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Executive summary

At the end of 2019, a new SARS virus was discovered in Wuhan (China) -
SARS-CoV-2. When infected with this virus, a person is said to have the associated
disease - COVID-19. One and a half year later, the global number of new COVID-19
cases continues to be extremely high, putting a high strain on health-care facilities
with continuous reports of hospitals at full capacity. Protective measures commonly
implemented to reduce COVID-19 infection risk are often related to social distancing
and avoiding crowded spaces. However, often living in overcrowded settlements with
shared facilities, refugees and other persons of concern cannot easily follow these
guidelines and often have to queue up to do tasks as simple as using latrines or
getting food.

To reduce the infection risks in refugee settlements, it is important to identify
the risk of these tasks and of the uncertain behavior of people when waiting in a
queue. Therefore, this study focuses on the dynamics of queues and the potential
of food distribution policies to control COVID-19 outbreaks. The main research
question this study aims to answer can be formulated as follows:

What food distribution policies show robust performance under queuing behavior
uncertainty while minimizing COVID-19 infections in the context of an outbreak in

a refugee settlement?

To answer this question, an agent-based modeling (ABM) approach is chosen.
By focusing on individuals, their behavior and their interactions with each other
and evaluating their impact on the system state, ABM is a powerful tool to observe
the spread of a virus that is transmitted by direct contact with infected people.

Combining concepts of queuing behavior theories and queue psychology, an ABM
queuing model was developed. This model is highly based on a theory that divides
queuing attitudes between cooperative and competitive. To integrate social ob-
servations in their decision on how to queue, individuals can also switch between
attitudes if they are influenced to do so. Then, this queuing model was coupled
with an existing agent-based model of a refugee settlement integrating a COVID-19
epidemiological component. By coupling the two models, refugees follow the more
complex behavior dictated by the queuing model developed when queuing for food.

By analyzing results in the baseline and understanding the system dynamics, it
was possible to conclude that the status quo of the system leads to an unwanted
situation with both high waiting times at the food distribution and a general trend
of convergence to a near-total infection by day 60. It was also observed that, the
higher the competitiveness of a population, the higher the role the food distribution
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plays in the overall infection dynamics. By evaluating results per attitude people
have when queuing, this study also discusses the role of personal decisions in the
overall queuing and infection dynamics.

Acknowledging the need to change the current dynamics in a settlement, two
types of policies were tested: representative and timeslot-based policies. From the
experimentation with these policies, it is possible to conclude that, although both
have the potential to reduce waiting times in a queue and slow down the spread
of the virus, only representative-based policies seem to have a relevant impact in
reducing the number of total cases by day 60 and avoid the near-total infection
outcome. However, as none of the policies tested has the potential to fully control
the outbreak, it is recommended that these policies are only resorted to as a way
to slow the spread down, giving camp managers more time to react and put other
measures in place.

This study also highlighted the role of shelters as the main hotspot of infections
across all replications and the source of most of the secondary infections. For this
reason, it is highly recommended that policy-making focuses on finding solutions to
make isolation within households a possibility.

The model showed considerable sensitivity to parameters that were not included
in the experimental design but were sometimes determining factors of the outbreak
development. This explains the wide range of outcomes observed in some of the
runs. Moreover, by affecting the dynamics of the model, these factors can potentially
undermine the effect of policy implementations. They should consequently be the
focus of further research and should be taken into account when testing policies, as
ignoring these can lead to unsuccessful policy implementation and waste of resources.

To complement the policy analysis, the study discusses downsides of using
representative-based policies and potential emerging dynamics (such as the lack
of involvement of the population, abuse of their position and corruption, among
others).

This study contributes to the scientific fields by developing an ABM model that
shows the impact of competitive behavior in a queue and the consequent higher
waiting times. Moreover, by combining queues and infection dynamics, the model
shows that competitive people are more likely to get infected and infect others and
how this behavior increases the role of the food distribution in the infection chain.
By focusing on refugees and developing work in the humanitarian field, this study
also represents a contribution to societal field.

Finally, it is important to note that the success of policies is highly dependent
on the values assumed throughout the study and the assumptions made along the
process. Similarly, the spread of COVID-19 is highly dependent on the epidemio-
logical parameters used, which are based on values from June 2020. Further work
in determining accurate values for these is recommended in order to provide more
realistic outcomes. Several other suggestions for further research are provided in the
study.
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Disclaimer

Before diving into my research, I would like to write a small disclaimer.
Along this work, I made two linguistic simplifications and these should
be noted.

I. Currently, there are around 79.5 million people who were forcibly dis-
placed from home (UNHCR, 2020). This number includes refugees, in-
ternally displaced people and asylum-seekers. In an overarching term,
these people are often referred to as “persons of concern”. Due to their
life circumstances, these people often find themselves in refugee camps.
This thesis has as goal to study the spread of COVID-19 in these camps
in order to support decision-making to improve standards of living of
these “persons of concern”. When referring to “refugee settlements” or
“refugees”, the whole range of “persons of concern” is meant. However,
for simplification purposes, the former concept is used.

II. COVID-19 is the acute respiratory disease caused by the SARS-CoV-
2 virus. Technically speaking, during an infection, what is spread is the
SARS-CoV-2 virus and not COVID-19. The latter is a result of the
infection by the virus. However, for simplification purposes and due to
the way this is phrased in grey literature and informal language, this
thesis will often mention the “spread of COVID-19”. Note that this
means the spread of the virus causing COVID-19, SARS-CoV-2.
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Chapter 1

Introduction

Chapter 1 introduces the topic of this research. First, in Section 1.1, the context
of the problem is explained, together with the academic and societal relevance of
the topic. Then, in Section 1.2, the objective of this study is defined. Section 1.3
delineates the scope of this structure and, finally, Section 1.4 outlines the structure
of this thesis.

1.1 COVID-19 in refugee settlements

At the end of 2019, a new strain of a coronavirus was discovered in Wuhan,
China. Due to its nature and origin, the disease caused by the virus was named
COVID-19 – where “CO” stands for corona, “VI” for virus, “D” for disease and
“19” for the year in which it was discovered, 2019. When infected with the COVID-
19 virus, patients showing mild flu-like symptoms were quickly evolving to a state in
which rapid hospitalization was necessary (Li et al., 2020). As the number of positive
COVID-19 cases was increasing fast, so was the number of emergency hospitaliza-
tions in the country. Making use of the countries’ famous management capacities
and resources to cope with the new situation, China quickly built new hospitals
to specifically accommodate this new wave of healthcare demand, increased testing
capacity and isolated infected population. Around March 2020, China had success-
fully controlled local transmissions of COVID-19. However, around the same time,
the virus had started gaining momentum in the rest of the world and, on March
11th 2020, the World Health Organization (WHO) announced the COVID-19 out-
break as a pandemic (World Health Organization, 2020). Ever since, governments
everywhere have been trying to contain the spread of COVID-19 by implementing
all sorts of measures: closure of shops, transition to online education, curfews or
even mandatory lockdowns.

However, there is still much uncertainty on how the virus spreads, what is the
profile of the people who will require healthcare when infected, the reaction of the
population to the circumstances and its impact on their behavior and, consequently,
the effectiveness of the measures put in place.

When confronted with these developments and expecting the worst of the im-
pact of COVID-19 in such a volatile environment, several refugee settlements imple-
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mented strict lockdowns even before having a confirmed case. While such lockdowns
can be quite successful at guaranteeing that there is no movement in and out of a
camp by inhabitants, some activity in these settlements cannot be put on hold.
Taking into account that several of their basic needs are provided by shared infras-
tructures (such as latrines, water points and food), refugees and other dislocated
people still have to get out of their shelters to perform fundamental activities on
a daily basis. As these camps are often overcrowded and underfunded, it is also
quite usual that these resources are shared by too many people, leading to hour
long queues when trying to use them (Norwegian Refugee Council, 2008; Nutting,
2019; International Rescue Committee, 2020). In a camp with COVID-19 cases,
this means that any time spent in those queues can lead to potential new infections
(Barr, 2020). Moreover, this risk can be increased if people do not follow queuing
rules and try to cut the line instead of waiting for their turn to be served. Simi-
larly, the violence and chaos that often emerges in these queues can be the cause of
an increase in infections and represent a risk for the people queuing (International
Rescue Committee, 2020) - if someone in the queue is carrying the virus and direct
contact between refugees is established, there is a potential infection associated with
this interaction. As food distribution events are often attended by a big part of the
population of these camps, this means that they can be the source of a significant
number of COVID-19 infections in such a setting if not well managed.

The study of COVID-19 spreading is, by nature, a recent topic in the academic
world. However, due to the social isolation that came as a result of the preventive
measures to control the spread of the virus, the extra time in everyone’s life and, of
course, the relevance of the matter, a considerable amount of research has already
been done on the spread of COVID-19 in urban settings. Resorting to modeling
techniques, some of these studies focused on testing different policies and evaluating
their impact in the system by running simulations. Results from these studies are
then often used to support decision-making in these settings. However, in the hu-
manitarian world, available research is limited and none of it focuses on the specific
risk of the food distribution process.

1.2 Research objective

This study has the objective of evaluating the potential impact of different poli-
cies applied at a food distribution in order to minimize COVID-19 spreading while
taking into account uncertain queuing behavior. This will be done by picking up on
an existing Agent-Based Model (ABM) of a refugee settlement with a COVID-19
epidemiological component (Bögel et al., 2020) and developing the queuing behavior
individuals can have when waiting. This will be complemented with an extensive
literature review and informal interviews with food actors from refugee settlements
to validate some assumptions and getting more insights on the real system. Finally,
two types of non-pharmaceutical interventions will be tested in the model and their
impacts will be discussed.

When looking into the spread of the COVID-19 virus in a refugee settlement,
three characteristics stand out: the complexity of decision-making in such a setting,
the complexity of human behavior and the uncertainty involved in the situation
(originating both from the uncertain features of the virus and the uncertainty of
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how people react to this new reality and to the implemented policies). Resorting
to modeling techniques to simulate the behavior refugees in a settlement can have
while performing daily activities, this research has the goal to provide insights and
support decision-making regarding food distribution in refugee settlements during a
COVID-19 outbreak.

Moreover, with the second (SDG2) and third Sustainable Development Goal
(SDG3) in mind – Zero hunger and Good health and well-being – this thesis aims to
contribute to the improvement of lives of those who life has not treated well and find
themselves facing difficult circumstances at camps far from home with the added
challenge of doing so during a pandemic.

1.3 Research scope

The focus of this study is the risk of COVID-19 infections resulting from getting
food in a refugee settlement. To study this, this research is divided into two main
points: the development of a model to simulate queuing behavior and the integration
of this model into a COVID-19 spread model to test different food distribution
solutions in refugee settlements while evaluating their infection risk. For this reason,
the queuing behavior will be addressed as both dependent on the nature of the
individuals queuing and on the setting of the food distribution (time needed to get
serviced, length of line, etc). Other factors that can influence queuing behavior
(such as fear of scarcity, fear of contagion, memory and social networks) will not
be investigated. Moreover, it is not within this study’s scope to answer questions
associated with logistics or costs of food distributions.

1.4 Structure of this study

This study is divided into ten chapters. The first chapter of the thesis, Chapter
1, sets up the societal relevance of the problem of the spread of COVID-19 in refugee
settlements and outlines the scope and structure of this study. In Chapter 2 the
core concepts of this thesis are defined, together with a review of previous work
done on the topic and the identification of research gaps. Aiming to tackle these,
the main research question is formulated and the approach of the study is specified in
Chapter 3. Chapter 4 and Chapter 5 report on the model building process, following
the steps suggested in the modeling cycle and focusing on the conceptualization and
implementation, respectively. In Chapter 6 the experimental design is formalized,
together with the policies to be implemented. Chapter 7 focuses on the sensitivity
analysis conducted on some of the model variables. Then, Chapter 8 reports on the
results obtained both in the baseline and by implementing policies. Starting Chapter
9, the validity of the model is discussed. Then the results obtained are further
discussed and so are the impacts of these findings. Finally, Chapter 10 answers each
sub-question initially proposed, reports on the limitations of the study and highlights
the contribution of this study to both the academic and the humanitarian world. To
conclude, this chapter formulates suggestions for further research and further use of
the study.

Attached to this thesis, a list of appendices can be found. These appendices
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include everything that supported the study but was not essential to be shown in
the main text.
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Chapter 2

Literature Review

This chapter sets up the knowledge grounds for this thesis, together with the
research gaps that this study aims to address. In Section 2.1 the methods used
to search for literature are outlined. The main body of this chapter is divided
into three sections - infectious diseases, queuing and food distribution in refugee
settlements (from Section 2.2 to Section 2.4) - that cover the subtopics of the thesis.
By both explaining the core theoretical concepts of these topics and by reviewing
existing literature on these, the foundation for this study is laid. Along this process,
the research gaps are identified. Finally, a small summary of this chapter is provided
in Section 2.5.

2.1 Method

To find relevant literature, the topic was divided into three main ones: infectious
diseases, queuing and food distribution in the humanitarian context. Because these
three topics do not often co-appear in the same papers, the search on each one of
these topics was independent from the other two.

2.1.1 Literature used

While literature reviews often focus on peer-reviewed scientific articles, this was
not the only source of information for this thesis. Due to the humanitarian nature
of the problem (and often consequent lack of scientific coverage) and the recent na-
ture of the virus in study, grey literature was included as well. Consisting of studies
with limited distribution, unpublished reports, online journals, policy documents
and technical reports, grey literature is argued by some to be an essential source of
information to broaden the perspectives taken into account in a study (Conn, Valen-
tine, Cooper, & Rantz, 2003). It is, however, necessary to be critical of the work
that is selected. In this study, most of the grey literature consists of reports written
by Non-Governmental Organizations (NGOs) like the United Nations High Com-
missioner for Refugees (UNHCR) and the NRC or modeling projects on COVID-19
that have not been published yet.
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2.1.2 Search strategy

Infectious diseases

The search started by reading about infectious diseases and studies that inte-
grated modeling techniques to evaluate the spread of diseases in different settings
and the effect of policies to contain this. As the focus of this thesis is in the spread
of an infectious disease in refugee settlements, a specific search for previous work
done on this topic was carried out as well. In order to find relevant papers in this
topic, citation databases such as Scopus and Google Scholar were used with the
key terms “infectious diseases”, “epidemiological modeling” and “SIR model” first.
Then, to find papers that look into these matters in the setting of focus of this
thesis, the following key words were added “refugee settlements”, “refugee camps”
or “humanitarian context”. From the papers gathered in this process, a snowball
method was also used - further papers were found by looking into the bibliography
of read papers.

To get COVID-19 specific research, the extra key terms “SARS-COV-2” and
“COVID-19” were added to the previous ones. As mentioned before, due to the
recent nature of this topic, grey literature was widely used for this. Another impor-
tant source of papers was the Elsevier Public Health Emergency Collection that was
formed as a reaction to the COVID-19 crisis. Finally, a particular source of informa-
tion of studies covering COVID-19 in refugee settlements was a meeting organized
by the UN Global Pulse. This meeting allowed to have an overview of some of the
(sometimes unpublished) work being currently conducted in the topic.

Queuing

To find literature covering queuing behavior, a two step approach was followed.
To understand the basics of queuing, key concepts of queuing theory were gathered.
Then, to understand the behavior people have when queuing, what influences these
and theories behind these behaviors a search with the key terms “queuing behavior”
and “queuing psychology” was conducted. Then, to find literature about modeling
approaches to this problem, the following terms were added to the previous ones,
alternately: “modeling” and “agent-based modeling”. Similarly to the infectious
disease search, a snowball approach was also used for this topic.

Food distribution in refugee settlements

Finally, to set the foundation for the thesis and understand how food distribu-
tion in refugee settlements is conducted, technical reports by NGOs were the main
source of information. These were obtained through web searches and by looking
up guidelines of different organizations.

2.2 Infectious Diseases

Infectious diseases are illnesses that result from pathogenic microorganisms,
such as bacteria, viruses, parasites or fungi. These diseases can be spread, directly
or indirectly, from one person to another, resulting in an exponential growth overtime
(Hethcote, 2000; Oli, Venkataraman, Klein, Wendland, & Brown, 2006). Infectious
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diseases are not a recent problem - history has been marked by them and by the way
society reacts to them. An example is the Spanish Flu in 1918, the worst pandemic
up to date with an estimated death toll of 50 million people (2.7% of the world
population by then) (World Health Organization, 2013). This immense impact of
infectious diseases in human mortality throughout the last centuries has led to the
creation of a specialized scientific field – epidemiology – to study them. While
some epidemiology studies focus on the medical nature of diseases or in possible
treatments, there is a field that focuses on the distribution and patterns of both the
disease and the infected people using mathematical models (Anderson, Anderson, &
May, 1991; Kakehashi, 1996; Oli et al., 2006). Amongst the latter, there is research
that should be highlighted. This will be described in the following subsection.

2.2.1 Infectious Diseases and the SIR model

The work of Kermack and McKendrick (1927) represents a major development
in the field of epidemiological models – by thinking about different compartments
(S – susceptible, I – infected and R – recovered) in which people can be in and
progress between, the scholars represented infectious diseases spreading using or-
dinary differential equations. By basing the movement between compartments on
epidemiological parameters of the disease in study, these equations allow (to a cer-
tain extent) to predict and estimate some variables such as the duration of the
epidemic, the total number of people infected and the total number of casualties.
This model is widely known as the SIR model.

In further studies, different authors built upon this idea, developing more com-
plex variations of the SIR model (Hethcote, 2000). Examples are the SIRD, the
MSIR, the SEIR, which include extra compartments for the deceased (D), the ma-
ternally derived immune (M, for infections in which babies are born with immunity
due to maternal antibodies) and exposed (E, for individuals who have been infected
but are not contagious), amongst others.

Although SIR models have been widely used as a basis of dominant epidemiologi-
cal advancements (Ellison, 2020), there is also criticism regarding their deterministic
nature and their limitations. These critics often focus on the extra layers of com-
plexity infectious diseases can have, highlighting the limitations of SIR models to
deal with time-varying infectivity, multi-strain systems, superinfections or spatially
relevant information (Roberts, Andreasen, Lloyd, & Pellis, 2015).

Another relevant parameter when studying infectious diseases is the notion of Ro

– the basic reproduction number. Defined as the expected number of cases generated
by one positive case in a population where everyone is susceptible, this number is
used to measure the contagiousness of infectious agents and is, for this reason, a
useful metric during pandemic decision-making. If Ro is equal or bigger than 1,
the infection will persist or spread. If the value is less than 1, then the disease is
expected to die out (Delamater, Street, Leslie, Yang, & Jacobsen, 2019; Oli et al.,
2006). Consequently, decision-making is often dependent on the evolution of Ro and
its interpretation.

In a recent study, Delamater et al. (2019) raise the issue of Ro’s complexity.
Dependent on several biological, socio-behavioral and environmental factors, Ro
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is not a constant and can be controlled through the implementation of policies.
Depending on the nature of the infectious disease and how it spreads, different
policies can have extremely different impacts - i.e. while face masks can be an
effective measure for airborne diseases, a safe water source is the priority when
controlling cholera. With this in mind, it can be argued that there is a high potential
in using models during outbreak control - by using the models to test different
policies, it is possible to get a better understanding on their effectiveness in reducing
Ro instead of implementing potentially ineffective policies into the real system and
having to wait significant time to evaluate their impact.

2.2.2 Infectious Diseases in refugee settlements

As infectious diseases are not new in the world, neither are they in refugee
settlements. Identifying the need to apply such models to advise decision-making in
these settings and how to better contain the dimensions of outbreaks, some authors
have conducted research in these topics.

An important study in this field is the work of Hailegiorgis and Crooks (2012)
– by creating a spatially explicit agent-based model (ABM) of the Dadaab refugee
camps, the authors represent interactions between humans and their environment to
explore the spread of cholera. In their study, Hailegiorgis and Crooks combine the
concepts of a SEIR model with a behavioral approach of Agent-Based Modeling.
In other words, the authors investigate the spread of cholera by focusing on the
inhabitants as individuals engaging in daily activities. These individuals all start
as susceptible to cholera (and hence being part of the S group). Infected agents (I)
can be inserted in the system and, along time, these agents spread cholera bacteria
through excretion of feces, which can sequentially be spread throughout the envi-
ronment, contaminating water or food. When faced with contaminated goods, other
people get infected with cholera, increasing the size of the outbreak. Hailegiorgis
and Crooks’ work represents a useful tool to explore different control strategies and
evaluate how they work in a refugee settlement.

Unfortunately, this model cannot be used to study the spread of COVID-19 due
to the differences of transmission mechanism of the disease – while cholera spreads
through contaminated food and water, the focus of the spread of COVID-19 lays in
the interaction between infected and susceptible agents. However, the use of ABM
to study such a topic – by not taking the population as a whole, ABM allows for
heterogeneity of behavior allowing for people to interact with each other in different
ways (Crooks & Heppenstall, 2012) - is an interesting development in the field of
epidemiological modeling and a potential tool for studying COVID-19 spread.

2.2.3 Modeling COVID-19 in refugee settlements

As mentioned in the last subsection, Agent-Based Modeling represents a good
tool to study the spread of infectious diseases. By using a bottom-up approach and
focusing on people as individuals, ABM allows to cover some dynamics of human
population that emerge lower level interactions and some uncertainty of how indi-
viduals behave (Eubank et al., 2004). This goes in line with the point highlighted
by Delamater that, when evaluating the contagiousness of infectious agents, it is
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necessary to integrate the socio-behavioral factors that influence this variable such
as the number of interactions people have, if they decide to stay at home, among
others (2019). Moreover, this approach offers potential solutions to the shortcomings
of basic SIR models as highlighted by Roberts et al. (2015), allowing to integrate
spatial and temporal dynamics to the spread of the diseases. Finally, it is also the
technique of choice of Joshua Epstein, a renowned epidemiologist who has applied
this method to study different infectious diseases such as Ebola, pandemic influenza
and smallpox (Burke et al., 2006; Epstein, 2009).

The popularity of this tool to model infectious diseases is also clear in the study
of the spread of COVID-19 both in urban settings and refugee camps in the last
year. Among the latter, three researches are to be highlighted – the UN Global
Pulse model of Cox’s Bazar (Harlass et al., 2020), the work by the University of
Manchester in Moria (Gilman, Mahroof-Shaffi, Harkensee, & Chamberlain, 2020)
and the work by Bögel et al. (2020). The three of these studies resort to ABM
to study the spread of COVID-19 in refugee settlements and focus on the potential
of non-pharmaceutical interventions. All these models also integrate concepts of
the SIR model (or adaptations of this) to represent the progression of individuals
regarding the virus and their health status. These models, however, differ in their
geographical (and case-study) focus, among other differences.

Conceptualized to be a proof of concept, Bögel’s model is not designed to simu-
late one settlement in specific but rather takes averages of five existing settlements
(Kakuma, Moria, Za’Atari, Bidi Bidi and Cox’s Bazar) to represent a prototypical
refugee settlement. As one of the focus points of Bögel’s study was to prove the
concept of using ABM to understand the risk of COVID-19 spread in settlements,
this decision did not influence its results. This, the time granularity of the model
(where one time step can be assumed as one minute) and the accessibility of Bögel
(considering the research was conducted at the TU Delft) are some of the reasons
why this study will pick up on this model.

Moreover, by developing a prototypical model, Bögel’s work can be developed
further without focusing on one specific settlement and potentially later on be ap-
plied to a case study, while the geographical scope in Harlass et al. (2020) and
Gilman et al.’s (2020) work is already defined. Bögel’s work represents hence a
higher value for NGOs that want to apply such models to camps in which they are
working in, as the base model is more neutral and, hence, less context dependent.

Bögel’s work

To better understand the model and why this study builds-up on it, it is neces-
sary to first understand the high-level dynamics of it and its limitations. Similarly
to Hailegiorgis and Crooks (2012), Bögel (2020) developed a model that simulates
refugees performing daily activities such as fetching water, using latrines, getting
food or visiting a healthcare facility in a settlement. As there are often more people
who use the same facility, refugees frequently must wait for their turn to use it.
By introducing COVID-19 positive people in this setting, the spread of the virus
among inhabitants can be monitored as well as the places where infections occurred.
Consequently, it can be determined which activities are the sources of the higher
infection risk. Ultimately, the model can be used to test the efficiency of different
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policies in containing COVID-19.

An interesting (and challenging) feature of COVID-19 is the way it shows (or not)
in infected people. Unlike Ebola and smallpox that have very visible symptoms and,
consequently, are easy to identify, COVID-19 infected people might have very mild
symptoms that can be mistaken for a common flu. Another important characteristic
of COVID-19 in the number of asymptomatic people - people carrying the virus but
not showing symptoms - and their infectiousness. While during Ebola and smallpox
outbreaks it is estimated that only around 15% (Mbala et al., 2017) and 0% (Foster,
2020) of infected people are asymptomatic, respectively, recent studies claim that
the percentage of COVID-19 asymptomatic people can be as high as 75% (Yanes-
Lane et al., 2020). As this feature of COVID-19 highly impacts the perception of
people of whether they are infected or not, it will consequently impact the behavior
they will have, the number of contacts they will establish and, therefore, the way
the virus spreads.

Bögel’s approach to model this characteristic should be highlighted: to account
for the number of people who might be infected and not aware of it (either because
they are asymptomatic or because they assume their symptoms are a simple flu),
agents have an extra infection perception attribute. Not necessarily in line with
their actual infection state, agents can think they are healthy when they are actually
infected (or the other way around). This will influence the way they behave in the
settlement and if they do perform activities outside of their shelters.

It is important to note, however, that, as well as several other COVID-19 epi-
demiological parameters, the asymptomatic rate is still an uncertain value. Bögel
considers parameters dated from June 2020. However, new research is done every
day and the values are constantly adapted. Moreover, it can also be argued that
epidemiological parameters from an urban setting might not directly translate the
situation at settlements with vulnerable people. Either due to age distribution or
underlying conditions, it is possible that common parameters might not be an ac-
curate representation of the situation within vulnerable groups. This will be taken
into account in this study and discussed in Chapter 9.

When conducting experiments, Bögel concluded that there is a risk of mass
infection spread during events where large queues are formed for a long period of
time. An example of such an event in this model is the monthly food distribution.
In its baseline scenario, the food distribution leads to a peak of infections, which
consequently results in the whole settlement being infected within 50 days.

To avoid this mass infection, Bögel set up experiments to test the impact of
different non-pharmaceutical interventions that can be applied to the settlement.
The policies tested consisted of four levels of interventions: changing the distancing
in a queue, implementing mobility restrictions (no rules, quarantine for infected
individuals, no elderly moving around or isolation of households in which there are
(at least) one infected person), implementing mask usage and changing the day in
which the food distribution is performed.

Bögel’s results show that none of these interventions is sufficient to avoid the
infection of the whole population of the camp at some point - these measures can
delay the moment in which the entirety of the population has been infected but
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cannot avoid it. The only exception is when the policy “isolation” is put in place
- by restricting the movement of entire households once there is an infection (or
perceived infection) in the shelter, the total number of COVID-19 cases can be
controlled. However, there are several problems with this measure: compliance
will never be 100% and it means that these households do not have access to the
food distribution and will consequently starve. Acknowledging this, further research
in looking into shifting and redefining the food distribution moment is suggested.
However, this was not done in this study yet. This can be identified as the first
research gap.

First knowledge gap

As access to food is a human right and one of the Sustainable Development
Goals (SDG2), it is necessary that adaptations to the food distribution solution
guarantee that this continues being a fair procedure and that the goods are accessible
to the population (i.e. solutions such as stopping the food distribution cannot be
considered). However, it is also important to guarantee that access to food does not
represent an infection risk during an outbreak. For this reason, the first academic
gap can be formulated as the trade-off between fairness and accessibility of food while
minimizing the COVID-19 infection risk in these distribution events.

2.3 Queuing

Concerns around the risk of queuing are not novel. In March 2020, when coun-
tries started implementing measures such as limiting the number of customers in
supermarkets, queues started forming in front of businesses around the world. Later
on, these queues could be identified in more locations: pharmacies, testing centers
and, in worst case scenarios, hospitals. Together with isolation, it can be argued
that queues are a defining feature of the COVID crisis (Brandon, 2020). However,
while in isolation there is virtually no risk of getting infected because there are no
groups of people, queues are, per definition, a group of people (waiting for their turn
to be served or to enter a space). If one of the individuals queuing is carrying the
virus, this means that the ones around are at risk of getting infected every second
they spend queuing (Barr, 2020). Moreover, the longer a queue gets, the higher the
probability of an infected person being in the queue (Long, Wang, & Zhang, 2020).
As a solution, it could be argued that implementing social distancing rules in a
queue would reduce the infection risk to near zero. However, while placing markers
on the floor is easy, getting customers to comply with these is a bigger challenge
(as highlighted by the managers of a pub in Michigan that was linked to near 200
COVID-19 cases even with all the rules in place (Brandon, 2020)).

Seeing a risk in this and aiming to keep their customers safe, businesses started
implementing different techniques to tackle this challenge. Two approaches to
this problem are the implementation of digitally managed virtual queues and drive
through solutions. However, as the first one is heavily dependent on the availability
of technology on both sides (the customer to get information and the business to
manage it) and the second assumes that each customer has a car, none of these
solutions are feasible for refugee settlements. Other solutions can focus on opti-
mizing queue sizes and minimizing waiting times. This is an example of the work
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of queuing specialists Perlman and Yechiali (2020). While this work sets up the
foundation for the study of the infection risk in queues, it takes people queuing as a
linear function and does not integrate potential deviations. Derjany et al. (2020) go
further and combine pedestrian dynamics with stochastic infection spread models.
From their results, they conclude that queue configuration has a substantial impact
on the spread of a disease. However, they assume that a queue’s layout is designed
beforehand and do not integrate human behavior and how individual decisions might
impact its shape.

In Bögel’s model, the queuing is rather simplified: people gather around the
place where food is distributed, patiently wait for their turn to be served (which is
dependent on their order of arrival), maintaining social distancing from the rest of
the elements waiting, and leave. Furthermore, Bögel’s model has as assumption that
people comply 100% to the social-distancing rules in places, meaning that they will
never get too close to other people waiting. This, however, can be argued against.
As an element comprehended human people waiting for their turn to be served, it
can be argued that queues are as complex as humans. With this motivation in mind,
this thesis dives into the key concepts of queuing and the field of queuing behavior.

2.3.1 Queuing Theory

Developed in the beginning of the 20th century by the early works of Erlang
(Erlang, 1909), queuing theory aims at solving problems such as the ideal number
of servers and how to reduce waiting times depending on the arrival of customers.
These studies are often integrated into operations research and focus on how to
optimize the performance and efficiency of the service being provided to save time
and money.

When specifying queuing models, general dynamics depend on three main com-
ponents: the arrival process, the service mechanism and the queue discipline (Cooper,
1981; de Lange, Samoilovich, & ven der Rhee, 2013). The arrival process describes
the rate at which customers arrive at the service point and is usually expressed
by interarrival times (which represent the time between the successive arrival of
customers) which follow different distributions. The service mechanism focuses on
the server side of the problem - it specifies the number of servers available and the
probabilistic distribution of time needed to serve a customer. Finally, the queue
discipline indicates the order in which customers waiting for a service are selected
to be served.

The simplest discipline is known as first-in-first-out (FIFO). Following this logic,
the first person to queue up for a service is the first person getting served. This
means that, when there is a queue, a customer must wait until everyone who was
there first to be served for their turn to come. Although this is one of the most
common methods used when managing queues, it is not the only one. Queuing
disciplines can follow an opposite logic - last-in-first-out (LIFO), a random discipline
(SIRO, serve-in-random-order), disciplines that prioritize shortest processing times
(SPT) or that simply prioritizing other characteristics of the customers (PR, that
could prioritize age or vulnerable people, for instance) (Berry, 2006). While some
customers might benefit from different queuing disciplines (e.g. a pregnant woman
would benefit from a queue with a PR discipline as they could skip the queue and
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get served immediately after arrival), FIFO is considered to be the “fairest” queue
discipline overall. Confirming this by testing the effect of the queue discipline on the
waiting time variance, Kingman (1962) proved that the variance of waiting time is
minimum when serving customers in order of arrival. In other words, their research
claims that the time that each customer spends in a queue is more equal when using
a FIFO discipline.

2.3.2 Queuing behavior

Although the value of mathematical queuing models can be recognized in the
field of operations and supply chain, there is an obvious limitation of these mod-
els when it comes to applying it to people queuing for commodities. Consisting of
people waiting for their turn, these queues are inherently subjected to the complex-
ity of human behavior. Considering these people as inanimate objects queuing and
assuming a linear behavior, mathematical models have a limited capacity to realisti-
cally represent real world queues and how individual’s choices affect the development
of the queues. Even if the queue follows a FIFO discipline, if people decide (and
succeed) to cut the line, this logic is broken. Recognizing these limitations of the
existing models and noticing an added complexity of queues, a field around customer
behavior in queues started emerging circa 1969 (Mann, 1969; Naor, 1969).

Type of queues

Observing people moving and queuing in different settings, Okazaki and Mat-
sushita (1993) suggest a classification of queuing behavior according to the type of
service people are queuing for. This classification can be seen in Figure 2.1 and is
divided into three types: queuing in front of counters (Type 1), queuing in front
of gates (Type 2) and queuing in front of vehicles’ doors (Type 3). Similarly to
queuing in a department store or hotel, queues that are formed during a typical
food distribution can be included into type 1 queues.

Building on this work, Kneidl (2016) suggests a further division inside queues of
type 1: organized queues with demarcation tapes (for example in airport check-in
points) and organized queuing with no demarcation tapes (which can be observed at
a bar, for instance). The difference between these two queues, as argued by Kneidl,
is that the formation of the first is predefined by the demarcation tapes used by
the queue manager. For this reason, and assuming that people will comply with
the demarcation tapes, simulating these queues requires a simple one-dimensional
approach and queuing theory can be directly applied. The second type of queue,
without demarcation tapes, however, does not follow a specified form and grows
individually as people get closer to the service point and decide where they wait.
Therefore, this type of queue can also be referred to as self-organizing queue.

Self-organizing queues

In a context with no demarcation tapes nor queue managers placing the people
waiting for a service, queues do not necessarily have to happen. As observed by
Fagundes (2017), there are no laws specifying the rules for how and where to wait.
However, when confronted with someone waiting to be served, one tends to wait
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Figure 2.1: Three types of movement in queue spaces as suggested by Okazaki and
Matsushita (1993)

until others are finished and only then get closer to the service point. Noting this,
Fagundes characterized self-organizing queues as “a system of informal order”. In
their research, Fagundes uncovers some of the unwritten rules that lead to queue
forming - social norms. Allon and Hanany (2012) highlight that customers experi-
ence tension between following these social norms and economic reasoning, in which
the latter can act as a force to violate the norms. Moreover, Mann (1969) noted
that cultural values are related to the respect of the principle of queuing, which can
thus lead to a variance of behavior between queues in different countries.

Applying some of these theories into models, different authors have modeled
self-organizing queues to study queuing behavior. Building on the observation that
people tend to queue on a slight angle from the last person in line to be able to
observe the beginning of the queue, Kneidl (2016) developed an agent-based model
for a self-organized queue. This study comes to prove that self-organized queues
highly depend on the decisions of the individuals queuing, justifying the use of
agent-based modeling to model this. However, the decisions that the individuals
queuing are able to make in this model are rather simple and their position cannot
deviate more than a certain angle from the last person in line.

Taking another approach inspired by the idea that people can have different
strategies when queuing, Köster and Zönnchen (2015) capture different queuing
patterns through two basic attitudes: competitive and cooperative behavior. Com-
bining navigation floor fields and utility functions, the researchers built a model
in which cooperative people queue behind the last person in the queue and keep
queuing until they are close to the server, while competitive people have the goal
to approach the target as soon as possible. This approach reproduces the classic
”cutting the line” behavior that had been mentioned earlier by Allon and Hanany
(2012).
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By allowing people to switch between strategies and testing with different mixes
of initial attitude, the authors use this model to observe the types of queues that can
emerge. It is important to note that, although this study incorporates the possibility
of having different behaviors when in a queue, it does not integrate the factors
that can make people have these behaviors. Moreover, by resorting to navigation
fields and mathematical formulations for how people behave, this model limits the
rationality of the agents queuing, detaching their behavior from the environment in
which they are.

Parallel to these developments, considerable research has been done on factors
that might influence people’s behavior when queuing. Starting from Maister (1985)
and Larson (1987) and their focus on customer’s experience, a field covering the
psychology of queuing focuses on how queues and their characteristics can provoke
feelings in customers and consequently influence their queuing attitude. Although
there are different studies with different focuses, they often converge in theories
that queue length, consumer’s perceptions of the waiting-time, their previous ex-
periences in similar queues and the behavior of people around them influence their
own behavior (such as Maister (1985), Onions (2015), Marin, Drury, Batta & Lin
(2007); Allon & Hanany (2012); Sankaranarayanan, Delgado-Alvarez, Larsen & van
Ackere (2012); Ülkü, Hydock & Cui (2019), among others). Allon & Hanany (Allon
& Hanany, 2012) introduce the concept of memory in the queuing process - by in-
troducing game theory concepts, they claim that queue formation depends if they
people involved have queue before, making it possible for them to understand what
approach they should take in order to minimize their time waiting.

Second knowledge gap

Although there are some agent-based models that describe the queuing process,
none of these models sufficiently captures people behavior and how this behavior
influences the queue itself. With a purpose to study the risk queues pose during
an infectious disease outbreak, it is important to understand how the decisions of
individuals affect the total time one stays in a queue and how it impacts proximity
between people. Different queuing behaviors will influence these two factors, which
consequently influence individual’s risk of getting infected. However, none of the
current available ABM models focuses on this. Focusing on this, another knowledge
gap can be identified: the way people behave in a queue and how individual’s deci-
sions affect the total time in queue of others and proximity between them has limited
representation in agent-based modeling.

2.4 Food distribution in refugee settlements

From shelter to safe water, NGOs are often the source of resources for the
population of refugee settlements. Food is not an exception. Working in refugee
settlements all around the world, organizations such as the World Food Program
(WFP), the Norwegian Refugee Council and UNHCR take on the responsibility of
distributing food to persons of concern. When doing so, NGO’s focus is not only
on food but rather on food security. Defined by the United Nations’ Committee on
World Food Security as the state in which “all people, at all times, have physical,
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social, and economic access to sufficient, safe, and nutritious food that meets their
food preferences and dietary needs for an active and healthy life” (Food and Agri-
culture Organization of the United Nations, 2009), guaranteeing that this is possible
in informal and temporary settlements where the population does not necessarily
have income can be argued to represent a bigger challenge than in urban settings.

To cope with the complexities of such settlements and to structure this pro-
cess, organizations have developed handbooks as guidelines for food distributions
(e.g. Norwegian Refugee Council (2008), UNHCR (2015)). Due to the temporary
nature of refugee settlements (or at least the temporary intention of these), such
handbooks often focus on traditional and short-term solutions. A consequence of
this design (and political) decision is the non-existence of an alternative plan in
case of infectious diseases outbreaks. Confronted with the challenge of containing
COVID-19 in early March, adjustments to the general guidelines were developed
(Opportunity International (2020), World Food Programme (2020)). However, no
research has been done on how much these adaptations contribute to containing
the spread of an infectious disease. This goes in line with the first knowledge gap
previously identified.

When working with food in refugee settlements, NGOs can often resort to two
different main approaches: food aid or food assistance.

2.4.1 Food aid

Often referred to as General Food Distribution (GFD), a food aid response
focuses on the direct transfer of food rations from the NGO to households affected by
an emergency in order to meet their nutritional requirements (Emergency Nutrition
Network, 2011). Although water is a necessary good, it is not included in a GFD
ration. While in a refugee settlement GFDs often look like a serving point and a
queue of people waiting to be served, there are some characteristics of these food
distributions that can be changed.

Cooked meals or food basket

Depending on the conditions of the camp and the resources refugees have, the
food being distributed can be in the form of a cooked meal or a food basket (collection
of (mostly) dry ingredients to cook with). Both these solutions have its benefits and
disadvantages. While cooked meals can be a guarantee that everyone has direct
access to food and can meet their nutritional requirements, they require a lot more
manpower to coordinate and maintain (not only the whole food preparation but also
having to repeat it every day, as people do not keep the food and it constantly needs
to be provided again). Because this is such a labor intensive solution, it is mostly
used in situations where refugees have no way of cooking the meals themselves - such
as in very recent or unstable settlements (e.g. post-Jungle Calais, in which refugees’
belongings are taken away more than once a week and consequently they have no
way of keeping cooking equipment with them). Another drawback of distributing
cooked meals to individuals is the amount of people that is requested to line-up,
creating population concentrations which consequently can raise concerns regarding
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overcrowding (Emergency Nutrition Network, 2011). This last point is of particular
interest when distributing food during an infectious disease outbreak.

Food baskets, on the other hand, can be distributed in an amount that only
requires monthly distribution. This approach has several benefits: it can be em-
powering refugees (as it gives them the opportunity to cook it in their own way),
it minimizes effort from the NGO side, for instance, and it also means that not
every single inhabitant of the camp needs to be present at the distribution moment.
However, this approach is only a solution in more established settlements in which
refugees not only have the material to cook the ingredients with but also to store
them without letting them spoil.

Food ATMS

Within the range of food-based response in the humanitarian context, a novel
approach has emerged in the recent years: the food ATM. The Food Automated
Teller Machine - Food ATM - is conceptualized as a dispensary point in camps
where food is kept and refugees can go to get food (World Food Programme & World
Vision, 2019). Food ATMs work similarly to a market - however, in this setting,
refugees walk into a warehouse full of machines containing a specific food item
where they select how much food they want to withdraw. Food ATMs come to solve
some common problems of food distribution: food does not have to be packaged and
repackaged on-site, nor staff has to weight or scoop the wanted quantities. Moreover,
food ATMs can provide a continuous food supply, allowing refugees to come back
whenever they need an ingredient instead of having to wait until the next food
distribution moment (provided that they have not ran out of their monthly or yearly
provision). This will also result in smaller amounts of people coming to take food,
considering that the ATM is available during longer periods of time. Furthermore,
food ATMs also fix storage problems - by not giving the whole ration to refugees in
one go and keeping it rather in a centralized and proper storage place, food waste
is minimized.

However, food ATMs also have its own challenges. Not taking the whole chal-
lenge of making supply and demand meet by giving refugees the freedom to choose
how much and when they want to withdraw their good into account (which is cov-
ered in van Beek’s thesis (2021)), the construction of such infrastructure can be
quite costly and, could be argued, not fit for (supposedly) temporary settlements.

2.4.2 Food assistance

As an alternative to basic food based response, donors and NGOs have been de-
veloping an interest on food assistance. Included in their 2008 strategic plan (World
Food Programme, 2008), the WFP argues that while food aid provides the calories
needed to save hungry communities, this approach does not cover other complexities
in settlements. By providing indirect access to food through different methods such
as food subsidies, cash and voucher transfers or agricultural and livestock support,
a food assistance approach not only provides calories and nutrients, but it also stim-
ulates an economic development by empowering the population. Food assistance
approaches create the possibility of camp markets where people can go and buy
the food they want using not only their cash or vouchers provided by NGOs but
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also their resources made through other activities. This approach, however, requires
a fully operational market and a context (economic, social and cultural) in which
consumers have the means to buy and sell locally produced foods (Swartz, 2017).
For this reason, it can be argued that food assistance solutions can only be utilized
in rather long-term established camps assuming a system is in place.

2.4.3 Food distribution during an outbreak

In their model, Bögel (2020) experiments with a general food distribution of dry
ingredients. The study assumes a monthly distribution that takes place in one day,
sending one member of each household to stand in the queue at some point in the
day to get their monthly feed.

From Bögel’s results it was also observed that if no intervention is put in place,
a single case of COVID-19 can lead to the total population being infected within
50 days. Moreover, Bögel identifies the food distribution as being a super-spreading
event. It is therefore necessary to research policies to be applied at a food distribu-
tion level to reduce the COVID-19 infection risk associated with this event.

Distribution system options

In their Emergency Handbook (2015), UNHCR describes three distribution sys-
tem options which differ on who is queuing up for the food. Fit for different phases
of an emergency, these distributions suggest the use of representatives of groups to
make the food distribution process easier, faster and cheaper. First, in the initial
phase of an emergency, representatives of large groups are used. Then, according to
the stage at which the emergency response is, representatives can slowly start rep-
resenting smaller groups until the ideal situation is achieved - with heads of families
attending the food distribution.

In Moria, before the fire, there were reports that people were queuing up to
four hours (Nutting, 2019) every time they were going to pick food up. These long
waiting times combined with the situation of misery in which refugees might live
can justify high tensions experienced in these queues, which often lead to violence.
Violence in queues is the cause of several injuries observed by doctors, together
with feelings of panic, distress or even post-traumatic stress disorder experienced
by refugees. In the context of a pandemic, violence, pushing and barging represent
an added risk: by increasing the levels of contact between people, these actions
can increase the infection risk of the individuals present in the queue (International
Rescue Committee, 2020).

Overall, choosing different distribution systems will change some parameters of
the queuing system. These changes can have the potential to reduce the time people
have to spend queuing waiting to be served and, consequently, the potential to reduce
infection risk. For this reason, it is concluded that it is worth it to test different
policies and evaluate their potential in controlling the outbreak in the settlement.
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2.4.4 Challenges

Finally, it is important to highlight the challenges associated with the food
distribution in a refugee settlement. Some of these challenges include:

Duplication In refugee settlements, it is not unusual for inhabitants to not have
documentation. This raises a challenge when distributing a scarce resource:
it is difficult to keep track if a person has already obtained their ration and,
consequently, some duplication might happen.

Storage Depending on the conditions of the camps, refugees might not have proper
storage to keep their food. This needs to be considered when distributing food
to refugees in order to avoid food waste or potential food poisoning.

Nutrition Different camps require different nutritional plans. Before deciding how
to distribute food, it is necessary to identify what needs should be met. The
food distribution method must be chosen accordingly.

Crowds When doing a distribution directly to each individual, it will often lead
to crowds. It is necessary that such decisions take the overall context of the
camp into account. Solutions such as targeting can help reducing the amount
of people queuing up for food.

Accessibility However, when using targeting techniques, it is necessary to take
into account that the food might not reach the final destination. When the
head of a community picks up food to then distribute it can happen that
certain households never have access to the food. This often means that the
most vulnerable refugees are the ones not having access to food (often the sick
and elderly refugees).

Re-sales If the food is not considered good enough, it can happen that refugees
sell their food to get access non-essential goods (such as tobacco or alcohol)
or other food products that are not distributed by NGOs.

Socio-political context Refugee settlements often have a quite specific socio-political
context. As a measure to help people, GFD should be conducted in a way that
does not increase tensions.

Costs Any implemented measure has associated costs: the cost of food, the supply
chain costs, the staff helping and the infrastructure needed to proceed with
the distribution. Budget constraints can often dictate what kind of options
are viable or not.

2.5 Conclusions

In this chapter, three topics were covered: infectious diseases and its modeling,
queuing behavior and food distribution in the humanitarian context. In each one of
these topics, main key concepts were described and literature was reviewed.

From this literature review, it can be concluded that: 1) there is no agent-
based modeling describing how people behave in a queue and how that influences
the queue itself and 2) there is a need to look into food distribution solutions that
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balance the trade-off between fairness and accessibility of food while minimizing
COVID-19 infection risk in these events.
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Chapter 3

Research Formulation

This study aims to fill in the research gaps identified through the literature
review. This chapter focuses on how the research is designed to do so and what
steps are taken.

First, in Section 3.1, the main research question that guides this study is formu-
lated. In this section the main research question is also broken down into different
sub-questions that help guiding the research. Section 3.2 covers the flow of the
study, the methods used and the motivation for these choices. Finally, Section 3.3
wraps up the content of this chapter.

3.1 Research question

Looking into a refugee settlement during an outbreak scenario, this study aims
to provide insights on potential ways to minimize COVID-19 infection risk during
essential activities such as food distribution. For this, it is first necessary to develop
a model that represents human queuing behavior (and thus fill research gap 1).
Then, this model can be used to evaluate how different policies influence the overall
queuing dynamics and how this impacts the spreading of COVID-19 (research gap
2). This research goal can be formalized as the following research question:

What food distribution policies show robust performance under queuing
behavior uncertainty while minimizing COVID-19 infections in the con-
text of an outbreak in a refugee settlement?

3.1.1 Sub-questions

Aiming to provide a modular composition for this thesis, the main research
question can be broken down into different sub-questions. By answering these, the
overarching question is answered.

1. What factors influence how people behave while waiting in a queue?

2. How is food access organized in a refugee settlement?

3. How to evaluate food distribution policies during a COVID-19 outbreak?

4. What are the drawbacks of using the chosen policies during food distribution?
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3.2 Methodology

To answer the main research question, an exploratory modeling approach is
suggested. This will be complemented with desk research and informal interviews
to food actors working in Cox’s Bazar (as an example of a refugee settlement where
the COVID-19 hit). In this section the research flow is introduced. Then, the
modeling approach is motivated. Finally, the XLRM framework is introduced as
support to understand the overall context of the study.

3.2.1 Research Flow

First, an agent-based model is built to simulate the way people queue. Then,
this model is integrated in the model developed by Bögel (2020), where policies
are tested and the model dynamics are studied in scenarios with different queuing
behaviors. Finally, the results will be discussed and policy recommendations are
formulated based on the study insights. Figure 3.1 shows the flow of the study
divided into ten steps and the methods used along the process.

Note that, although Figure 3.1 shows a one-directional flow, the real process
of this study involved several step backwards mostly between the implementation
and the conceptualization phase (in that order). This is because, along the imple-
mentation of the model in ABM, some questions come up that require a sharpened
definition or adapted conceptualization. The same happens again when observing
the first results produced by the model - while conducting verification tests in the
model, problems are identified and the model is changed accordingly. Overall, it can
be argued that the flow of this study is rather iterative instead of a one-directional
flow.

3.2.2 Exploratory modeling: Agent-Based modeling

As highlighted in previous research (see sub-section 2.2.2), Agent-Based Mod-
eling (ABM) is often the chosen method to study contagious diseases and their
spreading. This is not only because this technique allows an analysis at an indi-
vidual level (which can be argued to be key to study how to contain a disease that
spreads through interactions) but also because it includes a behavioral component -
citing Luke and Stamatakis, an ABM model uses ”computer simulations to examine
how elements of a system (agents) behave as a function of their interactions with
each other and their environment” (2012).

Considering that the focus of this thesis is to understand the dynamics behind
queuing and the spread of a virus (both highly connected to human behavior and
interactions at the individual level), ABM seems to be fit for this study. With this
technique it is possible to have active agents and integrate their perceptions and its
influence in their individual behavior, allowing for an analysis of the macro behav-
ior that emerges from individuals (Maidstone, 2012). In order to understand how
different food distribution settings (schedules, locations, dynamics, etc.) influence
the spreading of the virus but also how people change their actions according to
these, an ABM approach will be used for this thesis. The choice for ABM can also
be motivated by the uncertainty of human behavior in the queuing process and the
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Figure 3.1: Research flow diagram

behavior heterogeneity that it allows to create. Finally, accounting for the uncer-
tainty inherent to the problem and the system, this model will be used to explore
different policies under different scenarios.

As this thesis uses a modeling approach, the steps of the research resemble those
of the modeling cycle. In specific, the steps proposed by van Dam et al. (2013) are
used as guideline.

3.2.3 XLRM framework

Introduced in 2003 by Lempert et al. (Lempert, Popper, & Bankes, 2003),
the XLRM framework can serve as a support to organize relevant information in a
study. This framework proposes the division of elements into four categories: pol-
icy levers (“L”), exogenous uncertainties (“X”), measures (“M”) and relationships
(“R”). Figure 3.2 provides a visualization of the XLRM framework and how the
variables interact in the system.
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Figure 3.2: The XLRM framework as visualized by Kwakkel (2016)

Policy levers (L) This category represents the policies and strategies that decision-
makers can apply to a system in an attempt to make it perform as desired;

Exogenous uncertainties (X) Factors that are outside of the control space of
the decision-makers are placed under exogenous uncertainties. Even though
decision-makers cannot influence them, they are relevant because the influence
the system, playing a role on the success (or not) of the policy levers imple-
mented. These variables are often integrated in the creation of scenarios in
order to evaluate how strategies perform in situations with different values for
these variables;

Measures (M) In order to measure the success of policies implemented, it is nec-
essary to identify what variables to observe and evaluate. These variables are
included in this category and are referred to as Key Performance Indicators
(KPIs). After testing different policies, these KPIs are compared to rank the
desirability of various scenarios;

Relationships (R) Finally, this category is composed by the relationships among
the variables of the system. In socio-technical systems, these relations are
rather complex. For this reason, these are often represented by a simulation
model. Note that sometimes there are uncertainties within the relationships
(R). These can be referred to as structural uncertainties.

Further identification of the variables that fit into each category is provided in
Chapter 4 during the conceptualization phase of this study.

3.3 Conclusions

Picking up on the two research gaps identified in the literature review performed,
this chapter translates this into a research formulation and a study structure. The
main research question guiding the study can be formulated as:

What food distribution policies show robust performance under queuing
behavior uncertainty while minimizing COVID-19 infections in the con-
text of an outbreak in a refugee settlement?

This research question is broken down into four different sub-questions. Together
with literature review and interviews, this study will use an Agent-Based Modeling
approach to answer the main question following the structure suggested in in Figure
3.1.
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Chapter 4

Model Conceptualization

This chapter focuses on the conceptualization of the modeling process of this
study. First, in Section 4.1, Bögel’s model (Bögel et al., 2020) is introduced, along-
side the main dynamics of its subsystems. Then, Section 4.2 follows with the con-
ceptualization of the queuing model to be developed. After this, in Section 4.3, the
XLRM framework is applied to the topic of this research to help understand the big
picture of the system. Finally, a summary of the chapter is provided in Section 4.4.

4.1 Bögel’s model

The base motivation of this research is to understand the infection risks of ac-
tivities in refugee settlements and find solutions that minimize this. With the same
objective in mind, Bögel (2020) developed an ABM of a prototypical refugee settle-
ment and included epidemiological parameters to evaluate how COVID-19 spreads
while refugees perform their main activities.

At a high level, Bögel’s model consists of three subsystems as described in Fig-
ure 4.1. The settlement layout & facilities includes shelters and camp facilities. The
refugees subsystem includes the agents in the model and their overall actions - their
activities and behavior. Finally, the COVID-19 subsystem includes the epidemio-
logical parameters of SARS-COV-2 and the stages of progress of the disease.

Along a model run, there are several inter-system interactions and it can be
argued that any change in either the settlement or the COVID-19 subsystems will
influence the refugee one (and vice-versa). An obvious moment of interaction of the
three systems are queuing moments: when several refugees want to use a facility
of the camp, they line up and wait for their turn. If one of the refugees waiting in
that line is infected with SARS-COV-2, then everyone around is potentially at risk
of getting infected as well.

Identifying the risk of queues and specially the food distribution moment in
a settlement (as suggested in Bögel’s results), this thesis dives further into this
moment. In specific, this thesis aims to get insights on how different policies can be
implemented at the food distribution process and how they influence the spread of
COVID-19, looking specifically at how they influence queue dynamics.
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Figure 4.1: Subsystems of Bögel et al. (2020)

However, due to the simple behavior of agents when queuing for commodities,
Bögel’s model is considered to not be fit for this research as is. Identifying this lim-
itation of the model, this thesis focuses on developing queuing dynamics in Bögel’s
work.

Before conceptualizing this process, however, it is necessary to understand the
current model and its three subsystems.

4.1.1 Settlement layout and facilities

The model represents a medium-sized refugee settlement (with around 800 peo-
ple) where people perform four activities: using latrines, fetching water, obtaining
food from a distribution point or accessing healthcare facilities.

Bögel built a model with generic characteristics based on five major refugee
settlements: Za’atari, Bidi Bidi, Cox’s Bazaar, Kakuma and Moria. The study of
these camps allowed to gather mostly demographic but also logistical data, such as
the average size of a household or the number of facilities per capita. For this reason,
Bögel’s model represents a prototypical settlement rather than a representation of
a specific camp.

Finally, because of some design choices, it can be argued that this model is more
fit to be prototypical of a short-term (or in initial phase) refugee settlement than
of a well-established one. One of these reasons is the random location of shelters
(in contrast with the highly organized Kilis camp, for instance (Mcclelland, 2014)).
Another reason is how the food system is conceptualized - the population is thought
to be entirely reliant on a monthly general food distribution and not in the existence
of markets or shops within the camp.

4.1.2 Refugees

When looking into the refugees, they can be narrowed down to two main con-
cepts: refugees perform different activities during the day and they have behavior
that influences what they do. However, this behavior is limited to whether they are
compliant when a mobility restriction is implemented and if they perform or not
activities (depending on their infection status). As mentioned before, refugees in
the current model do not have any dynamic behavior when waiting in queues and
they patiently wait for their turn to be served.

26



CHAPTER 4. MODEL CONCEPTUALIZATION

4.1.3 COVID-19

Finally, regarding the epidemiological subsystem of this model, it is worth men-
tioning two things: the disease progression and the difference between infection and
perception.

Inspired by SIR model developed by Kermarck and McKendrick (1927), Bögel
picks up on the idea of the compartmental modeling and adjusts it to COVID-
19, overcoming some of the criticisms of the classical approach identified in the
literature. This adaptation is done by, instead of only looking at the susceptible,
infected and recovered stages from the typical SIR model, developing a more detailed
disease path. This extension of the basic model also tackles the criticism of the non-
inclusion of the variability of infectivity over time by creating several stages in the
progression. A more detailed overview of this disease progression can be found in
Appendix A.

Moreover, Bögel relaxes the often-made assumption that the probability of get-
ting infected (and infecting others) is the same for everyone by adding a layer of
detail to the agents regarding their age and assigning them different probabilities in
the disease progression, slightly variating the path they follow when infected.

As mentioned before, one of the main challenges related to COVID-19 is the
often-mild symptoms that infected people might have. This makes a considerable
amount of people mistake their symptoms for a common flu instead of a COVID-19
infection. By not realizing they are infected, these individuals continue performing
activities as if they were completely healthy, even if measures of isolation or quaran-
tine are in place. Bögel’s work implements this in a very interesting way. Added to
their infection status, refugees have an extra attribute that related to their infection
perception. By not always syncing these two variables, Bögel creates the wanted
mismatch between an individual’s health status and their perception.

4.2 Queuing model

The queue dynamics are developed in a separate queuing model. This section
focuses on this standalone model, why it was done so and its conceptualization.

4.2.1 Queuing dynamics

In order to understand how people’s behavior impact queues and how the char-
acteristics of queues impact people’s behavior, it is necessary to have a model that
captures these dynamics. Moreover, to be able to evaluate how these dynamics im-
pact further infections, it also needed to integrate epidemiological parameters of the
virus in study. Figure 4.2 shows such a conceptualization. In this diagram it is possi-
ble to identify three main subsystems similar to Bögel’s: the settlement, COVID-19
and refugee behavior. This last one, however, is highly focused on the way people
might behave in a queue, based on the theory by Köster and Zönnchen (see Chapter
2). This is the component that will be further developed in a standalone model. As
it is assumed that queuing behavior is dependent on the personality and rationality
of each person queuing, an Agent-Based Modeling approach is used.
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Figure 4.2: Causal loop diagram of the hypothesized queuing dynamics

4.2.2 Component-based modeling

Aiming for composability and to increase the utility of the work developed, the
queuing behavior is developed in a separate model. This decision is motivated by
the fundamentals of component-based modeling (Hofmann, 2004; Davis & Tolk,
2007): by modeling systems through different model components put together, one
can increase the flexibility of the components and improve maintainability of these -
by defining boundaries on what is part of each component, it is possible to develop
each one individually. By making models a combination of smaller easier to handle
models, it makes it easier to debug and reuse in other systems.

However, this decision entails some drawbacks: from deciding what is included
in each component to different levels of resolutions, small modeling decisions can
influence how easily models can be coupled. A trade-off can be identified in this de-
cision: in order to make the code as clear as possible to this project, agents are called
”refugees” and facilities are called ”food distributions”. This will facilitate coupling
the model with Bögel’s one as it follows the same logic and syntax. Nonetheless,
this decision will limit the comprehensibility of the model when using it in other
contexts (this is covered by writing it very explicitly in the beginning of the code).

4.2.3 Queuing attitudes: Cooperative vs Competitive

As conceptualized by Köster and Zönnchen (2015), people can have two different
attitudes when queuing: cooperative or competitive.

Cooperative people, when faced with a queue for the service they want to use,
identify who is the last person in line and patiently stand behind this person. Every
time a person is served, this line moves a bit forward and people get closer to the
service point. This type of behavior guarantees that a FIFO discipline is followed in
the queue and is, consequently, the standard behavior in queues that are managed.
Based on the principles of fairness and equality and social norms, this behavior is
also often observed in self-organizing queues.
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However, in self-organizing queues, there are people who might opt for a com-
petitive behavior. These people, when faced with a queue, try to jump in the line
and place themselves in a rather frontal position to minimize the time they have to
wait. While some people might always approach queues this way and can therefore
be argued to natural competitive queuers, others might be tempted to resort to this
attitude due to the circumstances they are facing at the moment.

As discussed in the literature review (Chapter 2), Köster and Zönnchen model
this switch of attitudes resorting to equations with a deterministic nature, not al-
lowing the integration of the environment or rationality of agents when deciding to
cut the queue. This limitation is highlighted by the authors - neither observations
of the environment nor behavioral norms that may arise from the group play a role
in the way people queue. This is developed further in this study.

Regarding the applicability of the theory by Köster and Zönnchen, it is relevant
to keep in mind that this was developed in the field of pedestrian simulation and,
hence, never thought to be applied at a refugee settlement level. Moreover, the au-
thors clearly state in their limitations that the model does not include psychological
nor cultural factors. When applying it to a refugee settlement, it can be argued that
there are distinguishing contextual factors - the almost life-dependency on the good
they are queuing for, for instance. However, this theory is still considered to be able
to represent some of the dynamics in the queues at a refugee settlement. By leaving
several variables flexible and to be adjusted by the user, it can be argued that the
model is fit to represent any queuing situation once the values for the variables for
each case are found. A reflection on how these could change according to the context
being modeled can be found in Chapter 5.

4.2.4 Switching attitudes

As mentioned before, Köster and Zönnchen’s model integrates the possibility of
people switching between attitudes. The way they implemented it, however, does
not take contextual factors into account to motivate this change.

In this study, some factors are integrated that make people adjust their behavior.
Although several factors have been identified in literature as potential triggers (such
as long lines, seeing other cutting the queue, urgency to be served, fear of scarcity,
among others), this study will only include the first two.

To allow for this behavior, each individual is conceptualized to have a personal
characteristic referred to as tendency to competitiveness. Each person in the model
has their own value for this variable. Lower values mean that the person has a
cooperative attitude and higher mean that the person is rather competitive. This
value can be continuously updated when a person is queuing. This can happen at
two different moments: if a cooperative person perceives the line as too long when
joining, their tendency to competitiveness increases. When queuing, if a cooperative
person observes people around cutting the line, they update their characteristic
again. Once their tendency to competitiveness has crossed a certain threshold,
their attitude is updated and their behavior will change accordingly. After being
served, peoples’ tendency to competitiveness returns to its initial value. This is
based on the assumption that, while people might adapt their behavior depending
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on the circumstances and their surroundings, their personal nature is not changed.
Finally, it is important to note that, while Köster and Zönnchen’s consider the
switch of attitudes possible both ways, this study only considers the possibility of a
cooperative agent becoming competitive. Detailed explanation of the attitudes, the
switch between them and related formulations can be found in Appendix B.

4.2.5 Behavior heterogeneity

The foundation of this study relies on differences of behaviors among people
that translate into cooperative or competitive behavior when queuing. Another key
point is that people can switch attitudes when queuing by perceiving the queue as
being too long or by seeing other people cutting the line. However, this behavior is
not black and white - not everyone has the same standards for what a long queue is
or immediately becomes competitive when seeing a person cutting the line around
them.

Another important feature that influences the behavior of people when queuing
is the context of the distribution in place. It can be argued that, if NGOs are
giving food to people who have not eaten in a couple of days, there will be a higher
tendency to cut the line, fight and try to be served as soon as possible. However,
if the distribution is of a good that people do not necessarily need to have right at
that moment or know they will have access to in the next day, people who behave
cooperatively will most likely do so during the entire distribution.

The way these two behavior heterogeneities are integrated in the model are
explained in the implementation chapter (Chapter 5).

4.3 XLRM framework

In Chapter 3 the XLRM framework was introduced. By dividing variables into
the four categories suggested by this framework, one can have an explicit overview
of the system and understand the relations among the different components. The
application of this framework to the problem can also support setting the scope of
the study.

4.3.1 Policy levers

This study focuses on food distributions in refugee settlements. While these
events move a lot of people around the camp and hence represent a risk during a
disease outbreak, they are also necessary for the maintenance of the camp and the
survival of its inhabitants. For this reason, it is essential to look into making these
as safe as possible.

Representative-based policies

There are different approaches that can be taken to distribute food in a camp.
Both the UNHCR’s Emergency Handbook (2015) and the food guidelines of the
Emergency Nutrition Network (2011) suggest three systems that are applied at
different times in an emergency. Although these different policies are often used
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depending on the stage of development of the settlements, their potential to control
an infectious disease outbreak has not been studied. For this reason, these will be
the focus of the interventions of this thesis. These policies will be referred to as
representative-based approaches.

At a high level, representative-based policies suggest the use of representatives to
attend the food distribution and take on the responsibility of making the food reach
the final beneficiary. This approach has several benefits. By having representatives
picking up food for a part of the community, the interaction between NGO and
population and the transfer of food becomes smoother and quicker, while the number
of people waiting in line is highly reduced and, consequently, crowds are avoided.
By reducing crowds, these policies have the potential to be beneficial during an
outbreak.

However, resorting to the use of representatives can also result in some down-
sides. While serving each person will take considerably longer (as they are picking
up food for a higher number of people), which can potentially increase the risk of
infection if one of the people involved in the transaction is infected, this strategy can
also sometimes lead to representatives not finishing their task and not distributing
the food to everyone in need (risk of abuse and diversion). This often leads to vul-
nerable people of the community being left behind. Recognizing these downsides,
NGOs often phase this into different stages, with representatives picking up food
for less and less people along time until a system is in place in which the heads of
each family can take on that responsibility (which is then maintained as the normal
functioning of the camp). In some other camps, NGOs have to resort to daily dis-
tributions to each individual in the camp due to the lack of infrastructure to keep
or cook food (example of the informal settlements in the north of France).

Timeslot-based policies

Another potentially promising policy is the introduction of timeslots for people
to attend the food distribution. This technique is used in several places as a response
to the COVID-19 pandemic to minimize crowds and queues in front of shops or
services by strategically scheduling them along the service hours. This policy will
be referred to as timeslot-based policy.

4.3.2 Exogenous uncertainties

As highlighted by Lempert et al. (2003), factors that are outside of the control
space of decision-makers are called exogenous uncertainties.

In this system, two main uncertainties can be identified: the natural behavior
of people living at a refugee settlement and the number of COVID-19 cases at the
beginning of the implementation.

This study focuses on finding policies that can be beneficial given the uncertainty
of human behavior when queuing. For this reason, this uncertainty will be the base
for the scenario creation in the experimentation phase.

The number of COVID-19 cases at the beginning of the implementation of poli-
cies represents an added challenge. First, by having a very limited testing capacity
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available in settlements, there will most likely be a gap between the number of con-
firmed cases and real cases. On top of this, a certain stigma regarding being infected
(and both uncertainty and fear on what happens if the test comes positive (2020))
makes people resort less to tests even if they think they might be carrying the virus.
This increases the gap between the number of confirmed and real cases in a settle-
ment. Identifying this lack of knowledge and the fact that there will most likely
always be a gap plus time and resource constraints for this study, this uncertainty
will not be used for scenario building. However, this will be used for a sensitivity
analysis.

4.3.3 Measures

The underlying assumption in this study is that the way people queue has an
influence in the way an infectious disease spreads. For this reason, it is relevant
to take both the queuing and the outbreak dynamics into account when measuring
the performance of the system. With this in mind, the following Key Performance
Indicators (KPIs) are suggested to be used as metrics:

• Average time in queue at the food distribution event

Including both the time waiting in queue and the time needed to be served,
this metric is used to evaluate the queuing dynamics. One of the hypotheses
is that the longer people queue, the more infections there will be. This metric
allows the comparison of the average time in queue per policy in order to
measure their impact on the system. This metric can also be looked at as
related to one’s individual utility (since competitive people want to maximize
their utility, they cut the line to minimize their time in queue)

• Cumulative COVID-19 infections

This metric is used to evaluate outbreak dynamics. By looking at the cumula-
tive number of COVID-19 infections it is possible to assess the overall impact
of policies and their impact in the spread of the infection. The steepness of
this curve will also allow to understand when the outbreak starts taking off,
giving insights on the temporal dimension of the spread.

Note, however, that these KPIs only represent one side of the story. The limi-
tation of using these metrics to measure the performance of the system is discussed
in Chapter 9.

4.3.4 Relationships

Finally, the R in XLRM stands for relationships. In other words, this can be
considered as the model developed throughout the study - the model developed by
Bögel (2020) including the queuing dynamics developed (i.e. the coupled model).

During both the process of model conceptualization and implementation, some
decisions have to be made regarding the values of some parameters, the nature
of some of these parameters and some relationships between variables. These can
be called structural uncertainties. To evaluate their impact in the behavior of the
system, a sensitivity analysis can be performed.

32



CHAPTER 4. MODEL CONCEPTUALIZATION

4.4 Conclusions

This chapter focuses on the conceptualization phase of this study. First, the
existent model developed by Bögel and the logic behind it is analyzed. This allows
to set a common understanding of the model and its dynamics. Then, the queuing
model is conceptualized. By combining theories present in the literature in both
pedestrian modeling and queue psychology, a narrative for the queuing model is put
together and the dynamics are discussed. Finally, the XLRM framework is applied
to the system in study, allowing a better view of the interventions, uncertainties,
metrics and relationships taken into account.
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Chapter 5

Model Implementation

This Chapter focuses on the implementation phase of this study. As indicated
previously, the queuing behavior is modeled in a stand-alone model which is later on
integrated in Bögel’s prototype. For this reason, this section reporting on the model
implementation is divided into two different topics: the queuing model (section 5.1)
and coupling this model with the model developed by Bögel et al. (2020) (section
5.2). Then, the model is verified in Section 5.3. Finally, Section 5.4 provides a short
recap of this chapter.

For detailed information on the software implementation of the queuing and the
coupling of the two models see Appendix B and C, respectively.

5.1 Queuing model

This subsection covers the topics related to the implementation of the queuing
model focusing on 6 main topics: modeling environment, model components, behav-
ior heterogeneity, model interface, time, parameterization and model verification.

5.1.1 Modeling environment

To integrate queuing dynamics in the study, a queuing model was developed in
Netlogo. Netlogo is a “multi-agent programmable modeling environment” designed
by Uri Wilensky (Wilensky, 2019). Due to its free, open-source nature and ease
of use, Netlogo is often the chosen environment in different settings ranging from
education to scientific articles.

The main motivation for this choice of modeling environment is two-fold: both
because the original model built by Bögel (2020) was developed in Netlogo and
because of my familiarity with the environment. Moreover, Netlogo is also one
of the most developed ABM tools, meaning that there is plenty of documentation
available to support the model building process. Finally, and taking into account the
importance of visualization to understand queue formation and spatial movement
of agents, Netlogo’s built in view of the developments of the system and its agents
are a big advantage of the tool for the problem to be modeled.

It is, however, important to be aware of the limitations of this choice. Two of
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the limitations of NetLogo that are worth highlighting are its synchronicity and the
slow computational performance. Due to its synchronous system, agents do actions
one after another without true parallelism. This can have some implications for
the problem at hand (e.g. some agents cutting the line in the radius of cooperative
agents might be missed by them if they only cut the line after the cooperative agent
has checked its surroundings). Further explanation on how to balance the effect of
this synchronicity can be found under the paragraph regarding time. Moreover, the
trade-off between ease of use and modeling performance (Shook, 2015) results in
rather slow performance in NetLogo. A direct implication of this disadvantage is
the time it takes to run experiments. Considering the time constraints of the study,
this will limit the number of runs that can be performed. For this reason, the TU
Delft server will be used during the experimentation phase of this thesis. Another
drawback of using NetLogo is the lack of code testing tools to verify and debug
the model. To overcome this disadvantage, meaningful print statements are used,
together with giving colors and updating values of agents’ attributes that can help
identifying where problems come from.

Another point that is relevant to highlight is the appropriateness of the tool for
the system and problem being modeled. If the ultimate goal of this study were to
purely look into queue formation and proximity between people, a crowd simulation
tool such as MassMotion would have been more appropriate. However, this thesis
aims to look at a bigger picture problem in which different systems interact, inte-
grating behavioral changes while they do so. For this reason, ABM and the specific
choice of NetLogo are considered fit for this study.

5.1.2 Model components

The queuing model focus purely on the queuing process when refugees pick
up their food. For this reason and in order to abstain from further complexity,
this model only has two types of agents: refugees and food distributions. Further
information on these components can be found in Appendix B.1.

An important thing to note is the adaptability and purpose of the model. Al-
though the queuing model was developed specifically to be integrated in Bögel’s one,
the model can be used in any situation in which a queue can be observed. Although
at the moment the model agents are called refugee and food distribution, these can
easily be changed to a broader names (such as citizen and service, for instance).

Refugees

Represented by agents in a human shape, refugees are the active component of
the model. These agents have a list of attributes that are supportive to their behavior
and actions. While some of these are key to define the behavior of the agent, some
are supportive and are used as a solution to store information and share it across
functions. Two attributes that are worth noting are the tendency-to-competitiveness
and the attitude, which will dictate the behavior of each agent.

When created, each agent gets a value for their tendency to competitiveness
(which is stored as natural-tendency). This value can vary between 0 and 100 and
will dictate the attitude of the agent (between cooperative, if the value is low, and
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competitive, if they have a high value).

In their normal state, refugees move around the world (NetLogo syntax) with
no defined direction. This is implemented using a random walk algorithm. At some
point, these agents get the task to get food (depending on their preferred-fooddistro-
time). When so, and independently of their queuing attitude, they face the food
distribution point and walk towards it. What happens next depends on the attitude
of each individual: cooperative agents queue behind the last person in line, while
competitive people place themselves in a frontal position to be served quicker.

Based on the literature from Köster and Zönnchen (2015), there are two main
types of agents: cooperative and competitive. By default, the whole population is
initialized as cooperative. To add competitive people it is necessary to adjust the
value of ”percentage-competitive” in the interface. These two attitudes will dictate
how agents behave in a queue. Cooperative agents, when faced with the queue to
join, identify how long it is. If the queue is longer than a certain acceptable threshold,
then they adjust their tendency to competitiveness (initialized as natural-tendency)
by increasing its value (storing it as tendency-after-queuing). While they wait in the
queue, they also check their surroundings - if there are competitive person jumping
the queue in their vision, they increase their tendency to competitiveness (storing
it as tendency-to-competitiveness). If the value of a cooperative agent’s tendency
to competitiveness surpasses the threshold that separates the two attitudes, these
agents remove themselves from the position in which they were placed and jump
a few places in line. To guarantee that these agents who changed attitude are
identifiable, their new attitude is named new-competitive. Competitive agents, on
the other hand, immediately join the queue in a place that is not the last one in the
queue (breaking the possibility of a FIFO dynamic).

For a more comprehensive overview of this behavior, please see Appendix B.2.
The appendix also covers how this is implemented in the software and the spatial
placement of agents.

Food Distribution

The other model component is the food distribution point. This is a simple
static point represented by a truck with only four main variables: the location, the
service-time (time needed to serve an agent), schedule (both when it open and when
it close) and waiting-list (explained below).

As NetLogo does not necessarily have a built-in way of dealing with queues, these
were modeled by using lists. This also allowed to use the information in the list to
guarantee that each person waited in a place relative to the person who was queuing
before them. This is quite straight forward for cooperative agents. However, one
of the challenges was guaranteeing that agents who are not physically in the queue
(the competitive and new-competitive agents) still have their turn to get food. This
was solved by using two different queues: the physical-waiting-list and the serving-
waiting-list. While the first is composed purely by cooperative agents and is used to
model the actual queue, the second dictates the order by which the server is going to
give food to the refugees - i.e. while some cooperative agents might be in the second
spot in the physical queue, there might be competitive agents who have managed
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to sneak in in front of them and will be served first (consequently be placed first in
the serving-waiting-list).

When an agent reaches the first place of the serving-waiting-list, they stay there
for a time equivalent to the service-time. Once this time has passed, the refugee
has been served. This triggers two events: the served refugee leaves the queue and
returns to their random walks and everyone else in the queue updates their position
by changing both their queue related attributes and stepping forward.

A more detailed mapping of these sequences of interactions between the food
distribution and the agents can be found in Appendix B.2.

5.1.3 Behavior heterogeneity

As mentioned in the conceptualization, there is always heterogeneity of behavior
in a group of people. This heterogeneity can be associated to two main sources:
individual personality and the context. Both of these are integrated in the model
as follows.

The most accurate way to account for each agent’s reaction to the same situation
(e.g. their personality) would be to have individual attributes with an agent’s own
value for certain variables (such as impact-seeing-cutting, impact-long-queues and
acceptable-length) which are now global variables. However, this would lead to the
creation of too many variables and increased complexity while not being the focus
of this study (and a source of uncertainty). A simplified solution to this was used by
creating agents with different (random) tendency-to-competitiveness values (stored
as natural-tendency). This means that, if the natural-tendency of agent A is 40
and agent B’s is 20, it will take more people cutting the line to make agent B turn
competitive.

To account for the context of the distribution and how this might influence
people’s behavior, the threshold that distinguishes cooperative from competitive is
provided in the interface as a slider and hence taken as an input and not a fixed
parameter. In a situation in which there is a clear fear of scarcity, this threshold-
to-competitiveness can assume values around 20, for instance. This means that any
agent that has a tendency to competitiveness above 20 will behave competitively.
A quiet and non-essential distribution can have a higher threshold. For example,
if the threshold is set at 80, it takes a lot to turn naturally cooperative people
into competitive ones. Another variable that can be used to describe the context
of the distribution is the percentage-competitive. If the situation being modeled is
one of a culture where queues are respected or extremely managed, the percentage
of initially competitive people can be set to a low value. If the population being
modeled does not follow queues by nature, this variable can be set to a high value.
Finally, a third variable that can be used to describe the behavior of the population
is the distribution-pick-up. This variable will determine each agent’s preferred time
to attend the food distribution (preferred-fooddistro-time) and can be argued to be
a way of describing different situations. For example, if there is food scarcity and no
guarantee that each person can have access to goods, it can be argued that agents
will try to attend the food distribution as early as possible. In this case, a Poisson
distribution with a positive real number (represented by poisson-mean) of 1 can be
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argued to be the best representation of refugee behavior. However, if the context is a
very warm summer day, it can be argued that refugees will try to avoid the warmest
hours of the day, attending the food distribution later in the day. To simulate this
behavior, a distribution with a later peak is needed.

5.1.4 Model interface

As mentioned before, one of the advantages of using NetLogo is its built-in
visualization of the system developments. Since the model is used to simulate a
queue, being able to observe how agents queue and what they do is an important
feature to verify the model.

For illustration purposes, Figure 5.1 shows the user interface of the queuing
model. This interface has four main components: the function buttons (in grey), the
user input parameters (in green), the monitors (in beige) and the world (in black).
The function buttons are the ones one has to press to run the model. The user input
parameters include contextual variables that help characterize both the population
being modeled and their environment (such as the number of agents, the distribution
of the time they pick up food, etc.), uncertain parameters but also the policies that
can be implemented. The monitors simply show the state of the system (such as
the time, broken down into days, hours and minutes). In the world, it is possible
to distinguish three types of agents: the food distribution point (represented by the
pink truck) and two types of refugees. The two colors of refugee agents represent
their natural attitude, with the orange agents being the cooperative ones and the
cyan the competitive ones.

Figure 5.1: Interface of the queuing model

5.1.5 Time

Real queues, their formation and interactions of people while queuing occur in
a continuous real time space. This means that agents can act parallelly and multi-
ple things can happen at the exact same time. However, this level of similarity to
reality is not possible to obtain in computer-based models. By working with timed
instruction clocks and performing rounds of operations within each time step, con-
ventional computers and any models developed in those are bound to this discrete
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nature (van Dam et al., 2013). This means that, instead of having true parallelism of
actions, actions happen sequentially (as highlighted before as one of the limitations
of NetLogo in subsection 5.1.1). This can lead to some unwanted consequences -
for example, in this queuing model, it can happen that someone cuts the line after
the cooperative agent has checked their surroundings, making the second agent not
consider the first one’s transgression when calculating their tendency to competi-
tiveness. Although this is a rather simple example that might seem to have little to
no impact in the bigger picture, the repetition of this throughout runs can highly
influence the results obtained.

A way of balancing this is by randomising the iteration order of agents at each
step (van Dam et al., 2013). NetLogo does this by randomising the agents when
working with agent-sets. By doing this, NetLogo guarantees a certain variability
between runs that can guarantee there is not a constant benefit to one agent or that
leads the model in a certain direction. This leads to the point of reproducibility. Dur-
ing the initial experimentation and verification phase of the model, it is important to
have a fixed seed set up to guarantee that the randomisation is the same throughout
runs. This is done by setting up a random-seed which generates a pseudorandom
number generator’s number sequence in its turn. This sequence ensures that all the
stochastic processes of the model generate the same value throughout runs. Note
that it is necessary to remove this fixed seed when running multiple replications of
the same experiment, otherwise the value of running several replications is gone.

Finally, it is necessary to discuss the time dimension of the model. As mentioned
above, running models means having a sequence of time steps at which different
actions happen. This time step can also be referred to as time tick. While the
concept of a time step is a purely modeling one, trying to translate it to a reasonable
equivalent in the real world can help interpretation and making sense of results. For
this reason, the choice of the time step and its granularity is highly dependent on
the system to be modeled. As queues and queuing dynamics happen rather fast,
it is necessary to have a certain time granularity to allow for the caption of these
interactions. For this reason, a time tick is thought to represent around one minute.

5.1.6 Parameterization

To run the model, it is necessary to find values for each one of the model vari-
ables. When possible, these were based on literature about queuing. However, this
was not always the case as some of the variables were conceptualized for this specific
study. For these variables, choices had to be made. These choices are explained in
Appendix B.3. Moreover, the variables that describe the mix of the original attitudes
of the population are sampled and used to build scenarios.

5.1.7 Model Verification

When building a model (and before using it to run experiments), it is impor-
tant to evaluate if the model was correctly implemented. This step is called model
verification.

As the model was constantly tested and altered, it can be argued that model
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verification was done in an iterative way. Verification tests included observing indi-
vidual agents, printing error statements and extreme-condition testing.

When performing multi-agent testing and testing the model for a highly compet-
itive population (represented by 40% of the population being naturally competitive),
the model produced unexpected results with a lower average waiting time across all
queuing agents than when tested with 30%. While this is an unexpected result, it
can be justified by the simplification made that people who cut the line only do it
once. Although this simplification does not play significant role when evaluating
populations with a higher tendency to follow queues, it can be argued that it will
limit the model’s capability of capturing desired behavior in a highly competitive
population. For this reason, it can be concluded that the final version of the model
is verified to represent populations with a low natural competitiveness. However, it
should not be used to model populations with a percentage of naturally competitive
agents higher than 30%. A more detailed discussion on this limitation can be found
in Chapter 9. More information on how the verification tests were performed can
be found in Appendix B.6.

5.2 Model coupling

In this section, coupling the queuing model and the model developed by Bögel
(2020) is reported upon. The coupling of these two models is essential in order to
get insights on how different policies applied at the food distribution level can affect
the number of COVID-19 infections in a settlement based on the queuing attitude
of people.

5.2.1 The coupling process

As mentioned before, Bögel modeled a refugee settlement where agents perform
daily activities. As the focus of this study is to observe the relation between queuing
dynamics and the number of COVID cases resulting from the food distribution
event, it is necessary to integrate the queuing behavior developed in the model
when refugees attend food distribution. The coupling process targets this: coupling
the two models is done so that refugees picking up food in Bögel’s model follow
the more complex queuing behavior simulated by the queuing model. At a high
level, this means that the queuing model needs to be integrated in Bögel’s model as
suggested in Figure 5.2. A more detailed diagram on the coupled model flow can be
found in Appendix C.

The actual process of coupling the models can be done in two different ways: by
creating a NetLogo library with the queuing model or by integrating the queuing
model code in the original model. To simplify the process and due to the lack of
familiarity of NetLogo libraries, the second option was chosen. This allowed for a
quick integration which was highly valued due to time constraints. However, the
creation of a NetLogo library continues to be a potential further step in this work
in order to make the queuing model widely available for future use.
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Figure 5.2: High-level dynamics of coupling the queuing model and Bögel’s work

5.2.2 Challenges

Coupling models developed by different authors often represents a challenge.
Obstacles can rise due to different levels of detail between models, the model logic
or simply due to syntax used in the code. A way to minimize obstacles to this
process is to know the main model in a high-level of detail. For this reason, a strong
focus was put into understanding the model developed by Bögel and its dynamics.
This was done through carefully reading the documentation of the work, reading and
making sense of the code and by asking Bögel for some clarifications directly. One
clear model choice made to facilitate the coupling of the models was the decision
of taking a time tick as a minute. By creating two models with the same temporal
granularity, it is easier to guarantee a rational development of time and events along
runs. For more information on the coupling challenges, see Appendix C.1.1.

5.3 Model verification

The coupling process was done by integrating a verified model (the queuing
model) into another verified model (developed by Bögel). However, to test if the
coupling process was correctly done, the coupled model was subjected to extra ver-
ification tests. After performing these, it was concluded that the coupled model is
also verified (with the previously mentioned limitation of not being fit for represent-
ing populations with more than 40% of naturally competitive individuals). More
information regarding these tests can be found in Appendix D.
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5.4 Conclusions

This chapter focuses on the model implementation in NetLogo. Due to the scope
of the study, this chapter has a dual focus: the queuing model and the coupling of
the queuing model with the original by Bögel (2020). First, the queuing model and
its components are discussed. Then, the coupling process and its challenges were
mentioned. Finally, the coupled model was verified. Detailed information about the
software implementation of the models can be found in Appendix B and C. The
coupled model is used for running experiments in the next chapter.
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Chapter 6

Design of Experiments

This section focuses on the Design of Experiments (DoE) phase of this study.
Experiments are combinations of specific model parameters and sets of policies used
to analyze model behavior and get insights on the system being modeled. This
section focuses on the experiments used in this study, their logic and their design.
Note that these experiments are conducted in the coupled model (i.e. Bögel’s model
with the more complex queuing behavior) and are designed to answer the main
research question.

The DoE is rooted in the XLRM framework introduced in Section 3. The ob-
jective of the experiments is to observe how the Measures (i.e., Key Performance
Indicators) that quantify Relationships in the system (i.e., model / infection dy-
namics) behave and respond to changes in eXogenous factors (scenarios) and Levers
(policies). This chapter is therefore divided accordingly into four parts. First, in
Section 6.1, the policies are introduced and formalized in terms of values to be used
in the model. Then the Key Performance Indicators are reviewed (Section 6.2). Af-
ter this, in Section 6.3, the scenarios in which the model is simulated are introduced.
Finally, the experiments to be conducted are outlined in Section 6.4, together with
their formalization.

6.1 Policies

The main motivation of this study is to understand how the process of distribut-
ing food in a refugee settlement can be made safer during an outbreak. This is done
by evaluating how infections spread and how this spread changes depending on the
policy implemented at a food distribution level.

As mentioned in Chapter 4, two different types of policies will be implemented:
representative-based and timeslot-based policies. Table 6.1 and Table 6.2 show the
breakdown of these policies, respectively.

As shown above, the policies vary either the number of representatives that
attend a food distribution event (i.e., representative-based policy) or the use of
timeslots for food distribution (i.e., timeslot-based policy). We omit consideration
of the policy in which food distribution events are eliminated entirely. Such a policy
is unrealistic given that food distributions often represent the only reliable source
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Table 6.1: Breakdown of the representative-based policies

Policy Size of the
represented
community

P0 Distribution to the head of each household
(Baseline)

5 people
(size household)

P1 Distribution to large groups
50 people

(10 households)

P2 Distribution to medium groups
25 people

(5 households)

P3 Distribution to small groups
15 people

(3 households)

Table 6.2: Breakdown of the timeslot-based policy

Policy Explanation

P4 Timeslot for distribution Timeslots are given to people in order to
spread visits to the food distribution
point uniformly over the day

of food for the population of a temporary settlement. It is assumed that refugees
are dependent on food distribution events for subsistence and that such events must
continue even in a pandemic.

To be able to evaluate the impact of different policies, it is necessary to have
a baseline for the system. The baseline is selected as the situation in which each
head of household picks up food for the household (previously identified as policy
P0). This choice is made given the wide-spread implementation of this policy in
real life, as noted in literature on food distribution and interviews conducted with
food actors in different camps.

6.1.1 Policy Formalization

To able to implement the policies as parameters to use in the model, it is nec-
essary to consider how these policies differ from each other and how they can be
translated into model inputs. Table 6.3 shows the formalization of the representative-
based policies and Table 6.4 of the timeslot-based policy.

Representative-based policies entail community representatives attending food
distribution events for food collection. The community representative represents
multiple households, in contrast to having each head of household attend a food
distribution event. These policies are differentiated in terms of two components:
(i) the percentage of total population attending the food distribution, which can be
calculated from the number of people every representative is picking up food for and
(ii) the total amount of time needed to serve each person in line.

Based on the logic that picking up food for more people will require additional
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time, it can be argued that the larger a community a representative represents,
the larger the amount of time needed to serve that representative. However, it is
challenging to select precise values that represent the actual time needed and to de-
termine how these values differ according to the size of the community represented.
Based on personal experience at a refugee settlement coordinating daily food dis-
tributions to individuals, I estimate that the serving time is around one minute per
person. From interviews with food actors currently working in Cox’s Bazar where
food is distributed once every month to the head of the family (i.e., the baseline in
this study), the serving time is around four minutes. Note that this is dependent on
how often food distribution occurs and consequently how many days’ worth of food
are being distributed.

All representative-based policies are broken down into quantified values in Table
6.3 which can be input into the model.

Table 6.3: Formalization of the representative-based policies

Policy % of the population that
attends food distribution

Service-time
(minutes)

P0 (Baseline) 20 4
P1 2 10
P2 4 7
P3 7 6

The timeslot-based policy can be introduced in conjunction with any representative-
based policy or by itself. This policy can be implemented in the model by changing
the distribution of times in which community representatives pick up their food
(Table 6.4). Instead of using the distribution chosen in the interface (distribution-
pick-up), implementation of this policy results in a uniform distribution of all repre-
sentatives attending the food distribution across the opening hours of the food point.
This results in a uniform distribution for the values of preferred-fooddistro-time in
the model.

Table 6.4: Formalization of the timeslot-based policy

Policy Distribution of people attending food distribution

P4 Uniform

It is important to note that these policies are implemented while there is a
constant “keep 1.5m” general rule in queues - only respected by cooperative agents
(see model assumptions 9.1).

Due to time and resource constraints of this study, the range of policies to be
tested is quite limited. However, the results will show if it is a relevant direction to
go further in. If so, it is recommended that more time is put into developing policies
and seeing their potential effect in the system. For this reason, this study should
be looked at as a starting development in the direction of making food distribution
safer during an infectious disease outbreak and not as a plan on how to act.
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6.2 Key Performance Indicators

In applying the XLRM framework to the topic of this study, the Key Per-
formance Indicators (KPIs) are used to represent measures of the model, and are
described as follows:

• Average time in queue at the food distribution event

• Cumulative COVID-19 infections

6.3 Scenarios

Experiments are used to compare the performance of policies across different
scenarios. Considering this problem is defined by a certain uncertainty inherent to
some of the system variables, it is not straight forward to come up with scenarios
to test policies on. In cases like this, techniques for deep uncertainty modeling
can be used to test policies under a wide range of possible scenarios. However, such
techniques are also known for being time consuming and computationally expensive.

Given time and computational constraints, the decision to test policies across
a defined set of scenarios was made. Considering the scope of this project, these
scenarios were based on the mix of attitudes in the initial population (i.e., agents
being cooperative or competitive by nature). These scenarios are formalized through
differences in the percentage-competitive variable in the model, which will take the
values of 0%, 10%, 20% and 30%. These scenarios are referred to as S0, S1, S2
and S3, respectively (Table 6.5).

Table 6.5: Breakdown and formalization of the scenarios

Scenario percentage-
competitive
(%)

S0 The whole population starts off as cooperative 0
S1 10% of the population starts off as competitive 10
S2 20% of the population starts off as competitive 20
S3 30% of the population starts off as competitive 30

6.4 Experiments

A potential approach for analyzing model behavior and the influence of different
policies under different scenarios is to sample all the policies across all the scenar-
ios previously identified. However, given the computational constraints of running
the model, a fractional factorial design approach was implemented by dividing the
experiments into smaller batches. This approach simulates only a portion of the
possible combinations of model parameters, therefore yielding model outputs in a
more timely manner and enabling quicker identification of errors in the model or
experimental setup.
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Table 6.6 outlines the conducted experiments. For each experiment, the imple-
mented policy, the range of scenarios in which the policy is tested and the overall
focus of the experiment is outlined.

Table 6.6: Design of Experiments

Experiment Policies Scenarios Focus of experiment

E0 P0 S0 S1 S2 S3 Baseline policy in each scenario
E1 P0 P1 P2 P3 S0 Effect of each policy when 0%

competitive
E2 P0 P1 P2 P3 S1 Effect of each policy when 10%

competitive
E3 P0 P1 P2 P3 S2 Effect of each policy when 20%

competitive
E4 P0 P1 P2 P3 S3 Effect of each policy when 30%

competitive
E5 P0 (P0 + P4)

(P3 + P4)
S1 S3 Effect of timeslot policy in each

scenario

Note that, to account for the stochasticity of the model, each combination of
policy and scenario was run with 10 replications. All the experiments were set to
run until 90 000 time ticks (which is equivalent to approximately 62 days in the
model, considering each time tick is 1 minute).

The values of the remaining variables are maintained as constant throughout all
the experiments. The values used for these variables can be found in Appendix C.2.

6.4.1 Server

The high time granularity of the model (leading to a high number of ticks needed
to simulate 62 days) makes running of the model computationally intensive and time-
consuming. Additionally, the computation time required per time tick increases after
infections begin to spread (i.e., at approximately time tick 72 0000). For this reason,
a single full run of the model requires extensive computational power and time and
represents a major constraint on the flexibility of model use in the experimentation
phase.

To address this challenge, a cluster server was used to perform the experiments
described in this chapter. The cluster server at TU Delft contains numerous cores,
which enabled simultaneous execution of multiple runs of the model. This access to
additional computational capacity made possible additional runs and replications of
the experiments, which allowed closer evaluation of the impact of stochasticity on
model results, thereby increasing the robustness of the analysis.

Given that the model must be run headless (i.e., without a Graphical User
Interface), a script for executing the experiments on the server was developed. More
information on the scripts used to run the model in the cluster can be found in the
GitHub repository of this project.
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Sensitivity Analysis

Along the process of this thesis, both during the conceptualization and the
implementation phase, abstractions and assumptions had to be made. Moreover,
the model simulates a highly uncertain system with parameters for which the value
is not fully known. It is, for this reason, useful to perform a Sensitivity Analysis
(SA) to understand the impact of these decisions and the scenarios on the final
results of the model. By sampling the input parameters across a certain range of
values, a sensitivity analysis can provide a better understanding of the model and
its results. Ultimately, the goal of the sensitivity analysis is to understand how
robust the conclusions taken from model use are and which inputs the model is
more sensitive to.

First, in Section 7.1, the sensitivity analysis approach is explained. Section 7.2
and Section 7.3 cover the input parameters and the outcomes of interest, respectively.
Then, Section 7.4 provides the results of the analysis and their implications. Finally,
Section 7.5 summarizes the conclusions of the chapter.

7.1 Global Sensitivity Analysis

There are three types of sensitivity analysis: global, regional and one-factor-
at-a-time. Considering that the model developed is non-linear and dynamic, it is
considered that a one-factor-at-a-time analysis is not the best approach because it
focuses on the impact of changes in one input at a time (Saltelli et al., n.d.). For this
reason, a global analysis is performed. When performing a global SA, the inputs are
sampled at the same time instead of individually. This allows to identify situations in
which inputs have an impact in combination with other inputs (interaction effects),
which would be ignored when conducting a one-at-a-time sensitivity analysis.

The sensitivity analysis is performed through feature scoring. Feature scoring
is a machine-learning alternative to the more traditional global sensitivity analysis
techniques (Kwakkel, 2017). This was chosen due to the time and computational
constraints that make a Sobol analysis challenging to perform (as they need a higher
number of scenarios in order to provide useful insights, leading to a number of runs
that would take weeks to perform with this model) and its ease of use. By resorting
to feature scoring, it is possible to identify the relative importance of different input
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parameters for specific outcomes.

This analysis is divided into five steps. First, the parameters to sample and the
outcomes of interest were specified. Then, BehaviorSpace (NetLogo experimenta-
tion tool) is used to sample the parameters and perform the necessary runs. Then,
the data generated by BehaviorSpace is restructured to have the correct shape for
analysis. After having the data structured, the sensitivity analysis is performed by
using the feature scoring functionality of the Exploratory Modeling and Analysis
(EMA) workbench (Kwakkel, 2017). Finally, the feature scoring results are visu-
alized in a matrix. Since the model is too computationally expensive to run on a
normal computer, the BehaviorSpace step was performed on the TU Delft cluster.
This allows for the use of more cores and, consequently, a faster running time of the
experiments all together. From these runs, an output file of 33GB was generated,
making its analysis and handling an added challenge. For this reason, the process of
structuring the data was divided into two steps: i) reducing the size of the csv file
outputted by the experiments in order to be able to work with it and ii) processing
it to only contain needed data to input for the EMA analysis. Both the scripts
involved in this process can be found in the GitHub repository of this project.

7.2 Input parameters

In order to maintain the number of runs within a reasonable order of magni-
tude, four different parameters are varied in the sensitivity analysis. The rest of
the model input parameters are left constant and assume the values used during
the experimentation phase. The varying parameters are as outlined in Table 7.1
and cover different parts of the model. The impact-long-queue represents the im-
pact that seeing a long queue has in an agent, which is a variable created during
the conceptualization part of this study. The threshold-competitive represents an
equally conceptual parameter: this is the value from which agents start behaving
competitively (once their tendency-to-competitiveness exceeds this threshold, agents
start behaving competitively when in the queue). The initial-covid-cases (equiva-
lent to the initial-corona-number variable in the model) represents the number of
COVID-19 infected people at the beginning of the simulation (day 0). Finally, the
service-time is the time that it takes to serve an agent in the food distribution pro-
cess. These parameters are varied over a range of +- 50% of their default value used
in the experimentation phase, as suggested by Kwakkel and Pruyt (2013) (except
for the initial-covid-cases, which was varied between 1 and 5).

Table 7.1: Input parameters for sensitivity analysis

Parameter Value

impact-long-queue [3, 4, 5, 6, 7]
threshold-competitive [30, 40, 50, 60, 70]
initial-covid-cases [1, 2, 3, 4, 5]
service-time [2, 3, 4, 5, 6]

Considering the sampling values of these parameters, this results in the simula-
tion of 625 scenarios. To account for the stochasticity of the model, 10 replications
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of each scenario are conducted, leading to a total of 6250 runs to be conducted.
These are tested under the baseline (where the head of each household attends the
food distribution) and under scenario 1 (where 10% of the population is naturally
competitive when queuing for food). Due to the extensive time needed to run the
model, it was decided that the sensitivity analysis simulates 30 days (instead of the
60 days of the rest of the experiments). Even with the runs shortened and using the
TU Delft cluster, the 6250 runs took 60 hours to be simulated.

7.3 Outcomes of interest

Finally, it is necessary to decide which are the outcomes of interest to be eval-
uated in the sensitivity analysis. These are the outcomes of which sensitivity is
relevant to be evaluated in order to analyze the model. Given the dual focus of the
model (both the queuing and the COVID-19 dynamics), three outcomes of interest
were decided for each. To study the impact of the uncertainty in the input param-
eters on queuing dynamics, the average time in queue, the maximum queuing time
and the minimum queuing time are chosen. For the COVID-19 dynamics, three
moments in time are chosen to be evaluated: the cumulative number of cases before
the first food distribution (in day 7), the cumulative number of cases after the first
food distribution plus an incubation period (in day 13) and the cumulative cases in
day 30 (which in this experiment matches with the end of the run). Note that the
food distribution occurs at day 8. By choosing these days, the number of infections
occurring at the food distribution can be focused on and the impact of the input
parameters in this can be evaluated.

7.4 Results

After performing the sensitivity analysis, the feature scoring matrix in Figure
7.1 was generated. From this analysis, it is possible to observe two main drivers of
the model - the service-time for the queuing related outcomes and the initial-covid-
cases for the infection related outcomes. The sensitivity of these outcomes to these
input parameters was expected and they highlight the importance of looking into
these two parameters.

The overall little relative impact of the service-time in the variability of the
number of cumulative cases along time can be related to the limited difference of
the values that this variable was sampled over (Table 7.1). From this, it can be said
that taking six minutes to serve a person instead of four minutes does not play a big
(relative) role in the evolution of the outbreak (but it heavily does in the queuing
dynamics and the time people spend queuing).

From the matrix, it is clear that the initial-covid-cases has the main and dom-
inating effect in the development of the outbreak along time. However, it is also
possible to observe that the relative impact of the initial-covid-cases considerably
decreases between the total number of cases before and after the food distribu-
tion (total-infected-beforedistribution and total-infected-afterdistribution), increasing
again in day 30 total-infected-day30. This implies that, although the parameter stays
the main driver of the infection outcomes over time, after the food distribution event
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Figure 7.1: Sensitivity Analysis: Feature Scoring matrix

there are other parameters that are partly responsible for the variability of the num-
ber of cases. From the matrix, it is possible to observe that both service-time and
threshold-competitive have a higher impact after the food distribution than they
have during in other moments of the run. This variation suggests that, although the
queuing process seems to have little relative impact on the number of cases at the
end of the run, it plays a larger role at after the food distribution. Specifically, and
taking into account the difference between the impact of the two parameters, this
suggests that, more important than the time in queue (service-time) is the behavior
in queue (threshold-competitive).

From the analysis of sensitivity of the number of total cases after food distri-
bution (total-infected-afterdistribution) it can also be observed that the threshold-
competitive plays a bigger role than the service-time. This means that, when looking
into queues and how to make them safer, it is more important to control the behavior
of people and aim for a cooperative behavior than to speed the serving process. The
impact of the threshold-competitive, however, seems to reduce over time (in specific
at day 30). This goes in line with the results obtained before and the converge of
the system into a near-total infection across all scenarios. Finally, it is possible to
observe that none of the outcomes of interest is relatively sensitive to changes in the
impact-long-queues.

Overall, Figure 7.1 suggests that the infection model is extremely sensitive to
the size of the outbreak by day 0. Although this is an expected outcome that
highlights the necessity of quick action when trying to control an infectious disease
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Figure 7.2: Sensitivity Analysis without key sensitivity analysis: Feature Scoring matrix

outbreak, this is a parameter that decision-makers have little control over (other than
constantly testing and being aware of the state of the system at all times, which
can be argued to be extremely challenging). For this reason, and considering that
the feature scoring matrix shows the relative importance of parameters, a second
sensitivity analysis is performed without considering the key sensitivities (initial-
covid-cases and service-time).

Not considering the key sensitivities identified previously, a second sensitivity
analysis was conducted with the two variables that showed the lowest values in the
first analysis. Figure 7.2 shows the feature scoring matrix for the second sensitivity
analysis performed. From these results, it is possible to conclude that the threshold-
competitive is a larger driver of almost all outcomes of interest than the impact-
long-queues. These parameters are connected, with the impact-long-queues being
connected to the competitiveness agents have that can, or not, pass the threshold-
competitive and make them behave competitively. However, this sensitivity analysis
shows that, between these two variables, when making decisions at a food distribu-
tion level, the focus should lie on increasing the threshold that makes people behave
competitively than on their interpretation of long queues. Techniques to increase
the threshold to become competitive can include clear communication, increasing
confidence in the system, among others. This will be further discussed in Chapter
9.

It is important to mention that this analysis was conducted while maintaining
the natural competitiveness of a population on 10% (S1) and with policy 0 (baseline)
(P0) implemented. By maintaining these parameters fixed, potential interaction
effects could have been missed and the sensitivity analysis could lead to other results
if conducted under different conditions.

When designing policies, a sensitivity analysis can be performed first to explore
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what factors influence the system and understand their relative importance. With
this information, one should reflect on which factors one can have an influence in and
design policies accordingly. These policies can then be tested again in a sensitivity
analysis to evaluate the scenarios in which they are successful. As this analysis often
provides insights on the dynamics of the system, it should be used iteratively and as
a way of guiding the decision-making process in deep uncertainty. However, due to
the time constraints of this project and the late execution of a sensitivity analysis,
this was not the direction of steps of this study.

7.5 Conclusions

This chapter covered the sensitivity analysis performed on the model. The sen-
sitivity analysis showed that the initial number of COVID-19 cases in the beginning
of the simulation is the main driver of the epidemiological model and has a high in-
fluence in the number of cases over the run. This highlights the need to act quickly
to contain outbreaks as a higher number of cases in the beginning highly influence
the number of total infections along time. Similarly, the analysis also shows that the
time it takes to serve each person is the main driver of the queuing related outcomes
(maximum, average and minimum queuing time).

Finally, the analysis suggests that, although the queuing parameters seem to
have barely any (relative) impact on the number of infections at the end of the
run, they play a larger role when evaluating the number of infections after the food
distribution event. This suggests that influencing the queuing process can be a way
of reducing the number of infections happening during the food distribution event
and, consequently, the number of total infections in the days following this event
(considering the incubation period).

53



Chapter 8

Results

After setting up the experiments for the model (see Chapter 6), these were
defined in BehaviorSpace in NetLogo. Each experiment resulted in a spreadsheet
file with highly granular data (per time tick) and multiple text files containing
variable values at the end of the run. These model outputs were pre-processed and
visualized in Python, using packages such as Matplotlib and Seaborn. The results
from this analysis are reported upon in this Chapter.

First, in Section 8.1, the system as is and the dynamics involved are explored.
Then, Section 8.2 will focus on the implementation of both representative and
timeslot-based policies. Finally, Section 8.3 provides a summary of the Chapter.

Additional comments on the data preparation and visualization can be found in
the GitHub repository of this project and in Appendix E, respectively.

8.1 Model Behavior

To understand the impact of different policies, it is important to first observe
the model outcomes with no policy in place. As mentioned before, due to the
importance of food distribution in a settlement, the baseline scenario is not a lack
of food distribution, but rather the typical occurrence whereby the head of each
household attends food distribution once every 28 days (also referred to as P0).
Note that this is also how Bögel conducted their experiments.

This baseline case was simulated across the four scenarios introduced in Chapter
6: with 0%, 10%, 20% and 30% of the population adopting naturally competitive
behavior when queuing (E0 from Table 6.6).

8.1.1 Key Performance Indicators

Average time in queue at the food distribution

In terms of queuing dynamics, Figure 8.1 shows the average time in queue across
all queuing individuals per scenario. It was observed that a clear trend between
the competitiveness of a population and the average time in queue exists. This
figure shows that, on average, it is highly beneficial if the whole queue behaves
cooperatively as this quickens the queuing process for everyone.
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Figure 8.1: Average time in queue at the food distribution across all queuing agents:
Baseline in each scenario (E0)

Cumulative infections

Figure 8.2 shows the cumulative infections across scenarios in the baseline. From
this figure, it is possible to observe that 95% of the runs follow the behavior identified
by Bögel that, in case of an outbreak (in day 0) in a refugee settlement, most of the
population is infected by day 60, regardless of the scenario.

As it is difficult to observe the differences between scenarios in Figure 8.2, Figure
8.3 shows the cumulative number of infections per scenario at five key time steps
(day 10, day 20, day 30, day 40 and day 50). From this figure, it is possible to
observe that, although all scenarios converge to a similar number of infections by
the end of the run (as was observed before), the number of cumulative cases between
the selected time steps varies across the scenarios. This suggests different speeds at
which the outbreak spreads in the settlement across scenarios. This relation is not
linear, in that it is not possible to claim that the more competitive a population, the
quicker the spread of an outbreak in a settlement. Neither is it possible to directly
correlate the speed of an outbreak with the average wait time in a queue (from
Figure 8.1). However, the results do indicate that the varying queuing behavior in
a population plays a role in how the infection spreads. As the different behavior is
only implemented when individuals are queuing for food, this suggests that looking
into the food distribution event might be a direction to follow when studying how
to control outbreaks.

From the sensitivity analysis performed, it was possible to observe that the
relative importance of the queuing parameters in the number of total infections by
day 30 was very reduced. However, it was also possible to observe that, over time
(specifically after the food distribution), these parameters were of higher impact.
This suggests that, although different queuing dynamics do not seem to have an
impact in the number of infections after a long time, they do have the potential to
influence the development of an outbreak at some point. This is consistent with the
results from Figure 8.3 and the difference between scenarios.
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Figure 8.2: Cumulative infections: Baseline in each scenario (E0)

Moreover, although the number of cumulative cases (both in the sensitivity
analysis as well as in Figure 8.2 and 8.3) are disaggregated over time, they are
aggregated over population and locations of infections, potentially not showing all
relevant dynamics for a complete analysis. For this reason, and taking into account
the computational constraint of repeating a new sensitivity analysis, this section will
explore more of the model dynamics than focusing only on the Key Performance
Indicators previously identified.

8.1.2 Attitude exploration

In order to understand how different attitudes play a role in the dynamics of the
model, this section focuses on the disaggregation of results per attitude. For clarity
purposes, this section will only look at two scenarios of interest: one with a lowly
competitive population (S1) and one with a highly competitive population (S3).
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Figure 8.3: Cumulative infections: Baseline in each scenario (E0)

Considering that, in the model developed, the attitude of a person only affects the
way they queue at the food distribution, this section will focus solely on this event.

Average time in queue at the food distribution per attitude

Figure 8.1 shows that adding competitive people to a queue will increase the
average waiting time across all queuing individuals. Based on this, it can be con-
cluded that it is beneficial for the common good if every queuing individual follows
queuing rules, joining the queue at the end of the line and waiting for their turn to
be served. However, it was not observed how the time in queue varied per attitude.
Figure 8.4 shows the disaggregation of the data per attitude.

Figure 8.4 shows that, by cutting the line, competitive individuals have a clear
benefit in terms of time saved. The figure also shows that competitive individuals
minimize their own time in queue at the expense of the waiting time of cooperative
individuals. Moreover, it is also possible to observe that, while competitive people
cut the line with the motivation of minimizing their own time in queue, the more
competitive people there are in a population, the more they have to wait as well.
This creates a counter-productive situation in which everyone is worse off (as already
suggested by Figure 8.4).

Finally, it is also important to note the high range of average waiting time for
cooperative individuals in scenario 3 and the high waiting time for new-competitive
individuals. As the latter are individuals who initially join the queue cooperatively
(due to their natural attitude) but who change behavior because of the circumstances
around them, they are always at a disadvantage relative to the naturally competitive
(who immediately cut the line when they arrive). Consequently, new-competitive
individuals are more likely to wait longer.

In addition, among the 10 replications of scenario 3, there is a high variation
in the number of people who switched behavior and turned new-competitive. This
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Figure 8.4: Average time in queue at the food distribution: Baseline in each scenario
(E0)

depends on several factors: the time of day at which they attended the food dis-
tribution (and consequently how long the queue was then), how many people they
observe cutting the line around them and their natural tendency to become com-
petitive. However, it is interesting to observe that the number of people who turned
new-competitive in scenario 3 always takes values of either around 110 or 35 (see
Figure 8.5). The non-existence of values in between shows an interesting behavior
reinforcing loop, whereby the more people are influenced to cut the line, the more
others will be influenced to do so too, creating a snowball effect. This circumstan-
tial behavior results in either low (below 40) or rather high numbers (110) of people
turning new-competitive.

However, with a sufficiently low initial number of competitive individuals in
the queue, the competitive behavior does not seem to propagate. For reference,
the number of people who turn new-competitive in scenario 2 always mostly takes
values around 35. However, there is one exception of a run in which 51 people turned
new-competitive. Yet, as the number of naturally competitive people is lower (20%
of the population, per definition), the surrounding circumstances did not lead to
the snowball effect observed in scenario 3, resulting in better overall results. This
dynamic suggests the existence of a tipping point from which a snowball effect can
be observed onward. As a trend can also be observed between the runs where more
people switch behavior leading to higher queuing times, this dynamic represents a
possible place to implement a policy in order to stop this effect, control the number
of people switching behavior and, consequently, reducing waiting times.

Likelihood of getting infected at the food distribution per attitude

By cutting in line, competitive agents reduce their waiting time in a queue,
thereby maximizing their personal utility. However, while doing so, they do not
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Figure 8.5: Number of people switching behavior when waiting in the queue for food
distribution: Baseline in each scenario (E0)

comply with 1.5m social distancing requirements, potentially putting themselves (or
others) at risk of infection. To evaluate this, Figure 8.6 shows individuals’ likelihood
to get infected during both food distribution events. This likelihood is calculated as
the number of people of a certain attitude who were infected at the food distribution
event divided by the total number of people with that attitude who attended the
event. Figure 8.6 shows that, regardless of the scenario, competitive people are more
likely to get infected when they attend the food distribution than they would if they
were to follow the queuing rules.

The figure also suggests that individuals who first join the queue but then decide
to cut the line (identified as new-competitive) highly reduce their risk of infection
by doing so. This could be justified by the shorter time they wait by cutting the
line. However, it should also be noted that individuals that were infected while they
were still following the queuing rules and then decided to cut the line will contribute
for the likelihood to get infected of cooperative individuals. As the number of coop-
erative people who got infected includes these cases and is divided by the number
of people who were cooperative when they left the queue, it could be argued that
the values of likelihood to get infected of cooperative agents have lower values than
suggested in the figure (and, consequently, the values for new-competitive are higher
than suggested here).

Between scenarios, it is not possible to observe a significant difference. Note,
however, that the likelihood is calculated across both queuing events and that the
number of susceptible people at the second food distribution event is somewhat
dependent on how many people were infected in the first and the time in between.
Regardless, it is possible to observe that competitive agents are more likely to get
infected during a food distribution event.

The increased likelihood of infection of individuals who behave competitively
when joining a queue shows one down-side to this behavior. Although people with
this attitude benefit in terms of reduced waiting time spent in a queue, they increase
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their risk of getting infected.

Figure 8.6: Likelihood of getting infected at the food distribution per attitude: Baseline
in each scenario (E0)

Likelihood of infecting others at the food distribution per attitude

After establishing the higher risk involved in competitive behavior, it is also
relevant to compute the risk that this behavior represents for individuals around.
This likelihood is defined as the ratio between the number of infections caused by
competitive people at the food distribution events and the total number of infected
competitive people who attended the event. Due to the lack of data on the number
of infected people attending the event and their attitudes, a proxy indicator had to
be used.

Making use of available data, the likelihood to infect others is calculated as the
number of infections caused by people with a certain attitude in the food distribution
divided by the product of the total number of people with that attitude and the total
number of infectious people with that attitude in the settlement at that moment.
Although this is not necessarily the same as the initially suggested way of calculating
the likelihood, by multiplying the number of people of a certain attitude who were
served and the total amount of infectious people with that attitude, a proxy of the
number of infectious people with that attitude attending the food distribution can be
calculated. Due to a lack of data, this will not be calculated for the new-competitive
individuals and will focus only on people who joined and left the queue with the
same behavior

In terms of the likelihood to infect, Figure 8.7 shows a similar dynamic to the
likelihood of getting infected, with higher likelihoods for people not following the
queuing rules.

From Figure 8.6 and Figure 8.7, we observe that, in scenario 3, competitive
agents are not only more likely to get infected during the food distribution, but
they are also more likely to infect others. This heightened risk is logical considering
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Figure 8.7: Likelihood of infecting during the food distribution per attitude: Baseline
in each scenario (E0)

that infection dynamics in the model rely on the same factors: proximity to other
individuals and the duration of close-proximity contact.

It can then be concluded that, regardless of the number of competitive people
in a population, competitive individuals reduce their queuing time by cutting the
line. However, by doing so, they put both themselves and others at a higher risk of
getting infected. By being more likely to get infected at this event, and considering
both that their behavior in the rest of the model is independent of their queuing
behavior (and hence identical to the cooperative population) and that there is no
possibility of isolation within a household (assumption), it can be concluded that
competitive agents will play a more important role in the spread of the outbreak
throughout the settlement, specifically in the days following the incubation period
after each food distribution event.

8.1.3 Location exploration

As suggested before, disaggregating model outputs by location of infection can
be beneficial to understand both the role of each location but also the impact of the
competitiveness of a population on the dynamics of the infection model. Similarly
to the attitude exploration, this section will focus on both scenario S1 and scenario
S3, representing a population with low and high competitiveness, respectively.

As observed in Figure 8.2, independently of the competitiveness of a population,
all model runs converged to a near-total outbreak. Nevertheless, it was also possi-
ble to observe some variation in the steepness of the curves, representing different
outbreak rates. To allow for a more detailed analysis, this section will focus on four
moments of evaluation. As the focus of this study is the food distribution and its
influence, the four moments of evaluation were chosen as follows:

• Day 7: The day before the first food distribution takes place;
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• Day 13: The day of the first food distribution plus five days to account for
incubation period;

• Day 35: The day before the second food distribution takes place;

• Day 41: The day of the second food distribution plus five days to account for
incubation period.

Figure 8.8 shows the identification of these moments of evaluation against the
development of the outbreak, represented by the number of cumulative cases.

Figure 8.8: Cumulative infections: Identification of the moments of evaluation in the
baseline (E0)

Cumulative cases per moment of evaluation

By zooming into the four moments of evaluation and the cumulative cases in
these two across the two scenarios of interest, Figure 8.9 shows that, although the
number of infections in day 7 is similar in both scenarios, there is a bigger increase
in scenario 3 after the food distribution (day 13). This effect propagates over time,
with scenario 3 having considerably higher cumulative infections by day 35. By day
41, however, the median of both scenarios converge, as suggested in Figure 8.2.

Distribution of infections per location per moment of evaluation

Although Figure 8.9 shows the evolution of number of cases per scenario across
the four moments of interest, it still does not show the role of each location in the
spread of COVID-19.

With this purpose in mind, Figure 8.10 shows the number of infections per
location at the four moments of evaluation per scenario. Note that the locations
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Figure 8.9: Cumulative infections: Baseline in each scenario of interest per moment of
evaluation (E0)

correspond with the four activities in the camp: fetching water (waterpoint), using
a latrine, attending a food distribution (fooddistro) and visiting a healthcare facility
(hc-fac). A fifth location in this figure is the shelter, which represents individuals
infected while at home.

Figure 8.10 shows that the shelter represents the place where most of the infec-
tions occurred by day 41. This relates to one of the main assumptions of the model
which is that it is impossible to isolate infected people within a shelter, leading to
many infections occurring within shelters. After the shelter, both the waterpoint
and the latrines are locations of high importance regarding the number of infections
taking place there, followed by the food distribution location. It was found that the
healthcare facility does not host any infection until day 41 in either scenario.

Although the food distribution location is not a hotspot of infections in either
scenario, it is possible to observe that the competitiveness of the population influ-
enced the number of infections happening at the food distribution by day 13.

Moreover, it is important to note that, even though Figure 8.10 suggests that the
total number of infections happening at the food distribution location is relatively
low, the food distribution activity is performed only twice in the whole run (i.e.,
day 8 and day 36), while individuals visit the other locations (shelter, waterpoint
and latrine) every day of the run, multiple times per day. This disparity between
the frequency of event and number of infections occurring at that location indicates
the importance of looking into the food distribution and how to make this process
safer in order to control an outbreak in a refugee settlement.
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(a) Day 7 (b) Day 13

(c) Day 35 (d) Day 41

Figure 8.10: Cumulative infections per location: Baseline in each scenario of interest
per moment of evaluation (E0)

Relative importance of the food distribution as a source of infections at
other locations

Figure 8.10 showed the (especially with a low event frequency in mind) relative
importance of the food distribution in terms of number of infections that occurred
during a food distribution event. However, the figure does not show the number of
infections that subsequently occurred at other locations as a result of an infection
initially occurred at the food distribution event (cause by someone who was originally
infected while queuing for food). To further understand the importance of a location
in the development of an outbreak, one can explore the role the location takes in
the chain of infections.

With this aim in mind, the relative importance of the links between locations
was analysed by means of a heatmap representing these links. These matrices’ values
represent the number of infections that occurred at a particular location versus the
location where the infector was previously infected. Due to the significant role of
stochasticity (see section 8.1.4), replications are explicitly represented in this matrix.
As a result, the analysis has been done with a large 40 (a. two scenarios, b. four
evaluation moments, c. five locations) × 60 (a. six locations, b. ten replications).
In the Appendix E the full visualization can be found. Next, the most essential
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take-aways are discussed.

Figure 8.11 shows a part of the heatmap focusing on the role of the food distri-
bution location as the source of infections that occurred by the different evaluation
moments. Along the vertical axis, the location where the infection of the infectee
happened is present, for every moment of evaluation (indicated with Day X). In
the horizontal axis, the location where the infector was infected is outlined (note
that this is only showing the results for infections originating from the food distri-
bution). Along this axis, it is also possible to observe the results for each one of the
10 replications conducted. Finally, the heatmap is divided per scenario 1 (with 10%
of competitive people) on the left and scenario 3 (with 30% of competitive people)
on the right.

By normalizing the number of infections regarding the number of infections in
each particular replication, this heatmap indicates the relative importance of food
distribution as a source of infections at other locations.

The lighter colors for Day 13, 35 and 41 (that is, days after which food distribu-
tion events have taken place) in the right figure can be related to a relatively higher
importance for the food distribution in the infection chain. This coincides with sce-
nario 3 when compared to scenario 1. Hence, the graph suggests that an increase
in the number of competitive people in a population (scenario 3 versus scenario 1)
can be related to a more important role of the food distribution event. Thus, it
can be concluded that scenario 1 and 3 correspond, respectively, with a less and
more important role - directly (as seen in Figure 8.10) as well as indirectly (Figure
8.11) - of the food distribution event in the development of an outbreak in a refugee
settlement.

(a) Scenario 10 (b) Scenario 30

Figure 8.11: Relative contribution of the food distribution in the infection chain for 10
replications and the two selected scenarios (S1 and S3)

Notwithstanding this, a highly significant variation per replication can be ob-
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served. Such a variance shows that a constant scenario specification (and corre-
spondingly constant input variables) can still result in different model dynamics. In
short, this can be explained by the large contribution of stochasticity, often inherent
to modeling infectious diseases (Oli et al., 2006). By exploring two representative
(i.e. contrasting replications) examples, the next chapter will further discuss the
role of stochasticity.

8.1.4 Stochasticity exploration

From the analysis of Figure 8.11, it is possible to observe replications with the
same input parameters that result in very contrasting results.

Using the whole heatmap (Figure E.11) as a guide, it is possible to identify
replications that do not follow the trend observed in the rest of the runs. An
example of these outliers is replication 6 of scenario 3. In this replication, it is
possible to observe that, at day 13, the normalised number of infections resulting
from infections that occurred in the food distribution are absent. This stands as
clear contrast to all the other replications of the same scenario, which all highlight
the food distribution as playing a crucial role by then.

Replication 0 of the same scenario can be identified as following a quite regular
trend when compared to the rest of the replications. To visualize the differences
between these two runs, Figure 8.12 shows the infection chain at each moment of
evaluation for both replication 0 and replication 6.

On the left side of Figure 8.12, the network of replication 0 is divided into the
four moments of evaluation. Similarly, the right side represents the same but for
replication 6. Note that these are both replications of scenario 3, implying constant
input parameters. Adding to the locations previously identified (shelter, waterpoint,
food distribution, latrine and healthcare facility), patient-zero is included as a node.
As the first infection in the camp is placed randomly, it is neither relevant (nor
possible) to include where this infection comes from. However, it is relevant to in-
clude this patient in the nodes in order to understand their impact in the network to
fully understand the range of their contagiousness and cases resulting directly from
this patient zero. Note also that the links are bidirectional, with the connection
latrine-to-shelter indicating an infection occurring in the shelter that resulted from
someone previously infected in the latrine, and the connection shelter-to-latrine in-
dicating the opposite dynamic. In all networks, the weight of the links between
nodes is the relative importance of the link compared to the number of total infec-
tions represented in the graph. Finally, it is important to note that links between
the same location (such as shelter-to-shelter) are not present in the network graph.

Figure 8.12 shows a clear difference in the infection network of replication 0 and
6, with the most striking contrast being the network of day 13. As the chosen input
parameters and scenario are the same across these two replications, this variation of
behavior can only be attributed to the stochasticity of the model. This suggests that
the, although the queuing behavior shows a clear overall impact in the importance of
the first food distribution event in the chain of infections, under some circumstances,
it is also possible to observe that this event plays no role at all (for example in
replication 6). This sensitivity to stochasticity also explains some of the outliers
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(a) Day 7 Rep. 0 (b) Day 7 Rep. 6

(c) Day 13 Rep. 0 (d) Day 13 Rep. 6

(e) Day 35 Rep. 0 (f) Day 35 Rep. 6

(g) Day 41 Rep. 0 (h) Day 41 Rep. 6

Figure 8.12: Infection network: Identification of two baseline runs in the same scenario
(S3) that lead to different dynamics

and the high ranges of variance observed in the results.

Finally, one should be aware of this sensitivity when evaluating the impact of
policies - as there are some parameters that are not included in the experimental
design but have the potential to highly determine the development of the outbreak,
results observed after policy implementation should not be entirely associated to
the effect of the policy itself, as they can be the result of an underlying dynamic.
Further implications of this finding are discussed in Chapter 9.
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8.2 Policy implementation

As described in the previous section, although not the most important location
in terms of total number of infections, the dynamics involved in the food distribution
process contribute to the spread of infectious diseases in a refugee settlement when
there is an outbreak. Moreover, when there is no policy implemented to alter the
food distribution process, the model suggests an almost certain convergence to a
near-total outbreak within 60 days of the first COVID-19 case.

In this section, the impact of policies implemented at the food distribution level
is evaluated. As introduced before, these policies can be described as representative-
based and timeslot-based depending on their approach. For this section, the results
from experiment E1 to E4 are used. These policies are tested in two scenarios: with
a lowly (S1) and a highly (S3) competitive population. Finally, in this section, only
the figures that show something relevant are included. Full visualization of the
results of policy implementation are included in Appendix E.

8.2.1 Representative-based policies

Representative-based policies resort to the use of representatives of communities
to attend the food distribution event instead of sending the head of each household
to the queue. Although this means sending less people to the queue, the time
needed to serve each representative is adjusted accordingly to the number of people
it is representing. These policies are implemented as formalized in Chapter 6. The
motivation of resorting to representatives is two-fold: by sending less people to the
queue, it is expected that people have to wait less time to be served and that there
is a smaller concentration of people in these queues. By reducing these two factors,
it is expected that the risk of infection at the food distribution is reduced.

Average time in queue at the food distribution

Figure 8.13 shows the average waiting time in queue across all queuing agents
when each one of the three representative-based policies is implemented. From this
figure, it is possible to observe that resorting to representatives highly reduces this
value, bringing the average waiting time across all queuing agents to an order of
minutes (except for Policy 3, which can go to values up to 2 hours), instead of the
nearly 7 and 11 hours suggested in Figure 8.1.

When policy 1 is implemented, Figure 8.13 suggests that, given a certain com-
petitiveness of the population, a higher percentage of competitive people is beneficial
to the system, reducing the average waiting time of all queuing agents. This dy-
namic was never observed before in the baseline, nor it is observed when policy 2 or
policy 3 are implemented. By looking into the dynamics and outcomes from Policy
1, it was possible to observe that, by implementing this policy, virtually no cooper-
ative agent switches to a new-competitive attitude. This near-total elimination of
the dynamic of changing behavior had never been observed in other runs and sug-
gests a beneficial effect for the overall group even when there is a bigger naturally
competitive part of the population. However, these results could also be related to
the stochasticity of the model. Due to the low number of replications, conclusions
should not be made without further analysis. Further investigation should include
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Figure 8.13: Average time in queue at the food distribution: Implementation of
representative-based policies (P1, P2 and P3) in Scenario 1 and Scenario 3

running new experiments with only naturally competitive people and no mechanism
of behavior change but also a closer investigation of the model runs in which this
happens.

Average time in queue at the food distribution per attitude

From the implementation of policy 1 it is also possible to observe that the time
competitive people save by cutting the line is minimum (in Figure 8.14). This can
mostly be associated to the constantly short sizes of the queue and the quick turnover
of people waiting. This shows that, when queue sizes are maintained low, having a
competitive approach does not highly influence the time waiting and, consequently,
the total time saved. For this reason, it could be argued that shorter lines result in
less motivation to behave competitively and not follow the rules.

Likelihood of getting infected at the food distribution per attitude

Another interesting dynamic that arises when implementing representative-based
policies is the switch in the likelihood of getting infected. While in the baseline it
was concluded that competitive people were more likely to get infected, when Pol-
icy 1 is implemented, it can be observed that cooperative people are now reaching
higher likelihood values. By looking into the time people spend in queue, a poten-
tial reason is identified - by cutting the line, competitive people reduce their time
in queue to values of less than 15min; by doing so, they also reduce the likelihood
of getting infected, as virus transmission is dependent on the time of interaction
between infected and susceptible individuals (with a considerably lower chance of
getting infected if the interaction is shorter than 15 minutes). This parallelism is,
however, not observed in the likelihood to infect others, with competitive people
always scoring higher than cooperative people. As policy 1 resorts to a considerably
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Figure 8.14: Average time in queue at the food distribution per attitude: Implementation
of representative-based policies (P1, P2 and P3) in Scenario 1 and Scenario 3

low number of people attending the food distribution, it can be argued that the
results are highly dependent on who gets chosen and their infection status. More-
over, both the fact that the likelihood of infecting others is based on a proxy and
that only ten replications were conducted, no conclusions can be drawn from this
dynamic.

Cumulative infections

Figure 8.15 shows the cumulative infections in Scenario 1 and Scenario 3 when
representative-based policies are implemented. From this figure, it is possible to
observe that some of the runs have a fully controlled outbreak. This had not been
identified in the baseline case. However, when looking into what happened in one
of these runs that lead to the spread dying out, it was possible to observe that this
happened before the food distribution. For this reason, this successful containment
can not be associated to the policy put in place but rather to the stochasticity of
the model. As a fixed seed was not set across experiments, stochastic processes do
not take the same values, making it impossible to directly compare runs from policy
implementation and the baseline. This will be covered more in depth in Chapter 9.

Regarding the cumulative cases at the end of the run, although all policies
show the potential to slow the disease onset down and postpone the moment in
which nearly the whole population has been infected, none of them fully controls
the spread. This suggests that representative-based policies can be used to slow the
spread and give more time to camp managers to react and implement other policies.
However, when used alone, these policies are not enough to control the outbreak
and simply have delaying effects.

Moreover, Policy 1 is the only policy that does not suggest a convergence to
a near-total outbreak by day 60. Conclusions regarding the further development
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Figure 8.15: Cumulative infections: Implementation of representative-based policies (P1,
P2 and P3) in Scenario 1 and Scenario 3

of the outbreak and the possibility of never reaching a near-total outbreak are not
possible to be made with the current results. However, by analyzing the number
of active cases at the end of the run, one could have deeper insights on the trend
observed and the expected behavior after day 60. This is recommended as further
research.

71



CHAPTER 8. RESULTS

Distribution of infections per location by day 41

Finally, Figure 8.16 shows that, when applying any of the representative-based
policies, the total number of infections happening at this location highly decreases,
reducing the infection risk of this event. However, as these policies do not influ-
ence anything regarding behavior in shelter, latrines or waterpoints, the infections
continue happening at these locations. This goes in line with the result observed
before that, although representative-based policies have the potential to slow the
onset down by reducing the number of infections happening during the food distri-
bution, they are not enough to control the outbreak and other locations continue to
represent a risk.

Figure 8.16: Distribution of infections per location by day 41 when representative-based
policies are implemented

8.2.2 Timeslot-based policies

Timeslot-based policies resort to the implementation of timeslots for people to
attend the food distribution instead of leaving the decision on what time to attend
entirely to the individuals. For more details on the policy formalization, please see
Chapter 6.

The motivation to this type of approach is to spread the demand throughout the
day to reduce pressure of the system and avoid both highly quiet and highly busy
periods. Finally, by implementing it, the same effect as with representative-based
policies is expected: reduce averaged waiting times and smaller concentration of
people in the queue. By reducing this, it is expected that the risk of infection at the
food distribution is minimized.

Timeslot policy implemented alone

When resorting to the implementation of timeslots alone, it is possible to ob-
serve that the impact in the average waiting time for the food distribution event is
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negligible (with values rounding 6 and 11 hours (Figure 8.17), instead of the 7 and
11 hours observed in the baseline).

Figure 8.17: Average time in queue at the food distribution: Timeslot policy imple-
mented in Scenario 1 and Scenario 3

Regarding the cumulative infections, Figure 8.18 shows that the implementation
of timeslot policies alone show no relevant impact in the development of the outbreak
and still show a trend to converge to a near-total outbreak by the end of the run.

This figure also shows one run in which the infection was controlled by day 35
and no further infections were observed. Again, as direct comparison between runs
in the baseline and runs in different experiments is not possible due to the lack of
a fixed seed across experiments, it is not possible to determine if this behavior is a
consequence of the implementation of the policy or stochastic processes in the model
(or the interaction effect of both). Further experimentation is needed in order to
allow for this comparison.

Figure 8.18: Cumulative infections: Timeslot policy implemented in Scenario 1 and
Scenario 3

From the rest of the analysis of the implementation of timeslot policies alone,
no relevant insights or different dynamics were observed.

This lack of impact shows that, contrary to expected, dividing the demand of
the food distribution throughout the day of the event is not a solution to reduce
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neither queuing times nor risk of infection. This lack of impact, however, can be
associated with the constant existence of a queue at the food distribution. This
suggests a bigger capacity problem with a clear shortage of enough service points
to deal with the demand, invalidating any effort of spreading the demand over the
day.

Timeslot policy implemented in combination with Policy 3

To evaluate the impact timeslots can have when there is no such shortage of
capacity, the timeslot policy was combined with policy 3. With this combination
of policies, Figure 8.19 shows that the average waiting time across all agents is
reduced in both scenarios (comparing to the implementation of policy 3 alone).
This shows potential of using timeslots to reduce the average waiting time at the
food distribution when there are no evident capacity shortages, moving to a more
efficient process.

Figure 8.19: Average time in queue at the food distribution: Timeslot policy imple-
mented in combination with Policy 3 in Scenario 1 and Scenario 3

Figure 8.20 shows that the combination of policies is not only successful at
reducing average waiting times in the queue but also has some (limited) effect in
delaying the speed of spread down. However, similarly to the implementation of
policy 3 alone, the combination of policies still suggests a trend to a near-total
infection by the end of the run.

8.3 Conclusions

In this chapter, the results from the experimentation phase were visualized and
commented upon. First, this baseline and the model dynamics were discussed by
disaggregating results per attitude and location. In this section, focus was also
given to the stochasticity and the model sensitivity to this. Then, the impacts
of implementing policies were visualized: first the representative-based policies and
then the timeslot-based policy (both alone and in combination with a representative-
based policy).

Several conclusions can be taken from this chapter. From the study of the model
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Figure 8.20: Cumulative infections: Timeslot policy implemented in combination with
Policy 3 in Scenario 1 and Scenario 3

in the baseline, it was possible to observe consistently high average waiting times
at the queue for the food distribution. Regarding infections, a convergence to a
near-total infection trend was also identified. When disaggregating the results per
attitude, it was possible to see that, while competitive people save time by cutting
the line, they are also more likely to get infected and to infect others. Finally, from
the location disaggregation it was possible to see that the shelter is the location
where most of the infections take place. However, although less important, it was
possible to observe that (given its low frequency) the food distribution plays a quite
important role both in terms of the number of infections happening there as well as
the source of further infections.

From the implementation of representative-based policies, it was possible to
conclude that these have high impacts of reducing average waiting times at the food
distribution and of slowing the infection spread down. However, all policies but
policy 1 continue suggesting a convergence to total infection by the end of the run.
It can be concluded that although representative-based policies have the potential
to slow infection down, they are not enough to fully control the outbreak.

By implementing the timeslot policy alone, no relevant change is possible to ob-
serve. This highlights a bigger problem from the system, suggesting a high shortage
of capacity that spreading the demand throughout the day is not able to fix alone.
However, timeslot policies can be used together with representative-based policies
to reduce the average waiting time. The implementation of this policy combination,
though, is not very successful at reducing the number of cases by the end of the run,
still suggesting a convergence to a near-total infection.

Finally, two extra conclusions can be taken from this chapter. By analyzing two
different replications within the same scenario in isolation, it is possible to observe
a relatively big difference of model behavior. This suggests that the model is ex-
tremely sensitive to stochasticity and unknown input parameters. This is extremely
important to keep in mind when using this model for decision-making, as it suggests
that the implementation of a policy can be undermined by some unknown dynamics
that are now represented by stochastic events. From the analysis of these two runs
it was also possible to observe that one of the runs in which the first food distri-
bution did not lead to any cases still resulted in a near-total outbreak mostly due
to a higher number of infections at the second food distribution. This raises the
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point that a low number of infections in the first two evaluation moments do not
necessarily mean a controlled outbreak.
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Discussion

This chapter focuses on the analysis of the results and their interpretation. First,
in Section 9.1, the main assumptions of the model and some of their implications are
discussed. Then, Section 9.2 discusses the model’s validity. After this, in Section
9.3, the implication of the findings is covered. From the analysis of the results, policy
recommendations are drafted in Section 9.4. Finally, the chapter is summarized in
Section 9.5.

9.1 Main assumptions

During the model building process, several assumptions were made. Complete
lists of these assumptions regarding the queuing and the coupled model are enumer-
ated in Appendix B.4 and Appendix C.4, respectively. From these, the ones with
the main influence in the model and its dynamics are as follows:

• Refugees in settlements are dependent on food distributions;

In this study, it is assumed that there is no other source of food in the set-
tlement and, for this reason, the organization of at least one food distribu-
tion event per month is deemed necessary for the survival of the population.
Moreover, as refugees are dependent on this distribution, all of them (or their
representatives) will attend the event when it happens. The total number of
people attending the food distribution is consequently fully dependent on the
policy implemented (i.e. the functioning of the camp) and not by personal
decision. Although this assumption might not be realistic in normal function-
ing of settlements with often the existence of camp markets and interactions
with the host community, several camps implemented a full lockdown during
the COVID-19 crisis, making refugees fully dependent on the distributions
organized by the NGOs.

• There is enough room to create a long queue for the food distribu-
tion;

In order to allow all cooperative agents to queue while keeping a distance from
each other, it is assumed that there is enough room for the queue. Different
queuing settings such as zig-zag lines are not considered in the model. This
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assumption has two main implications: while it guarantees that people who
want to queue and maintain a distance are able to do so, it also leads to agents
quickly having the perception of long queues happening (while zig-zag queues
could be a strategy to trick people into perceiving the queue as shorter than
it actually is). This assumption highly depends on the settlement and their
geographical boundaries and it might not always hold truth. When this is not
the case, the model should be slightly changed and other queue organizations
should be included.

• Refugees queuing up for food can have two main attitudes: cooper-
ative or competitive;

Refugees are assumed to naturally have one of the two main attitudes. Co-
operative refugees who follow the rules can switch behavior into competitive
and cut the line when their surrounding environment influences them to do so.
This implies that the decision of cutting or not the line is purely decided ac-
cording to the personality of the refugees and the factors of seeing other people
cutting or perceiving the line as too long. This simplification was necessary
in order to be able to build a narrative and conceptualize potential behaviors.
However, by doing so, behaviors as joining their friends in the queue, leaving
the queue before being served or forming groups are not considered.

• Cooperative refugees respect social distancing measures applied,
competitive refugees do not;

When joining a queue, cooperative people are assumed to respect the social
distancing rules applied and keeping that distance among each other. On
the other hand, competitive refugees who decide to cut the line do not follow
neither the queuing nor the distancing rules. This will influence the distance
people keep from each other when queuing, consequently impacting their risk
of getting infected while waiting in line. By assuming this, it is considered that
competitive people do not take the outbreak and the risk of getting infected
into account when joining the queue. As mentioned by Epstein et al. (Epstein,
Parker, Cummings, & Hammond, 2008), potential dynamics driven by a fear of
getting infected could influence the behavior of people when queuing. Further
research is advised to include this dynamic and observe its impact in the model.

• It is is assumed that competitive refugees only cut the queue once
and that cooperative agents allow this to happen;

This simplification will influence the dynamics happening when there are a
lot of people cutting the line. As mentioned in the verification, this results
in unexpected results when simulating a population with a high percentage of
competitive people (40% or more). This assumption will consequently limit the
suitability of the model and should only be used when looking into populations
with a lower percentage of competitive people.

• It is assumed that no one other than representatives attends food
distribution if a policy is implemented;

When resorting to the use of representative of communities, it is assumed that
there is a full compliance to this rule. This results in the number of people
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attending the food distribution being exactly the number dictated by the camp
management and policy. This assumption excludes potential behavior such as
people trying to get food twice or not respecting the rules.

• Vaccination programs are not considered - COVID-19 immunity can
only be achieved through previous infection;

This assumption means that, at the beginning of the run, the whole population
is susceptible to the virus. This is a very permitting environment for the virus
to spread as it will not find natural barriers to infect people. This means that
the model is fit to simulate a first outbreak in a settlement. However, if a
second wave is to be modelled, changes are necessary.

• It is assumed that infected people always return back to their shel-
ters and do not have the possibility to isolate from their household;

By assuming that people cannot isolate from infected members within the
same shelter, the chance of getting infected after one of the household members
gets infected is very high. This will inherently lead to the shelter taking an
important role as location of infections, which can be argued to be similar
to the normal dynamics of COVID-19 and the infections at home. Further
discussion about this topic is provided in the policy recommendation section.

• After the first case appears in the settlement, it is assumed that no
one enters or leaves the perimeter.

This means that the settlement is put under lockdown when the first case
appears. Due to this assumption, all cases observed in the model runs can
always be traced back to patient zero. If the infection ever dies out, then
there is no mechanism for it to reappear. This assumption leaves potential
interaction between refugees and their host communities out, which could be
sources of extra infections along time.

Further implications of these assumptions will be discussed in the limitation
section in Chapter 10.

9.2 Model validation

After having verified if the model behaves as intended, it is necessary to val-
idate it. This step involves evaluating if the model can be taken as an accurate
representation of the system being studied and if it is fit to answer the research
question.

Again, as the model involves two major components (epidemiological and queu-
ing dynamics), this test could be divided into these two sections as well. However,
it is important to note that this concrete study only developed the queuing process,
leaving the rest of the model as was developed by Bögel (Bögel et al., 2020). For that
reason, this section will focus mostly on the validation of the infection component
of the model. The validation of the queuing component of the model relies mostly
on comparing it to literature and interviews with food actors in refugee settlements.

Regarding the queuing implementation, it is important to first understand the
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motivation of this study. Looking into the queuing behavior was decided not only
because of the literature gap but also by Norwegian Refugee Council’s suggestion.
Highlighting that at some camps where they are active in there is a high discrepancy
of attitude in a queue that is connected to individual’s nationalities, the theory cho-
sen to model queuing behavior (Köster & Zönnchen, 2015) is a good fit to simulate
the system described by NRC. By using this theory, it is concluded that the model
is fit to represent the dynamics suggested by NRC.

When adding competitive agents to the initial mix of behaviors or introducing
mechanisms to change behavior (cooperative people turning new-competitive), it is
possible to observe that the average time in queue increases. This goes in line with
the study done by Kingman (1962) that concluded that the variance of waiting time
is minimum when customers are served in order of arrival.

To validate some of the main assumptions made that guide both the model and
the policy building process, interviews with food actors in Cox’s Bazar were con-
ducted. The decision to make the food distribution service time in the baseline equal
to four minutes came from these discussions, as it resembles the system implemented
at the camp at the moment. Similarly, the policies of using representatives to pick
up food for communities were validated by the food actors at Cox’s Bazar. Resem-
bling their majee system, introducing community leaders that are responsible for
some of the logistics of the settlement is a normal practice used by the Bangladeshi
government. This leads to the next assumption validated by these food actors: the
representatives (when using policies) are chosen randomly from the population. This
is backed up by the idea that, in Cox’s Bazar, these community leaders (majees)
are chosen by the government instead of being elected. In 2011, the UNHCR pro-
posed that the majee system would be replaced by a more democratic alternative
(Kiragu, Rosi, & Morris, 2011). This alternative has the potential to guarantee
that representatives all share a cooperative attitude when queuing (assuming that
the community will vote for a rule abiding resident). If this is the case, the model
can be slightly adjusted to guarantee this. Moreover, one of the interviewees, when
asked about the queuing dynamics, mentioned that the impact of people cutting the
line because they see others doing so is clear in and specially at the distribution of
rare (or scarce) goods.

Regarding results produced, most of the runs in the baseline (see Figure 8.1)
suggest that the average waiting time is somewhere between 3 and 11 hours (de-
pending on the scenario). Although these numbers sound extremely high at first,
they go in line with reports of Moria of waiting lines of an average of four hours to
get one meal (Nutting, 2019), leading to totals of 8 waiting hours per day (Harlan,
2020). As the time needed to serve people their rations for one month is higher than
the time needed to serve meals, it is considered that the values fall within reasonable
ranges.

Regarding the infection component, a very brief validation to test if the model
produces reasonable results is conducted. This validation will focus on the value
of R and its evolution in the baseline. At the first food distribution event, R takes
values in the range 5-10. This goes in line with the number suggested by Kochanczyk
(2020) regarding super-spreading events. In the rest of the run, R takes values of
less than 1. If this were the case throughout the entire run, it would be expected for
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the infection to die out. However, as there are two distribution events with higher R
values in the middle of the run, most of the replications show a continuous infection.

Note, however, that perfectly validating this model’s behavior is a difficult task
- by dealing with uncertain factors such as COVID-19 and human behavior, it is
extremely challenging (even impossible) to build a model that perfectly recreates
the system being modeled. However, the goal of this study is to integrate dynamic
behavior in a queue and understand how this can affect the spread of an infectious
disease. For that reason, the interesting outcomes of this thesis are not the exact
quantified values of the KPIs but rather the differences between them and how to
influence trends in the desired direction (decreasing time waiting and decreasing
infections, in specific).

With this in mind and given that it is a prototypical model that does not rep-
resent one specific settlement with a certain context, it is concluded that the model
is valid for the purpose of answering the research question of this study.

9.3 Implications of the findings

The implication of the findings is divided into three main sections: what the
results of this study show and what this study does not include but should still be
taken into account.

9.3.1 Analysis of the results

From the analysis of the results presented, a few topics were raised. These are
discussed below.

Status quo is undesirable

When evaluating the behavior of the system in the baseline, it is clear that, in
most of the replications, when no policy is implemented, there is a convergence to
most of the population being infected 55 days after the first case appears in the
settlement.

Looking at the food distribution, regardless of the scenario, there are high av-
erage waiting times for a service that takes around 4 minutes, always leading to the
creation of queues. This suggests a high discrepancy between demand and supply,
indicating a shortage of capacity to deal with the amount of people attending the
food distribution. Moreover, a clear relation between the competitiveness of a pop-
ulation and the average waiting time can be observed - the more competitive people
there are in a population, the longer the process of queuing takes on average.

Cutting the line: a personal dilemma

Observing competitive individuals and their behavior when queuing during the
food distribution, it is possible to see that, by adopting this attitude and not fol-
lowing the queuing rules, they can reduce their waiting time. This is a clear benefit
of this attitude which might make this behavior appealing.
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However, it is also possible to observe that, by behaving competitively, these
individuals have a slighter higher likelihood to get infected and, consequently, higher
likelihood of bringing the virus home and infecting the rest of their household,
putting their families at risk. This raises a personal dilemma for competitive people
and what they value more: saving time waiting in a queue or the health of themselves
and their loved ones.

At the moment, this personal dilemma is not introduced in the model and its
dynamics and, consequently, does not influence decisions. However, it could be
integrated by creating a mechanism of naturally competitive people switching to a
cooperative attitude due to their fear of getting infected (or infecting) (Epstein et
al., 2008). By knowing there is a higher risk resulting from the attitude they have
when queuing, some individuals might reconsider their actions and wait in queue
even if they normally (in a non-outbreak situation) would not.

An interesting exception emerges when queues and (consequently) average wait-
ing times are kept short (as seen when Policy 1 is implemented). By reducing their
average waiting time to less than 15 minutes, competitive agents go through the
queuing process quickly enough to reduce their likelihood to get infected. This sug-
gests that, in short queues, there is no personal dilemma for competitive agents,
leaving both quicker and safer from the food distribution.

Cutting the line: anti-social behavior

As mentioned before, by increasing competitive behavior in a queue, average
waiting times quickly go up. Moreover, by having a higher likelihood to infect
others, competitive behavior puts people around at higher risks. One could hence
argue that people cutting the line have a certain anti-social behavior and only look
at their own benefit when making decisions.

If the rest of the community does not accept this behavior, extra dynamics might
emerge and people might behave differently when confronted with someone cutting
the line.

Cutting the line: tragedy of the commons

As just noted, by increasing competitive behavior in a queue, average waiting
times quickly go up. Although this is mostly at the expense of cooperative people,
competitive people are also worse off if there are a lot of people cutting the line.

Moreover, by having higher likelihoods to both get infected and to infect others,
it could be argued that competitive people play a higher role in the infection spread.
This raises an interesting dynamic in the model that could be framed as a tragedy of
the commons - by taking their own utility (time spent in queue) into account when
making decisions, competitive people are making the system worse for everyone both
in terms of average waiting times but also by increasing the spread of the outbreak.

Snowball of behavior change

Among the runs of scenario 3 it was possible to observe an interesting dynamic
with the number of naturally cooperative people adopting competitive behavior due
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to the circumstances of the queue either staying consistently low (below 40) or
extremely high (around 110). This suggested the existence of a snowball effect that,
once the number of people switching behavior reaches a certain number, a chain of
other people switching behavior follows.

By looking into the specific runs where this happened, it is possible to observe
that the higher waiting times coincide with the runs where there were high numbers
of people switching behavior.

This suggests that, by influencing a number of people to not turn competitive,
a bigger effect might be accomplished and the whole snowball can be avoided.

Food distribution: a super spreading event

Although the absolute number of infections happening at the food distribution
is relatively low among all runs when comparing to other locations, it is possible to
observe that the food distribution plays an important role in the outbreak spread
in two ways: as a super-spreader event and as the source of subsequent infections
in other locations. This is mostly connected to the high waiting times in queue
(increasing potential risks of infection if there is an infected person around and
the high concentration of people (which is not observed in any other event in the
model)).

Given this role, making the food distribution a safer event by reducing the risk
of infection can represent a way of slowing the infection spread down, giving more
time to react and prepare for the management of an outbreak.

Infections at the shelter: the risk of home

Across all runs, shelters were consistently the main hotspot of infections in the
settlement. In order to effectively control an outbreak in a settlement, focus should
be put into making isolation at home a possibility (or equivalent solutions).

Using representative-based policies

Representative-based policies have a clear impact in reducing the average wait-
ing time in queue with policy 1 and 2 leading to similarly low values (below 20
minutes) and policy 3 maintaining them between 20 and 105 minutes (with the
higher value corresponding to the scenario with higher competitiveness in the pop-
ulation). Considering that the difference between policies is both the number of
people attending the food distribution (which increases per policy) and the time
needed to serve each person (which decreases per policy), it is not possible to iden-
tify what are the tipping-point values for these variables that make the difference
nor the exact impact of changing each one of these variables. Moreover, it is possible
to observe that policy 1 has a shorter range of variance for average queuing time,
suggesting more robustness to different scenarios. This can also be justified by the
almost non-existence of people switching behavior when this policy is implemented,
suggesting that Policy 1 resembles a perfect FIFO dynamic with no line cutting.

Regarding the infection component, however, it is possible to observe that policy
1 is the only one that does not suggest a convergence trend into a near total infection
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by the end of the run. It was also identified that the number of total infections
happening at the food distribution was lower when comparing to Policy 2. As the
time spent in queue is similar under the two policies, this difference can be related
to the number of people attending the food distribution. As policy 1 resorts to less
people attending the event, there is a lower probability of sending someone who is
infected.

Finally, it is important to note that, even though Policy 1 is the only one that
does not show a convergence to a near-total infection by day 60, this policy does not
have the capacity to control the spread either and should only be looked at as a way
to slow the onset down, giving the settlement more time to prepare and implement
other policies.

Using timeslot-based policies

When applied alone, resorting to timeslots in the food distribution has a limited
impact in the average queuing time. This confirms that the main reason of long
waiting times at the food distribution in the baseline is not only related to the
existence of busier periods but rather to the lack of capacity to deal with all the
demand and the constant presence of a queue.

When applied in combination with policy 3, however, timeslots have a high
potential of reducing the average time in queue, bringing the average waiting time
almost always to less than one and a half hours.

Delaying an outbreak is not enough

From the analysis of some individual model runs, it was possible to observe that
in some of the cases where the first food distribution did not lead to a high number
of infections the model still converged to a near-total outbreak by the end of the run.
By postponing the moment in which the spread starts to take off, the number of
susceptible people at the second food distribution event is higher and consequently
leads to a higher number of infections at this day.

Although delaying the onset of an outbreak can be beneficial to have more time
to prepare, one should be aware that it is not enough and should not be looked at as
a final goal. Moreover, as this often leads to a higher number of infections happening
at a later stage, it could be argued that, if people need medical assistance, this puts
the medical facilities under higher pressure if the number of cases is concentrated in
the same week.

Role of stochasticity and uncertainty

As observed in the results, the model shows quite a high sensitivity to stochastic
processes which sometimes have the potential to fully dictate the development of
the outbreak, regardless of scenarios or policies implemented. For this reason, it is
highly important to be aware of the sources of stochasticity in the model and their
implications.

There are several dynamics that resort to stochastic processes in the model. One
of the sources of stochasticity is a common one to all ABMs given their iterative
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nature. From this model in specific, for example, the first infection in the settle-
ment is a source of considerable stochasticity - all the attributes of patient zero
will influence how they behave: if child, adult or elderly (which can determinate
which activities they conduct), their course of infection (if they develop symptoms
or rather overcome the infection quite quickly), the time they attend activities, their
attitude when attending the food distribution event (if they queue or not). Another
relevant place where stochasticity can be found is in the time people attend the food
distribution event and their attitude. If a cooperative person with a low tendency
to become competitive attends the food distribution at peak times, it might never
turn competitive. However, if a person with a cooperative nature but with high
tendency to become competitive attends the event, this person can switch behavior
immediately with the smallest trigger. As noted before, this switch of behavior can
then trigger a snowball effect, resulting in considerably different overall dynamics.

Moreover, when implementing representative-based policies, the role given to
stochasticity is considerably higher, as the selection of these representatives is based
on a random process itself, which can highly vary the attitude these people have
and their current infection status.

This role of stochasticity has a main implication - one should never analyze
results of one replication, as they can vary immensely. In this model this is very
clear - if the results from one replication where the total outbreak had 2 cases
and then died out were used for analysis, one would be massively undermining the
potential effects of an outbreak and would see no use in preparing for it.

One solution to overcome this is by repeating several replications, increasing
statistical significance of the results. However, due to the trade-off between a higher
sample size and the time constraints of running more replications (especially relevant
once a model reaches high running times like it is the case), ten replications were
used throughout all the experiments conducted. As observed in the high range of
outcomes, it can be argued that 10 replications are not enough for this model. For
this reason, further analyzes of results with more replications is suggested.

9.3.2 Scope of the study

Before formulating policy recommendations, it is important to understand the
boundaries of this study and its scope. This thesis focuses on the event of food
distribution from the NGO to the beneficiary in a refugee settlement during an
infectious disease outbreak. To control the outbreak and avoid a near-total infection,
the study analyzes the impact of policies that can be implemented at the food
distribution level and their potential to influence the outbreak development.

It is, however, necessary to highlight that the model does not simulate the
further distribution from the representatives to the final beneficiaries. If there are
infected people involved in this process, this second distribution can lead to further
infections. Potentially, if the representative is an infected (and infectious) agent,
this further distribution could lead to a high number of infections, undermining the
effort of using representatives in the first place. This is discussed further in the
policy recommendations.

Moreover, the study does not look into the consequences of using representatives.
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If these do not follow up on their entire set of tasks and do not distribute the food
to the final beneficiaries, it is possible that people who are not representatives try
to attend distribution even if they are not supposed to be there. This could lead
to more people attending the food distribution than modeled, leading to different
dynamics than the ones simulated in this study. Further discussion regarding the
use of representatives is provided in Chapter 10.

Finally, it is important to keep in mind that different transmissions probabili-
ties and different values for parameters can result in quite different developments of
outbreaks. Until these parameters are more accurately known and adjusted accord-
ingly, this model should be used to test relative differences among policies and not
to accurately predict the development of the outbreak.

9.4 Policy Recommendations

Some policy recommendations can be formulated based on the results from this
study. These are covered in this section.

Rethinking the food distribution and increasing capacity

Two main problems can be identified with the food distribution in the baseline:
the high queuing times and its super spreading nature in case of an outbreak. These
two problems can be associated to the same cause: a inherent shortage of capacity
to deal with the necessary demand, leading to the creation of long queues every time
there is a food distribution event.

Given this, it is recommended that the food distribution process is rethought in
order to make it both more accessible and safer. As seen in the results, sending rep-
resentatives and implementing timeslots are two techniques with a certain potential
to reduce waiting times. However, other solutions could be considered.

By creating more distribution points, the population could be divided through
different food distribution events. Highly reducing the number of people attend-
ing each event, this situation would resemble the current Policy 1 but performing
even better by having lower service times (since people would still pick up food for
their household and not for a community). Moreover, by reducing the amount of
people attending each point, the number of interactions a potential infected person
could have at the food distribution would be highly reduced. Finally, increasing
capacity would lead to shorter lines. As short queues are more time efficient, there
is a lower motivation to behave competitively and cut the line. This would also
minimize the number interactions and potentially make a competitive population
behave cooperatively more often.

Extending serving hours and allowing refugees to pick up their food when they
want and need by means of a food ATM or multiple food distribution events per
month could also be a direction to take.

Downsides of each of these policies are, however, the organizational and resources
constraints, as they would need more staff and equipment, respectively. Moreover,
behavioral components other than the queuing behavior could play a role in this
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situation, with people potentially wanting to attend certain distributions rather
than other, leading to potential further mismatches in capacity and demand. These
points should be taken into account when deciding what solution to implement.

Bringing awareness to the consequences of competitive behavior

A generally cooperative population joining food distribution has the potential
to form a queue following a FIFO discipline. If this is the general behavior in camp’s
queues, the average time in queue can be highly reduced, making the whole process
of getting food considerably quicker. With this in mind, it is recommended that
refugees are encouraged to maintain a cooperative attitude when queuing for food.

Moreover, by analyzing the results it was found that having people with a com-
petitive behavior when queuing also leads to higher number of infections happening
at the food distribution event. While it is expected that everyone knows that, by
not following the queuing rules, they are putting others in worse positions regarding
time, they might not be aware of the increased health risk of this decision during
an outbreak.

For this reason, it is recommended that there are awareness campaigns during
which people are alerted to the risks of their behaviors. As it could be argued
that people who behave competitively do not care about the risk they put others
under, a strategy could be to make it clear that their safety (and their families’) is
also at risk when they behave competitively. By making it clear that cooperation
leads to a better situation for everyone, it is expected that some of the naturally
competitive people do resort to queuing. If this strategy is deemed to not be enough
due to certain population or environment characteristics, highly controlled queues
and sanctions for misbehavior could be resorted to.

Promoting certainty, information and security

From field experience in a refugee settlement in Calais, I have observed the
different dynamics that can emerge when the same group of people queue. During
my work there, I was part of both the food distribution process as well as the clothing
one. During the food distribution, the environment was always very relaxed with
people patiently waiting for their turn and being respectful to one another. On
the other hand, the exact same group of people would behave very differently when
there was a distribution of clothes, sometimes leading to dangerous situations and
the abrupt cancelling of further distributions.

Although the group present in both distribution was the same, there were key
differences that justify this contrasting behavior: the food distribution happened
every day around the same time and there was always plenty to eat while the distri-
bution of clothing happened at random moments in time (depending on the existing
supply), often after weeks of bad weather and with refugees thinking that there was
no guarantee that everyone queuing would be able to be served (even when we had
enough material to distribute).

For these two distributions different techniques were used: while the food distri-
bution simply relied on people queuing up, the second resorted to the use of tokens
to guarantee that everyone would only be served once. However, even with the
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token process, often happened that the same person would try to be served twice
at different times (with two different tokens). Moreover, a trend could also be seen
among these people coming twice - they often had the best sneakers, the best jacket
and the best jeans in the group, suggesting some underlying dynamics happening
and the abuse of the system in order of their own benefit.

Techniques to promote cooperative behavior in a queue can range from infor-
mation campaigns with constantly updated queue expected time (Aksin, Gencer,
& Gunes, 2019) and appealing to inhabitants for a joint effort to make the process
smoother to everyone. Guaranteeing that there is enough for everyone lining up
is also a way of keeping people more cooperative and avoiding situations similar
to panic buying (or the behavior observed in the clothing distribution). Although
providing security, certainty and information in these environments can be difficult,
its successful use can lead to dynamic changes and smoother queuing processes.

Although these policies might not be 100% successful and might not stop nat-
urally competitive people from cutting the line, they might be enough to make
cooperative people not change behavior, avoiding the previously identified snowball
effect that can lead to a chaos behavior.

Resorting to representatives

This study demonstrates the potential of using representatives of communities
to minimize crowds at the food distribution and, consequently, to slow the onset of
an outbreak. However, it does not look into the further distribution from the repre-
sentatives to the final beneficiaries and infections resulting from this interaction. To
guarantee that the use of representatives does not represent a higher risk than the
one of sending the head of each household to the service point, it is recommended
that representatives are regularly tested and, if positive, that alternatives are set up.
After prioritizing the most vulnerable to COVID-19 (which in refugee settlements
are a small minority, due to the demographics of these environments), the inclusion
of representatives in the priority list of a vaccination rollout program can also be
discussed. By prioritizing these agents both for tests and for vaccines, the chances
of the representative being healthy and not a carrier of the virus can be increased,
hopefully minimizing further spreading during the rest of the distribution while not
having to spend the very limited resources in the whole population.

If representative-based policies are implemented, decision-makers should be aware
of the possible downsides of this decision. Drawbacks of resorting to representative-
based policies can range from simple ones such as the limited engagement of the
community but can also be considerably bigger. In case the representative of a
community is dishonest and diverts the food that should be distributed further, po-
tential side-effects can happen. These could range from people who did not get their
food trying to attend the food distribution even when they are not supposed to be
there (creating a certain chaos and, in case of an outbreak, potentially higher risks of
infections), unfair access to food with vulnerable people more likely to be deprived
of their rights or the creation of unbalanced power dynamics which could lead to
consequences such as the creation of black markets, debts and gang formation.

Before implementing such policy, decision-makers should have a clear under-
standing of the group behavior and the likelihood of these side-effects happening.

88



CHAPTER 9. DISCUSSION

Potential ways of minimizing these risks could be by using a democratic system
to elect the representatives of each community and, if necessary, keeping a strict
control on these. Alternatives such as implementing guarantee of final delivery or
switching roles can also be considered.

Finally, as most of the representative-based policies suggest a simple delay of
the spread onset and not necessarily its total control, it is extremely important that
this is combined with further policies. As delaying infections can lead to higher
number of cases occurring per day later on, one should be aware that policies that
only have delaying effects cannot be implemented alone.

Increasing COVID-19 awareness, monitoring and acting quickly

From the analysis, it was possible to observe that the system is highly sensitive
to the initial number of COVID-19 cases. As each case can potentially lead to several
others, it is clear that the earliest measures are implemented, the most successful
these efforts can be. Moreover, by implementing policies early on, the onset of the
spread can be delayed, giving camp managers more time to prepare and adapt.

In order to increase knowledge of the current situation of the outbreak, aware-
ness campaigns should be organized to inform the population of the COVID-19
symptoms and prevention techniques. Due to the high prevalence of respiratory
diseases in refugee settlements (Bellos et al., 2010), COVID-19 symptoms can often
be mistaken for other diseases and, consequently, not given enough attention. By
making testing accessible, it is not only possible to better control the development
of the outbreak, but households can also make better decisions when it comes to
deciding who should attend the food distribution event or fetch water. By increas-
ing testing, the probability of someone carrying the virus attending these common
facilities can be reduced, consequently reducing risks of infections.

As discussed, relatively low numbers of infections during the first days can still
lead to near-total outbreaks. For this reason, it can be concluded that decisions
should be adjusted in response to the settlement’s situation and should not be
planned once for the entire period. For this, it is recommended that there is a
constant monitoring of the situation and that both camp managers and the popula-
tion are kept updated of the current figures in order to allow for timely action and
behavior adaptation.

Uncertainty and preparing for worst-case scenario

From the analysis of the results it was possible to conclude that, under some un-
known parameters (resulting from the stochasticity of the model), the model shows
an extremely wide range of outcomes for the same policy and the same scenario.
This highlights that, although some policies might show a high potential to control
the outbreak in most scenarios, some unknown combination of other factors might
make the implementation of this policy unsuccessful.

Given this sensitivity of the system and the high consequences linked to uncon-
trolled outbreaks (number of deaths, pressure on the healtcare system, etc.), it is
recommended that policy-making is focused on the worst-case scenario. Although
less frequent than the others, there is a combination of unknown factors that lead
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to these results, making this scenario unusual but possible. In order to be prepared
to any possible development, policy-making should consider this potential scenario,
try to understand which factors lead to it and how to avoid it.

Looking into other solutions, communicating and adapting

From the implementation of policies at the food distribution and subsequent
evaluation of their impact, this study found that, although these show some potential
to reduce the speed of the virus spread, they are not enough to fully control it. For
this reason, it is recommended to look into other ways of minimizing contacts within
the settlement and implementing different sets of policies.

In specific, this study highlights the role of the shelter as the most important
location in terms of number of infections happening across all runs. This can be
justified by the difficulty of isolating infected people inside an often one division
shelter.

Identifying this challenge, the Bangladesh Government implemented a relocation
policy consisting of sending COVID-19 positive people to an island in order to avoid
an outbreak. However, the unclear communication and lack of transparency in this
process led to the creation of rumors that people who tested positive would be taken
away or even get killed (Mainul Islam & Yeasir Yunus, 2020), making people avoiding
tests and hiding their symptoms. This situation raises an important point: due to
poor implementation, what started as a policy to control the outbreak, turned out
to have such negative side-effects that undermine the implementation of the policy
in the first place.

For this reason, it is recommended that the process of developing policies to
contain an outbreak includes not only the camp-managers but also some inhabi-
tants. In an environment as fragile as a refugee settlement, it is important that the
interventions implemented are culturally accepted by the population. If this is not
the case, it is likely that people do not follow the measures and these consequently
do not have the effect intended.

9.5 Conclusions

This Chapter focuses on the discussion of the results obtained and previously
visualized. To do so, the main assumptions guiding the model behavior are identified
and their impact in the model is outlined. Then, by comparing the results obtained
with other studies, the validation of the model is discussed.

Then, a deep discussion about the implication of the findings is conducted by
analyzing the results and identifying key points and insights obtained. Finally, these
key points are used to formulate policy recommendations with different strategies
in order to control the spread of COVID-19 in a refugee settlement. Although it
is not possible to summarize all these insights in a short conclusion, a key point to
keep in mind is the need to look into further policies to control an infectious disease
outbreak rather than only looking at the food distribution event and how to change
it.
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Conclusion

This chapter concludes the study conducted on the risks associated with food
distribution during an outbreak in a refugee settlement. First, the sub-questions
proposed in the beginning of the study are revisited and answered in Section 10.1.
After this, the main research question is answered in Section 10.2. Then, in Section
10.3, the limitations of both the model and the study are discussed. Section 10.4 and
Section 10.5 cover the contributions of this study at both an scientific and societal
level, respectively. Finally, the study wraps up with suggestions for further research
in Section 10.6.

10.1 Answering the sub-questions

After identifying the research gaps in the literature, this study proposed to an-
swer a main research question. Breaking down this question into smaller steps, four
sub-questions were formulated. The first sub-question aims to help conceptualizing
how people wait in a queue and what factors influence their behavior when doing
so. The second sub-question refers to how food systems are organized in refugee
settlements. The third sub-question refers to measuring the performance of policies
implemented in the food distribution in the context of an infectious disease outbreak.
The fourth sub-question reflects on the drawbacks of using the policies proposed to
manage the food distribution in a refugee settlement. Answering all these questions
allows to formulate an answer to the main research question proposed in the study,
which will be answered in the following section.

1. What factors influence how people behave while waiting in a queue?

Queues are, per nature, places where people stand and interact. For that reason,
queues can be the source of infections during an outbreak. After highlighting that
the food distribution in refugee settlements often leads to long queues where a part
of the population spends a couple of hours, it was decided that this study would
focus on these queues and simulating interactions during them. For this reason, it
was necessary to understand how people behave in a queue and what factors can
influence this behavior.

There are different theories that conceptualize people’s behavior when waiting
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in a queue. Due to the similarity with the case described by the NRC - that while
some refugees respect the queue and wait for their turn, others decide to cut the
line - the theory developed by Köster and Zönnchen (2015) was chosen. This theory
divides people’s attitude when waiting in a queue in two different ones: cooperative
or competitive.

When faced with a queue for the service they want to attend, cooperative indi-
viduals identify the last person in line and wait behind them. On the other hand,
competitive people aim to go to the service point as fast as possible and try to
position themselves closer to it, ignoring most of the people waiting in the queue.
While people might have a cultural (or personal) predisposition to have one of the
attitudes, this theory also defends that people can switch between strategies - an
individual who joins the queuing process with a cooperative attitude switch to a
competitive one and vice-versa.

However, Köster and Zönnchen do not specify what factors could influence in-
dividuals to switch between attitudes. From complementing literature, it was noted
there were two main factors that make people cut a queue:

1. When people perceive the queue as being too long and do not want to wait;

2. When people see others not staying in the queue and cutting it instead.

There are other factors that could influence the attitude of a person when joining
a queue such as the fear of scarcity of the good to be served. However, these are not
considered in this study.

2. How is food access organized in a refugee settlement?

At a political level, refugee settlements are often looked at as a temporary so-
lution in an overall context of migration flows and conflict. This means that their
layout and set up is often the result of uncoordinated decisions made by different
groups (either refugees or NGOs) along time rather than a planned, coordinated and
well-designed structural effort. Lacking a structure where people can restart their
lives and quickly gain economic and structural independence, it can be claimed that
NGOs provide a crucial support in maintaining essential systems of the camps. An
example of such a system is food.

To provide access to food to the population of a refugee settlement, NGOs have
two main approaches: food aid and food assistance. While food assistance aims to
stimulate economic development through subsidies, cash, voucher or agricultural or
livestock support while creating a food market in the settlement, food aid resorts to
the direct transfer of food from the NGOs to the beneficiaries and has an only goal
to feed a population.

During the COVID-19 outbreak and due to lockdowns implemented in camps
that hinder the in and out movement of food and goods, several camps put their
food assistance programs on hold and resorted entirely to food aid. For this reason,
the focus of this study was on food aid and, in specific, monthly distributions. These
are events that occur once a month where (often dry) ingredients are handed out to
the population. In most of the camps (and when possible), this distribution is done
by giving rations for the whole household to the head of the household. However,
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when it is not possible (often in the initial phases of development of the settlement),
NGOs can resort to the use of representatives of communities. By doing so, the food
distribution process is broken down in two steps: from NGO to representative and
from representative to final beneficiary.

3. How to evaluate food distribution policies during a COVID-19 out-
break?

In this study two types of food distribution policies are considered: representative-
based and timeslot-based policies. While the first ones are a direct integration of the
distribution methods suggested by the Emergency Nutrition Network (2011) and
UNHCR (UNHCR, 2015), the second represents the widely used approach of intro-
ducing timeslots to distribute the number of people attending the food distribution
across the day of the event.

The focus of this study is both the queue and the outbreak dynamics. Moreover,
it is assumed that people who choose for a competitive approach to do in order to
increase their individual utility and aim to spend less time queuing. For these
reasons, the policies implemented at the food distribution are measured by the
following Key Performance Indicators:

1. Average time in queue during the food distribution event;

2. Cumulative COVID-19 infections.

Given the high level of these policies, further disaggregation was conducted both
at an attitude and location level. These extra metrics help understanding the model
and its dynamics and are as follows: the average waiting time in queue per attitude,
the number of people switching behavior, the likelihood of getting infected at the
food distribution, the likelihood of infecting others at the food distribution, the
distribution of infections per location and the infection chain.

4. What are the drawbacks of using the chosen policies during food
distribution?

While the study briefly looks into the potential of timeslot-based policies, the
focus lies more on the representative-based policies. This is justified by both their
real use in the humanitarian world but also by the results yielded when testing the
policy in the model developed.

However, although the representative-based policies result in desirable outcomes
in the KPIs considered in this study, it is important to not lose sight of the fact
that they can have considerable drawbacks. These drawbacks are a common concern
discussed in the literature and were also mentioned during the interviews with the
two food actors from Cox’s Bazar when discussing their majee system.

Drawbacks of resorting to representative-based policies can range from simple
ones such as the limited engagement of the community but can also be considerably
bigger. In case the representative of a community is dishonest and diverts the food
that it should distribute further to other inhabitants, potential side-effects can be
observed. Among these, some are as follows:
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• People who did not get their food attending the food distribution even if they
are not supposed to be there;

• Unfair access to food with vulnerable people more likely to be deprived of their
rights;

• Distrust in the system, potentially causing tensions and riots among the pop-
ulation;

• Potential creation of black markets where the representatives could sell their
reserves and famished people have to resort to when desperate;

• With the creation of black markets further consequences such as prostitution,
high debts and gangs can rise.

Although these side-effects were not integrated in the study due to the difficulty
to quantify them and the complexity involved, these should be kept in mind when
considering the implementation of the policies.

10.2 Answering the main research question

The foundation to answer the main research question is laid by answering the
four sub-questions proposed in this study. To recall, the research question guiding
this study is as follows:

What food distribution policies show robust performance under queuing
behavior uncertainty while minimizing COVID-19 infections in the con-
text of an outbreak in a refugee settlement?

To answer this question, a modeling approach was conducted. This was com-
plemented with desk research and (informal) interviews to actors working in Cox’s
Bazar. The flow of this study is visualized in Figure 3.1.

After having developed the queuing model, this was coupled in the model devel-
oped by Bögel (2020). Then the scenarios in which the model would be used were
developed. These scenarios were created by sampling the variable responsible for
the percentage of competitive individuals at the beginning of the run.

Then, a baseline was tested to evaluate the performance of the system under
no extra policies and to understand the dynamics of the system. This baseline
represents the case when the head of each household attends the food distribution
and was tested across all scenarios. As this experiment showed a high number
of infections across all scenarios and considerably high waiting times at the food
distribution event, it was concluded that there is a need to implement policies at
this event in order to minimize these.

After, both the representative-based and the timeslot-based policies were tested
across two scenarios: one with a relatively lowly competitive population and one
with a highly competitive population.

From the results obtained, a couple of insights can be drawn. First, when
no policy is implemented, a trend to a near-total infection by day 60 is observed
across all scenarios. It was also observed that there is a clear relation between
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the competitiveness of a population and the average waiting time in queue, with a
lower competitiveness resulting is lower waiting times. From the baseline, a clear
relation between the competitiveness of a population and the speed of infection
spread could not be drawn. Finally, it was possible to observe a trend between the
competitiveness of a population and a higher role of the food distribution event in
the infection chain.

Secondly, it is possible to conclude that there is a clear impact of the use of
representative-based policies in the average waiting time in queue and the speed of
the outbreak onset. From the low impact of the implementation of timeslot-based
policies on its own on the average waiting time at the food distribution it was
observed that there is a clear shortage of capacity to deal with the demand in a
settlement.

Across all scenarios, policy 1 (resorting to representatives of 50 people) seems
to yield the best results. However, considering that this policy is the one that relies
the most on the use representatives (and less of them), it is also the policy that has
the highest potential to result in side-effects according to other metrics not taken
into account in this model (see answer to sub-question 4). Moreover, it is important
to consider that the variation between the policies is done by adjusting the number
of representatives used and the time it takes to serve each one of them. For that
reason, it can be claimed that potential improvements in the time it takes to serve
each representative might be enough for another policy to perform better.

During model exploration, it was possible to identify certain runs under the same
scenario (and consequently assuming the same input parameters) with distinctive
behavior. This was also identified in the implementation of policy 1 and raises
an important point - under some unknown conditions, there is still a small chance
of near-total infection of the settlement when policy 1 is implemented. As this
is a result of some of the stochastic components of the model, this study does
not identify the parameters that lead to these outcomes. However, as they might
undermine the successful implementation of policy 1, it is recommended that this is
given further attention. By preparing for the worst-case scenario, the robustness of
the implementation of policy 1 can be increased.

Finally, it is important to highlight that none of the policies tested in this study
were enough to fully control the outbreak. This is not a surprising result, as refugees
continue performing other activities in the settlement even if they do not attend the
food distribution and end up being infected at later stages. For this reason, it is
highly recommended that policies are implemented at other levels and not only at
the food distribution. This study drafts other policy recommendations and suggests
further research into the development of other policies.

10.3 Limitations

Models are abstractions of the real world. And to build such abstractions, de-
cisions have to be made regarding the boundaries of the system being represented,
what to integrate and the level of detail included. Moreover, there are also uncer-
tainties on some of the dynamics to represented or some unknown components. For
these reasons, choices and assumptions had to be made throughout the process of
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this study, resulting in natural limitations. Although these do not undermine the
value of this thesis, it is important to be aware of them when reading the conclusions
of the work. In this section, limitations are divided in model and study limitations.
Further discussion on how these can be overcome can be found in Section 10.6.

10.3.1 Model limitations

The model focuses on three main components: COVID-19, queuing and food
distribution in a refugee settlement. For this reason, the limitation section will be
divided accordingly, with an extra subsection focused on the model performance.

COVID-19

Regarding the COVID-19 component, the limitations of the model are mostly
associated with the epidemiological parameters and their accuracy. As a pandemic
caused by a recently discovered virus, the COVID-19 crisis was initially characterized
by uncertainty. As time passes, more people get infected with the virus and scientific
methods improve, scientists and medical staff gather more and more information
regarding the SARS-CoV-2 virus, how it spreads and how it develops in different
people. The COVID-19 component of this model was developed by Bögel and, due
to a different focus for this study, was not updated with more recent parameters.
It is thus important to be aware that this study uses epidemiological parameters
from June 2020. By doing so, it is likely that the model is overestimating the risk
of outdoor activities and that the results suggest worse outcomes than the ones to
observed in case of an outbreak. In fact, current reports from settlements have not
described major outbreaks yet, contrary to the chaos expected at the beginning of
the pandemic. This can be justified by the relative isolation of the camps from host
communities (reducing probability of the first case to appear), the strict lockdown
policies implemented but also by potentially the lack of testing and identification of
cases. The reduced amount of deaths can also be associated with the demographics
of such settlements, where the average age is considerably lower than in urban
settings (Egeland, 2021).

The epidemiological parameters used are based on observations in urban set-
tings. However, as respiratory infection rates in refugee settlements are considerably
high (Bellos et al., 2010), it can be claimed that new infections are more difficult
to detect. In this model, this would increase the mismatch between infection and
infection-perception, leading to more refugees performing activities without knowing
they were carrying the virus if isolation or quarantine policies are put in place.

In line with the previous consideration, it should be highlighted that the concept
of individuals being super spreaders was not integrated in this study. The probability
of infecting other individuals is dependent on the age of the infectious agent and
not in an attribute whether the agent is a super spreader or not. Similarly, the
progression and effects of the virus in individuals is also not dependent on anything
else other their age group (children, adult or elderly). This means that the level
of detail to which the COVID-19 spread was modeled does not include underlying
medical conditions that could make individuals have more severe complaints when
infected.
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Finally, regarding COVID-19, it is worth noting that parameters are not static
variables and that the constant emergence of new strands represents a challenge in
having a model that is always up to date.

Queuing

The queuing component of the model is highly based on the theory by Köster
and Zönnchen (2015). This is only one theory behind queuing dynamics, existing
other ones that could be implemented as well. According to this theory, people have
a natural attitude when queuing: they either cooperate or they cut the line. People
who initially cooperate can also be motivated to cut the line if they see other people
cutting or if they perceive the queue as being too long. This theory hence attributes
the cause of people becoming competitive to only these two reasons. By doing so,
the theory does not include people who are queuing cooperatively but are forced to
cut the line because of urgent reasons (i.e. after getting a call and realizing they
cannot wait until their turn) or people who cut the line because they see a relative
or a friend further ahead in the queue. Similarly, the theory does not include people
who become tired of waiting too long and decide to leave and come back at a later
time nor people who could have a priority for being served (elderly, e.g.).

If the only goal of this thesis were to model a queue and how people wait for their
turn to be served, a queuing or crowd management software should have been used.
However, as the queuing process is only a part of the whole dynamic of this study,
NetLogo was used instead. This choice of software limits the potential of properly
simulating queues and crowds. However, this was deemed not relevant enough to
invalidate the use of the software. An example of such a simplification made due to
the software (and the limited skills in using it), is that competitive agents only cut
the line once. This limits the use of this model in an extremely competitive environ-
ment where crowds are rapidly formed as this cannot be simulated by the model as
it is now. For this reason, this model is more fit to represent an environment where
people are more likely to be cooperative and competitive agents are the exception.
This simplification directly results in less interactions in the queuing process than
modeled. For that reason, it can be assumed that when there are higher numbers of
competitive people, the actual number of infections is higher than what the model
suggests.

Moreover, the integration of dynamic queuing behavior is only implemented
when refugees queue for food and not for the rest of the activities in the settle-
ment. Similarly, food distribution is the only event refugees walk to instead of being
immediately transported to. By applying this behavior into other queues in the
settlement, it is expected that the number of infections increases.

Food distribution

Regarding the food distribution, there are a few limitations to be highlighted.
As mentioned before, this model focuses on the main food distribution from NGOs
to the refugees and assumes that the population is highly dependent on this event
for survival. However, refugee settlements can have other food sources. Among
these, there are settlements that have shops, markets or where inter-shelter trade
happens. Other camps also are in relative proximity with other civilizations where
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the population can go to in order to find food (creating an in- and out- flow within
the settlement). This model is not fit for the representation of these camps as it
is assumed that there is no movement in and out of the camp and that the food
distribution is the only food source.

Moreover, the policies implemented at the moment at the camp are quite sim-
plistic - either resorting to representatives of communities or timeslots to attend
the food distribution. A further limitation relates to the use of representatives: as
the model only focuses on the distribution of food from the NGO to the refugees
(whether they are representatives or not), further distributing between representa-
tives and the final beneficiary is not modeled.

Finally, regarding the use of representatives, the model considers a total trust
in the representatives. In other words, this means that, if there is a policy in which
representatives are being used, the rest of the population accepts this and does not
attend the food distribution.

Computational limitation

A model related limitation is directly connected to the performance of the model
developed for this thesis. As the model integrates a high number of agents and has
an infection component, the running speed of the model increases throughout runs.
This results in a technical limitation to run the model which consequently impacts
the number of replications used throughout the study.

Finally, another limitation originates from a mistake made during the setup of
the experiments. By not having fixed a seed, it is not possible to compare replications
across different experiments. For this reason, some of the results obtained during
the policy implementation cannot be directly related to the implementation of the
policy but can be the result of a combination of stochastic elements that had not been
seen before. Such an example are the model runs that suggest a total containment
of the outbreak - by observing them, it is possible to note that the containment
happened even before the first food distribution, showing that neither the policy
nor the scenario were the drivers of such a dynamic. By not having fixed a seed, the
fact that this result did not appear in the baseline is justified.

10.3.2 Study limitations

While some limitations are direct consequences of the modeling approach and
modeling decisions, the scoping and conceptualization of the study also result in
some limitations.

First, this study simplifies activities in a refugee settlement down to four ones:
picking up food, fetching water, using latrines and visiting healthcare facilities.
This is an obvious simplification of the daily routine at a camp, but these activities
represent the main dynamics that cannot be put on hold even if there are COVID-
19 preventive rules in place. However, a discussion about the importance of schools
and social contact can be raised, together with population relying on support from
other shelters or administration work that should also not be stopped.

Second, this study focuses on a prototypical settlement and not a specific one.
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This means that some variables (such as the number of people per shelter, number
of facilities per population, among others), the location of facilities and the type of
facilities is rather general and not particularly representing any camp.

Another limitation is directly connected to the policies being studied. The
policies suggested in this study are quite simple ones and only target the food
distribution event in the camp. In case of an outbreak in a settlement, more policies
should be tested, targeting different components of the camp.

Moreover, it is important to consider the downsides of such policies to fully eval-
uate their impact. This study focuses purely on the personal utility (time in queue)
and the COVID-19 infections. However, implementing policies almost always leads
to unwanted consequences that should be taken into account to properly evaluate
them.

This study has representative-based policies as the main studied solution. How-
ever, when discussing the use of representatives, a common concern of diversion of
food is often mentioned. This was noted both in the documents related to food dis-
tribution but also in the interviews with food actors from Cox’s Bazar about their
majee system. In case the representative of a community is dishonest and mishan-
dles the food that it should distribute further to the final beneficiaries, potential
side-effects can be observed.

These side-effects were not integrated in the study due to the difficulty to quan-
tify them and the complexity involved. On the same line of reasoning, this study
does not take any other social or economic factors as metrics to evaluate the per-
formance of the system. Nonetheless, such factors should never be forgotten when
deciding to implement policies and can be integrated through a qualitative study,
for instance.

Having highlighted the limitations of this study, it is important to conclude that,
although the model can be used to support decision-making and obtain insights
about some important dynamics, one should never forget its limitations and should
not take it as a unique source of information.

10.4 Scientific contribution

This study picks up on an refugee settlement infection model developed in 2020
(Bögel et al., 2020) and develops it further by adding more dynamic behavior to the
refugees queuing for food. By doing so, it increases the range of experiments that
can be conducted in the developed model and the insights that can be taken from
it. Specifically, it allows the integration of heterogeneous behavior in queues and
understanding how effective policies to control the spread of an infectious disease
can be.

This study comes to fill in the gap of the lack of representation of queuing models
using ABM techniques. By implementing a queuing theory into an ABM model, this
study represents a step forward in the behavioral study of queues. Moreover, by
developing the queuing process in a separate stand-alone model, this study provides
a queuing model that can easily be plugged in any other model. This allows for a

99



CHAPTER 10. CONCLUSION

quick integration of dynamic queuing behavior in other situations where looking at
the way people queue is relevant.

To the extent of my knowledge, this study represents the first one combining
queuing dynamics during an outbreak in a refugee settlement, expanding the liter-
ature in this area. By doing so, this is the first study showing the effects of having
competitive people in a population and the role that they play in the infection spread
during a queuing event. This study also shows the trade-offs of such a behavior and
the overall impact a higher percentage of competitive people in a population has in
the number of infections happening during a food distribution event.

Finally, the model built in this study is publicly available and fully documented.
By sharing these developments, the queuing model can be used for Operations Re-
search and how to optimize queues given that people do not stand in line and
patiently wait for this turn. By integrating such a model in OR, solutions to make
the queuing process quicker can be tested and their impact evaluated.

10.5 Societal contribution

Standard recommendations to stay safe during the COVID-19 outbreak are as
simple as keeping a distance and avoiding crowds. However, such a simple thing can
be extremely difficult for refugees. Often living in overcrowded camps with shared
facilities, refugees represent a vulnerable part of the world population during this
pandemic.

Due to structural differences between the settings where refugees (and other
persons of concern) live, modeling the way an infectious disease spreads needs to
take these factors into account. Moreover, the same differences need to be considered
when looking into policies to be implemented. For these reasons, it is necessary that
some of the research focuses on these specific settings instead of applying take-aways
achieved from urban studies.

This study represents another step in the direction of prioritizing the humani-
tarian world and including it in research. By simulating a refugee settlement, this
model can be used to test policies that are not only relevant but also feasible in a
humanitarian setting.

Moreover, the idea of looking into queues and how to keep people safe while
queuing is also very relevant for the (hopefully) near future. When vaccination
programs in refugee settlements start taking off, queues will form. Being aware on
how to keep these queues to limited numbers and making them as safe as possible
must be a priority. However, for these, other policies must be designed as the use
of representatives is not a possible solution to avoid crowding.

Finally, as the number of displaced people around the world has been steadily
increasing since 2012 and seem to continue so for a while, studies that focus on
people in these conditions are more and more urgent in order to not only provide
NGOs with data-driven policy recommendations but also to increase awareness on
the topic. In addition, studies in this topic can accelerate the achievement of the
Sustainable Development Goals.
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10.6 Further research

As mentioned before, this study represents a step in the field of modeling hu-
manitarian settings and prioritizing vulnerable people who are displaced from home
in research. However, as with any study, it represents only a small step and it is
far from being complete. Due to time and resource constraints, the scope of this
project was limited. While working on it, I often came across potential directions
or additions that I would have enjoyed including but had to be left behind. Taking
these ideas and the limitations of the study into account, some further research is
suggested.

The first direction of further research relates to the wide range of outcomes
observed in the result section. As was previously mentioned, replications under the
same scenarios can lead to completely different outcomes. This suggests that, when
implementing a policy, the success of its implementation is not only dependent on the
scenario but also on some other combination of unknown parameters which are now
guided by stochastic events in the model. To to understand the impact of policies
under these particular situations and allow a full comparison to the baseline, a seed
should have been fixed among experiments. However, as this was not the case, it is
suggested that the experiments are repeated with fixed seeds so that different results
can be attributed to the policy implementation. Moreover, in order to discover what
parameters are leading to these outcomes, further exploration of these circumstances
and uncertainties is recommended. One potential direction could be to turn some of
the stochastic events into input parameters of the model (who gets infected as patient
zero, for instance). Then, by running the model using deep uncertainty techniques,
a more extensive scenario sampling can be created, allowing for an examination over
the total scenario space. This could help understanding the necessary conditions to
increase robustness of the policies.

10.6.1 COVID-19

First, some suggestions are made regarding the epidemiological component of
the model. To better simulate the current outbreak, it is recommended that the
COVID-19 related parameters (regarding the incubation period, the period in which
individuals are infectious, percentage of asymptomatic, among others) are updated.
Developments could also be made by adding an extra layer of detail to the model
and including underlying health conditions that can make individuals have different
COVID-19 experiences and adjusting the epidemiological parameters accordingly.
This could show interesting results by, for example, showing that if refugees in
settlements have different health status than people living in a city, the outbreak
shows different outcomes (not only less casualties since there is less elderly at a camp
than in a city but also less obese individuals, for instance). Expansion to include
different variants and their own epidemiological parameters could also be interesting
- potentially different variants need different policies to be controlled, for instance.

As time goes by, discoveries are being made and people start getting vaccinated
for COVID-19. By changing the way people get immunity in the model it is possible
to include a possible vaccine rollout and observe the adjusted outbreak dynamic con-
sidering that an increasing number of the population can achieve immunity without
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being previously infected.

Regarding infections, relevant experiments can be conducted by changing the
number COVID-19 cases in day 1 or by seeing the impact of different people being
infected. For example, it would be interesting to observe how the outbreak would
have developed if the initial case were from the NGO member responsible for the
process of the food distribution.

Policies including the capacity of testing can be included in the model. This
would reduce the gap between the infection attribute and the infection perception,
which would hence reduce the number of infected agents attending communal facil-
ities and infecting others when quarantine policies are implemented.

By implementing policies with a merely delaying effect, one can be increasing
the total number of cases happening per day at a later stage. This can be argued to
be putting the healthcare facilities under higher pressure instead of spreading the
medical demand throughout time. For this reason, further analysis on the effect of
policies in the number of active cases per day is suggested.

10.6.2 Queuing

Then, regarding the queuing component of the model, some further directions
can be suggested. Regarding the behaviors being modeled, right now the model is
highly based on the theory developed by Köster and Zönnchen (2015). However,
this theory limits the types of behavior people can have into only two different ones.
While modeling something as essential as a food distribution, other behaviors could
be considered. For example, a priority system where certain type of people (elderly
or disabled people, for instance) do not have to wait in a line to be served and can
just join the queue in a frontal position. Behaviors like balking and reneging could
also be integrated when developing the queuing behavior.

Moreover, the spatial component of the queuing is now highly dependent on
choices made during the modeling process. Further research on where people queue
and why they choose those positions is recommended. This can be done by per-
forming some field research and observing queuing formation.

In this study, the dynamic queuing behavior was only implemented when refugees
wait for food. However, similar behavior could be observed in any queues in the
camp. For this reason, it is recommended that further developments in this model
include integrating this dynamic behavior in the queues for WASH or healthcare
queues. Once camps start with a vaccination program, there will be queues for
this as well. However, none of these queues could be managed by resorting to
representative-based policies. For this reason, it is important to understand the
risks of the queue to make sure people do not get infected while waiting for their
vaccine.

Finally, regarding the flexibility and applicability of the queuing model, it is
relevant to note that the coupling now is done in a hard way. However, a further
step could be to create a library from this model so that it can be more easily plugged
into other models and used in other studies. For this it would first be necessary to
fix some things such as the location where they wait (tweak this a bit) and syntax
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differences.

10.6.3 Adjusting it to a camp

In this study, the model is used as a prototypical model that combines informa-
tion from different settlements. This means that data such as the demographics and
the number of facilities per population is taken as an average from different settle-
ments. Another implication of its prototypical nature is that several parameters are
left as an interface choice in the model.

To use this model for policy making support in a specific settlement, it is rec-
ommended that the model is adjusted to represent the settlement. This can be
done by adjusting the demographic data, the facilities and the spatial layout, for
instance. When focusing on the food system, this adjustment should also consider
the existence of other food sources such as markets, own creation or shops.

Regarding behavior, tailoring the model to represent a specific settlement can
also be done by adapting the behavior to the one in that settlement and consider
its contextual factors. For example, if there is scarcity of food or an unstable food
distribution system, it is normal that people behave more competitively or that peo-
ple try to attend the distribution more than once. Another interesting contextual
parameter related to the distribution of the time people prefer to attend the food
distribution. If the camp being modeled is one where the middle of the day has ex-
treme peaks of heat, it is possible that the peak of people attending the distribution
happens early in the morning or in the evening. Similarly, if the food distribution
coincides with a religious festivity, for instance, maybe trends of people attending
the distribution before or after religious events can be observed. By including these
variances the model can be shaped to represent a specific settlement as much as
intended. Moreover, instead of simply varying the percentage of competitive agents
in the initial population, meaningful scenarios can be created with these variables.
Such low-level details on the behavior of people can be difficult to find in literature.
For this reason interviews and field work can represent a best approach to achieve
this.

Finally, adjusting the model to a certain settlement can also open the possibil-
ity of integrating a relevant social network layer. Settlements are often divided in
communities with certain cultural factors making people belong (or not) to a cer-
tain community. It can also be assumed that contact among people from within the
same community is higher than with outsiders. In a context of a disease outbreak,
social networks and interactions are a key factor in the development of infections.
By integrating a social network level to the model the impact of these can be studied
and policies can be made taking these into account (for example, it could be inter-
esting to look up the effectiveness of policies that allow movement but only within
communities).

Finally, the use of this model to simulate other settings where facilities are
shared and home isolation is not easily guaranteed could be considered. Examples
of such places are Brazilian favelas or slums. Although the main assumptions of this
model and the queuing behavior theory could easily be adjusted to these settings,
the assumption that there is no in or out movement from the setting is a more

103



CHAPTER 10. CONCLUSION

debatable one. If this assumption remains valid for these settings, it is believed that
this model could be used.

10.6.4 Development of policies

Regarding policies, it is first important to understand the simplicity of the poli-
cies considered in this study. Most the policies studied, the representative-based
policies, are implementing by simply adjusting the number of people attending the
food distribution (representatives) and the time it takes to serve each person. How-
ever, the model does not look into the further distribution from these representatives
to the final beneficiaries, not fully simulating the total amount of interactions needed
for the food distribution process and, consequently, not picturing all the potential
infections that can happen in the process. Integrating this distribution is the first
step that should be taken if the study of the potential of these policies is to be
continued.

Similarly, these policies have been noted by several actors to entail in some down-
sides. Such downsides can go from as little as the lack of community engagement
to tension between population when a representative fails to give the food to the
final recipient. The gap between the access to food by different individuals can also
lead to the creation of a hierarchical system and less transparent food transactions
potentially resulting in power dynamics that can take over the settlement. In this
study, none of these consequences is measured by any metrics. Due to the extent
of these consequences and the complexity this would add to the model, these were
left out of scope. Whole behavioral concepts related to power dynamics, trust and
corruption can be integrated in this direction, creating a whole range of possible
topics for further studies.

While the range of policies considered in this study is very limited, the model
offers the opportunity to test different policies with completely different targets.
These policies could range from information campaigns that inform people on how
long the wait is at each line in an attempt to make them more informed and less
likely to turn competitive but also could involve more distribution points or more
days, for instance. Nonetheless, to develop more meaningful policies and policies
that are feasible in a settlement setting, the policy development should be the result
of a conversation between food actors and members of the population of refugee
settlements. By understanding the needs from each side and their perspective on
the system maybe better compromises can be achieved and more effective policies
can result from it.
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Appendix A

Epidemiological modeling

Figure A.1 shows the COVID-19 progression as implemented in Bögel’s model
(Bögel et al., 2020).

Note that the epidemiological parameters used in the model were updated with
data from June 2020, which might not represent the current knowledge on COVID-
19.

Figure A.1: COVID-19 progression as implemented in (Bögel et al., 2020)
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Appendix B

Queuing model

This appendix covers the software implementation of the queuing model in order
to complement the information already included in the main text. It will first focus
on the model agents (section B.1), the general reasoning of the model in the form of
a diagram (section B.2), parameterization (section B.3), model assumptions (section
B.4), technical limitations (section B.5) and model verification (section B.6).

B.1 Agents attributes & behavior

In order to simulate a queuing process, a model was built. This model has two
main components: the food distribution point and the refugees. In this section the
model is broken down to understand the variables and the attributes and behavior
of the agents.

B.1.1 General variables

There are two types of global variables in the model: the ones defined in the
interface and the ones defined in the code.

Table B.1 provides an overview of the interface variables of the queuing model,
while Table B.2 outlines the rest of them. There are also extra variables that are
used to keep track of the performance of the model that are not included in these
tables.
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Table B.1: Interface variables of the queuing model

Level Variable Explanation

Levers policy-implemented which policy is implemented at the
moment

timeslot? if a policy of using timeslots is being
used (boolean)

social-distancing distance people following
social-distancing keep from each other

hours-open how many hours the food distribution is
open for

Context percentage-competitive percentage of the population that starts
up as competitive

threshold-competitive tendency to competitiveness threshold to
turn competitive

total-number-inhabitants variable that keeps track an agent’s
current tendency to become competitive

distribution-pick-up variable that keeps track an agent’s
current tendency to become competitive

poisson-mean variable that keeps track an agent’s
current tendency to become competitive

Structural radius-visibility the visibility of agents (used to influence
some agents when they see people
cutting the line around them)

impact-seeing-cutting impact seeing a person cutting the line
has in the competitiveness of an agent

impact-long-queues impact seeing a long queue has in the
competitiveness of an agent

acceptable-length maximum length of queue that people
still accept

startingpointx defining the beginning of the queue (x
coordinates)

startingpointy defining the beginning of the queue (y
coordinates)

width-queuing-area to decide how far from the queue new
competitive can go

natural-distancing-x natural distance people keep from each
other without a COVID social distancing
measure (x coordinates)

natural-distancing-y natural distance people keep from each
other without a COVID social distancing
measure (y coordinates)
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Table B.2: General variables of the queuing model

Variable Explanation

patchespertick To control how much they can move every timetick (sort
of speed)

freeRefugees This is an agentset of refugees that are not busy getting
food

firstInLine This is an agentset of the refugees that are the first in line
distanceFirstToFood This is the distance from the first refugee in line to the

food distribution point
supportive Supportive variable for placements (can be -1 or 1)
day To keep track of time
hour To keep track of time
minute To keep track of time
middle distribution time Calculates the hour that is the middle of the distribution

time
num-refugees Number of refugees attending food distribution (depends

on policy implemented)
frontal position min Position in serving queue of the first agent to be in the

frontal zone
medium position min Position in serving queue of the first agent to be in the

medium zone
medium position max Position in serving queue of the last agent to be in the

medium zone
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B.1.2 Food distribution

The food distribution agent is a rather simple one with only five different at-
tributes. These are outlined in Table B.3.

Table B.3: Attributes of the food-distribution agents

Attribute Explanation

service-time time it takes to serve an agent
opening-time time the facility opens
closing-time time the facility closes (calculated as

opening-time + hours-open)
physical-waiting-list list to place agents in a queue (only for

cooperative people)
serving-waiting-list list to serve agents (includes competitive

and new-competitive)

B.1.3 Refugees

This subsection focuses on three main topics related to refugees: their attributes,
their attitudes and their spatial placement.

Attributes

Table B.4 shows the main attributes that the refugee agents have in the model,
together with their meaning.

Attitudes

Based in the literature, agents are created with two main attitudes: cooperative
and competitive. This attitude is defined by their natural-tendency with lower values
representing a cooperative person and higher values a competitive one.

1. Cooperative

Cooperative agents, when faced with a queue, identify the last person lining up,
head towards them, queue behind this person and wait for their turn. This is done
by adding themselves to the last position in both the physical-waiting-list and the
serving-waiting-list.

2. Competitive

Competitive agents, on the other side, when faced with a queue, try to place
themselves in a rather frontal position to minimize the time they have to wait to be
served.

This happens as follows: they get close to the queue in the same as cooperative
agents. However, when they are faced with it, they consider the 80% first spots
(closer to the service point) as attractive places to join instead of joining in the
back. The place where they force themselves depends on their current tendency-
to-competitiveness - the more competitive they are, they more frontal they will put
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Table B.4: Attributes of the refugee agents

Type of
Attribute

Attribute Explanation

General destinationx X coordinates of their next destination
destinationy Y coordinates of their next destination
current-task task they are currently busy with
preferred-
fooddistro-time

time each agent prefers to go pick up
their food

Attitude natural-
tendency

natural characteristic of a person that
shows how competitive they are

tendency-to-
competitiveness

variable that keeps track an agent’s
current tendency to become competitive

tendency-after-
queuing

value of their tendency to
competitiveness after checking the length
of the queue

attitude attitude they have: cooperative,
competitive or new-competitive

list-influencing list of agents that influence one to
become more competitive

currently-
influencing

list of the influent people (see
explanation above) around a refugee at a
given time

Placement &
Queue
attributes

number-in-
physical-queue

their position in the physical queue

number-in-
serving-queue

their position in the serving queue

before-me-queue only for cooperative: the turtle that is
before them in the physical queue

before-me-x only for cooperative: the X coordinates
of the person before them in the
(physical) queue

before-me-y only for cooperative: the Y coordinates
of the person before them in the
(physical) queue

time-spent-food how much time they already spent with
the process of getting food

time-remaining-
service

time left to be served when in the first
place of the line

tracking-time-
in-queue

how much time agent has been in the
actual queue

start-tracking-
time

boolean to check if they have already
started tracking the time

first-destination only for competitive: the first destination
they join in the queue

first-jump only for competitive: boolean to help me
keep track if agent hasn’t cut the line yet
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themselves. Considering F as the place where they manage to join the queue, this
is calculated as follows:

desirable-area = length-of-the-waiting-list × 0.8 (B.1)

F = desirable-area × (100 − tendency-to-competitiveness × 0.01) + 1 (B.2)

Once calculated F , the agent places themselves in position F in the serving-
waiting-list. Note that it is assumed that these agents can never force themselves in
the first place in the queue because this is the only place that is monitored (by the
person serving). This is the reason why the + 1 is included in the previous equation.

3. New-competitive

Köster and Zönnchen’s (2015) theory defends that cooperative people can be-
come competitive due to their environment. This has been narrowed to two different
events: by seeing other cutting the line or by thinking that the line is too long.
This is implemented in the model by constantly adapting each agent’s tendency-to-
competitiveness according to the following formula:

tendency-to-competitiveness = natural-tendency + E + L (B.3)

With E and L being the result of seeing other people cutting the line and of
seeing a long queue, respectively. These are calculated as follows:

E = number-of-people-cutting-the-line × impact-seeing-cutting (B.4)

(with the number-of-people-cutting-the-line being the number of people who do
so within the agent’s visibility)

and

L = 0 , if 0 6 length 6 1
3
acceptable-length

L = length ×impact-long-queues×0.05 , if 1/3 ×acceptable-length 6 length 6 acceptable-length
L = impact-long-queues , if length > acceptable-length

The final value of tendency-to-competitiveness is bounded between 0 and 100 by
setting lower and upper limits, respectively.

Ultimately, an agent’s tendency-to-competitiveness will dictate their attitude
(Table B.5). The creation of the third attitude (new-competitive) instead of using
the normal competitive was a decision in order to keep track of who is behaving
competitively because of the circumstances and not because of their nature.

If the tendency-to-competitiveness of an agent is now bigger than the threshold-
competitive, the agent is now a new-competitive and will cut the line to place them-
selves in a better position. In order to do so, the agent first removes themselves
from both waiting lists. Then, it calculates a better position to be placed at in the
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Table B.5: Refugee’s queuing attitude based on their tendency-to-competitiveness

Attitude

if tendency-to-competitiveness 6 threshold-competitive cooperative
if tendency-to-competitiveness > threshold-competitive competitive (or new-competitive,

depending on the
natural-tendency)

serving-waiting-list. Considering M as the new position where the agent will place
themselves, this is calculated as follows:

M = INT ((number-in-serving-queue−1)×(100−tendency-to-competitiveness)×0.01)+1
(B.5)

Similarly to competitive agents, their placement is dependent on their competi-
tiveness and can never be the first place. Note, however, that this calculation is not
exactly the same as of the first agents. This is because new-competitive agents were
already placed in the serving-waiting-list and will then have to place themselves in
a position that is better than the one they initially had.

Spatial Placement

The placement of agents in the model is not directly connected to their position
in the queue. For that reason, it is important to cover how this was implemented.

1. Cooperative

As cooperative agents follow the unspoken rules of queues, their spatial place-
ment is directly related to the position of the person before them in the queue.
Their behavior is rather simple: if they are the agent is the first one in the queue,
it sets the start of the queue as its destination. If not, it gets coordinates of the
person before them in the physical queue, heads there and places themselves at a
distance (social-distance) behind of them. Every time a cooperative agent is served,
the queue moves forward and so does every element of the physical-waiting-list.

2. Competitive

After solving how to introduce competitive agents in the food distribution and
guarantee that they are served without perturbing the spatial location of competitive
agents (using the two different waiting-lists), another challenge arose. This challenge
was related to the spatial placement of these agents when they are waiting for their
turn.

This was done by imagining three zones: frontal, medium and far. These are all
created with the in-cone function and with a certain distance to the food distribution
and the placement of agents in each one of these zones depends on the position
they have in the serving-waiting-list. Competitive agents who occupy positions
between 1 and 3 in the list are placed in the frontal zone. Agents that have positions
between 3 and 40 in the list are placed in the medium zone and agents placed further
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wait in the far zone. Note that the values mentioned above can be changed by
altering frontal position min, medium position min and medium position max (that
now have the values of 1,3 and 40, respectively). If the competitive agent occupies
position 0 in the serving-waiting-list (indices begin from 0 in NetLogo and not from
1), it is placed in the patch where the food distribution occurs.

Every time there is a change to the serving list (i.e. an agent jumps in or a
refugee is served), the agents update their positions. This can mean agents moving
backwards if the changes in the list were such that they are not place in the frontal
or medium zone anymore.

3. New-Competitive

Placing new-competitive agents represented another challenge. The way it is
implemented in the model now was developed before introducing the frontal, medium
and far zone for the competitive. Further developments should look into the spatial
placement of agents and the placement of these agents should be perfected.

The placement of these agents is dependent on the person before them in the
serving-waiting-list. For their x coordinates, new-competitive agents take the po-
sition of the person before them in the serving list minus how-close-x. Their y
positioning is similar to the one from the person before them minus (or plus) how-
close-y.

Time to attend food distribution

Each refugee has a preferred-fooddistro-time attribute that defines the time they
attend the food distribution. Note that this is the time they start heading to the
food distribution point and not the time they arrive there. For that reason, the
possible values for this attributed are limited to between the opening time of the
food distribution and one hour before it closes to guarantee that agents have enough
time to reach it.

In the interface the user can set how this distribution looks like by choosing
between normal and poisson. The first one was used by default since it shows a
distribution with a peak in the middle of the day (which is often observed in super-
markets). Note that it is capped in order to not give values close to infinite values
that are common to a normal distribution. A poisson distributed is complemented
with the poisson-mean value to describe where the peak is.

B.1.4 Implementation of policies

In this thesis there are two types of policies to be studied: representative-based
and timeslot based policies.

The first type is implemented by creating only a certain percentage of the agents
in the simulation (num-refugees) and adapting the service-time of the food distribu-
tion accordingly. This is possible because in this simulation agents are only created
for this (i.e. there are no families, other activities nor epidemiological factors).

Implementing the timeslot based policy is done by setting up the preferred-
fooddistro-time as a uniform distribution instead of a poisson or normal one.
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B.2 UML

Figure B.1 describes the flow of the queuing model, with the different steps
taken by agents during a run.

B.3 Parameterization

This subsection focuses on the parameterization of the variables in the queuing
model. When possible, the values of these variables are based on literature. However,
some concepts are novel of this study and are not present in literature. This poses
a challenge for parameterization. Due to time limits, choices and assumptions were
made. These are explained in this subsection. It is important to note, though, that
the variables can be changed in the model interface in case one deems necessary,
increasing model flexibility for application in other studies.

Another important point to highlight regarding parameterization is the purpose
of the model. The queuing model is utilized to study queuing dynamics and the
impact of different policies in relative changes in the system. For this reason, it can
be argued that the absolute impact of a measure is not the focus but rather how it
differs from the impact of a different one. For instance, it is more relevant to know
that a policy reduces the waiting time to half rather than the actual time people
have to wait with given policy. It can be argued that the choice of a value for certain
parameters merely serves to be able to compare model behavior under different initial
conditions and to evaluate the relative impact of the implementation of policies. To
evaluate the impact of the choices made, a sensitivity analysis is recommended.

B.3.1 Threshold to become competitive

In this model, every agent has an inherent and individual tendency to become
competitive. This value is adjusted throughout their queuing experience and, once
it has overcome the threshold to become competitive (threshold-competitive, in the
model), the attitude of the agent turns to competitive as well (new-competitive).
Inspired by other ABM studies, this variable was conceptualized for this study and
is not present in literature.

Changing this value, however, can be used to represent different settings and
scenarios. For instance, in a scenario where there is food insecurity and people
are not sure whether there will be food when it is their turn to be served, people
might turn competitive more easily. This can be represented by a lower threshold.
Contrarily, in a culture where queuing is more respected, a higher threshold is needed
for one to become competitive (for instance in Japan).

The focus of the queuing model experiments is, however, to look into the impact
of different policies in scenarios that differ on the initial attitude of the agents. For
this reason, the choice of a threshold serves merely to be able to compare model
behavior. After several tests, the value for the threshold to become competitive was
set to 50 since it resulted in reasonable behavior of the system and it provides a
medium ground for a variable that can vary from 0 to 100.
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Figure B.1: Flow of the queuing model
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B.3.2 Distribution on how they go pick up their food

When setting up the agents, each one gets an attribute that corresponds to
their preferred time to join the food distribution queue (preferred-fooddistro-time).
The combination of these variables across the entire population of the agents in the
model can be described as the time distribution on when agents go to pick up their
food. Similarly to the threshold to become competitive, this variable influences the
behavior of people and can be tweaked to represent different situations. However,
because the focus of the experiments with the queuing model are the relative differ-
ences between policies and not the absolute impact of these, it can be argued that
maintaining the same distribution across experiments is sufficient.

To allow for a somewhat realistic depiction of the arrival of agents to a queue
setting, a normal distribution with a standard deviation of 2 is used. Because of the
unbounded nature of normal distribution, it is necessary to guarantee that agents
do not arrive before nor after the opening times. For this, the values are capped
between the opening and closing time of the food distribution. This decision leads to
a distribution of people joining the queue along the day, with a peak in the middle
of the day (i.e. in the middle of the functioning time of the food distribution).
Several studies argue that customer arrival is better modeled through a Poisson
distribution. This also has the benefit of allowing to switch the peak along the
range of the distribution - for example, during summer lunch time might not be
the most popular hour because of the strong heat and the risks of insulation. A
Poisson distribution would allow to switch the peak of the arrival either to the
morning or evening, for instance. Another potential scenario is that, due to a
certain fear of scarcity, the majority of people will go as soon as possible with lower
numbers going in the afternoon. These two situations can be modeled by choosing
a Poisson distribution instead. However, due to the discrete nature of the Poisson
distribution, a normal distribution was used for this study instead - by allowing to
have agents with preferred times that differ by the minute, it is considered that a
normal distribution is a better fit to describe the arrival of agents to the queue.

If a situation as the ones mentioned above (peak before the heat time, peak as
soon as the doors open, among others) is to be modeled, a Poisson distribution is
then a better fit. Note that, if this distribution is chosen, it is necessary to add the
value of the mean in the interface in order to fully describe the distribution. Fur-
thermore, a technical solution might be needed to overcome the discrete limitation
of the Poisson distribution (potentially by adding a random integer to compute the
final value).

B.4 Assumptions

To be able to build the model, several assumptions had to be made. These
assumptions highly impact the way agents behave and, for this reason, are critical
in order to understand the results obtained.

They are as follows:

• People can have two attitudes when queuing: cooperative or competitive.

• Each person is born with a natural tendency to become competitive. Although
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Table B.6: Parameterization of model variables of the queuing model

Variable Value Range

radius-visibility 4 (m) [0;6]
distribution-pick-up normal [normal;

poisson]
acceptable-length 70 [0;500]
threshold-competitive 50 [0;100]
poisson-mean 3 [0.2;5]
impact-long-queues 5 [0; 20]
impact-seeing-cutting 4 [0; 20]
hours-open 8 [4; 8]
impact-length? on [on; off]
initial-corona-number 1 [1;5;10;15;20]

their tendency to become competitive might change in one queuing event be-
cause of their environment, their natural characteristic does not change (this
is guaranteed by making the tendency to competitiveness equal to the natural
tendency after the agent has been served).

• Time to attend food distribution - each person has a preferred time to go
attend food distribution and it stays constant along runs: morning people will
always be morning people, night people will always be... doomed.

• Once in the line for getting food, refugees always wait to be served before they
leave;

• Both competitive and new competitive people only cut the line once - once
they place themselves in a frontal position, they will way for their turn to be
served

• It is assumed that everyone who attends food distribution will be served (i.e.
it might happen that people with a late preferred time to pick up food are still
in the queue past the closing time. Those will be served anyway).

• It is assumed that there is enough food for everyone (there is no shortage of
food - everyone who lines up is served).

• Cooperative people follow social distancing while competitive and new-competitive
people don’t.

• The number of hours a food distribution center is open can be altered but it
will always open at the same time (set to 9am).

• The more competitive one is, the more frontal it will place themselves in the
waiting list.

• Queue manager (person serving) will not allow someone jumping to the first
position.

• Other than to the first place (see assumption above), no one objects to people
cutting in line.
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• Two things can make people increase their tendency to competitiveness: the
length of the queue and seeing other people cutting the line.

• People queuing only see people cutting the line if this happens in front of them.

• There is sufficient room to queue for food (In the model it is done in a long
queue. However, this could also be done in a zigzag queue and it can be
assumed that it will not highly influence the cases because cooperative people
would still be distanced - given that there would be instructions to do so)

B.5 Technical Limitations

This section outlines some technical limitations of the queuing model. These
are as follows:

• The preferred time agents get to attend the food distribution is actually the
time they leave their shelters and start heading to the food point, not the
time they arrive at the food location. Moreover, these values range between
the opening time (and hence it can happen that the food point opens at 9 in
the morning and no one is there yet) and one hours before its closing. This
latter boundary is an attempt to guarantee that everyone arrives to the food
distribution before it is closed. However, it could still happen that someone
arrives after the closing time has passed (and it will still be served).

This could be fixed either by tweaking the preferred time to get food or by
introducing a mechanism in which the food distribution point only manages
waiting lists (and hence serves people) between opening and closing, poten-
tially leaving people in the queue and not serving them. In a real situation,
having these not served people will probably result in distress and people re-
turning to the queue with a more aggressive approach. However, that is not
within the scope of this study;

• As the poisson distribution is a discrete one, it only returns integer values.
These are then multiplied by 60 (to turn into minutes), giving very big differ-
ences between possible outcomes (60, 120, 180, etc.). However, by multiplying
by 60 before doing the random process, it will give values in a very short range
instead of spreading them throughout the hours during which the distribution
is open. For this reason, the distribution used for the experimentation phase
is the ”normal”. However, the poisson solution is implemented in the model
and could be used if wanted;

• At the moment, the placement of cooperative refugees in a queue is dependent
on the placement on the one in front. If there is a computing error placing one
of the cooperative agents, this error will propagate to every cooperative agent
standing behind in the queue. This is more of a design error due to inexpe-
rience in NetLogo. However, this error was never observed when running the
model and observing the behavior. This could be fixed by setting the spatial
placement of agents depending on their position in line instead of connecting
it to the person in front. With this solution, in case there is a a computing
error placing one of the agents, the error won’t propagate;
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• In one run, only the change of attitude cooperative to competitive can happen,
not the other way around. For that reason, policies such as keeping people
informed about the waiting time to make them stay as close to 0% as possible
cannot be implemented in the middle of a run and would have to be included
before. If so, then the impact of such a policy should be integrated by adjusting
the values agents get for their natural-tendency.

B.6 Model verification

This section focuses on the verification tests performed in the queuing model.
The aim of these tests is to evaluate whether the model behaves in the way it is
intended and that no implementation errors occurred while writing the code. If the
model passes these tests, then it is considered as a verified model that can be used
for experiments and later on go through validation tests.

Note that the process of verification was a rather iterative one - when performing
tests and realizing that the model was not behaving as intended, the model was
adapted and the verification test performed again. This was done until the model
passed all the conducted tests and could be considered verified.

To ensure reproducibility of results and that different runs can be compared
during the verification, a seed was set to a fixed value.

B.6.1 Tracking agents

To verify agent behavior, agents were carefully tracked along some runs. This
subsection focuses on three techniques used for this.

Coloring agents

After performing different actions, agents change their color to a different (pre-
defined) one. This allows to observe the development of the model and understand
where problems are coming up.

Changing attributes

Similarly to the color technique, agents were given odd but specific numbers
to some attributes after performing different actions. When identifying an agent
that is behaving in a non-desired way, this solution allowed to identify the path the
agent followed before giving an error or deviating from the normal behavior. By
understanding the path and functions that the agent conducted, it was easier to
find the functions where the errors were.

Printing error statements

The integration of output-print statements along the code was also used. By
printing the ID of each agent that performed some actions it was possible to identify
errors and agents that were following functions that they should not.
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Individually inspecting agents

Finally, a more time intensive approach was used when necessary. By individ-
ually inspecting some agents it was possible to identify some deviant behavior. All
the problems that were found during this process were fixed once found.

B.6.2 Testing parameters

Another approach to verification tests is to evaluate the parameters used in the
model. Again, this was done iteratively along the process and will not be reported
one by one. For these tests different values were given to some of the interface
parameters such as the percentage-competitive and the threshold-competitive. By
changing the first variable it is expected that the number of competitive agents
created when setting up the model changes accordingly. This was verified. The
change of the threshold has a twofold impact: the result of this change should be
seen in the values agents have for their natural-tendency when created but it should
also impact the value of tendency-to-competitiveness needed to change attitude.
Both of these changes were positively verified.

B.6.3 Extreme-condition test

After this, an extreme-condition test was performed. Again, the whole process
followed will not be reported because it is too extensive and slightly redundant. For
this test two different and interesting examples can be reported. The first deals with
the percentage-competitive. By setting this value to 0% it is expected that no one
joins the queue with an immediate competitive attitude. This was verified. Similarly,
no one behaves cooperatively when this variable is set to 100% (for this scenario,
please read Section 10.3 over the limitation of using this model in an extremely com-
petitive setting). However, it is important to note that, when percentage-competitive
is set to 0%, some agents along the run turn into new-competitive and choose a
rather competitive approach. This is also validated as there are still mechanisms
set for these agents to be influenced by their environment. The situation is as de-
scribed: the whole population is cooperative; for this reason, they all wait in a queue
when wanting to pick up food; this results in a high number of people waiting and,
consequently, very long queues; by looking at these long queues, some agents get
influenced (an amount equal to impact-long-queue) and, for some, this is enough to
cross the threshold and become competitive (or more accurately new-competitive);
when with this new attitude, people cut the line, impacting others around. This se-
quence of events leads to people leaving the physical queue and cutting the line, but
all with a new-competitive approach. To test a scenario in which no one naturally
acts nor is influenced to act as competitive, all the percentage-competitive, impact-
long-queues and impact-seeing-cutting variables are set to zero. In this situation, it
is expected that no one at all diverts from the normal behavior of waiting in line.
This is observed as expected.

B.6.4 Multi-agent testing

Finally, when testing the entire model with all the agents wanted as intended
for the experimentation phase, undesired results were obtained. In specific, when in-
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creasing the percentage of naturally competitive people to 40% (percentage-competitive
= 40 ), the average queuing time across all queuing agents resulted in a lower value
than when this variable was set to 30%. Although this is an unexpected result, it
can be easily justified by the simplification made in the modeling process that people
who cut the line only do it once. While this simplification will not heavily impact
the dynamics when the percentage of competitive population is maintained in lower
values (from 0% to 30%), it can be argued that this represents the boundary for
which the model can be used to represent the real system. In an environment where
a big part of the population does not respect queues and decides to cut the line
instead, it can be argued that a whole dynamic of cutting and pushing can emerge,
which this model can not reproduce. Moreover, this could even raise a discussion if
this environment can be included in queuing modeling or if it is a switch to crowd
chaos.

After having performed the verification tests explained above and given the
limitation referred in the last paragraph, it was considered that the queuing model is
verified and behaves as intended when applied to a population with 30 or less per cent
of competitive individuals. However, this model should not be used when wanting
to simulate the queuing process of a population with 40% competitive individuals.
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Coupling models

This appendix covers the implementation component of coupling the two mod-
els. First, it will focus on the actual coupling process and its challenges (Section
C.1). Then, the parameterization of the model variables (Section C.2). Finally the
assumptions of the coupled model are enumerated (Section C.4).

C.1 Coupling process

Figure C.1 shows the flow of the coupled model. This diagram shows mostly
the flow of the model developed by Bögel and the place where the queuing model
is integrated (in blue). From then on, the model follows the logic of the queuing
model explained in Figure B.1.

As the queuing model was originally developed with the final intention of using
it in this study, design decisions when developing the model were already fitted
to the problem. For example, although the model represented any queuing event,
agents were purposely called refugees and food distribution. Coupling the models
was done through a direct integration of the code responsible for the queuing process
in Bögel’s code. In order to achieve this two main things were done: first, Bögel’s
model was studied to a very extended detail in order to understand the reasoning of
the model and make the process of integrating the codes easier; then the model was
integrated by mostly add a test checking the agent’s current activity - if this activity
was food distribution, then make sure they follow the queuing process with the new
code. In order to make the models consistent and guarantee their functioning, it
was necessary to change the name of the refugee agents to tents.

C.1.1 Challenges

When coupling models developed by different authors, challenges can arise from
differences of reasoning or simply from different syntax. Overcoming these represents
the majority of time spent coupling models. Some of the challenges faced during
these process were:

• The way Bögel developed the model, refugees are conceptualized as a unique
shelter (i.e. household) represented in the model as a tent. Once it is time to
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Figure C.1: Flow of the coupled model

conduct an activity, these tents create walkers to perform these activities. This
raised a challenge for the implementation of the representative-based policies.
In order to overcome this challenge, an agent set called representatives was
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created and only these agents attend food distribution

• Another challenge rose from the modeling decision that agents could just move
to a location instead of walking there. In order to correctly simulate a queue,
it is necessary to have agents that walk step by step. As the focus of the study
is the process of distributing food, the model was slightly adjusted to make
refugees walk when they attend food distribution but not to other activities
(as this is considered outside of the scope).

• Extra challenges rose from the spatiality of the model. If everyone behaves
cooperatively but too many people attend the food distribution (in the base-
line, for instance), a very long queue can form. To avoid the queue reaching
the boundaries of the world and agents pilling on top of each other (leading
to a lot of infections since no distance is kept), an extremely large world was
created (see Figure C.3). Instead of a long queue a zigzag queue (also known
as serpentine queue) could have been used. This, however, is assumed to not
make a relevant difference since the big gap between various layers in these
would avoid transmission between people who queue at the same x coordinate
but different y coordinates. For this reason, the decision of going for an ex-
tremely large world was made. This had as implication that the other facilities
are placed very far from the camp. However, that is considered to not be a
problem since agents are transported there (use move-to) instead of (go-to).

C.2 Parameterization

As the coupled model is just a combination of Bögel’s model and the queuing
one, the parameters involved in it are also a combination of these. The only addition
made was the creation of a variable initial-corona-number that represents the size
of the outbreak (number of infections) in day 1, which is set by default to 1. For
that reason, further explanation of the motivation of the parameter values is not
needed (considering the one given in Bögel’s work (2020) and Section B.3). Table
C.1 summarizes the values for each one of the variables and the range they can be
varied within.

Note that this table only includes the interface variables that are not used for
policy implementation (policy-implemented and time-slot? ) nor scenario creation
(percentage-competitive).

C.3 Model interface

Figure C.2 and Figure C.3 C.3 show the interface of the coupled model. These
figures depict the model interface and the world, respectively. Note that, as men-
tioned in the coupling challenges, the world of the coupled model had to be adjusted
to allow people to queue behind each other. Although this increases the time needed
to run the model, the benefit of allowing people to queue cooperatively behind each
other is deemed to be a sufficient reason to do this.
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Table C.1: Parameterization of model variables in the coupled model

Level Variable Value Range

Original
model

compliance 100 % [0;100]

transmission-
probability

5 % [0;100]

social-distancing 1.5 (meters) [0.5;1;1.5]
factor-asymptomatic 1 [0.5;2.0]
food-delivery-day 8 (day) [1;27]
mask-usage yes [yes;no]
mask-effect 50 % [0;100]
household-size 5 - 10%

elderly
[5-10% elderly; 5-20%
elderly; 7]

plotsize-shelters 12.5 (m2) [12.5;25;50;100]
mobility free [free; quarantine; isolation;

no-elderly]
poor-conditions? on [on;off]
block-size 120 [60;120]

Queuing
model

radius-visibility 4 (m) [0;6]

distribution-pick-up normal [normal; poisson]
acceptable-length 70 [0;500]
threshold-competitive 50 [0;100]
poisson-mean 3 [0.2;5]
impact-long-queues 5 [0; 20]
impact-seeing-cutting 4 [0; 20]
hours-open 8 [4; 8]
impact-length? on [on; off]
initial-corona-
number

1 [1;5;10;15;20]

C.4 Assumptions

Similarly, the assumptions over which the model relies on are a combination
of assumptions initially made by Bögel and assumptions made during the process
of this thesis. For that reason, please refer to Section B.4 for the queuing related
assumptions.

From Bögel’s work (2020), the following assumptions remain true:

• Agents perform four types of activities: use of latrines, obtaining food and
water and visiting healthcare facilities;

• Facilities have set opening times and are located on two edges of the settle-
ments (except for the food distribution);

• Every household performs the activities with the following frequency: visit
latrines (7x per day), obtain food (once every 28 days), obtain water (1x per
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Figure C.2: Interface of the coupled model - Inputs

day) and visit healthcare facility (when sick);

• Service time of each facility is as follows: latrine (2 minutes), water point (15
minutes) and healthcare (10 minutes);

• Food distribution service time depends on the policy in place (i.e. depends on
how many people the agent is picking up food for)

• All households obtain food at the same day and it must be done by an adult
or elderly;

• Food and water are, if possible, obtained by a healthy household member;

• People arrive at a facility instantly (i.e. they don’t walk there) - this is for all
activities except food distribution;

• After an activity, a person returns to its shelter instantly;

• COVID-19 infection can occur when agents are within 1.5 meters distance of
an infectious person;

• After being infected, people become immune to COVID-19;

• COVID-19 progression follows the flow presented in Appendix A;

• COVID-19 progression is different from children, adults and elderly;
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Figure C.3: Interface of the coupled model - World

• Children have a lower probability of getting infected but, once sick, they have
a similar chance of infecting others;

• Elderly are more likely to develop severe symptoms and therefore have a higher
Case Fatality Ration (CFR);

• Children are less likely to develop severe symptoms and therefore have a lower
CFR;

• COVID-19 infection perception can differ from actual infection status;

• 10% of all infected people immediately suspect they are infected (and conse-
quently set their perception to infected). When they become asymptomatic,
their perception changes to healthy again;

• Time between consecutive stages is equally distributed among the different
age groups;

• Disease progression only moves in one direction: people cannot go back to
symptomatic anymore once they have become severely or critically ill.

Other assumptions made but not specifically identified by Bögel are the follow-
ing:

• It is assumed that shelters do not offer the possibility of infected refugees to
isolate from the rest of the household;

• Vaccination programs is not considered - immunity can only be achieved
through previous infection;

• After the first case appears in the settlement, it is assumed that no one enters
or leaves the perimeter.
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From the further development of this study (and excluding the queuing assump-
tions mentioned before), the following assumptions are considered:

• There is enough room to create a long queue in the settlement;

• Refugees are dependent on food distribution and their functioning for survival;

• The service time to give a refugee food for their household is around 4 minutes;

• The serving capacity of the food distribution is maintained constant;

• The representatives (when implementing policies) are randomly chosen from
the population;

• It is assumed that no one other than representatives attends food distribution
if a policy is implemented.

The reasoning for some of the assumptions and the implication of others is
further discussed in Chapter 9.
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Model verification

This appendix focuses on the verification of the coupled model. As mentioned in
the main text, the coupled model results from a hard integration of a verified model
(the queuing model) into another verified model (developed by Bögel (2020)). The
verification tests performed in each one of these models can be found in Appendix
B.6 and in Bögel’s report, respectively.

In order to test if the coupling process was correctly done, the coupled model
was subjected to extra verification tests. After performing these, it was concluded
at the coupled model is also verified. Note that the previously mentioned limitation
regarding the competitiveness of a population maintains. For this reason, it is
concluded that the coupled model is verified to be used under the same circumstances
as the queuing model (and, consequently, not for a population with tendency to
behave competitively in a queue).

Attending the (right) food distribution

In order to have enough room for the food distribution, a different food point
was set up. This can be found between the camp and the boundaries where the rest
of the model facilities are found. The main change when integrating the queuing
model in the model developed by Bögel is that refugees should attend the new food
point. This was verified and works as expected.

Tracking agent behavior

Similarly to the tests reported for the queuing model, the verification procedure
of the coupled model also involved tracking agents and their behavior. The same
techniques were used for this, together with a bigger focus on tracking individual
agents. After fixing the problems found along the process, it is considered that the
model is working as intended.

Verification of policies

Finally, it is important to refer back to the process of implementing policies
in the model. While in the queuing model this was done by simply reducing the
number of total agents in the model (as the model’s unique purpose was to simulate
queues this does not affect the overall logic of the model), the same approach could
not be taken for the coupled model. In other words, even if representatives are used
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and less people attend the food distribution, the rest of the model integrates the
whole population of the camp.

As a solution to this problem, an agent set called representatives was created.
The agents that are part of this agent set are the ones who are supposed to attend
the food distribution. The number of agents in this set should depend on the policy
implemented. In order to guarantee that these are the only people attending food
distribution, the go function only checks if it is food time for this agent set. By
checking the number of representatives in different set ups with different policies
implemented, this integration can be verified as well.

Overall, the model is considered to behave as intended. In other words, it can
be argued that the coupled model is verified.
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Model results

This appendix contains all the results generated in this study. Explanation on
the figures will not be provided in the Appendix as it can be found, if relevant, in
the main text.

E.1 Model behavior in the baseline

Average time in the food distribution queue across all queuing agents

Figure E.1: Average time in queue across all queuing agents: Baseline in each Scenario
(E0)
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Cumulative cases over time

Figure E.2: Cumulative infections: Baseline in each Scenario (E0)

139



APPENDIX E. MODEL RESULTS

Figure E.3: Cumulative infections: Baseline in each Scenario (E0)

Average time in the food distribution queue per attitude

Figure E.4: Average time in queue per attitude: Baseline in each Scenario (E0)
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Number of people switching behavior

Figure E.5: Number of people switching to a competitive behavior: Baseline in each
Scenario (E0)

Likelihood of getting infected

Figure E.6: Likelihood of getting infected at the food distribution per attitude: Baseline
in each Scenario (E0)
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Likelihood of infecting

Figure E.7: Likelihood of infecting during the food distribution per attitude: Baseline
in each Scenario (E0)

Identification of points of interest

Figure E.8: Cumulative infections: Identification of the moments of evaluation (E0)
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Cumulative cases per moment of evaluation

Figure E.9: Cumulative infections: Baseline in each Scenario of interest per moment of
evaluation (E0)
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Distribution of location per moment of evaluation

(a) Day 7 (b) Day 13

(c) Day 35 (d) Day 41

Figure E.10: Cumulative infections per location: Baseline in each Scenario of interest
per moment of evaluation (E0)
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Visualization of the relative impact of each location in the infection chain

Figure E.11: Visualization of the relative impact of each location in the infection chain:
this heatmap shows the variation between replications in both scenarios of interest (S1
and S3) in the four moments of evaluation (7, 13, 35 and 41). The first four rows are
representative of scenario 1 and the bottom four are scenario 3. The y-axis show the
place where the infection occurred while the x-axis shows the place where the infector
was infected in the first place. In the x-axis it is also possible to see the number of the
replication
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Visualization of two runs of scenario 3 with different behavior - role of
stochasticity

(a) Day 7 Rep. 0 (b) Day 7 Rep. 6

(c) Day 13 Rep. 0 (d) Day 13 Rep. 6

(e) Day 35 Rep. 0 (f) Day 35 Rep. 6

(g) Day 41 Rep. 0 (h) Day 41 Rep. 6

Figure E.12: Infection network: Identification of two baseline runs in the same scenario
(S3) that lead to different dynamics
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Figure E.13: Cumulative number of infections: Observation of replication 0 of scenario
3

Figure E.14: Cumulative number of infections: Observation of replication 6 of scenario
3
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E.2 Representative-based policies

Average time in the food distribution queue across all queuing agents

Figure E.15: Average time in queue across all queuing agents: Implementation of
representative-based policies (P1, P2 and P3) in Scenario 1 and Scenario 3

Average time in the food distribution queue per attitude

Figure E.16: Average time in queue per attitude: Implementation of representative-
based policies (P1, P2 and P3) in Scenario 1 and Scenario 3
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Number of people switching behavior

Figure E.17: Number of people switching to a competitive behavior: Implementation of
representative-based policies (P1, P2 and P3) in Scenario 1 and Scenario 3
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Cumulative Cases

Figure E.18: Cumulative infections: Implementation of representative-based policies
(P1, P2 and P3) in Scenario 1 and Scenario 3
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Likelihood of getting infected

Figure E.19: Likelihood of getting infected: Implementation of representative-based
policies (P1, P2 and P3) in Scenario 1 and Scenario 3

Likelihood of infecting

Figure E.20: Likelihood of infecting: Implementation of representative-based policies
(P1, P2 and P3) in Scenario 1 and Scenario 3
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Distribution of location per moment of evaluation

Figure E.21: Distribution of infections per location per moment of evaluation: Imple-
mentation of representative-based policies (P1, P2 and P3) in Scenario 1 and Scenario
3
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E.3 Timeslot-based policies

In this section both the results of the implementation of the timeslot alone and
the combination of the timeslot and policy 3 are included.

Average time in the food distribution queue across all queuing agents

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.22: Average time in queue across all queuing agent: Timeslot implemented in
isolation and in combination with Policy 3 in Scenario 1 and Scenario 3
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Average time in queue per attitude

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.23: Average time in queue per attitude: Timeslot implemented in isolation
and in combination with Policy 3 in Scenario 1 and Scenario 3
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Number of people switching behavior

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.24: Number of people switching to a competitive behavior: Timeslot imple-
mented in isolation and in combination with Policy 3 in Scenario 1 and Scenario 3
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Cumulative Cases

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.25: Cumulative infections: Timeslot implemented in isolation and in combina-
tion with Policy 3 in Scenario 1 and Scenario 3
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Likelihood of getting infected

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.26: Likelihood of getting infected: Timeslot implemented in isolation and in
combination with Policy 3 in Scenario 1 and Scenario 3

157



APPENDIX E. MODEL RESULTS

Likelihood of infecting

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.27: Likelihood of infecting: Timeslot implemented in isolation and in combi-
nation with Policy 3 in Scenario 1 and Scenario 3
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Distribution of location per moment of evaluation

(a) Timeslot (P4)

(b) Timeslot (P4) + P3

Figure E.28: Distribution of infections per location per moment of evaluation: Timeslot
implemented in isolation and in combination with Policy 3 in Scenario 1 and Scenario 3
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GitHub

All the scripts, models and notebooks used along this thesis are published in the
GitHub repository. These can be divided into 5 main sections

• Model and running

1. Queuing Model

2. Coupled Model

3. Script to run NetLogo headless for experiments

• Supportive Conceptualization

1. Flowchart queuing model

2. Flowchart Model Bogel

3. Flowchart coupling process

• Results (both .csv and text files

1. Experiment 0 - Baseline across all scenarios

2. Experiment 1 - Scenario 0 with all representative-based policies

3. Experiment 2 - Scenario 10 with all representative-based policies

4. Experiment 3 - Scenario 20 with all representative-based policies

5. Experiment 4 - Scenario 30 with all representative-based policies

6. Experiment 5 - Scenario 40 with all representative-based policies

7. Experiment 6 - Timeslot-based policy implemented in the baseline in sce-
nario 1 and scenario 3

8. Experiment 6 - Timeslot-based policy implemented in combination with
policy 3 in scenario 1 and scenario 3

• Data preparation, analysis and visualization (Jupyter Notebooks)

1. Notebook Baseline - Queuing dynamics

2. Notebook Baseline - Infection dynamics

160



APPENDIX F. GITHUB

3. Notebook Representative-based policies

4. Notebook Timeslot-based policies

• Sensitivity Analysis

1. Model used for the Sensitivity Analysis (slight variation to include specific
outputs)

2. Script to run NetLogo headless for SA

3. Pre-processing script to reduce size of the SA .csv

4. .csv file from Sensitivity Analysis

5. Notebook Sensitivity Analysis
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Cover Picture: Cox Bazaar, Bangladesh- 31 October 2017: Rohingya refugees queue for a food supplies 
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