to model-based methods, data-driven
approaches for fault diagnosis do not require prior knowledge about the system. They obtain
information about systems and faults by analyzing historical data with some advanced
techniques [23, 24]. It is clear that data-driven methods are suitable for large-scale and
complex systems. However, the diagnosis performance of data-driven fault diagnosis
methods relies heavily on the quality of the data, while data collected directly in industrial
processes suffers from problems like sampling time, missing data, outliers, and so forth.
Thus, data preprocessing is necessary. Additionally, the lack of labeled data is also a
challenge due to the low frequency of failures [25].

In what follows, we provide an overview of the two most widely used fault diagnosis
techniques: model-based and data-driven methods. Additionally, for readers interested in
signal processing-based and knowledge-based approaches, we suggest referring to review
papers [24, 26–28].

1. Model-based methods. In 1971, Beard [29] introduced a novel fault diagnosis
approach that relies on mathematical modeling rather than hardware redundancy to
generate residuals. Since then, various model-based fault diagnosis methods that rely
on different residual generation approaches are developed. Frank [12] classified these
model-based fault diagnosis methods into three categories: observer-based methods, parity
space methods, and parameter identification methods.

Specifically, observer-based fault diagnosis methods employ different types of observers,
such as Luenberger observers [29], unknown input observers [30–32], sliding mode ob-
servers [33, 34], and adaptive observers [35, 36], to design fault diagnosis schemes that
cater to specific problems and requirements. For instance, an unknown input observer is
typically used to decouple disturbances from the residual, while a sliding mode observer
can handle disturbances robustly and ensure a fast convergence rate. Additionally, one can
achieve fault isolation by designing a bank of observers and making each residual sensitive
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to specific faults while being insensitive to others. Common fault isolation strategies
include dedicated observer schemes [37] and generalized observer schemes [38].

The fault diagnosis method developed based on the parity space approach was first
proposed in [39]. This method establishes an equivalence between the input and output
variables in the mathematical model of the system. Then, it tests whether the actual input
and output variables satisfy the equivalence relation for the purpose of fault diagnosis.
Compared to observer-based methods, parity space approaches simplify the design of
residual generators, as they only require finding solutions to linear equations or linear
optimization problems. In [40], the authors investigate the robustness problem of parity
relation-based fault detection and demonstrate that increasing the order of the parity
relation could improve the robustness. More results related to parity space-based fault
diagnosis approaches can be found in [1, 41].

Parameter identification-based fault diagnosis methods often represent faults as mul-
tiplicative or additive parameters that affect system parameters. This approach involves
online identification of the actual process parameters and comparing them with reference
parameters obtained under fault-free conditions to detect faults [2]. The least square
method is a primary approach for parameter identification, offering the advantages of
simplicity and robustness [42]. Another well-known method is constructing an augmented
state observer, which treats faults as system states and estimates the augmented states [43].
However, this approach often requires assumptions on the derivatives of fault signals.

It is worth emphasizing that residual generators obtained through observer-based
and parity space methods often have the same order as that of the system, leading to
a significant computational burden when dealing with large-scale or high-dimensional
systems. However, in [44], the authors propose a polynomial framework approach similar
to parity space methods that can construct residual generators with the potentially lower
order. This approach was later extended to linear differential-algebraic equations (DAE) in
their subsequent work [45]. This expands the scope of fault diagnosis approaches as DAE
models encompass various types of models, such as transfer functions, state-space models,
and descriptor models. With this extension, the approach can address a wider range of
fault diagnosis problems with reduced computational complexity.

All these model-based methods mentioned above rely on an accurate mathematical
model of the system. However, there are always unknown uncertainties, disturbances, and
stochastic noise that cannot be accurately modeled as analyzed before. These factors can
pose significant challenges in fault diagnosis tasks, leading to false alarms and missing
detection of faults. To tackle these challenges, researchers adopt indices such as2 and∞
norms to characterize the effects of these disturbing factors on residuals. In specific, the2
norm is useful in addressing stochastic aspects such as measurement noise and random
disturbances, while the ∞ norm is effective in achieving robustness against uncertainties
with deterministic bounds and meeting frequency-domain specifications [46]. With these
indices, the parameters of residual generators are generally solved through multi-objective
optimization problems within the robust control framework, ensuring the robustness of
the derived residual generators [47–49].

The previous results are for fault diagnosis of linear systems. For fault diagnosis of
nonlinear systems, a commonly used and simple approach is to linearize systems at local
operating points and treat higher-order nonlinear terms as uncertainties or disturbances.
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Linearization simplifies the analysis and allows for the use of techniques developed for linear
systems, see for example [50] and [51]. However, the limitation of using linearization-based
approaches is their inability to effectively handle systems with a wide dynamic operating
range. This is because linearization can result in a significant model mismatch in such
cases. To address the limitations imposed by linearization and improve the ability to handle
nonlinear terms, researchers in [52] have developed adaptive estimators to approximate
the nonlinear terms. The authors in [53] propose a framework based on DAE to design
fault diagnosis filters for nonlinear systems. They develop tractable optimization-based
approaches and use available nonlinearity signatures to train the filter and make it robust
to nonlinear terms.

In recent years, data-driven approaches have become increasingly prevalent in fault
diagnosis for nonlinear systems, such as [54, 55]. This is because data-driven approaches
can effectively make use of the data generated by systems and deal with nonlinear terms.
In the following part, we will provide an overview of fault diagnosis methods based on
data-driven approaches.

2. Data-driven methods. To obtain information about systems and faults, data-driven
fault diagnosis methods employ techniques including system identification, multivariate
statistical methods, and machine learning to process the historical data. The subspace
identification technique is one of the widely used system identification methods applied
to fault diagnosis. It first identifies the state-space model of the system. Model-based
approaches are then used to design fault diagnosis schemes based on the derived model.
In [56], the authors present the "direct identification and design" approach, which greatly
reduces the complexity of system design and improves the reliability of process monitoring
systems compared to the previous "identification-first, design-later" approach. Subspace
identification-based process monitoring methods have attracted interest in recent years
because they can utilize analytical model-based theories and methods. Some additional
discussion can be found in the references [57–60].

The core idea of multivariate statistical methods is to uncover the relations between
process variables and identify unique patterns in a large amount of historical industrial
data. Then, they use the obtained relations or patterns to detect faults in the process by
checking whether the online data satisfies the statistical relations. Multivariate statistical
process monitoring methods, with representative approaches including principal compo-
nent analysis (PCA) [61–64] and partial least squares (PLS) [65, 66], are more suitable for
large-scale and complex industrial systems [67, 68]. This is due to their ability to handle
large numbers of highly correlated variables. However, traditional PCA and PLS are linear
methods while most real processes are nonlinear. Researchers have extended PCA and
PLS to nonlinear systems by (i) employing polynomials or neural networks to represent
nonlinearity, or (ii) using kernel methods. For example, authors in [69] develop kernel PCA
which uses nonlinear kernel functions to compute the principal components. A kernel PLS
method is developed in [70] to address challenges caused by nonlinear characteristics in
fault diagnosis problems.

Traditional machine learning methods train artificial neural networks (ANN) or support
vector machines (SVM) with healthy and faulty samples offline. When executing diagnosis
tasks online, faults are detected and diagnosed by identifying the category to which the
samples belong. There are several different ANN that are used to complete diagnosis tasks,
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such as radial basis function networks [71], wavelet neural networks [72], probabilistic
neural networks [73], and so on. The strong self-learning capability of ANN enables the
ANN-based diagnosis systems automatically learn diagnosis knowledge from the data
by minimizing the empirical risk. However, ANN-based fault diagnosis methods suffer
from the interpretability issue because they are black boxes that lack rigorous theoretical
support.

SVM-based methods have better interpretability compared to ANN, as they minimize
structural risk. To recognize multiple faults and improve the accuracy of SVM-based
methods, several modified SVM-based fault diagnosis methods are developed in the liter-
ature [74]. The drawbacks associated with SVM-based methods encompass inefficiency
in managing massive datasets, susceptibility to kernel parameter choices, and complexity
when tackling multi-class classification tasks. Other traditional machine learning methods
like k-nearest neighbor [75] and probabilistic graphical model [76] are used to design fault
diagnosis systems as well.

It is worth mentioning that traditional machine learning methods require human
expertise and signal processing techniques to design a feature extractor. However, there
is no standard design procedure for the feature extractor for different tasks [77]. Besides,
the volume of data has been dramatically growing due to the development of industry
technology in recent years, which can provide more sufficient information. Unfortunately,
traditional machine learning methods are not suitable for big data scenarios because of
their shallow structures. They have limited ability to learn the nonlinear relations between
extracted features [78].

Deep learning methods employ deep architectures with multiple layers of neural
networks to automatically extract complex features from the raw data, and further establish
the relations between the learned features and the target output directly [79]. In comparison
with traditional machine learning methods, no human expertise is required. The advantages
of deep learning methods have led to their wide application in the field of fault diagnosis.
Deep learning fault diagnosis methods first employ hierarchical networks, such as stacked
autoencoders (AE), deep belief networks (DBN), and convolutional neural networks (CNN),
to learn abstracted features layer by layer. After feature extraction, the output of hierarchical
networks (i.e., the learned features) serves as the input of an ANN-based classifier to
recognize the healthy states of machines [74].

Authors in [78] used the stacked AE to automatically extract features from the data
of rolling element bearings and gears, and then constructed the fault diagnosis system.
This is one of the earliest studies on the applications of AE in the fault diagnosis field. The
proposed approach is able to handle massive monitoring data and obtain higher diagnosis
accuracy compared to ANN-based and SVM-based diagnosis methods. To further improve
the performance of fault diagnosis methods based on the stacked AE, people started to
study the optimization algorithms of AE, see for example [80–82]. Note that the stacked
AE approach cannot be directly applied to fault diagnosis as it is an unsupervised learning
method. Thus, a classification layer and sufficient labeled samples are required for the
construction of the diagnosis system based on the stacked AE.

Similar to the stacked AE approach, DBN consists of a set of restricted Boltzmann ma-
chines (a special type of generative stochastic neural network). Fault diagnosis approaches
developed based on DBN could automatically learn features from the data. In order to
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recognize faults, DBN-based methods map the learned features into the labeled space by
adding a classification layer. Researchers developed DBN-based fault diagnosis methods for
fault diagnosis of rolling element bearings in [83]. By improving the optimization algorithm,
like using adaptive learning rate and momentum [84] and selecting the structure with
the particle warm [85], the improved DBN-based methods can achieve higher diagnosis
accuracy than the standard DBN. This method requires sufficient labeled samples to obtain
convincing diagnosis results as well.

CNN is a supervised learning method that comprises convolutional layers, pooling
layers, and full-connected layers [86]. It has been widely used in speech recognition and
image identification with many achievements. Applications of CNN to fault diagnosis
can be divided into 2-dimensional (2D) and 1-dimensional (1D) methods according to
the architectures of CNN. Since the standard 2D CNN used for image identification is
unable to deal with 1D signals, like vibration data in bearings. To address this issue,
researchers adopt signal processing techniques, such as the wavelet packet [87], continue
wavelet transform [88], and synchrosqueezing transform [89], to convert the 1D data to
the time-frequency domain. Then, CNN can handle the 2D time-frequency spectrum for
fault diagnosis. There are also some results [90, 91] manually reshape the input data to
align with the requirements of CNN-based diagnosis methods. Additionally, 1D CNN has
been employed to process raw data without preprocessing too. Researchers have used
it to construct the end-to-end diagnosis methods for rolling element bearings [92] and
gears [93].

Other deep learning methods, like ResNet, have also been used to construct fault
diagnosis systems [94]. More results based on learning-based fault diagnosis methods can
be found in survey papers [24, 74, 95] and course book [25]. We would like to point out
that the deep learning methods mentioned before mostly assume that there are sufficient
labeled data and contain complete healthy data of systems. However, such an assumption
is unrealistic in engineering scenarios. Besides, since it is easier to obtain healthy data than
faulty data, it also leads to seriously imbalanced datasets. Therefore, using deep learning
with limited and imbalanced data to design reliable diagnosis methods for engineering
scenarios is still a challenging problem.

1.3 Thesis Outline
In this thesis, our focus is on developing model-based fault diagnosis techniques for linear
systems that can operate effectively even in the presence of disturbances and noise. In
light of the discussion on existing model-based fault diagnosis methods, we will consider
the following issues when designing fault diagnosis methods:

• Scalability of residual generators. The order of the residual generator obtained by
common observer-based and parity space-based methods is usually the same as that
of the system, which results in a substantial computational workload when dealing
with large-scale systems. Therefore, a simple and scalable residual generator is more
desirable for online implementation and large-scale systems.

• Stochastic disturbance signals. Most fault diagnosis methods in the literature
usually consider model mismatches including uncertainties, disturbances, and noise,
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with deterministic bounds. Then, they design residual generators to be robust to these
model mismatches only through the support information. However, it is generally
difficult to obtain such bounds, and the results obtained are highly conservative.
Therefore, it is meaningful to find solutions to deal with stochastic model mismatches
and study their effects on diagnosis results.

• Probabilistic diagnosis performance. To achieve successful fault diagnosis, it is
essential to design residual evaluation strategies and determine detection thresholds,
as the residuals are often corrupted by disturbances and noise. However, due to the
random nature of disturbance signals, false alarms and missing detection of faults
are inevitable. Therefore, designing residual evaluation strategies and thresholds
that can provide guarantees on false alarms and missing detection rates is of utmost
importance. Unfortunately, research on probabilistic diagnosis performance is limited
at present.

• Finite frequency domain design. Most existing model-based fault diagnosis
methods are designed for the entire frequency domain. However, in engineering
practice, practitioners may only be interested in the performance of the control
system within a specific frequency range. Moreover, actual system signals, such
as external disturbances, measurement noise, and fault signals, often appear in
specific frequency ranges. Therefore, by designing fault diagnosis strategies in a
finite frequency domain, it is possible to attain better diagnosis performance with
less design conservatism compared to methods for the entire frequency domain.

Motivated by the aforementioned needs, we propose design approaches for fault diag-
nosis filters within the framework of differential-algebraic equations. This offers design
flexibility and the potential for constructing low-order filters. We further determine the
parameters of the filters through optimization problems to ensure that the resulting filters
meet various design requirements. Considering the importance of energy systems, we
take energy systems, such as power systems and building radiant systems, as experimental
subjects to validate the effectiveness of our proposed approaches. The structure of the
thesis is as follows.

Chapter 2. In this chapter, we consider the switching detection and mode identification
problem for switched affine systems, while taking into account asynchronous switchings
and measurement noise. This problem becomes particularly relevant in fault diagnosis
scenarios, where an unexpected transition from a healthy mode to a faulty mode can be
treated as an unknown switching. Therefore, the problem can also be viewed as a fault
detection and isolation problem. To tackle this problem, we propose a diagnosis scheme
that comprises a bank of filters and a diagnosis rule based on residual/threshold analysis.
Specifically, we follow the mindset of the generalized observer scheme for mode isolation,
where each residual is sensitive to all but only one mode. Furthermore, the2 normmethod
from the robust control theory is utilized here to mitigate the impact of stochastic noise
on the residuals. We formulate the design of the bank of filters into a finite optimization
problem, which can be safely approximated through linear matrix inequalities and, thus,
tractable.

In the threshold determination part, we consider the random nature of the residuals and
develop a thresholding policy along with probabilistic false-alarm guarantees to estimate
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the active system mode in real-time. Compared to the existing results, the guarantees
improve from a polynomial dependency in the probability of false-alarm to a logarithmic
form. This improvement is achieved by assuming that the noise satisfies sub-Gaussianity
distributions, which is common in many practical applications. In addition, we estimate
the time required for our proposed diagnosis component to isolate the correct mode. This
is rarely studied in previous literature. To validate the effectiveness of our approach, we
present a numerical example and an application of the building radiant system.

Chapter 3. In this chapter, we consider fault detection and estimation for discrete-time
linear time-invariant systems in the finite frequency domain. This is motivated by the
fact that some practical faults are in the finite frequency domain, such as stuck and in-
cipient faults. To enhance fault sensitivity in the frequency domain of interest, we utilize
the _ index and the generalized Kalman-Yakubovich-Popov lemma. We develop an exact
optimization framework to solve the fault detection filter that meets the requirements
for mixed 2/_ performance indices, which simultaneously suppress noise, decouple
unknown inputs and improve fault sensitivity. Additionally, we propose a threshold deter-
mination method that provides probabilistic guarantees on the diagnosis performance. In
comparison with the results presented in Chapter 2, which only consider one-dimensional
residuals, the proposed filter design method here allows for residuals of arbitrary dimen-
sions and can handle the simultaneous occurrence of multiple faults. Additionally, we
compute the probability of missing detection, which is not studied in Chapter 2.

Furthermore, by adjusting the constraints in the proposed optimization framework,
we obtain the design method for the fault estimation filter in the finite frequency domain,
where the finite-frequency ∞ norm is adopted to measure the estimation performance.
We relax further the fault estimation conditions to reduce computational complexity and
formulate a quadratic programming problem to solve the desired fault estimation filter. To
our knowledge, this is the first attempt to tackle fault estimation filter design in the finite
frequency domain, while taking into account both unknown inputs and stochastic noise.
The effectiveness of our proposed methodologies is demonstrated through an application
on a synthetic non-minimum phase system and a multi-area power system.

Chapter 41. In this chapter, we focus on the detection of ground faults in inverter-based
microgrid systems. The presence of a fault current limiter in the inverter controller
causes the fault current to deviate slightly from its nominal value, making fault detection
challenging. Additionally, distinguishing ground faults from disturbances based solely
on the output current can be difficult, as the effect of disturbances on the output current
is similar to that of ground faults. To address this challenge, we begin by obtaining the
state-space model of inverter-based microgrid systems in both healthy and faulty modes.
As this problem only involves two modes, we can consider it as a special case of the mode
detection problem discussed in Chapter 2. This allows us to apply fault diagnosis methods
that have been previously developed to address the current problem when disturbances
can be fully decoupled. However, in contrast to the results presented in Chapter 2 and
Chapter 3, this problem involves disturbances that cannot be fully decoupled. To develop
fault detection filters that are robust to such disturbances, we use available disturbance
patterns to train the filters. We formulate the filter design as a quadratic programming

1The results in this chapter are also used in the master thesis: Y. Liao, "Monitoring Techniques in Modern Industrial
Systems: Fault detection and non-intrusive load monitoring".
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problem that has an approximate analytical solution. This approximate analytical solution
can be arbitrarily precise and used to update filter parameters in real-time. We also establish
a threshold to ensure the desired probabilistic diagnosis performance.

Chapter 5. In this chapter, we revisit the main results of this thesis and also discuss
possible future research directions.
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This chapter is based on � J. Dong, A.S.Kolarijani, P. Mohajerin Esfahani. Multimode diagnosis for switched affine
systems with noisy measurement. Automatica, 2023, 151: 110898. [96].
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2.1 Introduction
Over the last two decades, special attention has been paid to switched affine systems
because they can be used to effectively model a wide range of practical systems, such as
chemical plants [97], aeronautic systems [98] and smart buildings [99]. These systems
are usually difficult to be exactly described by a single model because of their nonlinear
and complex dynamic characteristics. Research on switched systems is mainly focused
on model identification [100, 101], state estimation [102], stability analysis and controller
design [103, 104]. The prior knowledge of the switching signal that indicates the evolution
of modes is crucial to theoretical results in these research topics. For example, a general
approach to controlling switched systems is to employ mode-dependent controllers, where
the activation of a proper controller depends on the switching signal. There are, however,
several scenarios in which the switching signal is not a priori known. In fault diagnosis
scenarios, an unexpected transition from a healthy mode to a faulty mode can be treated
as an unknown switching. Thus, one needs to detect the active mode of switched systems
as the detection process results in a delay between the active mode and its corresponding
controller.

The problem of mode detection for switched affine systems has been studied for decades.
The proposed approaches can be grouped into two categories: data-based and model-based
approaches. The data-based approaches are most adopted when the parameters of each
mode are unknown. In that case, the parameters need to be identified from a collection of
input-output data. Then, the new data is associated with the most suitable mode through
data classification techniques. A number of results on data-based approaches have been
achieved. We refer the interested readers to [100] and the references therein.

Model-based fault diagnosis: In model-based approaches, one leverages tools from the
fault detection and isolation (FDI) field to detect and isolate changes caused by switchings or
faults. The most widely used FDI methods are based on residual generation, where certain
residual signals are generated by observer-based or parity space methods to characterize the
occurrence of changes quantitatively [2]. Beard [29] proposes the original observer-based
diagnosis approach to replace the hardware redundancy in 1971. Subsequently, many
observer-based diagnosis approaches are developed. To deal with disturbances or mea-
surement noise, the authors in [105] construct an optimization problem to design the
parameters of the observer, in which the influence of disturbances on residuals charac-
terized by∞ norm is minimized. The parity space approach is proposed in [39], which
generates residuals to check the consistency between the model and the measurements.

It is worth noting that the derived residual generators usually have the same order
as that of the systems. This makes the generators complex and computationally demand-
ing when dealing with high-dimensional or large-scale systems. Frisk [44] proposes a
parity-space-like approach in a polynomial framework that produces residual generators
with possibly low order. In their following work [45], the previous approach is extended
to the linear differential-algebraic equations (DAE, difference-algebraic equations in the
discrete-time case). This extension enlarges the application range of FDI approaches be-
cause DAE models cover several classes of models, e.g., transfer functions, state-space
models, or descriptor models. The above approaches are for linear systems. For the fault
detection of nonlinear systems, a natural way is to linearize nonlinear systems at local
operating points and decouple the disturbances together with the higher-order terms from
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the residuals, see for example [50, 51]. Another method is to develop adaptive nonlin-
ear estimators to approximate the nonlinear terms [52, 106]. More recently, the authors
in [53, 107] develop tractable optimization-based approaches in the DAE framework to
design FDI filters to deal with disturbances and nonlinear terms.

Multi-mode diagnosis: Note that the aforementioned approaches are applicable to
systems with a single model. A bank of residuals is usually required to deal with systems
consisting of several modes. Moreover, the systems need to satisfy certain rank conditions
to guarantee that any two subsystems can be distinguished from each other. This is the
distinguishability (also called discernibility or observability) of switched systems [108, 109].
To detect the active mode, the idea that makes each residual sensitive to all but only one
mode is usually adopted, which is called generalized observer scheme (GOS) [12]. Following
a GOS mindset, results on mode detection are achieved based on basic residual generation
methods, such as parity space approaches [110], unknown input observers [111], and
sliding mode observers [112, 113]. Note that the computational complexity of these residual
generation methods increases significantly as the system dimension and the number of
modes increase. In this work, we propose a design perspective in the DAE framework that
relies on a bank of filters whose dimension does not necessarily scale up with the dimension
of the system. This feature enables the possibility of low-ordered filters compared to the
existing literature.

Another class of mode detection methods is the set-membership method which com-
putes the reachable set of each subsystem. Then, the output is compared to the reachable
sets to determine the mode [114–116]. The authors in [114] and [115] develop active
diagnosis approaches in which an optimal separating input sequence is designed to guar-
antee that output sets of different subsystems are separated. In [116], a model invalidation
approach is proposed to compare the input-output data to the nominal behaviors of the
system, where the set-membership check is reduced to the feasibility of a mixed-integer
linear programming problem. The set-membership methods are generally computationally
demanding because they require solving optimization problems at each step. Also, the
residual generation and set-membership methods mentioned above either neglect the noise
or treat them as robust only through the support information. This viewpoint often leads
to conservative diagnosis guarantees. In fact, the measurement noise introduces a unique
challenge to the detection task where the reachable sets of healthy residuals may well
overlap with the faulty ones. This challenge is one of the focus points of this study.

Main contributions: In light of the literature reviewed above, the main message of this
chapter revolves around a diagnosis scheme to detect the active mode of asynchronously
switched affine systems in real-time. The diagnosis scheme consists of a bank of filters and
a residual/threshold-based diagnosis rule. The bank of filters comprises as many filters as
the admissible mode transitions, while the diagnosis rule prescribes conditions under which
we estimate the transition based on the behaviors of the residuals. The main contributions
of this chapter are summarized as follows.

• Exact characterization of an optimal bank of filters: Building on residual-based
detection and2 norm approaches in the DAE framework, we formulate the optimal
bank of filters design problem as a finite optimization problem in which the objective
is the noise contribution to the residuals (Theorem 2.3.1). We also provide necessary
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and sufficient conditions that ensure the feasibility of the resulting optimization
problem (Proposition 2.3.3).

• Tractable convex restriction: We provide a sufficient condition for the nonlinear
constraint in the exact optimization problem of the filter design based on linear
matrix inequalities (LMI), leading to a tractable approximation of the original prob-
lem (Proposition 2.3.2).

• Probabilistic performance bounds: We further propose diagnosis thresholds along
with probabilistic false-alarm guarantees to estimate the active system mode (Theo-
rem 2.3.8). The proposed bound admits a logarithmic dependency with respect to
the desired reliability level, which is better than the polynomial rate in the existing
works [117]. This improvement comes under the sub-Gaussianity assumption on
the noise distribution, a regularity requirement expected to hold in many real-world
applications.

The rest of the chapter is organized as follows. The problem formulation and the pro-
posed architecture of the diagnosis scheme are introduced in Section 2.2. In Section 2.3, we
present an optimization-based approach to design the filters along with some performance
analysis of the proposed scheme. To improve the flow of the chapter and its accessibility, we
postpone all technical proofs to Section 2.4. The proposed scheme is applied to a numerical
example and a building radiant system in Section 2.5 to validate its effectiveness. Finally,
Section 2.6 concludes the chapter with some remarks and future directions.

2.2 Model Description and Problem Statement
In this section, we provide a formal description of discrete-time asynchronously switched
affine systems. Then, we present the architecture of the proposed mode detector and
formulate the problems studied in this work.

2.2.1 Model Description
Consider a discrete-time switched affine system that consists of 𝑛 subsystems:

𝑥(𝑘 +1) = 𝐴𝜎(𝑘)𝑥(𝑘)+𝐵𝜎(𝑘)𝑢(𝑘)+𝐸𝜎(𝑘)𝑑(𝑘)+𝑊𝜎(𝑘)𝜔(𝑘)
𝑦(𝑘) = 𝐶𝜎(𝑘)𝑥(𝑘)+𝐷𝜎(𝑘)𝜔(𝑘), (2.1)

where 𝑥(𝑘) ∈ ℝ𝑛𝑥 , 𝑢(𝑘) ∈ ℝ𝑛𝑢 and 𝑦(𝑘) ∈ ℝ𝑛𝑦 are the state, control input and output, resp.
The signal 𝑑(𝑘) ∈ ℝ𝑛𝑑 and 𝜔(𝑘) ∈ ℝ𝑛𝜔 represent the reference and noise signals, resp. For
simplicity of analysis, we consider a one-dimensional reference signal, i.e., 𝑛𝑑 = 1. Through-
out this study, the noise 𝜔(𝑘) is assumed to be independent and identically distributed (iid).
We define the set {1,…,𝑛} by  . The switching law 𝜎(𝑘) ∈ indicates the active mode
at each instant 𝑘. Matrices 𝐴𝜎(𝑘), 𝐵𝜎(𝑘), 𝐸𝜎(𝑘), 𝑊𝜎(𝑘), 𝐶𝜎(𝑘) and 𝐷𝜎(𝑘) are all known with
appropriate dimensions, and matrices 𝐸𝑖 ≠ 0. For each mode 𝑖 ∈ , we consider the static
output-feedback controller

𝑢(𝑘) = 𝐾𝑖𝑦(𝑘), (2.2)
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Mode

Controller

Diagnosis 
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Mode Detector

Figure 2.1: Structure of the closed-loop dynamics and the mode detector.

where 𝐾𝑖 is a constant controller gain; see [118] for a design approach to 𝐾𝑖. Let {𝑡0,… , 𝑡𝑠 ,…}
denote the sequence of switching time instants of the system mode 𝜎(𝑘), i.e., by definition
we have 𝜎(𝑡𝑠 −1) ≠ 𝜎(𝑡𝑠).

In this study, we consider the setting that the switching law 𝜎(𝑘) and the switching
instant 𝑡𝑠 are both unknown to the controller. The main objective is to estimate the active
mode 𝜎(𝑘), hereafter denoted by 𝜎̂(𝑘), through the noisy measurement 𝑦 in real-time. As
depicted in Figure 2.1, our proposed scheme to accomplish this goal builds on a bank
of filters where each filter is intended to detect a possible pair of 𝜎̂(𝑘) = 𝑖,𝜎(𝑘) = 𝑗 for
any 𝑖, 𝑗 ∈ ; we use the notation 𝑆𝑖𝑗 to represent this status of the closed-loop system. For
each pair (𝑖, 𝑗), the filter is assumed to be a linear time-invariant (LTI) system (described by
a transfer function) denoted by 𝔽𝑖𝑗 whose output (also called residual) is a scalar-valued
signal 𝑟𝑖𝑗 ∶= 𝔽𝑖𝑗 [𝑦]. We note that in our setting, the current controller mode 𝜎̂(𝑘) = 𝑖 is
always known, whereas the system mode 𝜎(𝑘) is unknown and the object of interest.
Suppose that the system transitions to the status 𝑆𝑖ℎ at 𝑡𝑠 (i.e., 𝜎̂(𝑡𝑠) = 𝑖,𝜎(𝑡𝑠) = ℎ), thanks to
the linearity of the dynamics, the residual 𝑟𝑖𝑗 can be written as

𝑟𝑖𝑗 = 𝔽𝑖𝑗𝕋
𝑆𝑖ℎ
𝑑𝑦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑑↦𝑟𝑖𝑗

[𝑑]+𝔽𝑖𝑗𝕋𝑆𝑖ℎ
𝜔𝑦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜔↦𝑟𝑖𝑗

[𝜔]+(𝑥(𝑡𝑠), 𝑥̄𝑖𝑗 (𝑡𝑠))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
initial condition

, (2.3)

where 𝕋𝑆𝑖ℎ
𝑑𝑦 and 𝕋𝑆𝑖ℎ

𝜔𝑦 are the LTI systems from the external signals (𝑑,𝜔) to 𝑦, and (⋅) is the
contribution of the internal states of the system 𝑥(𝑡𝑠) and the filter 𝑥̄𝑖𝑗 (𝑡𝑠). From the classical
system theory, we know that the initial condition contribution vanishes exponentially
fast under appropriate asymptotic stability conditions. To isolate the active mode, we
adopt the same mindset as GOS and opt to decouple the contribution of the reference
signal 𝑑 (i.e., the first term in the right-hand side of (2.3)) for the matched mode 𝑗 = ℎ,
and make sure that it is significantly high when 𝑗 ≠ ℎ. With regards to the latter, we look
at the steady-state behavior of the filters, motivated by the fact that in many important
applications the reference signal 𝑑 is effectively constant between two switching instants.
Furthermore, we opt to suppress the noise contribution (the second term in the right-hand
side of (2.3)) for all ℎ ∈ . These steps will be formalized in the next part.



2

18 2 Multimode Diagnosis for Switched Affine Systems with Noisy Measurement

Figure 2.2: Illustration of the diagnosis process.

2.2.2 Problem Statement
We consider a setting consisting of two components to perform the diagnosis task: (i) bank
of filters, as briefly described in the previous section, and (ii) diagnosis rule, which is
essentially a thresholding technique to estimate the system mode from the residuals. We
then present two problems concerning each of these components. For each pair (𝑖, 𝑗) and
the respective filter 𝔽𝑖𝑗 , the desired properties of 𝑑 ↦ 𝑟𝑖𝑗 and 𝜔↦ 𝑟𝑖𝑗 (the first two terms in
the right-hand side of (2.3)) can be formalized as follows:

𝔽𝑖𝑗𝕋
𝑆𝑖𝑗
𝑑𝑦 = 0, (2.4a)

|||[𝔽𝑖𝑗𝕋
𝑆𝑖ℎ′
𝑑𝑦 ]ss

||| ≥ 1, ℎ′ ∈ ⧵ {𝑗}, (2.4b)

‖‖‖𝔽𝑖𝑗𝕋
𝑆𝑖ℎ
𝜔𝑦
‖‖‖
2

2
≤ 𝜂𝑖𝑗ℎ, ℎ ∈ . (2.4c)

Let us briefly elaborate on each condition in (2.4): The equality constraint (2.4a) decouples 𝑑
from 𝑟𝑖𝑗 when the closed-loop status is 𝑆𝑖𝑗 . The condition (2.4b) ensures that the absolute
value of the steady-state gain of 𝔽𝑖𝑗𝕋

𝑆𝑖ℎ′
𝑑𝑦 remains larger than or equal to 1, and as such,

the contribution of 𝑑 to 𝑟𝑖𝑗 is notably nonzero when the closed-loop status is 𝑆𝑖ℎ′ for
all ℎ′ ∈ ⧵ {𝑗}. Recall that the 2 norm of a transfer function is the asymptotic variance
of the white noise response [46]. Then, the constant 𝜂𝑖𝑗ℎ in (2.4c) is an upper bound for the
variance of the noise contribution to the residual. In view of the desired properties (2.4),
we proceed with our first problem.
Problem 1. (Optimal bank of filters) Consider the closed-loop dynamics (2.1)-(2.2) and the
mode detector in Figure 2.1. Given 𝑖, 𝑗 ∈ and an admissible family of the filters 𝔽𝑖𝑗 , find
the optimal filter defined through the optimization program

min
𝔽𝑖𝑗 , 𝜂𝑖𝑗ℎ

{
𝑛
∑
ℎ=1

𝜂𝑖𝑗ℎ ∶ (2.4a), (2.4b), (2.4c)

}

. (2.5)

Given the filters as an (approximate) solution to (2.5), we now shift our attention to
the diagnosis rule component in Figure 2.1. Consider a transition from mode 𝑖 to mode 𝑗
at time instant 𝑡𝑠 (i.e., 𝜎̂(𝑡𝑠) = 𝑖,𝜎(𝑡𝑠) = 𝑗), where 𝑖, 𝑗 ∈ . There are two key parameters
during the diagnosis process of the transition: (i) the threshold 𝜀𝑖 ∈ ℝ+, and (ii) the waiting
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time 𝜏𝑗 ∈ ℕ+. The behavior of the trajectories, as well as the design parameters 𝜀𝑖, 𝜏𝑗 ,
are pictorially illustrated in Figure 2.2. In the following, the role of each of the design
parameters is discussed:

(1) Threshold 𝜀𝑖: As formalized in (2.4), the matched residual 𝑟𝜎̂𝜎(𝑘) should be close
to zero, while the other residuals are notably away from zero. Recall that the current
controller mode 𝜎̂(𝑘) is known, and the system mode 𝜎(𝑘) is the detection target. Hence,
we monitor the residuals 𝑟𝜎̂ℎ(𝑘) for all ℎ ∈ , and compare them with the threshold 𝜀𝜎̂ to
isolate the matched residual (the one with the smallest absolute value). More specifically,
we opt to single out one candidate from all the other possible modes. This procedure can
be formally described by introducing the following conditions

𝑗∗(𝑘) = argmin
ℎ∈

|𝑟𝜎̂ℎ(𝑘)|, (2.6a)

|𝑟𝜎̂𝑗∗(𝑘)| ≤ 𝜀𝜎̂(𝑘) < min
ℎ′∈⧵{𝑗∗(𝑘)}

|𝑟𝜎̂ℎ′(𝑘)|. (2.6b)

The mode 𝑗∗(𝑘) defined in (2.6a) is our best candidate to estimate the system mode 𝜎(𝑘),
and (2.6b) is essentially a requirement to ensure that the threshold only selects one candidate.
Once the conditions (2.6) are fulfilled at a time instant 𝑘, then the diagnosis component
updates 𝜎̂(𝑘+1) = 𝑗∗(𝑘), otherwise, it still retains the old mode 𝜎̂(𝑘+1) = 𝜎̂(𝑘). In Figure 2.2,
note the period prior to 𝑡 iso𝑠 , the isolation time of the transition at 𝑡𝑠 ; this will be formally
defined in the next part in (2.7).

(2) Waiting time 𝜏𝑗 : Once we update 𝜎̂ at 𝑡 iso𝑠 , the conditions (2.6) are violated immedi-
ately since the controller mode changes. Thus, we need to wait for sufficiently large time
to pass the transient behavior of the system caused by the initial condition (the third term
in the right-hand side of (2.3)); see the “waiting period" [𝑡 iso𝑠 , 𝑡 iso𝑠 +𝜏𝑗 ) in Figure 2.2. The
controller mode 𝜎̂ remains unchanged during this period (i.e., 𝜎̂(𝑘 +1) = 𝜎̂(𝑘)) until |𝑟𝑗𝑗 (𝑘)|
reaches the respective threshold 𝜀𝑗 ; see Figure 2.2 and the time instant 𝑡 iso𝑠 +𝜏𝑗 . To determine
whether the diagnosis process is in the waiting period or not, we record the last isolation
time instant through

𝑡 iso(𝑘) ∶= max
{
𝑡 ∈ ℕ+ ∶ 𝜎̂(𝑡) ≠ 𝜎̂(𝑡 −1), 𝑘 ≥ 𝑡

}
. (2.7)

We use the shorthand notation 𝑡 iso(𝑘) = 𝑡 iso𝑠 for 𝑘 ∈ [𝑡 iso𝑠 , 𝑡 iso𝑠+1).
In summary, the diagnosis rule of the second component can be mathematically de-

scribed by

𝜎̂(𝑘 +1) =
⎧⎪⎪
⎨⎪⎪⎩

𝑗∗(𝑘), if (2.6) and 𝑘 ≥ 𝑡 iso(𝑘)+𝜏𝜎̂(𝑘),

𝜎̂(𝑘), otherwise.
(2.8)

Note that 𝜀𝑖 in (2.6) and 𝜏𝑗 in (2.8) are the design parameters, and their objective is
to detect the current system mode 𝜎(𝑘). In view of the update rule (2.8), this objective is
formalized in our next problem in terms of the behavior of the matched filter residual 𝑟𝑖𝑗 (𝑘).
Problem 2. (Probabilistic performance certificates) Suppose that the transition frommode 𝑖
to 𝑗 occurs at 𝑡𝑠 (i.e., 𝜎̂(𝑡𝑠) = 𝑖 and 𝜎(𝑡𝑠) = 𝑗). Given the filters constructed from Problem 1
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and a reliability level 𝛽 ∈ (0,1], determine the threshold 𝜀𝑖 and the estimated matched
time 𝑇𝑖𝑗 such that

𝐏𝐫
⎡
⎢
⎢
⎣

||𝑟𝑖𝑗 (𝑡)|| ≤ 𝜀𝑖
|||

⎡
⎢
⎢
⎣

𝜎̂(𝑘)

𝜎(𝑘)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑖

𝑗

⎤
⎥
⎥
⎦
,𝑘 ≥ 𝑡𝑠

⎤
⎥
⎥
⎦
≥ 1−𝛽, ∀ 𝑡 ≥ 𝑡𝑠 +𝑇𝑖𝑗 . (2.9)

The initial condition (𝑥(𝑡𝑠), 𝑥̄𝑖𝑗 (𝑡𝑠)) determines the time that |𝑟𝑖𝑗 | takes to reach 𝜀𝑖.
However, the internal system state 𝑥(𝑡𝑠) and switching instant 𝑡𝑠 are unknown. Moreover,
if the next transition occurs before 𝑡𝑠 + 𝑇𝑖𝑗 , the guarantee in (2.9) is no longer useful.
Thus, we assume that the time between two consecutive transitions (the so-called dwell
time [104]) is large enough so that the system reaches its steady-state before the next
transition. It is a reasonable assumption as the dwell time of many real-world applications
is longer than the time available for the controller to detect the mode. In this setting, the
probabilistic guarantee (2.9) can be obtained, and the internal state 𝑥(𝑡𝑠) can be estimated
by its steady-state value.

Remark 2.2.1. (Waiting time) The waiting time 𝜏𝑗 depicted in Figure 2.2 is indeed a special
case of the estimated matched time introduced in Problem 2, where the controller and the
system mode coincide, i.e., 𝜎̂(𝑡 iso𝑠 ) = 𝜎(𝑡 iso𝑠 ) = 𝑗 , and as such 𝜏𝑗 = 𝑇𝑗𝑗 .

2.3 Main Results
In this section, the structure and design method of the filters are presented. Then, com-
putation methods of the thresholds and the estimated matched time are given to provide
probabilistic guarantees on the diagnosis performance. All proofs are relegated to Sec-
tion 2.4 to improve readability.

2.3.1 Filter Design: An Optimization-based Method
Suppose the current status is 𝑆𝑖ℎ, i.e., 𝜎̂(𝑘) = 𝑖,𝜎(𝑘) = ℎ. The closed-loop dynamics (2.1)-(2.2)
can be written as

𝑥(𝑘 +1) = 𝐴𝑐𝑙𝑖ℎ𝑥(𝑘)+𝐸ℎ𝑑(𝑘)+ (𝑊ℎ+𝐵ℎ𝐾𝑖𝐷ℎ)𝜔(𝑘)
𝑦(𝑘) = 𝐶ℎ𝑥(𝑘)+𝐷ℎ𝜔(𝑘), (2.10)

where 𝐴𝑐𝑙𝑖ℎ = 𝐴ℎ+𝐵ℎ𝐾𝑖𝐶ℎ. We further reformulate (2.10) into the DAE format, which is

𝐻𝑖ℎ(q)
⎡
⎢
⎢
⎣

𝑥

𝑑

⎤
⎥
⎥
⎦
+𝐿(q)[𝑦]+𝐺𝑖ℎ(q)[𝜔] = 0, (2.11)
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where the operator q is a time-shift operator, i.e., 𝑥(𝑘 +1) = q𝑥(𝑘). The polynomial matri-
ces 𝐻𝑖ℎ(q), 𝐿(q) and 𝐺𝑖ℎ(q) are given by

𝐻𝑖ℎ(q) = 𝐻𝑖ℎ,1q+𝐻𝑖ℎ,0 =
⎡
⎢
⎢
⎣

−q𝐼 +𝐴𝑐𝑙𝑖ℎ 𝐸ℎ

𝐶ℎ 0

⎤
⎥
⎥
⎦
, 𝐿(q) = 𝐿0 =

⎡
⎢
⎢
⎣

0

−𝐼

⎤
⎥
⎥
⎦
, and

𝐺𝑖ℎ(q) = 𝐺𝑖ℎ,0 =
⎡
⎢
⎢
⎣

𝑊ℎ+𝐵ℎ𝐾𝑖𝐷ℎ

𝐷ℎ

⎤
⎥
⎥
⎦
.

Inspired by [45] and [53], the filter 𝔽𝑖𝑗 is defined as

𝔽𝑖𝑗 (q) = 𝑎−1(q)𝑁𝑖𝑗 (q)𝐿(q), (2.12)

where the polynomial row vector𝑁𝑖𝑗 (q) =∑𝑑𝑁
𝑚=0𝑁𝑖𝑗 ,𝑚q𝑚, each𝑁𝑖𝑗 ,𝑚 ∈ ℝ1×(𝑛𝑥+𝑛𝑦 ) is a constant

row vector, 𝑑𝑁 denotes the degree of 𝑁𝑖𝑗 (q), and 𝑎(q) is a (𝑑𝑁 +1)-th order polynomial with
all roots inside the unit disk. We define

𝑎(q) = q𝑑𝑁+1+𝑎𝑑𝑁 q
𝑑𝑁 +⋯+𝑎1q+𝑎0, (2.13)

where 𝑎𝑚 is a constant coefficient for each 𝑚 ∈ {0,1,…,𝑑𝑁 }. Notice that the role of 𝑎(q) is
to ensure that the filter 𝔽𝑖𝑗 is strictly proper and stable. To simplify the design process, we
fix 𝑎(q) and 𝑑𝑁 , and suppose that all the filters are of the same degree. The coefficients of
the numerator, i.e., 𝑁𝑖𝑗 ,𝑚 for 𝑚 ∈ {0,1,…,𝑑𝑁 }, are the design parameters. Multiplying the
left-hand side of (2.11) by 𝑎−1(q)𝑁𝑖𝑗 (q) yields

𝑟𝑖𝑗 =
𝑁𝑖𝑗 (q)𝐿(q)

𝑎(q)
[𝑦] = −

𝑁𝑖𝑗 (q)𝐻𝑖ℎ(q)
𝑎(q)

⎡
⎢
⎢
⎣

𝑥

𝑑

⎤
⎥
⎥
⎦
−
𝑁𝑖𝑗 (q)𝐺𝑖ℎ(q)

𝑎(q)
[𝜔]. (2.14)

To bound the 2 norm of the transfer function from 𝜔 to 𝑟𝑖𝑗 , we derive the observable
canonical form of 𝔽𝑖𝑗 (q) from (2.12)

𝑥̄𝑖𝑗 (𝑘 +1) = 𝐴𝑟 𝑥̄𝑖𝑗 (𝑘)+𝐵𝑟𝑖𝑗 𝑦(𝑘)
𝑟𝑖𝑗 (𝑘) = 𝐶𝑟 𝑥̄𝑖𝑗 (𝑘), (2.15)

where 𝑥̄𝑖𝑗 (𝑘) ∈ ℝ𝑑𝑁+1 denotes the state. Matrices 𝐴𝑟 ,𝐵𝑟𝑖𝑗 ,𝐶𝑟 are given by

𝐴𝑟 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 … 0 −𝑎0

1 … 0 −𝑎1

⋮ ⋱ ⋮ ⋮

0 … 1 −𝑎𝑑𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐵𝑟𝑖𝑗 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑁𝑖𝑗 ,0

𝑁𝑖𝑗 ,1

⋮

𝑁𝑖𝑗 ,𝑑𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐿0, and 𝐶𝑟 = [0…0 1] . (2.16)

The parameters 𝑁𝑖𝑗 ,𝑚 are reformulated into 𝐵𝑟𝑖𝑗 here. Let us introduce an augmented state
𝑖𝑗 (𝑘) ∶= [𝑥(𝑘)⊤ 𝑥̄𝑖𝑗 (𝑘)⊤]

⊤. The dynamics of 𝑖𝑗 can be derived from (2.10) and (2.15),
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which is

𝑖𝑗 (𝑘 +1) =𝑖𝑗ℎ𝑖𝑗 (𝑘)+ℎ𝑑(𝑘)+𝑖𝑗ℎ𝜔(𝑘)
𝑟𝑖𝑗 (𝑘) = 𝑟𝑖𝑗 (𝑘), (2.17)

where

𝑖𝑗ℎ =
⎡
⎢
⎢
⎣

𝐴𝑐𝑙𝑖ℎ 0

𝐵𝑟𝑖𝑗𝐶ℎ 𝐴𝑟

⎤
⎥
⎥
⎦
, ℎ =

⎡
⎢
⎢
⎣

𝐸ℎ

0

⎤
⎥
⎥
⎦
, 𝑖𝑗ℎ =

⎡
⎢
⎢
⎣

𝑊ℎ+𝐵ℎ𝐾𝑖𝐷ℎ

𝐵𝑟𝑖𝑗𝐷ℎ

⎤
⎥
⎥
⎦
, and 𝑟 = [0 𝐶𝑟] .

To design filters satisfying conditions in Problem 1, we formulate an optimization
problem in the following theorem. For clarity of exposition, we allocate the first two lines
to the decision variables in the optimization problem.

Theorem 2.3.1 (Optimal bank of filters: exact finite reformulation). Consider the closed-
loop dynamics (2.1)-(2.2) and the filter 𝔽𝑖𝑗 proposed in (2.12) with the state-space realiza-
tion (𝐴𝑟 ,𝐵𝑟𝑖𝑗 ,𝐶𝑟 ) as defined in (2.16). Given the order 𝑑𝑁 , coefficients of 𝑎(q), and a sufficiently
small 𝜗 ∈ ℝ+, Problem 1 as defined in (2.5) can be equivalently translated into the following
finite optimization program:

min
𝑛
∑
ℎ=1

𝜂𝑖𝑗ℎ

s.t. 𝑁𝑖𝑗 ,𝑚 ∈ ℝ1×(𝑛𝑥+𝑛𝑦 ), 𝑚 ∈ {0,1,…,𝑑𝑁 }, 𝜂𝑖𝑗ℎ ∈ ℝ+, ℎ ∈ ,

𝑃𝑖𝑗 ∈ 𝑑𝑁+1, 𝑃𝑖𝑗ℎ′ ∈ 𝑛𝑥+𝑑𝑁+1, ℎ′ ∈ ⧵ {𝑗}
𝑁̄𝑖𝑗 𝐻̄𝑖𝑗 = 0, (2.18a)
||𝑎
−1(1)𝑁̄𝑖𝑗𝑖ℎ′ || ≥ 1, (2.18b)

⎡
⎢
⎢
⎢
⎢
⎣

𝑃𝑖𝑗 𝐴𝑟𝑃𝑖𝑗 𝑖𝑗

∗ 𝑃𝑖𝑗 0

∗ ∗ 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 ,
⎡
⎢
⎢
⎣

𝜂𝑖𝑗𝑗 𝐶𝑟𝑃𝑖𝑗

∗ 𝑃𝑖𝑗

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 , (2.18c)

⎡
⎢
⎢
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝑖𝑗ℎ′𝑃𝑖𝑗ℎ′ 𝑖𝑗ℎ′

∗ 𝑃𝑖𝑗ℎ′ 0

∗ ∗ 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 ,
⎡
⎢
⎢
⎣

𝜂𝑖𝑗ℎ′ 𝑟𝑃𝑖𝑗ℎ′

∗ 𝑃𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 , (2.18d)

where the involved matrices are given by

𝑁̄𝑖𝑗 = [𝑁𝑖𝑗 ,0 𝑁𝑖𝑗 ,1 … 𝑁𝑖𝑗 ,𝑑𝑁 ], 𝑖ℎ′ = 𝐿̄[

𝑑𝑁+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼 … 𝐼]⊤𝐶ℎ′ (𝐼 −𝐴𝑐𝑙𝑖ℎ′)

−1𝐸ℎ′ ,

𝐻̄𝑖𝑗 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐻𝑖𝑗 ,0 𝐻𝑖𝑗 ,1 … 0

⋮ ⋱ ⋱ ⋮

0 … 𝐻𝑖𝑗 ,0 𝐻𝑖𝑗 ,1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑖𝑗 = −

⎡
⎢
⎢
⎢
⎢
⎣

𝑁𝑖𝑗 ,0

⋮

𝑁𝑖𝑗 ,𝑑𝑁

⎤
⎥
⎥
⎥
⎥
⎦

𝐺𝑖𝑗 ,0, and 𝐿̄ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐿0, … , 0

⋮ ⋱ ⋮

0 … 𝐿0

⎤
⎥
⎥
⎥
⎥
⎦

.
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Proof. The proof is provided in Section 2.4.1. □

Note that if 𝑁 ∗
𝑖𝑗 ,0,… ,𝑁 ∗

𝑖𝑗 ,𝑑𝑁 are feasible solutions to (2.18), then so are −𝑁 ∗
𝑖𝑗 ,0,… ,−𝑁 ∗

𝑖𝑗 ,𝑑𝑁
with the same objective values. This directly holds for constraints (2.18a) and (2.18b) and
can be proved through Schur complement for the matrix inequalities constraints (2.18c)
and (2.18d). Thus, we can drop the absolute value of (2.18b) without loss of generality.

The following proposition shows that the nonlinear matrix inequality in (2.18d) can be
safely approximated with an LMI.

Proposition 2.3.2 (Optimal bank of filters: safe convex approximation). Consider the
optimization problem (2.18). Given 𝛼 ∈ ℝ and 𝛾 ∈ ℝ+, the nonlinear inequality constraint as
the first term in (2.18d) can be safely approximated by the following LMI constraint if there
exist matrices 𝑖𝑗ℎ′ ,1 ∈𝑛𝑥+𝑑𝑁+1, 𝑖𝑗ℎ′ ,2 ∈𝑛𝜔 such that:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝐴̂𝑖ℎ′𝑖𝑗ℎ′ 𝐵̂𝑟𝑖𝑗 0

∗ Ξ𝑖𝑗ℎ′ 0 (𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

∗ ∗ 1
𝛾 𝐼 0

∗ ∗ ∗ 𝛾𝐼

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 , (2.19)

where the involved matrices are defined as

𝐴̂𝑖ℎ′ =
⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

𝐴𝑐𝑙𝑖ℎ′ 0

0 𝐴𝑟

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑊ℎ′ +𝐵ℎ′𝐾𝑖𝐷ℎ′

0

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦
, 𝑖𝑗ℎ′ =

⎡
⎢
⎢
⎣

𝑖𝑗ℎ′ ,1 0

0 𝑖𝑗ℎ′ ,2

⎤
⎥
⎥
⎦
,

𝐷̂ℎ′ = [[𝐶ℎ′ 0] 𝐷ℎ′] , 𝐵̂𝑟𝑖𝑗 =
⎡
⎢
⎢
⎣

0

−𝐵𝑟𝑖𝑗

⎤
⎥
⎥
⎦
, and Ξ𝑖𝑗ℎ′ = 𝛼𝑖𝑗ℎ′ +𝛼⊤𝑖𝑗ℎ′ −𝛼

2
⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 0

∗ 𝐼

⎤
⎥
⎥
⎦
.

Proof. The proof is provided in Section 4.1. □

It is worth pointing out that the linear approximation (2.19) provides a sufficient
condition for the nonlinear matrix inequality in (2.18d). This means that any feasible
solution to (2.19) is necessarily a feasible solution to the nonlinear constraint.

Furthermore, we provide necessary and sufficient conditions for the feasibility of the
optimization problem (2.18) in the following proposition. Here, the rank and eigenvalues
of a matrix 𝐴 are denoted by Rank(𝐴) and Λ(𝐴), resp.

Proposition 2.3.3 (Optimal bank of filters: feasibility). The optimization problem (2.18) is
feasible if and only if the following conditions are satisfied:

(𝑑𝑁 +1)(𝑛𝑥 +𝑛𝑦) > Rank(𝐻̄𝑖𝑗) , (2.20a)
Rank([𝐻̄𝑖𝑗 𝑖ℎ′]) > Rank(𝐻̄𝑖𝑗) , (2.20b)
|Λ(𝐴𝑟 )| < 1, |Λ(𝐴𝑐𝑙𝑖ℎ′)| < 1, (i.e., 𝐴𝑟 and 𝐴𝑐𝑙𝑖ℎ′ are stable). (2.20c)

Proof. The proof is provided in Section 2.4.1. □
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Note that the inequality (2.20a) provides a way to find the minimum filter order 𝑑𝑁 .
According to (2.20c), |Λ(𝐴𝑐𝑙𝑖ℎ′)| < 1 ensures that (2.18d) is feasible. However, 𝐴𝑐𝑙𝑖ℎ′ could be
unstable because the mode and the controller are unmatched. Hence, the constraints
in (2.18d) with unstable 𝐴𝑐𝑙𝑖ℎ′ should be excluded. Since the unmatched residuals of those
unstable modes diverge from zero, removing those constraints does not affect the mode
detection task.

Remark 2.3.4 (Observability). The conditions (2.20a) and (2.20b) are related to the observ-
ability of switched affine systems theoretically [109]. In particular, the mode can be determined
deterministically without noise if the two conditions are satisfied. Also, observability of each
mode is not necessary, which is consistent with the result in [109, Theorem 8].

We close this section with the following remark on different sources of conservatism
for the proposed filter design:

Remark 2.3.5 (Conservatism analysis). The conservatism of the proposed approximate
solution stems from three different sources:
(i) Reference signal dimension: We only focus on one-dimensional reference signals, but instead,

we do not require any further prior assumptions on their values. As shown in [119], this
restriction is inevitable when the filter residual is one-dimensional since different elements
of a multi-dimensional reference signal may cancel out each other’s contributions;

(ii) Filters denominator: To simplify the design, the filters denominator 𝑎(q) are all fixed, which
reduces design freedom;

(iii) Non-convexity: The exact reformulation of Problem 1 is a non-convex optimization problem
(Theorem 2.3.1), for which we propose a safe convex approximation (Proposition 2.3.2).

2.3.2 Performance Certificates
With the filters designed by using (2.18), we now determine the threshold 𝜀𝑖 and waiting
time 𝜏𝑗 to ensure proper detection task governed by (2.8). Considering the stochastic
measurement noise 𝜔, we resort to the probabilistic guarantees depicted in (2.9). Let us
introduce the following lemma and assumption.

Lemma 2.3.6 (Sub-Gaussian concentration [120, Proposition 2.5.2]). Let𝜔 be anℝ𝑛𝜔 -valued
sub-Gaussian random vector with positive parameter 𝜆𝜔, i.e., 𝐄[e𝜙𝜈

⊤(𝜔−𝐄[𝜔])] ≤ e𝜆2𝜔𝜙2/2 for
all 𝜙 ∈ ℝ and 𝜈 ∈ ℝ𝑛𝜔 where ‖𝜈‖2 = 1. Then, we have

𝐏𝐫[‖𝜔−𝐄[𝜔]‖∞ ≤ 𝜀] ≥ 1−2𝑛𝜔 e−𝜀
2/(2𝜆𝜔2), ∀𝜀 ∈ ℝ+. (2.21)

Assumption 2.3.7 (Sub-Gaussian noise). The measurement noise 𝜔 is an iid sub-Gaussian
signal with zero mean and parameter 𝜆𝜔 ∈ ℝ+ as defined in Lemma 2.3.6.

From (2.21), the tails of sub-Gaussian distributions decay exponentially. Moreover,
the class of sub-Gaussian distributions is broad, containing Gaussian, Bernoulli, and all
bounded distributions. In the following results, the noise is assumed to be sub-Gaussian.
To improve readability, we further introduce several notations. Let the polynomial row
vector 𝑁𝑖𝑗 (q) ∶= [𝑁̂𝑖𝑗 (q) 𝑁̌𝑖𝑗 (q)], where 𝑁̂𝑖𝑗 (q) and 𝑁̌𝑖𝑗 (q) have dimensions 𝑛𝑥 and 𝑛𝑦 , resp.
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Figure 2.3: Estimated matched time.

Define 𝜌max ∶=max𝑚∈{1,…,𝑑𝑁+1} |𝜌𝑚|, where 𝜌𝑚 is a root of 𝑎(q) defined in (2.13). These roots
are chosen to be distinct, i.e., 𝜌𝑚 ≠ 𝜌𝑛 for𝑚≠ 𝑛. The following theorem provides conditions
for the probabilistic performance certificates.

Theorem 2.3.8 (Probabilistic performance certificates). Suppose Assumption 2.3.7 holds and
the dwell time is large enough. Consider the closed-loop dynamics (2.1)-(2.2) and the filter 𝔽𝑖𝑗
with the poles 𝜌𝑚, 𝑚 ∈ {1,…,𝑑𝑁+1}, and the numerator designed by using (2.18) with the
corresponding optimal solutions 𝜂∗𝑖𝑗𝑗 . Given a reliability level 𝛽 ∈ (0,1] and a constant 𝜇 ∈ ℝ+,
the probabilistic performance (2.9) in Problem 2 is satisfied, if the threshold 𝜀𝑖 is set as

𝜀𝑖 = (𝜇+𝜆𝜔
√
2ln(2/𝛽))

√
𝜂̄𝑖, 𝜂̄𝑖 = max

𝑗∈
𝜂∗𝑖𝑗𝑗 , (2.22)

and the estimated matched time 𝑇𝑖𝑗 equals to

𝑇𝑖𝑗 = ⌈
log(𝜓𝑖𝑗 (𝔽𝑖𝑗 ,𝑖𝑗 (𝑡𝑠))/(𝜇

√
𝜂̄𝑖))

log𝜌−1max ⌉
, (2.23)

where 𝜓𝑖𝑗 (𝔽𝑖𝑗 ,𝑖𝑗 (𝑡𝑠)) =
√
𝑑𝑁 +1(1+𝜌−1max‖𝐵̄𝑖𝑗 ‖2)

‖‖‖𝐄[𝑖𝑗 (𝑡𝑠)]
‖‖‖2. The matrix 𝐵̄𝑖𝑗 is defined as

𝐵̄𝑖𝑗 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑏𝑖𝑗 ,11 … 𝑏𝑖𝑗 ,1𝑛𝑥
⋮ ⋱ ⋮

𝑏𝑖𝑗 ,(𝑑𝑁+1)1 … 𝑏𝑖𝑗 ,(𝑑𝑁+1)𝑛𝑥

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝑏𝑖𝑗 ,𝓁ℎ = −∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(ℎ)𝜌𝑚𝓁 /(∏𝓁̃≠𝓁(𝜌𝓁̃−𝜌𝓁)) for ℎ ∈ {1,…,𝑛𝑥 }, 𝓁, 𝓁̃ ∈ {1,…,𝑑𝑁 + 1},

and 𝑁̂𝑖𝑗 ,𝑚(ℎ) denotes the ℎ-th element of 𝑁̂𝑖𝑗 ,𝑚.

Proof. The proof is provided in Section 2.4.2. □

The estimated matched time 𝑇𝑖𝑗 in (2.23) is actually an upper bound for the time
that |𝐄[𝑟𝑖𝑗 ]| takes to arrive at 𝜇√𝜂̄𝑖 after transition happens (as shown in Figure 2.3). Then,
we set the confidence interval according to 𝛽, such that 𝜀𝑖 is determined.

Remark 2.3.9 (Threshold vs estimated matched time trade-off). There is a trade-off in
selecting 𝜇 and 𝛽 in (2.22): A smaller threshold 𝜀𝑖 provides high guarantees on excluding the
unmatched residuals. We can decrease 𝜀𝑖 with smaller 𝜇 or larger 𝛽 from (2.22). However, a
smaller 𝜇 can lead to a more conservative estimated matched time 𝑇𝑖𝑗 from (2.23). Also, a
larger 𝛽 increases the chance of false isolation.
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Remark 2.3.10 (Comparison with Chebyshev based bounds). We highlight that the thresh-
old (2.22) depends logarithmically on the reliability parameter, i.e.,

√
ln(2/𝛽). This is a

significant improvement in comparison with the results based on Chebyshev’s inequality
(e.g., [117, Section III.B]) in which the threshold scales polynomially by the factor

√
1/𝛽.

As a special case of 𝑇𝑖𝑗 in Theorem 2.3.8, the waiting time 𝜏𝑗 can be determined by

𝜏𝑗 = ⌈
log(𝜓𝑗𝑗 (𝔽𝑗𝑗 ,𝑗𝑗 (𝑡 iso𝑠 ))/(𝜇

√
𝜂̄𝑗))

log𝜌−1max ⌉
, (2.24)

where 𝜓𝑗𝑗 (𝔽𝑗𝑗 ,𝑗𝑗 (𝑡iso𝑠 )) =
√
𝑑𝑁 +1(1+𝜌−1max‖𝐵̄𝑗𝑗 ‖2)

‖‖‖𝐄[𝑗𝑗 (𝑡
iso
𝑠 )]

‖‖‖2.
Observe that the expected values of 𝑖𝑗 (𝑡𝑠) and 𝑗𝑗 (𝑡 iso𝑠 ) are required in (2.23) and (2.24).

Recall that we assume that the dwell time is large enough and the system can reach the
steady state before the next transition. The constant reference signal 𝑑 is considered
during the dwell time, i.e., 𝑑(𝑘) = 𝑑̄ for 𝑘 ∈ [𝑡𝑠 , 𝑡𝑠+1). Then, 𝐄[𝑖𝑗 (𝑡𝑠)] can be estimated by its
steady-state value 𝐄[𝑖𝑗 (𝑡𝑠)] = (𝐼 −𝑖𝑗 𝑖)

−1𝑖𝑑̄. For 𝐄[𝑗𝑗 (𝑡 iso𝑠 )], since the actual diagnosis
time is a random value, we first compute the steady-state value of 𝐄[𝑗𝑗 (𝑡𝑠)]. Then,
according to the dynamics (2.17), we compute max𝑖∈ ‖𝐄[𝑗𝑗 (𝑡𝑠 +𝑇𝑖𝑗 )] ‖2 as a conservative
estimate of ‖𝐄[𝑗𝑗 (𝑡 iso𝑠 )]‖2.

According to the diagnosis rule (2.8), one still needs to let the unmatched residuals
be outside the threshold interval. Suppose the status is 𝑆𝑖𝑗 . Inspired by the active fault
diagnosis method [114], we can design the reference signal 𝑑 such that the unmatched
residuals 𝑟𝑖ℎ′ for ℎ′ ∈ ⧵ {𝑗} satisfy |𝐄[𝑟𝑖ℎ′]| ≥ 𝜀𝑖+𝜇̄

√
𝜂̄𝑖 in the steady state, where 𝜇̄ ∈ ℝ+ is

a constant. From the closed-loop dynamics (2.10) and (2.14), the expected value of 𝑟𝑖ℎ′ can
be written as

𝐄[𝑟𝑖ℎ′] =
𝑁𝑖ℎ′(q)𝐿(q)

𝑎(q)
𝐶𝑗 (q𝐼 −𝐴𝑐𝑙𝑖𝑗)

−1𝐸𝑗 𝑑̄. (2.25)

According to (2.25), the requirement |𝐄[𝑟𝑖ℎ′]| ≥ 𝜀𝑖+ 𝜇̄
√
𝜂̄𝑖 is equivalent to choosing 𝑑̄ such

that

||𝑎
−1(1)𝑁̄𝑖ℎ′𝑖𝑗 𝑑̄|| ≥ 𝜀𝑖+ 𝜇̄

√
𝜂̄𝑖. (2.26)

In the light of Lemma 2.3.6, we have |𝑟𝑖ℎ′ | > 𝜀𝑖 with guaranteed probability in the steady
state if (2.26) is satisfied.

Remark 2.3.11 (Regularities on the reference input). When designing the filters and
thresholds, the value of the reference signal is not necessary. However, this value is required
when computing the estimated matched time 𝑇𝑖𝑗 . Moreover, in order to separate the residuals
of different modes in the presence of noise, the reference signal 𝑑̄ should satisfy (2.26). Such
constraint is not novel in the distinguishability problem for switched affine systems [121]. This
also can be interpreted as the persistence of excitation.

Remark 2.3.12 (Extension to nonlinear switched systems). There are several ways to extend
the proposed diagnosis method to nonlinear systems. The most straightforward approach is to
linearize each subsystem at the operating point and decouple the disturbances together with
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the higher-order nonlinear terms. However, linearization is only applicable to systems with
a narrow operating range, and it is impossible to completely decouple the nonlinear terms
in practice. One can leverage the idea from [53], where the authors robustify the filter to
the nonlinearity signatures by exploiting the statistical properties of the disturbance signals.
Another option is to use polynomials to approximate the nonlinear terms [122]. Thus, when
formulating the residual generator, it becomes possible to integrate the approximation of
nonlinear terms into the objective function. This integration serves to mitigate the impact of
these nonlinear elements on the residuals.

2.4 Technical Proofs of Main Results
This section presents the technical proofs of the theoretical results in Section 2.3.

2.4.1 Proofs of Results in Filter Design
Let us start with two lemmas required for the proof of Theorem 2.3.1.

Lemma 2.4.1. (Multiplication of polynomial matrices [53, Section III-A]) Let 𝑄1(q) and 𝑄2(q)
be polynomial matrices of degree 𝑑1 and 𝑑2, resp., and defined by

𝑄1(q) =
𝑑1
∑
𝑚=0

𝑄1,𝑚q
𝑚, 𝑄2(q) =

𝑑2
∑
𝑚=0

𝑄2,𝑚q
𝑚,

where 𝑄1,𝑚 ∈ ℝ𝑛1×𝑛2 and 𝑄2,𝑚 ∈ ℝ𝑛2×𝑛3 are the matrices of constant coefficients. The multipli-
cation of 𝑄1(q) and 𝑄2(q) is equivalent to

𝑄1(q)𝑄2(q) = 𝑄̄1𝑄̄2 [𝐼 q𝐼 … q𝑑1+𝑑2 𝐼]
⊤ ,

where 𝑄̄1 = [𝑄1,0 𝑄1,1 … 𝑄1,𝑑1] and

𝑄̄2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑄2,0 𝑄2,1 … 𝑄2,𝑑2 0 … 0

0 𝑄2,0 𝑄2,1 … 𝑄2,𝑑2 0 ⋮

⋮ ⋱ ⋱ ⋱ 0

0 0 … 𝑄2,0 𝑄2,1 … 𝑄2,𝑑2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The following lemma is a slight modification of the standard result concerning the 2
norm of the stable LTI systems.

Lemma 2.4.2. (2 norm [123, Lemma 1]) Consider the linear transfer function 𝕋(q) =
𝐶(q𝐼 −𝐴)−1𝐵. For any constant 𝜂, the system is stable and ‖𝕋(q)‖22 < 𝜂 if and only if for all
sufficiently small 𝜗 ∈ ℝ+, there exist 𝑃, 𝑍 ∈  such that the following LMIs are feasible:

⎡
⎢
⎢
⎢
⎢
⎣

𝑃 𝐴𝑃 𝐵

∗ 𝑃 0

∗ ∗ 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 ,
⎡
⎢
⎢
⎣

𝑍 𝐶𝑃

∗ 𝑃

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 , Trace(𝑍) ≤ 𝜂−𝜗.
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Proof of Theorem 2.3.1. First, we show that the equality (2.18a) guarantees the satisfaction
of the property (2.4a). According to Lemma 2.4.1, it holds that

𝑁𝑖𝑗 (q)𝐻𝑖𝑗 (q) = 𝑁̄𝑖𝑗 𝐻̄𝑖𝑗 [𝐼 q𝐼 … q𝑑𝑁+1𝐼]
⊤ .

Hence, (2.18a) implies that 𝑁𝑖𝑗 (q)𝐻𝑖𝑗 (q) = 0. The contribution of 𝑑 to 𝑟𝑖𝑗 is completely
canceled when the status is 𝑆𝑖𝑗 (ℎ = 𝑗 in (2.14)). This concludes the first part of the proof.

In the second part of the proof, we show that the constraint (2.18b) implies the satis-
faction of the property (2.4b). Suppose the status is 𝑆𝑖ℎ′ for ℎ′ ∈ ⧵ {𝑗}. According to the
closed-loop dynamics (2.10), we have

𝑦 = 𝐶ℎ′ (q𝐼 −𝐴𝑐𝑙𝑖ℎ′)
−1 𝐸ℎ′ [𝑑]+[𝐶ℎ′ (q𝐼 −𝐴

𝑐𝑙
𝑖ℎ′)

−1 (𝑊ℎ′ +𝐵ℎ′𝐾𝑖𝐷ℎ′ )+𝐷ℎ′][𝜔].

By virtue of (2.14) and the expression of 𝑦, the transfer function from 𝑑 to 𝑟𝑖𝑗 can be written
as

𝔽𝑖𝑗𝕋
𝑆𝑖ℎ′
𝑑𝑦 (q) = 𝑎−1(q)𝑁𝑖𝑗 (q)𝐿(q)𝐶ℎ′ (q𝐼 −𝐴𝑐𝑙𝑖ℎ′)

−1𝐸ℎ′

= 𝑎−1(q)𝑁̄𝑖𝑗 𝐿̄ [𝐼 q𝐼 … q𝑑𝑁 𝐼]
⊤𝐶ℎ′ (q𝐼 −𝐴𝑐𝑙𝑖ℎ′)

−1𝐸ℎ′ ,

where Lemma 2.4.1 is used in the second equality. Then, we enforce the absolute value of
the steady-state gain of 𝔽𝑖𝑗𝕋

𝑆𝑖ℎ′
𝑑𝑦 to be larger than or equal to 1, which is

|||[𝔽𝑖𝑗𝕋
𝑆𝑖ℎ′
𝑑𝑦 ]𝑠𝑠

||| =
||𝑎
−1(1)𝑁̄𝑖𝑗𝑖ℎ′ || ≥ 1.

This concludes the second part of the proof.
In the third part, we show that the inequalities (2.18c) and (2.18d) enforce the desired

property (2.4c). When the status is 𝑆𝑖𝑗 , as shown in (2.14), the transfer function from 𝜔
to 𝑟𝑖𝑗 becomes

𝔽𝑖𝑗𝕋
𝑆𝑖𝑗
𝜔𝑦(q) = −𝑎−1(q)𝑁𝑖𝑗 (q)𝐺𝑖𝑗 (q), (2.27)

where [𝑥⊤ 𝑑⊤]⊤ is decoupled by (2.4a). Let (𝐴𝑟 ,𝑖𝑗 ,𝐶𝑟 ) be the observable canonical re-
alization of (2.27), whose derivation process is similar to that of (2.16). According to
Lemma 2.4.2, the inequalities (2.18c) imply ‖‖‖𝔽𝑖𝑗𝕋

𝑆𝑖𝑗
𝜔𝑦
‖‖‖
2

2
< 𝜂𝑖𝑗𝑗 directly. Note that the slack

variable 𝑍 shown in Lemma 2.4.2 has one dimension in this problem, thus the third in-
equality is dropped. When the status is 𝑆𝑖ℎ′ for ℎ′ ∈ ⧵ {𝑗}, the transfer function from 𝜔
to 𝑟𝑖𝑗 can be obtained from (2.17). Again, according to Lemma 2.4.2, the inequalities (2.18d)
imply ‖‖‖𝔽𝑖𝑗𝕋

𝑆𝑖ℎ′
𝜔𝑦

‖‖‖
2

2
< 𝜂𝑖𝑗ℎ′ . Then, we take the sum of 𝜂𝑖𝑗ℎ for all ℎ ∈  as the objective

function to minimize the effect of 𝜔 on 𝑟𝑖𝑗 . This completes the proof. □

Proof of Proposition 2.3.2. This proof is to show that (2.19) ensures the satisfaction of the
nonlinear matrix inequality in (2.18d). By applying Schur complement to (2.19), we have

⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝐴̂𝑖ℎ′𝑖𝑗ℎ′

∗ Ξ𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

𝐵̂𝑟𝑖𝑗 0

∗ (𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝛾𝐼 0

∗ 1
𝛾 𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐵̂⊤𝑟𝑖𝑗 0

∗ 𝐷̂ℎ′𝑖𝑗ℎ′

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝐴̂𝑖ℎ′𝑖𝑗ℎ′

∗ Ξ𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
− 𝛾

⎡
⎢
⎢
⎣

𝐵̂𝑟𝑖𝑗
0

⎤
⎥
⎥
⎦
[𝐵̂

⊤
𝑟𝑖𝑗 0]−

1
𝛾

⎡
⎢
⎢
⎣

0

(𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

⎤
⎥
⎥
⎦
[0 𝐷̂ℎ′𝑖𝑗ℎ′] ⪰ 𝜗𝐼 . (2.28)
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Note that, for matrices 𝐴,𝐵 with appropriate dimensions and any scalar 𝛾 > 0, it holds
that 𝛾𝐴𝐴⊤+ 1

𝛾 𝐵
⊤𝐵 ⪰ 𝐴𝐵+𝐵⊤𝐴⊤ [118, Lemma 1]. We have

−
⎡
⎢
⎢
⎣

𝐵̂𝑟𝑖𝑗
0

⎤
⎥
⎥
⎦
[0 𝐷̂ℎ′𝑖𝑗ℎ′]−

⎡
⎢
⎢
⎣

0

(𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

⎤
⎥
⎥
⎦
[𝐵̂

⊤
𝑟𝑖𝑗 0]

⪰−𝛾
⎡
⎢
⎢
⎣

𝐵̂𝑟𝑖𝑗
0

⎤
⎥
⎥
⎦
[𝐵̂

⊤
𝑟𝑖𝑗 0]−

1
𝛾

⎡
⎢
⎢
⎣

0

(𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

⎤
⎥
⎥
⎦
[0 𝐷̂ℎ′𝑖𝑗ℎ′] .

Thus, the inequality (2.28) can be written as

⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝐴̂𝑖ℎ′𝑖𝑗ℎ′

∗ Ξ𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

𝐵̂𝑟𝑖𝑗
0

⎤
⎥
⎥
⎦
[0 𝐷̂ℎ′𝑖𝑗ℎ′]−

⎡
⎢
⎢
⎣

0

(𝐷̂ℎ′𝑖𝑗ℎ′)
⊤

⎤
⎥
⎥
⎦
[𝐵̂

⊤
𝑟𝑖𝑗 0]

=
⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝐴̂𝑖ℎ′𝑖𝑗ℎ′ −𝐵̂𝑟𝑖𝑗 𝐷̂ℎ′𝑖𝑗ℎ′

∗ Ξ𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 . (2.29)

Expanding 𝐴̂𝑖ℎ′𝑖𝑗ℎ′ −𝐵̂𝑟𝑖𝑗 𝐷̂ℎ′𝑖𝑗ℎ′ leads to

⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

𝐴𝑐𝑙𝑖ℎ′ 0

0 𝐴𝑟

⎤
⎥
⎥
⎦
𝑖𝑗ℎ′ ,1

⎡
⎢
⎢
⎣

𝑊ℎ′ +𝐵ℎ′𝐾𝑖𝐷ℎ′

0

⎤
⎥
⎥
⎦
𝑖𝑗ℎ′ ,2

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

0

−𝐵𝑟𝑖𝑗

⎤
⎥
⎥
⎦
[𝐶ℎ′ 0]𝑖𝑗ℎ′ ,1

⎡
⎢
⎢
⎣

0

−𝐵𝑟𝑖𝑗

⎤
⎥
⎥
⎦
𝐷ℎ′𝑖𝑗ℎ′ ,2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

𝐴𝑐𝑙𝑖ℎ′ 0

𝐵𝑟𝑖𝑗𝐶ℎ′ 𝐴𝑟

⎤
⎥
⎥
⎦
𝑖𝑗ℎ′ ,1

⎡
⎢
⎢
⎣

𝑊ℎ′ +𝐵ℎ′𝐾𝑖𝐷ℎ′

𝐵𝑟𝑖𝑗𝐷ℎ′

⎤
⎥
⎥
⎦
𝑖𝑗ℎ′ ,2

⎤
⎥
⎥
⎦

=[𝑖𝑗ℎ′ 𝑖𝑗ℎ′]𝑖𝑗ℎ′ . (2.30)

From (2.30), the inequality (2.29) is equivalent to

⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ [𝑖𝑗ℎ′ 𝑖𝑗ℎ′]𝑖𝑗ℎ′

∗ Ξ𝑖𝑗ℎ′

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 . (2.31)

For a scalar 𝛼 ∈ ℝ, matrices 𝐴,𝐵 with appropriate dimensions, and 𝐴 ≻ 0, note that (𝐵−
𝛼𝐴)⊤𝐴−1(𝐵−𝛼𝐴) ⪰ 0 implies 𝐵⊤𝐴−1𝐵 ⪰ 𝛼𝐵+𝛼𝐵⊤−𝛼2𝐴. Thus, we have

𝑖𝑗ℎ′⊤
⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 0

∗ 𝐼

⎤
⎥
⎥
⎦

−1

𝑖𝑗ℎ′ ⪰ Ξ𝑖𝑗ℎ′ . (2.32)

By combining (2.31) and (2.32), we obtain

⎡
⎢
⎢
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ [𝑖𝑗ℎ′ 𝑖𝑗ℎ′]𝑖𝑗ℎ′

∗ 𝑖𝑗ℎ′⊤
⎡
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 0

∗ 𝐼

⎤
⎥
⎥
⎦

−1

𝑖𝑗ℎ′

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 . (2.33)
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Pre- and post-multiplying (2.33) by diag(𝐼 ,𝑖𝑗ℎ′−⊤) and diag(𝐼 ,𝑃𝑖𝑗ℎ′ , 𝐼 ) and their transpose
successively, we arrive at

⎡
⎢
⎢
⎢
⎢
⎣

𝑃𝑖𝑗ℎ′ 𝑖𝑗ℎ′𝑃𝑖𝑗ℎ′ 𝑖𝑗ℎ′

∗ 𝑃𝑖𝑗ℎ′ 0

∗ ∗ 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 .

This completes the proof. □

Proof of Proposition 2.3.3. We first show that the inequality (2.20a) is a necessary and suffi-
cient condition for the constraint (2.18a) having non-trivial solutions. According to Rank
Plus Nullity Theorem [124, Chapter 4], it holds that

(𝑑𝑁 +1)(𝑛𝑥 +𝑛𝑦) = Rank(𝐻̄𝑖𝑗)+Null(𝐻̄𝑖𝑗) ,

where Null(𝐻̄𝑖𝑗) denotes the dimension of the left null space of 𝐻̄𝑖𝑗 . Thus, (2.18a) having
non-trivial solutions is equivalent to Null(𝐻̄𝑖𝑗) being nonzero. This concludes the first
part of the proof.

Second, we show that (2.20b) is equivalent to (2.18b) when (2.20a) holds. (⇒) We
proceed with the proof by contradiction. Suppose that (2.18b) holds but (2.20b) is not
satisfied, we have Rank([𝐻̄𝑖𝑗 𝑖ℎ′]) = Rank(𝐻̄𝑖𝑗). This means that 𝑖ℎ′ belongs to the
column range space of 𝐻̄𝑖𝑗 . In other words, there exists a vector 𝜉 ∈ ℝ(𝑛𝑥+𝑛𝑑)(𝑑𝑁+2), such
that 𝑖ℎ′ = 𝐻̄𝑖𝑗𝜉 . Since 𝑁̄𝑖𝑗 satisfying 𝑁̄𝑖𝑗 𝐻̄𝑖𝑗 = 0, we have 𝑁̄𝑖𝑗𝑖ℎ′ = 𝑁̄𝑖𝑗 𝐻̄𝑖𝑗𝜉 = 0, which
contradicts to (2.18b). (⇐) Assume that (2.20b) holds. This means that the left null space
of 𝐻̄𝑖𝑗 and 𝑖ℎ′ are not the same. Thus, one can find a 𝑁̄𝑖𝑗 which satisfies (2.18a) and (2.18b)
at the same time. This completes the second part of the proof.

Finally, it is known from Lemma 2.4.2 that |Λ(𝐴𝑟 )| < 1, and |Λ(𝑖𝑗ℎ′)| < 1 are necessary
and sufficient conditions for the feasibility of (2.18c) and (2.18d), resp. Recalling the
definition of 𝑖𝑗ℎ′ in (2.17), |Λ(𝑖𝑗ℎ′)| < 1 if and only if |Λ(𝐴𝑟 )| < 1 and |Λ(𝐴𝑐𝑙𝑖ℎ′)| < 1. This
completes the proof. □

2.4.2 Proofs of Probabilistic Certificates
We introduce the following lemma to be used to prove Theorem 2.3.8.

Lemma 2.4.3 (Linear transformation of sub-Gaussian signals). Suppose 𝕋𝜔𝑟 is a transfer
function from 𝜔 to 𝑟 with the state-space realization (𝐴,𝐵,𝐶), i.e., 𝑟 = 𝕋𝜔𝑟 [𝜔] = 𝐶(q𝐼 −
𝐴)−1𝐵[𝜔]. If the input 𝜔 is an iid sub-Gaussian signal with zero mean and parameter 𝜆𝜔, the
output 𝑟 is also sub-Gaussian with zero mean and the respective parameter 𝜆𝑟 = ‖𝕋𝜔𝑟 ‖2𝜆𝜔.

Proof. From the linear system theory we know that 𝑟(𝑘)−𝐄[𝑟(𝑘)] = 𝐶∑𝑘−1
𝑚=0𝐴𝑘−1−𝑚𝐵𝜔(𝑚).

Then, for any constant 𝜙 ∈ ℝ and a unit vector 𝜈 with an appropriate dimension, we have

𝐄[e
𝜙𝜈⊤(𝑟(𝑘)−𝐄[𝑟(𝑘)])

] = 𝐄[e
𝜙𝜈⊤𝐶∑𝑘−1

𝑚=0𝐴𝑘−1−𝑚𝐵𝜔(𝑚)
]

=
𝑘−1
∏
𝑚=0

𝐄[e
𝜙𝜈⊤𝐶𝐴𝑘−1−𝑚𝐵𝜔(𝑚)

] . (2.34)
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Since 𝜔 is sub-Gaussian, according to Lemma 2.3.6, it holds that

𝐄[e
𝜙𝜈⊤𝐶𝐴𝑘−1−𝑚𝐵𝜔(𝑚)

] ≤ e𝜙
2‖𝜈⊤‖22‖𝐶𝐴

𝑘−1−𝑚𝐵‖22𝜆
2
𝜔/2.

Recall that ‖𝑣‖2 = 1. Thus, equality (2.34) satisfies

𝐄[e
𝜙𝜈⊤(𝑟(𝑘)−𝐄[𝑟(𝑘)])

] ≤
𝑘−1
∏
𝑚=0

e𝜙
2‖𝐶𝐴𝑘−1−𝑚𝐵‖22𝜆

2
𝜔/2 = e𝜙

2∑𝑘−1
𝑚=0 ‖𝐶𝐴𝑘−1−𝑚𝐵‖22𝜆

2
𝜔/2.

By matrix norm definitions, we know ‖𝐴‖22 ≤ Trace(𝐴⊤𝐴) for all real-valued matrix 𝐴, and,
thus,

𝐄[e
𝜙𝜈⊤(𝑟(𝑘)−𝐄[𝑟(𝑘)])

] ≤ e𝜙
2∑𝑘−1

𝑚=0Trace(𝐶𝐴
𝑘−1−𝑚𝐵𝐵⊤𝐴⊤𝑘−1−𝑚𝐶⊤)𝜆

2
𝜔/2

≤ e𝜙
2‖𝕋𝜔𝑟 ‖22

𝜆2𝜔/2,

where the last inequality follows from Parseval’s Theorem and the2 norm definition. □

Proof of Theorem 2.3.8. The main idea builds on the probabilistic relation between the con-
centration of a random variable and its expectation. Since the noise 𝜔 is sub-Gaussian,
according to Lemma 2.4.3, the matched residual 𝑟𝑖𝑗 is also sub-Gaussian with the parame-
ter 𝜆𝑟𝑖𝑗 =

‖‖‖𝕋
𝑆𝑖𝑗
𝜔𝑟𝑖𝑗

‖‖‖2
𝜆𝜔 <

√
𝜂̄𝑖𝜆𝜔. We first show that the performance guarantee (2.9) holds

when |𝐄[𝑟𝑖𝑗 (𝑘)]| ≤ 𝜇
√
𝜂̄𝑖. According to (2.22), we have

𝜀𝑖− ||𝐄[𝑟𝑖𝑗 (𝑘)]|| ≥ 𝜀𝑖−𝜇
√
𝜂̄𝑖 = 𝜆𝜔

√
2ln(2/𝛽)𝜂̄𝑖.

Since it also holds that ||𝑟𝑖𝑗 (𝑘)|| − ||𝐄[𝑟𝑖𝑗 (𝑘)]|| ≤ ||𝑟𝑖𝑗 (𝑘)−𝐄[𝑟𝑖𝑗 (𝑘)]||, we have

𝐏𝐫
⎡
⎢
⎢
⎣

||𝑟𝑖𝑗 (𝑘)|| ≤ 𝜀𝑖
|||

⎡
⎢
⎢
⎣

𝜎̂(𝑘)

𝜎(𝑘)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑖

𝑗

⎤
⎥
⎥
⎦
,𝑘 ≥ 𝑡𝑠

⎤
⎥
⎥
⎦

=𝐏𝐫
⎡
⎢
⎢
⎣

||𝑟𝑖𝑗 (𝑘)|| − ||𝐄[𝑟𝑖𝑗 (𝑘)]|| ≤ 𝜀𝑖− ||𝐄[𝑟𝑖𝑗 (𝑘)]||
|||

⎡
⎢
⎢
⎣

𝜎̂(𝑘)

𝜎(𝑘)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑖

𝑗

⎤
⎥
⎥
⎦
,𝑘 ≥ 𝑡𝑠

⎤
⎥
⎥
⎦

≥𝐏𝐫
⎡
⎢
⎢
⎣

||𝑟𝑖𝑗 (𝑘)−𝐄[𝑟𝑖𝑗 (𝑘)]|| ≤ 𝜆𝜔
√
2ln(2/𝛽)𝜂̄𝑖

|||

⎡
⎢
⎢
⎣

𝜎̂(𝑘)

𝜎(𝑘)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑖

𝑗

⎤
⎥
⎥
⎦
,𝑘 ≥ 𝑡𝑠

⎤
⎥
⎥
⎦

≥1−2e−2ln(2/𝛽)𝜂̄𝑖𝜆
2
𝜔/(2‖𝕋

𝑆𝑖𝑗
𝜔𝑟𝑖𝑗 ‖

2
2

𝜆2𝜔) ≥ 1−𝛽,

where the concentration inequality (2.21) in Lemma 2.3.6 is used to get the second inequality.
This completes the first part of the proof.

Next, we show that |𝐄[𝑟𝑖𝑗 (𝑘)]| ≤ 𝜇
√
𝜂̄𝑖 when 𝑘 ≥ 𝑡𝑠 +𝑇𝑖𝑗 . Let us incorporate the initial

state 𝑥(𝑡𝑠) into the expression of 𝐄[𝑟𝑖𝑗 (𝑘)], where 𝑥(𝑡𝑠) is viewed as an input to the system
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that only has a nonzero value at 𝑡𝑠 . According to the closed-loop dynamics (2.10), for 𝑘 =
𝑡𝑠 +Δ𝑘 where Δ𝑘 ∈ [0, 𝑡 iso𝑠 ), we have

𝑥(𝑘 +1) = 𝐴𝑐𝑙𝑖𝑗𝑥(𝑘)+𝐸𝑗𝑑(𝑘)+ (𝑊𝑗 +𝐵𝑗𝐾𝑖𝐷𝑗 )𝜔(𝑘)+𝑥(𝑡𝑠),

𝑦(𝑘) = 𝐶𝑗𝑥(𝑘)+𝐷𝑗𝜔(𝑘). (2.35)

We reformulate (2.35) into the DAE format, which is

⎡
⎢
⎢
⎣

−q𝐼 +𝐴𝑐𝑙𝑖𝑗 𝐸𝑗 𝐼

𝐶𝑗 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑥

𝑑

𝑥(𝑡𝑠)

⎤
⎥
⎥
⎥
⎥
⎦

+𝐿(q)[𝑦]+𝐺𝑖𝑗 (q)[𝜔] = 0. (2.36)

Multiplying the left hand-side of (2.36) by 𝑎−1(q)𝑁𝑖𝑗 (q) leads to

𝑟𝑖𝑗 =
𝑁𝑖𝑗 (q)𝐿(q)

𝑎(q)
[𝑦]

= −
𝑁𝑖𝑗 (q)
𝑎(q)

⎡
⎢
⎢
⎣

−q𝐼 +𝐴𝑐𝑙𝑖𝑗 𝐸𝑗 𝐼

𝐶𝑗 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑥

𝑑

𝑥(𝑡𝑠)

⎤
⎥
⎥
⎥
⎥
⎦

−
𝑁𝑖𝑗 (q)𝐺𝑖𝑗 (q)

𝑎(q)
[𝜔].

(2.37)

Recall that 𝑁𝑖𝑗 (q)𝐻𝑖𝑗 (q) = 0 in Theorem 2.3.1. By substituting 𝑁𝑖𝑗 (q) = [𝑁̂𝑖𝑗 (q) 𝑁̌𝑖𝑗 (q)]
into (2.37), we have

𝑟𝑖𝑗 = −
𝑁̂𝑖𝑗 (q)
𝑎(q)

𝑥(𝑡𝑠)−
𝑁𝑖𝑗 (q)𝐺𝑖𝑗 (q)

𝑎(q)
[𝜔].

Hence, the expected value of 𝑟𝑖𝑗 is

𝐄[𝑟𝑖𝑗 ] = −𝑎−1(q)𝑁̂𝑖𝑗 (q)𝐄[𝑥(𝑡𝑠)].

To compute 𝑇𝑖𝑗 , following the idea of [125, Lemma 3.4], we transform −𝑎−1(q)𝑁̂𝑖𝑗 (q) to
its Jordan canonical form denoted by (𝐴̄, 𝐵̄𝑖𝑗 , 𝐶̄). The transfer function −𝑎−1(q)𝑁̂𝑖𝑗 (q) can
be expanded as

−
𝑁̂𝑖𝑗 (q)
𝑎(q)

=
[
−
∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(1)q𝑚

𝑎(q)
,… ,−

∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(𝑛𝑥)q𝑚

𝑎(q) ]
.

Recall that 𝑎(q) =∏𝑑𝑁+1
𝓁=1 (q−𝜌𝓁). The factorization of the ℎ-th element of −𝑎−1(q)𝑁̂𝑖𝑗 (q) is

−
∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(ℎ)q𝑚

𝑎(q)
=

𝑑𝑁+1

∑
𝓁=1

𝑏𝑖𝑗 ,𝓁ℎ
q−𝜌𝓁

,

where 𝑏𝑖𝑗 ,𝓁ℎ = −∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(ℎ)𝜌

𝑚
𝓁

∏𝓁̃≠𝓁(𝜌𝓁̃−𝜌𝓁)
.
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The Jordan canonical form of −𝑎−1(q)∑𝑑𝑁
𝑚=0 𝑁̂𝑖𝑗 ,𝑚(ℎ)q𝑚 is denoted by (𝐴̄ℎ, 𝐵̄𝑖𝑗 ,ℎ, 𝐶̄ℎ),

where

𝐴̄ℎ = diag([𝜌1,… ,𝜌𝑑𝑁+1]), 𝐵̄𝑖𝑗 ,ℎ = [𝑏𝑖𝑗 ,1ℎ,… ,𝑏𝑖𝑗 ,(𝑑𝑁+1)ℎ]
⊤, and 𝐶̄ℎ = [1,…,1].

According to the superposition property of linear systems, we have

𝐴̄ = diag([𝜌1,… ,𝜌𝑑𝑁+1]), 𝐵̄𝑖𝑗 = [𝐵̄𝑖𝑗 ,1,… , 𝐵̄𝑖𝑗 ,𝑛𝑥 ], and 𝐶̄ = [1,…,1].

With the state-space description, 𝐄[𝑟𝑖𝑗 (𝑘)] can be written as

𝐄[𝑟𝑖𝑗 (𝑘)] = 𝐶̄𝐴̄Δ𝑘𝐄[𝑥̄𝑖𝑗 (𝑡𝑠)]+ 𝐶̄
Δ𝑘−1
∑
𝑚=0

𝐴̄Δ𝑘−1−𝑚𝐵̄𝑖𝑗𝐄[𝑥(𝑡𝑠)]

= 𝐶̄𝐴̄Δ𝑘𝐄[𝑥̄𝑖𝑗 (𝑡𝑠)]+ 𝐶̄𝐴̄Δ𝑘−1𝐵̄𝑖𝑗𝐄[𝑥(𝑡𝑠)],

where 𝑥̄𝑖𝑗 (𝑡𝑠) is the filter state at the switching instance 𝑡𝑠 .
Since 𝐴̄ is a diagonal matrix, we have ‖𝐴̄‖2 = 𝜌max. Based on the triangle property of

norms, |𝐄[𝑟𝑖𝑗 (𝑘)]| is bounded by

|𝐄[𝑟𝑖𝑗 (𝑘)]| ≤ ‖𝐶̄‖2‖𝐴̄‖Δ𝑘2 ‖𝐄[𝑥̄𝑖𝑗 (𝑡𝑠)]‖2+‖𝐶̄‖2‖𝐴̄‖Δ𝑘−12 ‖𝐵̄𝑖𝑗 ‖2‖𝐄[𝑥(𝑡𝑠)]‖2

≤
√
𝑑𝑁 +1(1+𝜌−1max‖𝐵̄𝑖𝑗 ‖2)‖𝐄[𝑖𝑗 (𝑡𝑠)]‖2𝜌Δ𝑘max

= 𝜓𝑖𝑗 (𝔽𝑖𝑗 ,𝑖𝑗 (𝑡𝑠))𝜌Δ𝑘max.

Finally, by setting 𝜇√𝜂̄𝑖 ≥ 𝜓𝑖𝑗 (𝔽𝑖𝑗 ,𝑖𝑗 (𝑡𝑠))𝜌Δ𝑘max, we arrive at

Δ𝑘 ≥ 𝑇𝑖𝑗 = ⌈
log𝜌max

𝜇
√
𝜂̄𝑖

𝜓𝑖𝑗 (𝔽𝑖𝑗 ,𝑖𝑗 (𝑡𝑠))⌉
.

□

2.5 Simulation Results
In this section, we consider a numerical example and a practical application on building
radiant systems to illustrate the effectiveness of the proposed diagnosis scheme.

2.5.1 Numerical Results
Consider a switched system with three linear subsystems. The system matrices are

𝐴1 =
⎡
⎢
⎢
⎣

0.5 0

0 −0.4

⎤
⎥
⎥
⎦
, 𝐴2 =

⎡
⎢
⎢
⎣

0.5 −0.2

0 −0.4

⎤
⎥
⎥
⎦
, 𝐴3 =

⎡
⎢
⎢
⎣

−0.5 0

0.1 −0.4

⎤
⎥
⎥
⎦
, 𝐵1 =

⎡
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎦
,

𝐵2 =
⎡
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎦
, 𝐵3 =

⎡
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎦
, 𝐸1 = 𝐸2 = 𝐸3 =

⎡
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎦
, 𝑊1 = 𝑊2 = 𝑊3 = 0,

𝐶1 = 𝐶3 =
⎡
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎦
, 𝐶2 =

⎡
⎢
⎢
⎣

1 0

0 0

⎤
⎥
⎥
⎦
, and 𝐷1 = 𝐷2 = 𝐷3 =

⎡
⎢
⎢
⎣

0.01 0

0.01 −0.01

⎤
⎥
⎥
⎦
.



2

34 2 Multimode Diagnosis for Switched Affine Systems with Noisy Measurement

0 20 40 60

0

1

2

(a) |𝑟1ℎ | with M50
12

160 180 200

0

1

2

(b) |𝑟1ℎ | with M200
13

260 270 280 290 300

0

0.5

1

1.5

(c) |𝑟2ℎ | with M300
21

60 70 80 90 100 110

0

0.5

1

1.5

(d) |𝑟2ℎ | with M100
23

110 120 130 140 150 160

0

0.5

1

1.5

(e) |𝑟3ℎ | with M150
31

210 220 230 240 250

0

0.5

1

1.5
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Figure 2.4: Residuals behavior under different scenarios: LetM𝑘
𝑖𝑗 stand for a system transition from 𝑖 to 𝑗 at time 𝑘.

The controller gains are

𝐾1 = [−0.0395 −0.0741], 𝐾2 = [−0.0648 0.0510], and 𝐾3 = [−0.0420 0.0326].

We set the degree of the filters 𝑑𝑁 = 1, the denominator 𝑎(q) = (q+ 0.1)(q+ 0.2). The
reference signal is set as 𝑑̄ = 0.5. The parameter of the iid sub-Gaussian noise is 1. The filters
are constructed by using the approach proposed in Theorem 2.3.1 and Proposition 2.3.2. We
solve the optimization problems by YALMIP toolbox [126]. The thresholds are computed
according to (2.22) where the reliability level 𝛽 = 0.05 and 𝜇 = 0.5. Thus, the thresholds
are 𝜀1 = 0.18, 𝜀2 = 0.16, and 𝜀3 = 0.12. The waiting time 𝜏𝑖 for 𝑖 ∈ {1,2,3} computed by (2.24)
are 𝜏1 = 7,𝜏2 = 6, and 𝜏3 = 7. To cover all the scenarios, we set the switching sequence
as: 1 → 2→ 3→ 1→ 3→ 2→ 1.

Figure 2.4 depicts the behavior of residuals under different scenarios. Here, we only
analyze 𝑟1ℎ for ℎ ∈ {1,2,3} with the transition M50

12 shown in Figure 2.4(a), because the rest
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Figure 2.5: Diagnosis result of the whole process.

are similar. Since the initial status of the closed-loop system is S11, the absolute value |𝑟11(𝑘)|
remains below 𝜀1 until transition happens at 𝑘 = 50. The other two residuals 𝑟12 and 𝑟13
first reach their corresponding steady values. Then, they oscillate around the steady values
because of the noise. The matched residual 𝑟11 and the unmatched residuals 𝑟12 and 𝑟13
are separated. After the transition M50

12 happens at 𝑘 = 50, |𝑟11(𝑘)| exceeds the threshold 𝜀1
immediately such that the switching is detected. Then, |𝑟12(𝑘)| reaches 𝜀1 at about 𝑘 = 53
while the other two residuals are above 𝜀1. As a result, active mode 2 is determined.
Figure 2.5 shows the diagnosis result of the whole process, where the switching signal is
correctly estimated.

Figure 2.6: Distribution of the diagnosis time for each scenario.

We execute the experiment 1000 times for each switching scenario to obtain the distri-
butions of the diagnosis time and the probability of wrong detection. The results are shown
in Figure 2.6. The average diagnosis time (ADT) and the wrong detection probability (WDP)
are presented in Table 2.1. We compute the estimated matched time 𝑇𝑖𝑗 based on (2.23).
From Table 2.1, the estimated matched time estimates the average diagnosis time well, and
the wrong detection probability is low.
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Table 2.1: Average diagnosis time and wrong detection probability when 𝜇 = 0.5 and 𝛽 = 0.05.

Transition M12 M13 M21 M23 M31 M32

ADT 5 6 6 6 7 5

𝑇𝑖𝑗 5 7 7 7 7 5

WDP 0 0 0.002 0.003 0 0

Figure 2.7: Illustration of the building radiant system [116].

2.5.2 Building Radiant Systems
In this section, a building radiant system is considered. We adopt the example from [116],
where the building with four rooms of the same size is equipped with a radiant system with
two pumps. Moreover, we compare the model invalidation approach proposed in [116]
with our approach.
Systemmodel description. The radiant system can bemodeled by the following equations

𝐶𝑐,1𝑇̇𝑐,1 = 𝐾𝑐,1(𝑇1−𝑇𝑐,1)+𝐾𝑐,3(𝑇3−𝑇𝑐,1)+𝐾𝑤,1(𝑇𝑤,1−𝑇𝑐,1),
𝐶𝑐,2𝑇̇𝑐,2 = 𝐾𝑐,2(𝑇2−𝑇𝑐,2)+𝐾𝑐,4(𝑇4−𝑇𝑐,2)+𝐾𝑤,2(𝑇𝑤,2−𝑇𝑐,2),
𝐶1𝑇̇1 = 𝐾𝑐,1(𝑇𝑐,1−𝑇1)+𝐾1(𝑇𝑎−𝑇1)+𝐾12(𝑇2−𝑇1)+𝐾13(𝑇3−𝑇1),
𝐶2𝑇̇2 = 𝐾𝑐,2(𝑇𝑐,2−𝑇2)+𝐾2(𝑇𝑎−𝑇2)+𝐾12(𝑇1−𝑇2)+𝐾24(𝑇4−𝑇2),
𝐶3𝑇̇3 = 𝐾𝑐,1(𝑇𝑐,1−𝑇3)+𝐾3(𝑇𝑎−𝑇3)+𝐾13(𝑇1−𝑇3)+𝐾34(𝑇4−𝑇3),
𝐶2𝑇̇4 = 𝐾𝑐,2(𝑇𝑐,2−𝑇4)+𝐾4(𝑇𝑎−𝑇4)+𝐾24(𝑇2−𝑇4)+𝐾34(𝑇3−𝑇4),

where the temperatures of two cores in the radiant system are denoted by 𝑇𝑐,𝑖 for 𝑖 ∈ {1,2}.
The temperature of the supply water is denoted by 𝑇𝑤,𝑖. The ambient air temperature is
denoted by 𝑇𝑎. The air temperature of room 𝑖 for 𝑖 ∈ {1,2,3,4} is denoted by 𝑇𝑖. The thermal
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conductance between 𝑇𝑖 and 𝑇𝑎 is denoted by 𝐾𝑖. The thermal conductance between 𝑇𝑐,𝑖
and 𝑇𝑖 is denoted by 𝐾𝑐,𝑖. The thermal conductance between room 𝑖 and 𝑗 is denoted by 𝐾𝑖𝑗 .
The piping thermal conductance between 𝑇𝑐,𝑖 and 𝑇𝑤,𝑖 is denoted by 𝐾𝑤,𝑖. The thermal
capacitance of room 𝑖 and core 𝑖 is denoted by 𝐶𝑖 and 𝐶𝑐,𝑖, resp. Assume that the constant
flow of pumps is known. Each pump supplies water to the water pipe and is connected to
a valve to adjust the constant flow. The system state consists of the temperatures of the
four rooms and the two cores. Suppose both pumps are on. The values of the parameters
are the same as that in [116]. The above equations can be written into the state-space form

𝑥̇𝑇 = 𝐴𝑟𝑎𝑑,1𝑥𝑇 +𝐸𝑟𝑎𝑑,1𝑇𝑑 ,
𝑦 = 𝐶𝑟𝑎𝑑,1𝑥𝑇 +𝜔, (2.38)

where 𝑥𝑇 = [𝑇𝑐,1, 𝑇𝑐,2, 𝑇1, 𝑇2, 𝑇3, 𝑇4]⊤, 𝑇𝑑 = [𝑇𝑤,1, 𝑇𝑤,2, 𝑇𝑎]⊤ is the constant input (or reference
signal). Matrices𝐴𝑟𝑎𝑑,1 and 𝐸𝑟𝑎𝑑,1 are obtained from the above equations. Thematrix 𝐶𝑟𝑎𝑑,1 =
diag([0,0,1,1,1,1]) indicates the measured temperatures. Assume that there is an uncer-
tainty 𝜈 in 𝑇𝑎 due to small changes (i.e., 𝑇𝑎 = 10+𝜈 where 𝜈 is Gaussian noise with mean 0
and variance 0.1). The measurement noise denoted by 𝜔 is Gaussian noise with mean 0
and variance 0.01. The discrete-time model of the radiant system (2.38) is obtained with
a sampling time of 5 min. Let (𝐴𝑑𝑟𝑎𝑑,1,𝐸𝑑𝑟𝑎𝑑,1,𝐶𝑟𝑎𝑑,1) represents the fault-free discrete-time
model of the system.

Faulty modes. The normal functions of the valves and temperature measurement sensors
are impaired in the faulty modes. Specifically, when there is a fault in the valve, we assume
that the valve is stuck in the middle and does not respond to commands. Since the fault
cuts the heat transfer in half, the fault is modeled with a change in the heat conductance
parameter, i.e., 𝐾𝑤,1 →𝐾𝑤,1/2 in 𝐴𝑟𝑎𝑑,1 and 𝐸𝑟𝑎𝑑,1. The sensor failures result in inaccurate
measurements of the temperature. We change the corresponding entry in 𝐶𝑟𝑎𝑑,1 to model
the sensor fault, i.e., 1 → 0.9 . Here, two faulty modes are considered. The first faulty mode
is denoted by (𝐴𝑑𝑟𝑎𝑑,2,𝐸

𝑑
𝑟𝑎𝑑,2,𝐶𝑟𝑎𝑑,2), where faults occur in the second pump and the sensor

measuring 𝑇1. As a result, 𝐾𝑤,2 decreases to 𝐾𝑤,2/2 and 𝐶𝑟𝑎𝑑,2 = diag([0,0,0.9,1,1,1]). The
second faulty mode is denoted by (𝐴𝑑𝑟𝑎𝑑,3,𝐸

𝑑
𝑟𝑎𝑑,3,𝐶𝑟𝑎𝑑,3), where just one fault occurs in the

first pump. Note that the second faulty mode is more incipient than the first one because
the outputs do not change dramatically. The matched residual of (𝐴𝑑𝑟𝑎𝑑,𝑖,𝐸𝑑𝑟𝑎𝑑,𝑖,𝐶𝑟𝑎𝑑,𝑖) is
defined as 𝑟𝑖 for 𝑖 ∈ {1,2,3}.

Filter design and model invalidation approach. Note that there is no control signal
in the radiant system (2.38). Thus, we only need to design three filters corresponding to
the three modes. The degree of the filters is set as 𝑑𝑁 = 3. The filters are then constructed
based on Theorem 2.3.1 and Proposition 2.3.2. The idea of the model invalidation approach
proposed in [116] is that, given the input and output data, detect the transitions by checking
the feasibility of a mixed-integer linear programming problem. Since the example we
adopt here has only one healthy mode, the mixed-integer linear programming problem
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Figure 2.8: Simulation results with faulty modes happen at 𝑘 = 20. The symbols ◦ and × indicate the feasible and
infeasible status of (2.39).

degenerates into the following linear programming problem.

Find 𝐱(𝑘), 𝝂(𝑘), 𝝎(𝑘), ∀𝑘 ∈ {0,1,…,𝑇 −1}

s.t.

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐱(𝑘 +1)−𝐴𝑟𝑎𝑑,1𝐱(𝑘)−𝐸𝑟𝑎𝑑,1(𝑇𝑑 +[0,0,𝝂(𝑘)]⊤) = 0,

𝑦(𝑘)−𝐶𝑟𝑎𝑑,1𝐱(𝑘)−𝝎(𝑘) = 0,

𝑋𝑙 ≤ 𝐱(𝑘) ≤ 𝑋𝑢, 𝑉𝑙 ≤ 𝝂(𝑘) ≤ 𝑉𝑢,

𝑊𝑙 ≤ 𝝎(𝑘) ≤ 𝑊𝑢,

(2.39)

where the ranges of 𝐱(𝑘), 𝜈(𝑘) and 𝜔(𝑘) are set as 15 ≤ ‖𝐱‖∞ ≤ 19, −0.3 ≤ ‖𝝂‖∞ ≤ 0.3
and −0.03 ≤ ‖𝝎‖∞ ≤ 0.03, resp. The positive integer 𝑇 is derived from the definition
T-Detectability in [116]. It represents the number of steps that a faulty model needs to
generate an abnormal trajectory. We refer readers to [116] for more details about the
computation method of 𝑇 .
Results. In the first case, we suppose the first faulty mode occurs at 𝑘 = 20. The diagnosis
results are presented in Figure 2.8. Figure 2.8(a) shows the changes in the measured
temperatures. The temperature 𝑇1 drops significantly due to sensor failure, and other
measured temperatures also change slightly because of the fault in pump 2. Figure 2.8(b)
shows the changes in the residuals and the feasibility of the invalidation problem (2.39).
One can see that 𝑟1 crosses the threshold at 𝑘 = 21, and thus the fault is detected immediately
after the faults happen. At 𝑘 = 23, the matched residual 𝑟2 reaches the threshold. Thus, the
faulty mode is determined.
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Meanwhile, the problem (2.39) becomes infeasible at 𝑘 = 21, which means the faults
are detected by the model invalidation method as well. In the second case, we suppose the
second faulty mode happens at 𝑘 = 20. One can see from Figure 2.8(c) that the changes
in the measured temperatures are slight. This poses a challenge to the diagnosis task.
Figure 2.8(d) shows the changes in the residuals and the feasibility of (2.39). Note that 𝑟1
crosses the threshold at 𝑘 = 22. Hence, the fault is detected. Then, the matched residual 𝑟3
reaches the threshold at 𝑘 = 24 such that the second faulty mode is determined. As a
comparison, the invalidation problem is always feasible during the whole process, which
means that the invalidation approach fails to detect the fault in the second case.

2.6 Conclusions
In this chapter, we propose a diagnosis scheme to detect the active mode of discrete-time,
switched affine systems in the presence of measurement noise and asynchronous switching.
Based on an integration of residual generation and 2 norm approaches, the design of an
optimal bank of filters is formulated into a tractable optimization problem inwhich the noise
contribution to the residuals is minimized. With the filters designed by the optimization
problem, the diagnosis thresholds are determined which provide probabilistic false-alarm
guarantees on the mode detection performance. Simulation results of a numerical example
and a building radiant system show the effectiveness of the proposed approach. As future
work, the first research direction is to combine the proposed approach with the active fault
diagnosis method to deal with the unknown disturbance. One can design certain input
sequences such that the unmatched residuals are separated from the matched residual
with guaranteed probability. Note that the switching delay between the active mode and
its corresponding controller is stochastic because of the stochastic noise. As a result, the
second research direction would be focused on the impacts of the stochastic delay on the
stability of asynchronously switched systems.
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3
Multivariate Fault

Detection and Estimation in
the Finite Freqency Domain

This chapter is based on � J. Dong, K. Pan, S. Pequito, P. Mohajerin Esfahani. Multivariate fault detection and
estimation in the finite frequency domain. [to be submitted to Automatica]



3

42 3 Multivariate Fault Detection and Estimation in the Finite Freqency Domain

3.1 Introduction
Fault diagnosis has been the focus of research in the past decades due to its critical impor-
tance in ensuring the safety and reliability of various engineering systems, such as power
networks, vehicle dynamics, and aircraft systems [2, 11]. Timely and accurate FDE of
faults while a system is still operating in a controllable condition, can help prevent further
damage and reduce losses. However, fault detection and estimation (FDE) performance
is inevitably affected in practice by model uncertainties, unknown inputs, and stochastic
noise. These disturbing factors can result in false fault alarms, missing detection, and
incorrect fault estimates. Hence, it is essential to consider the disruptive signals when
designing FDE methods.

In recent years, there also has been a growing recognition of the need to address faults
in the finite frequency domain. This stems from the fact that many practical faults (or
cyber-attack signals [119]) are in the finite frequency domain, e.g., incipient faults in a
low-frequency range and actuator’s stuck faults with zero frequency [127]. Unfortunately,
FDE methods developed for the entire frequency domain can cause conservatism when
dealing with these faults. Motivated by the above issues, we study the FDE problem in the
finite frequency domain, taking into account both unknown inputs and stochastic noise.

Fault detection: A number of model-based fault detection methods have been devel-
oped for linear systems with unknown inputs and stochastic noise. The basic idea is to
design a residual generator using observer-based or parity-space approaches [1, 2]. The
output of the residual generator (called residual) is used to indicate the occurrence of
faults. Performance indices, such as2 and∞ norms, are often adopted to measure the
robustness against disturbances and noise [46]. The residual generator design is usually
formulated as a multi-objective optimization problem in the framework of the robust
control theory, see [1, Chapter 7] for more details about the residual generator design
with 2 and ∞ norms.

Wewould like to point out that residual generators constructed by using observer-based
and parity-space approaches generally have the same order as the system. However,
reduced-order residual generators are more desirable for online implementation and
large-scale systems. Nyberg [45] proposes a parity-space-like design method in the
differential-algebraic equation (DAE) framework, which finds residual generators of the
possibly lowest order. Moreover, this method offers more design freedom due to its charac-
terization of all possible residual generators for systems in the form of DAE. Based on the
parity-space-like design method, several fault detection methods have been developed in
the DAE framework to deal with nonlinear terms[53] and modeling uncertainties [107].

Note that the methods mentioned above are all for the entire frequency domain. In order
to characterize the fault sensitivity in the finite frequency domain, Liu [128] introduces
the _ index, which is the minimum singular value of the transfer function matrix, to
represent the worst-case fault sensitivity. The_ index can then be augmented in a specific
frequency range by incorporating weighting functions. In contrast to the approximation
through weighting functions, the generalized Kalman-Yakubovich-Popov (GKYP) lemma
proposed by Iwasaki [129] enables the direct design of fault detection observers in the finite
frequency domain. They converted transfer function inequalities to matrix inequalities.

Based on the GKYP lemma, most results are focused on mixed indices such as ∞/_
or 𝑙∞/_ [127, 130–132], where unknown inputs with deterministic bounds are considered,
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and ∞ and 𝑙∞ are adopted to characterize the energy and peak value of unknown inputs,
respectively. However, the deterministic bounds can be difficult to obtain and may cause
conservative diagnosis results [117]. Besides, results that consider the effects of stochastic
noise and unknown inputs simultaneously when designing residual generators for fault
detection in the finite frequency domain are quite limited. This is more demanding and,
therefore, more challenging for the residual generator design.

Fault estimation: Accurate fault estimation that provides the size and shape of faults
is a fundamental task in the fault diagnosis area and has been widely studied as well. Many
model-based methods based on various observers, such as sliding mode observers [133],
adaptive observers [134], and unknown input observers [31], are developed to address this
problem. When applying these observer-based fault estimation methods, one requires an
assumption on the derivatives of fault signals. To further achieve reliable fault estimation
results, optimization methods or high-gain design approaches are usually employed to
attenuate the effects of unknown inputs [31, 133, 134].

In contrast to observer-based methods, the use of fault estimation filters, as another
widely-used approach, does not require an estimate of system states and the assumption
regarding the derivatives of fault signals. A fault estimation filter is driven by system
measurements and control inputs, whose output is an estimate of fault signals. There are
two main ways to construct a fault estimation filter. The first approach involves utilizing
the inverse of the fault subsystem, as described in [1, Theorem 14.2]. The second approach
aims to minimize the difference between the transfer function of the fault subsystem and
the identity matrix in the ∞ optimization framework [135]. Recently, authors in [59,
136] construct system-inversion-based fault estimation filters with Markov parameters
identified from the input-output data and obtain the estimated fault signals by solving
a least-square problem. However, the existence of a stable system-inversion-based fault
estimation filter cannot be ensured when there are unstable zeros in the fault subsystem
(i.e., non-minimum-phase system) [137]. This also relates to input observability conditions
explored in [138].

Once again, it is worth emphasizing that the aforementioned estimation methods
are for the entire frequency domain. The available methods for fault estimation in the
finite frequency domain are primarily built on observer-based methods and the GKYP
lemma, see for example [139–141]. However, fault estimation filter design in the finite
frequency domain received much less attention. Designing a fault estimation filter in
the finite frequency domain is advantageous in the sense that: (i) it does not require the
assumption about the derivatives of fault signals as observer-based methods; (ii) it provides
more accurate estimation results for faults in a specific frequency range; and (iii) it can
circumvent unstable zeros by properly choosing the frequency range. To our knowledge,
only [1, Theorem 14.6] integrates weighting functions in the ∞ optimization framework
to design the fault estimation filter in the finite frequency domain, where the selection
of weighting functions is critical to the estimation performance. Moreover, the design of
a fault estimation filter in the finite frequency domain while considering both stochastic
noise and unknown inputs has not been reported in the literature.

Main contributions: In view of the existing methods mentioned above, we consider
FDE for linear discrete-time systems in the finite frequency domain, taking into account
both the presence of stochastic noise and unknown inputs. The contributions of this
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chapter are summarized as follows:

• Multivariate FDE in the finite frequency domain: For the first time, we exploit
the prior information about the frequency domain of fault signals when designing
FDE filters in the DAE framework. The design of FDE filters is formulated into a uni-
fied optimization framework that provides design freedom and (possibly) low-order
filters with residuals of arbitrary dimension. The derived optimization problems for
filter design are non-convex but can be solved effectively through the alternating
optimization approach.

(i) Optimal fault detection filter design: By utilizing mixed 2/_ indices, we
formulate the optimal design of the fault detection filter in the DAE framework
as a finite optimization problem (Theorem 3.3.1) to address unknown inputs,
stochastic noise, and improve fault sensitivity in the finite frequency domain.

(ii) Optimal fault estimation filter design: By replacing the _ index in the fault
detection filter design with the finite-frequency ∞ norm to characterize fault
estimation performance, we formulate the optimal design of the fault estimation
filter in the DAE framework as a finite optimization problem (Theorem 3.3.6).

• Probabilistic guarantee for fault detection: We propose a method to deter-
mine the fault detection threshold that provides probabilistic guarantees on false
alarms (Theorem 3.3.5). The bound exhibits a logarithmic dependence on the reliabil-
ity level, improving the polynomial dependence obtained in [117]. We further obtain
fault detection rates with the derived threshold, which is a particularly difficult task
when dealing with multivariate fault signals. The result is also an improvement of
our previous work [96] which solely focuses on one-dimensional residuals and has
no guarantees on fault detection rates.

• Relaxed design and optimality gap for fault estimation: To reduce compu-
tational complexity, we relax the conditions in the fault estimation filter design
and reformulate it as a quadratic programming problem (Theorem 3.3.7), which has
an analytical solution (Corollary 3.3.8). Additionally, we obtain an optimality gap
(Proposition 3.3.9) for the original fault estimation filter design problem by solving
its exact and relaxed reformulations.

The rest of the chapter is organized as follows. The problem formulation is introduced
in Section 3.2. In Section 3.3, we present the design methods of the FDE filters with some
performance analysis. To improve the flow of the chapter and its accessibility, we relegate
some of the technical proofs to Section 3.4. The proposed approaches are applied to a
synthetic non-minimum phase system and a multi-area power system in Section 3.5 to
provide evidence of their effectiveness. Finally, Section 3.6 concludes the chapter with
some remarks and future directions.
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3.2 Model Description and Problem Statement
Consider the following linear discrete-time system

⎧⎪⎪
⎨⎪⎪⎩

𝑥(𝑘 +1) = 𝐴𝑥(𝑘)+𝐵𝑢(𝑘)+𝐵𝑑𝑑(𝑘)+𝐵𝜔𝜔(𝑘)+𝐵𝑓 𝑓𝑎(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)+𝐷𝑢(𝑘)+𝐷𝜔𝜔(𝑘)+𝐷𝑓 𝑓𝑠(𝑘),
(3.1)

where 𝑥(𝑘) ∈ ℝ𝑛𝑥 , 𝑢(𝑘) ∈ ℝ𝑛𝑢 , 𝑑(𝑘) ∈ ℝ𝑛𝑑 , and 𝑦(𝑘) ∈ ℝ𝑛𝑦 are the state, the control input,
the unknown input, and the measurement output, respectively. The signal 𝜔(𝑘) ∈ ℝ𝑛𝜔
denotes the independent and identically distributed (iid) white noise with zero mean
and known variance. The signals 𝑓𝑎(𝑘) ∈ ℝ𝑛𝑓𝑎 and 𝑓𝑠(𝑘) ∈ ℝ𝑛𝑓𝑠 denote the process and
measurement faults, respectively. System matrices in (3.1) are all assumed to be known
and with appropriate dimensions. We introduce the following assumption on fault signals.

Assumption 3.2.1 (Fault regularity). The faults 𝑓𝑎 and 𝑓𝑠 are deterministic and the fre-
quency 𝜃𝑓 is in the finite frequency domain Θ ∶= {𝜃𝑓 ∶ 𝜃 ≤ 𝜃𝑓 ≤ 𝜃}, with 𝜃, 𝜃 ∈ {0,ℝ+} denote
known lower and upper bounds, respectively.

Note that Assumption 3.2.1 reflects many practical scenarios where faults have finite
frequencies, such as incipient faults and stuck faults of actuators [127, 139].

The objective of this work is to design filters that can detect and estimate faults in the
finite frequency domain Θ through the control input 𝑢 and the measurement 𝑦. To this
end, we consider filters in the DAE framework and introduce the time-shift operator q,
i.e., 𝑥(𝑘 +1) = q𝑥(𝑘). Then, we transform the state-space model (3.1) into the DAE format

𝐻(q)
⎡
⎢
⎢
⎣

𝑥

𝑑

⎤
⎥
⎥
⎦
+𝐿

⎡
⎢
⎢
⎣

𝑦

𝑢

⎤
⎥
⎥
⎦
+𝑊 [𝜔]+𝐺

⎡
⎢
⎢
⎣

𝑓𝑎

𝑓𝑠

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝑥0

0

⎤
⎥
⎥
⎦
= 0, (3.2)

where 𝑥(0) = 𝑥0 is the unknown initial condition, the polynomial matrices𝐻(q), 𝐿,𝑊 and 𝐺
are given by

𝐻(q) = 𝐻1q+𝐻0 =
⎡
⎢
⎢
⎣

−q𝐼 +𝐴 𝐵𝑑

𝐶 0

⎤
⎥
⎥
⎦
, 𝐻0 =

⎡
⎢
⎢
⎣

𝐴 𝐵𝑑

𝐶 0

⎤
⎥
⎥
⎦
, 𝐻1 =

⎡
⎢
⎢
⎣

−𝐼 0

0 0

⎤
⎥
⎥
⎦
,

𝐿 =
⎡
⎢
⎢
⎣

0 𝐵

−𝐼 𝐷

⎤
⎥
⎥
⎦
, 𝑊 =

⎡
⎢
⎢
⎣

𝐵𝜔

𝐷𝜔

⎤
⎥
⎥
⎦
, and 𝐺 =

⎡
⎢
⎢
⎣

𝐵𝑓 0

0 𝐷𝑓

⎤
⎥
⎥
⎦
.

To design the filters, we further introduce a transfer function

𝔽(q) =
 (q)
𝑎(q)

, (3.3)

where the polynomial matrix (q) =∑𝑑𝑁
𝑖=0𝑁𝑖q𝑖, 𝑁𝑖 ∈ ℝ𝑛𝑟×(𝑛𝑥+𝑛𝑦 ), and 𝑑𝑁 denotes the degree

of (q). The denominator 𝑎(q) = ∑𝑑𝑎
𝑖=0 𝑎𝑖q𝑖+ q𝑑𝑎+1, 𝑎𝑖 ∈ ℝ, and 𝑑𝑎+1 is the degree of 𝑎(q).

For simplicity, we set 𝑑𝑎 ≥ 𝑑𝑁 to ensure that 𝔽(q) is strictly proper.
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By multiplying the left-hand side of (3.2) by 𝔽(q), we can re-arrange the terms to obtain
the residual 𝑟 ∈ ℝ𝑛𝑟 as follows

𝑟 = 𝔽(q)𝐿
⎡
⎢
⎢
⎣

𝑦

𝑢

⎤
⎥
⎥
⎦
= −𝔽(q)𝐻(q)[𝑋]−𝔽(q)𝑊 [𝜔]−𝔽(q)𝐺[𝑓 ]−𝔽(q)

⎡
⎢
⎢
⎣

𝑥0

0

⎤
⎥
⎥
⎦
, (3.4)

where 𝑋 = [𝑥⊤ 𝑑⊤]⊤, 𝑓 = [𝑓 ⊤𝑎 𝑓 ⊤𝑠 ]⊤ with dimension 𝑛𝑓 = 𝑛𝑓𝑎 + 𝑛𝑓𝑠 . Note that 𝔽(𝑞)𝐿 is
called the implementation form of the filter because all the entities are known to us. The
right-hand side of (3.4) indicates the input-output relations from 𝑋, 𝜔, and 𝑓 to 𝑟 , based
on which we can design 𝔽(q) such that desired mapping relations are satisfied for different
diagnosis purposes. Subsequently, we denote the mapping relations from 𝑋 to 𝑟 , from 𝜔
to 𝑟 , and from 𝑓 to 𝑟 by

𝕋𝑋𝑟 (q) = −𝔽(q)𝐻(q), 𝕋𝜔𝑟 (q) = −𝔽(q)𝑊 , and 𝕋𝑓 𝑟 (q) = −𝔽(q)𝐺. (3.5)

Assumption 3.2.2 (Initial condition dependency). The contribution of the initial condition,
i.e., the last term in (3.4), vanishes exponentially fast under appropriate stability conditions.

Assumption 3.2.2 is commonly adopted in fault detection literature to simplify the
analysis [59, 142].

Next, we present the formulation of the two problems studied in this work: (i) fault
detection (Section 3.2.1), and (ii) fault estimation (Section 3.2.2).

3.2.1 Problem 1: Fault Detection
In order to formally introduce the fault detection problem statement, we start by introducing
the 2 norm and _ index of a transfer function, e.g., 𝑦 = 𝕋(q)[𝑢], 𝕋(q) = (q𝐼 −)−1.

Definition 3.2.3 (2 norm [46]). Assume  is stable. The 2 norm of 𝕋(q) is defined as

‖𝕋(q)‖2 = (
1
2𝜋 ∫

𝜋

−𝜋
Trace(𝕋∗(e𝑗𝜃)𝕋(e𝑗𝜃))d𝜃)

1/2
,

and corresponds to the asymptotic variance of the output when the system is driven by the
white noise with zero mean, i.e., lim

𝑇→∞
1
𝑇 ∑

𝑇
𝑘=0𝐄[𝑦(𝑘)⊤𝑦(𝑘)].

Definition 3.2.4 (_ index [128]). The_ index of 𝕋(q) in a frequency domain Θ is defined
as

‖𝕋(q)‖_(Θ) = inf
𝜃∈Θ,𝑢≠0

‖‖𝕋(e
𝑗𝜃)𝑢‖‖2

‖𝑢‖2
.

The definition can also be rewritten as ‖𝕋(q)‖_(Θ) = inf
𝜃∈Θ

𝜎(𝕋(e𝑗𝜃)), where 𝜎(⋅) denotes the
minimum singular value.

Let us look into the right-hand side of (3.4). We expect the residual 𝑟 to be insensitive
to 𝑑, robust to 𝜔, and sensitive to 𝑓 in Θ. First, to decouple 𝑑 from 𝑟 , we need to guarantee
that

𝕋𝑋𝑟 (q) = −𝔽(q)𝐻(q) = 0. (3.6a)
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Second, we set an upper bound 𝜂1 ∈ ℝ+ on the 2 norm of 𝕋𝜔𝑟 (q), to suppress the contri-
bution of 𝜔 to 𝑟 , as

‖𝕋𝜔𝑟 (q)‖22 = ‖−𝔽(q)𝑊 ‖22 ≤ 𝜂1. (3.6b)

Finally, we let the _ index of 𝕋𝑓 𝑟 (q) in Θ be larger than some positive value 𝜂2 ∈ ℝ+ to
guarantee the worst-case fault sensitivity, which is

‖𝕋𝑓 𝑟 (q)‖2_(Θ) = ‖−𝔽(q)𝐺‖2_(Θ) ≥ 𝜂2. (3.6c)

In view of the desired mapping conditions (3.6), the design of the fault detection filter
is formulated as the following optimization problem.

Problem 1a. (Fault detection filter design) Consider the system (3.1), the structure of 𝔽(q)
in (3.3), and the residual (3.4). Given a scalar 𝛼 ∈ [0,1], find 𝔽(q) via the minimization
program:

min
𝜂1 ,𝜂2∈ℝ+ , 𝔽(q)

{𝛼𝜂1−(1−𝛼)𝜂2 ∶ (3.6a), (3.6b), (3.6c)}. (3.7)

We emphasize that the following assumption is required for the feasibility of Problem 1a.

Assumption 3.2.5 (Feasibility condition). The pair (𝐴,𝐶) is observable. For q = 𝜑e𝑗𝜃
with |𝜑| > 1 and 𝜃 ∈ Θ, the following rank condition holds

𝑛𝑥 +𝑛𝑦 ≥ Rank
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

−q𝐼 +𝐴 𝐵𝑑 𝐵𝑓 0

𝐶 0 0 𝐷𝑓

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
= 𝑛𝑥 +Rank

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝐵𝑑

0

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
+𝑛𝑓 .

Denote the transfer functions from 𝑑 and 𝑓𝑎 to 𝑦 by𝕋𝑑𝑦(q) = 𝐶(q𝐼 −𝐴)−1𝐵𝑑 and𝕋𝑓𝑎𝑦(q) =
𝐶(q𝐼 −𝐴)−1𝐵𝑓 , respectively. We can show that

𝑛𝑦 ≥ Rank[𝕋𝑑𝑦(q) [𝕋𝑓𝑎𝑦(q) 𝐷𝑓 ]] = Rank
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝐵𝑑

0

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
+𝑛𝑓 ,

if Assumption 3.2.5 holds [1, Theorem 6.2]. Therefore, Assumption 3.2.5 ensures simul-
taneously the following: (i) the unknown input 𝑑 can be decoupled, and (ii) the faults 𝑓
satisfy input observability condition in the frequency domain Θ, which also indicates that
there are no unstable invariant zeros in Θ. The second term is necessary for a nonzero _
index [128, Lemma 5]. Moreover, we incorporate the frequency domain into the analysis,
which is different from the classical result on the input observability condition in [138,
Theorem 3] and [1, Corollary 14.1].

Additionally, notice that a solution to Problem 1a ensures that the residual 𝑟 can be
written as

𝑟 = 𝕋𝜔𝑟 (q)[𝜔]+𝕋𝑓 𝑟 (q)[𝑓 ],

where no dependency on 𝑋 is present, i.e., it is decoupled. In practice, the residual 𝑟 will
oscillate around zero as a response to the noise 𝜔 in the absence of 𝑓 . In contrast, the
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residual will ideally be away from zero when a fault happens. Subsequently, let us take the
average 2-norm of 𝑟 over a time interval  ∈ ℕ as the evaluation function, i.e.,

𝐽 (𝑟) =
1


𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)‖2, 𝑘1 ∈ ℕ. (3.8)

Given a threshold 𝐽𝑡ℎ ∈ ℝ+, we can consider the following fault detection logic:

⎧⎪⎪
⎨⎪⎪⎩

𝐽 (𝑟) ≤ 𝐽𝑡ℎ ⇒ no fault alarm,

𝐽 (𝑟) > 𝐽𝑡ℎ ⇒ fault alarm.

Note that false alarms and missing detection of faults are inevitable due to the random
nature of noise 𝜔. In order to mitigate these issues, we consider determining a threshold 𝐽𝑡ℎ
that can provide guarantees on the false alarm rate (FAR) and fault detection rate (FDR) in
the following problem.

Problem 1b. (Threshold setting with probabilistic guarantees) Given 𝔽(q) constructed
from Problem 1a, an acceptable false alarm rate 𝜀1 ∈ (0,1], and a set of fault signals of interest
Ω𝑓 ∶= {𝑓 ∶ ‖𝑓 (𝑘)‖2 ≥ 𝑓 , 𝑓 ∈ ℝ+, 𝜃𝑓 ∈ Θ}, determine the threshold 𝐽𝑡ℎ such that:

FAR: 𝐏𝐫
{
𝐽 (𝑟) > 𝐽𝑡ℎ||𝑓 = 0

}
≤ 𝜀1, (3.9a)

FDR: 𝐏𝐫
{
𝐽 (𝑟) > 𝐽𝑡ℎ||𝑓 ∈ Ω𝑓

}
≥ 𝜀2, (3.9b)

where 𝜀2 is the lower bound on FDR to be computed.

3.2.2 Problem 2: Fault Estimation
In some cases, we need not only to detect the occurrence of faults but also to estimate
them accurately. For instance, incorporating fault estimates into fault-tolerant controllers
is a common practice to counteract the effects of faults [43]. To quantify the estimation
performance, we introduce the finite-frequency ∞ norm.

Definition 3.2.6 (Finite-frequency∞ norm [143]). The finite-frequency∞ norm of 𝕋(q)
over some frequency range Θ is defined as

‖𝕋(q)‖∞(Θ) = sup
𝜃∈Θ,𝑢≠0

‖‖𝕋(e
𝑗𝜃)𝑢‖‖2

‖𝑢‖2
.

The definition can also be rewritten as ‖𝕋(q)‖∞(Θ) = sup
𝜃∈Θ

𝜎(𝕋(e𝑗𝜃)), where 𝜎(⋅) denotes the

maximum singular value.

Recall the design form in (3.4). To estimate the faults, a possible solution consists in
finding a stable transfer function 𝔽(q) such that 𝕋𝑓 𝑟 (e𝑗𝜃) = −𝔽(e𝑗𝜃)𝐺 ≡ 𝐼 in Θ. However,
this condition is too demanding and generally impossible to achieve because it contains
an infinite number of equality constraints, especially in the presence of unknown inputs
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and noise. Therefore, we opt to let 𝕋𝑓 𝑟 (q) approximate the identity matrix 𝐼 over Θ by
setting 𝑛𝑟 = 𝑛𝑓 and, instead of considering (3.6c), we consider the following condition

‖‖𝕋𝑓 𝑟 (q)− 𝐼 ‖‖
2
∞(Θ)

≤ 𝜂2. (3.6c’)

Hence, the generated residual 𝑟 can be viewed as an estimate of 𝑓 if 𝕋𝑓 𝑟 (q) is sufficiently
close to 𝐼 over Θ. We maintain conditions (3.6a) and (3.6b) to suppress the influence of 𝑑
and 𝜔 on the residual 𝑟 . As a result, our second problem is to design the fault estimation
filter through the following optimization problem.

Problem 2. (Fault estimation filter design) Consider the system (3.1), the structure of 𝔽(q)
in (3.3), and the residual (3.4). Given a scalar 𝛽 ∈ [0,1], find 𝔽(q) via the minimization
program

min
𝜂1 ,𝜂2∈ℝ+ , 𝔽(q)

{𝛽𝜂1+(1−𝛽)𝜂2 ∶ (3.6a), (3.6b), (3.6c’)}. (3.10)

Remark 3.2.7 (Difference between Problem 1a and 2). The condition (3.6c’) for fault
estimation is more stringent compared to the condition (3.6c) used for fault detection. In
particular, it suffices to have the minimum singular value of 𝕋𝑓 𝑟 (q) be positive for fault
detection, whereas 𝕋𝑓 𝑟 (q) needs to be as close to 𝐼 as possible to obtain a decent estimation
performance. Additionally, filters that satisfy condition (3.6c’) with a sufficiently small
finite-frequency∞ norm can provide a positive_ index over Θ, but the opposite is not true.

3.3 Main Results
In this section, we first present the designmethod of the fault detection filter (Theorem 3.3.1)
and the computation of thresholds that provide probabilistic guarantees on the FAR and
FDR (Theorem 3.3.5). We then proceed to show the design method of the fault estimation
filter, both under exact estimation conditions (Theorem 3.3.6) and under relaxed conditions
(Theorem 3.3.7). To improve the clarity of the presentation, some proofs are relegated to
Section 3.4.

3.3.1 Fault Detection Filter Design
Let us start by considering the transfer function 𝔽(q) in (3.3). First, notice that the de-
grees 𝑑𝑁 , 𝑑𝑎, the residual dimension 𝑛𝑟 , and coefficients of  (q) and 𝑎(q) are all design
parameters. For simplicity, we fix 𝑛𝑟 , 𝑑𝑁 , and set 𝑑𝑁 = 𝑑𝑎 in what follows. To compute the2
norm and_ index, we convert 𝕋𝜔𝑟 (q) = −𝔽(q)𝑊 and 𝕋𝑓 𝑟 (q) = −𝔽(q)𝐺 into the observable
canonical forms denoted by (𝑟 ,𝜔𝑟 ,𝑟 ) and (𝑟 ,𝑓 𝑟 ,𝑟 ), respectively. Let 𝑁𝑖,𝑗 denote
the 𝑗-th row of 𝑁𝑖 for 𝑖 ∈ {0,1,…,𝑑𝑁 } and 𝑗 ∈ {1,…,𝑛𝑟 }. Then, the matrices 𝑟 , 𝜔𝑟 , 𝑓 𝑟 ,
and 𝑟 are given by

𝑟 = diag(𝐴𝑟 ,… ,𝐴𝑟⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑟

), 𝜔𝑟 = [𝐵⊤𝜔𝑟,1,… ,𝐵⊤𝜔𝑟,𝑛𝑟 ]
⊤, 𝑓 𝑟 = [𝐵⊤𝑓 𝑟,1,… ,𝐵⊤𝑓 𝑟,𝑛𝑟 ]

⊤, and

𝑟 = diag(𝐶𝑟 ,… ,𝐶𝑟⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑟

),
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where

𝐴𝑟 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 … 0 −𝑎0

1 … 0 −𝑎1

⋮ ⋱ ⋮ ⋮

0 … 1 −𝑎𝑑𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐵𝜔𝑟,𝑗 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑁0,𝑗

𝑁1,𝑗

⋮

𝑁𝑑𝑁 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑊 , 𝐵𝑓 𝑟,𝑗 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑁0,𝑗

𝑁1,𝑗

⋮

𝑁𝑑𝑁 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐺, 𝐶𝑟 = [0…0 1] .

The dimension of the filter states is 𝑛𝑥𝑟 =𝑛𝑟 (𝑑𝑁 +1). Note that the parameters 𝑎𝑖 and𝑁𝑖,𝑗 to be
determined are reformulated into𝑟 , 𝜔𝑟 , and𝑓 𝑟 . An advantage of such a transformation
is that all the design parameters are decoupled from each other. This allows us to exactly
formulate the design of the fault detection filter into a bilinear optimization problem as
stated in the following theorem.
Theorem 3.3.1 (Optimal fault detection filter design: exact finite reformulation). Consider
the system (3.1), the structure of 𝔽(q) in (3.3), and the state-space realizations (𝑟 ,𝜔𝑟 ,𝑟 )
and (𝑟 ,𝑓 𝑟 ,𝑟 ). Given the degree 𝑑𝑁 , 𝑑𝑎 = 𝑑𝑁 , the dimension of the residual 𝑛𝑟 , a scalar 𝛼 ∈
[0,1], a sufficiently small 𝜗 ∈ ℝ+, and the frequency domain Θ, the minimization program in
Problem 1a can be equivalently stated as follows

min 𝛼𝜂1−(1−𝛼)𝜂2
s.t. 𝜂1, 𝜂2 ∈ ℝ+, 𝑎𝑖 ∈ ℝ, 𝑁𝑖 ∈ ℝ𝑛𝑟×(𝑛𝑥+𝑛𝑦 ), 𝑖 ∈ {0,1,…,𝑑𝑁 },

𝑃1 ∈ 𝑛𝑥𝑟 , 𝑄1 ∈ 𝑛𝑟 , 𝑃2 ∈ ℍ𝑛𝑥𝑟 , 𝑄2 ∈ ℍ𝑛𝑥𝑟 , 𝑉 ∈ ℝ𝑛𝑥𝑟 ×(2𝑛𝑥𝑟 +𝑛𝑓 ),

̄ 𝐻̄ = 0, (3.11a)
⎡
⎢
⎢
⎢
⎢
⎣

𝑃1 𝑟𝑃1 𝜔𝑟

∗ 𝑃1 0

∗ ∗ 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⪰ 𝜗𝐼 ,
⎡
⎢
⎢
⎣

𝑄1 𝑟𝑃1
∗ 𝑃1

⎤
⎥
⎥
⎦
⪰ 𝜗𝐼 , Trace(𝑄1) ≤ 𝜂1−𝜗, (3.11b)

⎡
⎢
⎢
⎢
⎢
⎣

−𝑃2 𝛿𝑄2 0

∗ Ξ 0

∗ ∗ 𝜂2𝐼

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

−𝐼

⊤
𝑟

⊤
𝑓 𝑟

⎤
⎥
⎥
⎥
⎥
⎦

𝑉 +𝑉 ⊤ [−𝐼 𝑟 𝑓 𝑟] ⪯ −𝜗𝐼 , 𝑄2 ⪰ 𝜗𝐼 , (3.11c)

where the following conditions hold for different frequency ranges:
(i) 𝛿 = 1, Ξ = 𝑃2−2cos(𝜃𝑙)𝑄2−⊤𝑟 𝑟 , for the low frequency range Θ = {𝜃𝑓 ∶ 0 ≤ 𝜃𝑓 ≤ 𝜃𝑙};

(ii) 𝛿 = e𝑗𝜃𝑐 , Ξ = 𝑃2 −2cos(𝜃𝑑)𝑄2 −⊤𝑟 𝑟 , for the middle frequency range Θ = {𝜃𝑓 ∶ 𝜃1 ≤
𝜃𝑓 ≤ 𝜃2} with 𝜃𝑐 = (𝜃1+𝜃2)/2, 𝜃𝑑 = (𝜃2−𝜃1)/2;

(iii) 𝛿 = −1, Ξ = 𝑃2+2cos(𝜃ℎ)𝑄2−⊤𝑟 𝑟 , for the high frequency range Θ = {𝜃𝑓 ∶ 𝜃𝑓 ≥ 𝜃ℎ}.
Additionally, the matrices ̄ and 𝐻̄ are given by

̄ = [𝑁0 𝑁1 … 𝑁𝑑𝑁 ] and 𝐻̄ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐻0 𝐻1 … 0

⋮ ⋱ ⋱ ⋮

0 … 𝐻0 𝐻1

⎤
⎥
⎥
⎥
⎥
⎦

.
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Proof. The proof is relegated to Section 3.4.1. □

Note that the optimization problem (3.11) is nonlinear because of the bilinear terms𝑟𝑃1
in (3.11b), and ⊤

𝑟 𝑉 and ⊤
𝑓 𝑟𝑉 in (3.11c). To tackle the optimization problem (3.11), we

employ the alternating optimization (AO) method, which divides the decision variables into
two sets and optimizes over the two sets of variables alternatively. One way of division is

𝑘1 ∶= {𝜂𝑘1 , 𝜂
𝑘
2 ,̄ 𝑘 , 𝑎𝑘0 ,… ,𝑎𝑘𝑑𝑁 } and 𝑘2 ∶= {𝑃𝑘1 , 𝑃

𝑘
2 ,𝑄

𝑘
1 ,𝑄

𝑘
2 , 𝜂

𝑘
1 , 𝜂

𝑘
2 , 𝑉

𝑘}, (3.12)

where 𝑘 ∈ 𝑁 serves as the iteration indicator.
The initial values for the optimization process are obtained as follows. First, we select

a stable denominator, denoted by 𝑎0(q) with coefficients 𝑎0𝑖 . The coefficients of  0(q),
i.e., ̄ 0, are then determined by solving equation (3.11a) subject to the constraint ‖̄ 0‖∞ ≥
1 to avoid the trivial solution ̄ 0 = 0. The initial values of 𝜂01 and 𝜂02 are found via
equations (3.11b) and (3.11c), respectively. The AO process can then be initiated. The
procedure is summarized in Algorithm 1. Additionally, we highlight that the stability of
the filter is guaranteed as (3.11b) is satisfied [123, Lemma 1].

The proposed approach in (3.11) introduces an auxiliary matrix 𝑉 in (3.11c) when
dealing with the _ index of 𝕋𝑓 𝑟 (q). Different from the existing results [127, 131, 132],
where 𝑉 is given, we treat 𝑉 as a decision variable. The reason is that the number of
parameters to be determined in 𝑉 will be large for large-scale or high-dimensional systems.
If the parameters are not chosen properly, it can lead to a poor _ index or even an
infeasible constraint. By optimizing over 𝑉 , with the AO method, we can obtain better
fault sensitivity. Moreover, we find that using relaxation techniques, e.g., [118, Lemma 1],
to transform (3.11c) into linear matrix inequality easily makes the problem infeasible. This
is because other constraints restrict the set of feasible solutions.

Figure 3.1: Geometric illustration of the multi-dimensional residual.

Remark 3.3.2 (Residuals with arbitrary dimensions). The proposed design approach enables
the fault detection filter to have residuals of arbitrary dimension 𝑛𝑟 . Compared to the results
in [53, 107, 119], where only one-dimensional residuals are generated, our approach improves
two deficiencies:
(i) Consider a two-dimensional residual depicted in Figure 3.1 as an example. The filters

in [53, 107, 119] cannot detect the faults that lie on the same hyperplane as the unknown
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input 𝑑, i.e., 𝑑 ↦ 𝑟 = 0. By considering the two-dimensional residual, faults that can bypass
detection exists at the intersection of two hyperplanes. This means that our approach
greatly reduces the size of the set containing undetectable faults.

(ii) As indicated in [119], different elements of the fault signals may cancel out each other’s
contributions to the one-dimensional residual. In our method, we guarantee the fault
sensitivity by letting the _ index be positive in Θ.

Algorithm 1 Solution to optimization problem stated in (3.11)
Step 1. Initialization of Filter Parameters

(a) Set 𝑑𝑁 , 𝑛𝑟 , the frequency domain Θ, the iteration indicator 𝑘 = 0, and select a stable
denominator 𝑎0(q)

(b) Compute the numerator 0(q) via (3.11a) with ‖̄ 0‖∞ ≥ 1
(c) Compute 𝜂01 and 𝜂02 via (3.11b) and (3.11c), respectively

Step 2. Optimization of Filter Parameters

(a) Select 𝛼 ∈ [0,1], a sufficiently small 𝜗 > 0
(b) While |(𝛼𝜂𝑘+11 −(1−𝛼)𝜂𝑘+12 )− (𝛼𝜂𝑘1 −(1−𝛼)𝜂𝑘2)| > 𝜗, do

With 𝑎𝑘(q) and  𝑘(q), compute 𝑃𝑘1 , and 𝑉 𝑘 by solving (3.11) over 𝑘1
With 𝑃𝑘1 and 𝑉 𝑘 , compute 𝑎𝑘+1(q), and  𝑘+1(q) by solving (3.11) over 𝑘2
Set 𝑘 = 𝑘+1

(c) Return 𝑎⋆(q) and  ⋆(q)

3.3.2 Fault Detection Performance Certificates
With the transfer function 𝔽(q) constructed by solving the optimization problem (3.11)
and the residual evaluation function 𝐽 (𝑟) = 1

 ∑𝑘1+
𝑘=𝑘1 ‖𝑟(𝑘)‖2, 𝑘1 ∈ ℕ, we can determine

the threshold 𝐽𝑡ℎ which provides probabilistic guarantees on FAR and FDR as outlined in
Problem 1b. To proceed with this, let us first introduce the following lemma and assumption
to be used hereafter.

Lemma 3.3.3 (Sub-Gaussian concentration [120, Proposition 2.5.2]). Let a random vec-
tor 𝜔 ∈ ℝ𝑛𝜔 be subject to a sub-Gaussian distribution with mean 𝐄[𝜔] and parameter 𝜆𝜔 ∈ ℝ+,
i.e., 𝐄[e𝜙𝜈

⊤(𝜔−𝐄[𝜔])] ≤ e𝜆2𝜔𝜙2/2, ∀𝜙 ∈ ℝ and 𝜈 ∈ ℝ𝑛𝜔 with ‖𝜈‖2 = 1. Then, the following inequality
holds

𝐏𝐫[‖𝜔−𝐄[𝜔]‖∞ ≤ 𝜖] ≥ 1−2𝑛𝜔 e
− 𝜖2
2𝜆2𝜔 , ∀𝜖 ∈ ℝ+. (3.13)

Assumption 3.3.4 (Sub-Gaussian noise). The measurement noise 𝜔 follows an iid sub-
Gaussian distribution with zero mean and a time-invariant parameter 𝜆𝜔 ∈ ℝ+.

The class of sub-Gaussian distributions is board, containing Gaussian, Bernoulli, and all
bounded distributions. Also, the tails of sub-Gaussian distributions decrease exponentially
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fast from (3.13), which is expected in many applications. Given an acceptable FAR, the
following theorem provides the determination method of the threshold 𝐽𝑡ℎ and a lower
bound on FDR.

Theorem 3.3.5 (Probabilistic performance certificates). Suppose Assumption 3.3.4 holds.
Consider the system (3.1), the evaluation function (3.8), the filter 𝔽(q) obtained by solving (3.11)
with the corresponding optimal values 𝜂⋆1 and 𝜂⋆2 , and faults of interest 𝑓 ∈ Ω𝑓 . Given an
acceptable FAR 𝜀1 ∈ (0,1], the probabilistic performance (3.9a) in Problem 1b is achieved if the
threshold 𝐽𝑡ℎ is set as

𝐽𝑡ℎ = 𝜆𝜔
√
2𝑛𝑟𝜂⋆1 ln(2 𝑛𝑟/𝜀1), (3.14)

and the FDR in (3.9b) satisfies

𝐏𝐫
{
𝐽 (𝑟) > 𝐽𝑡ℎ||𝑓 ∈ Ω𝑓

}
> max

⎧⎪⎪
⎨⎪⎪⎩
0,1−2 𝑛𝑟 e

− (𝑓
√

𝜂∗2/𝑛𝑟 −𝐽𝑡ℎ)
2

2𝜂∗1𝜆
2𝜔

⎫⎪⎪
⎬⎪⎪⎭
, when 𝑓 > 𝐽𝑡ℎ

√
𝑛𝑟/𝜂⋆2 . (3.15)

Proof. The proof is relegated to Section 3.4.1. □

From the concentration property of sub-Gaussian distributions, the derived threshold 𝐽𝑡ℎ
in (3.14) depends logarithmically on FAR, i.e.,

√
ln(1/𝜀1). This improves the state-of-the-art

results (e.g., [117] and [1, Section 10.2.1]), which rely on Chebyshev’s inequality and result
in thresholds that scale polynomially with

√
1/𝜀1. Moreover, the threshold (3.14) extends

our previous work [96, Theorem 3.8] where the one-dimensional residual is considered. In
addition, a lower bound for 𝑓 is derived in (3.15) to ensure that FDR can be achieved.

3.3.3 Fault Estimation Filter Design
When designing the fault estimation filter, we choose 𝔽(q) of the same form as (3.3). Then,
considering the desired mapping relations presented in Problem 2, we formulate the design
of the fault estimation filter into a bilinear optimization problem in the following theorem.

Theorem 3.3.6 (Optimal fault estimation filter design: exact finite reformulation). Consider
the system (3.1), the structure of 𝔽(q) in (3.3), and the state-space realizations (𝑟 ,𝜔𝑟 ,𝑟 )
and (𝑟 ,𝑓 𝑟 ,𝑟 ). Given the filter order 𝑑𝑁 , 𝑑𝑎 = 𝑑𝑁 , the dimension of residual 𝑛𝑟 = 𝑛𝑓 , a
scalar 𝛽 ∈ [0,1], a sufficiently small 𝜗 ∈ ℝ+, and the frequency domain Θ, the minimization
program in Problem 2 can be equivalently stated as follows

min 𝛽𝜂1+(1−𝛽)𝜂2
s.t. 𝜂1, 𝜂2 ∈ ℝ+, 𝑎𝑖 ∈ ℝ, 𝑁𝑖 ∈ ℝ𝑛𝑟×(𝑛𝑥+𝑛𝑦 ), 𝑖 ∈ {0,1,…,𝑑𝑁 },

𝑃1 ∈ 𝑛𝑥𝑟 , 𝑄1 ∈ 𝑛𝑟 , 𝑃2 ∈ ℍ𝑛𝑥𝑟 , 𝑄2 ∈ ℍ𝑛𝑥𝑟 , 𝑉 ∈ ℝ𝑛𝑥𝑟 ×(2𝑛𝑥𝑟 +𝑛𝑓 ),
(3.11a), (3.11b),
⎡
⎢
⎢
⎢
⎢
⎣

−𝑃2 𝛿𝑄2 0

∗ Ξ −⊤𝑟
∗ ∗ 𝐼 −𝜂2𝐼

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

−𝐼

⊤
𝑟

⊤
𝑓 𝑟

⎤
⎥
⎥
⎥
⎥
⎦

𝑉 +𝑉 ⊤ [−𝐼 𝑟 𝑓 𝑟] ⪯ −𝜗𝐼 , 𝑄2 ⪰ 𝜗𝐼 , (3.16)

where the following conditions hold for different frequency ranges:
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(i) 𝛿 = 1, Ξ = 𝑃2−2cos(𝜃𝑙)𝑄2+⊤𝑟 𝑟 , for the low frequency range Θ = {𝜃𝑓 ∶ 𝜃𝑓 ≤ 𝜃𝑙};

(ii) 𝛿 = e𝑗𝜃𝑐 , Ξ = 𝑃2 −2cos(𝜃𝑑)𝑄2 +⊤𝑟 𝑟 , for the middle frequency range Θ = {𝜃𝑓 ∶ 𝜃1 ≤
𝜃𝑓 ≤ 𝜃2} with 𝜃𝑐 = (𝜃1+𝜃2)/2, 𝜃𝑑 = (𝜃2−𝜃1)/2;

(iii) 𝛿 = −1, Ξ = 𝑃2+2cos(𝜃ℎ)𝑄2+⊤𝑟 𝑟 , for the high frequency range Θ = {𝜃𝑓 ∶ 𝜃𝑓 ≥ 𝜃ℎ}.

Proof. It is proved in Theorem 3.3.1 that (3.11a) and (3.11b) are equivalent to condi-
tions (3.6a) and (3.6b), respectively. To demonstrate that (3.16) is equivalent to the con-
dition (3.6c’), we derive the state-space realization of 𝕋𝑓 𝑟 (q)− 𝐼 through (𝑟 ,𝑓 𝑟 ,𝑟 ,−𝐼 ).
Then, by setting the matrix Π = diag(𝐼 ,−𝜂2𝐼 ) and using the state-space realization in
Lemma 3.4.1, we obtain the equivalence between (3.16) and (3.6c’). The procedure is similar
to the derivation of (3.11c) in the proof of Theorem 3.3.1. This completes the proof. □

The optimization problem in Theorem 3.3.6 can be solved by Algorithm 1. However,
the key to achieving satisfactory estimation results is to ensure that ‖𝕋𝑓 𝑟 (q)− 𝐼 ‖∞(Θ) is
sufficiently small. This usually requires several iteration steps by Algorithm 1 and results
in heavy computational loads when dealing with large-scale systems.

To reduce the computational complexity, we relax the estimation condition (3.6c’) by
letting 𝕋𝑓 𝑟 (q) approximate the identity matrix at 𝜅 ∈ ℕ selected frequency points 𝜃𝑖 ∈ Θ
instead of the whole frequency domain Θ, i.e.,

‖‖‖Real(𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼)
‖‖‖
2

2
≤ 𝜂̄2𝑖, and

‖‖‖Imag(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))
‖‖‖
2

2
≤ 𝜂̄3𝑖, 𝑖 ∈ {1,…,𝜅}, (3.17)

where 𝜂̄2𝑖, 𝜂̄3𝑖 ∈ ℝ+, Real(⋅) and Imag(⋅) denote the real and imaginary parts of the transfer
function, respectively. By replacing (3.6c’) in Problem 2 with the relaxed condition (3.17),
we obtain the following relaxed version of Problem 2.

Problem 2r. (Fault estimation filter design with relaxed conditions) Consider the sys-
tem (3.1), the structure of 𝔽(q) in (3.3), and the residual (3.4). Given a scalar 𝛽 ∈ [0,1], find 𝔽(q)
via the minimization program

min
𝜂1 ,𝜂̄2𝑖 ,𝜂̄3𝑖∈ℝ+ , 𝔽(q)

{

𝛽𝜂1+
1−𝛽
𝜅

𝜅
∑
𝑖=1

(𝜂̄2𝑖+ 𝜂̄3𝑖) ∶ (3.6a), (3.6b), (3.17)

}

. (3.18)

Before presenting the solution to (3.18), let us make some clarifications on the filter 𝔽(q).
To simplify the design, we fix the denominator 𝑎(q) in the following design. We select roots
of 𝑎(q) inside the unit disk and set 𝑑𝑎 = 𝑑𝑁 so that the fault estimation filter is stable and
strictly proper. Subsequently, the coefficient matrices 𝑁𝑖 for 𝑖 ∈ {0,1,…,𝑑𝑁 } are the only
parameters to be designed.

Recall the mapping relations presented in (3.4). For the sake of clarity, we further write
the transfer functions 𝕋𝑓 𝑟 (q) and 𝕋𝜔𝑟 (q) into

𝕋𝑓 𝑟 (q) = −
 (q)𝐺
𝑎(q)

= ̄Ψ𝐺(q) and 𝕋𝜔𝑟 (q) = −
 (q)𝑊
𝑎(q)

= ̄Ψ𝑊 (q), (3.19)
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where

Ψ𝐺(q) = −𝑎−1(q)diag(𝐺,…,𝐺)[𝐼 ,q𝐼 ,… ,q𝑑𝑁 𝐼 ]⊤,

Ψ𝑊 (q) = −𝑎−1(q)diag(𝑊 ,…,𝑊 )[𝐼 ,q𝐼 ,… ,q𝑑𝑁 𝐼 ]⊤.

By utilizing the multiplication rule of polynomial matrices [53, Lemma 4.2] in (3.19),
we obtain the polynomial matrices Ψ𝐺(q) and Ψ𝑊 (q) that contain all known elements
in 𝕋𝑓 𝑟 (q) and 𝕋𝜔𝑟 (q), respectively. Now, we can present the design method of 𝔽(q) depicted
in Problem 2r in the following theorem.

Theorem 3.3.7 (Optimal fault estimation filter design: relaxed requirements). Consider the
system (3.1), the structure of 𝔽(q) in (3.3), and the reformulations of𝕋𝑓 𝑟 (q) and𝕋𝜔𝑟 (q) in (3.19).
Given the order 𝑑𝑁 , the dimension 𝑛𝑟 = 𝑛𝑓 , the stable denominator 𝑎(q) with 𝑑𝑎 = 𝑑𝑁 , 𝜅
frequency points 𝜃𝑖 ∈ Θ, and the weight 𝛽 ∈ [0,1], the optimization problem (3.18) can be
stated as the following quadratic programming problem:

min 𝛽𝜂1+
1−𝛽
𝜅

𝜅
∑
𝑖=1

(𝜂̄2𝑖+ 𝜂̄3𝑖)

s.t. ̄ ∈ ℝ𝑛𝑟×(𝑑𝑁+1)(𝑛𝑥+𝑛𝑦 ), 𝜂1, 𝜂̄2𝑖, 𝜂̄3𝑖 ∈ ℝ+, 𝑖 ∈ {1,…,𝜅},

̄ 𝐻̄ = 0, (3.20a)
Trace[̄Φ̄ ⊤] ≤ 𝜂1, (3.20b)
‖‖‖̄𝑖−𝐼

‖‖‖
2

2
≤ 𝜂̄2𝑖, 𝑖 ∈ {1,…,𝜅}, (3.20c)

‖‖‖̄𝑖
‖‖‖
2

2
≤ 𝜂̄3𝑖, 𝑖 ∈ {1,…,𝜅}, (3.20d)

where𝑖 = Real(Ψ𝐺(e𝑗𝜃𝑖)), 𝑖 = Imag(Ψ𝐺(e𝑗𝜃𝑖)), and Φ = 1
2𝜋 ∫

𝜋
−𝜋 Ψ𝑊 (e𝑗𝜃)Ψ∗

𝑊 (e𝑗𝜃)𝑑𝜃.

Proof. The proof is relegated to Section 3.4.2. □

In comparison to (3.16), the design of the fault estimation filter outlined in (3.18) which
incorporates relaxed conditions described in (3.20), is computationally tractable as it is a
quadratic programming problem. Furthermore, if we use the Frobenius norm instead of
the 2 norm in (3.20), we can obtain an approximate analytical solution to it by leveraging
the idea from [144]. The result is presented in the following corollary.

Corollary 3.3.8 (Approximate analytical solution). Consider the convex quadratic program-
ming problem in (3.20) with the 2 norm replaced by the Frobenius norm. An approximate
analytical solution to (3.20) is given by:

̄ ⋆
𝐴𝑝𝑝(𝛾) =

1−𝛽
𝛾𝜅

𝜅
∑
𝑖=1

⊤
𝑖 [
𝛾−1

(
𝛽Φ+

1−𝛽
𝜅

𝜅
∑
𝑖=1

(𝑖⊤
𝑖 +𝑖⊤𝑖 ))

+𝐻̄𝐻̄⊤
]

†

,

where (⋅)† denotes the pseudo-inverse and 𝛾 ≥ 0 is the Lagrange multiplier. The approximate
solution converges to the optimal solution to (3.20) as 𝛾 tends to ∞.
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Proof. Wefirst obtain the dual program of (3.20) by penalizing the equality constraint (3.20a),
which is

𝑔(𝛾) = inf
̄

(̄ , 𝛾)

= inf
̄
𝛽Trace[̄Φ̄ ⊤]+

1−𝛽
𝜅

𝜅
∑
𝑖=1 (

‖‖‖̄𝑖−𝐼
‖‖‖
2

𝐹
+‖‖‖̄𝑖

‖‖‖
2

𝐹)+𝛾‖̄ 𝐻̄ ‖2𝐹 ,

where (̄ , 𝛾) is the Lagrange function of (3.20) and ‖ ⋅ ‖𝐹 denotes the Frobenius norm of a
matrix. It holds that sup𝛾≥0 𝑔(𝛾) = lim𝛾→∞ 𝑔(𝛾).

By taking the partial derivative of the above Lagrange function, we have

𝜕(̄ , 𝛾)
𝜕̄

= 2𝛽̄Φ+
2(1−𝛽)

𝜅

𝜅
∑
𝑖=1

(̄𝑖⊤
𝑖 −⊤

𝑖 +̄𝑖⊤𝑖 )+2𝛾̄ 𝐻̄ 𝐻̄⊤.

Setting the partial derivative to zero, we obtain

̄ ⋆
𝐴𝑝𝑝(𝛾) =

1−𝛽
𝛾𝜅

𝜅
∑
𝑖=1

⊤
𝑖 [
𝛾−1

(
𝛽Φ+

1−𝛽
𝜅

𝜅
∑
𝑖=1

(𝑖⊤
𝑖 +𝑖⊤𝑖 ))

+𝐻̄𝐻̄⊤
]

†

.

This completes the proof. □

It is worth mentioning that, for a fixed denominator 𝑎(q), we can obtain an optimality
gap for the optimization problem of the fault estimation filter design stated in Problem 2 by
solving its exact and relaxed reformulations presented in Theorem 3.3.6 and Theorem 3.3.7.
We present this result in the following proposition. To enhance readability, let us introduce
several notations first. Recall the structure of 𝔽(q) in (3.3). Given a stable numerator 𝑎(q),
we define the optimal value of the objective function in Problem 2 as

 ∗ = min
 (q)

{
𝛽‖𝕋𝜔𝑟 (q)‖22 +(1−𝛽)‖𝕋𝑓 𝑟 (q)− 𝐼 ‖2∞(Θ) ∶ 𝕋𝑋𝑟 (q) = 0

}
.

Furthermore, we use 𝜂∗1,𝐴𝑂 and 𝜂∗2,𝐴𝑂 to represent the values obtained by solving the
optimization problem (3.16) using the AO approach, and use 𝜂∗1,𝑅𝑅, 𝜂̄∗2𝑖,𝑅𝑅, and 𝜂̄∗3𝑖,𝑅𝑅 to denote
the optimal values obtained by solving the optimization problem (3.20). The following
proposition outlines the method to derive the optimality gap for Problem 2.

Proposition 3.3.9 (Optimality gap with a fixed denominator). Given a stable denomina-
tor 𝑎(q), the optimal value of the objective function in Problem 2 is bounded by

𝛽𝜂∗1,𝑅𝑅 +
(1−𝛽)
𝜅

𝜅
∑
𝑖=1

(𝜂̄∗2𝑖,𝑅𝑅 + 𝜂̄
∗
3𝑖,𝑅𝑅) ≤  ∗ ≤ 𝛽𝜂∗1,𝐴𝑂 +(1−𝛽)𝜂∗2,𝐴𝑂 . (3.21)

Proof. The proof is relegated to Section 3.4.2. □

Different from the lower bound in (3.21) which is directly obtained by solving the
optimization problem (3.20), the upper bound derived using the AO approach typically
requires several iteration steps. This process will result in heavy computational loads if
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Algorithm 2 Computing the optimality gap in (3.21)
Setp 1. Initialization

(a) Select 𝑑𝑁 , 𝑛𝑟 = 𝑛𝑓 , and a stable denominator 𝑎(q)
(b) Select 𝜅 frequency points uniformly from the frequency domainΘ and the weight 𝛽

Step 2. Derivation of the lower bound

(a) Compute the matrix𝑖, 𝑖, and Φ for 𝑖 ∈ {1,…,𝜅}
(b) Solve the numerator ∗

𝑅𝑅(q) and the bounds 𝜂∗1,𝑅𝑅, 𝜂̄∗2𝑖,𝑅𝑅, and 𝜂̄∗3𝑖,𝑅𝑅 by solving (3.20)

(c) Output the lower bound: 𝛽𝜂∗1,𝑅𝑅 +
(1−𝛽)
𝜅 ∑𝜅

𝑖=1(𝜂̄∗2𝑖,𝑅𝑅 + 𝜂̄∗3𝑖,𝑅𝑅)
Step 3. Derivation of the upper bound

(a) Set ∗
𝑅𝑅(q) as the initial condition and fix 𝑎(q) for (3.16)

(b) Optimize the numerator by solving (3.16) with the AO approach, and obtain 𝜂∗1,𝐴𝑂
and 𝜂∗2,𝐴𝑂

(c) Output the upper bound: 𝛽𝜂∗1,𝐴𝑂 +(1−𝛽)𝜂∗2,𝐴𝑂

the initial value is not appropriately chosen. Fortunately, we can utilize the solution of the
relaxed design problem in Theorem 3.3.7 as the initial value. We then further optimize
the upper bound (3.16) by solving the optimization problem using the AO approach. The
procedure is summarized in Algorithm 2.

Suppose the fault signal 𝑓 can be represented by the combination of components with
different frequency 𝜃𝑖 ∈ Θ, i.e., 𝑓 (𝑘) = ∑𝜅

𝑖=1 𝑓𝑖(𝑘) = ∑𝜅
𝑖=1 𝜇𝑖 sin(𝜃𝑖𝑘), where each 𝜇𝑖 ∈ ℝ𝑛𝑓

for {1,…,𝜅} denotes the unknown weight of each component. Then, the estimation error of
the method in Theorem (3.3.7) satisfies ‖𝑟 − 𝑓 ‖22

≤∑𝜅
𝑖=0(𝜂̄∗2𝑖,𝑅𝑅 + 𝜂̄∗3𝑖,𝑅𝑅)‖𝑓𝑖‖22

in the absence
of the noise because of

‖𝑟 − 𝑓 ‖22 =
‖‖‖‖‖
𝕋𝑓 𝑟 (q)

𝜅
∑
𝑖=1

[𝑓𝑖]−
𝜅
∑
𝑖=1

𝑓𝑖
‖‖‖‖‖

2

2

≤
𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)[𝑓𝑖]− 𝑓𝑖‖22 ≤
𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼 ‖22‖𝑓𝑖‖
2
2

=
𝜅
∑
𝑖=1

‖Real(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))+ 𝑗Imag(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))− 𝐼 ‖22‖𝑓𝑖‖
2
2

≤
𝜅
∑
𝑖=1

(‖Real(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))− 𝐼 ‖22+‖𝑗Imag(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))‖22)‖𝑓𝑖‖
2
2

≤
𝜅
∑
𝑖=1

(𝜂̄⋆2𝑖,𝑅𝑅 + 𝜂̄
⋆
3𝑖,𝑅𝑅)‖𝑓𝑖‖

2
2 ,

where ‖Real(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))− 𝐼 ‖22 ≤ 𝜂̄∗2𝑖,𝑅𝑅 and ‖Imag(𝕋𝑓 𝑟 (e𝑗𝜃𝑖))‖22 ≤ 𝜂̄∗3𝑖,𝑅𝑅 from (3.20a) and (3.20b).
We close this section with the following remarks on the trade-off and conservatism

analysis of the proposed design approach to fault estimation filters.

Remark 3.3.10 (Trade-off analysis). There is a trade-off between decoupling the unknown
signals 𝑋 , suppressing the noise 𝜔, and estimating the fault 𝑓 in (3.16) and (3.20). First, the
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feasible solutions to (3.16) and (3.20) lie in the left null space of 𝐻̄ , which restricts the choice
of ̄ . Second, increasing 𝛽 improves the noise suppression capability of the filter. However, it
reduces the estimation performance and vice versa. The trade-offs can, therefore, be used as a
guide for selecting appropriate weights.

Remark 3.3.11 (Selection of decision variable sets). When using the AO approach to solve
the bilinear optimization problems stated in Theorem 3.3.1 and Theorem 3.3.6, it is essential
to partition the decision variables in the bilinear terms into two sets, namely 𝑘1 and 𝑘2 .
We observe that, for different optimization problems, the choice of decision variable sets
greatly influences the convergence speed of the AO approach. In particular, when solving
the optimization problem (3.16), if we select the decision variable sets without overlap, i.e.,
{̄ 𝑘 , 𝑎𝑘0 ,… ,𝑎𝑘𝑑𝑁 } and {𝑃

𝑘
1 , 𝑃𝑘2 ,𝑄𝑘

1 ,𝑄𝑘
2 , 𝑉 𝑘}, it leads to a more efficient solution compared to the

selection approach in (3.12).

Remark 3.3.12 (Extension to nonlinear systems). There are several ways to extend the
proposed FDE filter design methods to nonlinear systems.
(i) The most straightforward way is to linearize the nonlinear systems, while the linearization

approach has poor diagnosis performance when handling systems with wide frequency
ranges because of large model mismatches.

(ii) We leverage the idea form [53] by extracting the features of stochastic disturbances. Then,
We can construct the nonlinear signatures with the mapping relations and the extracted
features and robustify the filter to the nonlinearity signatures by design.

(iii) We can approximate the nonlinear terms with polynomials [122] and incorporate the
approximation into the proposed optimization framework used for FDE filter design to
minimize the effects of the nonlinear terms.

(iv) It is also possible to approximate the nonlinear systems with fuzzy Markov jump sys-
tems [145]. By doing so, we are able to design FDE filters for each linear subsystem with
the proposed methods. When conducting diagnosis tasks, we switch the filters according
to the rules.

Remark 3.3.13 (Fault estimation for non-minimal phase systems). For a non-minimal
phase system, it is reported in the literature [1, Theorem 14.5] that the optimal distance
between 𝕋𝑓 𝑟 and 𝐼 in the ∞ framework is 1, i.e., min̄ ‖𝕋𝑓 𝑟 (q)− 𝐼 ‖∞ = 1, which indicates
that a satisfactory fault estimation over the whole frequency domain is not achievable. Our
methods proposed in Theorem 3.3.6 and Theorem 3.3.7 can improve the estimation performance
by limiting the frequency range interested for the fault estimation purpose. We will demonstrate
this through simulation results.

Remark 3.3.14 (Conservatism analysis). The conservatism of the fault estimation filter
design method is summarized as follows:
(i) In order to reduce computational complexity, we adopt a selective approach for the design

of fault estimation filters in (3.20). Specifically, we only impose constraints on a subset
of frequency points in Θ, instead of all the frequency points. As a result, the estimation
performance at the other frequency points in Θ may not be guaranteed. However, as
demonstrated by simulation results, the degradation of estimation performance at those
points is minor.
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(ii) For simplicity, the denominator of the transfer function 𝑎(q) is fixed in the optimization
problem (3.20), which restricts the design freedom. However, including the simultaneous
design of both 𝑎(q) and (q) would result in a much more complex optimization problem,
which might not be computationally tractable.

3.4 Technical Proofs of Main Results
3.4.1 Proofs of Results in Fault Detection
The following two lemmas are required for the proof of Theorem 3.3.1.

Lemma 3.4.1. (GKYP lemma [129]) Consider a transfer function defined by 𝕋(q) = (q𝐼 −
)−1+. Given a symmetric matrix Π and a finite frequency domain Θ, the following
statements are equivalent:
(i) The inequality holds in the finite-frequency domain 𝜃 ∈ Θ

⎡
⎢
⎢
⎣

𝕋(e𝑗𝜃)

𝐼

⎤
⎥
⎥
⎦

∗

Π
⎡
⎢
⎢
⎣

𝕋(e𝑗𝜃)

𝐼

⎤
⎥
⎥
⎦
≺ 0. (3.22)

(ii) There exists Hermitian matrices  and  with appropriate dimensions and  ≻ 0 such
that

⎡
⎢
⎢
⎣

 

𝐼 0

⎤
⎥
⎥
⎦

⊤

Λ
⎡
⎢
⎢
⎣

 

𝐼 0

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

 

0 𝐼

⎤
⎥
⎥
⎦

⊤

Π
⎡
⎢
⎢
⎣

 

0 𝐼

⎤
⎥
⎥
⎦
≺ 0, (3.23)

where the following holds:

a. For the low frequency range Θ = {𝜃 ∶ |𝜃| ≤ 𝜃𝑙}, Λ =
⎡
⎢
⎢
⎣

− 

  −2cos(𝜃𝑙)

⎤
⎥
⎥
⎦
;

b. For the middle frequency range Θ = {𝜃 ∶ 𝜃1 ≤ 𝜃 ≤ 𝜃2}, Λ =
⎡
⎢
⎢
⎣

− e𝑗𝜃𝑐 

e−𝑗𝜃𝑐   −2cos(𝜃𝑑)

⎤
⎥
⎥
⎦
,

where 𝜃𝑐 = (𝜃1+𝜃2)/2, 𝜃𝑑 = (𝜃2−𝜃1)/2;

c. For the high frequency range Θ = {𝜃 ∶ |𝜃| ≥ 𝜃ℎ}, Λ =
⎡
⎢
⎢
⎣

− −

−  +2cos(𝜃ℎ)

⎤
⎥
⎥
⎦
.

Lemma 3.4.2. (Finsler’s lemma [146]) For matrices  ∈ ℝ𝑛×𝑛 and  ∈ ℝ𝑛×𝑚, the following
statements are equivalent:
(i) ⟂ (⟂)

⊤ ≺ 0, where ⟂ denotes matrices satisfying ⟂ = 0;
(ii) There exists a matrix  ∈ ℝ𝑚×𝑛 such that  + + ⊤⊤ ≺ 0.

Proof of Theorem 3.3.1. First, the constraint (3.11a) implies (q)𝐻(q) = 0 according to
multiplication rule of polynomial matrices [53, Lemma 4.2], which means that 𝑋 is com-
pletely decoupled from the residual 𝑟 . Thus, the condition (3.6a) is satisfied.

Second, the transfer function from𝜔 to 𝑟 is−𝑎−1(q) (q)𝑊 when (3.11a) is satisfied, and
its state-space realization is denoted by (𝑟 ,𝜔𝑟 ,𝑟 ). According to the classical result on2
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norm [123, Lemma 1], we can directly obtain the equivalence between the constraint (3.11b)
and condition (3.6b).

In the last part of the proof, we demonstrate that the constraints (3.11c) are equivalent
to the mapping requirement on the _ performance (3.6c). We only present the result
for the low-frequency scenario, as the proofs for the mid-frequency and high-frequency
cases follow similar logic. According to Lemma 3.4.2, the first matrix inequality in (3.11c)
is equivalent to

⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

⊤
𝑟

⊤
𝑓 𝑟

⎤
⎥
⎥
⎦

𝐼
⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

−𝑃2 𝛿𝑄2 0

∗ Ξ 0

∗ ∗ 𝜂2𝐼

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

[𝑟 𝑓 𝑟]
𝐼

⎤
⎥
⎥
⎦
⪯ −𝜗𝐼 , (3.24)

where 𝛿 = 1 and Ξ = 𝑃2−2cos(𝜃𝑙)𝑄2−⊤𝑟 𝑟 for the low-frequency case. Expanding (3.24)
leads to

⎡
⎢
⎢
⎣

Ξ 0

∗ 𝜂2𝐼

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

⊤
𝑟

⊤
𝑓 𝑟

⎤
⎥
⎥
⎦
𝑃2 [𝑟 𝑓 𝑟]+

⎡
⎢
⎢
⎣

⊤
𝑟

⊤
𝑓 𝑟

⎤
⎥
⎥
⎦
[𝑄2 0]+

⎡
⎢
⎢
⎣

𝑄⊤
2

0

⎤
⎥
⎥
⎦
[𝑟 𝑓 𝑟]

=
⎡
⎢
⎢
⎣

Ξ−⊤
𝑟 𝑃2𝑟 +⊤

𝑟 𝑄2+𝑄⊤
2𝑟 −⊤

𝑟 𝑃2𝑓 𝑟 +𝑄⊤
2𝑓 𝑟

∗ −⊤
𝑓 𝑟𝑃2𝑓 𝑟 +𝜂2𝐼

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑟 𝑓 𝑟

𝐼 0

⎤
⎥
⎥
⎦

⊤ ⎡
⎢
⎢
⎣

−𝑃2 𝑄2

∗ 𝑃2−(2cos(𝜃𝑙))𝑄2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑟 𝑓 𝑟

𝐼 0

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

𝑟 0

0 𝐼

⎤
⎥
⎥
⎦

⊤ ⎡
⎢
⎢
⎣

−𝐼 0

0 𝜂2𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑟 0

0 𝐼

⎤
⎥
⎥
⎦
⪯ −𝜗𝐼 .

(3.25)

Recall that the transfer function from 𝑓 to 𝑟 , denoted by 𝕋𝑟𝑓 (q), has a state-space realization
given by (𝑟 ,𝑓 𝑟 ,𝑟 ). From Lemma 3.4.1, the last line of (3.25) is equivalent to

⎡
⎢
⎢
⎣

𝕋𝑟𝑓 (e𝑗𝜃)

𝐼

⎤
⎥
⎥
⎦

∗ ⎡
⎢
⎢
⎣

−𝐼 0

0 𝜂2𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝕋𝑟𝑓 (e𝑗𝜃)

𝐼

⎤
⎥
⎥
⎦
= −𝕋∗

𝑟𝑓 (e
𝑗𝜃)𝕋𝑟𝑓 (e𝑗𝜃)+𝜂2𝐼 ⪯ −𝜗𝐼 . (3.26)

Thus, it holds that ‖𝕋𝑟𝑓 (e𝑗𝜃)‖2_(Θ) ≥ 𝜂2 for 𝜃 ∈ Θ. This completes the proof. □

To prove Theorem 3.3.5, we first introduce the following lemma.

Lemma 3.4.3. (Linear transformation of sub-Gaussian signals [96, Lemma 4.3] ) Let 𝕋𝜔𝑟 be
the transfer function from 𝜔 to 𝑟 . If 𝜔 follows iid sub-Gaussian distribution with zero mean
and parameter 𝜆𝜔, the signal 𝑟 is sub-Gaussian with zero mean and respective parameter 𝜆𝑟 =
‖𝕋𝜔𝑟 ‖2𝜆𝜔.
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Proof of Theorem 3.3.5. We first show that the FAR, i.e., 𝜀1, is guaranteed if 𝐽𝑡ℎ is deter-
mined by (3.14) in the absence of faults. From (3.4), the residual 𝑟 = 𝕋𝜔𝑟 (q)[𝜔] since 𝑋 is
decoupled and 𝑓 = 0. According to Lemma 3.4.3, 𝑟 is sub-Gaussian with zero mean and the
parameter 𝜆𝑟 satisfies

𝜆𝑟 = ‖𝕋𝜔𝑟 (q)‖2𝜆𝜔 ≤
√
𝜂∗1𝜆𝜔, (3.27)

where the inequality holds by invoking Theorem 3.3.1. Then, we have

𝐏𝐫[𝐽 (𝑟) > 𝐽𝑡ℎ|𝑓 = 0] = 𝐏𝐫
[
1


𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)‖2 > 𝐽𝑡ℎ
||||
𝑓 = 0

]

(𝑎)
≤ 𝐏𝐫

[

𝑘1+
∑
𝑘=𝑘1

√
𝑛𝑟 ‖𝑟(𝑘)‖∞ >  𝐽𝑡ℎ

||||
𝑓 = 0

]

(𝑏)
≤

𝑘1+
∑
𝑘=𝑘1

𝐏𝐫[‖𝑟(𝑘)‖∞ >
𝐽𝑡ℎ√𝑛𝑟

||||
𝑓 = 0]

(𝑐)
≤ 2 𝑛𝑟 e

− (𝐽𝑡ℎ/
√𝑛𝑟 )2

2𝜆2𝑟
(𝑑)
≤ 2 𝑛𝑟 e

−
𝐽 2𝑡ℎ

2𝑛𝑟 𝜂∗1𝜆
2𝜔 . (3.28)

The inequality (a) holds as a result of the equivalence of vector norms, i.e., ‖𝑟(𝑘)‖2 ≤√𝑛𝑟 ‖𝑟(𝑘)‖∞. The inequality (b) holds due to the fact that

𝐏𝐫[𝑣1+𝑣2 > 𝑣3] ≤ 𝐏𝐫[𝑣1 > 𝑣3/2]+𝐏𝐫[𝑣2 > 𝑣3/2],

where 𝑣1, 𝑣2, 𝑣3 ∈ ℝ+. The inequality (c) is derived from the concentration inequality in
Lemma 3.3.3. And the inequality (d) is established according to (3.27). By substituting (3.14)
into the last inequality, we arrive at 𝐏𝐫[𝐽 (𝑟) > 𝐽𝑡ℎ|𝑓 = 0] ≤ 𝜀1. This completes the first part
of the proof.

Second, we demonstrate that (3.15) holds when faults 𝑓 ∈ Ω𝑓 happen. To do so, we start
by considering the residual, which is given by 𝑟 = 𝕋𝑓 𝑟 [𝑓 ]+𝕋𝜔𝑟 [𝜔] and has an expectation
of 𝐄[𝑟] = 𝕋𝑓 𝑟 [𝑓 ]. Note that 𝑟 −𝐄[𝑟] = 𝕋𝜔𝑟 [𝜔] is sub-Gaussian with the parameter

√
𝜂∗1𝜆𝜔

as stated before. Thus, for a positive scalar 𝜖 ∈ ℝ+, we have

𝐏𝐫

{
𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)−𝐄[𝑟(𝑘)]‖∞ >  𝜖
||||
𝑓 ∈ Ω𝑓

}

≤ 2 𝑛𝑟 e
− 𝜖2
2𝜂∗1𝜆

2𝜔 ,

which is equivalent to

𝐏𝐫

{
𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)−𝐄[𝑟(𝑘)]‖∞ ≤  𝜖
||||
𝑓 ∈ Ω𝑓

}

≥ 1−2 𝑛𝑟 e
− 𝜖2
2𝜂∗1𝜆

2𝜔 .

Since it holds that∑𝑘1+
𝑘=𝑘1 (‖𝐄[𝑟(𝑘)]‖∞−‖𝑟(𝑘)‖∞) ≤ ∑𝑘1+

𝑘=𝑘1 ‖𝑟(𝑘)−𝐄[𝑟(𝑘)]‖∞, we have

𝐏𝐫

{
𝑘1+
∑
𝑘=𝑘1

(‖𝐄[𝑟(𝑘)]‖∞−‖𝑟(𝑘)‖∞) ≤  𝜖
||||
𝑓 ∈ Ω𝑓

}

≥ 1−2 𝑛𝑟 e
− 𝜖2
2𝜂∗1𝜆

2𝜔 .
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Let  𝜖 = ∑𝑘1+
𝑘=𝑘1 ‖𝐄[𝑟(𝑘)]‖∞− 𝐽𝑡ℎ > 0. The above inequality becomes

𝐏𝐫

{
𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)‖∞ ≥  𝐽𝑡ℎ
||||
𝑓 ∈ Ω𝑓

}

≥ 1−2 𝑛𝑟 e
− 𝜖2

2𝜂∗1𝜆
2𝜔 . (3.29)

Besides, we have the following inequalities

𝑘1+
∑
𝑘=𝑘1

‖𝐄[𝑟(𝑘)]‖∞ ≥
1
√𝑛𝑟

𝑘1+
∑
𝑘=𝑘1

‖𝐄[𝑟(𝑘)]‖2 =
1
√𝑛𝑟

𝑘1+
∑
𝑘=𝑘1

‖‖𝕋𝑓 𝑟 [𝑓 (𝑘)]‖‖2 ≥
√
𝜂∗2√𝑛𝑟
 𝑓 ,

where the first inequality holds because of the equivalence of vector norms and the second
inequality follows from the result in Theorem 3.3.1, i.e., ‖𝕋𝑓 𝑟 ‖2_(Θ) ≥ 𝜂∗2 , and ‖𝑓 (𝑘)‖2 ≥ 𝑓
for 𝑓 ∈ Ω𝑓 . To make sure that 𝜖 is positive, we let

𝜖 =
1


𝑘1+
∑
𝑘=𝑘1

‖𝐄[𝑟(𝑘)]‖∞−𝐽𝑡ℎ >
√
𝜂∗2/𝑛𝑟𝑓 − 𝐽𝑡ℎ > 0.

Thus, the lower bounds of 𝑓 should satisfy 𝑓 > 𝐽𝑡ℎ
√
𝑛𝑟/𝜂∗2 .

From the inequalities (3.29), we obtain

𝐏𝐫
{
𝐽 (𝑟) > 𝐽𝑡ℎ||𝑓 ∈ Ω𝑓

}
= 𝐏𝐫

{
1


𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)‖2 > 𝐽𝑡ℎ
||||
𝑓 ∈ Ω𝑓

}

≥ 𝐏𝐫

{
1


𝑘1+
∑
𝑘=𝑘1

‖𝑟(𝑘)‖∞ > 𝐽𝑡ℎ||𝑓 ∈ Ω𝑓

}

≥ 1−2 𝑛𝑟 e
− 𝜖2

2𝜂∗1𝜆
2𝜔 ≥ 1−2 𝑛𝑟 e

− (𝑓
√

𝜂∗2/𝑛𝑟 −𝐽𝑡ℎ)
2

2𝜂∗1𝜆
2𝜔 .

This completes the proof. □

3.4.2 Proofs of Results in Fault Estimation
To prove Theorem 3.3.7, we compute the covariance of the outputwhen a linear time-invariant
system is driven by the white noise signal through the following lemma.

Lemma 3.4.4. (Covariance of the estimate of the fault) Consider the design form of the filter
in (3.4) with the unknown signal 𝑋 decoupled. The noise 𝜔 is assumed to be an iid white noise
and faults 𝑓 are considered to be deterministic. The covariance matrix of 𝑟 is given by

𝐄[(𝑟(𝑘)−𝐄[𝑟(𝑘)])(𝑟(𝑘)−𝐄[𝑟(𝑘)])∗] =
1
2𝜋 ∫

𝜋

−𝜋
𝕋𝜔𝑟 (e𝑗𝜃)𝐄[𝜔(𝑘)𝜔∗(𝑘)]𝕋∗

𝜔𝑟 (e
𝑗𝜃)𝑑𝜃.
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Proof. Let ℎ𝜔𝑟 (𝑘) be the impulse response of 𝕋𝜔𝑟 (q). The covariance function of 𝑟(𝑘)
denoted by 𝑟 (𝜏) for 𝜏 ∈ ℕ can be written as

𝑟 (𝜏) = 𝐄[(𝑟(𝑘 +𝜏)−𝐄[𝑟(𝑘 +𝜏)])(𝑟(𝑘)−𝐄[𝑟(𝑘)])∗]

= 𝐄
[(

∞
∑
𝑚=0

ℎ𝜔𝑟 (𝑚)𝜔(𝑘 +𝜏 −𝑚))(

∞
∑
𝑙=0

ℎ𝜔𝑟 (𝑙)𝜔(𝑘 − 𝑙))

∗

]

=
∞
∑
𝑚=0

∞
∑
𝑙=0

ℎ𝜔𝑟 (𝑚)𝐄[𝜔(𝑘 +𝜏 −𝑚)𝜔∗(𝑘 − 𝑙)]ℎ∗𝜔𝑟 (𝑙)

=
∞
∑
𝑚=0

∞
∑
𝑙=0

ℎ𝜔𝑟 (𝑚)𝜔(𝜏 −𝑚+ 𝑙)ℎ∗𝜔𝑟 (𝑙),

where 𝜔(𝜏−𝑚+𝑙) is the covariance function of𝜔. Now, we proceed to derive the spectrum
of 𝑟(𝑘) denoted by Γ𝑟 (q) via applying the 𝑍-transform on 𝑟 (𝜏), which is

Γ𝑟 (q) =
∞
∑
𝑘=−∞

𝑟 (𝑘)q−𝑘 =
∞
∑
𝑘=−∞

∞
∑
𝑚=0

∞
∑
𝑙=0

ℎ𝜔𝑟 (𝑚)𝜔(𝑘 −𝑚+ 𝑙)ℎ∗𝜔𝑟 (𝑙)q
−(𝑘−𝑚+𝑙)

q
−𝑚
q
𝑙

=
∞
∑
𝑚=0

ℎ𝜔𝑟 (𝑚)q−𝑚
∞
∑
𝑘=−∞

𝜔(𝑘 −𝑚+ 𝑙)q−(𝑘−𝑚+𝑙)
∞
∑
𝑙=0

ℎ∗𝜔𝑟 (𝑙)q
𝑙

= 𝕋𝜔𝑟 (q)Γ𝜔(q)𝕋∗
𝜔𝑟 (q

−∗),

where Γ𝜔(q) is the spectrum of 𝜔. When 𝜏 = 0, since 𝜔 is an uncorrelated sequence, we
have

𝑟 (0) = 𝐄[(𝑟(𝑘)−𝐄[𝑟(𝑘)])(𝑟(𝑘)−𝐄[𝑟(𝑘)])∗]

=
∞
∑
𝑚=0

∞
∑
𝑙=0

ℎ𝜔𝑟 (𝑚)𝐄[𝜔(𝑘 −𝑚)𝜔∗(𝑘 − 𝑙)]ℎ∗𝜔𝑟 (𝑙)

=
∞
∑
𝑚=0

ℎ𝜔𝑟 (𝑚)𝐄[𝜔(𝑘)𝜔∗(𝑘)]ℎ∗𝜔𝑟 (𝑚)

=
1

2𝜋𝑗 ∫
𝜋

−𝜋
Γ𝑟 (q)q−1𝑑q

=
1

2𝜋𝑗 ∫
𝜋

−𝜋
𝕋𝜔𝑟 (q)𝐄[𝜔(𝑘)𝜔∗(𝑘)]𝕋∗

𝜔𝑟 (q)q
−1𝑑q,

where the inverse 𝑍-transform and the fact that q−∗ = q on the unit circle are used in the
last two equations. Also, due to the derivative 𝑑q/𝑑𝜃 = 𝑗 e𝑗𝜃, we arrive at

𝐄[(𝑟(𝑘)−𝐄[𝑟(𝑘)])(𝑟(𝑘)−𝐄[𝑟(𝑘)])∗] =
1
2𝜋 ∫

𝜋

−𝜋
𝕋𝜔𝑟 (e𝑗𝜃)𝐄[𝜔(𝑘)𝜔∗(𝑘)]𝕋∗

𝜔𝑟 (e
𝑗𝜃)𝑑𝜃.

This completes the proof. □

Proof of Theorem 3.3.7. First, Theorem 3.3.1 demonstrates that (3.20a) is equivalent to
conditions (3.6a). Second, we establish that (3.20b) implies the satisfaction of (3.6b). Recall
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that 𝑟 = 𝕋𝑓 𝑟 (q)[𝑓 ]+𝕋𝜔𝑟 (q)[𝜔] where 𝕋𝜔𝑟 (q) = ̄Ψ𝑊 (q) and the fault signal is assumed to
be deterministic. According to Lemma 3.4.4, the covariance of 𝑟 satisfies

𝐄[(𝑟(𝑘)−𝐄[𝑟(𝑘)])(𝑟(𝑘)−𝐄[𝑟(𝑘)])∗] =
1
2𝜋 ∫

𝜋

−𝜋
𝕋𝜔𝑟 (e𝑗𝜃)𝐄[𝜔(𝑘)𝜔∗(𝑘)]𝕋∗

𝜔𝑟 (e
𝑗𝜃)𝑑𝜃

⪯
𝜆2𝜔
2𝜋 ∫

𝜋

−𝜋
𝕋𝜔𝑟 (e𝑗𝜃)𝕋∗

𝜔𝑟 (e
𝑗𝜃)𝑑𝜃

= ̄
𝜆2𝜔
2𝜋 ∫

𝜋

−𝜋
Ψ𝑊 (e𝑗𝜃)Ψ∗

𝑊 (e𝑗𝜃)𝑑𝜃̄ ⊤

= ̄Φ̄ ⊤𝜆2𝜔, (3.30)

where the aforementioned inequality holds due to its demonstration through Taylor series
expansion and comparison of terms of the same power for 𝜙 (defined in Lemma 3.3.3). It
can be shown that for sub-Gaussian random variables, 𝐄[𝜔(𝑘)𝜔∗(𝑘)] ⪯ 𝜆2𝜔𝐼 . As a result, the
condition (3.6b) which is introduced to suppress the effect of the noise on 𝑟 can be achieved
by bounding the trace of ̄Φ̄ ⊤. This also coincides with the definition of the 2 norm.

In the last part of the proof, we show that (3.20c) and (3.20d) enforce the relaxed
estimation condition (3.17). The transfer function 𝕋𝑓 𝑟 (q) = ̄Ψ𝐺(q) according to (3.19).
Substituting ̄Ψ𝐺(q) into (3.17) directly leads to (3.20a) and (3.20b), respectively. This
completes the proof. □

Proof of Proposition 3.3.9. We first show that the upper bound holds. Since the optimiza-
tion problem (3.16) is an exact reformulation of Problem 2, applying the AO approach to
solve (3.16) leads to the convergence of the objective function value to the optimal value  ∗

of Problem 2. Thus, the derived objective function value, i.e., 𝜂∗1,𝐴𝑂 + (1−𝛽)𝜂∗2,𝐴𝑂 , is an
upper bound on  ∗.

In the second part of the proof, we demonstrate the satisfaction of the lower bound by
contradiction. Suppose that

min
 (q)

1
𝜅

𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼 ‖22 ≥ min
 (q)

‖𝕋𝑓 𝑟 (e𝑗𝜃)− 𝐼 ‖2∞(Θ).

Let  ∗(q) and ∗
𝑅𝑅(q) denote the optimal solutions to

min
 (q)

‖𝕋𝑓 𝑟 (e𝑗𝜃)− 𝐼 ‖2∞(Θ) and min
 (q)

1
𝜅

𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼 ‖22,

respectively. Recall the definition of the finite-frequency ∞ norm. Then, the following
inequalities hold

1
𝜅

𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖 , ∗
𝑅𝑅(q))− 𝐼 ‖

2
2 ≥ sup

𝜃∈Θ
‖𝕋𝑓 𝑟 (e𝑗𝜃, ∗(q))− 𝐼 ‖22

≥
1
𝜅

𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖 , ∗(q))− 𝐼 ‖22,
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where 𝕋𝑓 𝑟 (e𝑗𝜃𝑖 , ∗
𝑅𝑅(q)) indicates the usage of  ∗

𝑅𝑅(q) in 𝕋𝑓 𝑟 , and the rest are simi-
lar. The above inequality contradicts the fact that  ∗

𝑅𝑅(q) is the optimal solution to
min (q)

1
𝜅 ∑

𝜅
𝑖=1 ‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼 ‖22. Thus, we have

min
 (q)

1
𝜅

𝜅
∑
𝑖=1

‖𝕋𝑓 𝑟 (e𝑗𝜃𝑖)− 𝐼 ‖22 ≤ min
 (q)

‖𝕋𝑓 𝑟 (e𝑗𝜃)− 𝐼 ‖2∞(Θ).

Additionally, the constraints (3.6a) and (3.6b) on noise suppression and disturbance decou-
pling are identical in both Problems 2 and 2r. As a result, the optimal objective value of
Problem 2r, obtained by solving (3.20), serves as a lower bound for  ∗. This completes the
proof. □

3.5 Simulation Results
In this section, we validate the effectiveness of the proposed fault detection and estimation
methods on a synthetic non-minimum phase system and a multi-area power system.

3.5.1 Non-minimum Phase Systems
Consider a synthetic non-minimum phase system

𝕋(𝑠) =
(𝑠 −2)(𝑠 +0.1)

(𝑠 +0.1)(𝑠 +0.5)(𝑠 +0.8)
.

The state-space realization is

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

−1.4 −0.53 −0.04

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐵𝑓 =

⎡
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎦

, and 𝐶 = [1 −1.9 −0.2] .

We discretize the model with the sampling period 0.1s. Note that the inverse system of
a non-minimum phase system is unstable because of the zeros located at the right-half
complex plane (or outside of the unit disk for discrete-time cases). This makes the fault
estimation problem of non-minimum phase systems quite challenging [147]. In this part, we
use the methods developed in Theorem 3.3.6 (ER, exact reformulation) and Theorem 3.3.7
(RR, relaxed requirement) to estimate the fault signal that occurs in the above non-minimum
phase system without considering disturbances and noise. We also compare the two meth-
ods with the UIO (unknown input observer) method [43], the LS (least square) method [59],
and the IUIE (inversion-based unknown input estimation) method [60]. Both the UIO, LS,
and IUIE methods are proven to be asymptotically unbiased estimation methods under
certain conditions.

The frequency domain of interest is Θ = [0,0.3] and the fault signal is

𝑓 (𝑘) = 0.05sin(0.18𝑘)+0.06sin(0.25𝑘).

We first design a fault estimation filter with the RR method in Theorem 3.3.7, where the
parameters are set as 𝑑𝑁 = 4, 𝛽 = 0. We choose a stable denominator 𝑎(q) = (q−0.1)5 and 7
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Figure 3.2: Fault estimates.
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Figure 3.3: Error of fault estimates.

frequency points {0,0.05,0.1,…,0.3}. By solving the optimization problem (3.20), we obtain
the numerator  ∗

𝑅𝑅(q) and the optimal values ∑𝜅
𝑖=1 𝜂̄∗2𝑖,𝑅𝑅 = 1.42 and ∑𝜅

𝑖=1 𝜂̄∗3𝑖,𝑅𝑅 = 0.06.
Then, we fix the denominator 𝑎(q) and take  ∗

𝑅𝑅(q) as the initial condition when using
the ER method in Theorem 3.3.6 and Algorithm 1 to design the fault estimation filter.
We have 𝜂∗2,𝐴𝑂 = 0.29 after 50 iteration steps. According to (3.21), the optimality gap
is 0.21 ≤  ∗ ≤ 0.29.

The fault signal and its estimates obtained by different methods are presented in
Figure 3.2, while errors of fault estimates are shown in Figure 3.3. As seen in Figure 3.2,
the IUIE method performs well initially but experiences divergence at around 𝑘 = 230.
This is because the inversion-based estimation filter is unstable. Both the LS and UIO
methods produce high estimation errors as shown in Figure 3.3. In comparison with the
above methods, the proposed ER and RR methods offer better estimation performance. In
Figure 3.4, we further demonstrate that increasing the degree of the RR filter leads to a
reduction in the estimation error.
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Figure 3.4: Error of fault estimates with different degrees.

3.5.2 Multi-area Power Systems

Consider a three-area power system described in [119]. Suppose each area of the power
system can be represented by a model with equivalent governors, turbines, and generators.
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Figure 3.5: Illustration of the 3-area power system [107]

Then, in area 𝑖 for 𝑖 ∈ {1,2,3}, the dynamics of frequency Δ𝒘𝑖 can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝒘̇𝑖 = 𝒘0
2ℎ𝑖𝑆𝐵𝑖

(Δ𝑝𝑚𝑖 −Δ𝑝𝑡𝑖𝑒𝑖 −Δ𝑝𝑑𝑖 −
1
𝐷𝑙𝑖

Δ𝒘𝑖),

Δ𝑝𝑚𝑖 =∑𝐺𝑒𝑛𝑖
𝑔=1 Δ𝑝𝑚𝑖𝑔 , Δ𝑝𝑡𝑖𝑒𝑖 =∑𝑗∈𝑁𝑏𝑟𝑖 Δ𝑝𝑡𝑖𝑒𝑖𝑗 ,

Δ𝑝̇𝑚𝑖𝑔 = − 1
𝑇𝑐ℎ𝑖𝑔

(Δ𝑝𝑚𝑖𝑔 +
1
𝑆𝑖Δ𝒘𝑖−𝜌𝑖𝑔Δ𝑝𝑎𝑔𝑐𝑖),

Δ𝑝̇𝑡𝑖𝑒𝑖𝑗 = 2𝜋𝑃𝑇𝑖𝑗 (Δ𝒘𝑖−Δ𝒘𝑗 ),

𝐴𝐶𝐸𝑖 = 𝜁𝑖Δ𝒘𝑖+Δ𝑝𝑡𝑖𝑒𝑖 ,

Δ𝑝̇𝑎𝑔𝑐𝑖 = −𝐾𝐼𝑖𝐴𝐶𝐸𝑖,

(3.31)

where ℎ𝑖 represents the equivalent inertia constant, 𝑓0 denotes the nominal frequency, 𝑆𝐵𝑖
is the power base, Δ𝑝𝑚𝑖 denotes the total generated power, Δ𝑝𝑡𝑖𝑒,𝑖 denotes the total tie-line
power exchanges from area 𝑖, Δ𝑝𝑑𝑖 denotes the deviation caused by the load, and 1/𝐷𝑙𝑖Δ𝒘𝑖
is the deviation caused by the frequency dependency of the load. Let 𝐺𝑒𝑛𝑖 and 𝑁𝑏𝑟𝑖 be the
number of generators and the set of areas that connect to area 𝑖, respectively. The termΔ𝑝𝑚𝑖𝑔
denotes the power generated by the 𝑔th generator, Δ𝑝𝑡𝑖𝑒𝑖𝑗 is the power exchanges between
area 𝑖 and 𝑗 , and 𝑃𝑇𝑖𝑗 is the maximum transfer power on the line, which is assumed to be
constant. It holds that Δ𝑝𝑡𝑖𝑒𝑖𝑗 = −Δ𝑝𝑡𝑖𝑒𝑗𝑖 . For the dynamics of Δ𝑝𝑚𝑖𝑔 , 𝑇𝑐ℎ𝑖𝑔 is the governor
turbine’s time constant, and 𝑆𝑖 is the drop coefficient. The term Δ𝑝𝑎𝑔𝑐𝑖 is the Automatic
Generation Control (AGC) signal and 𝜌𝑖𝑔 is the participating factor, i.e., ∑𝐺𝑒𝑛𝑖

𝑔=1 𝜌𝑖𝑔 = 1. The
area control error signal is denoted by 𝐴𝐶𝐸𝑖 and 𝜁𝑖 is the frequency bias factor. The AGC
signal Δ𝑝𝑎𝑔𝑐𝑖 in the last line of (3.31) is in integration of 𝐴𝐶𝐸𝑖 with the integral gain 𝐾𝐼𝑖 .

Note that different faults may happen due to the vulnerabilities of multi-area systems.
Here, we consider the following fault scenarios:
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(i) faults on the tie line between areas that cause deviation in frequency, i.e., Δ𝑝̇𝑡𝑖𝑒𝑖𝑗 =
2𝜋𝑃𝑇𝑖𝑗 (Δ𝒘𝑖−Δ𝒘𝑗 +𝑓𝑡𝑖𝑒𝑖𝑗 );

(ii) faults on the AGC part of area 𝑖, i.e., Δ𝑝̇𝑎𝑔𝑐𝑖 = −𝐾𝐼𝑖(𝐴𝐶𝐸𝑖+𝑓𝑎𝑔𝑐𝑖);

(iii) faults on the sensors of area 𝑖, i.e., 𝑦𝑖(𝑡) = 𝐶𝑖𝑥𝑖(𝑡) +𝐷𝑓 ,𝑖𝑓𝑦𝑖 , where 𝑦𝑖, 𝐶𝑖 and 𝑥𝑖 are
the output, the output matrix, and states of area 𝑖, respectively. The matrix 𝐷𝑓 ,𝑖
characterizes the sensors that are vulnerable.

Based on the dynamics (3.31) and descriptions of the faults, we get the following state-space
model of area 𝑖 with faults

⎧⎪⎪
⎨⎪⎪⎩

𝑥̇𝑖(𝑡) = 𝐴𝑖𝑖𝑥𝑖(𝑡)+𝐵𝑑,𝑖Δ𝑝𝑑𝑖(𝑡)+𝐵𝜔,𝑖𝜔𝑖(𝑡)+∑𝑗∈𝑁𝑏𝑟𝑖
𝐴𝑖𝑗𝑥𝑗 (𝑡)+𝐵𝑓 ,𝑖𝑓𝑖(𝑡)

𝑦𝑖(𝑡) = 𝐶𝑖𝑥𝑖(𝑡)+𝐷𝜔,𝑖𝜔𝑖(𝑡)+𝐷𝑓 ,𝑖𝑓𝑦𝑖(𝑡),
(3.32)

where the state 𝑥𝑖 = [Δ𝑝𝑡𝑖𝑒𝑖 Δ𝒘𝑖 {Δ𝑝𝑚𝑖𝑔 }1∶𝐺𝑒𝑛𝑖 Δ𝑝𝑎𝑔𝑐𝑖]
⊤, 𝑓𝑖 = [{𝑓𝑡𝑖𝑒𝑖𝑗 }𝑗∈𝑁𝑏𝑟𝑖 𝑓𝑎𝑔𝑐𝑖]

⊤ is the fault
signal. We introduce a noise signal 𝜔 in the system. The matrices 𝐴𝑖𝑖, 𝐵𝑑,𝑖, 𝐴𝑖𝑗 , 𝐵𝑓 ,𝑖,𝐷𝑓 ,𝑖
can be derived based on the dynamics (3.31) and the vulnerable parts of area 𝑖. The output
matrix 𝐶𝑖 is a tall or square matrix with the full column rank, i.g., 𝐶𝑖 = 𝐼 . The matrices 𝐵𝜔,𝑖
and 𝐷𝜔,𝑖 indicate which signal is affected by the noise. By stacking the state of each area,
i.e., 𝑥 = [𝑥⊤1 , 𝑥⊤2 , 𝑥⊤3 ]⊤ and discretizing the system with sampling period 0.1𝑠, we obtain the
discrete-time state-space model for the whole three-area power system in the form of (3.1).
The system matrices are given by

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐵𝑑 = diag(𝐵𝑑,1,𝐵𝑑,2,𝐵𝑑,3), 𝐵𝑓 = diag(𝐵𝑓 ,1,𝐵𝑓 ,2,𝐵𝑓 ,3), 𝐵 = 𝐷 = 0,

𝐵𝜔 = diag(𝐵𝜔,1,𝐵𝜔,2,𝐵𝜔,3), 𝐷𝜔 = diag(𝐷𝜔,1,𝐷𝜔,2,𝐷𝜔,3), and 𝐷𝑓 = diag(𝐷𝑓 ,1,𝐷𝑓 ,2,𝐷𝑓 ,3).

The parameters of the system are given as follows: (1) The nominal frequency (Hz),
𝒘0 = 60; (2) The inertia time constant (MW/MVA), ℎ1 = 4.41, ℎ2 = 4.15, ℎ3 = 3.46; (3) The
power base (MVA), 𝑆𝐵1 = 1500, 𝑆𝐵2 = 2100, 𝑆𝐵3 = 1700; (4) The damping coefficient (Hz/MW),
𝐷𝑙1 = 0.0064, 𝐷𝑙2 = 0.0045, 𝐷𝑙3 = 0.0056; (5) The number of generators, 𝐺𝑒𝑛1 = 2, 𝐺𝑒𝑛2 =
3,𝐺𝑒𝑛3 = 2; (6) The time constant of governor-turbine: 𝑇𝑐ℎ𝑖𝑔 = 1.4950 for all 𝑖 ∈ {1,2,3}
and 𝑔 ∈ {1,…,𝐺𝑒𝑛𝑖}; (7) The drop control coefficient (MW/Hz), 𝑆1 = 0.002, 𝑆2 = 0.0014, 𝑆3 =
0.0018; (8) The participation factor, 𝜌11 = 𝜌12 = 𝜌31 = 𝜌32 = 1/2, 𝜌21 = 𝜌22 = 𝜌23 = 1/3; (9)
The maximum transfer power (MW), 𝑃𝑇12 = 𝑃𝑇13 = 𝑃𝑇23 = 2100; (10) The frequency bias
factor (Hz/MW), 𝜁1 = 500.0064, 𝜁2 = 700.0045, 𝜁3 = 566.6723; (11) The AGC integral gain,
𝐾𝐼1 = 𝐾𝐼2 = 𝐾𝐼3 = 0.65.

We consider faults in the tie-line of area 1, AGC part of area 2, and the measurement of
area 1. The frequency range Θ = [0,0.3]. The faulty matrices are

𝐵𝑓 ,1 = [2𝜋𝑃𝑇12 0 0 0 0]
⊤, 𝐵𝑓 ,2 = [0 0 0 0 0 −𝐾𝐼2]

⊤, 𝐷𝑓 ,1 = [0 1 0 0 0]⊤,and
𝐵𝑓 ,3 = 𝐷𝑓 ,2 = 𝐷𝑓 ,3 = 0.
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Figure 3.6: The value of the evaluation function
and the diagnosis threshold.
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Figure 3.7: The _ indices for residuals with
different dimensions.

The fault signals are

𝑓𝑡𝑖𝑒12(𝑘) = 0.05sin(0.2𝑘)+0.06sin(0.3𝑘),
𝑓𝑎𝑔𝑐2(𝑘) = 0.08sin(0.15𝑘)+0.03sin(0.25𝑘), and 𝑓𝑦1(𝑘) = 0.1.

The unknown loads are Δ𝑝𝑑1(𝑘) = Δ𝑝𝑑2(𝑘) = Δ𝑝𝑑3(𝑘) = 1+𝑣(𝑘) with uncertain value 𝑣(𝑘).
The signal 𝜔 is a white noise with zero mean and variance 0.01. The matrices 𝐵𝜔 = 0
and 𝐷𝜔 = 𝟏, where 𝟏 represents a column vector with all elements 1. With the above
settings, we now present the simulation results in the following parts.

Fault detection results: For the design of the fault detection filter, we set the dimension
of the residual 𝑛𝑟 = 3, the degree 𝑑𝑁 = 2, and the weight 𝛼 = 0.5 by using Theorem 3.3.1
and Algorithm 1. Note that the dimension of the filter is 𝑛𝑟 (𝑑𝑁 +1) = 9, which is smaller
than that of the power system 𝑛𝑥 = 16. The obtained 2 norm value ‖𝕋𝜔𝑟 ‖2 = 0.0053 and
the_ index ‖𝕋𝑓 𝑟 ‖_(Θ) = 0.0254 after 15 iteration steps by Algorithm 1. We determine the
threshold 𝐽𝑡ℎ = 0.0122 according to Theorem 3.3.5 with the acceptable FAR 𝜀1 = 0.001 and
time interval  = 10. Then, we compute FDR 𝜀2 = 0.9909 for 𝑓 > 0.17.

Figure 3.6 presents the changes in the evaluation function’s value. One can see that
the value of 𝐽 (𝑟(𝑘)) remains below the threshold 𝐽𝑡ℎ for 𝑘 ≤ 50 and exceeds 𝐽𝑡ℎ immedi-
ately after faults happen at 𝑘 = 50, thus indicating the detection of faults. Moreover, the
threshold derived using (3.14) is found to be less conservative than the threshold derived
using Chebyshev’s inequality, i.e., 𝜆𝜔

√
 𝑛𝑟𝜂⋆1/𝜖1 = 0.1603. Finally, let us consider a more

stringent situation, e.g., 𝐷𝜔 = 0.1𝐼 . We show in Figure 3.7 that increasing the dimension of
the residual can lead to better _ indices.

Fault estimation results: When using the proposed ER and RR methods to design
fault estimation filters, we choose the degree of the numerator 𝑑𝑁 = 4 and the dimension
of the residual 𝑛𝑟 = 𝑛𝑓 . For the RR method, we select a stable denominator 𝑎(q) and some
frequency points between [0,0.3], which are {0,0.1,0.2,0.3}. To validate the performance
of ER and RR methods, we compare them with the UIO, LS, and IUIE methods in the two
cases of no noise and considering noise. Note that we revised the LS method in [59] by
decoupling the unknown input, which is not considered in the original work. When using
the IUIE method, we simultaneously estimate the disturbance and fault signals.

In the noise-free situation, we choose the weight 𝛽 = 0 in the optimization prob-
lems (3.16) and (3.20). We first design a fault estimation filter with the ER method. By solv-
ing (3.16) with AO approach, we obtain 𝜂∗2,𝐴𝑂 = 0.0172 after 50 iteration steps. When using
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Figure 3.8: Estimates of 𝑓𝑡𝑖𝑒12 without noise.
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Figure 3.9: Estimates of 𝑓𝑎𝑔𝑐2 without noise.
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Figure 3.10: Estimates of 𝑓𝑦1 without noise.
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Figure 3.11: The estimation error.

the RRmethod to design the filter, we have∑𝜅
𝑖=1 𝜂̄∗2𝑖,𝑅𝑅 = 2.1×10−4 and∑𝜅

𝑖=1 𝜂̄∗3𝑖,𝑅𝑅 = 1.1×10−4.
The estimation results are presented in Figures 3.8-3.11. Figures 3.8-3.10 show the esti-
mates of the tie-line fault 𝑓𝑡𝑖𝑒12 , the AGC fault 𝑓𝑎𝑔𝑐2 , and the sensor fault 𝑓𝑦1 by different
methods. Since the UIO, LS, and IUIE methods both obtain unbiased estimation results
with a one-step delay, estimation errors of the three methods are the same as shown in
Figure 3.11. Incorporating the frequency information of faults can reduce the conservatism
of designing fault estimation filters in the entire frequency domain. Thus, one can see from
Figure 3.11 that the proposed ER and RR methods lead to smaller errors than the other
three methods.

In the case of considering noise, we set the weight 𝛽 = 0.1. We design a fault estimation
filter with the ER method. It takes 50 iteration steps to achieve 𝜂∗1,𝐴𝑂 = 6.6×10−5 and 𝜂∗2,𝐴𝑂 =
0.0217 by using Algorithm 1. For the RR method, we have 𝜂∗1,𝑅𝑅 = 1× 10−7, ∑𝜅

𝑖=0 𝜂̄∗2𝑖,𝑅𝑅 =
4.2×10−6, and∑𝜅

𝑖=0 𝜂̄∗3𝑖,𝑅𝑅 = 3.2×10−4 by solving (3.20). Since we ignore the effects of noises
in the design of the UIO, LS, and IUIE methods, we consider a much smaller noise whose
variance is 2.5 × 10−5 for these three methods. Figures 3.12-3.14 depict the estimates of the
fault signals in the presence of noise by different methods. One can see from Figure 3.13
that the estimates of the AGC fault signal obtained by the UIO, LS, and IUIE methods are
corrupted by noise seriously, which is the main source of the estimation error. In contrast,
thanks to the noise suppression and finite frequency design, the ER and RR methods
achieve smaller estimation errors than the other three methods under the effects of noise
as illustrated in Figure 3.15.
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Figure 3.12: Estimates of 𝑓𝑡𝑖𝑒12 with noise.
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Figure 3.13: Estimates of 𝑓𝑎𝑔𝑐2 with noise.
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Figure 3.14: Estimates of 𝑓𝑦1 with noise.
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Figure 3.15: The estimation error.

3.6 Conclusions
In this chapter, we propose design methods for FDE filters in a finite-frequency domain
for linear time-invariant discrete-time systems with unknown inputs and stochastic noise.
Based on an integration of residual generation and norm approaches, the optimal design of
fault detection filters that simultaneously decouple the unknown input, suppress noise,
and enhance fault sensitivity is formulated into an optimization problem. Considering the
random nature of the residual, we design detection thresholds that provide probabilistic
guarantees on false alarm and fault detection rates. We further propose the design method
of fault estimation filters by changing constraints in the same optimization framework of
the fault detection filter design. To reduce computational complexity, we relax the fault
estimation conditions and obtain a quadratic programming problem to solve the desired
fault estimation filters. Simulation results of a synthetic non-minimum phase system
and a multi-area power system show the effectiveness of the proposed approaches. In
future work, the first research direction is to develop fault-tolerant control schemes by
using estimation to compensate for the effect of faults. Since nonlinearity exists widely
in practical systems, our second research direction would be focused on extending the
derived optimization framework to nonlinear systems.
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4.1 Introduction
In the past decade, inverter-based microgrid systems have gained popularity as power
systems become increasingly complex and rely more on renewable energy sources [148].
These microgrid systems help integrate renewable energy sources into power systems and
regulate the amount of power supplied to customers to provide high-quality power and
reduce energy costs. They can also operate independently and allow for local control of
distributed generation, for example, when the main grid is unavailable due to blackouts or
storms [149]. This greatly increases the reliability of power systems.

Although inverter-based microgrid systems offer many benefits, they are susceptible to
faults that can pose safety risks and damage equipment. Therefore, it is crucial to promptly
and accurately detect faults to ensure the safe operation of inverter-basedmicrogrid systems.
However, the conventional protection strategy for power systems, such as overcurrent
detection, is inefficient in detecting faults in inverter-based microgrid systems [150]. This
is because the fault current only slightly deviates from the nominal value due to a current
limiter embedded in the inverter controller [151]. According to IEEE Std. 1547.2 [152], the
inverter current when the microgrid systems work in the islanded mode is restricted to 1-2
times the rated current during short-circuit faults.

The fault detection problem is more difficult when considering disturbances that have
similar effects on the output current as faults. Therefore, developing an effective fault
detection scheme for inverter-based microgrid systems in the presence of disturbances re-
mains a challenge, particularly when only the output current is available as a measurement.
In this chapter, we focus on the detection of ground faults as they are the most common
and problematic type of faults in inverter-based microgrid systems [152, 153].

To tackle the fault detection problem for microgrid systems, researchers have developed
several differential methods that rely on communication infrastructures between relays.
These methods measure the difference in the current symmetrical components [154], the
energy content of current [155], instantaneous current with comparative voltage [156],
and traveling wave polarities [157] to detect faults. Some advanced signal processing
techniques, such as sequence components [154, 158] and wavelet analysis [159], are usually
combined with differential methods to detect faults in microgrid systems as well. Though
these methods show effectiveness in detecting faults in microgrid systems, dependence
on communication devices can degrade the reliability of systems, as these devices are
vulnerable to faults and cyber attacks. Additionally, most differential methods require the
installation of new equipment, sensors, and communication infrastructure, which can be
expensive and time-consuming to implement and maintain [160].

In addition to differential methods, active fault detection methods have emerged as
another popular solution to fault detection for microgrid systems in recent years. By
introducing carefully designed input signals into the system, active fault detection methods
can enhance the detectability of faults. In [161], the authors inject a small negative-sequence
current (< 3%) into the microgrid system and detect faults by using a signal processing
technique to quantify the resulting negative-sequence voltage. Most recently, the authors
in [162] provide an optimal input design method ensuring that the output sets of healthy
and faulty modes of an inverter-based microgrid system are separated with a probabilistic
guarantee. Then, it compares the output of the real-time process with the output sets to
generate diagnosis results. However, the injected input signals can degrade the system
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performance to some extent. Additionally, to obtain optimal input sequences as described
in [162], an optimization problem must be solved each time, which can be computationally
intensive and is unsuitable for online monitoring.

In contrast to differential methods, fault detection methods based on residual genera-
tion can be less dependent on the communication infrastructure and additional sensors,
as these methods make full use of modeling information of systems. Moreover, residual
generation-based methods are more suitable for online monitoring than active fault de-
tection methods since they do not require continuous updates and have no impact on
system performance. Let us briefly review several approaches to designing a residual
generator. In the field of fault detection, the residual generator is generally constructed
using observer-based or parity-space methods [2]. To handle disturbances, optimization
techniques can be employed to determine the parameters of the residual generator, ensuring
that the residual is sensitive to faults while being robust against disturbances [31, 163].

Alternatively, decomposition techniques such as the unknown input observer (UIO) [30]
can be utilized to decouple disturbances from the residual. However, we found that the UIO
approach could fail to satisfy the detectability condition when applied to inverter-based
microgrid systems with a limited number of measurements, even when disturbances can
be fully decoupled. In [45], the authors propose a parity-space-like approach for designing
residual generators in the framework of the linear differential-algebraic equation (DAE).
The derived residual generator can have lower order than that of the system, which
reduces computational complexity when dealing with large-scale systems. Additionally,
this framework provides design freedom. In specific, one is able to transform the design of
the residual generator into various optimization problems to obtain desired solutions based
on different requirements, such as disturbance decoupling [45], nonlinear suppression [53],
and model mismatch handling [107] in fault detection tasks, as well as multiple fault
estimation [125].

Main contributions: In this chapter, we leverage the advantages of the DAE framework
to design fault detection filters for inverter-based microgrid systems. To the best of our
knowledge, this is the first attempt to design fault detection filters using the DAE framework
that enables real-time monitoring of ground faults in inverter-based microgrid systems.
It is worth noting that disturbances may not be completely decoupled in some scenarios
because of the limited number of sensors in the systems. The contributions of this chapter
are summarized as follows:

• Dynamic system modeling: We develop a unified state-space model for the
inverter-based microgrid system in both healthy mode and the presence of ground
faults (Sections 4.2.2, 4.2.3). This model is further formulated in the DAE framework,
which facilitates the design of robust fault detection filters.

• Linear programming design for perfect setting: We formulate the design of
fault detection filters into a linear programming (LP) problem (Proposition 4.3.1),
which achieves disturbance decoupling and ensures fault sensitivity simultaneously.

• Data-assisted disturbance rejection: To deal with non-decoupled disturbances,
we borrow ideas from [53, Approach (II)] to extend the design to a quadratic program-
ming (QP) problem, wherein the average effects of available disturbance patterns on
the residual are minimized (Theorem 4.3.3). Inspiring from [144, Corollary 1], we
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also obtain an approximate analytical solution to this QP problem with arbitrary
accuracy (Corollary 4.3.4), allowing for online updates of filter parameters.

• Probabilistic false alarm certificate: Leveraging the classical Markov inequal-
ity, we further propose a threshold determination method along with probabilistic
false-alarm guarantees (Proposition 4.3.8).

The rest of the chapter is organized as follows. The modeling of an inverter-based
microgrid system and the problem formulation are presented in Section 4.2. In Section 4.3,
we provide the design methods of the fault detection filters. In Section 4.4, we evaluate the
effectiveness of the proposed approaches with numerical simulation. Finally, Section 4.5
concludes the chapter with some remarks and future directions.

Notation. For two discrete-time signals 𝜎1 and 𝜎2 taking values in ℝ𝑛 with length 𝑇 ,
the 2 inner product is represented as ⟨𝜎1,𝜎2⟩ ∶= ∑𝑇

𝑘=1𝜎⊤1 (𝑘)𝜎2(𝑘), and the corresponding
norm ‖𝜎1‖2 ∶=

√
⟨𝜎1,𝜎1⟩.

4.2 Model Description and Problem Statement
In this section, we first present the state-space model of an inverter-based microgrid system
and consider three-phase symmetrical ground faults. Then, we formulate the two problems
addressed in this work.

4.2.1 System Description
An inverter-based microgrid generally consists of four components: the power supplier,
the LCL filter, the controller, and the load, see Figure 4.1. Let us elaborate on the functions
of each component.

• Power supplier: The power supply part provides power to the microgrid by fol-
lowing a reference voltage 𝑣∗𝑖 from the current controller. It contains a distributed
generator (DG) source and an inverter. Here, we make two assumptions: (1) an ideal
DG source is available, and (2) the inverter switching process can be neglected due
to its high switching frequency. Therefore, instead of modeling the generator and
inverter, we can set the inverter’s output voltage directly to 𝑣𝑖 = 𝑣∗𝑖 . The real-time
output current of the inverter is denoted by 𝑖𝑙 . As the single DG source supplies all
power to the load, droop control is unnecessary, and the microgrid frequency 𝜔 is
constant. This differs from [164], where multiple DG sources operate simultaneously.

• LCL filter: The LCL filter is used to filter the harmonics produced by the inverter. It
consists of two resistors 𝑅𝑓 and 𝑅𝑐 , two inductors 𝐿𝑓 and 𝐿𝑐 , and a capacitor 𝐶𝑓 . The
signals 𝑣𝑜 and 𝑖𝑜 denote the grid-side voltage and the output current, respectively.

• Controller: The control part keeps the voltage of the supply at some reference
voltage 𝑣∗𝑜 . This can be achieved through an inner current controller and an outer
voltage controller, which are all PI controllers [165]. The outer voltage controller
sets reference 𝑖∗𝑙 for the inner current controller. The fault current limiter (FCL) is a
saturation block that protects the microgrid from large fault currents.
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Figure 4.1: Architecture of an inverter-based microgrid with a diagnosis component.

• Load: We assume the load denoted by 𝑅𝐿 is purely resistive. Note that the unknown
part of the load is the main source of disturbances.

The mentioned voltage and current are based on a three-phase system. We introduce
the direct-quadrature (𝑑𝑞) transform to simplify the analysis. Specifically, for a three-phase
system with current 𝑖 = [𝑖𝑎 𝑖𝑏 𝑖𝑐]⊤ and voltage 𝑣 = [𝑣𝑎 𝑣𝑏 𝑣𝑐]⊤, the 𝑑𝑞 transform projects 𝑖
and 𝑣 onto 𝑑-axis and 𝑞-axis, i.e.,

𝑖𝑑𝑞 = 𝐏𝑖, 𝑣𝑑𝑞 = 𝐏𝑣,

where 𝑖𝑑𝑞 = [𝑖𝑑 𝑖𝑞]
⊤ , 𝑣𝑑𝑞 = [𝑣𝑑 𝑣𝑞]

⊤ , and the projection matrix 𝐏 is given by

𝐏 =
2
3

⎡
⎢
⎢
⎣

cos(𝜃) cos(𝜃− 2𝜋
3 ) cos(𝜃+ 2𝜋

3 )

sin(𝜃) sin(𝜃− 2𝜋
3 ) sin(𝜃+ 2𝜋

3 )

⎤
⎥
⎥
⎦
,

in which 𝜃 = 𝜔𝑡 is a constantly changing angle between the 𝑑 axis and the chosen reference
phase. We refer interested readers to [166] for more details about the 𝑑𝑞 transformation. For
simplicity of expression, we add subscripts to indicate the variables after 𝑑𝑞 transformation
throughout the chapter, e.g., 𝑣

𝑑𝑞
−−→ 𝑣𝑑𝑞 = [𝑣𝑑 𝑣𝑞]⊤, 𝑖

𝑑𝑞
−−→ 𝑖𝑑𝑞 = [𝑖𝑑 𝑖𝑞]⊤, and so forth.

4.2.2 State-space Model of the Healthy Microgrid System
To obtain the state-space model of the healthy microgrid system, we first model individual
components of the microgrid including the voltage controller, the current controller, and
the LCL filter in this subsection.

We start with the voltage controller in the control component. Let us transform 𝑣𝑜, 𝑣∗𝑜 ,
𝑖𝑜 and 𝑖∗𝑙 into the 𝑑𝑞 framework, which are 𝑣𝑜𝑑𝑞 , 𝑣∗𝑜𝑑𝑞 , 𝑖𝑜𝑑𝑞 and 𝑖∗𝑙𝑑𝑞 , respectively. We further
define the cumulative error between 𝑣𝑜𝑑𝑞 and 𝑣∗𝑜𝑑𝑞 by 𝜙𝑑𝑞 ∶= [𝜙𝑑 𝜙𝑞]⊤, which can be written
as

d𝜙𝑑(𝑡)
d𝑡

= 𝑣∗𝑜𝑑(𝑡)− 𝑣𝑜𝑑(𝑡),
d𝜙𝑞(𝑡)
d𝑡

= 𝑣∗𝑜𝑞(𝑡)− 𝑣𝑜𝑞(𝑡). (4.1)
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Considering that the voltage controller is a PI controller, based on Kirchhoff’s laws, we
obtain

⎧⎪⎪
⎨⎪⎪⎩

𝑖∗𝑙𝑑(𝑡) = 𝐹𝑖𝑜𝑑(𝑡)−𝜔𝐶𝑓 𝑣𝑜𝑞(𝑡)+𝐾 𝑣
𝑃 (𝑣∗𝑜𝑑(𝑡)− 𝑣𝑜𝑑(𝑡))+𝐾

𝑣
𝐼 𝜙𝑑(𝑡),

𝑖∗𝑙𝑞(𝑡) = 𝐹𝑖𝑜𝑞(𝑡)+𝜔𝐶𝑓 𝑣𝑜𝑑(𝑡)+𝐾 𝑣
𝑃 (𝑣∗𝑜𝑞(𝑡)− 𝑣𝑜𝑞(𝑡))+𝐾 𝑣

𝐼 𝜙𝑞(𝑡),
(4.2)

where 𝐹 is the feedforward coefficient, 𝐾 𝑣
𝑃 and 𝐾 𝑣

𝐼 denote the proportional and integral
gains of the voltage controller, respectively. From (4.1) and (4.2), we obtain the state-space
model of the voltage controller

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜙̇𝑑𝑞(𝑡) = 𝐵𝑣1𝑣∗𝑜𝑑𝑞(𝑡)+𝐵𝑣2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
,

𝑖∗𝑙𝑑𝑞(𝑡) = 𝐶𝑣𝜙𝑑𝑞(𝑡)+𝐷𝑣1𝑣∗𝑜𝑑𝑞(𝑡)+𝐷𝑣2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
,

(4.3)

where the matrices are

𝐵𝑣1 =
⎡
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎦
, 𝐵𝑣2 =

⎡
⎢
⎢
⎣

0 0 −1 0 0 0

0 0 0 −1 0 0

⎤
⎥
⎥
⎦
, 𝐶𝑣 =

⎡
⎢
⎢
⎣

𝐾 𝑣
𝐼 0

0 𝐾 𝑣
𝐼

⎤
⎥
⎥
⎦
,

𝐷𝑣1 =
⎡
⎢
⎢
⎣

𝐾 𝑣
𝑃 0

0 𝐾 𝑣
𝑃

⎤
⎥
⎥
⎦
, and 𝐷𝑣2 =

⎡
⎢
⎢
⎣

0 0 −𝐾 𝑣
𝑃 −𝜔𝐶𝑓 𝐹 0

0 0 𝜔𝐶𝑓 −𝐾 𝑣
𝑃 0 𝐹

⎤
⎥
⎥
⎦
.

Similarly, one can obtain the state-space model of the current controller. Let us trans-
form 𝑖𝑙 , 𝑖∗𝑙 and 𝑣∗𝑖 into the 𝑑𝑝 framework, which are 𝑖𝑙𝑑𝑞 , 𝑖∗𝑙𝑑𝑞 and 𝑣∗𝑖𝑑𝑞 , respectively. The
cumulative error between 𝑖𝑙𝑑𝑞 and 𝑖∗𝑙𝑑𝑞 is denoted by 𝛾𝑑𝑞 ∶= [𝛾𝑑 𝛾𝑞]⊤, i.e.,

d𝛾𝑑(𝑡)
d𝑡

= 𝑖∗𝑙𝑑(𝑡)− 𝑖𝑙𝑑(𝑡),
d𝛾𝑞(𝑡)
d𝑡

= 𝑖∗𝑙𝑞(𝑡)− 𝑖𝑙𝑞(𝑡). (4.4)

Then, the dynamics of the current controller follows

⎧⎪⎪
⎨⎪⎪⎩

𝑣∗𝑖𝑑(𝑡) = −𝜔𝐿𝑓 𝑖𝑙𝑞(𝑡)+𝐾 𝑐
𝑃 (𝑖∗𝑙𝑑(𝑡)− 𝑖𝑙𝑑(𝑡))+𝐾

𝑐
𝐼 𝛾𝑑(𝑡),

𝑣∗𝑖𝑞(𝑡) = 𝜔𝐿𝑓 𝑖𝑙𝑑(𝑡)+𝐾 𝑐
𝑃 (𝑖∗𝑙𝑞(𝑡)− 𝑖𝑙𝑞(𝑡))+𝐾

𝑐
𝐼 𝛾𝑞(𝑡),

(4.5)

where 𝐾 𝑐
𝑃 and 𝐾 𝑐

𝐼 denote the proportional and integral gains of the current controller,
respectively. Based on (4.4) and (4.5), the state-space model of the current controller is
given by

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛾̇𝑑𝑞(𝑡) = 𝐵𝑐1𝑖∗𝑙𝑑𝑞(𝑡)+𝐵𝑐2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
,

𝑣∗𝑖𝑑𝑞(𝑡) = 𝐶𝑐𝛾𝑑𝑞(𝑡)+𝐷𝑐1𝑖∗𝑙𝑑𝑞(𝑡)+𝐷𝑐2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
,

(4.6)
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where

𝐵𝑐1 =
⎡
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎦
, 𝐵𝑐2 =

⎡
⎢
⎢
⎣

−1 0 𝟎1×4

0 −1 𝟎1×4

⎤
⎥
⎥
⎦
, 𝐶𝑐 =

⎡
⎢
⎢
⎣

𝐾 𝑐
𝐼 0

0 𝐾 𝑐
𝐼

⎤
⎥
⎥
⎦
,

𝐷𝑐1 =
⎡
⎢
⎢
⎣

𝐾 𝑐
𝑃 0

0 𝐾 𝑐
𝑃

⎤
⎥
⎥
⎦
, and 𝐷𝑐2 =

⎡
⎢
⎢
⎣

−𝐾 𝑐
𝑃 −𝜔𝐿𝑓 𝟎1×4

𝜔𝐿𝑓 −𝐾 𝑐
𝑃 𝟎1×4

⎤
⎥
⎥
⎦
.

For the LCL filter modeling, we transform the output voltage of the inverter 𝑣𝑖 and
the bus voltage 𝑣𝑏 into the 𝑑𝑞 framework, i.e., 𝑣𝑖𝑑𝑞 and 𝑣𝑏𝑑𝑞 , respectively. By applying
Kirchhoff’s laws, we get the dynamics of the LCL filter as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑖̇𝑙𝑑(𝑡) =
−𝑅𝑓
𝐿𝑓

𝑖𝑙𝑑(𝑡)+𝜔𝑖𝑙𝑞(𝑡)+ 1
𝐿𝑓
𝑣𝑖𝑑(𝑡)− 1

𝐿𝑓
𝑣𝑜𝑑(𝑡),

𝑖̇𝑙𝑞(𝑡) =
−𝑅𝑓
𝐿𝑓

𝑖𝑙𝑞(𝑡)−𝜔𝑖𝑙𝑑(𝑡)+ 1
𝐿𝑓
𝑣𝑖𝑞(𝑡)− 1

𝐿𝑓
𝑣𝑜𝑞(𝑡),

𝑣̇𝑜𝑑(𝑡) = 𝜔𝑣𝑜𝑞(𝑡)+ 1
𝐶𝑓
𝑖𝑙𝑑(𝑡)− 1

𝐶𝑓
𝑖𝑜𝑑(𝑡),

𝑣̇𝑜𝑞(𝑡) = −𝜔𝑣𝑜𝑑(𝑡)+ 1
𝐶𝑓
𝑖𝑙𝑞(𝑡)− 1

𝐶𝑓
𝑖𝑜𝑞(𝑡) ,

𝑖̇𝑜𝑑(𝑡) = −𝑅𝑐
𝐿𝑐 𝑖𝑜𝑑(𝑡)+𝜔𝑖𝑜𝑞(𝑡)+

1
𝐿𝑐 𝑣𝑜𝑑(𝑡)−

1
𝐿𝑐 𝑣𝑏𝑑(𝑡),

𝑖̇𝑜𝑞(𝑡) = −𝑅𝑐
𝐿𝑐 𝑖𝑜𝑞(𝑡)−𝜔𝑖𝑜𝑑(𝑡)+

1
𝐿𝑐 𝑣𝑜𝑞(𝑡)−

1
𝐿𝑐 𝑣𝑏𝑞(𝑡).

The state-space model of the LCL filter is

⎡
⎢
⎢
⎢
⎢
⎣

𝑖̇𝑙𝑑𝑞(𝑡)

𝑣̇𝑜𝑑𝑞(𝑡)

𝑖̇𝑜𝑑𝑞(𝑡)

⎤
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑙

⎡
⎢
⎢
⎢
⎢
⎣

𝑖𝑙𝑑𝑞(𝑡)

𝑣𝑜𝑑𝑞(𝑡)

𝑖𝑜𝑑𝑞(𝑡)

⎤
⎥
⎥
⎥
⎥
⎦

+[ 𝐵𝑙1 𝐵𝑙2 ]
⎡
⎢
⎢
⎣

𝑣𝑖𝑑𝑞(𝑡)

𝑣𝑏𝑑𝑞(𝑡)

⎤
⎥
⎥
⎦
, (4.7)

where the bus voltage 𝑣𝑏𝑑𝑞(𝑡) =
⎡
⎢
⎢
⎣

𝑅𝐿 0

0 𝑅𝐿

⎤
⎥
⎥
⎦
𝑖𝑜𝑑𝑞(𝑡), and the matrices are

𝐴𝑙 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝑅𝑓
𝐿𝑓

𝜔 − 1
𝐿𝑓

0 0 0

−𝜔 −𝑅𝑓
𝐿𝑓

0 − 1
𝐿𝑓

0 0
1
𝐶𝑓

0 0 𝜔 − 1
𝐶𝑓

0

0 1
𝐶𝑓

−𝜔 0 0 − 1
𝐶𝑓

0 0 1
𝐿𝑐 0 −𝑅𝑐

𝐿𝑐 𝜔

0 0 0 1
𝐿𝑐 −𝜔 −𝑅𝑐

𝐿𝑐

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐵𝑙1 =
⎡
⎢
⎢
⎣

1
𝐿𝑓

0 𝟎1×4

0 1
𝐿𝑓

𝟎1×4

⎤
⎥
⎥
⎦

⊤

, and

𝐵𝑙2 =
⎡
⎢
⎢
⎣

𝟎1×4 − 1
𝐿𝑐 0

𝟎1×4 0 − 1
𝐿𝑐

⎤
⎥
⎥
⎦

⊤

.
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Recall that 𝑣𝑖 = 𝑣∗𝑖 and, thus, 𝑣𝑖𝑑𝑞 = 𝑣∗𝑖𝑑𝑞 . With the derived models (4.3), (4.6), and (4.7),
we obtain the complete state-space model of the inverter-based microgrid system

⎧⎪⎪
⎨⎪⎪⎩

𝑥̇(𝑡) = 𝐴ℎ𝑥(𝑡)+𝐵ℎ𝑣∗𝑜𝑑𝑞(𝑡)+𝐵𝑑𝑑(𝑡),

𝑖𝑜𝑑𝑞(𝑡) = 𝐶𝑥(𝑡),
(4.8)

where 𝑥(𝑡) = [𝜙
⊤
𝑑𝑞(𝑡) 𝛾⊤𝑑𝑞(𝑡) 𝑖⊤𝑙𝑑𝑞(𝑡) 𝑣⊤𝑜𝑑𝑞(𝑡) 𝑖⊤𝑜𝑑𝑞(𝑡)]

⊤
is the augmented state of the mi-

crogrid system and 𝑑 denotes the disturbance. The system matrices 𝐴ℎ, 𝐵ℎ, and 𝐶 are given
by

𝐴ℎ =

⎡
⎢
⎢
⎢
⎢
⎣

𝟎2×2 𝟎2×2 𝐵𝑣2

𝐵𝑐1𝐶𝑣 𝟎2×2 𝐵𝑐1𝐷𝑣2+𝐵𝑐2

𝐵𝑙1𝐷𝑐1𝐶𝑣 𝐵𝑙1𝐶𝑐 𝐴ℎ33

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐵ℎ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐵𝑣1

𝐵𝑐1𝐷𝑣1

𝐵𝑙1𝐷𝑐1𝐷𝑣1

⎤
⎥
⎥
⎥
⎥
⎦

, and 𝐶 = [𝟎2×8 𝐼2×2] ,

where 𝐴ℎ33 = 𝐴𝑙 +𝐵𝑙1 (𝐷𝑐1𝐷𝑣2+𝐷𝑐2)+𝐵𝑙2
⎡
⎢
⎢
⎣

𝑅𝐿 0

0 𝑅𝐿

⎤
⎥
⎥
⎦
[𝟎2×4 𝐼 ]. We would like to highlight

that the number of states is 10, while we only have 2 measurements.
Referring to [164, 167], we consider that changes in the load component can result in

deviations from the nominal value of the output current 𝑖𝑜𝑑𝑞 . Furthermore, the following
assumption on the matrix 𝐵𝑑 is introduced to describe the impact of the disturbance 𝑑 on
the system.

Assumption 4.2.1 (Disturbance structure). The disturbance 𝑑 directly influences the grid-side
current 𝑖𝑜𝑑𝑞 , which is characterized through the matrix 𝐵𝑑 . Here, we consider both one-

dimensional and two-dimensional disturbances. The structure of𝐵𝑑 is: (1)𝐵𝑑 = [𝟎1×8 [𝜉1 𝜉2]]
⊤

for 𝑑(𝑡) ∈ ℝ, and (2) 𝐵𝑑 = [𝟎2×8 diag([𝜉1 𝜉2])]
⊤
for 𝑑(𝑡) ∈ ℝ2, where 𝜉1, 𝜉2 ∈ ℝ represent the

level of disturbance in the corresponding channel.

Remark 4.2.2 (Disturbance decoupling condition). Let 𝕋𝑑𝑖𝑜𝑑𝑞 denote the transfer function
from the disturbance 𝑑 to the measurement 𝑖𝑜𝑑𝑞 , and Rank(𝕋𝑑𝑖𝑜𝑑𝑞 ) denotes the rank of 𝕋𝑑𝑖𝑜𝑑𝑞 .
According to the result in [1, Chapter 6], 𝑑 can be decoupled from 𝑖𝑜𝑑𝑞 if the number of
unknown inputs is smaller than the number of sensors, i.e., Rank(𝕋𝑑𝑖𝑜𝑑𝑞 ) < 2. Therefore, 𝑑 can
be decoupled from 𝑖𝑜𝑑𝑞 when 𝑑 is a one-dimensional signal but not for a two-dimensional (and
higher-dimensional) disturbance.

4.2.3 State-space Model of the Faulty Microgrid System
We consider three-phase symmetrical ground faults which can cause a short circuit and a
sharp increase in the output current 𝑖𝑜𝑑𝑞 . Therefore, we know that after ground faults occur:
(1) the load 𝑅𝐿 = 0 because of the short circuit, leading to a zero bus voltage 𝑣𝑏𝑑𝑞 = 0; and
(2) the output of the voltage controller 𝑖∗𝑙𝑑𝑞 saturates to a constant value 𝜏𝑑𝑞 immediately,
i.e., 𝑖∗𝑙𝑑𝑞(𝑡) = 𝜏𝑑𝑞 for 𝑡 ≥ 𝑡𝑓 , where 𝑡𝑓 denotes the time instant when the faults occur.
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The state-space model of the current controller (4.6) in the fault scenario becomes
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛾̇𝑑𝑞(𝑡) = 𝐵𝑐1𝜏𝑑𝑞 +𝐵𝑐2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
,

𝑣∗𝑖𝑑𝑞(𝑡) = 𝐶𝑐𝛾𝑑𝑞(𝑡)+𝐷𝑐1𝜏𝑑𝑞 +𝐷𝑐2 [𝑖𝑙𝑑𝑞(𝑡) 𝑣𝑜𝑑𝑞(𝑡) 𝑖𝑜𝑑𝑞(𝑡)]
⊤
.

(4.9)

Based on (4.3), (4.7), and (4.9), the state-space model of the inverter-based microgrid system
with ground faults can be written as

⎧⎪⎪
⎨⎪⎪⎩

𝑥̇(𝑡) = 𝐴𝑢ℎ𝑥(𝑡)+𝐵𝑢ℎ1𝑣∗𝑜𝑑𝑞(𝑡)+𝐵𝑢ℎ2𝜏𝑑𝑞 ,

𝑖𝑜𝑑𝑞(𝑡) = 𝐶𝑥(𝑡),
(4.10)

where the matrices 𝐴𝑓 , 𝐵𝑢ℎ1, and 𝐵𝑢ℎ2 are

𝐴𝑢ℎ =

⎡
⎢
⎢
⎢
⎢
⎣

𝟎2×2 𝟎2×2 𝐵𝑣2

𝟎2×2 𝟎2×2 𝐵𝑐2

𝟎6×2 𝐵𝑙1𝐶𝑐 𝐴𝑙 +𝐵𝑙1𝐷𝑐2

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐵𝑢ℎ1 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐵𝑣1

𝟎2×2

𝟎6×2

⎤
⎥
⎥
⎥
⎥
⎦

, and 𝐵𝑢ℎ2 =

⎡
⎢
⎢
⎢
⎢
⎣

𝟎2×2

𝐵𝑐1

𝐵𝑙1𝐷𝑐1

⎤
⎥
⎥
⎥
⎥
⎦

.

Note that the disturbance 𝑑 has no effect on the system in the fault scenario because of the
short circuit.

To write the healthy and faulty models (4.8) and (4.10) into a more compact form, we
introduce a signal 𝑓 to indicate the occurrence of the ground faults, i.e.,

⎧⎪⎪
⎨⎪⎪⎩

𝑓 = 0, no faults,

𝑓 = 1, faults happen.

With 𝑓 (𝑡), we can express the healthy and faulty models in the following unified form

⎧⎪⎪
⎨⎪⎪⎩

𝑥̇(𝑡) =(𝑓 (𝑡))𝑥(𝑡)+𝑢(𝑓 (𝑡))𝑢(𝑡)+𝑑(𝑓 (𝑡))𝑑(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡),
(4.11)

where 𝑢 = [𝑣∗𝑜𝑑𝑞 𝜏𝑑𝑞]
⊤ consists of the known input signals, 𝑦 = 𝑖𝑜𝑑𝑞 denotes the output

current. The dimensions of 𝑥, 𝑢, 𝑑 and 𝑦 are denoted by 𝑛𝑥 , 𝑛𝑢, 𝑛𝑑 , and 𝑛𝑦 , respectively.
The system matrices are

(𝑓 (𝑡)) = 𝐴ℎ+𝑓 (𝑡)(𝐴𝑢ℎ−𝐴ℎ), 𝑢(𝑓 (𝑡)) = [𝐵ℎ+𝑓 (𝑡)(𝐵𝑢ℎ1−𝐵ℎ) 𝑓 (𝑡)𝐵𝑢ℎ2], and
𝑑(𝑓 (𝑡)) = (1−𝑓 (𝑡))𝐵𝑑 .

Remark 4.2.3 (Discretization). Considering that the discrete-time samplings of data are
used in the realistic framework, we discretize the continuous-time state-space model (4.11)
when designing the fault diagnosis scheme. In what follows, all signals are presented in the
discrete-time form. For convenience, we use the same notation for system matrices in both the
continuous and discrete representations.
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4.2.4 Problem Statement
The objective of this work is to detect the occurrence of the ground faults in the presence
of the disturbance 𝑑 through the input 𝑢 and the measurement 𝑦. Our proposed diagnosis
scheme is to design a residual generator denoted by a linear transfer function 𝔽, whose
output is a scalar-valued signal 𝑟 ∶= 𝔽[𝑦⊤ 𝑢⊤]⊤ (called the residual) that only sensitive to
the faulty mode. The structure is illustrated in the diagnosis component of Figure 4.1. We
expect the residual 𝑟 to be as close to zero as possible in the healthy mode and extremely
high in the faulty mode for fault detection. Then, two questions arise naturally. How can
we design 𝔽 to achieve the following objectives:

1. Suppress the contribution of the disturbance to the residual in the healthy mode;

2. Enhance the fault sensitivity of the residual in the faulty mode.

In this work, we provide a design method of the filter 𝔽 in the DAE framework to
satisfy the above two design requirements. To this end, let us introduce the shift operator q,
i.e., q𝑥(𝑘) = 𝑥(𝑘 + 1), and transform the discrete-time version of the unified state-space
model (4.11) into

𝐻(q, 𝑓 )[𝑋]+𝐿(q, 𝑓 )[𝑌 ] = 0, (4.12)

where 𝑋 = [𝑥⊤ 𝑑⊤]⊤, 𝑌 = [𝑦⊤ 𝑢⊤]⊤. The matrices 𝐻(q, 𝑓 ) and 𝐿(q, 𝑓 ) are polynomial func-
tions in the operator q, depending on the indicator signal 𝑓 ∈ {0,1}, which are

𝐻(q, 𝑓 ) = q𝐻1+𝐻0(𝑓 ) =
⎡
⎢
⎢
⎣

−q𝐼 +(𝑓 ) 𝑑(𝑓 )

𝐶 0

⎤
⎥
⎥
⎦
, 𝐻1 =

⎡
⎢
⎢
⎣

−𝐼 0

0 0

⎤
⎥
⎥
⎦
, 𝐻0(𝑓 ) =

⎡
⎢
⎢
⎣

(𝑓 ) 𝑑(𝑓 )

𝐶 0

⎤
⎥
⎥
⎦
,

and 𝐿(q, 𝑓 ) =
⎡
⎢
⎢
⎣

0 𝑢(𝑓 )

−𝐼 0

⎤
⎥
⎥
⎦
.

Since 𝐿(q, 𝑓 ) is independent of q, we define 𝐿(q, 0) = 𝐿0 and 𝐿(q, 1) = 𝐿1.
The fault detection filter 𝔽 is in the form of

𝔽(q) =
1

𝑎(q)
𝑁 (q)𝐿0, (4.13)

where the numerator 𝑁(q) is a polynomial row vector 𝑁(q) = ∑𝑑𝑁
𝑖=0𝑁𝑖q𝑖, 𝑁𝑖 ∈ ℝ1×(𝑛𝑥+𝑛𝑦 ), 𝑑𝑁

is the degree of 𝑁(q). The denominator 𝑎(q) is a polynomial with the degree larger than 𝑑𝑁
and all roots inside the unit circle so that the derived filter is strictly proper and stable.
For simplicity of design, we fix 𝑑𝑁 and 𝑎(q), and only design the coefficients of 𝑁(q). It is
worth pointing out that 𝑎(q) can be chosen up to the user and specific requirements, e.g.,
noise sensitivity and dynamic performance, which will be our future research.

By setting 𝑓 = 0 and multiplying from the left-hand side of (4.12) by 𝑎−1(q)𝑁 (q), we
obtain the residual 𝑟 in the healthy mode, which is

𝑟 =
1

𝑎(q)
𝑁 (q)𝐿0[𝑌 ] = −

1
𝑎(q)

𝑁 (q)𝐻(q, 0)[𝑋]. (4.14)
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When ground faults happen, i.e., 𝑓 = 1, DAE model (4.12) becomes 𝐻(𝑞,1)[𝑋]+𝐿1[𝑌 ] = 0.
Thus, 𝑌 = −𝐿†1𝐻(𝑞,1)[𝑋], where 𝐿†1 is the left inverse of 𝐿1. The residual 𝑟 in the faulty
mode becomes

𝑟 =
1

𝑎(q)
𝑁 (q)𝐿0[𝑌 ] = −

1
𝑎(q)

𝑁 (q)𝐿0𝐿
†
1𝐻(𝑞,1)[𝑋]. (4.15)

Note that all the entities in 𝑎−1(q)𝑁 (q)𝐿0[𝑌 ] are known and, thus, can be used to generate
the residual. The right-hand side of (4.14) and (4.15) characterize the mapping relations
between the unknown signal 𝑋 and 𝑟 in the healthy and faulty modes, respectively, based
on which we can design 𝔽(q) for different diagnosis purposes.

First, we consider the one-dimensional disturbance that can be fully decoupled. To
ensure that the residual is zero in the healthy mode and sensitive to the faulty mode,
i.e., 𝑟 = 0 when 𝑓 = 0 and 𝑟 ≠ 0 when 𝑓 = 1, we introduce the following conditions:

𝑁(q)𝐻(q, 0) = 0, (4.16a)

𝑁(q)𝐿0𝐿
†
1𝐻(𝑞,1) ≠ 0. (4.16b)

In view of the desired mapping relations (4.16a) and (4.16b), we proceed with the first
problem.

Problem 1. (Fault detection filter design for perfect setting) Consider the state-space
model of the inverter-based microgrid system (4.11) with three-phase symmetrical ground
faults and Assumption 4.2.1 with 𝑛𝑑 = 1. Design a fault detection filter 𝔽 in the form of (4.13)
that satisfies (4.16a) and (4.16b).

Remark 4.2.4 (Existence of 𝐿†1 ). Note that the matrix 𝑢(1) = [𝐵𝑢ℎ1 𝐵𝑢ℎ2] is of full column
rank according to their structures in (4.10). Thus, 𝐿1 is a full-column matrix and its left inverse
exists.

Second, when the disturbance 𝑑 is a two-dimensional signal and cannot be fully decou-
pled, the condition (4.16a) can no longer be satisfied. A common solution is to constrain
the ∞ norm of the transfer function from 𝑑 to 𝑟 to suppress the effect of 𝑑. Here, inspired
by the approach in [53, 107], we tackle the problem from a data-driven perspective. Specif-
ically, we use the historical data of the disturbance to train the filter so that it is robust to
the disturbance. To this end, let us split 𝐻(q, 0) into two parts, i.e., 𝐻(q, 0) = [𝐸1(q, 0) 𝐸2],
and matrices 𝐸1(q, 0),𝐸2 are given by

𝐸1(q, 0) = q𝐸11+𝐸10 =
⎡
⎢
⎢
⎣

−q𝐼 +(0)

𝐶

⎤
⎥
⎥
⎦
, 𝐸11 =

⎡
⎢
⎢
⎣

−𝐼

0

⎤
⎥
⎥
⎦
, 𝐸10 =

⎡
⎢
⎢
⎣

(0)

𝐶

⎤
⎥
⎥
⎦
, and 𝐸2 =

⎡
⎢
⎢
⎣

𝑑(0)

0

⎤
⎥
⎥
⎦
,

where 𝐸1(q, 0) corresponds to the unknown internal state 𝑥 that can be decoupled and 𝐸2
corresponds to the non-decoupled disturbance 𝑑. We obtain

𝑟 =
1

𝑎(q)
𝑁 (q)𝐿0[𝑌 ] = −

1
𝑎(q)

𝑁 (q)𝐻(q, 0)[𝑋]

= −
1

𝑎(q)
𝑁 (q)𝐸1(q, 0)[𝑥]−

1
𝑎(q)

𝑁 (q)𝐸2[𝑑]. (4.17)
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To make the residual as small as possible in the healthy mode, we opt to decouple 𝑥
from 𝑟 , i.e.,

𝑁(q)𝐸1(q, 0) = 0. (4.18)

We further suppose that the disturbance 𝑑 comes from a prescribed probability space,
and we have access to 𝑚 independent identically distributed (iid) disturbance patterns 𝑑𝑖
for 𝑖 ∈ {1,…,𝑚}. For each 𝑑𝑖, we define its contribution to the residual as

𝑟𝑑𝑖 = −
1

𝑎(q)
𝑁 (q)𝐸2[𝑑𝑖].

Therefore, we can mitigate the effects of the disturbance by constraining the 2 norm of 𝑟𝑑𝑖
for all 𝑖 ∈ {1,…,𝑚} in the healthy mode, i.e.,

1
𝑚

𝑚
∑
𝑖=1

‖𝑟𝑑𝑖 ‖
2
2 =

1
𝑚

𝑚
∑
𝑖=1

‖‖‖‖
1

𝑎(q)
𝑁 (q)𝐸2[𝑑𝑖]

‖‖‖‖

2

2

≤ 𝛽, (4.19)

where 𝛽 ∈ ℝ+. We show later the approach to constructing ‖𝑟𝑑𝑖 ‖2 with a combination of
the system model and the data 𝑑𝑖. The condition (4.16b) is adopted again to ensure the
sensitivity of the residual to the faulty mode. Based on the above discussion, we formulate
the second problem.

Problem 2. (Data-assisted robust fault detection filter design) Consider the state-space
model of the inverter-basedmicrogrid system (4.11)with three-phase symmetrical ground faults
and Assumption 4.2.1 with 𝑛𝑑 = 2. Givenmultiple instances of the disturbance 𝑑𝑖 for 𝑖 ∈ {1,…,𝑚},
find a fault detection filter 𝔽 in the form of (4.13) that satisfies the conditions (4.18), (4.19),
and (4.16b).

4.3 Main Results
In this section, we present two design methods of fault detection filters in two scenarios: (i)
the disturbance can be fully decoupled (i.e., perfect setting), and (ii) the disturbance cannot
be fully decoupled.

4.3.1 Filter Design: Perfect Setting
We first consider the one-dimensional disturbance that can be fully decoupled. In order to
find a feasible 𝑁(q) satisfying the conditions in Problem 1, we formulate the design of the
fault detection filter as a linear programming problem in the following proposition.

Proposition 4.3.1 (Filter design: LP). Suppose that Assumption (4.2.1) holds and the dimen-
sion of the disturbance 𝑛𝑑 = 1. Consider the unified state-space model of the inverter-based
microgrid system (4.11), and the structure of the fault detection filter in (4.13). Given the
degree 𝑑𝑁 , a stable 𝑎(q), and a scalar 𝛾 ∈ ℝ+, the detection conditions (4.16a) and (4.16b) in
Problem 1 are satisfied if

𝑁̄ 𝐻̄ (0) = 0, (4.20a)
‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞ ≥ 𝛾, (4.20b)
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where 𝑁̄ = [𝑁0, 𝑁1, … , 𝑁𝑑𝑁 ], 𝐿̄ = diag [𝐿0𝐿
†
1 , … , 𝐿0𝐿

†
1 ]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑁+1

,

𝐻̄ (𝑓 ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐻0(𝑓 ) 𝐻1 0 … 0

0 𝐻0(𝑓 ) 𝐻1 0 ⋮

⋮ 0 ⋱ ⋱ 0

0 … 0 𝐻0(𝑓 ) 𝐻1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and 𝑓 ∈ {0,1}.

Proof. According to the multiplication rule of polynomial matrices [53, Lemma 4.2], (4.16)
can be written as

𝑁(q)𝐻(q, 0) = 𝑁̄ 𝐻̄(0)[𝐼 , q𝐼 , … , q𝑑𝑁+1𝐼 ]⊤, (4.21a)

𝑁(q)𝐿0𝐿
†
1𝐻(𝑞,1) = 𝑁̄ 𝐿̄𝐻̄ (1)[𝐼 , q𝐼 , … , q𝑑𝑁+1𝐼 ]⊤. (4.21b)

First, one can see from (4.21a) that 𝑁̄ 𝐻̄ (0) = 0 is equivalent to condition (4.16a), i.e.,
𝑁(q)𝐻(q, 0) = 0. Therefore, the residual in the healthy mode 𝑟 = 𝑁(q)𝐻(q, 0)[𝑋] = 0
and (4.16a) is satisfied. Second, we let the coefficients of 𝑁(q)𝐿0𝐿

†
1𝐻(𝑞,1) be nonzero

through (4.20b). Thus, (4.16b) is satisfied, which ensures the fault sensitivity. This com-
pletes the proof. □

Note that 𝑁̄ 𝐿̄𝐻̄ (1) is a row vector with (𝑑𝑁 + 2)(𝑛𝑥 + 𝑛𝑑) columns. For a positive
scalar 𝛾 , ‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞ ≥ 𝛾 holds if and only if 𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖 ≥ 𝛾 or 𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖 ≤ −𝛾 , where 𝑣𝑖 is
a (𝑑𝑁 +2)(𝑛𝑥 +𝑛𝑑)-dimensional column vector with only the 𝑖-th element be 1 and the
rest are zero, i.e., 𝑣𝑖 = [0,…,1,…,0]⊤. Moreover, it is easy to check that if 𝑁̄ ∗ is a solution
to (4.20), so is −𝑁̄ ∗. Therefore, one can replace the constraint (4.20b) with 𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖 (or
−𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖) and view (4.20) as a set of (𝑑𝑁 +2)(𝑛𝑥 +𝑛𝑑) LP problems.

Remark 4.3.2 (Feasibility analysis). According to the well-known rank plus nullity theorem,
we have (𝑑𝑁 +1)(𝑛𝑥 +𝑛𝑦) = Rank(𝐻̄ (0)) +Null(𝐻̄ (0)), where Rank(𝐻̄ (0)) and Null(𝐻̄ (0))
denote the rank and the left null space dimension of 𝐻̄ (0), respectively. Thus, the con-
straint (4.20) is feasible when Null(𝐻̄ (0)) ≠ 0, i.e., (𝑑𝑁 + 1)(𝑛𝑥 + 𝑛𝑦) > Rank(𝐻̄ (0)). For
the constraint ‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞ ≥ 𝛾 , it is required that 𝐿̄𝐻̄ (1) does not belong to the column range
space of 𝐻̄ (0), i.e., Rank([𝐻̄ (0) 𝐿̄𝐻̄ (1)]) > Rank(𝐿̄𝐻̄ (1)). Otherwise, a feasible 𝑁̄ to (4.20a)
leads to 𝑁̄ 𝐿̄𝐻̄ (1) = 0.

4.3.2 Filter Design: Non-decoupled Disturbance
In this subsection, we consider the disturbance 𝑑 that cannot be fully decoupled. Recall
that the residual 𝑟 in the healthy mode depends on the decoupled internal state 𝑥 and
the non-decoupled disturbance 𝑑 from the right-hand side of (4.17). For one instance of
disturbances 𝑑𝑖 = [𝑑𝑖(1),…,𝑑𝑖(𝑇 )] with a time horizon 𝑇 ∈ ℕ, recall that its contribution
to the residual is 𝑟𝑑𝑖 = −𝑎−1(q)𝑁 (q)𝐸2[𝑑𝑖]. Then, the response of the 𝑗-th element of 𝑑𝑖,
i.e., 𝑑𝑖(𝑗), can be computed by

[𝑟𝑑𝑖(𝑗)(1), 𝑟𝑑𝑖(𝑗)(2), …, 𝑟𝑑𝑖(𝑗)(𝑇 )] = −𝑁(q)𝐸2𝑑𝑖(𝑗)𝓁𝑗 ,
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where 𝓁𝑗 = [
𝑗−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

0,…,0, 𝓁̄(1), 𝓁̄(2),…, 𝓁̄(𝑇 −𝑗 +1)] and 𝓁̄(𝑘) for 𝑘 ∈ℕ is the value of the discrete-time
unit impulse response of 𝑎−1(q) at time instance 𝑘. By summing up the response of 𝑑𝑖(𝑗)
for 𝑗 ∈ {1,…,𝑇 −𝑑𝑁 −1}, we obtain

[𝑟𝑑𝑖(1), 𝑟𝑑𝑖(2), …, 𝑟𝑑𝑖(𝑇 )] = −𝑁(q)𝐸2
𝑇−𝑑𝑁−1

∑
𝑗=1

𝑑𝑖(𝑗)𝓁𝑗

= −𝑁̄ 𝐸̄2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐼

q𝐼

⋮

q𝑑𝑁+1𝐼

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[𝑑𝑖(1), …, 𝑑𝑖(𝑇 −𝑑𝑁 −1)]

⎡
⎢
⎢
⎢
⎢
⎣

𝓁1

⋮

𝓁𝑇−𝑑𝑁−1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.22)

where 𝐸̄2 = diag(𝐸2,… ,𝐸2) according to the multiplication rule of polynomial matrices.
Recall that q is a time shift operator, i.e., q𝑑𝑖(𝑘) = 𝑑𝑖(𝑘 +1). Thus, the equation (4.22) can be
written as

[𝑟𝑑𝑖(1), 𝑟𝑑𝑖(2), …, 𝑟𝑑𝑖(𝑇 )] = −𝑁̄ 𝐸̄2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑖(1) … 𝑑𝑖(𝑇 −𝑑𝑁 −1)

𝑑𝑖(2) … 𝑑𝑖(𝑇 −𝑑𝑁 )

⋮ ⋱ ⋮

𝑑𝑖(𝑑𝑁 +2) … 𝑑𝑖(𝑇 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝓁1

⋮

𝓁𝑇−𝑑𝑁−1

⎤
⎥
⎥
⎥
⎥
⎦

= −𝑁̄ 𝐸̄2𝐷𝑖Γ. (4.23)

To ensure the existence of𝐷𝑖, we assume that the length of data 𝑇 is greatly larger than 𝑑𝑁 +
1, i.e., 𝑇 ≫ 𝑑𝑁 +1. With (4.23), the 2 norm of 𝑟𝑑𝑖 as considered in Problem 2 is formulated
into the quadratic form

‖𝑟𝑑𝑖 ‖
2
2 = 𝑁̄Φ𝑖𝑁̄⊤, Φ𝑖 = 𝐸̄2𝐷𝑖Γ(𝐸̄2𝐷𝑖Γ)⊤. (4.24)

It is worth emphasizing that Φ𝑖 is positive semi-definite since ‖𝑟𝑑𝑖 ‖22
= 𝑁̄Φ𝑖𝑁̄⊤ ≥ 0 for all

non-zero 𝑁̄ .
Now, we can present the design method of the fault detection filter in the presence of

non-decoupled disturbances in the following theorem.

Theorem 4.3.3 (Filter design: QP). Consider the unified state-space model of the inverter-
based microgrid system (4.11), Assumption (4.2.1) with the two-dimensional disturbance, and
the structure of the fault detection filter in (4.13). Given the degree 𝑑𝑁 , a stable 𝑎(q) and
multiple instances of disturbance 𝑑𝑖 = [𝑑𝑖(1),…,𝑑𝑖(𝑇 )] for 𝑖 ∈ {1,…,𝑚} with the length 𝑇 ≫ 𝑑𝑁 ,
the conditions (4.18), (4.19), and (4.16b) in Problem 2 are satisfied by solving the following
optimization problem

min
𝑁̄

𝑁̄ Φ̄𝑁̄⊤−‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞

s.t. 𝑁̄ 𝐸̄1 = 0, (4.25)
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where Φ̄ = 1
𝑚∑𝑚

𝑖=1Φ𝑖,

𝐸̄1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸10 𝐸11 0 … 0

0 𝐸10 𝐸11 0 ⋮

⋮ 0 ⋱ ⋱ 0

0 … 0 𝐸10 𝐸11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof. The first term in the objective function, i.e., 𝑁̄ Φ̄𝑁̄⊤, relates to the condition (4.19),
which ensures that the effects of different instances of disturbances on the residual are
bounded. We show the derivation process of the quadratic form of ‖𝑟𝑑𝑖 ‖22

in (4.22)-(4.24).
The second term in the objective function, i.e., −‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞, relates to the condition (4.16b),
which is introduced to ensure the sensitivity of residual to the faulty mode. The con-
straint 𝑁̄ 𝐸̄1 = 0 related to the condition (4.18) is used to decouple the internal state 𝑥
from the residual. One can show through the multiplication rule of polynomial matrices
that 𝑁(q)𝐸1(q, 0) = 0 ⇔ 𝑁̄ 𝐸̄1 = 0. This completes the proof. □

Note that one can view the optimization problem (4.25) as a set of (𝑑𝑁 +2)(𝑛𝑥 +𝑛𝑑)
QP problems by replacing ‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞ with 𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖 (or −𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖) as analyzed before.
Recall that 𝑣𝑖 = [0,…,1,…,0]⊤. In addition, the matrix Φ𝑖 is positive semi-definite, and thus
the derived QP problems are convex and tractable. We further derive an approximate
analytical solution to (4.25) in the following corollary.

Corollary 4.3.4 (Approximate analytical solution). Consider the optimization problem (4.25).
There exists an approximate analytical solution given by the following form:

𝑁̄ ∗(𝛾) =
1
2𝛾 (

𝐿̄𝐻̄ (1)𝑣∗𝑖 )
⊤
(𝛾−1Φ̄+ 𝐸̄1𝐸̄⊤1 )

−1 , (4.26)

where 𝑣∗𝑖 = arg max𝑖∈{1,…,(𝑑𝑁+2)(𝑛𝑥+𝑛𝑑)} |𝑁̄
∗(𝛾)𝐿̄𝐻̄ (1)𝑣𝑖| and 𝛾 ∈ ℝ+ is the Lagrange multiplier.

The solution 𝑁̄ ∗(𝛾) provides an approximate solution to (4.25) and will converge to the optimal
solution as 𝛾 tends to ∞.

Proof. The Lagrange function of (4.25) is

(𝑁̄ , 𝛾) = 𝑁̄ Φ̄𝑁̄⊤−‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞+𝛾‖𝑁̄ 𝐸̄1‖22.

Since the optimization problem (4.25) can be viewed as a set of QP problems by replacing
the term ‖𝑁̄ 𝐿̄𝐻̄ (1)‖∞ with 𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖, the set of the Lagrange functions is

𝑖(𝑁̄ , 𝛾) = 𝑁̄ Φ̄𝑁̄⊤−𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖+𝛾‖𝑁̄ 𝐸̄1‖22. (4.27)

By taking the partial derivative of 𝑖(𝑁̄ , 𝛾), we have

𝜕𝑖(𝑁̄ , 𝛾)
𝜕𝑁̄

= 2𝑁̄ Φ̄+2𝛾𝑁̄ 𝐸̄1𝐸̄⊤1 −(𝐿̄𝐻̄ (1)𝑣𝑖)⊤.
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Setting the partial derivative to zero leads to

𝑁̄ ∗
𝑖 =

1
2𝛾 (

𝐿̄𝐻̄ (1)𝑣𝑖)
⊤
(𝛾−1Φ̄+ 𝑁̄ 𝐸̄1𝐸̄⊤1 )

−1 ,

which is an admissible solution to the problem with the dual function (4.27). By choosing 𝑣𝑖
for 𝑖 ∈ {1,…, (𝑑𝑁 +2)(𝑛𝑥 +𝑛𝑑)} which maximizes |𝑁̄ 𝐿̄𝐻̄ (1)𝑣𝑖|, we obtain (4.26), i.e.,

𝑁̄ ∗ =
1
2𝛾 (

𝐿̄𝐻̄ (1)𝑣∗𝑖 )
⊤
(𝛾−1Φ̄+ 𝑁̄ 𝐸̄1𝐸̄⊤1 )

−1 ,

where 𝑣∗𝑖 = arg max𝑖∈{1,…,(𝑑𝑁+2)(𝑛𝑥+𝑛𝑑)} |𝑁̄
∗(𝛾)𝐿̄𝐻̄ (1)𝑣𝑖|. By penalizing the equality constraint,

we obtain the dual function, i.e., 𝑔𝑖(𝛾) ∶= inf𝑁̄ 𝑖(𝑁̄ , 𝛾). It holds that

sup𝛾≥0𝑔𝑖(𝛾) = lim
𝛾→∞

𝑖(𝑁̄ , 𝛾).

Substituting 𝑁̄ ∗ into the dual function leads to

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

max
𝛾

− 1
4𝛾 (𝐿̄𝐻̄ (1)𝑣∗𝑖 )

⊤
(𝛾−1Φ̄+ 𝑁̄ 𝐸̄1𝐸̄⊤1 )

−1
(𝐿̄𝐻̄ (1)𝑣∗𝑖 ) ,

s.t. 𝛾 ≥ 0.

This quadratic negative (semi-)definite problem reaches its maximum when 𝛾 tends to
infinity. This completes the proof. □

Remark 4.3.5 (Average objective function). To ensure that the derived fault detection filter
is robust to the disturbance, we consider𝑚 different disturbance patterns 𝑑𝑖 for 𝑖 ∈ {1,…,𝑚} and
take the average effects of all 𝑑𝑖 on the residual as the objective function in (4.25). An alternative
way is to consider the worst-case scenario as the objective function, i.e., max𝑖∈{1,…,𝑚} 𝑁̄Φ𝑖𝑁̄⊤.
The average objective function is, however, of interest if one requires to train the filter with a
large number of disturbance patterns. This is due to the fact that the computational complexity
of the derived quadratic programming problem is independent of the number of disturbance
patterns 𝑚 with the average objective function.

Remark 4.3.6 (Online updating of coefficients). In [107], the authors construct the objective
function using the model mismatch data to ensure that the derived filter is robust to the
mismatch. Compared to [107], we further derive an approximate analytical solution to the
optimization problem (4.25). With the analytical solution, one can update the coefficients
of the filter online with new data without the need to re-solve (4.25). This is a significant
improvement over [107].

Remark 4.3.7 (Approximate analytical solution with 𝛾). The Lagrange multiplier 𝛾 is
introduced in (4.25) to penalize the equality constraint 𝑁̄ 𝐸̄1 = 0, and in the ideal case, 𝛾 tends
to infinity as stated in Corollary 4.3.4. However, for a bounded 𝛾 , the equality constraint
cannot be strictly satisfied, which is why we refer to the solution (4.26) as an approximate
analytical solution. Additionally, to ensure that 𝑁̄ 𝐸̄1 is sufficiently close to zero, 𝛾 should be
large enough while remaining numerically bounded for practical considerations.
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To detect the fault, we introduce the power of the residual 𝑟(𝑘) as the evaluation
function, i.e., 𝐽 (𝑟) = 𝑟(𝑘)2 for 𝑘 ∈ ℕ. Let 𝐽𝑡ℎ be the detection threshold. Then, we can
consider the following detection logic:

⎧⎪⎪
⎨⎪⎪⎩

𝐽 (𝑟) ≤ 𝐽𝑡ℎ ⇒ no faults,

𝐽 (𝑟) > 𝐽𝑡ℎ ⇒ faults.

It is worth emphasizing that false alarms are inevitable due to the random nature of the
residual. We show the computation method of the threshold and the false alarm rate in the
following proposition.

Proposition 4.3.8 (Probabilistic performance). Assume that the disturbance patterns follow
the iid. distribution. Consider the system (4.11), the filter 𝔽(q) obtained by using (4.25) with
the corresponding solution 𝑁̄ ∗, and the evaluation function 𝐽 (𝑟) = 𝑟(𝑘)2 for 𝑘 ∈ 𝑁 . Given a
scalar 𝜆 ≥ 1, if we set the threshold 𝐽𝑡ℎ as

𝐽𝑡ℎ =
𝜆
𝑇
𝑁̄ ∗Φ̄𝑁̄ ∗⊤, (4.28)

the false alarm rate in the steady state satisfies

lim
𝑘→∞

𝐏𝐫{𝐽 (𝑟(𝑘)) > 𝐽𝑡ℎ|𝑓 = 0}

= lim
𝑇 ,𝑘,𝑚→∞

𝐏𝐫

{

𝑟(𝑘)2 >
𝜆
𝑇
𝑁̄ ∗

(
1
𝑚

𝑚
∑
𝑖=1

Φ𝑖)
𝑁̄ ∗⊤|||𝑓 = 0

}

≤
1
𝜆
. (4.29)

Proof. Since the disturbance 𝑑 comes from a prescribed probability space and each distur-
bance pattern follows iid distribution, the residual in the healthy mode can be viewed as a
random variable on the same probability space as 𝑑, i.e., 𝑟 = −𝑎−1(q)𝑁 (q)𝐸2[𝑑]. It is proven
in [53, Theorem 4.11] that the empirical average error

𝑒𝑚 =
1
𝑚

𝑚
∑
𝑖=1

‖𝑟𝑑𝑖 ‖
2
2 −𝐄[‖𝑟‖22] ,

satisfies the strong law of large numbers, i.e., lim𝑚→∞ 𝑒𝑚 = 0 almost surely. Therefore, it
holds that

lim
𝑇 ,𝑚→∞

𝜆
𝑇
𝑁̄ ∗

(
1
𝑚

𝑚
∑
𝑖=1

Φ𝑖)
𝑁̄ ∗⊤ = lim

𝑇 ,𝑚→∞

𝜆
𝑇
1
𝑚

𝑚
∑
𝑖=1

‖𝑟𝑑𝑖 ‖
2
2 = lim

𝑇→∞

𝜆
𝑇
𝐄[‖𝑟‖22] = 𝜆 lim

𝑘→∞
𝐄[𝑟(𝑘)2].

According to Markov inequality, the false alarm rate in the steady state satisfies

lim
𝑘→∞

𝐏𝐫{𝑟(𝑘)2 > 𝜆𝐄[𝑟(𝑘)2]|𝑓 = 0} ≤
1
𝜆
.

This completes the proof. □
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4.4 Simulation Results
In this section, we validate the performance of the fault detection filters through numerical
simulations. The optimization problems are solved through the YALMIP toolbox [126].
Consider the inverter-based microgrid system depicted in Figure 4.1. We refer to the
parameters and initial conditions in [164], which are presented in Table 4.1 and Table 4.2,
respectively. The reference voltage (operating point) of the microgrid is 𝑣∗𝑜𝑑𝑞 = [381,0]⊤

and the FCL parameter is 𝜏𝑑𝑞 = [35,0.7]⊤, which are assumed to be constant during the
experiment. The sampling period is 0.1 ms and the simulation time is 500 ms.

Table 4.1: Microgrid parameters.

Parameter Value Parameter Value

𝑓 50 Hz 𝑅𝐿𝑂𝐴𝐷 12 Ω

𝐿𝑓 0.1 mH 𝐾 𝑐
𝑃 28

𝑅𝑓 0.1 Ω 𝐾 𝑐
𝐼 5

𝐶𝑓 30𝜇 F 𝐾 𝑣
𝑃 0.1

𝐿𝑐 1 mH 𝐾 𝑣
𝐼 170

𝑅𝑐 0.03 Ω 𝐹 0.75

𝜔 314.1

Table 4.2: Initial conditions.

Parameter Value Parameter Value

𝑣𝑜𝑑 380.8 𝑖𝑙𝑑 11.4

𝑣𝑜𝑞 0 𝑖𝑙𝑞 −5.5×103

𝑖𝑜𝑑 11.4 𝑣𝑏𝑑 379.5

𝑖𝑜𝑞 0.4 𝑣𝑏𝑞 -6

𝜙𝑑 0.13 𝛾𝑑 0.0115

𝜙𝑞 0 𝛾𝑞 0

4.4.1 Scenario 1: Perfect Setting
We first consider the perfect setting with one-dimensional disturbances that can be fully de-
coupled, as described in Remark 4.2.2. We set the matrix 𝐵𝑑 = [𝟎1×8 [1 1]]⊤. The disturbance
is zero for 𝑘 ≤ 1000 and, subsequently, it follows a signal given by

𝑑(𝑘) = 𝛼0+
𝜂

∑
𝑖=1

𝛼𝑖 sin(𝜔𝑖𝑘 +𝜓𝑖), 𝑘 > 1000.
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Specifically, the constant 𝛼0 ∈ ℝ represents an abrupt change, while the sinusoidal terms
capture the short-term load fluctuations with amplitudes 𝛼𝑖, angular frequencies 𝜔𝑖 ∈ ℝ+,
and phases 𝜓𝑖 ∈ ℝ [53]. It is worth emphasizing that we deliberately select the parameters
of 𝐵𝑑 and magnitude of 𝑑 to make the output currents similar in the faulty mode and under
the effect of the disturbance, which increases the difficulty of fault detection.

To design the fault detection filter in the form of (4.13), we fix the degree of 𝑁(q) to
be 𝑑𝑁 = 10, set 𝛾 = 0.5, and choose a stable denominator 𝑎(q) with a degree larger than 𝑑𝑁 .
We then apply Proposition 4.3.1 to construct the fault detection filter for inverter-based
microgrid systems with the disturbance that can be fully decoupled. The detection threshold
is set to 𝐽𝑡ℎ = 1×10−5. The simulation results are presented in Figure 4.2 and Figure 4.3.
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Figure 4.2: Diagnosis results in a perfect setting with small load fluctuations.

Figure 4.2 presents the diagnosis results when a decoupled disturbance has small load
fluctuations, i.e.,

𝑑(𝑘) = 0.8+0.02sin(𝑘/30)+0.01sin(𝑘/40)+0.01sin(𝑘/60).

As shown in Figure 4.2 (i), the disturbance 𝑑 and the ground fault 𝑓 occur at 𝑘 = 1001
and 𝑘 = 3001, respectively. However, 𝑑 and 𝑓 have similar effects on the output currents 𝑖𝑜𝑑
and 𝑖𝑜𝑞 from Figure 4.2 (ii) and (iii), which only exhibit minor variations. This makes
it challenging to detect the occurrence of the ground fault and distinguish it from the
disturbance only through the output currents.

In contrast, Figure 4.2 (iv) illustrates that the residual is insensitive to the disturbance
and stays below the threshold until the fault happens. The power value of the residual
𝑟2(𝑘) exceeds the threshold at 𝑘 = 3002, resulting in the detection of the fault within 0.1 ms.
We further consider a decoupled disturbance with larger load fluctuations, i.e.,

𝑑(𝑘) = 0.8+0.2sin(𝑘/30)+0.3sin(𝑘/40)+0.2sin(𝑘/60).
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Figure 4.3: Diagnosis results in a perfect setting with large load fluctuations.

Figure 4.3 displays the diagnosis results and the analysis process is analogous to the previous
one.

4.4.2 Scenario 2: Non-decoupled Disturbance
In this subsection, we consider two-dimensional disturbances that cannot be fully decoupled.
The matrix 𝐵𝑑 = []𝟎2×8 diag([0.5 0.5])]⊤. To capture the disturbance, following [53], we
denote the space of disturbance patterns by

𝑑(𝑘) =
⎡
⎢
⎢
⎣

𝛼𝑑,0+∑𝜂
𝑖=1 𝛼𝑑,𝑖 sin(𝜔𝑑,𝑖𝑘 +𝜓𝑑,𝑖)

𝛼𝑞,0+∑𝜂
𝑖=1 𝛼𝑞,𝑖 sin(𝜔𝑞,𝑖𝑘 +𝜓𝑞,𝑖)

⎤
⎥
⎥
⎦
,

where the parameters (𝛼𝑑,𝑖)𝜂𝑖=0, (𝛼𝑞,𝑖)
𝜂
𝑖=0, (𝜔𝑑,𝑖)

𝜂
𝑖=1, (𝜔𝑞,𝑖)

𝜂
𝑖=1, (𝜓𝑑,𝑖)

𝜂
𝑖=1, (𝜓𝑞,𝑖)

𝜂
𝑖=1, and 𝜂 are ran-

dom variables and follow uniform distributions in certain bounds. We generate 30 dis-
turbance patterns (i.e., 𝑚 = 30 in (4.19)) and choose the time horizon 𝑇 = 50. Again, we
fix 𝑑𝑁 = 10 and choose a stable denominator 𝑎(q). With the above settings, we can generate
the matrix Φ̄ in the objective function of the optimization problem (4.25). We construct
robust fault detection filters by using Theorem 4.3.3 to deal with the fault detection problem
for inverter-based microgrid systems with non-decoupled disturbances. The simulation
results are presented in Figures 4.4-4.6.

Figure 4.4 provides the diagnosis result by using (4.25) in the presence of a non-decoupled
disturbance with small load fluctuations. Let 𝑈(𝑙1, 𝑙2) denote a uniform distribution taking
values between 𝑙1 and 𝑙2. Then, for disturbances with small load fluctuations, the parameters
of the disturbance 𝑑 are 𝛼𝑑,0,𝛼𝑞,0 ∼ 𝑈[1,2], 𝛼𝑑,𝑖,𝛼𝑞,𝑖 ∼ 𝑈[0,0.05], 𝜔𝑑,𝑖,𝜔𝑞,𝑖 ∼ 𝑈[1/80,1/40],
and 𝜓𝑑,𝑖,𝜓𝑞,𝑖 ∼ 𝑈[0,100]. We compute the threshold 𝐽𝑡ℎ = 0.0018 based on (4.28) with 𝜆 = 3.
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Figure 4.4: Diagnosis results with non-decoupled disturbances and small load fluctuations.

As shown in Figure 4.4 (i), the disturbance 𝑑 and the ground fault 𝑓 happen at 𝑘 = 1001
and 𝑘 = 3001, respectively. However, it is difficult to distinguish 𝑑 and 𝑓 through the
output currents from Figure 4.4 (ii) and (iii). The power value of the residual 𝑟2(𝑘) is shown
in Figure 4.4 (iv), one can see that 𝑟2(𝑘) remains below the threshold in the presence of
non-decoupled disturbances until the occurrence of the fault at 𝑘 = 3001. This suggests
that the proposed filter effectively suppresses the effects of disturbances on the residual.
Although there is a spike in the residual caused by the transient response of the step signal
in the disturbance, it disappears quickly. After the fault happens, the value of 𝑟2(𝑘) immedi-
ately exceeds the threshold and remains significantly higher than zero. This indicates that
the fault is successfully detected and is distinguishable from the disturbance through the
residual. To further verify the robustness of the fault detection filter to disturbances, we
opted for a non-decoupled disturbance with larger fluctuations, where 𝛼𝑑,0,𝛼𝑞,0 ∼ 𝑈[0.5,1],
𝛼𝑑,𝑖,𝛼𝑞,𝑖 ∼ 𝑈[0,0.5], 𝜔𝑑,𝑖.𝜔𝑞,𝑖 ∼ 𝑈[1/60,1/30], and 𝜓𝑑,𝑖,𝜓𝑞,𝑖 ∼ 𝑈[0,100]. Since the disturbance
patterns vary, it is necessary to regenerate the matrix Φ̄ and redesign the filter using (4.25).
We calculated the threshold 𝐽𝑡ℎ = 0.0091 based on (4.28) with 𝜆 = 10. The diagnosis results
in the presence of large load fluctuations are presented in Figure 4.5. The analysis process
is similar to the previous one and, therefore, omitted here. In Figure 4.6, we show that the
approximate analytical solutions in (4.26) with larger 𝛾 have better diagnosis performance.
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Figure 4.5: Diagnosis results with non-decoupled disturbances and large load fluctuations.
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Figure 4.6: Diagnosis results by using approximate solutions (4.26) with different 𝛾 .
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4.5 Conclusions
In this chapter, we proposed diagnosis strategies for the detection of ground faults in
inverter-based microgrid systems with decoupled and non-decoupled disturbances, respec-
tively. Our strategies involve developing fault detection filters to deal with disturbances
and ensure fault sensitivity. To achieve this, we reformulate the filter design problem into
tractable optimization problems, which enable us to efficiently optimize the filter parame-
ters and meet the desired performance criteria. Simulation results on an inverter-based
microgrid system that works in the islanded mode show the effectiveness of the proposed
approaches. In future work, we first will consider designing the denominator of the fil-
ter for better dynamic performance. The second direction will be focused on extending
the proposed approaches to more complex and realistic settings, such as considering the
presence of multiple converters that introduce nonlinearity into the model.
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5
Conclusions and

Recommendations

This thesis aims to improve the reliability and safety of industrial systems by designing
novel and effective model-based fault diagnosis schemes. Motivated by the fact that
a scalable diagnosis system can effectively reduce the computational complexity when
dealing with complex modern industrial systems, we opt to design residual generators in
the framework of differential-algebraic equations, which results in residual generators with
the possibly lower order. Furthermore, we develop an optimization framework to determine
the parameters of residual generators to achieve certain diagnosis requirements including
decoupling faults, suppressing disturbances, and enhancing fault sensitivity within a
specific frequency range. Additionally, we propose evaluation methods for residuals and
threshold determination methods to provide probabilistic guarantees on false alarms and
missing detection rates. We apply these fault diagnosis methods to building radiant systems,
multi-area power systems, and microgrid systems to validate their performance.

In what follows, we summarize the results of this thesis and present some future re-
search directions.

First problem
Summary. In this part, we study a diagnosis scheme to reliably detect the active mode of
discrete-time, switched affine systems in the presence of measurement noise and asyn-
chronous switching. The proposed scheme consists of two parts: (i) the construction of a
bank of filters, and (ii) the introduction of a residual/threshold-based diagnosis rule. By
combining residual generation and 2 norm approaches, we formulate an optimization
problem to design an optimal bank of filters that minimizes the noise contribution to the
residuals. The diagnosis performance is also analyzed. Specifically, we determine diag-
nosis thresholds that provide probabilistic false-alarm guarantees on the mode detection
performance and compute the estimate of diagnosis time.

Future research directions. There are several directions related to this project that can
be further explored.
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• Active fault diagnosis. In order to distinguish between matched and unmatched
residuals, we set the transfer function from the reference signal to the matched
residual to zero, while ensuring that the steady-state gain of the transfer function
from the reference signal to the remaining unmatched residuals is greater than
or equal to 1. However, matched and unmatched residuals may overlap when the
reference signal is small. One potential solution is to utilize the concept of active
fault diagnosis, which involves designing input sequences that can reliably separate
the unmatched residuals from the matched residual with a high probability.

• Controller design and stochastic stability analysis. Stochastic noise introduces
randomness into the delay between the active mode and its corresponding controller,
which can impact system performance. As a result, it is meaningful to design con-
trollers that are resilient to random delays and analyze the stability of asynchronously
switched systems. Note that we have obtained the distribution of delay times in our
result, which can also be useful in this context.

Second problem
Summary. To address the conservatism involved in traditional fault diagnosis methods that
are designed for the entire frequency domain, we introduce the frequency information of
faults into the design of fault detection and estimation filters. We first develop an exact
optimization framework to solve the fault detection filter that simultaneously decouples
unknown inputs, suppresses noise, and enhances fault sensitivity in the finite frequency
domain. A threshold determination method that provides probabilistic guarantees on
false alarms and fault detection rates is proposed too. It is worth emphasizing that the
proposed design approach allows for residuals of arbitrary dimensions, which is a significant
improvement over previous methods. Second, we adjust the constraints in the proposed
optimization framework and obtain the design method for the fault estimation filter. To
reduce computational complexity, we further relax fault estimation conditions stated in the
constraints and formulate a quadratic programming problem to obtain the desired fault
estimation filter.

Future research directions. There are several directions related to this project that can
be further explored.

• Fault-tolerant control. After obtaining diagnosis results, it is natural to consider
designing a fault-tolerant control system that utilizes the estimate of faults to com-
pensate for the performance degradation caused by faults. However, as mentioned
in [168], there exists a robustness interaction between the fault estimation filter and
fault-tolerant controller. Specifically, the uncertainties, disturbances, and noise will
affect the fault estimation performance, and the fault estimation error will further
affect the performance of the fault-tolerant controller. Therefore, it is of interest to
find a framework to achieve an integrated design of the fault estimation filter and
fault-tolerant controller.

• Fault diagnosis for nonlinear systems. Given that nonlinearity is ubiquitous in
practical systems, it is intriguing to explore the extension of optimization-based fault
diagnosis methods derived in the framework of differential-algebraic equations to
nonlinear systems while considering faults in the finite frequency domain.
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Third problem
Summary. The last problemwe solve is more application-oriented. We consider ground fault
detection for inverter-basedmicrogrid systems. Different from previous results, we consider
disturbances that cannot be fully decoupled here. To tackle this challenge, we leverage
available disturbance patterns to train the fault detection filter and enhance its resilience
to disturbances. We formulate the design problem as a quadratic programming problem,
which has an approximate analytical solution with arbitrary precision. Additionally, we
establish a threshold to ensure the desired probabilistic diagnosis performance.

Future research directions. There are several directions related to this project that can
be further explored.

• More realistic settings. We consider an inverter-based microgrid that operates
in isolated mode and has a single converter with balanced ground faults. However,
it is worth noting that in practice, faults in microgrids are often unbalanced and
grids usually involve multiple converters and synchronous machines. Therefore,
extending the current approach to more realistic settings is valuable.

• Application on hardware. To validate the effectiveness of the proposed detection
technique, we conducted simulations using MATLAB. However, it would be valuable
to further test the approach on a practical microgrid system.

We also mention several other research directions to extend the results of this thesis.

• Attack resilient system design. Modern industrial systems are vulnerable to
attacks due to the existence of various wireless communication devices. The fault
diagnosis methods developed here may not be fully effective in detecting cyber-
attacks because they are intentionally designed to be covert. As a result, it is necessary
to model attack signals to account for all potential signals and to design controllers
and filters capable of maintaining system security under attacks.
Considering the different characteristics of attack signals and fault signals, it is nec-
essary to construct novel metrics to jointly characterize the impact and detectability
of attacks. We can then improve the filter design approach based on the proposed
metrics to simultaneously suppress the impact and enhance the detectability of
attacks.

• Data-driven and learning-based fault diagnosis. Our results are focused on
model-based fault diagnosis methods. However, in engineering practice, the ana-
lytical model of systems may be difficult to obtain. A workable solution is to use
data-driven methods to approximate the model mismatches or uncertainties.
Note that pure data-driven methods developed primarily in the machine learning
literature neglect knowledge about the underlying dynamics of systems. Therefore,
we can combine our model-based methods with data-driven methods to develop
a data-assisted model-based diagnosis method that makes full use of the available
information.

• Fault diagnosis for distributed systems. Large-scale infrastructures, including
electric power systems, water distribution networks, and transportation systems,
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are interconnected both physically and through communication networks. This
interconnection increases the vulnerability of these infrastructures to potential
attacks or failures.
It would be beneficial and worthwhile to expand the diagnostic methods developed
in this study to distributed systems. For example, we can design a local diagnosis
filter for each subsystem and obtain the local diagnostic decision based on the inter-
connection with neighboring subsystems to improve fault detectability in distributed
systems.
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