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Preface

When I was learning how to cycle, I remember wondering if there was
a relation between the side from which the training wheel is removed
first and the hand that the cyclist is most comfortable to keep off the
handlebar. I had developed a theory and was collecting data to test
my hypothesis, but my sample was so small I could not draw any con-
clusions. This dissertation does not provide an answer either, as it
would have only served to please my curiosity and would have had a
limited societal contribution. Instead, this dissertation is part of an
ERC funded project, called Allegro, that aimed to unravel the trav-
elling and traffic behaviour of pedestrians and cyclists in eight PhD
projects. Mine focused on the traffic behaviour of cyclists. So, even
though this dissertation answers different research questions, they do
relate to the behaviour of cyclists and the research approach follows the
principles I had adopted for that first research project, namely hypothe-
ses formulation, data collection and analyses to test the hypotheses and
draw conclusions. Despite the solid approach, this project would not
have been a success without the support of my supervisors, the Allegro
team, my friends and family. For this reason, I would like to express
my gratitude to each and every one of them.

Serge, thank you for offering me this project, for composing this
great Allegro team, for always keeping an eye on me and my well-being,
for taking action when I needed it, as if you could read my mind, and of
course for all the discussions we had about my research. Your enthusi-
asm, ideas and involvement in my project have been invaluable and kept
me motivated. I enjoyed the time we spent looking together into the
mathematics of the game theory models, and I really appreciate that
you let me find my own way into the behavioural modelling and our
great teamwork, also with Winnie, for the first ISTTT contribution.

vii



viii Preface

Winnie, last year TRAIL awarded you the title of best supervisor
of the year and the year before you were in the top three teachers of
our MSc programme. To me, you have been the best teacher and the
best supervisor every year and I am happy it could be officially ac-
knowledged. You were genuinely interested in my research, always had
a very thorough look at my documents and gave balanced and construc-
tive feedback, challenging me to keep improving. I am also grateful to
you for the opportunities you gave me regarding education tasks, by
involving me in your course and guiding me in the supervision of mas-
ter students. I learned a lot from you and I have greatly enjoyed the
time we spent working together from brainstorming about new ideas
and writing proposals to organising cycling experiments to supervising
students and grading their reports. And that is only half of the story.
The other half goes beyond your supervision role and I have admired
you for keeping the two halves apart. Because during the last four years
you have also been one of my best friends. You were the person I would
come to when I needed to talk, and you would always listen and help me
out. And I appreciate all the fun moments, from exploring new places,
to attending football and tennis games, to cooking, playing games and
watching movies. And a special thank you for being my corona buddy. I
would never have made it through the lockdown without your company
and our walks. So once again, thank you for your supervision and for
your friendship.

Yufei, thank you for inspiring this project with your cycling experi-
ments and for your constant support throughout my research. Your door
was always open and you were happy to brainstorm with me whenever
I needed that.

Haneen, thank you for your supervision and guidance during the
early stages of my PhD project. You believed in me when I was losing
hope, you encouraged me to pursue the research path I wanted and
helped me define the boundaries of my research.

Dearest Allegri, it was my pleasure to be part of this team. It is
said that doing a PhD is a lonely job, but with all of you around me, I
never experienced it as such. We had a lot of fun during the outings and
brainstorming sessions, working on the MOOC and travelling to confer-
ences. A special word of thanks to my officemates. Marie-Jette, I was
happy we could collaborate and organise this fun experiment together.
Lara and Danique, thank you for all the talks behind closed doors. You
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showed me the way, gave me the confidence I needed and always turned
my darkest hours several shades lighter. Florian, thank you for the hugs
and for discussing your work with me. You offered the right amount of
distraction and I really miss having you around in the office. Vincent
thank you for all the laughs in the little time you spent in our office. I
really miss your humour but I have enjoyed the closed windows in your
absence. Tim, thank you for all the help with my coding, for thinking
along and for letting me tease you every Thursday with the cookies!
Giulia, thank you for the yoga exercises and healthy snacks.

I would also like to thank more colleagues, and friends, from the
department for the lunches, the game nights and the outings, and over
the last year for all the fun posts in the Stay-in-touch group. Thank
you Panchamy, Tin and Boudewijn for the fun outings in The Hague.
Thank you Pablo and Yihong for an unforgettable trip around Califor-
nia. Maria, thank you for all your advice, for sharing your energy and
enthusiasm, for the walks in the corridors and the outings beyond that,
but more importantly, thank you for your friendship. And of course,
thank you and Chris for proof-reading my thesis. Alessandro and Elisa,
thank you for all the dinners, the movies, for taking care of my plants
when I was away and for the most epic afternoon working sessions under
the sun in the Mekelpark. Priscilla, thank you for all your administrative
support, but more importantly thank you for making me feel welcome
into your office, hearing me out when I was struggling, and for sharing
your office with me during the flex-working Fridays. Edwin and Peter,
thank you for all the help preparing and setting up the experiment.

Outside of the department, I would like to thank all my friends for
bearing with me, for distracting me, for hearing me out and advising me,
for all the laughters and love that we have shared over the years. Luuk,
Martijn, Marco, thank you for keeping in touch after the masters. Ozi,
thank you for the roller-coaster ride and some awesome dinners. Anna,
Faye, Violetta, Perikli, Elisa, Xristina, Niko, thank you for making ev-
ery holiday break special, for the escape rooms, the board games, the
dinners and movie nights. Anna, thank you for designing my cover and
for being my best friend regardless of the distance separating us. Perikli,
thank you for turning my flipbook idea into reality, for our unforget-
table talks at Tony’s and for all the laughters and fun memories on the
Planet every summer. Gianni, Odussea, Alexandra, Xristina, thank you
for keeping Fourka such a special place even after growing up.
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Finally, a big thank you goes to my family, because without their
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΄Ενα μεγάλο ευχαριστώ στις γιαγιάδες μου, για τα ανεπανάληπτα φαγητά

τους και τις ώρες που περάσαμε μαζί παίζοντας χαρτιά, φτιάχνοντας πίτες

και μιλώντας από κοντά ή από το τηλέφωνο. Λώρα, ευχαριστώ για όλες
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Chapter 1

Introduction

This dissertation presents research on cycling behaviour, ranging from
data collection and empirical findings to theories and models. The dis-
sertation is based on research that also appears in four journal papers,
which are brought together in a coherent story.

1.1 Background
Bicycles have been around for almost two centuries, but cycling has
only began to be considered as a transport mode in the last few decades
(Fishman & Cherry 2016; Pucher & Buehler 2012). This shift is at-
tributed to the increased urbanisation which leads to traffic congestion
and delays for car drivers, and also to the realisation that cars are not a
sustainable solution, causing health and environmental problems. Sev-
eral cities worldwide have, therefore, advocated the use of bicycles in the
urban environment by providing incentives and systems such as shared
bicycles (Baum 2008; Zhang et al. 2010; Avineri & Steven 2013; Dubuy
et al. 2013). The benefits of such a shift in terms of public health and
air quality are indisputable (Olde Kalter 2007; Heinen et al. 2010), yet
its realisation needs to be supported by the urban design (Pucher &
Buehler 2008).

So far, the design of cities has favoured the usage of motorised vehi-
cles, which raises concerns regarding the safety and comfort of cyclists.
In order to be able to accommodate large numbers of cyclists and ensure
their safety, proper design of dedicated cycling infrastructure is needed.
But what is proper? Answering this question requires understanding

1
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the behaviour of cyclists, how they interact with each other and how
they make use of the infrastructure, as well as their needs and prefer-
ences. To this date, there is limited knowledge and understanding of
these aspects of cycling behaviour.

Data and models are needed to shed light on these unknowns. Data
provide empirical insights and are used to develop, calibrate and validate
models. Traffic engineers then use these models to evaluate designs
under varying traffic situations and make recommendations to policy
makers and urban planners. The main hindrance to such developments
and the required insights has been caused by the lack of empirical data.
Even though a few models have been theoretically derived, they could
not be calibrated or validated without data. This means that not only
data are lacking, but also models describing cycling behaviour.

The type of data that is specifically needed to capture the move-
ments and interactions of individual cyclists with each other and with
the infrastructure is trajectories. In this context, a trajectory is a se-
quence in time of an individual’s positions in space. Data regarding their
needs and preferences can either be derived from their trajectories or
collected by other means, such as surveys. For the calibration and vali-
dation of models that describe bicycle movements on dedicated cycling
infrastructure, it is required to have trajectory data with high temporal
resolution (less than a second) and spatial accuracy (a few centimetres).
This level of detail makes it possible to observe how cyclists interact and
how they use infrastructure. Examples of bicycle-to-bicycle interactions
are cycling in groups and manoeuvres to overtake or to avoid collisions.
The infrastructure utilisation encompasses, among others, the position-
ing of cyclists in a queue and the preference to take wide turns or cut
corners.

In the last few years, several attempts have been made to collect cy-
clist trajectories. Researchers conducted bicycle experiments in which
cyclists were asked to ride on circular tracks without overtaking (An-
dresen et al. 2013; Jiang et al. 2017). These experiments provided valu-
able insights into how cyclists follow each other and even led to the
conclusion that the behaviour of cyclists is similar to that of car drivers
and pedestrians when restricted to one lane (Zhang et al. 2014). How-
ever, the prohibition to overtake and the restriction of all movements
into a single lane are not representative of bicycle motion, necessitating
further data collection efforts.
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The few models that have been derived, are based on behavioural
models developed for cars. Even though their parameters were adjusted
to reflect the lower speeds and smaller size of bicycles (Mallikarjuna
& Rao 2009; Yao et al. 2009; Vasic & Ruskin 2012), it looks like these
adjustments do not suffice. This is because they fail to capture the lane-
free bicycle motion, the steering control and the physical effort required
to balance. Apart from the behavioural shortcomings, these models
focused on mixed traffic situations, i.e. bicycles and motorised traffic
on the same road without physical separation (Oketch 2000; Mathew
et al. 2012; Luo et al. 2015). In an urban environment that envisages
to promote bicycle use and safety, infrastructure should be provided
that is dedicated to cyclists (Wexler & El-Geneidy 2017). Thus, models
are required that capture bicycle-to-bicycle interactions on dedicated
cycling infrastructure.

To sum up, based on this background information two research gaps
have been identified. First, there is a lack of cyclist trajectory data in
different types of bicycle-to-bicycle interactions and traffic situations.
Second, a model that describes cycling behaviour on dedicated cycling
infrastructure has not yet been developed. Filling these gaps is the
motivation of this dissertation.

1.2 Research questions
The aim of this dissertation is to develop a mathematical model that
describes cycling behaviour, using cyclist trajectory data collected on
dedicated cycling infrastructure. Cycling behaviour, in this context,
covers the decisions and movements that cyclists make while cycling
and interacting with other cyclists and with the infrastructure.

In order to meet this objective, the following research questions need
to be answered:

1. Which modelling framework captures cycling decisions and move-
ments?

2. Which are the key factors affecting the different decisions made
while cycling?

3. Which datasets are needed to obtain the influence of the key fac-
tors on cycling decisions?
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4. To what extent do the key factors influence the different decisions?

Given the collected datasets and developed models, empirical find-
ings and behavioural insights are derived. These are used to make de-
sign recommendations for cycling infrastructure by answering the final
research question of this dissertation:

5. Which design implications stem from the empirical findings and
behavioural insights of the derived datasets and models?

1.3 Research approach
The research approach is set up such that the research questions can be
answered and the objective be met.

The first research question poses the need for a modelling framework
that captures cycling behaviour. In order to develop such a framework,
the first step is to define which decisions are covered by the term cycling
behaviour, and to understand how the decisions of the cyclists and their
movements should be linked. To this end, existing definitions for the
behaviour of car drivers and pedestrians were consulted and adjusted
to match that of cyclists. The second step is to demarcate the deci-
sions under consideration. This demarcation is based on an overview
of traffic situations that cyclists encounter while cycling on dedicated
infrastructure.

For each of these decisions, (different) key factors play a role. The
second research question aims to identify these key factors. A literature
study was performed to reveal the key factors for decisions that have
been previously investigated. A survey was constructed to derive the
rest, including some overlap with what is known from literature to check
the extent to which they match and as such justify the predictive value
of the survey.

The next step is to develop theoretical models that fit the frame-
work and take into account the key factors. In this dissertation, dis-
crete choice theory is used, because it is in line with the behavioural
assumptions and it offers a consistent modelling approach for all deci-
sions within the framework. More explanation relating to this choice
can be found in chapter 2, where the framework and behavioural as-
sumptions are introduced and discussed.
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Before being able to apply these models in practice, they have to be
calibrated and validated. As previously argued, bicycle trajectory data
are needed for the calibration and validation, but are not yet available
for all traffic situations (i.e. decisions). In order to acquire trajectory
data on those situations that are missing, while ensuring the desired
temporal accuracy and spatial resolution, a controlled cycling experi-
ment is conducted. The design of the controlled experiment answers
the third research question and its implementation generates the col-
lected datasets. Further motivation for the performance of a controlled
experiment as the data collection method is provided in chapter 3.

Using the collected datasets, discrete choice models are estimated.
Their estimation process leads to calibrated models that are further
validated by means of a simulation. The resulting models reveal the
extent to which the different factors influence the cycling decisions. This
answers the fourth research question and generates the final product of
this dissertation, namely a cycling behaviour model.

Finally, recommendations are made for the design of cycling infras-
tructure. These are based on the empirical findings generated by pro-
cessing the collected datasets and the behavioural insights gained by
the calibrated models. With these design recommendations, the inves-
tigation of cyclist behaviour comes to a full circle and the dissertation
fills the gaps identified in the background.

1.4 Contributions
This dissertation achieves several contributions, both scientific and prac-
tical. In this section an overview is provided, while details can be found
in the corresponding chapter(s).

The main scientific contribution is the development of a modelling
framework for cycling behaviour at the operational level (chapter 2). A
secondary contribution is the definition of the operational level for cy-
cling behaviour. According to the definition, the operational behaviour
level covers decisions and actions taken while cycling, which means that
a destination has been selected, as well as a route through the network
towards this destination. In the operational level, cyclists choose their
path within the route, which relates to their positioning in the lane,
and also the control dynamics of the bicycle, namely the pedalling and
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steering. The added value of this definition is that it marks the bound-
aries regarding the types of behaviour and decisions that the operational
level encompasses. Based on this definition, the modelling framework
follows a two-layer approach, which first divides the decisions into men-
tal (path choices) and physical (control dynamics), and then represents
the decision making process by linking the relevant decisions to each
other.

In addition to the modelling framework, this dissertation produced
a rich dataset of cyclist trajectories. A large-scale controlled cycling ex-
periment was performed and captured high cyclist volumes and different
types of interactions, such as overtaking, bidirectional traffic, merging
and yielding. These data can be used by other researchers to study cy-
cling behaviour and generate new models and insights. Apart from this
scientific contribution, there is also a practical one in the performance
of the experiment. The process to set it up is delineated in chapter 3,
along with lessons learnt from implementing it, which can be used as a
guide for future experiments studying operational behaviour.

Further contributions are to be found in the estimated discrete choice
models. Firstly, the derived models capture different situations and op-
erational decisions of cyclists. More specifically, the models describe the
bicycle queue formation process at a signalised intersection (chapter 2)
and the cyclist interactions at unsignalised intersections (chapter 5).
The former shows how cyclists brake to a complete stop as well as their
choice for a queuing spot. The latter describes yielding behaviour for
cyclists who have to give priority and a regular cycling model for those
cyclists that have priority at the intersection. These models contribute
to the cycling behaviour modelling suite and can be used by researchers
and practitioners to develop simulation models and investigate differ-
ent scenarios, assess different situations and provide advice to policy
makers. Secondly, the estimation of these models demonstrates the
generalised application of the two-layer framework, leading the way for
researchers to develop more models to capture different decisions within
the framework.

The data analyses as well as the derived models generate valuable
empirical findings and behavioural insights. Based on these, design
recommendations are put forward (chapters 4 and 6) which constitute
another practical contribution.
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Last but not least, the societal relevance and contribution lies in the
use of these products (data, models, design recommendations) by ur-
ban planners and policy makers to provide safe and comfortable cycling
infrastructure.

1.5 Outline
This dissertation revolves around three pillars, namely models, data
and design recommendations. These are decomposed into six elements
and linked as shown in Figure 1.1. In order to derive mathematical
models, a modelling framework is needed, as well as data. When data
are not available, they need to be collected first and then analysed. The
models together with the data analyses lead to behavioural insights,
which are used to generate design recommendations. Each chapter in
this dissertation combines several of these elements, as displayed in the
figure.

Figure 1.1: Elements covered per thesis chapter.

More specifically, the remainder of this dissertation contains five
chapters. Chapter 2 presents the modelling framework that is proposed
to capture cyclist decisions and movements. In this chapter, an applica-
tion of the framework is also provided using an existing dataset (hence
no data collection) of cyclists queuing at a signalised intersection. Dis-
crete choice models are estimated, leading to behavioural insights for
the queue formation upstream of red traffic lights. Based on these in-
sights, recommendations are made to improve the queue formation. In
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order to be able to develop models for other situations, extensive data
collection has been performed and is presented in chapter 3. This data
collection includes the survey to derive the key factors, as well as the
controlled experiment to obtain trajectories of different individuals in
several traffic situations and interactions. Chapter 4 contains a first
analysis performed on the experimental data and empirical findings re-
garding the traffic efficiency of bicycle T-junctions. Additionally, the
use of lane marking for guidance of cyclists is evaluated and design
recommendations are made. In chapter 5, the modelling framework is
revisited and updated, and using the dataset from the controlled ex-
periment, discrete choice models are estimated. These describe cycling
decisions made upstream a bicycle unsignalised intersection and enhance
the behavioural insights into operational cycling behaviour. The thesis
closes with chapter 6, where conclusions are drawn from the behavioural
insights and recommendations are made regarding the infrastructure de-
sign, the application of the developed models and future research in this
field.



Chapter 2

Two-layer modelling
framework for operational
cycling behaviour

As explained in the introduction, operational cycling behaviour is greatly
understudied. Moreover, a definition is lacking of what the operational
behavioural level actually entails in terms of decision making. In this
chapter, the operational level for cycling behaviour is defined and a two-
layer modelling framework is proposed. The two layers stem directly
from the definition, according to which the operational level consists of
two intertwined processes, a mental and a physical process, each cap-
tured by the corresponding layer in the framework. The mental process
refers to path choices made within a route, while the physical process
refers to the bicycle control dynamics through pedalling and steering.
The application of the framework is demonstrated by developing math-
ematical models that represent the cycling behaviour during one of the
processes within the framework, namely the queue formation process of
cyclists upstream of a red traffic light. This process includes selecting a
queuing position (mental layer) and cycling towards it (physical layer).
The proposed framework, the developed models and the behavioural
findings on the bicycle queue formation process obtained by the appli-
cation of this framework are the main contributions of this chapter. The
framework is revisited in chapter 5 with another application at a bicycle
crossing.

9
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This chapter is based on the published article: Gavriilidou, A., W. Daa-
men, Y. Yuan, S. Hoogendoorn (2019a) Modelling cyclist queue for-
mation using a two-layer framework for operational cycling behaviour,
Transportation Research Part C: Emerging Technologies, 105, pp. 468–
484.
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2.1 Introduction

Though the interest in cycling in cities increases, research on bicycle
traffic behaviour is still in its infancy. Insights into this behaviour, and
understanding how cyclists interact with each other and make use of
cycling infrastructure are crucial if cities are to be designed to accom-
modate large amounts of cyclists and ensure their safety. Since models
can be used to evaluate different designs under varying traffic situations,
this need for insights is linked to the need to create reliable and accu-
rate models that can, for example, assess the capacity of intersections
or predict the number of encounters on bi-directional cycle paths as a
surrogate safety measure.

Research on how cyclists make use of the infrastructure is, however,
limited. Among the few examples is Jiang et al. (2013), who studied
the gap acceptance of cyclists against right-turning vehicular traffic at
signalised intersections. They found that cyclists started decelerating
when they are within 30 m from the stop line and that their acceptance
of a gap depends on the speed of the cyclist and of the motorised vehicle,
as well as the size of the available gap. Kucharski et al. (2019) observed
the formation of multiple channels in queues at signalised intersections
and found that the number of channels formed correlated with the length
of the queue. Since they only looked at a single intersection, it is possible
that the effect of other factors, such as the width of the cycle path, has
not been identified. In line with this remark, the authors stressed the
need for a bigger sample before a model could be formulated to describe
the queue formation process.

More research effort has been put on modelling the bicycle control
dynamics while riding and interacting with other road users, as several
microscopic behavioural models have been developed. Early microscopic
cyclist models made use of modelling paradigms developed for cars, such
as Cellular Automata models, while adjusting their parameters to re-
flect the lower speeds of bicycles and their smaller size (Mallikarjuna &
Rao 2009; Yao et al. 2009; Vasic & Ruskin 2012). However, the rules
governing the movement between cells have not been adjusted to rep-
resent cycling behaviour. Another example is the car-following model
that was derived for bicycle traffic by Andresen et al. (2013). Even
though it was calibrated using empirical cyclist data, the model de-
scribed single file bicycle flow which is generally not representative of
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cyclist movements on cycling infrastructure. In addition to these, mod-
els stemming from research on pedestrian dynamics were developed to
model the microscopic cycling behaviour, such as social force models
that determine the movement of cyclists based on attractive forces to-
wards the desired destination and repulsive forces from obstacles and
other traffic users, including other cyclists (Li et al. 2011; Liang et al.
2012; Huang et al. 2017). Utility-based models constitute another ap-
proach to describe pedestrian dynamics, but their application to cycling
is so far scarce. Even though NOMAD (a game theoretical model devel-
oped to capture pedestrian dynamics (Hoogendoorn & Bovy 2002)) was
adjusted for bicycle traffic by Twaddle (2017), these adjustments come
with strong behavioural assumptions that make the model mathemati-
cally tractable and move away from the game theory, turning it into a
social force model. At the same time, a game theoretical approach has
been applied and was deemed plausible (Gavriilidou et al. 2017), but it
should be extended to improve its behavioural realism, which is quite
cumbersome, due to its complex mathematical derivation.

We claim that the decisions and actions taken by cyclists while rid-
ing and interacting with other traffic participants and with the infras-
tructure belong to the same behavioural level and should be, therefore,
modelled together. We refer to this as operational cycling behaviour
level and, since a proper definition of what it entails is still missing,
we define it in this chapter. At the same time we put forward a novel
two-layer modelling framework that can be used to capture the men-
tal and physical processes of operational cycling behaviour. Moreover,
this chapter proposes for the first time the use of discrete choice theory
to identify and predict microscopic bicycle traffic flow operations. The
third contribution is the application of the proposed approach to model
the behaviour of cyclists when they approach a red traffic light. Dis-
crete choice models are estimated for both layers based on trajectory
data collected in Amsterdam, and describe the queue formation process,
which includes selecting a queuing position and cycling towards it. The
estimated models are face validated and reveal the factors that play a
role in this process.

The remainder of this chapter is structured as follows. Section 2.2,
then, defines the cyclist behavioural levels and describes the proposed
modelling framework. In section 2.3 the proposed mathematical model
is explained, followed by its application on a dataset described in sec-
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tion 2.4. The model estimation approach for each layer is discussed
in section 2.6. In section 2.5 the results of the best performing esti-
mated model for each layer are presented, along with simulation results
for face validation. Finally, in section 2.7 conclusions are drawn and
recommendations for future research are made.

2.2 Conceptual modelling framework
The focus of this thesis is on modelling operational cycling behaviour.
Since literature describing the behaviour of different modes is not aligned
with respect to what operational behaviour entails, the definition that
will be used in this thesis needs to be provided first. Figure 2.1 shows
the distinction of the behavioural levels used for car and pedestrian
traffic by Michon (1985) and Hoogendoorn & Bovy (2004), respectively,
and the one we propose for cycling traffic.

Twaddle (2017) adopted the definition of Michon (1985) where the
operational level is limited to actions within a time horizon of millisec-
onds. However, according to Rasmussen (1983), riding a bicycle is a
combination of tasks executed based on rules to perform manoeuvres
and automatic actions for split-second control of the bicycle. We, there-
fore, believe that they belong to the same level, the operational level,
whose time horizon is up to the order of seconds. We adopt the def-
initions used for pedestrians with respect to the strategic and tactical
level (Hoogendoorn & Bovy 2004), whose explanation goes beyond the
scope of this thesis, and focus on the operational level. The input to
this level is the route from one origin to a destination. Within this level,
two layers are distinguished, following the concept of a plan-action de-
cision structure proposed by Choudhury et al. (2010) and applied to
model pedestrian walking behaviour by Fukuda et al. (2014). In the
upper layer, cyclists need to choose intermediate destinations and build
up their path within the route while interacting with other traffic users
and with the infrastructure. We call this the ‘operational mental’ layer.
Path choices refer, among other things, to yielding, accepting a gap to
merge or cross, stopping for a red traffic signal, turning, and overtaking.
For the execution of each of these path choices, bicycle control dynamics
in the form of pedalling and steering are necessary. This is the lower
operational layer which we name ‘operational physical’ layer.
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Figure 2.1: Distinction of behavioural levels for car (left) and pedes-
trian traffic (middle) found in literature and for cyclist traf-
fic (right) proposed in this thesis.

Given this definition, we build upon the conceptual model of Gavri-
ilidou et al. (2019b), shown in Figure 2.2, which describes cycling be-
haviour at the operational level, and we fit the two proposed layers
within the individual behaviour, as visualised in Figure 2.3.

Figure 2.2: Conceptual model of operational cycling behaviour. At-
tributes are linked to individual behaviour. Collectively, they
lead to aggregated behaviour. These behaviours can be ob-
served via microscopic and macroscopic variables (Gavriili-
dou et al. 2019b).
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Five types of path choices have been identified in the operational
mental layer and each of them is captured by a separate model. The
choices correspond to situations when (i) cyclists decide to overtake, but
also when they are approaching an unsignalised intersection intending
to cross or merge and need to decide (ii) whether to accept a gap in the
conflicting traffic stream. Another choice at unsignalised intersections
which is at the discretion of the cyclists is to (iii) yield to oncoming traf-
fic. Moreover, situations at a red traffic light are covered, where cyclists
decide (iv) whether they stop and (v) where to position themselves in
the queue.

We hypothesise that these choices depend on a set of attributes that
need to be taken into account by the models. The attributes displayed
in Figure 2.3 for the decisions to overtake, yield, and stop at a red traffic
light are the outcome of a stated preference survey we conducted in the
Netherlands, discussed in (Gavriilidou et al. 2019b). They still need to
be validated with field data, but give good insights into the behavioural
attributes. The gap acceptance attributes are taken from (Jiang et al.
2013), even though they studied interactions between bicycles and mo-
torised traffic. For bicycle-to-bicycle interactions on designated cycling
infrastructure this list needs to be further investigated. In the appli-
cation of the framework in this chapter, the attributes describing the
queue position choice have been investigated and the findings are added
to the figure.

The operational physical layer consists of the controls that each in-
dividual exerts once a path choice has been made. These controls are
steering and pedalling to determine the cycling direction and speed, re-
spectively. This layer is described by a single dedicated model covering
steering and pedalling jointly. By applying these controls the state of
each individual cyclist (i.e., speed, position and headway) is affected.
On an aggregated scale (see Figure 2.2) they have an effect on density
and other macroscopic characteristics which can, then, result in changes
in the choices made by each individual cyclist, thereby substantiating
an interaction between the two layers. This interaction works in two di-
rections: (i) the choice made in the mental layer is communicated into
the physical layer, and; (ii) the new state of the system after applying
the decision taken in the physical layer influences the new choice to be
made in the mental layer.
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Figure 2.3: List of influential attributes per choice within the individual
mental layer (coloured in red). The choice in the mental
layer determines the choices within the operational physical
layer (coloured in blue). The elements that go beyond the
scope of this chapter are coloured in grey, while the scope
of the model application in this chapter is framed within the
green box (built upon Gavriilidou et al. (2019b)).

2.3 Mathematical modelling
In order to select the mathematical model that best fits our framework,
we should first identify our behavioural assumptions. Those are dis-
cussed in subsection 2.3.1, followed by the description of the models for
each operational behaviour layer (subsection 2.3.2 for the operational
mental layer and subsection 2.3.3 for the operational physical layer).

2.3.1 Behavioural assumptions
The following assumptions are made regarding the cycling behaviour at
the operational level:

1. Cyclists are effort minimisers, motivated by the general principle
of least effort. This holds for both layers, though the definition of
effort might differ per layer.
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2. Decisions in the two layers are made sequentially.

3. The decision made in one layer is input into the other layer.

4. The updating frequency of the mental layer is smaller (i.e., has a
longer horizon) than that of the physical layer.

5. When making a decision, cyclists evaluate a set of alternatives
using specific attributes.

In line with the framework presented in section 2.2, we propose a
two-layer mathematical model and use discrete choice theory and utility
maximisation to model each layer. This allows the identification of the
key attributes of the decision making process in each layer. It should be
noted that discrete choice models have been used to model the move-
ment of pedestrians (Antonini et al. 2006) and motorcycles (Lee et al.
2009; Shiomi et al. 2012). In motorcycle research, a discrete choice
model has also been estimated in the context of queue formation at an
intersection (Lee & Wong 2016). One of the main reasons for the lack
of such a cycling model is that discrete choice models require empirical
data to be estimated and there has been a lack of cyclist trajectory data
which we overcome in this thesis.

2.3.2 Modelling the operational mental layer
The use of discrete choice theory to model the operational mental layer
is demonstrated through its application on one of the path choices,
namely the queue position (green box in Figure 2.3). The description
in this subsection is qualitative, while the quantitative estimations are
introduced in subsection 2.5.1.

In the operational mental layer of this application, cyclists need to
decide where to stop in the queue formed upstream of a red traffic light.
In our approach, the two-dimensional space is discretised in diamond-
shaped cells, since we argue that they represent better the space a bi-
cycle occupies than a rectangular grid. These cells compose the choice
set. Each cell is assigned a (dis)utility based on cell attributes and char-
acteristics of the decision maker (cyclist). Using discrete choice theory
and the utility maximisation principle, a model can be estimated from
cyclist trajectory data, revealing the significant attributes and their rel-
ative contribution to the overall cell utility. Availability conditions are
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also taken into account, since cells that are occupied cannot be re-
assigned.

The diamond-shaped grid is visualised in Figure 2.4, where bicy-
cles already present in the queue (coloured in black) are standing still
and a cyclist (coloured in green) approaches and needs to make a de-
cision. Given this situation, the green cyclist will select a cell that is
not yet occupied and gives the highest utility. In this case the red cell
is selected and assigned as the intended queuing position of the green
cyclist. This is the output of the operational mental layer that is used
by the operational physical layer.

Figure 2.4: Schematic of the operational mental layer during the queu-
ing process at a (red) traffic light. The green cyclist ap-
proaching the traffic light decides in this layer the intended
queuing position (red cell) based on the characteristics of the
cells, the availability conditions and utility maximisation.

2.3.3 Modelling the operational physical layer
As already mentioned, the intended queuing position is fed as input to
the discrete choice model of the operational physical layer, where the
cyclist decides upon the controls to reach this position. The controls are
a combination of pedalling and steering, which are expressed as changes
in speed and direction relative to the speed and direction, respectively,
at the moment the decision is made. The justification of the choice
of speed and direction difference as controls over the choice of their
corresponding absolute values or the choice of a new position in the
two-dimensional space in the next time step relates to the assumption
that cyclists are effort minimisers. This means that they choose the
relative effort they are willing to exert in each time step and that goes
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through changes in pedalling and steering rather than anticipation of
their future position.

The choice alternatives are visualised in the fan-shaped individual-
specific grid in Figure 2.5. The fan shape is selected because it reflects
the angular movements that characterise cyclist motion. The angu-
lar sections capture the radial directions accessible with appropriate
changes in steering. The number of angular sections and arched zones
is only illustrative and should be determined dependent on the appli-
cation. In this example, the middle angular section corresponds to no
change in the direction, two sections to the right correspond to a small
and a bigger steering movement towards the right, and sections to the
left steering to the left. The arched zones represent possible relative
speed regimes that can be reached through pedalling or braking. The
arch closest to the bicycle corresponds to speed reduction (deceleration),
the arch furthest away corresponds to an increase in speed (acceleration)
and the middle arch corresponds to a choice of no change in speed.

Two more aspects are demonstrated in the figure. One is the se-
quence of decisions in time within this layer (a lighter shade of grey is
given to the grid for decisions to be made in each future time step).
The sequence of positions resulting from these choices leads the cyclist
to the final position and together forms the cyclist trajectory. The other
aspect demonstrated is that the grid is always aligned with the cycling
direction of the cyclist at the moment the decision is made. This is
shown by the rotation of the grid in each time step, such that the ‘no
change in direction’ alternative is a continuation of the change in di-
rection that was chosen in the previous time step. The centre of the
grid in each time step corresponds to the new location of the cyclist,
which depends on the time step, the cycling speed and the choice of
change in speed made in the previous step. As the figure is illustrative
and no numerical values for speed and time are assigned, the distance
separating the different grids is only qualitative.

At each time step, the cell in the fan with the highest utility is
selected and the position of the cyclist is updated for one time step, when
a new decision is required. It is possible that in between these decision
moments there is an interaction with the operational mental layer if a
situation occurs that was originally not anticipated by the cyclist and
necessitates the estimation of a new intended queuing position (e.g., if
another cyclist occupies the originally intended position).
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Figure 2.5: Schematic of the operational physical layer during the queu-
ing process at a traffic light given the intended queuing po-
sition (red cell) provided by the operational mental layer. A
sequence of decisions (blue cells) is made that corresponds
to the combination of angle and speed difference with the
highest utility at each time step (grey-scale fans). The se-
quence of positions resulting from these choices forms the
cyclist trajectory.

In any case, the result of this interaction between the two layers and
the decisions made over time is the cyclist trajectory to reach the in-
tended queuing position. This trajectory together with the final queuing
position fully describe the operational cycling behaviour. A quantita-
tive application of the proposed framework is presented in section 2.5,
where specific models have been estimated using field data from Ams-
terdam, the Netherlands. Prior to that, the data available for the model
identification is described in section 2.4.

2.4 Data on queue formation process
This section presents the dataset used for the model estimation and
validation. First, both the site and dataset are introduced (subsec-
tion 2.4.1), followed by a description of the data processing to prepare
the dataset to estimate the models (subsection 2.4.2).

2.4.1 Site and dataset description
The dataset used for the model estimation contains cyclist trajectories
that have been extracted from video camera footage at a signalised
intersection in Amsterdam, the Netherlands (Figure 2.6(a)). The site
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consists of a 2m-wide unidirectional cycle path that is separated on the
left from motorised traffic (even though the cycle path itself can be
used by scooters) via a traffic island that has a different surface type
but no height difference and can be used by pedestrians and cyclists
who queue. The cycle path is also separated from the sidewalk by a
curb on the right. These areas are illustrated in Figure 2.6(b). With
two cameras elevated over the cycle path, top-view video images were
recorded during an afternoon. The combined view of both cameras
covers a length of 20m upstream of the stop line at the traffic light.

(a) Combined view from front and back camera at the intersection. The
yellow tape on the cycle path marks the overlapping area between the
two cameras.

(b) Study areas of the traffic island, the cycle path and the sidewalk.
The black lines denote the edges of the cycle path and a green button
is used to show the location of the ‘request-green’ button.

Figure 2.6: Top view and areas of interest at the site.

As the aim of our application is to use the two-layer framework to
model the queue formation process (i.e., choosing a location to queue
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and cycling towards it), trajectories of cyclists approaching the traffic
light during the red-light phase are collected. We focus on pure bicycle-
to-bicycle interactions and therefore, only bicycle trajectories are ex-
tracted. Red-light phases where more than one scooter was present are
omitted, as well as phases when there is interaction with crossing pedes-
trians. The phases with one scooter are kept, assuming that one scooter
does not have an effect on the results when considering pure bicycle-
bicycle interactions. Only the position it occupies is tracked, so that
it is not available to cyclists that arrive later. This way the sample of
tracked bicycles increases, and the trajectory of the scooter is ignored.

The last criterion for a red-light phase to be removed from the
dataset is the presence of disturbances, such as pedestrians crossing
and creating conflicts, bicycles joining the queue from another side or
even the sidewalk where they were parked, and cyclists that decided
to run the red light even though they had originally queued, thereby
initiating movements within the queue.

The final dataset consists of 46 red-light phases with 454 cyclists and
18 scooters in total queuing up. It should be noted that cyclists arriving
after the traffic light turned green were not included since their intended
queuing position, if any, was not observed. The transition from video
files to microscopic cyclist trajectories comprises six steps, which were
performed as follows:

1. Decomposition of videos into frames with an average frame rate
of 6 frames per second (fps).

2. Manual tracking per frame of the head of each cyclist who ap-
proaches the intersection during a red-light phase until standstill.

3. Height transformation to project the trajectories at the head po-
sitions to the ground.

4. Orthorectification to correct for the distortion due to the fact that
the cameras were placed at an angle and did not point vertically
downwards to the cycle path, as well as to compensate for the lens
distortion.

5. Time conversion from frame number to seconds.

6. Trajectory merging of the two cameras for each cyclist.
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For more information about the data collection and the extraction
steps, the reader is directed to the paper by Goñi Ros et al. (2018).

2.4.2 Data processing
Figure 2.7 shows the cyclist trajectories, speeds and steering angles of
one red-light phase. The raw trajectories have been extracted by means
of manual clicking on the heads of the cyclists and thus contain noise
(‘*’ in Figure 2.7). To remove this noise, a smoothing process is applied
on the data. The smoothing is done by means of a moving average
with a fixed-length sliding window across the trajectory data vectors
(x: vector of positions in the horizontal direction, y: vector of posi-
tions in the vertical direction, t: vector of time instances correspond-
ing to each position). The calculation of the mean is performed for
each element of the original vector while centring the window around
the corresponding element. Different sliding window lengths were com-
pared (see appendix A). The results only have limited difference and
favour the smoothing of the trajectories over a duration of 6 frames.
The smoothed data points are marked by ‘+’ in Figure 2.7.

Although the average frame rate was 6fps, it was not constant over
time, resulting in data points that are not separated by the same time
gap. For our application, it is crucial to have a consistent time dis-
cretisation throughout all cyclist trajectories as each point corresponds
to a moment at which a decision was made. These points are derived
by taking the instant right before these homogenised timestamps and
projecting the trajectory in (x,y) using the smoothed speed at that in-
stant. Different time steps were compared (see appendix A) and a time
step of 1 second was found to be best at muting the noise. This means
that each cyclist is assumed to make a new decision regarding the steer-
ing angle and speed difference every second. The final data points are
marked by ‘o’ in Figure 2.7.

The trajectories show the path each cyclist followed from the mo-
ment they were detected by the back camera up to their final queuing
position. The values in both axes have been adjusted for the visu-
alisation, such that the (0,0) point coincides with the location of the
‘request-green’ button, while in the actual dataset they have positive
values that increase in the direction of cyclist movement. The speed
and steering angle are computed between consecutive data points and



24 Two-layer modelling framework

are visualised relative to the horizontal distance that the cyclist has tra-
versed. The horizontal axis of these two graphs has been offset such that
all trajectories end at the same point, which facilitates the comparison
between the original, the smoothed and the final dataset. A number of
observations can be made:

• The trajectories show a good match between the original, the
smoothed and the final dataset.

• The smoothing helps reducing the noise in the speed and steering
angle.

• The speed is decreasing throughout the observed trajectory which
is in line with the findings of Jiang et al. (2013) that deceleration
occurs within the 30 m upstream of the intersection.

• The steering adjustments are small at the beginning of the trajec-
tory.

• When the speed is low, the steering adjustments increase and they
are maximum at the end of the trajectories where the speed is the
lowest and the head is swaying more.

These final trajectory points are used for the model estimation. The
operational mental layer requires only the last point which corresponds
to the queuing position of each cyclist. The operational physical layer
takes into account every point as they have been assumed to corre-
spond to a decision point. It should be noted that the reason why the
operational mental layer does not make use of the original dataset is to
guarantee the consistency between the two layers.

2.5 Model estimation approach
In this section the estimation approach for each layer (subsection 2.5.1
for the operational mental layer and subsection 2.5.2 for the operational
physical layer) is discussed. It includes a justification of the grid choice
and selection of attributes to explain the corresponding behaviour, as
well as assumptions specific to the model estimation.
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Figure 2.7: Cyclist trajectories numbered based on their order of arrival
(top), speed (bottom left) and steering angle (bottom right)
when approaching a red traffic light in the original dataset,
when smoothed with a sliding window length of 6 frames
and finally when homogenised with time step of 1s. In the
top figure the point (0,0) is the location where the stop line
meets the curb of the sidewalk, while at the bottom figures
the positions in x have been offset such that they end at the
same arbitrary point for all cyclists.

2.5.1 Operational mental layer estimation approach
This layer aims to capture the decision making when joining a queue,
where cyclists have to choose their queuing position, as introduced in
Figure 2.4. The observed queuing positions (i.e., last trajectory point
of the processed dataset when cyclists are at standstill) are visualised
in Figure 2.8, where the point (0,0) is the location of the ‘request-
green’ button and the red lines indicate the boundaries of the cycle path.
As expected, positions next to the ‘request-green’ button are the most
frequently selected. Other positions at the stop line are also favourable,
as well as positions on the traffic island, especially for cyclists who want
to make a left turn at the intersection. As the queue increases in length,
there is a preference for a position next to the curb of the sidewalk rather
than a position in the middle of the cycle path.
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These choices can be analysed to identify which attributes have an
influence, and to what extent, on the queuing position choice by esti-
mating a choice model. The estimation requires the definition of the
choice set, the specification of the utility functions and the demarcation
of the estimation assumptions.
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Figure 2.8: Observed queuing positions. The point (0,0) is the location
where the stop line meets the curb of the sidewalk (also the
location of the ‘request-green’ button). The red lines indicate
the boundaries of the cycle path.

Choice set definition

The cycle path and surrounding areas (sidewalk and traffic island next
to the cycle path) are discretised using the aforementioned diamond-
shaped grid. The resulting cells correspond to the choice alternatives of
a cyclist. As previously mentioned, this grid better captures the shape
of the bicycle (compared to a rectangular grid) and allows for a more
realistic representation of queuing.

Each cell is scaled such that it can fit one cyclist based on the stan-
dard dimensions of 2 m length and 70 cm handlebar width (CROW
2016). These dimensions also show a good match with the average ob-
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served spacing in the longitudinal and lateral direction between stopped
cyclists in our dataset.

The grid is generated in such a way that there is a cell right next
to the sidewalk whose middle crosses the stop line. This is because the
‘request-green’ button is located right next to the stop line so cyclists
stop on top of the line rather than behind it.

The real queuing position is then projected to this grid and assigned
to the cell whose centroid is closest to it. This projection results in the
top plot of Figure 2.10, which will be explained in the subsection 2.6.1.
The choice set for each cyclist comprises the cells that are not already
occupied by others.

Utility specification

The attributes (cell characteristics) that are hypothesised to capture
the attractiveness (utility) of a cell are the distance to the stop line,
the distance to the edges of the cycle path and the presence of other
cyclists in the queue. Moreover, the behaviour of the first cyclist is
hypothesised to be different from the behaviour of the rest, since the
first arriving cyclist needs to stop next to the ‘request-green’ button
to be able to press the button to request green. For this reason, the
attributes related to the distance to the stop line and the distance to
the edges of the cycle path are separately estimated for the first cyclist
and for the rest. Given these hypotheses, a general description of the
specific attributes is first provided, followed by a full list of the detailed
attribute notation and definition.

Regarding the distance to the stop line, cells whose centroid is down-
stream the stop line are differentiated from those that are upstream.
This way the former, i.e. stopping after having crossed the stop line,
can be penalised and avoided as a queuing position.

With respect to the distance to the edges of the cycle path, it is
hypothesised that the effect on utility is not symmetrical as the distance
increases within and outside of the two edges, because being on the cycle
path is desirable, while being on the sidewalk is less comfortable due
to the presence of pedestrians and being on the traffic island increases
the proximity to motorised traffic. Based on this hypothesis, the area
covered in the choice set is subdivided into four sublanes, namely the
sidewalk, the right lane of the cycle path, the left lane and the traffic
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island. The right edge of the cycle path is taken as reference for the
first two sublanes and the left edge as reference for the last two.

The presence of other cyclists can be represented in several ways.
Therefore, more than one attribute is defined. One way is the distance
to the nearest cyclist in the queue. Another considers the number of
cyclists within each of the aforementioned sublanes, as the more cyclists
stopped within a sublane, the less attractive the sublane becomes, be-
cause cyclists cannot manoeuvre to overtake and would need to join the
end of the queue. This end of the queue may also be seen as an offset
of the stop line within each sublane, i.e. cyclists have a higher utility in
stopping closer to the end of the queue. An attribute is therefore added
that considers the distance to the cyclist at the back of the queue of the
sublane.

The full list of attributes for this layer is given in Table 2.1.
In the construction of the systematic part of the utility functions (V ),

interaction terms among these attributes are used in a linear weighted
summation. The weights (coefficients) are denoted by β and are generic
for all alternatives as there is no straightforward way to classify them
in nests that would acquire alternative specific weights. An example
utility function of a cell c (Vc) in a model where only the interaction
term between the dummy XF, the dummy Xup, and the variable Xd2stop
is considered, is shown in Equation 2.1.

Vc =
βupF ·XF ·Xd2stopc ·Xupc +βupR · (1−XF) ·Xd2stopc ·Xupc

+βdownF ·XF ·Xd2stopc · (1−Xupc)
+βdownR · (1−XF) ·Xd2stopc · (1−Xupc)

(2.1)

Estimation assumptions

When estimating a model within this layer, the following assumptions
are made to simplify the estimation process:

1. There is no correlation between the alternatives (Independence of
Irrelevant Alternatives, IIA property) and therefore, a multino-
mial logit model can be used.
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Table 2.1: List of variables for the operational mental layer.

Attribute Unit Explanation

XF - dummy indicating whether the cyclist is the
first one arriving

Xbutton - dummy to denote if a cell is the cell next to
the ‘request-green’ button

Xd2stop m longitudinal distance between the location of
the stop line and the centroid of the considered
cell

Xup - dummy indicating whether the considered cell
is upstream or on the stop line

Xonside - dummy to denote if a cell is on the sidewalk

Xonisland - magnitude of steering intensity when consid-
ering changes towards the left

Xrightln - dummy to denote if a cell is on the right lane
of the cycle path

Xleftln - dummy to denote if a cell is on the left lane of
the cycle path

Xd2Redge m absolute lateral distance between the location
of the right edge of the cycle path and the
centroid of the considered cell

Xd2Ledge m absolute lateral distance between the location
of the left edge of the cycle path and the cen-
troid of the considered cell

Xd2nearEucl m Euclidean distance between the centroid of the
considered cell and the one closest to it that
is occupied by cyclists already standing in the
queue

Xd2nearX m minimum absolute longitudinal distance be-
tween the location of the centroid of the con-
sidered cell and those already occupied by cy-
clists standing in the queue

Xd2nearY m minimum absolute lateral distance between
the location of the centroid of the considered
cell and those already occupied by cyclists
standing in the queue

Xtotal cyclists total number of cyclists within the sublane of
the considered cell

Xd2lastX m longitudinal distance between the last queuing
cyclist in the sublane where the considered cell
belongs and the centroid of the considered cell,
if the considered cell is upstream
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2. Queuing spots are assigned upon the entrance of a cyclist in the
camera vision field, which means that this decision precedes any
decisions on the operational physical layer and that the assignment
of spots follows the order of arrival of cyclists.

3. The assigned queuing spots are not updated over the course of
the cyclist trajectory. This means that the interaction between
the two layers is in this application one-way.

4. Cyclists are assumed to be aware of the spot selected by their
predecessors. This is imposed through availability conditions in
the logit model, which remove cells that are already assigned to a
cyclist from the choice set of oncoming cyclists.

These assumptions can later be relaxed, for example by considering
spatial correlation between the diamond-shaped cells and by allowing
the updating of the decision for the intended queuing position. Part
of the spatial correlation has already been captured by the attributes
related to the distance from the stop line and the edge of the cycle
path. But as cyclists do not see the diamonds on the cycle path, they
might apply a different discretisation of space in areas combining several
cells. This should be considered in future research and would require
the definition of areas that are correlated and the estimation of more ad-
vanced logit models. However, a first attempt that considered a nesting
structure around the ‘request-green’ button did not show evidence of
such spatial correlation. The decision updating becomes relevant when
unanticipated changes take place, such as a cyclist entering the cycle
path from another direction and occupying the originally desired posi-
tion. Another reason to consider updating is when speed differences are
large and overtaking might place. In this case, the first come first serve
rule might need to be replaced by a rule based on cycling speed. Since
the dataset does not contain disturbances of sudden appearing cyclists
and there is no information on desired queuing positions other than the
revealed one, these effects are righteously ignored.
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2.5.2 Operational physical layer estimation approach
Within this layer, the intended queuing position is known and the cyclist
decides in every time step the changes in pedalling and steering until
the next time step. In order to reach the intended queuing position,
a sequence of time steps, and corresponding decisions, is needed and
results in the cyclist trajectory.

The estimation requires the definition of the choice set, the speci-
fication of the utility functions and the demarcation of the estimation
assumptions.

Choice set definition

In the physical layer, cyclists decide whether they will change their speed
and direction at the current time step. By looking at the combinations
that occur in the processed dataset the discretisation of the fan-shaped
grid of Figure 2.5 can be motivated.

The observed choices are visualised by the blue dots in Figure 2.9.
It shows that most observations are concentrated around zero in the
angle difference and more specifically in the boundary of [-15,15] degrees.
Larger changes in the steering angle only take place when there is no,
or very small, change in the speed (∆Speed between [-2,2] km/h). From
further inspection of the dataset, it is noted that this coincides with very
low speeds. Moreover, regarding the speed changes, most observations
are negative, which is in line with the findings of section 2.4 that cyclists
are already decelerating when entering the observed area.

Following these insights, for our application the fan-shaped choice
grid is defined to range from speed changes of -12 km/h to +8 km/h with
a step of 2 km/h, and the steering angle changes in degrees are {-45,
-30,-15,-10,-5,0,5,10,15,30,45}. The observed choices are then assigned
to their closest grid point and choices that would result in a negative
cycling speed are made unavailable.

Utility specification

Based on the observation that the distance to other cyclists and the
curb play a role in the decision for the queuing position, we hypothesise
that they also affect the path that is chosen to reach that position. In
this decision layer, the position of the stop line is less relevant but what
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might have an effect is the distance to the intended queuing position.
When considering this distance, one can differentiate between choices
that result in passing the intended queuing position and choices that do
not. This way the former can be penalised and avoided towards the end
of the trajectory. Additionally, it is hypothesised that the behaviour
towards moving cyclists differs from the behaviour against stopped cy-
clists or obstacles. This discrepancy is captured by the distance to the
nearest bicycle and the difference in cycling speed, which is calculated
separately for moving and for stationary bicycles. The full list of at-
tributes is given in Table 2.2.
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Figure 2.9: Observed choices of changes in steering angle and speed.

These attributes are used in a linear weighted summation to con-
struct the systematic part of the utility functions (V ), with the excep-
tion of the distance to the destination, which is covered by an interaction
term between the dummy Xpass and the Xd2dest. An example utility
function of alternative a (Va) in a model where only this interaction
term is considered, is shown in Equation 2.2.

Va = βover ·Xd2desta ·Xpassa +βunder ·Xd2desta · (1−Xpassa) (2.2)



2.5 Model estimation approach 33

Table 2.2: List of variables for the operational physical layer.

Attribute Unit Explanation

Xd2dest m Euclidean distance between the destination (i.e.,
the intended queuing position) and the location
to be reached within a time step if the considered
change in speed and angle is chosen position

Xpass - dummy indicating whether in the next step,
given the considered change in speed and angle,
the cyclist will have traversed a longer longitudi-
nal distance than needed to reach the intended
queuing position

Xd2Mov m minimum Euclidean distance between the antic-
ipated positions of the cyclists in front who are
moving, and the location to be reached within a
time step if the considered change in speed and
angle is chosen

Xd2Stop m minimum Euclidean distance between the antic-
ipated positions of the cyclists in front who are
stopped, and the location to be reached within a
time step if the considered change in speed and
angle is chosen

XspdMov m/s maximum speed difference between the consid-
ered speed and that of cyclists in front who are
moving

XspdStop m/s speed to be reached if the considered change in
speed is chosen and if there are cyclists in front
who are stopped. Since the stopped cyclists have
no speed, this attribute reflects the disutility of
having the considered speed when others have
stopped

XdVmov m/s maximum speed difference between considered
speed and speed of moving cyclists in front

Xstep - dummy indicating whether in the next step the
cyclist will need to get on or off the curb of the
sidewalk

Xoffpath - dummy indicating whether in the next step the
cyclist will need to get on or off a the traffic
island
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Estimation assumptions

When estimating a model within this layer, we make the following as-
sumptions:

• Changes in cycling speed and direction are decided simultaneously.

• Cyclists do not move backwards and so no negative speeds are
allowed.

• Decisions made by the same person at different time steps are
independent. As no serial correlation is assumed, a multinomial
logit model is to be estimated.

• When other cyclists are present, there is full knowledge of their
current speed and direction.

• Zero acceleration is assumed for the other cyclists and so their
anticipated position within one time step can be estimated based
on their current cycling speeds.

• There is no memory from previous time steps. Only cyclists within
the vision field at the current position affect the decision to be
made.

• The vision field contains everything that is in front of or at least
at the same longitudinal position as the cyclist making a decision.

The pitfall of ignoring the serial correlation is that bias of an indi-
vidual towards a certain type of behaviour is overlooked, and the risk of
inconsistent behaviour between time steps is introduced. Even though
it decreases the model realism, we argue that it is an acceptable sim-
plification to get first insights into the operational physical layer. If
this assumption is relaxed and panel data are considered, a mixed logit
model should be estimated. In terms of anticipation, the assumption of
zero acceleration is reasonable as it cannot be expected that the inten-
tions of others are known. The full knowledge of the speed and position
assumption could be relaxed by considering some noise rather than the
exact measurements. Last but not least, future research should intro-
duce a memory function to improve the anticipatory skills of cyclists
and increase the model realism.
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2.6 Results and discussion
This section provides and discusses the model estimation results for
each layer. Models have been estimated using Python Biogeme (Bier-
laire 2016). The best performing model is found based on goodness of
fit measures, i.e. ρ̄2, AIC and BIC criteria, and is presented in sub-
section 2.6.1 for the operational mental layer and in subsection 2.6.2
for the operational physical layer. Both models are face validated by
means of simulation with Biogeme. The simulation results are discussed
in subsection 2.6.3.

2.6.1 Operational mental layer model
The estimated values of the coefficients of the best performing model
are shown in Table 2.3, along with their robust statistics. The model
consists of 12 parameters, one third of which captures the behaviour of
the first arriving cyclist. These four attributes are differently weighed
from the corresponding ones for the rest of the cyclists, which confirms
the hypothesis made in subsection 2.5.1 that the behaviour of the first
cyclist is different.

The cell next to the ‘request-green’ button has a positive coefficient
(βbuttonF = 1.24) for the first cyclist, while it does not affect the utility
for the rest of the cyclists. Moreover, the utility decreases the further the
queuing position is from the stop line. This disutility is greater in the
case of crossing the stop line and stopping further downstream (βdownF =
−2.13) compared to stopping upstream of the stop line (βupF =−1.18).
Regarding the distance to the edges, as most cyclists stop within the
cycle path, the only attribute with sufficient observations to estimate
a coefficient is the distance from the curb of the sidewalk to a position
within the right lane of the cycle path. This coefficient has a positive
value (βrightlnF = 4.91), which shows that first arriving cyclists prefer to
be close to the middle of the cycle path (i.e. at the end of the right
lane). This is reasonable since it serves the purpose of stopping next to
the ‘request-green’ button.

For the rest of the cyclists, three coefficients are estimated concern-
ing the distance to the edges. There is an increase in utility by being
on the right lane (βrightlnR = 1.21), and a decrease by being on the side-
walk (βonsideR = −6.46) and on the traffic island (βonislandR = −1.85).
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The difference in magnitude of the inflicted disutility can be explained
by the fact that the sidewalk is primarily intended for use by pedestri-
ans, while the traffic island can be used by cyclists, especially if they
want to turn left at the intersection. Also for these cyclists, there is
a disutility the further downstream the queuing position is from the
stop line (βdownR = −1.29). The coefficient of the attribute describ-
ing the distance to the stop line for cells upstream the stop line is
positive (βupR = 0.30), which might seem counter-intuitive, but can be
explained by its negative correlation with the distance to the nearest
bicycle, as well as with the distance to the last stopped cyclist within
a sublane. These two have negative coefficients βd2nearX = −0.53 and
βd2lastX =−0.22, respectively, which indicates that cyclists want to stay
close to each other in the queue in the longitudinal direction. Since
the last stopped cyclist within a sublane is considered as an offset of
the stop line, it is reasonable that the coefficient is negative and the
arriving cyclist wants to stay as close as possible to the adjusted stop
line. The last attribute of the model captures the effect of the number
of queuing cyclists within a sublane and, as expected, has a negative
coefficient (βtotal = −0.39). This shows that the more cyclists stopped
within a sublane, the lower the utility of that sublane and therefore,
it is more likely that the arriving cyclist will choose to stop in another
sublane.

2.6.2 Operational physical layer model
The estimated values of the coefficients of the best performing model are
provided in Table 2.4, along with their robust statistics. All values are
statistically significant, which confirms that the hypothesised attributes
influence the choices made with respect to changes in speed and cycling
direction.

Moreover, the coefficient values prove that the behaviour towards
stopped and moving cyclists is indeed different, especially when consid-
ering the distance. There is a higher disutility when getting closer to
a stopped cyclist than to a moving one. This can be explained by the
fact that the moving cyclist continues to change position, while stopped
cyclists form a (static) obstacle when the intended queuing position is
not adjacent to them.
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Table 2.3: Estimated model parameters for the operational mental
layer.

Coefficient Coefficient Robust Robust Robust
name value standard error t-test p-value
βbuttonF 1.24 0.37 3.31 0.00
βupF -1.18 0.26 -4.58 0.00
βdownF -2.13 0.55 -3.90 0.00
βrightlnF 4.91 0.75 6.57 0.00
βupR 0.30 0.03 9.70 0.00
βdownR -1.29 0.31 -4.14 0.00
βrightlnR 1.21 0.21 5.89 0.00
βonislandR -1.85 0.23 -8.05 0.00
βonsideR -6.46 1.04 -6.19 0.00
βd2nearX -0.53 0.05 -10.90 0.00
βtotal -0.39 0.06 -6.43 0.00
βd2lastX -0.22 0.04 -6.30 0.00

With respect to the distance to the intended queuing position, there
is a penalty for changes in speed and angle that increase this distance.
The penalty is bigger when the position is passed, which is reasonable.
Cyclists should not be willing to cycle further than their intended queu-
ing position.

Another valuable insight is the disutility of having to go on and off
the cycle path at consecutive time steps. As expected, the disutility is
much higher on the side of the sidewalk due to the presence of the curb,
while on the side of the traffic island the surfaces are on the same level
and only the surface type changes.

A first attempt to consider the panel data in a mixed logit model
showed evidence of correlations present in the choice for no changes in
the steering angle, but did not significantly affect the coefficient values
of the simple multinomial logit model. Further research is needed to
investigate the effect of the panel data in more detail.



38 Two-layer modelling framework

Table 2.4: Estimated model parameters for the operational physical
layer.

Coefficient Coefficient Robust Robust Robust
name value standard error t-test p-value
βunder -1.01 0.05 -19.61 0.00
βover -2.04 0.10 -20.75 0.00
βd2Mov -0.40 0.04 -9.06 0.00
βd2Stop -0.24 0.05 -5.24 0.00
βspdMov -0.93 0.06 -15.73 0.00
βspdStop -0.61 0.06 -10.77 0.00
βstep -2.46 0.20 -12.44 0.00
βoffpath -0.83 0.09 -9.08 0.00

2.6.3 Face validation using simulation
Using the estimated parameters for each model, a simulation is per-
formed, where a prediction is made for each observation in the dataset.
In this case, we have used the same dataset for estimation and face
validation, as we do not have another dataset available and the dataset
is too small to segment. Having the same dataset means that the at-
tributes and availability conditions describing the situation at which
every individual made a decision remain the same. The simulation uses
the estimated model to compute all utility functions and the probabili-
ties of each alternative. The individual’s probabilities of an alternative
are aggregated by averaging over all individuals to whom the corre-
sponding alternative was available. The true (observed) choices can
then be compared with the predicted (simulated) ones.

The comparison for the operational mental layer is visualised in
Figure 2.10, where the white dot at point (0,0) is the location of the
‘request-green’ button and the red lines indicate the boundaries of the
cycle path. The observed choices show a preference for the right lane
of the cycle path, which is well reproduced in the simulation results.
Moreover, the choice of the first arriving cyclists to stop next to the
‘request-green’ button is very accurately replicated by the simulation.
Another observation is that cyclists at the front of the queue are likely
to stop at any lateral position on the cycle path or on the traffic island,
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while the longer the queue grows, the most preferable the right lane
becomes, possibly due to the presence of the curb so the cyclists can
rest their foot. This trend is also captured by the model; the front cells
on the left lane have a higher probability than those upstream and the
probability decreases with the longitudinal distance. These simulation
results are, therefore, considered a good representation of reality.

Figure 2.10: Probability of a diamond cell being selected as the queuing
position in the observed (top) and the simulated (bottom)
dataset. The white dot, point (0,0), is the location where
the stop line meets the curb of the sidewalk (also the loca-
tion of the ‘request-green’ button). The red lines indicate
the boundaries of the cycle path.

The comparison for the operational physical layer is visualised in
Figure 2.11. The pattern displayed in the two fans is similar with ob-
served choices having less variance and thus higher probability values
for no change in direction and slight deceleration, while the simulated
choices are more scattered. The trend of speed reductions and small
changes in the steering angle is captured well by the simulation. In
order to present these results more quantitatively in a single assessment
value, the positions in x and y that result from the choices of speed
and angle change are calculated. The absolute percentage error made
in each observation i can be computed per direction (i.e., x and y) using
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the formulas

xerrori = |xsimi−xobsi |
xobsi

yerrori = |ysimi−yobsi |
yobsi

(2.3)

The mean absolute percentage error (MAPE) in the longitudinal x
direction is 4.37% and in the lateral y direction 1.79%. These values are
considered low and prove that the model generates plausible results.

Figure 2.11: Probability of a combination of change in steering angle
and speed to be selected in the observed (left) and the sim-
ulated (right) dataset.

2.7 Conclusions and recommendations
In this chapter, different behavioural levels for cyclists have been de-
fined for the first time, while focusing on the operational level. We hy-
pothesised that this level consists of two intertwined processes, namely
the path choices made within a route and the bicycle control dynam-
ics through changes in pedalling and steering. We put forward a novel
two-layer framework to capture the tasks within the mental and physi-
cal layers of the operational level. Discrete choice theory was proposed
to model each layer and the plausibility of the framework was demon-
strated through an application. Using cyclist trajectory data from a
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signalised intersection in Amsterdam, the Netherlands, models were es-
timated and face validated. The models describe the behaviour of cy-
clists when approaching and queuing at a red traffic light, including
selecting a queuing position (operational mental layer) and cycling to-
wards it (operational physical layer). The models reveal the attributes
that influence queuing behaviour.

For this specific application of the modelling framework, we found
that when deciding on a queuing position, the first arriving cyclist be-
haves differently than the rest as there is the need to stop next to the
‘request-green’ button and press it. Additionally, cyclists prefer to stop
on the right lane of the cycle path and upstream of the stop line. Posi-
tions on the sidewalk are less favourable than those on the traffic island,
because the former are hindered by pedestrians on the sidewalk, while
the latter can be attractive for left-turning cyclists. Furthermore, cy-
clists prefer to stop close to each other, but once a sublane becomes
crowded, they prefer to go to another sublane. This disutility is traded
off with their desire to stay on the right lane and once the front stopping
positions are occupied, there is a trend to stop closer to the curb of the
sidewalk rather than build up all sublanes equally. These results are in-
tuitive because cyclists want to use the curb as a resting position when
stopped and as an assist when accelerating. Once this intended queuing
position is decided upon, the cyclists need to create a trajectory towards
it, which they do through changes in their speed and steering angle at
regular time intervals with the aim of reaching that position. Based
on our estimation results, cyclists behave differently towards stopped
and moving cyclists, which is reasonable since stopped cyclists form an
obstacle on the way and an increase of the speed difference might lead
to unsafe situations that are preferably avoided. Moreover, they are
attracted by their intended queuing position and deter from passing
it. They additionally deter from changing surface type and, even more
strongly, from stepping on and off curbs.

These findings provide valuable insights for the design of cycling
infrastructure. One way to avoid long sparse queues would be to provide
an elevated curb on both sides so that cyclists can use it as a resting
spot. This elevation is also advisable to prevent cyclists from leaving
the cycle path and interfering with pedestrian traffic. When it is not
possible, changing the surface type can be an alternative measure. The
reason why sparse queues should be avoided is the fact that dense queues
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have shorter discharge times (Goñi Ros et al. 2018), so their green phase
and the cycle time of the intersection can be reduced.

The simulation results reproduce patterns observed in the empirical
data and thereby demonstrate the face validity of the models. However,
there is room for improvement, which could be sought in including other
attributes, such as the time of day or weather conditions, or adding
personal characteristics such as age, gender, bicycle type and the rid-
ing direction after the light is green. Moreover, heterogeneity between
cyclists could be considered by drawing the coefficients from a distribu-
tion rather than fixing them to one value for everyone. Furthermore,
the assumption with respect to the independence of alternatives could
be lifted and models that allow for correlation of alternatives, such as
cross-nested or mixed-logit, could be estimated. Other modelling as-
sumptions could be tested in future research as well, such as the vision
field and the cyclists in it that are taken into account, or the anticipation
and memory skills of the cyclists.

Apart from improving the currently estimated models, a future re-
search direction is their adjustment to enable the communication of
the two layers and potentially updating the intended queuing position
decision. Additionally, the models could be validated on other intersec-
tions and extended for other datasets where scooters and pedestrians
are present so that their effect is captured as well.

Last but not least, the generalised application of the proposed ap-
proach should be substantiated by estimating models for other choice
situations in the conceptual framework. These models can then be used
in microsimulations and to update the model attributes in the frame-
work. A challenge in this process has been the shortage of cyclist tra-
jectory data which we will tackle in future work thanks to the dataset
collected through our controlled large-scale cycling experiment (Gavri-
ilidou et al. 2019b).



Chapter 3

Large-scale cycling
experiment

In the introduction chapter, the lack and need of empirical data in the
form of cyclist trajectories were identified. In chapter 2, the approach
to derive behavioural insights and to create models describing cyclist
behaviour has been demonstrated with an existing dataset consisting
of cyclist trajectories upstream of a traffic light. In order to extend
the range of traffic situations and to overcome the data shortage, we
performed a unique controlled, large-scale cycling experiment in the
Netherlands. In this chapter the methodology for setting up and im-
plementing such an experiment is described.These steps may be used
as a guide in future experimental data collections and as a reference
for future analyses using the data. Moreover, the collected dataset is
introduced with an elaboration on its potential uses. The contribution
of this chapter is, therefore, threefold: (i) it delineates the process to
set up a large-scale cycling experiment; (ii) it describes the performance
of the experiment, and; (iii) it presents the resulting large database of
cyclist trajectories. Two subsets of the collected trajectories are used in
the analyses and model development of chapter 4 and 5, respectively.

This chapter is based on the published article: Gavriilidou, A., M. J.
Wierbos, W. Daamen, Y. Yuan, V. L. Knoop, S. P. Hoogendoorn (2019b)
Large-scale bicycle flow experiment: setup and implementation, Trans-
portation Research Record: Journal of the Transportation Research Board,
2673(5), pp. 709–719.
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3.1 Introduction
Cycling as a main mode of transportation has in recent years been
promoted by many governments worldwide due to its health and envi-
ronmental benefits. The focus is mostly on finding ways to attract more
people to the bicycle, while at the same time it is important to ensure a
safe and comfortable infrastructure that can accommodate high cyclist
volumes. This requires understanding of bicycle traffic characteristics,
as well as insights into behaviour of cyclists while cycling on the road
and making decisions to interact with other traffic participants and with
the infrastructure. Research in this field is, however, limited and that
is to a large extent due to the lack of empirical data.

To overcome this shortage of data, we performed a controlled large-
scale cycling experiment. This chapter describes the methodology for
setting up and implementing such an experiment. These steps may be
used as a guide in future experimental data collections and as a reference
for future analyses using the data. We describe the collected dataset
and elaborate on its potential uses. The contribution of this chapter is,
therefore, threefold: (i) delineating the process to set up a large-scale
cycling experiment; (ii) describing the performance of the experiment,
and; (iii) presenting a large database of cyclist trajectories.

This remainder of this chapter is structured as follows. In section 3.2
we provide a background of existing literature on operational cycling
behaviour and identify the research gaps. Based on these, we formu-
late our research objectives in section 3.3 and discuss the findings of a
stated preference survey that we conducted as a first step to meet the
objectives (section 3.4). Section 3.5 describes the development of the
data collection plan, while section 3.6 discusses its implementation. In
section 3.7 the dataset is presented, followed by an outlook of future
research.

3.2 Background on operational cycling be-
haviour

This section provides an overview of existing research on the opera-
tional cycling behaviour on an individual and on an aggregated level
and identifies research gaps in each level.
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3.2.1 Individual cycling behaviour
Operational cycling behaviour on an individual level can be represented
by decisions regarding the use of the provided infrastructure while cy-
cling and the interaction with other traffic participants.

In unconstrained situations, interaction decisions depend on the in-
dividual’s choice for speed and positioning on the cycle path. A number
of studies have looked into desired speed and acceleration profiles in free-
flow conditions (Ma & Luo 2016; Twaddle & Grigoropoulos 2016), on
different road surface types and gradients (Shepherd 1994), with nor-
mal bicycles as opposed to electric ones (Schleinitz 2016) and at wide
or narrow cycle lanes (Vansteenkiste et al. 2013). These personal pref-
erences might be constrained at high bicycle traffic volumes and when
multiple directions intersect, an effect which is yet to be investigated.
The interaction decisions in such situations, their coverage in literature
and the corresponding knowledge gaps are the following:

• steering to avoid colliding with other cyclists: Steering ma-
noeuvrers of bi-directional cyclists on collision course have been
studied by Yuan et al. (2018), but the interaction with other di-
rections is yet unknown.

• overtaking cyclists: Research on cyclists moving in the same di-
rection has looked into following behaviour (Andresen et al. 2013),
but overtaking decisions have not yet been investigated.

• yielding to other cyclists: To the best of our knowledge, there
has been no research on yielding decisions at unsignalised crossings
where priority rules apply, but are not enforced.

• accepting a gap in a conflicting stream: The gap acceptance
of cyclists against right-turning vehicular traffic has been studied
(Jiang et al. 2013). This, however, might differ significantly when
cyclists interact with other cyclists and may also be influenced by
whether the intention is to cross or merge.

• stopping at a red traffic light: Researchers have analysed red
light running of cyclists at specific intersections across the world
and identified influencing attributes that explain this behaviour,
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such as gender, age, amount of conflicting motorised traffic, cross-
ing distance and cycling with company. An overview of these
studies can be found in (Richardson & Caulfield 2015).

• positioning when joining a queue: The formation of multiple
channels in queues has been observed at one signalised intersec-
tion, stressing the need for a bigger sample (Kucharski et al. 2017).
The queue formation process in other situations, like upstream of
an open bridge or a reduction of the cycle path width, is not yet
studied.

3.2.2 Aggregated cycling behaviour
The aggregated behaviour of traffic participants is typically captured
by the so-called fundamental diagram, which is the relation between
average speed, density and flow. Several studies have investigated this
relationship for cyclist flows and identified characteristics that are sim-
ilar to vehicular traffic and pedestrian flow (Chen et al. 2013; Zhang
et al. 2013). Other studies focused on understanding bicycle traffic flow
and collected empirical data through:

• single-file controlled experiments: They have been conducted
outdoors on circular tracks (Navin 1994; Andresen et al. 2013; Mai
et al. 2013; Jiang et al. 2016; Zhao & Zhang 2017). In this setting,
bicycle flow in low and high density situations can be observed,
resulting in empirical data covering the full density range of the
fundamental diagram. This provided insights into the dynamics of
bicycle flow and identified flow characteristics such as stop-and-go
waves. However, overtaking was not allowed in these experiments,
which is often observed in real-life situations.

• observing cycling behaviour in daily traffic: Studies have
estimated capacity of bicycle paths and resulted in a wide range
of values (Botma & Papendrecht 1991; Li et al. 2015; Greibe &
Buch 2016; Jin et al. 2017). This might be explained by the differ-
ences in infrastructure or bicycle type composition. The influence
of electric bicycles has been studied (Wang et al. 2015; Zhou et al.
2015; Jin et al. 2017), but could not be controlled due to the na-
ture of the empirical data. By controlling the infiltration rate
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of electrical bicycles, its impact to the overall flow characteris-
tics can be identified more clearly. Furthermore, most empirical
data is collected in conditions with low cyclist volumes and lacks
observations in the congested regime of the fundamental diagram.

In short, the literature so far provides limited insight into the bicycle
flow dynamics for high demand situations when overtaking is allowed
and the effect of different attributes, such as the infiltration rate of
electric bicycles, on the shape of the fundamental diagram, has not yet
been studied.

3.3 Research objectives
Based on the given literature overview, it can be concluded that the
research effort to observe and understand cycling behaviour is limited.
The most essential gap seems to be studying high cyclist volumes, as well
as bicycle-to-bicycle interactions at designated cycling infrastructure.
With respect to individual behaviour, overtaking and yielding have been
studied the least. At an aggregated level, overtaking is also important,
as it is expected that it can explain the flow differences in the congested
regime. Its effect on the shape of the fundamental diagram has not yet
been studied, nor has the penetration of electric bicycles.

In order to address these gaps, we focus on bicycle traffic in the
absence of other transport modes. Our objective is to collect a novel
dataset that captures high cyclist volumes and where overtaking and
yielding interactions take place. The aim of this dataset will, then, be to
retrieve the characteristics of the fundamental diagram when overtaking
is allowed and also to study the effect of bicycle type, an in particular
electric bicycles, to the overall flow dynamics. Moreover, the dataset
will be used to investigate the attributes that best explain the decisions
to overtake and yield.

3.4 Survey on influencing attributes
To investigate the attributes that can explain overtaking and yield-
ing decisions, we conducted an online stated preference survey in the
Netherlands in summer 2017. The respondents were asked to name the
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attributes that influence their decision making in three situations: (i)
overtaking or staying behind a single or a small group of cyclists; (ii)
going ahead or stopping at a crossing to allow cyclists with priority to
merge or cross, and (iii) stopping or continuing at a red traffic signal.
The latter was included to check whether the attributes found from
observations match the stated ones and as such justify the predictive
value of the survey. The specificities of each situation were outlined,
and always involved cycling during daytime on road infrastructure des-
ignated for cyclists and separated from other traffic. Per situation, a list
of attributes was provided to the respondents based on behavioural hy-
potheses regarding the most influential attributes. Each list contained
ten attributes displayed in random order, and three empty fields to enter
other attributes. A selection of three to ten attributes was requested per
situation. Apart from that, general information about the respondents
was collected, such as gender and nationality.

By analysing the 444 responses, using principal component analy-
sis to reduce dimensionality, the most influential attributes per decision
could be obtained. In Figure 3.1 the prevalent attributes for each deci-
sion are linked to the corresponding decision (the check marks indicate
the attributes that can be studied with our dataset). These decisions are
part of the individual behaviour, together with steering and pedalling
decisions. The schematic fits into the conceptual model of Figure 3.2
which describes cycling behaviour at the operational level. According to
it, attributes influence the behaviour of individuals, who collectively give
rise to aggregated behaviours. These behaviours can be observed via
microscopic and macroscopic variables, whose relations are visualised in
the conceptual model.

The validity of the survey findings is demonstrated by the attributes
found significant for the decision to stop at a traffic light as they match
those found in literature. However, more data are needed to quantify
the effect of the attributes on the overtaking and yielding decisions. A
data collection plan is, thus, necessary.
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Figure 3.1: List of influential attributes per decision according to our
survey results. The check marks indicate the attributes that
can be studied with the dataset collected in our experiment.

Figure 3.2: Conceptual model of operational cycling behaviour. At-
tributes are linked to individual behaviours, as already shown
in detail in Figure 3.1. Collectively they lead to aggregated
behaviours. These behaviours can be observed via micro-
and macroscopic variables.
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3.5 Development of data collection plan

The research steps to set up the data collection plan are described.
First, the data needs and requirements are identified (subsection 3.5.1),
followed by the motivation of the choice for the data collection approach
and equipment (subsection 3.5.2). A controlled experiment is selected
and its set-up is presented, covering the design of the scenarios (sub-
section 3.5.3) and the cycling track (subsection 3.5.4), the estimation
of participants needed (subsection 3.5.5) and the duration required for
each scenario (subsection 3.5.6).

3.5.1 Data needs and requirements

As previously mentioned, one of our aims is to retrieve the character-
istics of the fundamental diagram when overtaking is allowed and the
fleet consists of different bicycle type compositions, as well as to in-
vestigate the overtaking and yielding decisions of individuals and to
identify the attributes that best explain them. The data type necessary
to study individual cycling behaviour is trajectories, i.e., cyclist posi-
tions in time and a two-dimensional space. Trajectories are the most
detailed type of traffic data, which can be aggregated in time or space
to study macroscopic variables needed for the construction of the fun-
damental diagram. By examining trajectories, the use of the cycle path
width and the speed adjustments can be studied relative to the position
and speed of other cyclists and the environment (width, curve). The
accuracy that is required for the trajectories lies within 10 cm which
sets requirements for the data collection equipment. Additionally, it is
crucial to be able to track and distinguish each individual, while also
linking the observations to personal characteristics.

Another requirement is set by the need to capture the fundamental
diagram. Therefore, it is necessary to observe low as well as high densi-
ties, which can be achieved by controlling the infrastructure setting and
bicycle inflow rates. Studying the effect of different bicycle types means
that the composition of the fleet should also be controlled. Moreover,
controllability is necessary to ensure that the desired cyclist interactions
(overtaking and priority negotiation) take place and that the effect of
the influencing attributes of Figure 3.1 can be investigated.
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3.5.2 Data collection approach and equipment
Three data collection approaches can be used to retrieve trajectory data:

• observing real-life situations: Even though this approach can
capture the uninfluenced and unbiased behaviour, the degree of
controllability is very low and does not meet the prescribed re-
quirements.

• doing an experiment in virtual reality: Existing bicycle sim-
ulators are of unknown validity and behavioural realism. They
also do not allow for multiple individuals to cycle simultaneously
and interact with each other.

• doing a controlled experiment in a physical environment:
A controlled experiment allows for a high degree of controllability
and, thus, satisfies the requirements.

In a controlled experiment, the number of cyclists using the infras-
tructure, the routes they take, as well as the design of the infrastructure
itself can be controlled. By carefully instructing the participants, spe-
cific elements of their behaviour, like their choice of speed, can be steered
when necessary. Even the external conditions, such as light and wind,
may be controlled.

However, the approach has some disadvantages that should be mit-
igated as far as possible through the experimental design. One of the
main disadvantages is the occurrence of the so-called “learning-effect”.
This means that participants change their behaviour over time as their
familiarity with the experimental setting increases and they get tired.
This can be minimised by varying the layout and tasks that the par-
ticipants are asked to perform during the day and by shortening their
cycling duration.

Another potential drawback relates to data validity and representa-
tiveness. It may be argued that the behaviour is not realistic due to
the fact that participants know they are being observed. We counter
this argument based on the fact that the behaviour is observed several
times and as they need to interact with other cyclists, their conscious-
ness shifts to the riding task and any differences observed in behaviour
are attributed to intra-personal variability. Moreover, this is intuitive
behaviour, and the observation equipment will hardly be visible.
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Regarding the data collection equipment, as the trajectories need to
have high accuracy, overhead video cameras are selected. By placing
them above the cyclists, the cameras track their movements with as
little occlusion as possible, and continuously in time. In order to be
able to automate the extraction of trajectories from the video images, a
red cap is assigned to each participant. This is because red is the colour
easiest to recognise under a wide range of lighting conditions (Daamen
& Hoogendoorn 2003). Last but not least, since it is crucial to be able
to link the observed trajectory to a specific individual, the caps are
assigned a unique identification code.

3.5.3 Scenario design
On a microscopic level, the aim is to investigate the effect of the at-
tributes of Figure 3.1 on overtaking and yielding decisions. In the sce-
nario design we can control for two of them, namely the bicycle type
and the directionality of the cycle path. Regarding bicycle type, sepa-
rate runs are scheduled each with a different fleet composition and the
scenarios are referred to as “Overtaking”. More specifically, there is a
run for regular bicycles only, runs that combine regular bicycles with
one special type, and a run with all types. In these scenarios there
is a one-way flow on the cycle path. For the fleet with all types, the
behaviour is compared with a run that allows for bi-directional flow.

With respect to yielding decisions, the direction of approaching cy-
clists is an attribute. Its effect can be investigated by separately study-
ing crossing and merging streams. Therefore, two scenarios are de-
signed, namely “Crossing” and “Merging”. As the bicycle type is an
attribute, runs are performed with a mixed cycling fleet as well as with
regular bicycles only.

On a macroscopic level, scenarios are needed to observe low as well
as high densities to construct the fundamental diagram. We imple-
ment this by narrowing the cycle path, which obstructs the cyclist flow
and leads to queue formation upstream of the narrow section when
the demand exceeds its capacity. By varying the width of the nar-
row path (“bottleneck”), various congested patterns occur, determining
both density and speed upstream of the bottleneck. We call it “Active
bottleneck” scenario. It consists of different runs, each having another
bottleneck width or a different cycling fleet composition, to observe the



3.5 Development of data collection plan 53

effect of bicycle types on the fundamental diagram. Specifically, the
effect of electric bicycles is investigated by comparing three penetra-
tion rates: 0%, 10%, and 20%. These values represent typical values of
electric bicycles in urban traffic situations in the Netherlands.

3.5.4 Track design
The layout of the track needs to be carefully designed because it largely
determines the behaviour that can be observed in the experiment. First
of all, cyclists should maintain a speed as close as possible to their nor-
mal cycling speed and behave as they would in reality. For this reason,
a continuous track is selected, where participants make laps instead of
short stretches that would require frequent acceleration from, and decel-
eration towards, standstill. A rounded rectangle shape is preferred over
a circular one, because: (i) the cyclists will not be constantly steering in
a curve; (ii) there is a straight stretch for overtaking manoeuvrers, and
(iii) there is the possibility to study the effect of the attribute “going
straight or turning” for overtaking decisions.

In terms of dimensions, the length of the straight stretch is set at
40 m, which is an adequate length for cyclists to overtake (Yuan et al.
2018). The width of the track is chosen to be 2 m. This width ensures
that there is enough space for cyclists to overtake and it is also possible
to sketch situations with a bi-directional flow (Zeegers 2004). The ra-
dius of the curve should allow cyclists to maintain a comfortable speed
without the inside pedal hitting the surface if they lean. For a riding
speed of 20 km/h, the minimum radius is 7 m (Shepherd 1994).

In order to ensure that the desired interactions take place, differ-
ent track elements have been integrated into a single track layout, see
Figure 3.3. The blue continuous line is the main track, used in all sce-
narios, where cyclists enter at the top left corner and cycle clockwise.
The choice for this cycling direction is based on the norm to cycle on
the right-hand side in the Netherlands and as such the inside curve will
be taken by the slower cyclists. The inside curve radius is set at 10 m,
with a quarter of a circle placed on each side and connected with a long
straight stretch of 40 m and a short one of 16 m. The long stretch on
the top side gives room for overtaking, while the bottleneck is placed
at the bottom side in the Active bottleneck scenario. The short stretch
accommodates crossing at a straight stretch rather than within a curve.
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Another element is activated to observe crossing behaviour (green
dotted line in Figure 3.3) where cyclists are riding counter clockwise.
With this configuration, there is a bi-directional flow on the top part
where the two routes overlap enabling the investigation of the effect
of “one- or two-way cycle path” on the overtaking behaviour, and also
creating two crossing points which increases the amount of observations.
An extension of 10 m of straight stretch is added at the crossing points
and the curve radius is set at 8 m, such that the crossing takes place in
the middle of the blue track.

A third element is added (black dashed line in Figure 3.3) for the
Merging scenario, which is connected to the main track in two locations;
one is the off-ramp where cyclists can exit the main track and the other
one is the merging point where cyclists join the main flow again. It
is worth noting that no markings indicating priority are added on the
track to prevent that they influence the behaviour.

With respect to controlling the flow, a bottleneck is introduced at the
bottom side of the track. It consists of two inflatable mattresses placed
next to each other on the track to create a narrow stretch 4 m long.
The height of the bottleneck is 33 cm which blocks pedalling over it but
does not hinder steering, creating the impression of an elevated curb
rather than that of a wall which could be unsafe to drive through. The
bottleneck is moved inwards to decrease the width of the track in that
section. This way the cyclists are obstructed, leading to queue formation
when the cyclist demand exceeds the capacity of the bottleneck. It is
placed downstream the straight stretch (seen from the cycling direction)
ensuring that the queue will grow along the straight stretch, and the
observations are uninfluenced by the curve. By varying the bottleneck
width, various congested patterns occur upstream of the bottleneck.

The bottleneck is set to four different widths, namely 75, 100, 125
and 150 cm. These numbers are based on a preliminary bicycle flow
experiment that we performed, where the main path width was also
2 m and the path was narrowed to a width of 150 to 50 cm using
steps of 25 cm. The 50 cm width was found to be too narrow for
safety reasons. In order to observe high densities, the flow through the
bottleneck should then be reduced in a different manner. The shape
of the bottleneck is changed from a small straight stretch to one that
cyclists have to meander through, referred to as the “Meander”. The
two mattresses are placed behind each other with 2 m space in between
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and in such a way that they leave a path of 75 cm to the side of the
track (Figure 3.4).

Figure 3.3: Track layout showing in colour the elements activated for
different scenarios.

Figure 3.4: Construction of meander bottleneck using two mattresses.
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3.5.5 Number of participants

The next step is determining the number of participants. We base this
primarily on the aim to capture the relation between density, speed and
flow. Assuming a diamond queue formation of 2-1-2-1, the jam density
is 0.7 cyclists/m2, which leads to 28 cyclists for a queue length of 20 m,
which is enough to observe the behaviour for the high density and low
speed situation.

To maintain a 20 m long queue, there need to be as many cyclists
joining the tail of the queue as leaving the queue through the bottleneck.
The number of cyclists that need to circulate the track depends on
the outflow rate of the bottleneck, as well as on the average cycling
speed of the circulating cyclists. To estimate the maximum number of
participants, the scenario with the highest queue outflow rate should be
considered. Based on our preliminary experiment, the outflow rate of
the bottleneck of 150 cm width is 1.82 cyclists/s. Based on an average
cycling speed of 19 km/h (Botma & Papendrecht 1991), 55 additional
cyclists are needed. Consequently, a total number of 83 participants is
required in the experiment.

3.5.6 Scenario duration and scheduling

The estimation of the duration needed for each scenario is based on the
requirement to have enough observations to draw statistically significant
findings. In the Overtaking scenario this is translated into giving each
cyclist the chance to make at least ten decisions whether to overtake or
not (i.e., cycle through the top straight stretch). When the bottleneck is
inactive, it takes about 30 s to complete a lap, which leads to a required
duration of 5 min.

With respect to the Merging and Crossing scenarios, the indicator
to base the observation calculations on is the attribute “number of ap-
proaching cyclists”. In order to investigate its effect on the decisions
being made, different group sizes, i.e. number of cyclists approaching
the negotiation point from each side, need to be observed. As large
numbers are appreciated the bottleneck that would constrain the out-
flow is removed. The time needed to collect sufficient observations of
different group sizes is calculated using a simple microsimulation. It as-
sumes a constant cycling speed and simulates dots moving around the
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track. Once a dot is detected close to the negotiation point, the number
of dots present on each approaching stream is counted, while taking into
account a physical length of about 2 m. If both approaches have a posi-
tive number, it is counted as an interaction of a group size coming from
the right against a group size coming from the left. After running for a
longer duration, the number of encounters of the occurring group com-
binations at the merging and crossing points is calculated. The result
is that the Merging scenario requires 40 min and achieves interactions
with a maximum group size of 6 against 5 cyclists, and every combina-
tion in between. Since the Crossing scenario has two observation points
on the track, it requires half the time (20 min) for these observations.

In the Active bottleneck scenario, a 5 min duration is chosen. This
duration enables the estimation of flow, density and speed in contin-
uous and homogeneous conditions in the queue, without lengthening
the total duration of the experiment. Also, it accommodates capacity
estimation using different aggregation times, which decreases the influ-
ence of individual behaviour. Since participants are able to pass the
bottleneck multiple times, approximately 5-10 times depending on the
bottleneck width, the individual behaviour averages out which benefits
the capacity estimation.

In terms of scheduling, the day of the experiment is divided into
two sessions, one with special bicycle types and one without, so that
we can observe the behaviour of regular bicycles only and compare it
to the behaviour when special bicycle types are present. In the latter,
the runs with these special types are dominant, checking the overtaking
behaviour and the fundamental diagram for different penetration rates.
Only two bottleneck widths (75 and 125 cm) are kept to limit the total
running time. In the session without special bicycles, there is time to
test all the widths and to focus on the Merging and Crossing scenarios.
Due to the fact that the latter require long observation times, we split
the duration in batches of smaller runs of 10 min each.

It is estimated that it takes 2 min for all cyclists to enter the track
in a one-by-one pattern, and therefore the Overtaking and Active bot-
tleneck scenario runs are scheduled to last 7 min. Since three fleet
compositions (no special types, electric and regular bicycles, all types)
are in both scenarios, their corresponding runs are scheduled in continu-
ation, i.e., without any break. First the Overtaking scenario takes place
and then the bottleneck is activated, which is estimated to take 1 min.
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The activation is performed by introducing a moving bottleneck on the
track, i.e., two persons cycling slowly and next to each other such that
they cannot be overtaken and forming a queue behind them. This way,
all cyclists are led as one group up to the bottleneck, activating it.

Summing up all these times leads to a net cycling time of 90 min for
each session. To prevent exhausting the participants, breaks of 15 min
are scheduled every 3 runs and in between runs there is a small pause of
5 min to initialise the next one. Apart from exhaustion, the learning ef-
fect and boredom need to be prevented. We solve this by alternating the
scenarios in the schedule and by keeping the runs at about 10 min each.
The planned order of scenario runs and their properties are summarised
in Table 3.1.

Table 3.1: Schedule of scenario runs during the day of the experiment.
Scenario Bicycle fleet composition Bottleneck width Run duration Time to next run Session

Regular Electric Racing Cargo [cm] [min] [min]
Overtaking 60% 20% 10% 10% 125 7 1 Morning
Active bottleneck 60% 20% 10% 10% 125 5 5 Morning
Overtaking 86% - 14% - - 7 5 Morning
Active bottleneck 75% 25% - - 75 7 15 Morning
Overtaking 75% 25% - - 125 7 1 Morning
Active bottleneck 75% 25% - - 125 5 5 Morning
Merging 60% 20% 10% 10% - 10 5 Morning
Active bottleneck 86% 14% - - 75 7 15 Morning
Crossing 60% 20% 10% 10% - 10 5 Morning
Active bottleneck 60% 20% 10% 10% 75 7 5 Morning
Active bottleneck 86% 14% - - 125 7 15 Morning
Merging 60% 20% 10% 10% - 10 5 Morning
Overtaking 86% - - 14% - 7 - Morning
Overtaking 100% - - - 125 7 1 Afternoon
Active bottleneck 100% - - - 125 5 5 Afternoon
Active bottleneck 100% - - - 100 7 5 Afternoon
Merging 100% - - - - 10 15 Afternoon
Active bottleneck 100% - - - 75 7 5 Afternoon
Crossing 100% - - - - 10 5 Afternoon
Active bottleneck 100% - - - 150 7 15 Afternoon
Active bottleneck 100% - - - Meander 7 5 Afternoon
Merging 100% - - - - 10 5 Afternoon
Active bottleneck 100% - - - Meander 7 15 Afternoon
Crossing 100% - - - - 10 5 Afternoon
Merging 100% - - - - 10 - Afternoon

3.6 Implementation of experimental design
Having set the requirements and the experiment design, the implemen-
tation follows and is divided into the selection of the location, the re-
cruitment of participants and the set-up of the measuring and tracking
equipment.
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3.6.1 Location selection

The selection of the place where the experiment can be executed is
based on several criteria. The most important criterion is that it has
enough space to fit the track. The floor area required for the designed
track is 100 m x 40 m. Moreover, the location should strictly prevent
the presence of other modes. These conditions, along with the fact that
a specific track with this shape and curves will be hard to find, point
towards the construction of the track at a location rather than the use
of existing infrastructure. Another benefit of creating the track is that
it can be made obstacle-free to ensure good visibility. Even though
the visibility due to obstacles has been found to be an attribute in the
yielding decision, it is left out of scope to avoid accidents during the
experiment.

Another criterion relates to the controllability of external conditions
such as weather and light. These can only be controlled when the ex-
periment takes place indoors. The weather conditions influence cycling
behaviour, but investigating their effect would require repeating the
experiment under different circumstances which is hard to predict and
anticipate, as well as costly and difficult to plan with a sufficient number
of participants. Therefore, we need to keep the circumstances constant
during the whole experiment.

The indoor environment raises two needs. Firstly, the ceiling to be
at least 10 m high to accommodate tracking equipment and prevent the
feeling of cycling in a closed space. Secondly, the surface type should re-
semble real-world cycling conditions, be safe, and, therefore, be neither
slippery nor adhesive.

Last but not least, the location should be easy to find and ac-
cess, preferably near a crowded and inhabited area. This increases the
chances of recruiting enough participants who will show up on time.

Given these criteria, we selected a large exhibition hall in the Ahoy
Convention Centre, Rotterdam (The Netherlands). The size of the
rented hall is 142 m x 70 m x 12 m, which satisfies all the dimen-
sion requirements and the floor surface is cement, so similar to cycling
on road surface. Furthermore, it is well accessible by bicycle, connected
by public transport and has a car parking.
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3.6.2 Participant recruitment

The next step in the implementation is the recruitment of participants.
Since it is desired to study the effect of gender and nationality of cycling
behaviour, anyone is welcome to join. The only restriction is set with
respect to age due to ethical reasons, and it is being at least 16 years
old. A maximum age threshold is not set, but participants are asked
to be physically able to cycle for around 90 min including breaks. As
reward for the time they spent in the experiment, participants are given
a small monetary compensation.

In order to increase the behavioural realism, participants are asked
to bring their own bicycle. Upon registration, participants are asked for
the bicycle type they intend to bring, as well as for other bicycle types
they own. Special focus is placed in the recruitment phase on three
special bicycle types (racing, electric and cargo).

Registration is performed through an online form, where availabil-
ity in time of day (morning/afternoon session) and bicycles is declared.
For those that meet the requirements, a confirmation is sent which in-
cludes the request to avoid red clothing which obstructs the tracking of
the red caps in the camera images. Several platforms are used for the
recruitment, such as posts in social media, universities and schools in
Rotterdam and advertisements in local newspapers.

3.6.3 Measuring and tracking equipment

As previously mentioned, cameras are placed above the track to record
the cyclist movements throughout the day. Due to the lighting condi-
tions of the hall, which were low and variable, high quality cameras had
to be used. Two snapshots of the experiment are shown in Figure 3.5.
Figure 3.5(a) is a side view (from an overview camera, not to be used
for tracking) during a Merging scenario. The cameras are placed at the
ceiling next to the lights to improve the image quality and are 10 m
above the ground. In order to cover the complete straight stretches,
three cameras are required on each side with an overlapping area to
ensure a continuous trajectory. Two more cameras are placed above the
crossing points to observe the cyclist interactions there.

A top view at the location of the bottleneck can be seen in Fig-
ure 3.5(b). From this view the trajectories can be extracted by tracking
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the red cap of each cyclist. As shown in the image, each cap has a
pattern of white boxes (like a bar code) on the flap which is unique and
linked to the participant characteristics. An additional dot is marked
in the middle, to identify looking and cycling direction.

Last but not least, we set up a corner to measure three main bicycle
dimensions, i.e., full bicycle length, length from the front wheel to the
handlebar and width of the handlebar. This enables studying the effect
of different sizes on the behaviour in addition to the bicycle types.

(a) Side view of the Merging scenario.

(b) Top view of the Active bottleneck scenario.

Figure 3.5: Camera snapshots.
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3.7 Experiment execution and high-level
description of data

The experiment took place on 25 April 2018 with 178 participants evenly
spread over the morning and afternoon sessions. This section presents
the collected dataset, starting with adjustments of the plan that were
needed during the day and continuing with the statistics of the partici-
pant characteristics and a qualitative description of the data.

3.7.1 Plan adjustments
During the first run in the morning session, it became clear that there
were too many cyclists on the track. The queue configuration of 2-1-2-1
that was expected upstream the bottleneck was not observed. Instead,
participants anticipated the bottleneck and started braking already at
the curve. This resulted into a lower density than anticipated and an
overall low speed (congested conditions).

The solution was to create two groups with half of the participants
and alternate the group on the track. This way, the long breaks could be
skipped as the participants could rest when the other group was cycling.
Thanks to this change, it was possible to not only follow the plan, but
have time for some additional scenario runs.

Since the narrowing at the bottleneck was anticipated and a dense
queue was not naturally arising, we activated it using the moving bot-
tleneck (i.e. the two persons in orange vests in Figure 3.6).

Figure 3.6: Queue formation behind a moving bottleneck.

In the Merging scenario, we initialised with a group starting from
inside but the participants self-organised during the runs and dynam-
ically shifted among the two routes. We decided not to obscure this
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process since it enhances observation of heterogeneity and could even
lead to a model on route choice.

3.7.2 Participant characteristics
The descriptive statistics of the participants and their bicycles are sum-
marised in Table 3.2 per session. It can be seen that more males partic-
ipated in the experiment with a higher share in the afternoon session.
The majority of the sample is Dutch and there is a wide range of ages.

With respect to the bicycles, the morning session contained special
bicycle types with a high share of electric (35%) and a considerable
share of 9% of racing bicycles. Unfortunately, no participants with cargo
bicycles could be recruited. In the afternoon, almost all participants had
regular bicycles. On average, the bicycle dimensions seem consistent
between the two sessions.

Table 3.2: Descriptive statistics of participants and their bicycles per
session.

Characteristic Morning session Afternoon session
Females 34 30
Males 54 60
Dutch 78 84
Other European 8 2
Non European 2 4
Minimum age 19 17
Average age 52 51
Maximum age 80 89
Standard deviation of age 19 19
Average height [cm] 174 177
Standard deviation of height 10 10
Average weight [kg] 79 77
Standard deviation of weight 15 13
Electric bicycles 31 3
Racing bicycles 8 0
Average bicycle length [cm] 180 180
Standard deviation of bicycle length 6 5
Average handlebar width [cm] 59 59
Standard deviation of handlebar width 6 4
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3.7.3 Qualitative data description
In total, six hours of videos have been collected which capture the cyclist
movements throughout the day. Since there was time left, we tried
one more situation. We had one run where we slowly filled up the
track with everyone in to study the occurring wide moving jams. The
planned scenarios were executed and additional to our expectations, the
following phenomena were observed:

• Participants were braking already upstream the curve which led
to lower than expected density.

• Many cyclists were overtaking in curves rather than the top straight
stretch.

• Pairs were formed on the track, which blocked overtaking manoeu-
vrers (Figure 3.7(a)).

• A variety of yielding decisions was observed regardless of group
sizes. Sometimes steering to create space was preferred to stopping
(Figure 3.7(b)).

• During the Merging scenario runs, participants alternated between
the two routes, leading to a dynamic share and different group
sizes interacting at the merge.

• Some of the merging-route cyclists used their arms to indicate
they would take the off-ramp and others taking that route would
copy (Figure 3.7(c)).

• The right angle at the merging point was not always feasible to
follow, so some cyclists went slightly off the track to merge (Fig-
ure 3.7(d)).

These observations show that anticipation plays a key role while
cycling. In this obstacle-free environment where the curve and bottle-
neck were in sight, cyclists adjusted their speed in preparation for them.
Moreover, speed differences could be better expressed in curves where
the cautious cyclists would brake and the rest used this opportunity
to overtake. Personal characteristics seem to be dominant with respect
to yielding decisions and less so the number of approaching cyclists.



3.7 Experiment execution and high-level description of data 65

(a) Pair of cyclists obstructing the flow.

(b) Cyclist in black makes space for merg-
ing cyclists instead of yielding.

(c) Route indication using arms.

(d) Straying off the path to merge.

Figure 3.7: Examples of observed phenomena.
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Participants respected the rule to cycle inside the cycle path, unless
it would have led them to unsafe situations. Last but not least, self-
organization has been found for cyclists in the form of distributing over
different routes and copying the behaviour of others. These qualitative
findings will be the starting point for future research, additionally to
what was already intended with the collected dataset.

3.8 Future research with collected dataset
In this chapter, we described the set-up of a large scale controlled cy-
cling experiment and qualitatively presented the collected dataset. The
next research step is to process the video data and automatically ex-
tract trajectories out of the images, stitch trajectories between con-
secutive cameras and link to a participant number. This rich dataset
will be used to investigate behaviour of different bicycle types and per-
sonal characteristics, and derive theoretical models that represent the
decisions individual cyclists make while cycling and interacting with
other cyclists, as well as models that describe the operationalisation of
these decisions. The dataset will also be used to calibrate and validate
these models. Apart from studying individual behaviour, we will study
macroscopic bicycle traffic characteristics and construct the fundamen-
tal diagram for cycling. Such models can be used in future research
to assess the quality of different bicycle infrastructure designs under
several demand conditions.



Chapter 4

Cycling behaviour at
T-junctions

In the previous chapter, the setup of a large-scale, controlled cycling
experiment was described and the collected dataset was discussed qual-
itatively. In the current chapter, quantitative analyses and empirical
findings from the experiment are presented. More specifically, the anal-
yses focus on cycling behaviour at a bicycle T-junction. Intersections
have been found to be critical locations in a network in terms of cyclist
safety and T-junctions in particular have been found to lead to mis-
perception of priority rules by car drivers. The analyses in this chapter
investigate the extent to which this applies to cyclists. Additionally, the
efficiency of bicycle flow at the T-junction is assessed. For this assess-
ment a framework is developed that considers the effect of cyclist hetero-
geneity and of changes in the infrastructure design on the interactions
that take place, on the use of the infrastructure and on the efficiency for
each individual cyclist. In the collected dataset, several cyclist groups
were observed, contributing to the heterogeneity analyses. Regarding
the change in the infrastructure design, lane marking was added at the
T-junction to guide the cyclist lane changing behaviour and facilitate
the allocation of priority. The assessment framework of bicycle flow effi-
ciency, the empirical findings related to cycling behaviour and efficiency,
as well as the recommendations for the design of bicycle T-junctions are
the main contributions of this chapter. The findings of this chapter are
a stepping stone for the model developments in chapter 5 describing the
yielding behaviour of cyclists.

67
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This chapter is based on the published article: Gavriilidou, A., W. Daa-
men, Y. Yuan, N. van Nes, S. Hoogendoorn (2020b) Empirical findings
on infrastructure efficiency at a bicycle T-junction, Physica A: Statisti-
cal Mechanics and its Applications, p. 125675.
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4.1 Introduction

The increased interest and promotion of cycling by governments and
municipalities throughout the world goes hand-in-hand with the provi-
sion of better cycling infrastructure. The design of this infrastructure
is of great importance, because it influences cyclist behaviour, as well
as the attractiveness to use it. Moreover, the design should offer a safe
and efficient transition through the network. Critical locations in the
network in terms of safety and efficiency are discontinuities of the infras-
tructure, obstacles placed within the infrastructure and locations where
different transport modes or traffic streams interact and negotiate the
use of space.

At intersections there is a higher risk for cyclists to be involved in a
collision (Dozza & Werneke 2014; Flower & Parkin 2019). At signalised
intersections, this is mostly attributed to rule violations by the cyclists
or the motorised vehicles. Especially in Asian countries, the cause of
bicycle crashes at signalised intersections has been found to be the red-
light running and retrograde behaviours of electric bicycles (Pai & Jou
2014; Wu et al. 2012). However, the label of electric bicycles is also used
for scooters (Fishman & Cherry 2016), which explains why red-light
running behaviour of cyclists is not found so dangerous in Western world
countries (Pai & Jou 2014). At unsignalised intersections, on the other
hand, this higher risk may relate, among other things, to the presence
of sharp turns and the lack of road marking or lighting (Wijlhuizen
et al. 2016). Another cause might be the high number of interactions.
A study in Amsterdam showed that when the number of cyclists at an
intersection is high, the level of stress and discomfort of the cyclists rise,
and they adhere less to traffic rules (Imbert & te Brömmelstroet 2014).

One type of intersections are T-junctions, which consist of three
road segments (also known as arms) two of which belong to a straight
road. In car traffic, it has been found that uncontrolled T-junctions
can pose a problem when priority is assigned to the intersecting (right)
arm, because drivers on the straight road have a high perception of
priority and fail to yield (Helmers & Aberg 1978). Priority perception
is very important for the type of interactions that occur. When priority
perception is high, drivers as well as cyclists tend to have higher speeds
and minimal head movements to observe their surroundings, which can
result in unsafe interactions (Costa et al. 2019). These studies, however,
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investigated either only car traffic or mixed car-bicycle flows, where the
priority was indicated by road signs. Given the findings of Wexler &
El-Geneidy (2017) where it is suggested to keep the different transport
modes in separated infrastructure, the transferability of the findings
to dedicated bicycle T-junctions becomes questionable. Moreover, the
effect of design possibilities other than road signs to indicate priority
has not been researched.

We focus on T-junctions dedicated to cyclists and investigate cyclist
behaviour using empirical trajectory data collected during a large-scale
cycling experiment (Gavriilidou et al. 2019b). The reason for using ob-
servations from an experimental setting rather than real-world, is that
there is control over the infrastructure design, the characteristics of the
participants and their bicycles (Hoogendoorn & Daamen 2005). Dur-
ing the experiment, lane marking was implemented, aiming to guide
through cyclists to the left and leave the right side of the path for merg-
ing cyclists. The hypothesis was that this lane marking could inflict
separation of conflicting streams in space, leading to safer interactions
and more efficient flow. The safety effects are presented by Nabavi Niaki
et al. (2019). In the present chapter, we study the effect on infrastruc-
ture efficiency. In this context, the term efficiency is used to represent
the extent to which the infrastructure can be used in relation to its de-
sign and the behaviour of its users. For the assessment of efficiency we
develop a comprehensive framework, which is the first contribution of
this chapter. Another contribution are the empirical findings we derive
on the infrastructure efficiency of a bicycle T-junction. Based on these
findings, our third contributions is that we make recommendations for
the design of bicycle T-junctions.

The remainder of this chapter is structured as follows. In section 4.2
a comprehensive framework is described for the assessment of the T-
junction efficiency and in section 4.3 the data from the controlled exper-
iment are presented. The method to apply the framework is described
in section 4.4. The results are provided and discussed in section 4.5, fol-
lowed by conclusions and recommendations for the infrastructure design
in section 4.6.
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4.2 Infrastructure efficiency framework
This study aims to assess the efficiency of bicycle infrastructure. Our
focus is on T-junctions dedicated for bicycle use. In order to evaluate
efficiency, a comprehensive framework is proposed that turns the most
relevant influence factors into specific key performance indicators. This
framework is depicted in Figure 4.1.

Infrastructure efficiency depends on the infrastructure design, as well
as on the behaviour of its users. The design captures elements like the
marking, the merging angle, the width and surface of the cycle path.
Marking may be used to indicate which direction has priority. This is
usually indicated by “shark’s teeth” (i.e. white isosceles triangles) drawn
on the surface of the path, at the end of the minor (i.e. non-priority)
stream or by road signs. When such markings and signs are missing,
general traffic rules apply. Marking can also be used to exemplify the
expected space utilisation, by drawing lines on the surface. Solid lines
generally indicate a compulsory movement, while dashed lines are sug-
gestive, for example to guide minor stream cyclists into the through
lane. The merging angle may affect the perception of priority as well
as the speed of the merging cyclists and the ease of their merging ma-
noeuvre. The width of the cycle path affects the ability to form lanes as
well as the overtaking behaviour. Last but not least, the type of surface
may affect the cycling speeds and the perception of priority.

The term “cycling behaviour”, in this case, encompasses different
behaviours, like the choice of speed and lane, distance keeping, lane
changing, yielding and gap acceptance. This behaviour is not only in-
fluenced by the infrastructure design, but also by the traffic rules and
the person’s attitude to adhere to them. Other personal (age, experi-
ence) and bicycle characteristics (type, condition) also have an effect.

The interaction between infrastructure design and cyclist behaviour
determines the infrastructure efficiency. We hypothesise that efficiency
cannot be captured by a single metric, but is rather assessed by a compi-
lation of indicators. The proposed framework aims to comprehensively
cover different aspects of efficiency. These aspects are grouped in three
categories with increasing order of complexity. The first refers to single
cyclists, the second to the use of the infrastructure, and the third to the
interactions between cyclists.

Within the first group we consider the speed upstream and down-
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stream of the T-junction, and the travel time. The use of the infrastruc-
ture in the second category refers to the capacity of the T-junction and
the utilisation of the two-dimensional space. The capacity can be de-
termined from the longitudinal time-headways that occur downstream
the junction, while the space utilisation is reflected by the lanes that
are formed in the lateral direction. The last group of indicators focuses
on the cyclist encounters in conflicting directions. The group sizes that
arrive upstream of the T-junction negotiating priority influence the de-
lay that is inflicted. This delay can also be captured by the number and
duration of stops that cyclists make to give way to the priority stream.

Figure 4.1: Relation between cycling behaviour, infrastructure design
and infrastructure efficiency of T-junctions.

4.3 Cycling data at T-junction
The dataset used to assess the T-junction efficiency consists of cy-
clist trajectories collected during the controlled experiment presented
in chapter 3. In this section, relevant details about the experiment are
provided (subsection 4.3.1), followed by the description of the trajec-
tory extraction (subsection 4.3.2) and a summary of the characteristics
of the final dataset for which the key performance indicators are calcu-
lated (subsection 4.3.3).
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4.3.1 Controlled experiment
This chapter focuses on one hour of video data from one of the cameras,
namely the one placed over the T-junction. The selection of the one
hour is such that it covers the scenario runs during which the route on
the track that made use of the T-junction was open. These runs will be
referred to as the “merging runs”. During the whole experiment, there
were six merging runs of about ten minutes each (hence the one hour
of video), which were spread throughout the day to keep the schedule
of the participants interesting, alternating between different routes and
interactions. For details regarding the experiment, the reader is directed
to Gavriilidou et al. (2019b).

An overview of the track layout that was used during the merging
runs is shown in Figure 4.2(a). In each run, 40-60% of the participants
were asked to follow the main track route and the others followed the
merging track route. The track was always marked with a continuous
tape, so it is only for readability that the merging track is indicated in
the figure with a dashed line. The camera view of interest for this study
covers the T-junction and is indicated by the blue box in Figure 4.2(a).
No other marking was placed on the track except for an infrastructural
nudge that was implemented prior to the last merging run in order
to study the effect of lane marking on the cycling behaviour at the
T-junction. The lane marking consisted of a dashed line, starting at
the edge of the track upstream of the T-junction and leading toward
the centre of the track, continuing till downstream the T-junction as a
centre line. A snapshot of the lane marking is shown in Figure 4.2(b)
and Figure 4.2(c), which correspond to the camera views of the camera
placed on top of the junction (blue box in Figure 4.2(a)) and the camera
upstream of it (orange box in Figure 4.2(a)).

As shown in Figure 4.2(a), the two camera views overlap. This is
to facilitate the coupling of trajectories extracted from different cam-
eras. The boxes in Figure 4.2(b) and Figure 4.2(c) were marked with
yellow tape on the ground, while the yellow letters A and B are added
in the figure to demonstrate which boxes are the same in the two snap-
shots. The marked cross-sections in Figure 4.2(c) are not present on the
ground, but are added to the figure to assist in the explanation of the
calculation of the infrastructure efficiency indicators in section 4.4.
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The aim of the lane marking is to direct through cyclists to the
left lane and achieve separation of the conflicting flows at the junction.
Ideally, this design would alleviate the need for through cyclists to stop,
as they can freely continue into the left lane, while merging cyclists
enter at the right lane. The through cyclist seen in Figure 4.2(b) indeed
steers away from the dashed line.

Another observation concerns the design of the T-junction in Fig-
ure 4.2(c). The width of both streams was kept constant at all time at
2 m, which is enough for two cyclists to comfortably ride side-by-side
and execute overtaking manoeuvres. The turning angle was also kept
constant at 90 degrees. The motivation behind the choice of perpendic-
ular cycle paths was to create a clear sense of priority, to be assigned
to cyclists coming from the right. No priority marking was added to
further influence the behaviour. Moreover, the taped edges of the track
were chosen to be perpendicular rather than curved in order to observe
to what extent cyclists cut-off the edge and identify the curve they find
most comfortable for turning. This choice was made also for practi-
cal reasons, as a straight angle is easier to tape. The feasibility of the
turn was tested and approved, so it was possible to execute the merging
manoeuvre without straying off the track edges. Figure 4.2(c) shows a
snapshot of a merging cyclist cutting the corner.

Regarding the cycling behaviour, participants were instructed to cy-
cle as they would normally do, and to try to stay within the edges of the
cycle path as much as possible. The given instruction left the choice
of speed, priority allocation and overtaking to the participants. This
means that they were neither forced to obey the traffic rules nor pro-
hibited from overtaking other cyclists. The tape was thick enough to
let passing cyclists know that they are crossing it, but not raised as a
curb that could cause safety incidents.
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(a) Layout of experimental track.

(b) Camera view upstream T-junction.

(c) Camera view at T-junction.

Figure 4.2: Experimental track layout and camera snapshots at the T-
junction and upstream of it during the run with the lane
marking.
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4.3.2 Trajectory extraction
During the experiment, all participants wore a red cap which could be
tracked in each frame of the videos, thereby allowing us to reconstruct
the trajectory of each cyclist. The extraction of the trajectories followed
six automated steps:

1. Identification of red caps in each video frame based on detection of
red coloured pixels and clustering them into objects as described
by Hoogendoorn et al. (2003).

2. Connection of centre points of the identified red caps in the con-
secutive video frames to construct cyclist trajectories using an
adjusted version of the MODT-2 software developed by Duives
(2016).

3. Transformation of head trajectories to ground trajectories by cor-
recting for the height difference between the cap and the ground.
This process made use of height at which the camera was placed
(i.e. 12 m), and of the average height of persons on a bicycle which
was measured to be 179 cm.

4. Orthorectification of the ground trajectories to correct for the
camera distortion and convert from pixel units to metres. The
correction is based on parameters determined by ImageTracker
(Knoppers et al. 2012).

5. Removal of short, misidentified trajectories by ensuring that each
cyclist is observed at two cross-sections (3 m and 18 m lines in
Figure 4.2(c) for through cyclists and 10.5 m and 18 m for merging
cyclists).

6. Replacement of blobs (i.e. clouds of points) observed during a stop
by a single stopping location, thereby ignoring the movement of
the head when the bicycle stands still.
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4.3.3 Run characteristics

Table 4.1 shows an overview of basic characteristics of the merging runs.
The first three runs took place in the morning session of the experiment,
where participants could bring regular bicycles as well as racing and e-
bikes. The 88 participants who joined this session were divided into
groups, referred to as “Mix 1” and “Mix 2” because of the mixture of
bicycle types. In the afternoon sessions, the 90 participants, who were
asked to bring regular bicycles only, were split into the groups “Pure 1”
and “Pure 2”. The last run in the afternoon is the run with the lane
marking.

Since the identified trajectories do not correspond to specific person
IDs, the number of trajectories shown in the 5th column of Table 4.1
does not reflect the number of participants, but rather the number of
passages through the camera view. The share of identified merging tra-
jectories ranges from 45% to 56%, which does not coincide with the share
of cyclists taking the merging route, because the shorter distance of this
route and the cycling speed affect the number of laps they make and,
hence, the number of cyclists seen by the camera per run. The share
of merging cyclists is not known, as it varied during the run, because
participants took the liberty of alternating between the two routes (i.e.
the main and merging tracks). These identified shares of merging tra-
jectories can be seen as an outcome of the efficiency of the T-junction,
rather than a cause. For this reason they are not further discussed or
used to assess the efficiency. Instead, the assessment of the infrastruc-
ture efficiency is based on the framework presented in section 4.2 and
corresponding indicators (to be introduced in section 4.4).

It can be seen that the number of trajectories differs per run, but
so does the duration of the run. Therefore, the comparison should be
based on the ratio of the two, which is the average flow of cyclists and
is shown in the last column of the table. The flow values in all runs are
around 1 cyclist per second and are, thus, comparable. Therefore, it is
considered that the different number of trajectories has no effect on the
findings of this chapter.

Having six runs allows investigating not only the effect of the lane
marking, but also of the different bicycle types (“Mix” versus “Pure”)
and persons (morning and afternoon, and group 1 versus group 2).
Moreover, the results of the 3rd run compared to those of the 1st re-



78 4 Cycling behaviour at T-junctions

veal whether any learning effect takes place as participants get familiar
to the experimental conditions. The conclusion on whether there was
learning effect is then used in the comparison between the 6th and 4th
run, to separate the impact of the lane marking, from that of the learn-
ing effect. The impact of different bicycle types is found by comparing
runs 1 and 2 with runs 4 and 5, while the impact of different personal
characteristics is investigated through the comparison of run 1 with run
2, and run 4 with run 5.

Table 4.1: Basic characteristics of runs.

Run Session Bicycles Lane Number of % Merging Duration of Flow
marking trajectories run [min] [cycl/s]

1 Morning Mix 1 No 480 50.8 8.8 0.91
2 Morning Mix 2 No 417 46.8 6.6 1.05
3 Morning Mix 1 No 629 56.1 10.0 1.04
4 Afternoon Pure 1 No 598 55.9 10.1 0.99
5 Afternoon Pure 2 No 610 45.3 10.0 1.02
6 Afternoon Pure 1 Yes 803 51.8 13.1 1.02

4.4 Method to calculate the efficiency in-
dicators

In section 4.2 the framework to assess the efficiency of a T-junction was
presented. In this section, the method to calculate each of the efficiency
indicators is described. The extracted trajectories have been the basis
for the calculation of all the metrics. The results of the calculations are
discussed in section 4.5.

4.4.1 Single cyclist performance indicators
Speed distributions are constructed from the speeds of the individual
cyclists in a specific segment. A speed measurement is made based on
the passing time, t, between two cross-sections in Figure 4.2(c). For
example, for the through cyclists upstream of the T-junction, the cross-
sections at 3 m and 9 m are used and the time instances at which
each cyclist passed them (t3 and t9, respectively) are known from the
trajectory data. The ratio of the distance covered and the corresponding
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time interval define the average cycling speed, v, for that stretch:

vupstream,through = 9−3
t9− t3

vupstream,merging = 10.5−7.5
t7.5− t10.5

vdownstream,i = 18−12
t18− t12

, for i = through, merging

(4.1)

If the infrastructure is efficient, the cycling speeds should be similar
for the up- and downstream stretches of the same cycling direction, such
that the cyclists in each stream can pass the T-junction uninterrupted
(i.e. keeping the same speed). However, as the streams are intersect-
ing, cyclists should also ensure safe interactions which require anticipa-
tion and deceleration. The infrastructure design that requires the least
amount of deceleration is, thus, the most efficient. The expected effect
is further elaborated for each stream. Through cyclists are expected to
yield to the merging cyclists who have priority. The yielding through
cyclists who come to a complete stop (i.e. zero speed) are not taken into
account, as their speeds are very different in the two stretches and the
properties of their stops are considered in other indicators. The cyclists
who decelerate are included in the analysis as they show the effect of
the interactions with merging cyclists on their speed. This effect should
ideally be minimal, thus similar speeds upstream and downstream. Re-
garding the merging cyclists, it is expected that they slow down to make
the turn. Any differences observed between the two stretches are, then,
depicting the efficiency deterioration of the infrastructure design (i.e.
the 90 degree turning angle).

Travel time is also calculated as a measure of delays. Its variability
across the runs can reveal any deviations from the free-flow travel time.
Since the latter is not known, the average of the six runs is taken as a
proxy. The travel time, tt, is defined as the time interval during which
a cyclist is present between two cross-sections:

ttmerging = t18− t10.5

ttthrough = t18− t3
(4.2)
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4.4.2 Infrastructure use indicators

Lane formation and time headways are the two metrics for the use of
the infrastructure. The former can be observed through a heatmap of
the space utilisation, and the latter through the time interval between
consecutive cyclists at a selected cross-section.

According to the standard dimensions of the width of a bicycle han-
dlebar CROW (2016), space is discretised in squares of 67 cm. A maxi-
mum of three sublanes can then be formed and observed in the 2 m width
of the cycle path. Using squares reduces the complexity of having to
rotate the shape with the changing direction of the merging cyclists.The
heatmap is constructed by counting the number of cyclists (trajectories)
that ride over each square. A more efficient infrastructure would ensure
that the entirety of the cycle path width is used.

The (minimum) time headways are a proxy for the capacity of the T-
junction (capacity equals one over the average minimum time headway)
and should, therefore, be measured downstream of it. The cross-section
at 15 m (Figure 4.2(c)) is chosen and the time interval between con-
secutive cyclists passing it is recorded. The shorter the time headways,
the higher the capacity and, thereby, the higher the efficiency of the
T-junction.

4.4.3 Indicators for interaction with other cyclists

Under the assumption that the priority stream remains unaffected by
the presence of through cyclists, it is the latter that need to react, i.e.
either make a stop or reduce their speed or make space or accept a
gap. The indicators reflecting the interactions with other cyclists have
as starting point the presence of a through cyclist upstream of the T-
junction. In order to consistently compare the interactions that each
through cyclist faces, a cross-section needs to be selected as the critical
moment for the decision of the through cyclist to react, if necessary, to
the anticipated conflict. To the authors’ knowledge there is no litera-
ture investigating how far upstream cyclists anticipate on conflicts and
when they make their decisions. In this study, we take the cross-section
at 6 m (Figure 4.2(c)) as the critical decision moment. One argument
for this choice is that it is four metres upstream of the cross line for
through cyclists (thus upstream of the intersection), which is the same
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distance as that available in the camera view for merging cyclists. An-
other argument is that it is in the middle of the range for which the
speed distributions have been investigated. The start of this range at
3 m is considered too far upstream for proper anticipation, while the
9 m at the end of the range are too close to the cross line which is at
10 m, and there is not sufficient reaction time if cyclists would make
their decision there. The choice for the 6 m cross-section is further
evaluated in the discussion of the results in section 4.5.

When a through cyclist passes the 6 m line, it is checked whether any
merging cyclist is present upstream of the junction. If so, the number of
cyclists present in each stream is counted and this represents an instance
of two group sizes, one for the through stream and one for the merging.
This process is repeated every time a through cyclist passes the 6m line,
leading to a frequency of different group size combinations to occur.
Given the length of the visible stretch for through cyclists upstream the
T-junction, which is 10 m, the 2 m width of the cycle path and the
average bicycle length of 2 m, a maximum of 10 through cyclists can
be observed. Similarly, given the length of 4 m visible in the upstream
merging stretch, a maximum of 4 merging cyclists is expected. In an
efficient design the group sizes should be larger for the merging than for
the through cyclists. The reasoning behind this is that if many through
cyclists yield for only few merging cyclists, more delay is experienced
than time savings.

As already stated, one of the possible reactions of through cyclists is
to stop, yielding to merging cyclist(s). These stops are a form of delay
and two metrics are defined to assess their effect on efficiency. The first
one is the stop duration, corresponding to the time a through cyclist
remains stationary. The second metric is the stopping frequency. This
is a normalisation of the number of stops in the run to remove the effect
of the run duration. The applied normalisation is the inverse of the
time difference between two consecutive stops, so that the variation of
stops within each run is captured as well. More specifically, the stopping
frequency, S, in stops per minute is calculated for each stop, k, using
the following equation:

Sk = 60
tk− tk−1

(4.3)
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The efficiency is higher when stops are shorter, which is linked to
smaller group sizes and when there are less stops per minute. High
numbers indicate that the interval between consecutive stops is high, so
many cyclists need to yield at the same time or the outflow from the
queue goes in waves and the same cyclist needs to make several stops.

4.5 Results and discussion of efficiency
The results for each set of indicators of the assessment framework in
Figure 4.1 are presented in the following subsections, along with their
discussion.

4.5.1 Efficiency based on single cyclist performance
Figure 4.3 shows the cumulative distribution functions of the average
speed per run, direction and section of the infrastructure. The top row
corresponds to the section upstream of the merging location, and the
bottom to the downstream section. The left column is for through cy-
clists and the right for merging cyclists. The y-axis shows the cumulative
probability and the x-axis the cycling speed through the corresponding
segment in km/h. Runs with the same group of cyclists have been as-
signed the same colour and different line styles. Full lines correspond
to the first run of that group of participants and dashed lines to the
second run, when applicable.

It can be seen that the through cyclists in the upstream section
have the lowest speed, which can be attributed to the fact that they
sometimes need to decelerate and give way to merging cyclists coming
from the right. Downstream of the junction, the through cyclists reach
twice as high speeds. The opposite phenomenon occurs for the merging
cyclists. Upstream of the junction they have higher speeds than down-
stream. This is due to the sharp right turn, when merging cyclists try
to enter the right lane, which requires a speed reduction.

Kolmogorov-Smirnov tests are performed to compare the empiri-
cal distributions against each other and draw conclusions regarding the
presence of a statistically significant difference (Dodge 2008).
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Four comparisons are performed between the distributions of:

• Runs of through cyclists: When comparing the different runs
to each other, it is found that there is no statistically significant
difference at a 5% significance level between runs 1 and 3 which
have the same population. This means that there is no evidence
for a learning effect due to the experimental conditions, so through
cyclists do not change their speed upstream of the T-junction as
they get more familiar with the infrastructure and the occurrence
of encounters. Contrary to this, the speed distributions in runs
4 and 6 are found to differ. Therefore, the lane marking appears
to have an effect on the speed of the through cyclists upstream
of the junction. The effect is positive, as more observations have
higher speeds in the case of run 6. Another finding is that the
upstream speed distributions of runs 5 and 6 are not statistically
significantly different, which shows that the characteristics of the
cyclist population (i.e. cyclist heterogeneity) are at least as impor-
tant as the presence of lane marking. This heterogeneity is further
attributed to personal characteristics, rather than the different bi-
cycle types, as the speed distributions of runs 1 and 4 have no
statistically significant difference. Similar results are found when
comparing the speed distributions of the through cyclists down-
stream of the T-junction. The only difference is in the comparison
of runs 5 and 6, which are statistically significant different down-
stream the T-junction. In this stretch, the cyclist heterogeneity
leads to higher speeds than the presence of the lane marking.

• Runs of merging cyclists: Most speed distributions of merging
cyclists are statistically significant different at a 5% significance
level. Heterogeneity is observed in terms of personal characteris-
tics as well as in the different bicycle types. Personal characteris-
tics seem to be more prominent, as the presence of faster bicycles
in the mix (i.e. racing and electric bicycles) does not necessarily
result in higher speeds (run 4 with only regular bicycles is the
fastest run, but run 2 with a mix of bicycle types is faster than
run 5 with only regular bicycles). In this case, there seems to be
a learning effect, as the “Mix 1” cyclists have higher speeds both
upstream and downstream in the case of run 3 compared to run
1. This means that merging cyclists become more comfortable



84 4 Cycling behaviour at T-junctions

with the right turn and develop a strategy to take it with the
least speed reduction possible. At the same time, and despite the
positive contribution of the learning effect, merging cyclists are
worse-off by the introduction of the lane marking, as they cycle
slower in run 6 compared to run 4. The explanation might be the
introduction of the lane separation downstream: they feel obliged
to merge into the right lane without using the left lane that has
been assigned to through traffic by the lane marking, so they are
forced to decelerate already upstream. In other words, the lane
marking makes the 90 degree turn even sharper.

• Merging and through streams: An interesting observation
from Figure 4.3 is the complementary effect between the speeds
of the two directions; the stream that is fastest in a run, is the
slowest in the other direction of the same run. For example, run
5 was the fastest for through cyclists and the slowest for merging
cyclists. This is more evident in the upstream section and has
its roots in the way that cyclists handle their encounters. When
merging cyclists are very fast, through cyclists experience very
small gaps, which they cannot accept. So they have to yield until
a sufficient gap becomes available, resulting in reduced average
speed in the upstream segment.

• Upstream and downstream stretches: The comparison of
speed distributions of the same run between the two stretches
shows that they are all different at a 5% significance level. The
speed in one stretch is almost half of that in the other for both
cycling directions. This large difference in speed shows that the
efficiency is low at the T-junction. Regarding the merging cyclists,
it shows that the 90 degree is not an efficient infrastructure design.
The same holds for the lane marking in the through direction, as
it does not achieve that the speeds upstream and downstream the
T-junction remain similar. The through cyclists have quite some
interactions where they need to decelerate and give priority to
merging cyclists.
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Figure 4.3: Distribution of average speed per run, section and direction.

The different cycling speeds affect travel time, whose average values
per run and direction are shown in Table 4.2, along with the correspond-
ing standard deviation. It can be seen that the variance is higher for
through cyclists, which can be explained by the dependence of travel
time on the number and duration of the stops to give way to the merging
cyclists. Moreover, through cyclists need on average twice the time to
pass, which is attributed partially to the longer distance in the camera
view and partially to the delay from the stops.

Table 4.2: Travel time per run and direction.

Run Merging cyclists Through cyclists
Average [s] Std. [s] Average [s] Std. [s]

1 3.20 0.87 6.61 4.21
2 3.47 0.52 5.40 2.42
3 3.18 0.81 6.65 3.43
4 3.29 2.83 6.59 4.04
5 3.63 1.04 5.18 2.73
6 3.42 0.84 6.09 4.03
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Levene’s test is performed to test for equality of variances in travel
time (Field 2013). The outcome is that there is homogeneity of the
travel time variances of merging cyclists, and heterogeneity of variances
for through cyclists. This means that an ANOVA needs to be applied to
compare the average travel times of merging cyclists, and the Kruskal-
Wallis test needs to be performed on the travel times of through cyclists
(Field 2013). Both tests result in a p-value < 0.01%, which indicates
that the difference is statistically significant between the runs for both
directions.

For further insights, KS-tests are performed to compare the under-
lying travel time distributions. According to the results of the tests,
the travel time distributions of through cyclists are the same for runs
1, 3 and 4. This means that there is no learning effect, and that the
presence of different bicycle types does not appear to affect the travel
time. Moreover, the lane marking in run 6 leads to travel time savings
compared to run 4 given the same cyclist population and the aforemen-
tioned lack of learning effect. However, the travel time distribution of
run 6 is not statistically different from those of runs 2 and 5. This
proves that the heterogeneity of the cyclist population is at least as
important in decreasing travel time as the presence of lane marking.
Regarding merging cyclists, runs 2, 3 and 4 are the fastest, and their
travel time distributions are not statistically different. Runs 1 and 6
follow the same travel time distribution and are slower than 2, 3 and 4.
The fact that run 3 is faster than run 1 confirms that there is a learning
effect for merging cyclists which makes them faster. The lane marking,
despite this learning effect, slows them down (run 6 is slower than 4).
As runs 2 and 4 follow the same distribution, there is no evidence for an
effect of bicycle type on travel time. The heterogeneity stemming from
different personal characteristics is, on the other hand, shown to have a
positive effect on travel time. This is because of the difference found in
the distributions of runs 1 and 2, but also of runs 4 and 5. To conclude,
the lane marking is overall less effective in decreasing the travel time
compared to familiarity with a situation (i.e. learning effect) and cyclist
heterogeneity.
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4.5.2 Efficiency based on infrastructure use

The space utilisation is visualised per run and direction in the heatmaps
in Figure 4.4. The colour indicates the share of cyclists that rode over
each square of the infrastructure. Note that the maximum share value
is different for the two directions; it reaches 60% for through cyclists
and 80% for merging cyclists. This means that through cyclists make
better use of the full width of the cycle path, while merging cyclists are
more concentrated in an optimal trajectory.

Figure 4.4(a) shows the heatmap of the infrastructure usage by
through cyclists. It is remarkable that the sublane closest to the left
edge of the infrastructure is used by more than half of the cyclists,
especially just upstream of the merging location and downstream till
the end of the camera view. An exception to this observation is run
4, where the entire width of the cycle path is equally used by through
cyclists. In general, the utilisation of the right and middle sublanes
seems greatly dependent on the run and group of cyclists. In some runs
they are equally likely to be used by through cyclists, while in others
the middle sublane is more prominent. The section upstream has the
highest variability in use, as some cyclists might not mind to yield and
others might shift to the left sublane hoping to avoid a stop. In the
case of run 6, the lane marking causes a very small spread throughout
the path, as cyclists are concentrated in the left lane both upstream
and downstream. It is particularly interesting to notice the difference
from run 4, which has the same population and where through cyclists
seem to claim the whole width for their own use. This means that with
the addition of the lane marking, most cyclists are already in the left
lane upstream of the T-junction as intended by the marking. The lane
marking, thus, counters the learning effect observed when comparing
runs 1 and 3. These runs show that as cyclists get more familiar with
the infrastructure (run 3), they optimise its usage by spreading more
equally over the three sublanes to improve efficiency. The presence of
the lane marking prevents them from doing so and pushes them even
more into the left sublane.

The concentration of through cyclists on the left lane in run 6, gives
space to the merging cyclists to use the right sublane, as proves to be the
case in Figure 4.4(b). This figure displays the patterns of infrastructure
use by the merging cyclists. It can be seen that in all runs, most merging
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cyclists use the middle and right sublanes downstream of the T-junction.
In most cases the share of cyclists in these two sublanes is equal, with
a slight preference for the right sublane. The exception is, again, the
cyclist population of run 4, where the middle sublane is used by half of
the merging cyclists. For these cyclists, the lane marking pushes them to
the right of the cycle path and leads to a utilisation of the infrastructure
that other cyclist populations could achieve without the lane marking.
Regarding the use of the upstream section by merging cyclists, more
than half of them use the middle sublane and start shifting to the right
sublane at about 2 m upstream of the T-junction.

As already mentioned, merging cyclists seem to follow an “optimal”
trajectory. They start in the middle sublane and move to the right
to take the turn. As expected, the right angle is too sharp and most
cyclists violate the track boundary at the junction. A curved edge that
would permit passage into the 67 x67 cm2 would be optimal for most
merging cyclists. In order to accommodate all cyclists, the turn should
have a radius of 2 m. This value could actually be smaller, since the
cyclists lean inwards when taking the turn and their heads are being
tracked through the red caps for the construction of the trajectory. The
observed trajectory is, therefore, shifted slightly to the right compared
to where the bicycle is. However, the effect is considered negligible due
to the low cycling speeds when taking the turn, and is ignored.

Figure 4.5 displays the cumulative probability headway distribution
functions per run. Kolmogorov-Smirnov tests indicate that only the
distribution of the first run has a statistically significant difference from
the rest. The explanation for this might be the learning effect, as this
is the first run during which the participants could make use of the T-
junction and approached more cautiously than later in the experiment.
Another explanation might be related to the demand (i.e. the offered
gaps), as one over the mean headway is equal to the average flow of one
cyclist per second. In either case, this result shows that the lane marking
does not have an influence on the observed headways and, therefore, it
is unlikely that it influences the capacity of the junction. Estimation of
composite headway models will be performed in the future to provide
further evidence.
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(a) Through cyclists.

(b) Merging cyclists.

Figure 4.4: Space utilisation per run and direction. Note that the scale
of the colour bar is different for the two directions.
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Figure 4.5: Headway distribution per run downstream of the T-junction.

4.5.3 Efficiency based on interaction with other cy-
clists

Table 4.3 shows the number of through cyclists that are observed per
run in relation to the interacting merging group size. The merging group
size is the number of merging cyclists upstream of the T-junction when
a through cyclist passes the 6 m cross section. Therefore, a group size of
0 means that there are no merging cyclists upstream of the T-junction
when the through cyclist is at the 6 m cross-section, and thus that the
considered through cyclist does not have an interaction. The total of
each row in the table is the total number of through cyclists in the cor-
responding run. As the duration of the runs differs (see Table 4.1), the
absolute number of through cyclists is a function of the corresponding
run duration. For this reason, the totals are normalised per minute of
run duration. The absolute numbers are shown on the left part of the
table and the normalised ones on the right. As an example, in run 3, it
occurred 40 times that a through cyclist was interacting with 2 merg-
ing cyclists when crossing the 6m cross section. The duration of run 3
was 10 minutes, so on average there were 4 through cyclists per minute
interacting with 2 merging cyclists when crossing the 6m cross section.
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The primary aim of this table is to demonstrate that most through
cyclists have either no interaction or interact with one merging cyclist.
Moreover, it is noted that the maximum merging group size is 4 cy-
clists (though it occurs only once) and that the number of observations
decreases as the merging group size increases. A Chi-square test is
performed on the normalised results, which shows that there is no sta-
tistically significant difference between them.

Table 4.3: Number of through cyclists per run and interacting merging
group size.

Run
Total through cyclists Average through cyclists per minute

Merging cyclist group size Merging cyclist group size
0 1 2 3 4 0 1 2 3 4

1 106 104 23 2 0 12 12 3 0 0
2 112 80 30 0 0 17 12 5 0 0
3 107 124 40 5 0 11 12 4 1 0
4 126 97 34 7 0 12 10 3 1 0
5 165 113 43 12 1 17 11 4 1 0
6 149 160 67 10 0 11 12 5 1 0

In order to get a clearer picture of the groups that interact, the dis-
tribution of these totals over different sizes of through cyclists is needed.
The group size for through cyclists is calculated when each through cy-
clist crosses the 6 m cross section. The group size is equal to the number
of cyclists upstream of the T-junction at that moment. Table 4.4 sum-
marises this distribution for each run. The values in each cell correspond
to the share of through cyclists that interacted with a particular merg-
ing group size. So 0% means that the specific combination of through
and merging group sizes was not observed during that run, while for
example in run 3 (subtable (c)), there are in total 40 through cyclists
that interacted with a group size of 2 merging cyclists and for 5% of
these cyclists (i.e. 2 times) there were 7 through cyclists upstream of
the T-junction, including the through cyclist that is crossing at that
moment the 6 m cross section.

The overall maximum group size of through cyclists observed is 10
cyclists, which means that the maximum expected size of through cy-
clists is observed but not that of merging cyclists. This can be explained
by the fact that through cyclists stop to give way, and therefore, form
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a queue upstream of the junction. The most common situation in all
runs is to have one merging cyclist and up to three through cyclists.
The effect of the lane marking in run 6 is that longer queues of through
cyclists are observed.

Table 4.4: Distribution of through cyclists interactions per run (sub-
table), group size of merging cyclists (column) and group size
of through cyclists (rows).

(a) Run 1

1 2 3
1 19% 22% 50%
2 19% 13% 0%
3 35% 43% 50%
4 13% 22% 0%
5 11% 0% 0%
6 3% 0% 0%
7 0% 0% 0%
8 0% 0% 0%
9 0% 0% 0%
10 0% 0% 0%

Total 104 23 2

(b) Run 2

1 2 3
1 24% 16.6% 0%
2 31% 20% 0%
3 27.5% 36.7% 0%
4 12.5% 26.6% 0%
5 4% 0% 0%
6 1% 0% 0%
7 0% 0% 0%
8 0% 0% 0%
9 0% 0% 0%
10 0% 0% 0%

Total 80 30 0

(c) Run 3

1 2 3
1 16% 12.5% 20%
2 34% 17.5% 0%
3 24% 35% 80%
4 10.5% 10% 0%
5 10.5% 7.5% 0%
6 2% 12.5% 0%
7 2% 5% 0%
8 1% 0% 0%
9 0% 0% 0%
10 0% 0% 0%

Total 124 40 5

(d) Run 4

1 2 3
1 20% 21% 0%
2 29% 26% 43%
3 27% 32% 43%
4 14% 12% 14%
5 7% 9% 0%
6 3% 0% 0%
7 0% 0% 0%
8 0% 0% 0%
9 0% 0% 0%
10 0% 0% 0%

Total 97 34 7

(e) Run 5

1 2 3
1 16% 33% 17%
2 40% 28% 42%
3 25.5% 9% 25%
4 10.5% 23% 0%
5 6% 2% 8%
6 1% 0% 0%
7 1% 5% 8%
8 0% 0% 0%
9 0% 0% 0%
10 0% 0% 0%

Total 113 43 12

(f) Run 6

1 2 3
1 18% 19.4% 10%
2 29% 28.4% 20%
3 21% 28.4% 40%
4 17% 16.4% 0%
5 9% 3% 0%
6 4% 3% 0%
7 0% 1.4% 0%
8 1% 0% 10%
9 0% 0% 20%
10 1% 0% 0%

Total 160 67 10

Table 4.5 summarises the properties of the stops made in each run.
The first column shows the run number. Columns two and three dis-
play the average and standard deviation of the stopping position in the
longitudinal (i.e. x) direction which is the direction of movement. The
next two columns refer to the average stopping position in the lateral
(i.e. y) direction, averaged separately over each lane. Figure 4.2(c) has
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already introduced the basic cross-sections of the cycle path which are
crucial in interpreting the values of Table 4.5. More specifically, it is
known that the longitudinal distance at which the through cyclists en-
ter the conflict area of the T-junction is at 10 m, while in the lateral
direction the right lane is between 6.5 m and 7.5 m, and the left lane
between 5.5 m and 6.5 m. The sixth column shows the share of the
stops that take place in the left lane. Column seven and eight refer to
the average and standard deviation of the stop duration, respectively.
The last column displays the stopping frequency S expressed in stops
per minute.

The stopping positions in the longitudinal direction are tested with
Levene’s test and found to meet the homoscedasticity assumption. Only
cyclists stopping at the front of the queue are considered in the analysis
of the longitudinal stopping positions. ANOVA shows that there is no
statistically significant difference at a 5% significance level. The average
stopping position is, thus, at around 8.7 m, which justifies the choice
of the 6 m cross-section as the decision point for the reaction to the
encounter.

In the lateral direction, the two lanes that are formed by the lane
marking are separately considered. All stopping cyclists are taken into
account in the analysis. The stops in the right lane are at 7 m and
at 6 m in the left lane, which are the middle points of the width of
the corresponding lane. Though the difference in these values is not
statistically significant between the runs, the share of cyclists that stop
in each lane changes. This share ranges from 30% to 51%. The highest
value is observed in run 6, but it is very close to the 48% of run 4,
which has the same cyclist population. The lane marking does, thus,
not affect the stopping position. The cyclist population plays a more
important role in this decision.

It is remarkable to note that only through cyclists stopped to give
priority and no merging cyclist. Based on this, it could be concluded
that the priority perception is not inverted at bicycle T-junctions, though
one should be aware of the experimental conditions.

The differences in the stop duration are statistically tested. Levene’s
test rejects the assumption of homoscedasticity. The applied Kruskal-
Wallis test leads to the conclusion that at a 5% significance level the
medians of the stop duration of the six runs have a statistically sig-
nificant difference. In this case, the introduction of the lane marking
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makes the stops of the through cyclists last longer, which means that
it reduces the efficiency of the T-junction. A possible explanation for
the longer stops is that the group sizes that interact are larger and the
queues that are formed are longer, so the cyclists that are at the back
of the queue need to wait a long time.

The stopping frequency (number of stops per minute) varies a lot
among the runs. The averages, however, should not be used for the
comparison as they are sensitive to outliers and Levene’s test rejects
the hypothesis of equal variances. Therefore, the Kruskal-Wallis test
is performed. The outcome is that there is no statistically significant
difference in the medians of the stopping frequency of the six runs at
a 5% significance level. Apparently, the lane marking does not have a
major influence on the number of stops. This means that despite the
lane marking, cyclists felt obliged to stop just as frequently and give
priority to merging cyclists who would not be able to merge into the
main track comfortably otherwise.

Table 4.5: Properties of yielding stops.

Run Position in x [m] Position in y [m] % stops in Duration [s] Frequency S
Average Std. Right lane Left lane left lane Average Std. [stops/min]

1 8.4 1.4 6.9 6.0 45 6.0 3.8 46
2 8.5 0.7 7.0 6.2 30 4.6 2.2 7
3 8.7 1.4 6.9 5.9 44 4.5 2.5 77
4 8.6 0.7 6.8 5.9 48 3.5 2.1 54
5 9.0 0.8 6.9 6.0 37 4.4 2.2 50
6 8.8 0.7 7.0 5.9 51 6.5 4.7 180

4.6 Conclusions and recommendations
We investigated the cyclist behaviour at T-junctions dedicated to bicy-
cles and assessed the efficiency of the T-junction design on the bicycle
flow. The analyses were performed using empirical trajectory data col-
lected during a large-scale cycling experiment. The effect was studied
of adding lane marking that advised through cyclists to shift to the left
so that merging cyclists could occupy the space to the right of the cy-
cle path. The expected outcome was that the two conflicting streams
would be separated in space, thereby increasing flow efficiency. In order
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to assess the efficiency, a framework was proposed with eight indicators
that cover different aspects of the infrastructure efficiency.

The findings overall suggest minimal to no effect on the efficiency
once the lane marking is introduced, but great effect resulting from the
heterogeneity of the cycling population, especially stemming from per-
sonal characteristics and less so from the different bicycle types. The
speeds of through cyclists increased by adding the lane marking, and
not by the repetitive nature of the experiment. However, cyclists in
other runs could reach even higher speeds, indicating that the personal
characteristics are at least equally important. With respect to merg-
ing cyclists, it was shown that there is a learning effect towards an
“optimal” trajectory, which had a positive effect on speed. Despite
the increased confidence due to familiarity, the introduction of the lane
marking slowed merging cyclists down, as it made the perception of the
90 degree turn even sharper, forcing them to use only the space of the
right lane. This way, the desired outcome of clear lane separation was
achieved, while at the same time it was observed that cyclists in some
runs could self-organise, without guidance, into such separated flow.
Regarding the capacity, no change was observed in the time headways.
The same can be stated about the stopping frequency of through cy-
clists, even though the duration of the stops increased and longer queues
were formed. The combination of these findings means that there is no
obvious advantage, as originally hypothesised, in the introduction of the
lane marking, but possibly a negative one, as the duration of the stops,
and hence the delay of the through cyclists, increased.

Based on these findings, the design recommendation would be against
using such a lane marking at bicycle T-junctions. Through cyclists are
capable of making space to allow merging cyclists to fit in the cycle path
without instructions. This self-organisation might even prove more effi-
cient as they can use the full width of the cycle path when no encounter
is about to take place. Moreover, the trajectories of merging cyclists
showed that a turn with a radius of 2 m would accommodate all cy-
clists. In CROW (2016), a minimum radius of 5 m is advised, such that
the speed of cyclists is not interrupted. It is indeed the case that the
speed is reduced, but this more cautious approach might lead to safer
interactions at the T-junction.
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An important outcome of our analysis is that no merging cyclist
stopped to give priority to through cyclists. This could indicate that
cyclists respect the priority traffic rules and there is no inverted per-
ception of priority at bicycle T-junctions. An alternative explanation
for this might be the experimental setting under which participants felt
obliged to abide by the traffic rules and yield to traffic coming from the
right. In order to conclude on perceived priority, real-world observa-
tions should be collected and analysed. Moreover, the effect of a wider
range of densities on the cycle path should be investigated, along with
the effect of different cycle path widths. Additionally, a topic for future
research is to compare the findings of this study with the efficiency at
a T-junction with priority given to the through traffic, either by means
of signage or in countries where traffic from the left has priority and
based on that conclude which rule leads to the highest efficiency. Apart
from this, it is of interest to investigate when a decision to yield is made
instead of a decision to make space. Modelling this decision making
process will be the focus of future research.



Chapter 5

Cycling behaviour at
unsignalised intersections

In the previous chapter, the cycling behaviour and bicycle flow efficiency
at a T-junction was investigated using the trajectory data from the
large-scale, controlled cycling experiment presented in chapter 3. This
chapter goes a step forward from the data analyses into the mathemat-
ical modelling of the behaviour based on this rich dataset. The focus of
this chapter is on a four-legged bicycle intersection. For the mathemat-
ical modelling, the two-layer modelling framework introduced in chap-
ter 2 is revisited, updated and used to capture the yielding behaviour
of cyclists, both in terms of decision making and movements, upstream
of an unsignalised bicycle crossing. The estimated yielding models and
corresponding behavioural insights are the main contributions of this
chapter. What is more, through this application, the applicability and
extension towards generalisability of the two-layer framework is demon-
strated, thereby establishing it as a viable modelling paradigm to cap-
ture operational cycling behaviour.

This chapter is based on the submitted article: Gavriilidou, A., W. Daa-
men, Y. Yuan, S. P. Hoogendoorn (2020a) To yield or not to yield? A
behavioural model at unsignalised bicycle crossings, submitted to Trans-
portation Research Part C: Emerging Technologies.

97
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5.1 Introduction

Intersections are critical locations in a bicycle network as the probability
that a cyclist is involved in an accident is higher (Dozza & Werneke
2014; Flower & Parkin 2019). This higher risk is attributed to the
infrastructure design (e.g. turns, road marking, lighting conditions)
(Wijlhuizen et al. 2016), but also to the number of interactions that
take place. Imbert & te Brömmelstroet (2014) showed that on crowded
cycle paths at an intersection, cyclists experience a higher level of stress
and discomfort, which makes them adhere less to traffic rules, thereby
increasing the risk of collisions. The question is whether intersections
dedicated to bicycles, where only bicycle-to-bicycle interactions take
place, elicit such unsafe behaviour as well. Answering it gives insights
into safer intersection design. Moreover, understanding the decision
making process of intersecting cyclists and their movements upstream
of the intersection may reveal factors that affect the collision risk.

After investigating the behaviour at T-junctions, we found that cy-
clists adhere to traffic rules (i.e. give priority to cyclists coming from
the right), while self-organising within the cycle path to make efficient
use of the available space (Gavriilidou et al. 2020b). In this context,
self-organisation refers to lane changing manoeuvres by non-priority cy-
clists such that they can continue without stopping on the left side of
the cycle path and merging cyclists from the right can enter on the right
side. These manoeuvres were more efficient when left to the judgement
of the cyclist rather than when indicated by the infrastructure. As the
empirical findings at the bicycle T-junction did not show evidence of
unsafe interactions, we focus on a four-legged bicycle intersection for
further empirical insights.

In addition to these insights, we develop a cyclist yielding model.
Existing literature has investigated the trajectory deviation of bicycles
in conflict with other modes at unsignalised intersections (Huang & Wu
2009; Huang et al. 2017; Zhang et al. 2017), but not the decisions related
to priority allocation. Moreover, the yielding behaviour of motorised
traffic when interacting with bicycle traffic has been researched (Hydén
et al. 2007; Phillips et al. 2011; Svensson & Pauna-Gren 2015; Ng et al.
2017; van Haperen et al. 2018). However, to the best of the authors’
knowledge no study has previously investigated the yielding behaviour
of crossing cyclists. The term yielding is used for situations when two
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cyclists are on collision course. The cyclist who lets the other cross first
is the one yielding (Svensson & Pauna-Gren 2015).

In this chapter, we use empirical trajectory data collected during the
large-scale cycling experiment presented in chapter 3 and build upon
the two-layer modelling framework developed in chapter 2 to capture
the mental and physical processes of operational cycling yielding be-
haviour. The empirical findings and behavioural insights generated in
this research are thus one of its main contributions. Another contribu-
tion is the estimated discrete choice models for both layers that describe
the cyclist decision making and movements upstream of an unsignalised
bicycle crossing. These models predict cycling behaviour when imple-
mented in a simulation model. Last but not least, through this appli-
cation, the use and extension towards generalisability of the two-layer
framework is demonstrated, thereby establishing it as a viable modelling
paradigm to capture operational cycling behaviour.

The chapter is structured as follows. In section 5.2 the two-layer
modelling framework is revisited and extended, as well as elaborated for
the case of yielding behaviour. Section 5.3 presents the data at the cross-
ing from the controlled experiment. The model estimation approach for
each layer is discussed in section 5.4. In section 5.5 the results of the
best performing estimated model for each layer are presented, along with
simulation results for face validation. Finally, in section 5.6 conclusions
are drawn and recommendations for future research are made.

5.2 Improving two-layer modelling frame-
work

The two-layer framework to model operational cycling behaviour is
shown in Figure 5.1 taken from (Gavriilidou et al. 2019a) and adjusted
for the application to the yielding situation at unsignalised intersections.
The attributes in the box linked to the yielding behaviour are the result
of a stated preference survey, discussed in (Gavriilidou et al. 2019b).
The ones in black are those investigated in this research.

According to this framework, a choice whether to yield or not is first
made in the mental layer and is then communicated into the physical
layer. The physical layer describes the choices cyclists make in consecu-
tive time steps regarding changes in their direction (steering) and speed
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(pedalling). The new states of the cyclists that emerge from the phys-
ical layer feed back into the mental layer to allow for decision updates
when necessary. An extension of the existing framework are the two
arrows within the mental layer pointing towards the queuing position.
When the output of the mental layer choice for yielding is to come to a
complete stop, then a queuing position decision needs to be made be-
fore proceeding with decisions in the physical layer. This is represented
by the black arrow in the mental layer going from yielding to queuing
position. The same process holds when a decision is made to stop at
a red light over a red-light-running decision (grey arrow from stopping
at red light to queuing position). In this research, we investigate the
yielding model and corresponding physical layer, as well as the black
arrows going in and out of these boxes.

Figure 5.1: Improved two-layer framework, adjusted from Gavriilidou
et al. (2019a). The elements that go beyond the scope of
this chapter are coloured in grey, while the scope of the model
application in this chapter is framed within the green box.

In order to model the decision making upstream of an unsignalised
bicycle crossing, it needs to be clear which process in the mental layer is
active. To facilitate this, as an additional contribution to the improved
framework, we assume that approaching cyclists follow the decision pro-
cess displayed in Figure 5.2. If the cycle path is blocked by other cyclists
who decided to stop and give priority to the other cyclist stream, then
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the approaching cyclist needs to queue. Therefore, a mental layer deci-
sion for a queuing position is assumed to be made instead of a yielding
decision. In reality it might be possible for the cyclist to go out of
the cycle path and create a crossing opportunity but we consider the
chances of this negligible and exclude these cyclists from the yielding
decision model.

When there is sufficient space in the cycle path for the approaching
cyclist to reach the intersection, a yielding decision must be made in
the mental layer. The parameter set that determines the output of the
yielding decision is hypothesised to differ for three cycling groups, which
is visualised by the three arrows leading into the yielding box. The
first group consists of cyclists who have priority based on traffic rules.
These are referred to as major stream cyclists in the ensuing. They
are expected to be more aggressive in their crossing decision and not
willing to yield to cyclists approaching from the non-priority direction.
The second and third groups are called minor stream cyclists; they are
cyclists who do not have priority according to traffic rules. Thus, they
are expected to react and yield to cyclists coming from the priority
direction.

The difference between the two groups lies in the presence of conflict
with major stream cyclists upon arrival at the crossing if the minor
stream cyclists would continue with their cycling speed at the moment
the yielding decision is made. If no conflict is anticipated (group 2),
then the behaviour of the minor stream cyclist is expected to be less
cautious. When a conflict is anticipated (group 3), the minor stream
cyclist needs to decide whether or not to yield to the major stream
cyclist. A yielding decision is the choice to give priority to the major
stream cyclist by reducing speed and/or changing lane. In some cases,
the speed reduction can be such that the yielding decision is a stopping
decision. For those cyclists, a queue position must be decided prior to
determining their trajectory in the physical layer. So their next decision
is still in the mental layer, and specifically in the queuing position choice
model. All other yielding (and non-yielding) decisions contain sufficient
information for the physical layer to be activated and determine the
cyclist trajectory.

Regarding the mathematical modelling, discrete choice theory and
the utility maximisation principle are used, similar to Gavriilidou et al.
(2019a), as the behavioural assumptions remain the same.
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Figure 5.2: Decision flow chart for a cyclist that approaches an
unsignalised bicycle crossing.

In the operational mental layer of this application, cyclists need to
decide the moment they will arrive at the crossing, as well as their
lateral position within the path when they arrive. The longitudinal
position is known and fixed for all cyclists; it is the cross-section just
upstream of the intersection itself for the corresponding cycling stream.
This cross-section is referred to as cross line in the ensuing. In the
operational mental layer model, the space is discretised into lanes and
time is discretised in comprehensive time intervals that depend on the
clearance time of the intersection. The motivation of the specific grid
is explained in section 5.4.1. The different combinations of arrival time
and sublane are the alternatives that compose the choice set. Each
alternative is assigned a (dis)utility based on attributes of the alterna-
tive and characteristics of the cyclist. Availability conditions are also
taken into account, since cyclists should not be allowed to arrive at the
crossing at the same time and sublane to avoid collisions.

If the output of the mental layer model does not correspond to a
stopping decision, then the selected arrival time-sublane combination
is fed as input to the discrete choice model of the operational physical
layer, where the cyclist decides upon the controls to reach the desired
position within the desired time. As the operational physical layer is, ac-
cording to the framework, generic to all situations, its principle remains
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the same as in (Gavriilidou et al. 2019a). Cyclists choose a combination
of pedalling and steering, which are expressed as changes in speed and
direction relative to the speed and direction at the moment the decision
is made.

Figure 5.3 demonstrates the operational yielding model for both lay-
ers. In the mental layer the arrival time and sublane (indicated in red)
are chosen and provided as input to physical layer. In the latter, a
sequence of decisions (blue cells) is made that corresponds to the com-
bination of angle and speed difference with the highest utility at each
time step (grey-scale fans, where a lighter shade of grey is given to
the grid for decisions to be made in further in the future compared to
the current time step). The sequence of positions resulting from these
choices forms the cyclist trajectory.

Figure 5.3: Schematic of the operational yielding model (mental layer
decisions in red and physical layer decisions in blue) at
an unsignalised bicycle crossing. The grey-scale fans of
the physical layer correspond to different decision moments
throughout the trajectory.
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5.3 Data at unsignalised bicycle crossing
The dataset used to estimate and validate the cyclist yielding behaviour
model consists of cyclist trajectories collected during the controlled ex-
periment presented in chapter 3. In this section, details about the
experimental runs with intersecting bicycle flows are provided (subsec-
tion 5.3.1), followed by the description of the data processing to prepare
the dataset to estimate the models in this chapter (subsection 5.3.2).
In the last subsection (5.3.3), the classification of the cyclists in the
collected dataset is presented. This classification divides the cyclists
in the three groups whose behaviour has been hypothesised to differ
(Figure 5.2). For more information about the experiment and the de-
mographics of the participants the reader is redirected to Gavriilidou
et al. (2019b).

5.3.1 Crossing scenarios
During the controlled experiment, three runs of ten minutes each took
place on the track layout shown in Figure 5.4(a). These runs were
spread throughout the day to keep the schedule of the participants in-
teresting, alternating between different routes and interactions. The
track was marked by white tape and was 2 m wide at all locations. The
participants were randomly divided into two groups. Each group was
instructed to follow a particular route for the duration of the scenario.
In order to enter the track, each group used its own entry point as indi-
cated in the layout. Cyclists assigned to the main track (full black line)
entered at the top left, while those following the crossing track (grey
dashed line) entered in the middle area of the main track. The track
was always marked with a continuous tape, so it is only for readability
of this figure that the crossing track is indicated with a dashed line.

This layout creates two intersection points for these two bicycle
streams, one on the left and one on the right, and a bidirectional flow
on the top part of the main track. The split of the participants over
the two tracks was 65-35%, with the majority following the main track.
This means that most conflicts that require a yielding decision by the
minor stream take place at the crossing on the left indicated as “cross-
ing area” in Figure 5.4(a). For this reason, in this chapter, we use the
cyclist trajectories extracted from the half hour of video data from the
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overhead camera placed at the left crossing. A snapshot of the view
from this camera is shown in Figure 5.4(b). The major stream cyclists
go from bottom to top, and the minor stream from left to right. In this
snapshot, five minor stream cyclists have stopped to give priority to a
major stream cyclist and one of them is restarting, entering the crossing
area while the major stream cyclist clears the crossing area.

(a) Layout of experimental track.

(b) Snapshot at left crossing.

Figure 5.4: Experimental track layout and camera snapshot at the left
crossing.

Regarding the cycling behaviour, participants were instructed to cy-
cle as they would normally do, and to try to stay within the edges of the
cycle path as much as possible. The given instructions left the choice of
speed, priority allocation and overtaking to the participants. The tape
was thick enough to let passing cyclists know that they are crossing it,
but not raised as a curb that could cause safety incidents.
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5.3.2 Data preparation
The cyclist trajectories have been extracted by tracking the position
of the red caps, worn by all participants, in each frame of the videos
(every 0.04 s), orthorectified and cleaned, following the steps described
by Gavriilidou et al. (2020b).

The extracted trajectories are further smoothed using a rolling hori-
zon of 0.5 s to get rid of outliers related to the detection accuracy. This
processing, thus, makes the speed profiles more reliable and suitable for
use in the model estimation.

For each cyclist, only the part of the trajectory that is upstream the
crossing and up to the cross line is relevant and kept in the dataset.
Moreover, for the minor stream cyclists the first four meters in the
camera view are discarded. As seen in Figure 5.4, minor stream cyclists
follow a curve of 8 m radius and then a straight stretch of 8 m to reach
the crossing. Part of the curve is visible in the camera view and thus
also in the upstream part of the trajectories. In order to minimise the
effect of the curve on the observed steering behaviour, the first part is
removed from further analyses.

Last but not least, cyclists who encounter a blocked path ahead of
them are removed from the dataset. A blocked path corresponds to at
least one cyclist stopped in each sublane of the cycle path upstream of
the crossing area, thus not allowing any space for new arrivals to cross.
As these cyclists are forced to stop and join the queue, they choose a
queuing position rather than make a yielding decision (Figure 5.2).

5.3.3 Cyclist classification
According to the decision flow chart of Figure 5.2, the yielding behaviour
of cyclists is expected to differ depending on whether they have priority
or a conflict with someone who has priority. It is, therefore, important
to identify which cyclists in the dataset belong to which of these groups.

The classification into major stream and minor stream is very simple
as it follows the traffic rules stating that cyclists coming from the right
have priority. All cyclists who ride from bottom to top in the camera
view are, thus, major stream cyclists, and those who ride from left to
right are minor stream cyclists. In the collected dataset, there are 938
trajectories in the major and 315 in the minor stream.
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In order to determine whether a minor stream cyclist has a conflict
with a major stream cyclist, it is checked whether the crossing area is
occupied by a major stream cyclist. The moment of interest for this
check is the expected arrival time at the cross line if the decision maker
would maintain the cycling speed at the moment the decision is made.
So, a zero-acceleration strategy is used as the rule defining a conflict.
The motivation behind this choice of strategy is that it is in line with
the least effort principle that cyclists have been assumed to follow. If
by making no speed changes the cyclist would collide, then there is
a conflict and, for the collision to be prevented, at least one of the
cyclists needs to react. By introducing this zero-acceleration strategy,
it is possible that some cyclists are misclassified. The extent of this
misclassification can be checked in the model results.

The quality of this classification depends on the accuracy of the
anticipation by minor stream cyclists of the movements of major stream
cyclists. In reality, a prediction is made based on assumptions about
the speed and acceleration of the conflicting cyclist. For the model
estimation, the exact passing moments of the major stream cyclists are
used, which are known from the collected dataset. As a result, out of
the 315 minor stream cyclists, 104 are categorised to be in a conflict
when following a zero-acceleration strategy.

Using the exact passing moments corresponds to the ideal, highest
accuracy, anticipation. This is most likely different from what the cy-
clists consider when making a decision, which makes it hard to assess
the effects of perfect anticipation. At the same time, it is not yet known
what horizon cyclists consider (i.e. how far ahead they look) and what
the accuracy of their anticipation is. Future research should look into
these matters.

To sum up, following the aforementioned classification the dataset
contains the decisions of 938 cyclists in the major stream class, 211 in
the minor stream class without conflict and 104 in the minor stream
class with conflict.
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5.4 Yielding model estimation approach
In this section the estimation approach is discussed for each layer sepa-
rately (subsection 5.4.1 for the mental layer and subsection 5.4.2 for the
physical layer). The approach covers the justification of the choice set
per layer and the selection of attributes to explain the corresponding
behaviour, as well as assumptions specific to the model estimation.

5.4.1 Operational mental layer estimation approach
In the mental layer model of the yielding choice, cyclists select their
arrival time at the crossing as well as their lateral position in the path
at the cross line. This choice is made when they exit the curve and have
the crossing in view. In this application, we assume that the choice is
made only once, but future research could look into updating over time.
The space is discretised into two sublanes, such that the chosen lateral
position is either in the left or in the right sublane. The choice for
two sublanes is motivated by the resulting sublane width, which is 1 m
and is sufficient to fit the 70 cm handlebar width (CROW 2016) along
with a safety margin that is needed because the cyclists are moving at
normal cycling speeds. Moreover, during the experiment two sublanes
were observed to be formed on the track. Another confirmation for the
use of two sublanes comes from the observed lateral positions of cyclists
when arriving at the cross line. This can be seen in Figure 5.5, where
more than 99% of the cyclists have a lateral position (i.e. distance from
the left edge of the cycle path) between 0 m and 2 m which corresponds
to the cycle path width.

Regarding the arrival time, the grid choice needs to be generic and
comparable between all cyclists. Since each cyclist enters with a dif-
ferent speed, and the arrival time is a function of the cycling speed,
a normalised relative temporal grid should be used that covers speed
heterogeneity. One normalised indicator is the time difference inflicted
compared to maintaining the speed they cycle at when the decision is
made. This is hereafter referred to as “delay”. Positive delays indicate a
later arriving time, which means that the cyclist is braking, while neg-
ative delays lead to an earlier arrival and, thus, accelerating behaviour.
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In order to set up the temporal grid, the boundaries should be deter-
mined as well as the time step between the alternatives. In Figure 5.5
the observed delay compared to the initial cycling speed is visualised in
relation to the lateral position upon arrival. Three types of symbols are
used to separate three cyclist groups.

The black dots correspond to major stream cyclists and are mostly
concentrated around delays of 0 s. So, as expected, these cyclists con-
tinue cycling with their original speed, following a zero-acceleration
strategy, without being affected by other (crossing) cyclists.

The red crosses correspond to minor stream cyclists whose delays
range from -4 s to +24 s. As some of the cyclists decide to yield by
stopping, the duration of their stop is visible in this observed delay.
The stopping duration, however, goes beyond the scope of the yielding
decision model. For this reason, the delays observed by minor stream
cyclists who do not stop are additionally noted with a blue circle. Their
delay values go up to +6 s. Therefore, in the choice grid the delays are
capped at +7 s, an upper threshold that stands for all delays higher
than 7 s.
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Figure 5.5: Observed combinations of delay to arrive at the crossing and
lateral position upon arrival. The cycle path ranges between
0 and 2 m, while the 0 s delay corresponds to maintaining
the speed the cyclist cycles at when making the yielding de-
cision. Positive delays correspond to deceleration decisions
and negative delays to acceleration.
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Regarding the lower limit of the grid, it is set at 3 s. That is because
the majority of the negative delays (acceleration decisions) goes up to
2 s, so an extra second is allowed for the few values corresponding to
even greater acceleration. The time step is set at 0.5 s, because that is
the average clearance time of the crossing for the major flow.

Based on these analyses, the choice set is constructed. It consists of
combinations of a sublane (left/right) and a delay ranging from -3 s to
+7 s with a step of 0.5 s. The size of the choice set of the operational
mental layer model is, thus, 42 alternatives.

Following the definition of the choice set, the attributes that deter-
mine the attractiveness (utility) of an alternative need to be specified.

We hypothesise that the choice for a particular delay depends on the
general attitude of cyclists towards acceleration (XAcc) and deceleration
(XDec), but also on the magnitude of the resulting delay separately con-
sidered for positive and negative delays XTdec and XTacc, respectively.

Regarding the choice for a sublane, we expect, based on the least
effort assumption, that cyclists will want to keep their initial sublane.
This means, for example, that if they make the decision on the left sub-
lane, they prefer to arrive at the crossing on the left sublane (XLinLout).

Apart from these attributes, the decision of minor stream cyclists is
expected to be influenced by interactions occurring with cyclists in front
of them heading in the same direction and cyclists coming from the ma-
jor stream. An interaction with cyclists in the front takes place when
there are stopped cyclists in one sublane. The fact that other cyclists
have yielded by stopping might make it more attractive for the decision
maker to also stop (and adhere to social norms) or might make it at-
tractive to change lane to overtake the stopped cyclist (XBlockChL). The
conflict with cyclists coming from the right depends on the anticipation
of that flow and the time that the crossing area will be occupied. In
this application, perfect prediction of the occupancy is assumed, which
means that the times when each major stream cyclist is present in the
crossing area are known. These times are derived directly from the
trajectory data of the major stream cyclists. We define two attributes
to capture the anticipated conflict if the considered delay, and thus ar-
rival time, would be selected. When only one major stream cyclist is
expected to be in the crossing area, that is captured in the dummy at-
tributeXconflictS. If more major stream cyclists are expected to be in the
crossing area, their total number is reflected in the attribute XconflictM.
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The reason why the presence of a single cyclist is differentiated from
that of more cyclists is the fact that the minor stream cyclist (decision
maker) is able to pass directly behind the major stream cyclist, while
the latter is still in the crossing area. In other words, the conflict in this
situation is easily resolved within the crossing area.

Along with the properties of the alternatives, we hypothesise that the
traffic situation that the cyclists encounter play a role in their decision.
These situations are represented by the class assigned to each cyclist as
discussed in subsection 5.3.3. Therefore, interaction terms are created
between the aforementioned properties of the choice alternatives and
the cyclist classes.

Last but not least, the model should capture the attractiveness of
the stopping alternatives (maximum delay value of 7 s) for those cyclists
who have a conflict when following a zero-acceleration strategy and for
whom the maximum delay would result in such a deceleration that they
have to come to a full stop. The full stop is determined by assuming
a minimum speed threshold beyond which balancing on the bicycle is
not possible without using the feet. This threshold is set at 3.4 km/h.
This threshold was determined such that the vast majority of stopped
cyclists, based on the ground truth data, are also labelled as stopping.
An alternative specific constant is thus added for those cyclists to the
7 s delay alternatives (XStop).

Figure 5.6 demonstrates the choice alternatives for which the differ-
ent alternative specific constants are active. In the green cells (negative
delays) XAcc is active. In the orange cells XDec is active as well as in
the 7 s delay alternatives. The latter also has XStop in its utility and is
represented by a dark red colour in the figure. The 0 s delay alternatives
have no alternative specific constant assigned to them.

These attributes describe the properties of all alternatives in the
choice set. The choice set should, however, be adjusted to represent
what is feasible for each cyclist. This feasibility is modelled via availabil-
ity conditions. Alternatives, for example, that result in a simultaneous
arrival (in time and space) at the cross line of the decision maker and
preceding cyclists are made unavailable for the decision maker and suc-
ceeding cyclists. Moreover, some acceleration values result in an arrival
time that would require travelling back in time compared to when the
decision is made, or impossibly high speeds and are therefore considered
not feasible and are excluded from the corresponding choice set.
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Next to the availability conditions, for the model estimation we hy-
pothesise that there is correlation between the stopping and the non-
stopping alternatives provided in the choice set. For this reason, we
create two nests: the “stop” nest consists of the 7 s delay for arrival
time in either of the sublanes, and the “go” nest that comprises all the
rest.

Furthermore, we assume that there is no serial correlation in the
yielding decisions made by the same person in each lap. The justifica-
tion behind this assumption is that the yielding choice is not of habit-
ual nature. Instead we believe that it depends on the traffic situation
that the cyclist encounters in each lap at the crossing, so intrapersonal
heterogeneity prevents habitual behaviour. The consequence of this as-
sumption is that the behavioural bias of each person in, for example,
taking risks or giving priority, is ignored and several observations of a
certain behaviour might lead to the conclusion that many cyclists ex-
hibit it, while in reality it represents a smaller group of cyclists. As
the unavailability of person identification in the dataset prevents us
from assigning different decisions to the same cyclist and testing this
assumption, future research should look into this effect in more detail.

-3 -2 -1 0 1 2 3 4 5 6 7

Delay [s]

L

R

L
a

n
e

Figure 5.6: Assignment of alternative specific constants to choice alter-
natives: XAcc in green cells, XDec in orange cells and 7 s
delay alternatives, XStop in dark red cells.
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Table 5.1: List of variables for the operational mental layer.

Attribute Unit Explanation

Zp - dummy for major stream cyclists

Zn - dummy for minor stream cyclists who do
not have a conflict when following a zero-
acceleration strategy

Zr - dummy for minor stream cyclists who have
a conflict when following a zero-acceleration
strategy

XAcc - dummy for negative delays

XDec - dummy for positive delays

XTacc s magnitude of negative delay

XTdec s magnitude of positive delay

XRinRout - dummy for keeping the right sublane

XLinLout - dummy for keeping left sublane

XBlockChL - dummy for presence of stopped cyclists in the
other sublane

XConflictS - dummy for one conflicting cyclist in the cross-
ing area at the considered arrival time

XConflictM cyclists number of cyclists (at least two) in the crossing
area at the considered arrival time

XStop - dummy for maximum delay alternatives (7 s
in both sublanes)
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5.4.2 Operational physical layer estimation approach

Within this layer, only the non-stopping cyclists are considered. That
is because, as previously explained, the cyclists who decide to stop need
to make a queuing position choice in the mental layer before their tra-
jectory can be generated by the physical layer. For the non-stopping
cyclists, the mental layer provides as input to the physical layer the
intended lateral position and time to arrive at the cross line. In the
physical layer, the cyclist decides in every time step the changes in ped-
alling and steering until the next time step. Through the sequence of
time steps, and corresponding decisions, the cyclist trajectory is con-
structed.

The observed choices at every decision moment (time step) of all
non-stopping cyclists are visualised by the black dots in Figure 5.7.
The angular sections represent changes in steering angle per time step,
while the arched zones correspond to changes in speed. The figure
shows that in all observations the speed changes range between [-4,4]
km/h, while most changes in steering angle are between [-15,15] degrees.
Larger changes in the steering angle mostly occur in combination with
a small change of speed. The threshold for the steering angle in both
directions is set to 45 degrees, as only seven data points are beyond this
angle and half of them are very close to 45 degrees. As the majority
of the observations is within [-15,15] degrees, the discritesation of the
steering angle is coarser for angles outside of this range and finer for
angles within it.

The grid is, thus, designed to give the options for speed changes
of -4 km/h to +4 km/h with a step of 1 km/h, and for steering angle
changes of {-45,-30,-15,-10,-5,0,5,10,15,30,45} degrees. The combina-
tions of these values of the grid comprise the choice set which has a size
of 99 alternatives.

The attributes that are hypothesised to influence the choice relate
to the willingness of cyclists to make specific changes in speed and
angle within a time step. In the mental layer, their overall attitude
towards speeding up or down is estimated for their entire trajectory
upstream of the crossing. In the physical layer, this attitude becomes
more specific by choosing whether to (i) make one intense manoeuvre
or several smaller ones to achieve the intended final outcome; and (ii)
combine the changes of speed and angle in a time step or apply the
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changes separately in different time steps. For this reason we define
four attributes that separately examine the attitude towards accelerat-
ing (Xpedal), braking(Xbrake), steering left (XsteerL) and steering right
(XsteerR).
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Figure 5.7: Observed changes in steering angle and speed per time step
for all non-stopping cyclists.

Moreover, we expect that cyclists want to make changes that bring
them closer to their final desired position at the desired time. So three
attributes are defined to capture the remaining lateral deviation to the
intended position (XYdiff) and the difference in arrival time if the new
speed is adopted. As the effect of an early arrival (Xearly) might be
that the crossing area is still occupied, its contribution to the decision
might differ from a late arrival (Xlate) at an empty crossing. This effect
is reversed in case of a cyclist who decides to speed up and accept a gap
before the crossing area gets occupied.

Another attribute that is expected to affect the choices is whether the
alternative leads the cyclist outside of the cycle path (Xoffpath). Since
cyclists were instructed to cycle within the marked lane as much as pos-
sible, this attribute should reveal the situations when it was preferable
to leave the path than to follow the instructions.

Regarding the presence of other cyclists, in the physical layer only
cyclists in front of the decision maker play a role. That is because the
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front cyclists act as obstacles or lead the way, thereby affecting the path
to be followed. Based on the behavioural findings of Gavriilidou et al.
(2019a), the behaviour against static obstacles differs from that towards
moving persons. For this reason, in this application different attributes
are created to test this effect once more. Moreover, the distance to
cyclist closest to the decision maker had been found significant, and
the longitudinal and lateral dimensions were separately evaluated. This
separation is adopted in this model as well. Last but not least, the
maximum difference in cycling speed for moving cyclists is considered
as an attribute (XdVmov), since the greater the difference, the more the
situation resembles an interaction with a stationary obstacle.

In this layer the cyclist classification is again introduced in the form
of interaction terms between the aforementioned attributes and the class
of the decision maker. The underlying hypotheses are that major stream
cyclists are (i) less willing to deviate from their desired arrival time as
they have priority and (ii) less reactive to the movements of other major
stream cyclists as they expect them to also proceed unhindered. The
difference in behaviour of the minor stream cyclist groups is expected
to be in the reaction to other cyclists, as when there is a conflict there
might be more stopping or decelerating cyclists and so the minor stream
cyclists with conflict should cycle more cautiously. The differences in
the steering behaviour between the three groups is expected to reveal
whether the curve has any remaining effects for minor stream cyclists
(comparison of major stream to minor stream without conflict) and
whether the presence of a conflict leads those cyclists to more steering
manoeuvres (comparison between two minor stream groups).

In terms of availability conditions, we assume that cyclists do not
move backwards, so negative speeds are not allowed. This means that
depending on the actual speed of the cyclist at each decision moment,
alternatives that would result in a negative cycling speed are made un-
available.

For the model estimation, it is assumed that there is no serial corre-
lation in the decisions made by the same person at different time steps.
This creates the risk of inconsistent behaviour between time steps (e.g.
first accelerating and then braking). However, such behaviour could
occur also in a real cycling situation and there is no reason to assume
habitual behaviour or bias towards a particular choice. Therefore, a
multinomial logit model is estimated for the physical layer.
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Table 5.2: List of variables for the operational physical layer.

Attribute Unit Explanation

Zp - dummy for major stream cyclists

Zn - dummy for minor stream cyclists who do
not have a conflict when following a zero-
acceleration strategy

Zr - dummy for minor stream cyclists who have a
conflict when following a zero-acceleration strat-
egy

Xpedal m/s2 magnitude of acceleration when considering pos-
itive speed changes

Xbrake m/s2 magnitude of acceleration when considering neg-
ative speed changes

XsteerL rad/s magnitude of steering intensity when consider-
ing changes towards the left

XsteerR rad/s magnitude of steering intensity when consider-
ing changes towards the right

XYdiff m remaining lateral deviation from the intended
arrival position

Xearly s magnitude of positive difference between the in-
tended arrival time and the arrival time given
the considered speed change

Xlate s magnitude of negative difference between the in-
tended arrival time and the arrival time given
the considered speed change

Xoffpath - dummy for riding outside of the cycle path in
the next step

XdXmov m minimum longitudinal distance to moving cy-
clists in front

XdYmov m minimum lateral distance to moving cyclists in
front

XdVmov m/s maximum speed difference between considered
speed and speed of moving cyclists in front

XdXstop m minimum longitudinal distance to stopped cy-
clists in front

XdYstop m minimum lateral distance to stopped cyclists in
front
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5.5 Results and discussion
This section provides and discusses the model estimation results for each
layer. Models have been estimated using Python Biogeme (Bierlaire
2016). A simulation is then performed with both estimated models to
validate the corresponding behavioural level.

5.5.1 Operational mental layer model
A nested logit model was estimated using the nests described in sec-
tion 5.4.1. The resulting nest coefficient was, however, not statistically
significantly different in the two nests, so the hypothesis that these al-
ternatives are nested in the choice set is rejected.

Following this finding, a multinomial logit model is estimated. The
estimated coefficient values of the best performing model are shown in
Table 5.3, for each of the cyclist classes. Cells that are empty had
insignificant values. The final model consists of 15 parameters, which
are all significant at 95% confidence level. The estimated parameter
values are further discussed and interpreted for each cyclist class.

For major stream cyclists there is a strong negative attitude towards
both acceleration (ASCacc =−2.95) and deceleration (ASCdec =−5.60),
which means they prefer to keep their speed and confirms the assump-
tion that cyclists are effort minimisers. Moreover, given the magnitude
of the coefficient values, the major stream cyclists are more likely to
accelerate than to decelerate. The other two attributes that are signif-
icant for this stream relate also to attitude, in this case regarding lane
keeping. These cyclists have a preference to arrive at the crossing in the
same sublane as the one they have when making a decision. The coeffi-
cient for the staying in the right sublane is slightly more positive than
that of staying in the left sublane (βRinRout = 7.03 and βLinLout = 6.46,
respectively). The difference of these values is statistically significant,
which shows that cyclists comply to the general traffic rule of keeping
to the right.

The behaviour of minor stream cyclists is different, depending on
whether they have a conflict or not, which confirms the hypothesis re-
lated to the cyclist classes. Minor stream cyclists without a conflict
have a positive attitude towards acceleration (ASCacc = 2.23) that re-
duces as the magnitude of the (negative) delay increases (βTacc = 1.88).
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Table 5.3: Estimated yielding model parameters and corresponding ro-
bust standard error for the operational mental layer. The
three last columns differentiate the interaction terms of the
three cyclist classes.

Coefficient name Coefficient value (Robust standard error)

Major stream Minor stream Minor stream
no conflict with conflict

ASCacc -2.95 (0.26) 2.23 (0.35)

βTacc 1.88 (0.40)

ASCdec -5.60 (0.20) -0.94 (0.35) 1.51 (0.35)

βTdec -0.27 (0.11) -0.26 (0.12)

βLinLout 6.46 (0.23) 0.54 (0.19)

βRinRout 7.03 (0.59) 1.65 (0.53)

βConflictM -5.15 (0.08)

βBlockChL -10.30 (0.21)

ASCstop 2.51 (0.27)

All coefficient values are significant at 95% confidence level.

So the higher the acceleration, the less attractive it becomes. The delay
beyond which acceleration is not any more attractive is −1.2 s (found
by solving the equation ASCacc +βacc ·XTacc = 0). Additionally, they
have a negative attitude towards deceleration, which gets stronger as
the amount of delay increases.

These cyclists, similar to the major stream, have a tendency to keep
their sublane that is stronger for the right than for the left sublane,
but much weaker compared to the major stream cyclists. The reason
we observe this weaker effect is that half of the minor stream cyclists
switch lane and arrive on the right sublane. The vast majority of the
minor stream is on the subleft lane in the beginning of the straight
stretch due to the curve that is upstream. As they are unhindered, they
take the inner side of the curve which leads them on the left sublane
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at the moment the mental moment is activated. Half of them stick to
their entry lane, while the other half swerves to the right.

Cyclists in the minor stream that would encounter a conflict if they
kept their cycling speed at the moment the decision is made, have a
positive attitude towards deceleration that decreases along with the
amount of incurred delay. The break-even point in this case is at
ASCdec/βTdec = 5.8 s. Longer delays lead to a negative utility.

Along with these attitudinal variables, interaction with other cyclists
influence their choices. When there is one or more cyclists stopped in
the other sublane, they have a very strong deterrent from changing into
that sublane (βBlockChL =−10.3).

The presence of more than one major stream cyclist at the crossing
is another strong deterrent for minor stream cyclists, and gets even less
attractive as the number of major stream cyclists expected in the cross-
ing area increases (βConflictM =−5.15). In case there is only one major
stream cyclist, the coefficient of the XConflictS attribute was found to be
insignificant. This is reasonable, since when interacting with only one
major stream cyclist it is still possible (and safe) to arrive at the cross
line and pass right behind this cyclist without experiencing a conflict.

Last but not least, the alternative specific constant for the maximum
delay of 7 s has a positive coefficient (ASCstop = 2.51) for those cyclists
that have a conflict when following the zero-acceleration strategy and
choosing this delay forces them to come to a full stop.

5.5.2 Operational physical layer model
The estimated values of the coefficients of the best performing model for
the operational physical layer are provided in Table 5.4, for each of the
cyclist classes. Cells that are empty had insignificant values. The final
model consists of 23 parameters, which are all significant at 95% confi-
dence level. The estimated parameter values are further discussed and
interpreted, while comparing the three cyclist classes, starting with the
those that express attitude towards speed and steering angle changes,
followed by attraction to the intended arrival time and lateral position.
Then, the parameters that describe the importance placed to interac-
tions with the infrastructure and with other cyclists, are presented.

In this model, the attitudinal variables are consistent among all cy-
clist classes in terms of sign, only the magnitude differs. There is a
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negative association with all types of changes (towards higher and lower
speeds, and towards steering to the left and to the right). It should be
noted that the coefficients for braking (βbrake) and steering to the right
(βsteerR) have positive values but the corresponding attributes have neg-
ative values, thus combined they produce a disutility when cyclists have
to steer to the right or brake. Regarding the magnitude, minor stream
cyclists who face a conflict are less deterred from braking, which is rea-
sonable as they are expected to react and give way to the major stream.
This means that avoiding the conflict is more important than having to
decelerate.

Table 5.4: Estimated yielding model parameters and corresponding ro-
bust standard error for the operational physical layer. The
three last columns differentiate the interaction terms of the
three cyclist classes.

Coefficient name Coefficient value (Robust standard error)

Major stream Minor stream Minor stream
no conflict with conflict

βpedal -2.21 (0.16) -1.07 (0.07) -2.26 (0.18)

βbrake 4.72 (0.62) 3.71 (0.20) 1.55 (0.13)

βsteerL -10.60 (0.97) -2.57 (0.21) -2.43 (0.25)

βsteerR 9.99 (1.07) 5.49 (0.49) 4.19 (0.49)

βYdiff -6.67 (0.33) -4.16 (0.50)

βearly -2.79 (0.29) -1.11 (0.14)

βlate -0.39 (0.09)

βoffpath -2.94 (0.61) -1.52 (0.68)

βdXmov -4.86 (0.83) -1.42 (0.66)

βdXstop 6.17 (1.26)

βdVmov -3.34 (0.48)

All coefficient values are significant at 95% confidence level.
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Steering actions in both directions are equally unattractive for major
stream cyclists, while steering to the right is less favourable for minor
stream cyclists. This discrepancy in the two streams is attributed to
the presence of the curve upstream of the straight stretch for the minor
stream and the desire of cyclists to keep to the inner circle of the curve.
As we found in the mental layer, there is a tendency to swerve to the
right sublane when entering on the left. This is not by means of steering
to the right, but rather by keeping the initial angle after exiting the
curve. This angle is kept until the cyclist reaches the right sublane and
then steers left to stabilise the position within the right sublane.

In addition to that, minor stream cyclists do not like to deviate from
their intended lateral position (βYdiff < 0), nor their intended arrival
time. Early arrivals are less attractive than late ones (βearly < βlate).
An explanation for this behaviour is that an early arrival is linked to
acceleration, which is unattractive in itself, but also the crossing area
might be still occupied. This means that cyclists pick the first available
passing opportunity, to inflict the least amount of delay on themselves,
and that arriving a bit later than intended is still safe. These attributes
were removed from the utility function of major stream cyclists due to
high (more than 70%) correlation with the attitudinal variables towards
any changes. These correlations led to unrealistic coefficient values that
could not be independently interpreted.

Another finding is that cyclists, particularly in the major stream,
avoid alternatives that lead them outside of the cycle path (βoffpath < 0).
This is in line with their general attitude of least effort and minimal
changes as there is no benefit to be gained, such as travel time savings,
by straying off path. For minor stream cyclists without a conflict this
attribute is less strong, but still inflicting a disutility. In the third cycling
class this attribute is not a factor considered in the choices, which is
reasonable since minor stream cyclists with a conflict also encounter
stopped cyclists in their stream and might need to go out of the path
to pass them.

Similar to the mental layer, in the physical layer minor stream cy-
clists take into account in their decision process the presence of other
cyclists. It appears that only distances in the longitudinal direction have
an effect. Those cyclists that do not have a conflict in front of them are
strongly attracted to moving cyclists (βdXmov =−4.86) and are repelled
from stopped cyclists (βdXstop = 6.17). The former shows a follow-the-
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leader effect, while the latter ensures no collision with stopped cyclists.
Furthermore, minor stream cyclists without a conflict avoid increasing
their speed compared to other cyclists, which is reasonable as they are
following the leader and increasing their speed could result in unsafe
situations, such as rear collisions.

Cyclists who have a conflict and do not stop, pay attention only to
moving cyclists, while also displaying a follow-the-leader effect (βdXmov =
−1.42).

5.5.3 Face validation using simulation
Using the estimated parameters for each model, a simulation is per-
formed, where a prediction is made for each observation in the dataset.
In this case, we have used the same dataset for estimation and face
validation, as we do not have another dataset available and the dataset
is too small to segment. Having the same dataset means that the at-
tributes and availability conditions describing the situation at which
every individual made a decision are the same as in the observed data.
The simulation computes all utility functions and the corresponding
probabilities of each alternative per individual. These probabilities are
aggregated by averaging over all individuals to whom the corresponding
alternative was available. The true (observed) choices are then visu-
ally compared with the predicted (simulated) probabilities for a specific
choice.

The comparison for the operational mental layer is visualised in Fig-
ure 5.8. The observed choices are shown on the left and the simulated
ones on the right of the figure. Each subplot corresponds to a different
cyclist class. A different scale is used per class to best represent the
variability of the observations over the alternatives. On top is the ma-
jor stream, whose behaviour is well captured by the model. The vast
majority of major stream cyclists opts, as expected, for the zero delay
alternative with a higher preference for the right sublane.

Minor stream cyclists without a conflict (middle plots in Figure 5.8)
have a preference for a small acceleration followed by a preference for
zero delay. The developed model captures well this higher utility for
small acceleration, and in some cases it allows for slightly larger ac-
celerations as well. The light blue colour in the observed probabilities
for the 7 s delay alternatives is attributed to misclassification of some



124 5 Cycling behaviour at unsignalised intersections

stopped cyclists. For those, the speed was probably very low already,
such that no conflict would take place if they maintained that speed, but
actually they would have to accelerate to cycle comfortably or decelerate
further to come to a full stop.
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Figure 5.8: Probability of an alternative being selected in the observed
(left) and the simulated (right) dataset separated per cyclist
class. Note that a different scale is used for each class.

The bottom plots in Figure 5.8 correspond to the probabilities of
minor stream cyclists with a conflict. In the observations, the majority
of them yields by coming to a full stop, while the others have a preference
for the right lane and decelerate with delays up to 3 s. The simulation
captures the high share of stopping choices as well as the small delays
(up to 2 s) for the rest.
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The simulation results show a good match with the observations
and, therefore, demonstrate the face validity of the developed model.
Further validation should be performed using a different dataset.

The comparison for the operational physical layer is visualised in
Figure 5.9, where the observations are in the top and the simulation
results at the bottom. Overall, there is a limited range within the choice
set that cyclists opt for regardless of their class, and the majority of the
choices corresponds to either changes in speed or in steering angle, while
keeping the other one constant.

Figure 5.9: Probability of a combination of change in steering angle and
speed to be selected in the observed (top) and the simulated
(bottom) dataset separated per cyclist class.

On the left, the behaviour of major stream cyclists is displayed. The
most likely choice is, both in the observations and for the simulation,
that of no change in speed or angle, followed by a preference for small
acceleration without steering and then by small steering to the left or
to the right while maintaining the same speed. Where the two results
diverge is in the probability for higher accelerations. In the simulation,
it is more likely to accelerate than in reality but the probability is very
low.



126 5 Cycling behaviour at unsignalised intersections

The minor stream cyclists without conflict are shown in the middle
column. The pattern is almost identical between observations and sim-
ulation, with the majority of cyclists choosing for no change of state
and the second highest probability going for a small steering action to
the left. The main discrepancy is observed in the probability for small
deceleration which is higher in the observations than in the simulation.

The simulation of minor stream cyclists with a conflict captures the
movement to the left and decelerating actions. However, the proba-
bility assigned to these choices is smaller in the simulation than in the
observations, which means they are selected less often in the simulation.

In order to further quantify the effect these deviations on the cyclist
trajectories, the absolute percentage error made in each observation i is
separately calculated for the longitudinal (xerrori) and the lateral (yerrori)
direction. This is based on the simulated values (xsimi , ysimi) and the
observed ones (xobsi , yobsi). The following formulas are used:

xerrori = |xsimi−xobsi |
xobsi

yerrori = |ysimi−yobsi |
yobsi

(5.1)

The mean absolute percentage error is then calculated over all the
observations within each cyclist class. The results are summarised in
Table 5.5. It can be seen that the major stream has the smallest overall
error in both directions, which is expected as they make the least amount
of changes in their speed and steering angle. Minor stream cyclists with
conflict have the highest error. This was also expected by the inability
of the model to capture the higher probability for steering to the left
and decelerations. However, all values are considered low and prove the
face validity of the estimated model.

5.6 Conclusions and recommendations
In this chapter, cycling behaviour at bicycle crossings has been inves-
tigated and an operational model was estimated and face validated.
The model development followed the two-layer framework proposed by
Gavriilidou et al. (2019a) after improving it and substantiated its gener-
alisability to interactions upstream unsignalised bicycle crossings. The
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Table 5.5: Mean absolute percentage error in the simulated trajectories
compared to the observed ones for each cyclist class.

Mean absolute percentage error
Cyclist classification

Major stream Minor stream
No conflict Conflict

xerror 1.84% 3.79% 4.18%
yerror 1.04% 2.52% 2.72%

improvement entailed an addition to the framework that allows a se-
quence of choices within the mental layer, prior to decisions in the phys-
ical layer. In the situation upstream of a crossing, cyclists first select
their desired arrival time and lateral position at the crossing (mental
layer). If the chosen time implies a stop, then a queuing position choice,
also in the mental layer, is required. Otherwise, the trajectory is directly
determined in the physical layer.

Using trajectory data from a controlled cycling experiment two dis-
crete choice models were estimated, one for each layer. In the model
development it was hypothesised that the behaviour depends on the
traffic situation. Based on that cyclists were divided into three classes,
namely major stream, minor stream without conflict and minor stream
with conflict. Whether cyclists have a conflict or not was defined based
on a zero-acceleration strategy by the decision maker and the antici-
pation of the occupancy of the crossing area. According to this defi-
nition, there is a conflict when a minor stream cyclist would arrive at
the crossing area at a moment that it is occupied by a major stream
cyclist, while having kept the cycling speed at the moment the decision
to arrive at that time was made. The estimated models confirmed that
the behaviour differs between these classes and revealed the influencing
attributes.

In both layers it is observed that major stream cyclists want to make
the least changes possible, both in terms of speed and angle. As they
have priority in the crossing, it is reasonable that they are not willing
to accommodate the crossing of minor stream cyclists and they just
continue with their initial speed in their initial sublane.
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Minor stream cyclists tend to accelerate when they have no conflict,
but they decelerate at the presence of a conflict, even coming to a com-
plete stop. Cyclists who decide to stop to avoid the conflict need to then
decide their stopping position, so they go through another mental layer
process that has previously been modelled (Gavriilidou et al. 2019a).
For those cyclists that have a conflict and do not stop, the attributes
in the physical layer revealed a follow-the-leader behaviour. Cyclists
maintain a close distance to their predecessor and are careful not to
increase the speed difference as that could lead to rear collisions.

Based on these behavioural insights from the estimated models, it is
concluded that cyclists behave in a safe way and adhere to traffic rules
by yielding to cyclists coming from the right. Also, they are efficient
in their interactions as they select their arrival moment just as the
major stream cyclist exits the crossing area. As the present dataset
does not contain personal information, the model has not accounted for
the effect of observing several decisions made by the same person (i.e.
panel data). The model should then be extended before generalising the
finding that cyclists behave in a safe and efficient way in pure bicycle
interactions, and the validity of the developed models should be tested
on more datasets. If this conclusion is generalised, then the design
implication for cycling infrastructure is that bicycle crossings should
be unsignalised. Moreover, the use of markings to indicate priority is
unnecessary as long as priority rules are clear, and therefore intersecting
cycle paths should not have additional priority marking or signs.

Some of the results pertaining to the operational physical layer are,
however, already validated, as they were observed at the queue for-
mation process upstream of a traffic light (Gavriilidou et al. 2019a).
Cyclists, regardless of the situation, seem to be consistent in deter-
ring from leaving the cycle path and in behaving differently towards
stopped and moving cyclists. In order to further generalise the conclu-
sions drawn for the cyclist population of the controlled experiment, its
representativeness can be checked in future research by comparing the
queue formation process upstream of the unsignalised crossing in the
controlled experiment to the real-world observations at the signalised
intersection.
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Future research directions also pertain to the investigation of the
validity of the model under different bicycle densities (e.g. more cy-
clists coming from the minor stream), configurations of the crossing
(e.g. at a T-junction or intersections under an angle) and in more com-
plex situations where multiple streams are present at the crossing (e.g.
bidirectional traffic or turning cyclists).

Last but not least, the interaction between the two decision layers
could be strengthened by allowing the re-evaluation of the decision made
in the mental layer. In the present model, a single decision is made
in the mental layer as the cyclist approaches the crossing under the
assumption of perfect anticipation skills. However, the inaccuracies in
the prediction of future positions of other cyclists in reality might call for
correcting actions or an update of the initial yielding decision. Further
investigation is thus required into the updating frequency or triggers,
as well as the anticipation capabilities of the cyclists.





Chapter 6

Conclusion

The research in this dissertation focused on generating knowledge on
microscopic operational cycling behaviour on dedicated cycling infras-
tructure, through data and models. The aim was to develop a mathe-
matical model that describes this behaviour.

To this end, a novel modelling framework was proposed and its ap-
plication was demonstrated by developing mathematical models that
describe the decision making process of individual cyclists upstream of
signalised and unsignalised intersections. Cyclist trajectory data were
used to calibrate and validate these models. As such data were scarce
prior to this research, an extensive data collection through a bicycle
experiment was performed and followed by data processing to derive
trajectories and data analyses to generate behavioural insights. The
empirical findings from these data analyses and the calibrated parame-
ters of the developed operational behaviour models are brought together
in this final chapter to draw conclusions and make design recommen-
dations for dedicated cycling infrastructure. Moreover, implications for
practice are discussed and directions for future research are provided.

6.1 Main findings and conclusions
The main findings of this dissertation are summarised by answering the
research questions that were formulated in the introduction in order to
meet the research objective.
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1. Which modelling framework captures cycling decisions and move-
ments?

Decisions and movements that cyclists make while cycling and in-
teracting with other cyclists and with the infrastructure are viewed as
two intertwined processes, a mental and a physical, within the oper-
ational cycling behavioural level. The mental process corresponds to
path choices that cyclists make within a route, such as whether to stop
at a traffic light and if so, where to queue, whether to yield to cyclists
with priority or accept a gap to cross an intersection. Based on the path
choice, the physical process then determines the bicycle control dynam-
ics through changes made by the cyclist by pedalling and steering.

A two-layer modelling framework captures these processes of the op-
erational cycling behaviour. In this framework, a layer is dedicated to
the decisions made in each process. At the same time, since the pro-
cesses are intertwined, the layers are linked and exchange information
relevant to the decisions to be made in the other layer.

This dissertation demonstrated the plausibility of the framework
through an application and its generalisability through another appli-
cation. The generalised framework shows that it is possible to have a
sequence of different mental processes prior to the physical ones.

2. Which are the key factors affecting the different decisions made
while cycling?

One of the reasons for opting for a two-layer framework was that
decisions in the two layers are affected by different factors. Furthermore,
decisions in the mental layer depend on the type of interaction and the
traffic situation. This means that each decision in the mental layer has
its own influencing factors. Decisions in the physical layer, on the other
hand, are governed by the least effort principle.

The key factors affecting decisions in the mental layer have been
found by means of a literature study, a survey and data analyses. The
literature study revealed that the gap acceptance of cyclists is influenced
by the speed of the cyclist and of the interacting traffic participant, as
well as by the gap size. Regarding the choice to stop at a red light,
both previous literature on red light running and the conducted survey
showed that it depends on the traffic conditions (such as amount of
conflicting traffic and number of queuing cyclists), but also on weather
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conditions and personal characteristics (such as nationality and famil-
iarity with the crossing). Overtaking decisions, according to the survey,
are additionally affected by time pressure, the slope and directionality of
the cycle path and the bicycle type. Cyclists facing a yielding decision
take into account several factors pertaining to the traffic conditions and
their personal characteristics. Out of the list obtained from the survey,
the data analyses confirmed the effect of the traffic conditions, and in
particular of the speed, number and direction of approaching cyclists.
Last but not least, the factors affecting the queuing position decision
were found through data analyses to be the distances to the stop line,
to the sidewalk and to the nearest bicycle in front.

Regarding the physical layer, the steering and pedalling decisions
are influenced by the edges of the cycle path, as cyclists avoid leaving
it. Additionally, they are attracted by the intended position selected
in the mental layer. Last but not least, it is important whether there
are stopped or moving cyclists in the vicinity, and if there are cyclists
nearby, the speed difference and distance to them.

3. Which datasets are needed to obtain the influence of the key factors
on cycling decisions?

Even though a survey can determine whether a specific factor is in-
fluencing a particular mental decision or not, the extent of the influence
can only be determined by observations of individual cycling behaviour.
For decisions within the physical layer, such observations are the only
means of determining the influencing factors. Trajectories, i.e. sequence
in time of individuals’ positions in space, are the data type necessary to
study this individual cycling behaviour on the operational level. More
specifically, it is required to have trajectory data with high temporal
resolution (less than a second) and spatial accuracy (a few centimetres)
to capture the movements and interactions of individual cyclists with
each other and with the infrastructure.

4. To what extent do the key factors influence the different decisions?

Discrete choice models have been estimated and validated that de-
scribe cycling behaviour upstream of signalised and unsignalised inter-
sections. These models capture the decision making processes both in
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the mental and the physical layer, and reveal the extent to which the dif-
ferent factors influence the corresponding decisions. The specific weight
(importance) of the influence is reflected in the coefficient value of the
corresponding attribute and can be found in the model results presented
in sections 2.6 and 5.5. Here, rather than listing all the factors, the inter-
pretation of these weights is given, along with the behavioural insights
gained from the estimated queuing and yielding models. To answer
the question for other types of decisions, further research is required to
unravel the extent of the influence of key factors on those decisions.

When deciding on a queuing position upstream of a red traffic light,
the greatest influencing factor for the first arriving cyclist is the position
of the ‘request-green’ button, since being able to press it requires stop-
ping next to it. For the subsequent cyclists, the presence of a resting
position (such as the curb of the sidewalk) is an attractive factor. As
a result, cyclists prefer to stop on the right lane rather than build the
queue in all lanes equally. An exception to this are the front spots on
the left lane, because they are close to the stop line. Regarding the
distance to other bicycles in the queue, cyclists leave the least space
possible behind each other. This shows that cyclists value their com-
fort (resting position) more than their travel time, and their travel time
more than their personal space.

The conclusion on the importance of comfort is confirmed also by
the yielding behaviour model upstream of an unsignalised intersection.
Cyclists in the major stream are opting for the least effort strategy
which is to maintain their lane and cycling speed while approaching the
crossing area. Minor stream cyclists behave similarly in the absence of
a conflict, but when a cyclist that has priority is present, the minor
stream cyclists yield. Yielding takes place by decelerating, and when
necessary, by coming to a complete stop.

In the physical layer, the decision made in the mental layer is leading.
This decision is an intended time moment and/or position to reach
an intermediate destination. A trajectory is, then, created towards it,
through changes in the cycling speed and steering angle at regular time
intervals. Other influencing factors are the cyclists present on the cycle
path and the properties of the infrastructure. In terms of interactions
with other cyclists, the behaviour has been found to differ depending
on whether the decision maker intends to stop or not and whether the
others are stopped or moving. Those cyclists that intend to stop prefer
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to stay closer to other stopped cyclists, while those that keep moving
avoid stopped cyclists and follow those that are moving ahead of them.
In both cases attention is paid to the resulting speed differences, which
are kept low. This indicates a safe behaviour, as rear collisions are
avoided. Regarding the interaction with the infrastructure, cyclists try
to stay within the edges of the cycle path. An exception to this is when
there is a conflict with another cyclist and they do not want to stop, but
instead they deviate from the path. Strong deterrents from getting off
the cycle path are the change of surface type and especially the presence
of a height difference, such as that of the curb of the sidewalk.

5. Which design implications stem from the empirical findings and
behavioural insights of the derived datasets and models?

The behavioural insights obtained from the derived models confirm
the assumption that cyclists are effort minimisers while abiding by the
traffic rules. Cyclists stay within the designated infrastructure, so the
first design recommendation is to ensure that the edges of the cycle
path are clearly indicated. Further means to ensure that cyclists will
not deviate from the infrastructure allocated to them are the change
of type or height of the adjacent surface. Just upstream of signalised
intersections an elevated right angle curb is advised, so that cyclists can
use it as a resting spot. The elevation there is even recommended on
both sides of the cycle path to achieve dense queues and, consequently,
shorter discharge times.

Another empirical finding is that cyclists respect priority rules and
behave in a safe way in bicycle-to-bicycle interactions. This has been in-
vestigated in T-junctions and four-legged crossings with one-way bicycle
traffic. Though intersections have previously been found to be critical
locations in a network for bicycle safety, the findings of the research
within this dissertation show that bicycle intersections are not safety
critical. In addition to this, the findings have implications for bicycle
intersection design. More specifically, it is recommended to leave bicycle
intersections unsignalised, as well as unequipped with traffic signs and
priority markings. As long as the traffic rules are clear with respect to
priority, cyclists adhere to them and additional markings or signs are
unnecessary.
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Regarding the design of the T-junction, the empirical findings sug-
gest that a turn with a radius of 2 m would accommodate all merging
cyclists. This is smaller than the minimum radius advised by CROW
(2016), which is 5 m so that there is no need for a speed reduction. How-
ever, the safe interactions that have been observed in the T-junction
are, at least partially, attributed to the speed reduction upstream of
the conflict area, which make the approach of cyclists more cautious.
Therefore, a radius that forces cyclists to decelerate without stopping
is preferred.

Last but not least, it has been found that cyclists achieve smoother
and more efficient interactions in a self-organised manner rather than
when guided to a certain behaviour by the infrastructure design. The
intervention that was specifically investigated was the use of lane mark-
ing upstream of the T-junction to guide minor stream cyclists to the
left lane and give sufficient space for merging cyclists to fit in the right
lane. This, however, limited the available lane width at all times, while
in the absence of the lane marking cyclists made dynamic use of the
width of the cycle path; cyclists used the full width when no encounter
was about to take place and switched to the left lane when a cyclist
with priority was approaching and both could continue uninterrupted.

6.2 Implications for practice
The research in this dissertation has been based on three pillars, namely
models, data and design recommendations. The contributions within
each of these have implications for practice.

In terms of data one contribution is the rich dataset of cyclist tra-
jectories that has been collected. The corresponding practical implica-
tion is the possibility to further exploit this dataset to understand and
model cycling behaviour in situations different from those elaborated
on in this dissertation, as well as macroscopic characteristics of bicy-
cle flows. Additionally, a guide has been provided on the process that
should be followed to set-up and perform a (large-scale) data collection
on operational behaviour. In this particular application the data collec-
tion was in the form of a controlled experiment, but the techniques and
principles are also suitable and applicable for real-world observations.
Moreover, they can be applied not only for bicycle traffic but for other
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transport modes as well. The most important lesson learnt is that a
detailed plan is required, along with flexibility in adjusting it during
the data collection, as unexpected events will occur regardless of the
thorough planning, and behavioural assumptions made while planning
will be found not to hold.

Next to the data, the developed operational cycling behavioural
models constitute an important milestone for practice. Based on these
mathematical models, it becomes possible to develop a complete bicycle
traffic microsimulation model, covering scenarios on straight stretches,
as well as at signalised and unsignalised intersections. Particularly at
intersections, the simulation model can assess different designs of the
cycle path both in terms of capacity and safety. The developed queuing
model sheds light into the bicycle queue formation process at signalised
intersections. Applications within the microsimulation entail the assess-
ment of the design of bicycle lanes upstream of traffic signals, as well
as of the stopping area. Depending on the cyclist demand, the shape
and size of the stopping area might need to be adjusted, such that the
spill-back of the bicycle queue does not cause further hindrance. Ele-
ments may also be added in the design to encourage denser queues and
shorter discharge times. Another measure that can be evaluated is the
duration of the green times for each stream, in relation to the expected
demand and the available space. The yielding model captures cyclist
interactions at unsignalised intersections with a focus on their yield-
ing behaviour. Using the simulation, the capacity of the intersection
can be checked in relation to the cycling demand, to know the point
at which the queue of cyclists who stop to yield becomes too long and
requires intervention. Moreover, different surrogate safety measures can
be calculated to assess the safety of the interactions when their number
increases. Another application of the microsimulation is the calculation
of the interaction duration between cyclists in close proximity. That
could be useful in epidemiological studies, assessing the spreading of a
virus, such as COVID-19, the adequacy of the infrastructure and the
need for additional measures.

Regarding the design recommendations for dedicated cycling infras-
tructure, several conclusions can be drawn from the aforementioned
microsimulations. The ones that stem directly from the research within
this dissertation have been listed in the answer to the last research ques-
tion provided in the previous section. The key points are that (i) no
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markings or signs are necessary to indicate priority or guide cyclists in
a specific position on cycle path, and (ii) elevated right angle curbs are
advised just upstream of signalised intersections to serve as a resting
spot while queuing and make the queues denser.

6.3 Directions for future research
Despite all its merits and contributions, the research performed within
this dissertation is simply a stepping stone towards developing an un-
derstanding of operational cycling behaviour and models that capture
and replicate this behaviour.

Further research is required to advance the models that have been
estimated. More specifically, advancements can be sought in the deci-
sion moments and exchange rate of information between the mental and
the physical layers. In the applications so far, a sequential feed-forward
approach was followed. This means that a single decision was made in
the mental layer and executed in the physical layer without reconsid-
erations. The moment when this first decision is made in the mental
layer should be further investigated. Moreover, as the traffic situation
changes and the anticipation skills of the cyclist at that single moment
are not perfect, it is reasonable to allow for feedback loops, either event
or frequency-based, which may lead to a revision of the decision made
in the mental layer.

The models should also be extended to take cyclist heterogeneity into
account, as it has been shown to affect the efficient use of the infrastruc-
ture. Heterogeneity could be included either in the form of additional
attributes or using more advanced logit models. Examples of additional
attributes are personal characteristics, such as cycling experience and
age, the bicycle type and the trip purpose, all of which are expected to
have a direct effect on the desired cycling speed. In the present research,
multinomial logit models were estimated, which assume the same degree
of influence of the different attributes among different persons and also
ignore any serial correlation potentially present in consecutive choices
of the same cyclist. They could be enhanced by allowing the coefficients
to follow a distribution rather than have a single value. Moreover, if the
decisions made by the same person can be identified and labelled in the
data, the models can be extended to account for the panel data.
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Another direction for future research is the development of the mod-
els currently defined in the two-layer framework. For example, the queu-
ing position choice upstream of a traffic light should be preceded by a
choice to stop, or not. The latter, also called red light running, is a
confirmed phenomenon and should, thus, not be considered negligible
and ignored by the models. The yielding model at a bicycle crossing has
been estimated in a situation where only two streams are present and
all cyclists continue their paths straight. It would be valuable to inves-
tigate whether the findings pertaining to safe interactions and respect
for priority rules hold in more complex situations, where more streams
are present, cyclists are turning and there is bi-directional traffic.

Apart from these extensions to existing models, and in order to
complete the modelling suite, models should be estimated to capture
overtaking manoeuvres and the path that cyclists follow when turning,
either in a curve or when merging with another bicycle stream.

Last but not least, the rich dataset that has been collected has its
limitations and future research could try to compensate for those. One
drawback is the artificial environment and controlled conditions, a rem-
edy for which would be to make observations in the real-world of similar
traffic situations. Another limitation is that all data has been collected
considering a 2 m wide cycle path, which is not always available. A
comparison considering the effect of the cycle path width but also of
its surface type, on cycling behaviour is therefore advised. Finally, it
would be interesting to compare the cycling behaviour observed in dif-
ferent countries, as the cycling culture and good infrastructure found
in the Netherlands might explain the findings of respectful and safe
behaviour better than the role of being a cyclist in traffic.





Appendix A

Data smoothing

In this appendix, the results of smoothing with different sliding window
lengths are presented, as well as of the homogenisation with different
time steps. The original, smoothed and final data points are displayed
in the plots of Figure A.1 for the cyclist trajectories, Figure A.2 for the
cycling speed and Figure A.3 for the steering angle.

Sliding window lengths, denoted by k, of 3 and 6 are compared,
which means that every data point is replaced by the mean value of
its 3 or 6 surrounding frames. The values are selected based on the
average frame rate of 6fps, which means that frames of 0.5 or 1 second
are used for the smoothing. The only difference that can be detected
in the plots is in the region of -9 m in the x direction where the two
cameras overlap. In the original dataset there seems to be a jump from
the back camera to the front, which is smoothed with this process. The
results with k = 6 convert this jump to an almost continuous trajectory
and are therefore favourable.

Regarding the time step, denoted by dt, values of 0.5 and 1 second
are compared, as they are considered to be reasonable time intervals
for a new decision to be made. Smaller values would coincide with the
frame rate, while larger ones would lead to very few points per trajectory
as the average trajectory duration is 7 seconds. The difference in this
comparison can be observed in the plots for the speed and the angle
where the larger dt is shown to be better at muting the noise in the
dataset which is introduced due to the manual tracking. For this reason,
the time step is chosen at 1 second.
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Figure A.1: Cyclist trajectories during a red light phase in the origi-
nal dataset, when smoothed with different sliding window
lengths (top: k = 3 and bottom: k = 6) and finally when
homogenised with different time steps (left: dt = 0.5s and
right: dt = 1s). The point (0,0) is the location where the
stop line meets the curb of the sidewalk.
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Figure A.2: Cyclist speed when approaching a red traffic light in the orig-
inal dataset, when smoothed with different sliding window
lengths (top: k = 3 and bottom: k = 6) and finally when
homogenised with different time steps (left: dt = 0.5s and
right: dt = 1s). The positions in x have been offset such
that they end at the same point for all cyclists.



Appendix A Data smoothing 143

80 85 90 95 100

Offset x [m]

-40

-20

0

20

40

A
n
g
le

 [
d
e
g
re

e
s
]

dt = 0.5s and k = 3

Original

Smoothed

Final

80 85 90 95 100

Offset x [m]

-40

-20

0

20

40

A
n
g
le

 [
d
e
g
re

e
s
]

dt = 1s and k = 3

80 85 90 95 100

Offset x [m]

-40

-20

0

20

40

A
n
g
le

 [
d
e
g
re

e
s
]

dt = 0.5s and k = 6

80 85 90 95 100

Offset x [m]

-40

-20

0

20

40

A
n
g
le

 [
d
e
g
re

e
s
]

dt = 1s and k = 6

Figure A.3: Cyclist steering angle when approaching a red traffic light
in the original dataset, when smoothed with different sliding
window lengths (top: k = 3 and bottom: k = 6) and finally
when homogenised with different time steps (left: dt= 0.5s
and right: dt = 1s). The positions in x have been offset
such that they end at the same point for all cyclists.
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Summary

As the title suggests, cyclists are the main topic of this dissertation
and more specifically, their behaviour while they are ‘in motion’. The
term ‘in motion’ is used in the title to represent microscopic operational
cycling behaviour, which is the behaviour of cyclists, treated as individ-
uals (microscopic level), while they are riding their bicycle and making
decisions on how to interact with other traffic participants and with the
infrastructure (operational level). Within this dissertation, models are
developed to capture this behaviour using data collected for this pur-
pose. Further empirical data analyses led to more behavioural insights
and design recommendations were provided based on the findings. In
this summary, each of these elements is shortly discussed, along with
the need for this research.

To begin with, the motivation behind this topic is the growing inter-
est in cycling in urban environments worldwide, and the accompanying
need to provide appropriate infrastructure for cyclists. In order to de-
termine which infrastructure is appropriate, such that it meets safety
and comfort requirements, it is necessary to understand the behaviour
and preferences of cyclists.

In general, the building blocks towards this understanding are data
and models. Data in the form of empirical observations reveal prefer-
ences and typical characteristics of cycling behaviour, while mathemat-
ical models aim to capture and predict these. Then, with the develop-
ment of simulation models on the basis of the mathematical ones, the
performance of different infrastructure designs is assessed under vary-
ing traffic conditions, leading to recommendations regarding the most
appropriate design.

Most research efforts so far have focused on mixed traffic situations,
which means that cyclists are interacting with motorised vehicles, scoot-
ers or pedestrians. At the same time, it is found in literature, that in
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an urban environment that envisages to promote bicycle use and safety,
the provided infrastructure should be dedicated to cyclists. To this end,
data and models are needed that capture bicycle-to-bicycle interactions
on dedicated cycling infrastructure. Such data and models are the main
contributions of this dissertation.

Within this dissertation, the first step towards acquiring data and
models is the definition of the operational level and the behaviours that
fall within. As the decisions and movements of cyclists while cycling and
interacting with other cyclists and with the infrastructure are viewed as
two intertwined processes, a mental (decisions) and a physical (move-
ments), two layers are distinguished within the operational cycling be-
havioural level. In the operational mental layer, cyclists build up their
paths within the route. Path choices refer, among other things, to yield-
ing, accepting a gap to merge or cross, stopping for a red traffic signal,
turning, and overtaking. The execution of each of these path choices is
done in the operational physical layer, where bicycle control dynamics
are applied by the cyclist in the form of changes in pedalling force and
steering angle.

Having developed this two-layer modelling framework, the next step
is the acquisition of cyclist movement data, namely trajectories. A
trajectory is a sequence in time of an individual’s positions in space.
More specifically, in order to observe how cyclists interact and how
they use infrastructure, trajectory data are needed with high temporal
resolution (less than a second) and spatial accuracy (a few centimetres).
In this dissertation, two trajectory datasets have been used: one from
real-world observations previously collected from a high vantage point
on a cycle path upstream of a signalised intersection in Amsterdam, and
one from a controlled experiment collected within this research where
several types of traffic situations were observed.

The controlled experiment has been set up to enable different types
of interactions among the cyclists and ensure a sufficient amount of
observations. The track was designed with long straight stretches to
allow overtaking manoeuvres, but also with intersecting cycle paths to
observe merging, crossing, stopping and queuing decisions. Overhead
cameras were placed above the track to follow the positions of all cyclists
on the track at any moment. Scenarios were then designed to capture
different types of interactions and the influence of bicycle types. The
schedule was constructed in such a way the variability in the type of
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interactions, the duration of the different runs and breaks in between
runs kept the interest and stamina of the participants.

Following the data collection, analyses on the extracted trajectories
are performed to obtain behavioural insights. In this dissertation, three
situations at intersections are studied, namely the traffic efficiency at a
bicycle T-junction, the yielding behaviour at a bicycle crossing and the
queue formation process upstream of a red traffic light.

The traffic efficiency is evaluated using a framework that assesses
the performance of individual cyclists, of the infrastructure use and
of occurring interactions. The factors whose effect on the efficiency is
investigated pertain to characteristics of the cyclists and their bicycles,
but also to the addition of lane marking at the T-junction to guide the
position of the cyclists and facilitate merging manoeuvres. The findings
suggest that there is little to no effect on the efficiency following the
introduction of the lane marking, while great effect results from the
heterogeneity of the cycling population. It was observed that cyclists
self-organise and make space for other cyclists to merge, also in the
absence of guidance. The separation of the flow by lane markings, on
the other hand, forced lane changes and resulted in longer queues and
delays.

Regarding the yielding behaviour, an operational cycling model was
estimated based on the data collected from the controlled experiment,
following the developed two-layer framework. Cyclists who are arriving
upstream of a crossing select their desired arrival time and lateral posi-
tion at the crossing based on their anticipation of the cyclist movements
in the conflicting direction. This takes place within the operational men-
tal layer and is captured by a discrete choice model. The latter reveals
that cyclists in the ‘major’ stream (i.e. with priority) follow a least
effort strategy: they are not willing to accommodate the crossing of mi-
nor stream cyclists and they continue without changing lane or speed.
Minor stream cyclists, on the other hand, adjust their behaviour: they
accelerate when they have no conflict at the crossing, and they decel-
erate at the presence of a conflict, even coming to a complete stop if
necessary.

For those cyclists that do not stop, a discrete choice model is es-
timated to capture their decisions in the physical layer. In this layer,
several decisions are made in consecutive time steps that determine the
trajectory of the cyclist towards the intended arrival time and position
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at the crossing. Interactions with cyclists who are also upstream of the
crossing and in front of the decision maker are in this case important.
The results show that cyclists maintain a close distance to their prede-
cessor and are careful not to increase the speed difference as that could
lead to rear collisions. This is evidence of a follow-the-leader behaviour.

For cyclists that come to a stop, discrete choice models are estimated
to represent the queue formation process using the real-world observa-
tions upstream of a signalised intersection. In the mental layer, cyclists
select their intended stopping position, and in the physical layer they
determine their trajectory towards it in consecutive time steps. When
the traffic light is red, the first arriving cyclist chooses to stop next to
the ‘request-green’ button to be able to press it. In general, cyclists
prefer to stop close to each other, but once the front stopping positions
are occupied, there is a trend to stop closer to the curb of the sidewalk
rather than build up all sublanes equally. This is intuitive because cy-
clists want to use the curb as a resting position when stopped and as an
assist when starting to move again. At the same time, it shows that cy-
clists value their comfort (resting position) more than their travel time,
and their travel time more than their personal space.

While cycling, the model results show that cyclists behave differently
towards stopped and moving cyclists, which is reasonable since stopped
cyclists form an obstacle on the way and an increase of the speed dif-
ference might lead to unsafe situations. Moreover, cyclists deter from
changing surface type and, even more strongly, from cycling over and
off curbs.

Based on the empirical findings from the data analyses and the
behavioural insights from the estimated models, recommendations are
made for the design of dedicated cycling infrastructure. The most im-
portant one is to leave bicycle intersections unsignalised, as well as un-
equipped with traffic signs and priority markings. As long as the traffic
rules are clear with respect to priority, cyclists adhere to them and
additional markings or signs are unnecessary. This is due to the self-
organisation that has been observed, which leads to an efficient and
flexible use of the infrastructure.

Despite all its merits and contributions, the research performed
within this dissertation is a stepping stone towards developing an un-
derstanding of operational cycling behaviour and models that capture
and replicate this behaviour. Further research is required to validate
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and extend the estimated models and to develop new ones for different
types of interactions. Additionally, simulation models should be devel-
oped on the basis of these models to assess the performance of different
infrastructure designs and ensure the provision of safe and comfort-
able cycling infrastructure. Last but not least, the representativeness of
these findings in cyclist populations outside of the Netherlands should
be tested, as the cycling culture and good infrastructure found in the
Netherlands might explain the observed behaviour better than the role
of being a cyclist in traffic.





Samenvatting

Dit proefschrift gaat over personen die deelnemen aan het verkeer als
fietser. We onderzoeken hoe hun zogenoemde microscopische operatio-
nele fietsgedrag kan worden beschreven. Dit is het gedrag van fietsers,
als individuen (microscopisch niveau), terwijl ze fietsen en beslissingen
nemen hoe ze om moeten gaan met andere verkeersdeelnemers en met
de infrastructuur (operationeel niveau). In dit proefschrift worden mo-
dellen ontwikkeld om dit gedrag te formaliseren met behulp van data
die speciaal hiervoor zijn verzameld. Verdere empirische data analyses
hebben geleid tot meer gedragsinzichten en op basis van de bevindingen
zijn aanbevelingen voor het ontwerp van fietsinfrastructuur gedaan. In
deze samenvatting wordt elk van deze elementen kort besproken, evenals
de noodzaak van dit onderzoek.

De motivatie achter dit onderwerp is de groeiende belangstelling voor
het fietsen in stedelijke omgevingen wereldwijd, en de daarmee gepaard
gaande noodzaak om een passende infrastructuur voor fietsers aan te
bieden. Om te bepalen welke infrastructuur voldoet aan de eisen van
veiligheid en comfort van de fietser is het noodzakelijk om het gedrag
en de voorkeuren van fietsers te begrijpen.

In het algemeen bestaan de bouwstenen voor dit inzicht uit data
en modellen. Data in de vorm van empirische waarnemingen onthullen
voorkeuren van fietsers en typische kenmerken van fietsgedrag, terwijl
wiskundige modellen erop gericht zijn deze te formaliseren en te voor-
spellen. Op basis van de wiskundige modellen worden simulatiemodellen
ontwikkeld, waarmee de prestaties van verschillende infrastructuuront-
werpen worden beoordeeld onder verschillende verkeersomstandigheden.
Dit leidt tot aanbevelingen voor het meest geschikte ontwerp.

De meeste onderzoeken hebben zich tot nu toe gericht op situaties
met gemengd verkeer, hetgeen betekent dat fietsers interacteren met
al dan niet gemotoriseerde voertuigen en/of voetgangers. Tegelijkertijd
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blijkt uit de literatuur dat in een stedelijke omgeving die het fietsge-
bruik en de veiligheid wil bevorderen, er een aparte infrastructuur moet
worden gecreëerd voor fietsers. Hiervoor zijn data en modellen nodig
die de interactie formaliseren tussen individuele fietsers op fietsinfra-
structuur. Dergelijke data en modellen zijn de belangrijkste bijdragen
van dit proefschrift.

De eerste stap richting het verzamelen van data en het ontwikkelen
van modellen is het definiëren van het operationele niveau en het gedrag
dat daarbinnen valt. De beslissingen en bewegingen van fietsers tijdens
het fietsen en de interactie met andere fietsers en met de infrastructuur
worden gezien als twee met elkaar verweven processen. In het operatio-
nele fietsgedrag worden dan ook twee lagen onderscheiden, namelijk een
mentale laag waarbinnen de beslissingen vallen en een fysieke laag die
de fietsbewegingen representeert. In de operationele mentale laag bepa-
len fietsers hun paden binnen de route. Beslissingen met betrekking tot
dit pad hebben onder meer betrekking op het geven van voorrang, het
accepteren van een hiaat om in te voegen of over te steken, het stoppen
voor een rood verkeerslicht, het afslaan en het inhalen van een andere
fietser. De uitvoering van elk van deze beslissingen vindt plaats in de
operationele fysieke laag, waarbij de besturing van de fiets door de fiet-
ser wordt gerealiseerd in de vorm van veranderingen in de trapkracht
en stuurhoek.

Na de ontwikkeling van dit tweelaagse modelkader is de volgende
stap het verzamelen van data over fietsbewegingen, de zogenaamde tra-
jectoriën. Een trajectorie is een sequentie in de tijd van de posities
van een individu in de ruimte. Om de interactie tussen fietsers en hun
gebruik van de infrastructuur te kunnen observeren, zijn trajectorie-
data nodig met een hoge temporele resolutie (minder dan een seconde)
en grote ruimtelijke nauwkeurigheid (enkele centimeters). In dit proef-
schrift zijn twee data sets met trajectoriën gebruikt: één data set met
observaties die vanaf een hoog standpunt zijn verzameld op een fietspad
stroomopwaarts van een kruispunt met verkeerslichten in Amsterdam,
en één data set afkomstig uit een gecontroleerd experiment dat in het
kader van dit onderzoek is uitgevoerd en waarbij verschillende verkeers-
situaties zijn geobserveerd.

Het gecontroleerde experiment is opgezet om verschillende typen in-
teracties tussen fietsers te kunnen observeren en te zorgen voor vol-
doende waarnemingen. Het parcours is ontworpen zowel met lange
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rechte stukken om inhaalmanoeuvres mogelijk te maken, als met krui-
sende fietspaden om beslissingen over invoegen, oversteken, stoppen en
wachten te observeren. Boven het parcours zijn camera’s opgehangen
om de posities van alle fietsers op het parcours te kunnen volgen. Ver-
volgens zijn er scenario’s ontworpen om verschillende typen interacties
en de invloed van het type fiets vast te leggen. Het schema, met daarin
de variabiliteit in het type interacties, de duur van de verschillende runs
en de pauzes tussen de runs, is zo opgebouwd dat de interesse en het
uithoudingsvermogen van de deelnemers behouden blijven.

Na het verzamelen van de data worden analyses op de trajectoriën
van het gecontroleerde experiment uitgevoerd om inzichten in het fiets-
gedrag te verkrijgen. In dit proefschrift worden drie situaties op kruis-
punten bestudeerd, namelijk de efficiëntie van de verkeersstromen op
een fiets-T-kruispunt, het gedrag om voorrang te geven op een fiets-
kruispunt en het gedrag bij het vormen van een rij stroomopwaarts van
een rood verkeerslicht.

De efficiëntie van de verkeersstromen op de fiets-T-kruispunt wordt
geëvalueerd aan de hand van een raamwerk waarmee de prestaties van
individuele fietsers, het gebruik van de infrastructuur en de optredende
interacties worden beoordeeld. Voor verschillende factoren wordt het
effect op de efficiëntie wordt onderzocht. Het gaat daarbij om factoren
met betrekking op kenmerken van de fietsers en hun fiets, maar ook op
de aanwezigheid van rijstrookmarkering op de T-splitsing om de fietsers
te sturen en manoeuvres om in te voegen te vergemakkelijken. De be-
vindingen suggereren dat er weinig tot geen effect is op de efficiëntie na
de invoering van de rijstrookmarkering, terwijl de heterogeniteit van de
fietspopulatie een groot effect heeft. Geconstateerd is dat in fietsstro-
men, net als in voetgangersstromen, zelforganisatie optreedt, waarbij
fietsers ruimte maken voor andere fietsers om in te voegen, ook zonder
geleiding of markering. De scheiding van de stroom fietsers door middel
van rijstrookmarkeringen dwong fietsers daarentegen tot het veranderen
van rijstrook, hetgeen resulteerde in langere wachtrijen en vertragingen.

Aan de hand van het ontwikkelde raamwerk wordt een operationeel
fietsmodel geschat voor het geven van voorrang op basis van de data
die werden verzameld met het gecontroleerde experiment. Fietsers die
stroomopwaarts van het kruispunt aankomen selecteren hun gewenste
aankomsttijd en laterale positie op het kruisingsvlak op basis van hun
anticipatie op de fietsbewegingen in de conflicterende richting. Dit ge-
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beurt binnen de operationele mentale laag en wordt geformaliseerd in
een discreet keuzemodel. De resultaten van het keuzemodel laten zien
dat fietsers met voorrang een strategie van de ‘minste effort’ volgen:
ze zijn niet bereid om het kruisen van fietsers zonder voorrang te ac-
commoderen en ze fietsen door zonder van rijstrook te wisselen of hun
snelheid te veranderen. De fietsers zonder voorrang daarentegen pas-
sen hun gedrag aan: ze versnellen als ze geen conflict hebben op het
kruispunt, en ze vertragen als er een conflict is, en komen zo nodig zelfs
helemaal tot stilstand.

Voor de fietsers die niet stoppen wordt een discreet keuzemodel ge-
schat om hun beslissingen in de operationele fysieke laag vast te leg-
gen. In deze laag worden in opeenvolgende tijdstappen verschillende
beslissingen genomen die het pad van de fietser naar de beoogde aan-
komsttijd en positie op de kruising bepalen. Interacties met fietsers
die ook stroomopwaarts van het kruispunt en vóór de fietser staan zijn
in dit geval belangrijk. De resultaten laten zien dat fietsers dicht bij
hun voorganger blijven en voorzichtig zijn met het vergroten van het
snelheidsverschil, want dat kan leiden tot kop-staartbotsingen. Dit sug-
gereert een ‘follow-the-leader’ gedrag.

Voor fietsers die tot stilstand komen worden discrete keuzemodellen
geschat om de wachtrijvorming te formaliseren aan de hand van waar-
nemingen stroomopwaarts van een kruispunt met verkeerslichten. In de
mentale laag selecteren fietsers hun beoogde stoppositie en in de fysieke
laag bepalen ze in opeenvolgende tijdstappen hun pad daarheen. Als
het verkeerslicht rood is, kiest de eerst aankomende fietser ervoor om
naast de drukknop te stoppen, om deze in te kunnen drukken om groen
licht aan te vragen. In het algemeen stoppen fietsers het liefst dicht
bij elkaar, maar als de voorste stopplaatsen eenmaal bezet zijn, is er
een trend om dichter bij de stoep te stoppen in plaats van de rijen in
alle stroken gelijk op te bouwen. Hierdoor kunnen fietsers de stoep ge-
bruiken als rustpositie bij het stoppen en als hulpmiddel bij het weer in
beweging komen. Tegelijkertijd laat het zien dat fietsers meer waarde
hechten aan hun comfort (rustpositie) dan aan hun reistijd, en meer aan
hun reistijd dan aan hun persoonlijke ruimte.

Voor het fietsen zelf laten de modelresultaten zien dat fietsers zich
verschillend gedragen ten opzichte van stilstaande en bewegende fietsers,
wat redelijk is omdat stilstaande fietsers een obstakel vormen op de
weg en een toename van het snelheidsverschil kan leiden tot onveilige
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situaties. Bovendien zijn fietsers niet geneigd om van type ondergrond
te veranderen en, sterker nog, om over stoepranden te fietsen.

Op basis van de empirische bevindingen uit de data-analyses en de
gedragsinzichten uit de geschatte modellen worden aanbevelingen ge-
daan voor het ontwerp van fietsinfrastructuur. Het belangrijkste is om
fietskruispunten niet te voorzien van verkeerslichten, verkeersborden en
voorrangsmarkeringen. Zolang de verkeersregels duidelijk zijn met be-
trekking tot de voorrang, houden de fietsers zich eraan en zijn extra
markeringen of verkeersborden overbodig. Dit heeft te maken met de
waargenomen zelforganisatie, die leidt tot een efficiënt en flexibel ge-
bruik van de infrastructuur.

Het onderzoek in dit proefschrift is een opstap naar het ontwikke-
len van inzicht in operationeel fietsgedrag en modellen die dit gedrag
formaliseren en repliceren. Verder onderzoek is nodig om de geschatte
modellen te valideren en uit te breiden en om nieuwe modellen te ontwik-
kelen voor verschillende typen interacties. Daarnaast moeten op basis
van deze wiskundige modellen simulatiemodellen worden ontwikkeld om
de prestaties van verschillende infrastructuurontwerpen te beoordelen
en te zorgen voor een veilige en comfortabele fietsinfrastructuur. Ten
slotte moet de representativiteit van deze bevindingen bij fietserspopu-
laties buiten Nederland worden getest, omdat de fietscultuur en goede
infrastructuur die in Nederland worden aangetroffen het waargenomen
gedrag beter zouden kunnen verklaren dan alleen het gebruik maken
van de fiets in het verkeer.
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